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Abstract
With the explosive growth of the Internet have come problems of increased
server load and network latency.  This means that systems that require
interchange of data between server and client over the network can be slow
to unusable (at peak times).  We are investigating methods for developing
distributed CBR systems which minimise the load on the servers and the
network, thus increasing response time and usability.  The first part of this
research focuses on balancing load in a client/server situation that involves
a long-lived dialog.  This report discusses the various issues to be tackled
when attempting to effectively balance the processing load.

Introduction

This report summarises the work to date in one strand of the CBR-Net project.  This

project is in the area of networked/distributed Case-Based Reasoning.  Case-Based

Reasoning (CBR) is a methodology found in Artificial Intelligence, which takes

solutions to problems encountered in the past as a basis for solving current problems.

The research focuses on networked CBR systems, particularly those to be found on

the Internet.  This report assumes the reader is familiar with the basics of CBR, and

will give only a brief introduction to the area, concentrating instead on the particular

problems involved in networked CBR systems.

With the explosive growth of the Internet have come problems of increased server

load and network latency.  This means that systems that require interchange of data

between server and client over the network can be slow to unusable (at peak times).

We are investigating methods for developing distributed CBR systems which

minimise the load on the servers and the network, thus increasing response time and

usability.

This paper presents the current state of the research and possible future directions.

The original objective of the research was to design and develop CBR tools that

would support the development of distributed CBR applications on Inter- and

Intranets.  So far a generic client-server shell has been developed in Java which

supports incremental CBR applications and tries to balance the load between the

client and the server according to the current network conditions.  Since this shell is
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domain-independent, it could theoretically be used with any Case Base (simply by

supplying the data files in the correct format), but the nature of the incremental engine

currently limits us to Case Bases with discrete feature values and solutions. This is a

solvable problem, however.

The above topics are considered in more detail in the following sections, beginning

with a brief introduction to CBR and particularly incremental CBR (section 1).

Reasons for wishing to move away from the usual "thin" client - "fat" server approach

are discussed in more detail in section 2.  Section 3 looks at the development of the

current system, mentioning the issues that emerged during this development.  These

issues are discussed in greater detail in section 4.  Section 5 presents conclusions and

some possible future directions.

1 Case-Based Reasoning

1.1 Introduction to Case-Based Reasoning

“A case-based reasoner solves new problems by adapting solutions that were used to

solve old problems” [Riesbeck & Schank 89]. Case-Based Reasoning is an AI

approach to solving problems that attempts to solve the current problem by relating it

to past experiences (cases).  The intuition behind CBR is that situations often reoccur

and using the knowledge gained from solving a similar problem in the past is a good

starting point from which to solve the current problem.  As there are usually some

differences between the target (input) problem and the retrieved case(s), some sort of

modification may need to be applied to the ballpark solution suggested by the old

case, so that it fits the new situation.  This is known as adaptation.  Cases that were

solved successfully can be retained and so are available for further use.  Failures can

also be retained, giving the reasoner the ability to recognise potential problems so that

they can be avoided in the future.  Both of these processes result in the reasoner’s

knowledge constantly evolving - thus it learns as a natural by-product of problem

solving.

Part of the reason for the interest in CBR is its psychological plausibility.  It can be

seen at work in many everyday situations - previous experiences are often utilised in

decision-making processes.  When trying to plan a big night out (to celebrate your

birthday, for example), with a gang of friends with varied personalities, you need to

remember previous good and bad experiences on nights out with these people, in

order to successfully plan a night that everyone enjoys.
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CBR has many advantages over traditional rule-based systems. Remembering

previous situations similar to the current one in order to solve the new problem is a

more plausible approach to problem solving than always reasoning from first

principles.  This is clearly a more efficient approach as well.  As well as this, CBR

can also be used in domains where no causal model is available, as the reasoner does

not need explicit rules or models to reason from - it makes use of the implicit

knowledge contained in cases.  This also means that CBR does not suffer from the

knowledge elicitation problems that characterise expert system development (known

as the knowledge elicitation bottleneck).

The generally accepted CBR cycle is: Retrieve, Reuse, Revise, and Retain [Aamodt &

Plaza 94].  The system described in this paper has a slightly different sequence of

events – it uses a process of incremental retrieval, where the initial query does not

have to be completely specified; instead it is used to retrieve an initial set of cases that

is incrementally narrowed down through further queries.

1.2 Incremental CBR

The approach to incremental CBR (I-CBR) used in this system was proposed by

Smyth & Cunningham (see [Cunningham & Smyth 94], [Smyth & Cunningham 95]).

The idea was originally proposed for particular types of diagnosis problems, where it

is difficult to gather a complete case description in advance.  In these types of

problems, there is a potentially large amount of information that could be used to aid

the diagnosis, but all of this information is not necessarily needed to solve the

problem.  Moreover, some of this information is “expensive” - meaning it may be

difficult or costly to acquire - and so it is desirable to minimise the use of these

features.  A multi-stage retrieval process achieves this.  The “free” (or readily

available) features can be input to the initial (under-specified) query.  This “first pass”

retrieves a subset of the initial Case Base, and subsequent refining questions reduce

the size of the retrieved set even further, until a consistent set of cases remains.

The most important component of the I-CBR approach is how the “refining

questions” are chosen.  An information theoretic approach is used, which chooses the

next feature based on its discriminatory power (or "information content") with regard

to the current set of retrieved cases (see [Smyth & Cunningham 95] for a detailed

description).  In simple terms, this approach measures how much information is

gained about the possible class of the target case through knowing the value of the

feature.  This method of choosing refining questions makes the reasoning more

focused, and has been shown to out-perform a goal-directed reasoner in terms of

number of questions posed ([Smyth & Cunningham 94]).
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This information theoretic measure is essentially the same as that used in ID3

[Quinlan 86] when selecting the best attribute at each step in growing the decision

tree.  However, with I-CBR, this discriminatory power is assessed in relation to the

current set of retrieved cases at runtime and not in relation to the entire Case Base.

Another important difference is that ID3 is an algorithm for building a full decision

tree offline, whereas with I-CBR only partial decision trees are built on the fly over the

current set of retrieved cases.

Unfortunately, I-CBR is also restricted by this approach to choosing the next refining

question.  In order to assess the discriminatory power of a feature, it is necessary to

know in advance

• all the possible values for that feature

• all the possible classifications of cases

This means that I-CBR in its basic form, like ID3, can only handle classification

problems and discrete-valued features.   However there are various extensions to the

basic ID3 algorithm, which attempt to overcome these problems (see [Quinlan 93]).

As was mentioned previously, I-CBR was originally proposed for diagnosis tasks

where it is both costly and unnecessary to completely specify an initial query.

However, incremental retrieval could be useful for other tasks also.  Take for example

a CBR travel advisor, or production configuration system.  The user may not have a

very specific idea of his requirements when starting to use such a system.  With an

incremental system, they only need to specify the features most important to them to

begin with, and will hopefully only need to answer a subset of the remaining

questions in order to retrieve useful cases.

However, decision trees can find different categorisations for inputs depending on the

order in which features are input.  This means the case that is found is the best

possible case for a query where the questions are asked in order of importance.  Since

the information theoretic approach asks questions in an order that reflects the

discriminatory power of that question at that time, questions are not asked in an order

that takes the user’s view of importance into account.

Despite the restrictions of the basic version of I-CBR, the ability to engage the user in

dialog instead of performing one-shot retrieval makes it an attractive method of

retrieval.  However, this dialog may be long lived, and if the retrieval is taking place

across a network, server and network load could result in slow response times for the

users.  For this reason, there is a need to investigate ways to improve response times

with such systems.
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2 Network concerns

The Internet (or "global information system") is growing at an extremely high rate.

Traffic on the web is in fact increasing at exponential rates [Markatos & Chronaki

98].  Even though there have been dramatic increases in the performance of networks

and computers, the rapid growth of the Internet, and increasing levels of traffic, make

it difficult for Internet users to enjoy consistent and predictable end-to-end levels of

service quality [Ferguson & Huston 98].  Increased numbers of users has lead to

increased network and server load.  At peak times, some services can be completely

unusable, as the response from the server is painfully slow.

Ferguson and Huston list the quality of service on the Internet as dependent on four

factors – delay, jitter, bandwidth and reliability.

• Delays we are all familiar with.  The higher the delays, the more stress is placed

on the transport protocol to operate efficiently, as greater amounts of data are

being held “in transit” in the network.

• Jitter (the variation in end-to-end delay) is also an oft-observed phenomenon.

High levels of jitter make round trip time (RTT) difficult to estimate.  The TCP

protocol expects destinations to send back acknowledgements whenever they

receive new data segments, and uses this information to calculate the RTT.  If this

acknowledgement has not been received before a particular timeout period, the

data is assumed lost and retransmitted.  The timeout period is calculated based on

average RTTs observed.  If jitter causes an overly conservative RTT estimate, the

timeout will also be too long; meaning it will take an unnecessarily long time

before packet losses are detected.  On the other hand, overly short RTT estimates

will mean a low timeout, causing packets to be retransmitted unnecessarily, which

is a waste of network bandwidth.

• The bandwidth is the maximal data transfer rate between two end points.  This

rate does not depend solely on capabilities of the physical network path, but also

on the number of other routes sharing common components of the path.  Therefore

as traffic increases on any of those routes, they all suffer.

• The overall reliability of the network can be though of as the average error rate or

as an indication of the performance of the switching system.  Routing problems

can cause increased delay and reduced reliability (through packet loss).  Instability

in the routing protocols can lead to increased jitter (see [Labovitz et al. 97]).

There continues to be much research into improving the Internet at the hardware and

protocol levels in order to increase reliability and tackle the problems of delay and

jitter.  However guarantees are not possible in the Internet in the foreseeable future
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[Ferguson & Huston 98].  We need to look at ways to maximise the reliability and

responsiveness of high-level Internet services by minimising network traffic.  System

architectures that minimise centralised server load would also increase

responsiveness.  Such architectures would have the twofold advantage of decreasing

processing load on the server (resulting in an increase in the number of available CPU

cycles) and also decreasing the network congestion in the vicinity of the server.  This

kind of architecture can be seen at work in much of the recent research into web

caching and prefetching of documents.

Web caching is concerned with caching popular documents close to clients.  The aim

of this work is to reduce network traffic and server load by keeping data close to

clients that re-use them.  Prefetching of documents takes this a step further; this

approach makes use of client browsing patterns and server statistics to automatically

download to clients or proxy caches documents that could be useful in future (see

[Markatos & Chronaki 98], and [Hine et al. 98] for two such systems).  This

“prefetching” could be performed at off-peak times, so that transfer costs would be

minimised.  This reduces server load and also reduces latency for clients, as the

documents are close by when they want them.

Gwertzman [Gwertzman 95] takes another approach to this problem.  He proposed the

idea of “geographical push-caching” to reduce a web server’s load.   When the load

on a web server exceeds some limit, it replicates (“pushes”) the most popular of its

documents to other co-operating servers, provided they have a lower load.  Clients

can then make future requests for these documents from the other servers (hopefully

from the server closest to them).  This approach reduces server load and bottlenecks

close to popular servers.  However it does have its problems.  Clients may still have to

contact the original server to find out where they should get the documents, increasing

response time at least slightly.  The servers containing the replicated documents might

still be far enough away for latency concerns, unlike prefetched documents which

reside on the clients themselves or local proxies.

All of this research shows that the current trend is to decentralise load in order to

overcome responsiveness and reliability problems on the Internet.  It seems a natural

progression to consider applying the same approach to client-server systems,

especially those involving a long-lived dialog.  The traditional client-server

architecture consists of a “thin” client (which is little more than GUI) and a server that

handles all of the processing.  Willcox [Willcox 97] advocates this kind of system,

and argues that downloading the amount of code that would be needed by a “heavy”

client would be prohibitive. However, unless you have a very expensive high-

powered server, server overload is a serious concern with these systems, and either

way, network overload can potentially slow down responses from your server.  We
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also argue that current archive formats can lead to much reduced code size (see

section 4.2), making once-off transmission of code feasible, once the time required is

offset by the time saved on dialog later.

Therefore our approach has been to move processing from the server to the client as

soon as possible.  However, Case Bases can be very large, so it would not be possible

to send over the Case Base at the beginning.  Incremental retrieval is used to prune the

Case Base step by step, until the Case Base is small enough to send to the client.  The

details of how this works in practice are given in the next section.

3  The current system

The implementation stage of this project began by modifying an existing system,

which was implemented in Java.  This system was a traditional “thin” client system,

and is well documented in [Doyle 97].  There were various extensions necessary to

make this system incremental and give it the ability to move processing from the

server to the client.  These extensions are described step by step below.

Stage 1 – Incremental Retrieval

The first step was to change the retrieval mechanism from one-shot to incremental.

The underlying retrieval algorithm (spreading activation) was unchanged however.  In

the original system, retrieval was performed as described below (see [Doyle 97] for

more detail):

A FeatureLinkWeb object is created when the Case Base is loaded into memory (as a

CaseBase object).  This object is made up of FeatureLink objects for each value of

each feature of the cases in the Case Base, and it contains pointers to all the cases

with that value for the feature1.  These objects are used to speed up retrieval.  When a

target case (T) is input to the system, the Case Base is first partitioned according to its

constraints (if any).  Constraints are features that must be matched in the cases

retrieved.  Therefore only cases that have the same value as T for each constraint are

put into the partition.  This stage is known as Base Filtering.  The Spreading

Activation stage then proceeds as follows:

                                                
1 Creating all of these FeatureLink objects might take a while with a large Case Base.  This is taken
care of in the current system by only creating the Casebase object once, when the servlet is initialised,
and keeping it in memory throughout accesses to the server (see section3, stage 3).  In the current
system the Case Base is never updated, but if it were, extensions could be made to the FeatureLinkWeb
object quite easily, so there is no need to recreate it from scratch.
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For each descriptor d of T:

All FeatureLink objects representing descriptors similar to d

are found2

The activation of every Case object, which is pointed to by one

of these FeatureLink objects and is inside the partition, is

updated by an amount corresponding to the weight of the current

feature and their similarity score

Finally, the cases with activation above a pre-determined threshold are

returned3

This retrieval strategy was also used in the updated system, in conjunction with the I-

CBR algorithm, for improved accuracy.  The reason for this is simple.  If we used the

partial decision tree constructed at each step to retrieve cases, then only cases with

exactly the same value as the current input value would be retrieved.  Using the above

spreading activation algorithm, cases with similar values to the input value are

activated also, allowing cases which may only partially match along all dimensions,

but are a potentially good solution, to be retrieved also.  The updated algorithm is as

follows:

Input: Initial Query Q

For each specified descriptor d of Q:

All FeatureLink objects representing descriptors similar to d

are found (1)
The activation of every Case object, which is pointed to by one

of these FeatureLink objects and is inside the partition, is

updated by an amount corresponding to the weight of the current

feature and their similarity score (2)
retrieved_cases Ç current set of cases with activation above threshold

While retrieved_cases is inconsistent and more unknown features:

Calculate the most discriminating feature (f) and ask user

d Ç f + value input by user

Perform steps (1) and (2) above with d as input

retrieved_cases Ç current set of cases with activation above the

threshold

Finally return retrieved_cases if it is consistent or if all features have been

asked

                                                
2 The Case Base administrator determines the similarity threshold.  If similarity is less than one, more
cases are activated (by an amount relative to their similarity), making the system more accurate as it
handles partial matching.
3 The cases that are returned may additionally have to go through an adaptation phase, depending on
the retrieval mode.
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The preceding algorithm leaves out the details of one important step – calculating the

most discriminating feature.  This step uses the information theoretic measure

mentioned in section 1.2.  It is a direct implementation of the algorithm in [Smyth &

Cunningham 95] and I will not go into the details of it here.

Implementing this retrieval algorithm also required modifications to the client side of

the system.  The client side was originally just an applet, which reacted to certain

actions and sent and received data over a socket connection.  In order to facilitate

asking further questions as the feature names were sent over from the server, a

separate thread was created to handle further user input.  This was necessary, as

waiting for the user to enter a value for the feature being asked is the same as

suspending the current thread.  This is fine if the current thread is a thread created

specifically for this task and has nothing else to do.  However, if this loop awaiting

input were inside the applet, this would result in a suspension of the thread which

invokes the "action" and "handleEvent" methods on components, and basically block

all user input (including input in the component which takes in the current value being

asked).

This separate thread was also used to handle communications over the socket, as this

resulted in a neat separation between the interface and the "front end" of the client

system.  This separation would be needed for stage 2.

During this stage the existing code (which had been developed using JDK 1.0.2) was

also updated to be JDK 1.1 compliant.

The next step was to implement an initial “fat” client version of the system.

Stage 2 – The initial “fat” client system

As mentioned above, the existing system was a traditional client-server system, with

only a GUI and code for action events and socket communications on the client.  The

aim was to extend this system to conform to the architecture depicted in Figure 1.

Since the interface had already been separated from the dialog thread, there was no

need to make changes to the applet.  The dialog thread had to be updated to

understand when the Case Base had been transferred, and to communicate with the

client-side CBR engine from then on. Therefore the applet is completely unaware

when the processing moves to the client side as it only performs display functions.
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Figure 1.   Proposed architecture for distributed CBR

The next issue to be faced was how to download the application logic to the client so

that processing could take place there after the Case Base is transferred.  Transferring

the classes in the background while the applet is processing the initial stages of the

query would be ideal, but to date no efficient way of achieving this in Java has been

found.  The only way of transferring the code in the background is through use of the

Class.forName(classname) method, which initiates the loading of a class4.

Therefore you can write a separate thread which takes a list of all the classes in your

system, and loads them one by one.  This would not be a great solution however.

Apart from the need to update this list every time the implementation changes, this

approach would be very inefficient as the uncompressed bytecode could be quite

large.  What is needed is some way to load a JAR (Java ARchive) file in the

background, but this is currently not possible.  Therefore we decided to simply

download a JAR file that contains all of the classes needed (including the applet and

dialog thread) at the beginning, as at least then the bytecode is compressed and may

not be prohibitively large.  This issue is discussed further in section 4.2.

In the old system, there is a server program listening on a particular port for client

connection requests, and for each request, a socket connection to the client is opened

and a cbrServerThread object created to deal with this client.  Therefore changes

needed to be made to the cbrServerThread class so that it not only marshalled

information between the client and the retrieval engine, but could also decide to send

the Case Base across to the client at an appropriate time.

The difficult issue to be faced at this point was how to decide the time was right for

transfer of processing.  This is not an easy problem (with some sub-issues), and has

still not been solved completely satisfactorily.  There are a few parameters to be

considered:

                                                
4 This is because classes are first loaded in Java when they are referenced.
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• The current network latency

• The size of the Case Base

• The number of features yet to be asked

The only one of these that is immediately available is the size of the case base.

Estimating the network latency is a very difficult task in itself, even for network layer

software.  This is discussed in more detail in section 4.  For this initial system, a

simple calculation of latency was made.  A case was sent to the client and back a

number of times and the average round trip delay calculated.  This value was then

divided by two, to give an estimate of the time it would take to send one case from the

client to the server.  This estimate assumes the delay was the same on each leg of the

trip, which may lead to false estimates.  However there’s no other way to estimate

one-way delay without both computers having synchronised clocks.  Improvements to

this estimation are discussed in section 4.  The time it takes to send a feature across

was also estimated (for comparison), in a similar way.  Every time a refining feature

was sent to the client, it was returned to the server immediately as a kind of

"acknowledgement".  This was used to calculate the current feature transfer time.

The number of features yet to be asked is also not easily calculated, however it may

be important.  It is difficult to know for sure if sending processing over to the client

side is justified, without a feel for how much time would have been spent on dialog

over the network.  If you have a situation where only 2 or 3 features are asked, it is

might not be worth while sending over the Case Base to the client side, as this transfer

could take much longer than the few queries.  Therefore we need some way of

estimating the typical amount of input features needed to find a suitable case within

the current Case Base.

It seems possible that there could be a correlation between (Case Base size + number

of features per case + number of possible outcomes) and the average number of input

features needed to find a solution.  This would require quite a lot of experimentation

to prove or disprove, however.  We might expect that the larger the Case Base, and

the more features and outcomes, the better a Case Base would be suited to this type of

retrieval, but it would be nice to have some sort of suitability metric.  However such a

metric might not be easy to devise.  Therefore our only option was to find an average

for the current Case Base by running the CBR system.  Informal tests with the current

Case Base5 produced an average of 10; therefore this value was used at this stage of

the implementation.  In future, the method used will be to start with a sensible guess,

                                                
5 We are using the ’Large Soybean Database’, taken from UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html).  This Case Base was edited to remove any cases
containing unknown feature values (for simplicity) and now contains 266 cases, each with 35 features,
and there are 15 different classes.
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record the number of features asked each time the system is run, and automatically

update the average each time.  That way the estimate improves over time.

With the above estimates for case transfer time and average number of input features,

the threshold condition for sending over the Case Base was set to:

(avg_case_transfer_time * num_retrieved_cases) <

((avg_input_features - num_features_asked)6 * feature_transfer_time)

It should be noted that no matter what the outcome of the above calculation, the Case

Base is not transferred if there is only one feature currently unspecified or if the Case

Base is found to be consistent (or inconsistent, but all features have already been

asked).  In these cases, processing is completed on the server side, and results sent to

the client.

At this stage some informal tests were run to get a feel for how long the Case Base

was taking to download and the improvement in responsiveness once it was.

However it was then decided that it might be better to make the final large-scale

change (rewriting the system to work with servlets) before conducting proper tests.

Stage 3 - The servlet version of the system

Servlets are modules of Java code that run in a server application to answer client

requests.  Servlets can only run on servlet-enabled web servers7.  The current system

is running on a Jigsaw web server8, which in turn is running on the departmental web

server so that it can be accessed externally (the college network is behind a firewall).

In future this could perhaps be migrated to a Windows NT server which is outside the

firewall.

The initial reason for wishing to write a servlet version of the system was because

servlets work through firewalls.  This gives them the advantage over RMI and

sockets.  RMI in particular requires a lot of set-up on the server side and is not as

efficient as the others.  Sockets provide a low-level efficient solution to inter-process

communication; however they cannot work through firewalls, as most firewalls do not

                                                
6 Since this subtraction returns 0 if the number of features asked exceeds the expectations, there is a
second clause which defaults this value to 2 if it evaluates to 0.
7 An up to date list of servlet-enabled web servers can be found at
http://jserv.javasoft.com/products/java-server/servlets/environments.html .
8 Developed by the World Wide Web Consortium (W3C), it is an object-oriented server written
entirely in Java.  See http://www.w3.org/Jigsaw/
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allow direct Internet Protocol (IP) traffic between the Internet and the internal

network they are protecting.

Servlets are not tied to a specific client-server protocol, but they are most commonly

used with HTTP.  Most organisations behind firewalls have a WWW proxy server

running that allows people inside the organisation to access the Web.  Since an applet

uses the HTTP protocol to connect to an HTTP servlet, access requests can go

through the proxy server.  A client request is sent as an HTTP POST request, and the

response is sent as an HTTP response.  In practice, this means a URLConnection

object is used to connect to the servlet’s URL, an InputStream is opened to send the

POST request, and an OutputStream opened to read the servlet’s response.

At first it seemed that servlets wouldn’t be suited to our needs, as HTTP is a request-

response-oriented protocol, and retains no state information between one request and

the next.  Therefore there seemed no easy way to manage a proper dialog and

remember the set of objects pertaining to a particular user from one request to the

next.  However, another nice feature of HTTP servlets is that they allow you to

manage state information on top of the stateless HTTP.  Client-side solutions to this

problem include using cookies9 to store information about users sessions on the client

browser.  Servlets can make use of these client-side cookies to associate a request

with a user.

The way it works is quite simple.  When a user first makes a request to a site, they are

assigned a new session object and a unique session ID.  The session ID is stored on

the client-side as a cookie.  The session ID is automatically included in every

subsequent user request, allowing the user to be matched with his/her session object.

Servlets can add information to these session objects, or read information from them.

When the session is finished (in our case, when processing or results have been sent to

the client side), the session object can be invalidated. The Session Tracker

automatically invalidates session objects that have no page requests for a period of

time (30 minutes by default).  When a session is invalidated, the session object and

the data values it contains are removed from the system.

A servlet version of the system was therefore implemented, which uses the above

session tracking capabilities to maintain state information between requests.  The

client-side code also had to be changed, to deal with opening a new connection every

time it wanted to send an answer to a refining question.  This new version of the

system has the following advantages:

                                                
9  See RFC 2109 (Cookies) at http://info.internet.isi.edu/in-notes/rfc/files/rfc2109.txt
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• Handles multiple users nicely using session objects and session IDs.

• No persistent connection to the server for each session, which may

be good for server load particularly if session is long-lived.

• Because Web-based servlets respond to HTTP methods such as GET

and POST, servlet-based communication is able to get around

firewalls, which block sockets and RMI.

• Each servlet session spawns a new thread (not a new process), and

it also stays in memory between requests, making it start quickly for

each new request.

• Since it stays in memory between requests, it is possible to load the

Case Base into memory only once - when the servlet-enabled web

server is started.  Since the web of FeatureLink objects is created

each time the Case Base is loaded, it is advantageous not to have to

load the Case Base every time a session is started.

• Allows us to access to information about the client, such as their IP

address.

At the same time as implementing the servlet version of the system, some of the

retrieval objects were redesigned.  In the original system, the main class used in

retrieval was the CaseBase object.  This class contained a private Vector of Case

objects, had a constructor which read the cases in from a file and indexed them in a

FeatureLinkWeb object, methods for finding the most discriminating feature, and

retrieval methods such as firstPassRetrieval(...), refineSet(...) and

SpreadingActivation(...).  However, this design meant that multiple users each

had an associated CaseBase object, which would be a huge memory overhead if there

were many users, and already was causing unnecessarily long server connection times

(as the CaseBase object had to be created at the start of each connection).  Therefore,

the CaseBase class was effectively split into two classes - one (CaseBase) which

holds the Vector of Case objects and has the constructor mentioned above, and the

other (retriever) which maintains an array of activations and an array of indexes to

retrieved cases.  With this design, every user has an associated retriever object, and

this object points to cases in the single CaseBase object, which resides in memory the

entire time the web server is running.  This new design, coupled with servlet session

tracking, means multiple users can be accommodated efficiently and with ease.

The servlet version does have its restrictions, however.  Since there is no persistent

connection between the client and the server, the previous method of sending a case

back and forth to estimate case transfer time (CTT) is not possible.  If a case were sent

to the client, the client would have to send a new HTTP POST request to the server to

send this case back, and the extra time spent opening a URLConnection and setting up

data streams would result in incorrect CTT estimates.  Therefore other ways of
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estimating latency had to be found.  This and other problems facing the current

version of the system are discussed in greater depth in section 4.

In terms of performance, a direct socket connection is faster than an equivalent HTTP

connection, because of the overhead involved in HTTP connections. But using the

HTTP protocol is the only reliable way of communicating between an applet and a

server through a firewall.

Other improvements

A few other less important changes were made to the system during the various

stages.  These are mentioned briefly here, before going into the main difficulties

involved in trying to implement an efficient load-balancing system in section 4.

• The applet was made truly generic by creating the interface on the fly from a

supplied "CaseStruct.txt" file.

• During the informal tests of the initial "fat" client system, it was noticed that

creating a dialog box every time a user was asked a refining question was not very

efficient.  When processing was taking place on the client side, there was barely

time for the old dialog box to be disposed of before the new one was drawn.  This

was resulting in slow visual updates for the user, dampening the sense of

improved response time and decreasing the general user friendliness.  Therefore it

was decided to improve the interface before conducting further tests.  This was

achieved by using different panels and suitable layout managers so only a small

sub-panel of the GUI has to be redrawn to ask a refining question.  This is more

efficient.
• Due to a bug in Netscape, the applet stop() and start() methods are called

every time the browser window is redrawn or resized. This should only happen

when the user leaves the page, and is a problem as the stop() method is supposed

to contain code to close connections and stop running threads.  Therefore a thread

was implemented which monitors whether or not start() is called within 5

seconds of stop() being called, indicating that this was simply a redraw.  All of

the code for cleaning up resources (including letting the servlet know the session

should be invalidated) was moved to the destroy() method, and the “monitor

thread” calls this method when it detects the user has actually left the page.  If the

user hasn’t left the page, this thread prevents important processes from being

halted or killed.  This makes the system more robust.
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4 The main research issues which have emerged

Figure 2.   A plot of Internet round trip times as measured for 100 successive IP
datagrams.  Although most parts of the Internet now operate with much lower

delay, delays still vary over time.  (Excerpted from [Comer 93]).

4.1 Estimating network latency

Network latency is almost impossible to estimate accurately.  The main problem is

that round trip times can vary dramatically even from one instant to the next (see

Figure 2).  This means a good calculation technique has to be able to adapt to a wide

variation in delay. We have tried a few different approaches to this problem, and these

are described below, along with a discussion on a possibly better solution to the

problem.

Ping:  As mentioned in section 3, it was not possible to use the original latency

measure with the servlet version.  Therefore another method had to be found.  Since

information about the client (such as their IP address) can be found in the HTTP

request, using ping seemed like a good idea.  Ping is a program used to test the

reachability of destinations by sending them an ICMP echo request and waiting for a

reply.  With Java you can obtain a handle to the runtime environment and execute

programs on the underlying system.   In this case, the servlet could start a thread that

would call the ping program on the departmental web server, with the client’s IP
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address as a parameter.  This approach meant no latency testing code had to be written

and seemed a nice tidy solution.

Unfortunately, results obtained from some tests of the ping program (average time

after pinging the client 4 times) against time taken to send a set of cases from client to

server were not very encouraging.  There seemed to be practically no correlation

between the average ping time and the time it took to send the cases across.  There

was also the suggestion that ICMP packets are treated differently by routers and

therefore cannot reflect delay, just reachability.  Therefore it was decided that ping

was not a good measurement tool.

Clock synchronisation: It was mentioned before that the only way to measure one-

way delay is if both machines have synchronised clocks.  There is much research in

this area, and this has resulted in clock synchronisation protocols such as the Network

Time Protocol (NTP)10.  A certain number of computers, equipped with special

purpose receivers for time services such as GPS, act as primary time servers and

synchronise other computers over a network.  These other computers may be

secondary servers or ordinary clients.

The synchronisation protocol determines the time offset of the server clock relative to

the client clock.  The general model followed by all the protocols is described below:

1. Client sends request to server

2. Server sends back a message including its current clock value or timestamp

3. Client records its own timestamp upon arrival of the message

4. Since it is impossible to measure one-way delay, RTT is calculated and it is

assumed the times are equal in each direction.

Since the model assumes the propagation times are equal, some ways of offsetting

errors produced by this assumption must be found.  There is a considerable amount of

research in this area; however some of the methods require multiple message rounds

for each measurement, which would be impractical on the Internet.  An important

observation is that the correctness of the offset estimate depends on the RTT

calculated11.   Therefore the smaller the RTT, the less influence it has on the offset

calculated, and the greater the likelihood of producing an accurate estimate.  This is in

fact the approach taken by NTP.  Several offset/delay samples are calculated and the

offset sample associated with the minimum delay is the one chosen as most likely to

be accurate.

                                                
10 See http://www.eecis.udel.edu/~ntp/ntp_spool/html/exec.htm
11 In fact, it can be shown that “the worst-case error in reading a remote server clock cannot exceed
one-half the roundtrip delay measured by the client” (see the above URL)
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Simple clock synchronisation classes were implemented using the above algorithm.

On the client side is a thread that contacts a simple servlet a few times and takes the

clock offset to be that calculated during the shortest round trip.  The simple servlet

merely receives a request and returns its current time in milliseconds.

There were a few problems associated with implementing this algorithm, however.

We have to use a servlet as the server-side object so that the firewall problem is not

reintroduced.  However, this makes the calculation of RTT quite difficult.  The

problem is, sending a request and receiving a timestamp proceeds like so with

servlets:

Create a URLConnection object for the servlet

Open connection to the URLConnection object

Open an OutputStream on the connection

Write data to the OutputStream (POST) (A)
Open an InputStream on the connection (B)
Read in data from the InputStream (RESPONSE)

This seems fairly straightforward, but there are a number of restrictions.  It would

seem logical to start timing the RTT at position (A) above, but then the time taken to

open the InputStream is part of the calculation.  The InputStream cannot be opened

before data is written to the OutputStream, so there is no way around this.  In fact, it

turns out that writing data to the OutputStream only places it in a buffer and the data

is not actually sent until the InputStream is opened12, so timing must start at (B). The

Input- and OutputStreams on the servlet side are also not opened until the client-

side InputStream is.  This means that the estimated RTT ends up larger than the time

the object spends in transit.  This should be taken into account if the estimation is to

be as accurate as possible.  The current implementation ignores the above problem

and has performed quite well in some informal tests on machines with known offsets.

However more rigorous testing and a way that takes the above problem into account

are needed.

Assuming the clock offset found is fairly accurate, the next step is to use this

knowledge to calculate latency.  This is currently being achieved by sending an

additional timestamp from the client to the server every time it sends information

across.  Since the server knows the offset, it is simple to calculate the length of time it

took that object to arrive.  This is a fairly simple measure, analogous to the original

latency metric, and it is possible that it will suffer from the same problems as ping,

due to its simplicity.

                                                
12  This is not a well-documented fact and took a lot of searching to find



19

There is also the additional problem of deciding the ratio between the time returned

by this calculation and the time it would take to send X cases across.  It may not be

correct to assume this a linear function of size, as the size of network packets for

example could affect the linearity of the graph.  Therefore the ratio should be found

experimentally.  A way of facilitating this is presented in section 4.4.

TTCP: Perusal of some distributed systems literature (particularly [Schmidt &

Gokhale 96]) found mention of a socket benchmarking tool called TTCP, which

measures network data transfer rate from machine to machine.  However, this was

found to be unsuitable for the task at hand - it is used for generating network statistics,

and measures throughput from socket open, to read/write of data, to socket close.

However, what we require is a way to estimate latency from individual reads/writes.

Discussion
It is possible that the seemingly corrupt results from the ping experiments were in fact

due to the high variation in delay which is characteristic of the Internet.  High

variation was observed between pings immediately following each other, which had

seemed impossible, but in hindsight, perhaps they were correct.  Another possibility is

that estimated latency was fairly accurate, but the delay varied so quickly that it had

changed before the cases had finished transferring.

Whether or not this is true of the results found in the experiments with ping, these are

things that must be considered in any serious attempt at estimating latency. The

results are unfortunately indicative of the difficulty of the task.  The main thing to be

considered when implementing a latency-testing algorithm is that it must be able to

adapt to a wide range of variation in delay.  Our current and previous approaches take

the current delay as indicative of the latency for the next while.  As already

mentioned, this cannot be assumed, as delay varies quite rapidly.  However devising a

method, which does take note of variance, is not trivial.  A possible approach would

be to use a similar mechanism to that used by the TCP protocol to calculate round trip

timeouts that adapt to a wide range of variation in delay.  The 1989 specification of

TCP requires implementations to estimate both the average RTT and the variance.

This information is used to approximate timeouts more accurately, using the

following equations13:

DIFF = SAMPLE – Old_RTT

Smoothed_RTT = Old_RTT + δ * DIFF

DEV = Old_DEV + ρ (|DIFF| - Old_DEV)

Timeout = Smoothed_RTT + η * DEV

                                                
13 Taken from [Comer 93].  See also [Jacobson 88]
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δ and ρ are fractions between 0 and 1 which weight the contribution the sample

makes to the average RTT and the mean deviation, respectively. η is a factor which

weights the contribution the deviation makes to the round trip timeout.  Research in

the area has suggested that values of δ = 1/23, ρ = 1/22 and η = 4 work well.

Perhaps a similar approach could be used in our system.  An estimate of the delay

between the server and a client machine is already being calculated every time the

client sends a request to the server.  However, this calculation could be used each time

to update an average delay for that client.  Therefore each time a client uses the

system, the average delay calculation is updated.  The mean deviation could also be

calculated, and both used in a formula like that above, except with DELAY

substituted for RTT (as we are dealing with one-way delays) and the following line

substituted for line 4:

Latency_estimate = Smoothed_DELAY + η * DEV

This approach would hopefully yield a better estimation of latency.  Taking the mean

deviation into account should result in latency estimates that are at least a little more

sensitive to the possibility of change in delay as the cases are in transit.

4.2 Downloading the classes in the background

One important consideration for the feasibility of our approach is that downloading

the application logic to the client does not take a prohibitively long time.  As

mentioned earlier, the ideal solution would be to have the classes download in the

background, so that the applet start-up time would not be affected, and to have them

downloaded in a compressed form (such as a JAR file), so that the minimum amount

of bandwidth is wasted. Unfortunately, background downloads are currently only

possible in Java by loading each class individually, which would be too large an

overhead.  Therefore the entire system is downloaded to the client in a JAR file at the

beginning.

Since there is no way of downloading in the background, our aim should be to reduce,

as much as possible, the size of the file downloaded at the beginning.  A promising

way of achieving this aim has been found in a tool called JAX14, which claims it

reduces the size of bytecode files by an estimated 30%-50%.  JAX is a Java

application packaging tool, written in Java.  It works by removing those elements in

                                                
14 See http://www.alphaWorks.ibm.com/tech/JAX
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the class files that are not needed to execute the application.  The following ordered

procedure is followed with each class file15:

1.Removal of dead methods and fields

2.Detection of live overridden methods

3.Removal of unused classes and interfaces

4.Inlining of methods

5.Removal of non-essential attributes

6.Shortening of internal method names and field names

7.Removal of non-used entries in the constant pool

A compressed ZIP file is output.  Table 1 shows the output produced by JAX when it

was run on the classes that need to be transferred to the client.

--------------------------------------------------------------

Analyzed: 17 classes.

Total memory used by jax for processing: 2014424 bytes.

Zipfile methods fields classes

before 34814 106 124 17

after 20186 64 106 16

savings 14628 42 18 1

42% 39% 14% 5%

--------------------------------------------------------------

Table 1.  The output produced by running JAX on the application classfiles

The savings listed above are very promising, and sending over the zip file produced

by JAX instead of a JAR file is an even more efficient way of downloading all of the

classes in one step.

An important point worth noting is that no matter which tool is used, JAR or JAX,

your browser caches applets, meaning they load extremely quickly the second and on

subsequent visits16.  Assuming your application is not being updated regularly, this

means downloading the classes to the client is not such a huge problem after all.

                                                
15 This list is taken from the documentation on the web page
16 Ironically, this is also a bad thing from the point of view of software updates.  Current browsers do
not check if an applet has changed on the server before loading from the cache.
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4.3 Estimating number of features remaining to be asked

As already discussed in section 3, this is a difficult problem.  There could be a

research area in trying to determine statistics on correlation of Case Base size +

number of features per case + number of possible outcomes, with number of features

needed for classification.  This wouldn’t be easily extendible to Case Bases with

continuous-valued outcomes, however.  Even if such research were justified (and it

might not be), it would probably be too large a task to undertake in the context of this

work.  There might even be some existing work that would provide us with at least

some insight into this, but I am currently unaware of any.

Learning the typical amount of features through use of the system seems to be the best

option, however, and requires little effort as the statistics generated from each access

can be fed back into the system automatically.  Another possibility would be to take

the aggressive view that since our aim is to move processing to the client side as soon

as possible, in order to increase responsiveness and minimise network usage, perhaps

the threshold condition should be

(time_to_transfer_cases < 2 seconds)

or some similar time constant.  Unfortunately, this approach would not work well all

of the time, as without a feel for the number of features left to be asked, this approach

would result in cases being transferred just as the retriever is close to finding a

solution.  If this approach were to work at all, the time_to_transfer_cases estimate

must be as accurate as possible.

4.4  Experimentation

To date, the experiments have not been very successful.  Firstly the ping results

seemed to show little correlation between observed ping times and case transfer times.

This may or may not have been a problem with ping; the problem is, it is difficult to

know since we have no other reliable latency measurement to compare it to.  It’s a

catch 22 situation!   Testing the effectiveness of our latency calculations is a similar

problem.  The only metric we can use is that the observed case transfer time varies

proportional to our latency estimate.  Some small experiments with the current

method of estimating latency (the “synchronised clocks” method) have yielded good

and bad results.  Results on a very slow connection over a modem during peak time

showed the expected increase in case transfer time as estimated latency increased.

Results from the same experiment over the local network showed no such correlation.
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The transfer times all oscillated around a particular point, which might suggest that at

such low latencies there is not much variation in package transfer time.  The results

could also suggest that the latency estimate is simply inaccurate, or that the latency

estimate was accurate at the time it was taken, but that the high degree of variation in

delay meant this wasn’t necessarily representative of the delay conditions as the cases

were being transferred.

The main point is – there is no way of knowing whether the bad results were caused

by inaccurate latency calculations or not.  Therefore a controlled environment, with

known latency characteristics, is needed to accurately test our latency calculations.

This is also necessary in order to obtain a "transfer index" for sending over cases.

Whichever latency calculation we end up using, we need to know the ratio of this

estimate to the time it takes to send cases across.  The “ideal” ratio could be obtained

through experimentation in the controlled environment, and this could be adjusted

later to take variation in delay into account.  If we attempted to calculate this ratio

over the Internet or a LAN, variance in delay would throw our measurements off.

A completely controlled environment would be impossible to achieve, as all

communications involve usage of an underlying medium that may experience delay

due to load.  If signals were sent between two processes on the same computer, the

processing needed to both send and receive the data would probably slow down the

transfer.  If signals were sent over a LAN, delays could be caused by high usage of

that LAN.  The load on a LAN late at night would most likely be negligible, however

sending and receiving on the same computer would probably be the best option.

Filtered Input- and Output Streams could then be implemented.  This is simple in

Java.  The abstract FilteredOutputStream class could be extended and a write

method implemented which introduced a delay before sending data.  Then if our

latency calculation produced a value close to this delay, taking delay introduced by

the underlying medium into account, we could probably assume the estimate quite

accurate.  Calculating the transfer index for cases could be performed using this

stream also.  This stream could also be used to simulate long delays and variance,

giving us a controlled network simulator.  For example, it could simulate a real

network by taking in data on ping times to some remote machine17, and simulating

those delays.

It is hoped that this environment will make it easier to discover the best latency

calculation.  It might also be useful for later experiments on whether or not our

                                                
17 This data could be gathered overnight by running a constant ping to a machine in America, for
example.
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approach improves the overall dialog time or not.  However an improvement in

overall dialog time relies on a good estimate of how long it will take to transfer the

cases, as if they are sent over when the shouldn’t be or vice versa, the system will not

perform very well in those experiments.  Sending over cases unnecessarily, and at too

high a transfer time, would increase dialog time.  Not sending them over when they

should be transferred would result in a long-lived dialog over the network that could

suffer from unresponsiveness.  Therefore our first priority is to find a good latency

calculation.

5 Conclusions and further work

5.1 Further work

There is still much work to be done on the current strand of this project.  Once we are

happy with our method of determining the best time for sending the cases across, we

must then perform experiments to determine if this load-balancing approach is

advantageous to the user.  It is reasonable to assume that response time will improve

when processing is taking place on the client’s own machine, but we need to

determine if this improvement in time is larger than the extra time needed for the

migration of code and data.  These experiments will be conducted in the immediate

future.

For the experimental stage, we will need to find more Case Bases (or construct

synthetic Case Bases), which reflect the benefits of load balancing.  It would be

expected that the ideal Case Bases would be those that have many features and

possible outcomes, as a greater amount of dialog would be required to reach a

solution.  This will be verified through experimentation on Case Bases with various

characteristics.

The broader area of this research is in decentralised retrieval models over networks;

therefore in the long-term we hope to investigate other possible load balancing models

for CBR systems.  Some possible models we could explore are discussed briefly

below.

One possibility would be a truly distributed system, where the retriever itself is

distributed – many machines working on retrieving the best case using distributed

Case Bases (perhaps different subsets, like a parallel retrieval system).  If the entire

Case Base is distributed however, the problem of keeping it consistent across different
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machines must be addressed.  With a pseudo-parallel retrieval system, there is also the

problem of integrating the results found by different machines.  This kind of system

could not work with incremental retrieval, as each refining question would have to be

sent to multiple servers, increasing network traffic.  It could be an efficient method of

“one-shot” retrieval however, as solutions would be found quicker due to the parallel

processing.  All of the solutions found could be sent to the client for integration,

which would balance the load nicely between machines.

Another approach would be a distributed model that uses the footprint-based method

of retrieval [Smyth & McKenna 99].  This two-stage retrieval process offers a clear-

cut point at which processing could be transferred.  The server could retrieve the

“footprint” case, and send its related set over to the client for further processing.

However it seems that the related set might be quite large, so sending it to the client at

runtime might not make sense due to the network load created.  And as the

appropriate related set is naturally not known until the footprint case has been

retrieved, there is no way of “prefetching” the related set to speed up the process.

Therefore, although there is a distinct advantage in distributing this retrieval process

from the point of view of server load, sending over processing on the fly would not be

practical due to the load created on the network.

A better way of distributing this retrieval process would be to distribute the “footprint

sets” themselves (i.e. place local copies on certain client machines that query the

system on a regular basis).  In this scenario, retrieval of the footprint case would be

performed on the client machine.  The server would be contacted with the footprint

case, and would have the task of finding a suitable case in the footprint case’s related

set.  This distributed retrieval process would result in reduced load on the server

rather than the network.  However, since client machines are performing the initial

retrieval stage themselves, queries to the server may be a little more spaced, reducing

congestion in the vicinity of the server.  This model would also be of use in an

Intranet system, where many client machines make use of a central system throughout

the day.  An example would be an internal helpdesk system or machine translation

system18.  Although an Intranet server would not be as overloaded as a web server

would, it should still display increased output due to the distribution of processing

load.

                                                
18 This could be used for localisation tasks.  We are considering implementing a distributed Example-
Based Machine Translation system as part of this work.  The distribution would be performed by
distributing the “footprint sets” as described above, and the EBMT part would be based on the work of
Collins [Collins & Cunningham 96].  Attempting to apply the theory behind footprint-based retrieval to
the EBMT cases, to see if were possible to discover “footprint sets” and “related sets” in this domain,
could yield interesting results.
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Another possible way of reducing server load and network latency would be to have a

geographical push-caching system such as that proposed by Gwertzman (see

[Gwertzman & Seltzer 95] and section 2).  Instead of pushing documents, this system

would push Case Bases and application logic to less loaded servers at off-peak times.

Therefore network latency would be reduced, as clients could contact their nearest

CBR server.  However this kind of system is not really within the scope of this

research.

5.2 Conclusions

This paper presented a method of load balancing in an intelligent client-server system

that involves dialog.  There are a few reasons for wishing to move away from the

traditional client-server model, where all of the processing takes place on the server.

Moving the computing load to the client allows the server to serve larger groups of

users with only modest resources, and also reduces the cost for large systems.

Network traffic is also reduced on both the client’s local link and in the vicinity of the

server.  Internet traffic has grown at such a rate that high delays are common and so

systems that send data back and forth suffer from unresponsiveness.  Therefore in a

situation where there is a long-lived dialog, a good case can be made for sending

processing over to the client.

In section 1, a brief introduction to Case-Based Reasoning and I-CBR was given.  Our

reasons for wishing to adapt the traditional client-server model were explained in

section 2, which discussed current network problems on the Internet.  The details of

how the current system was developed, stage by stage, were described in section 3,

and the main research issues emerging from the current work were discussed in

section 4.

We feel there is a good argument for client-side processing, but the load-balancing

method we describe would only be practical in the context of a system involving

dialog.  We must ensure that the cost of migration of processing does not outweigh

the potential response-time benefits.  Ensuring this is only possible when the time cost

of transferring the Case Base can be measured against the time that would have been

spent on sending queries and responses back and forth.  There could be no benefit to

sending over processing at runtime in a one-shot retrieval situation.

In the future we hope to look at other ways of balancing client/server load in network-

based retrieval systems, with a possible application in the area of distributed machine

translation.
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