
Proceedings of the 3rd IEEE Conference on Engineering of Complex Computer Systems (ICECCS97), Villa Olmo, Como, Italy.
September 8-12, 1997. pp. 200-205, IEEE Computer Society.

The Butterfly Methodology : A Gateway-free Approach for Migrating
Legacy Information Systems

Bing Wu*, Deirdre Lawless*, Jesus Bisbal*, Ray Richardson#1

Jane Grimson*, Vincent Wade*, Donie O’Sullivan#2

*: Computer Science Department, Trinity College, Dublin, Ireland.
Email: {firstname.surname}@cs.tcd.ie

#: Broadcom Éireann Research, Dublin, Ireland.
Email: #1 : rr@broadcom.ie; #2 : dosullivan@ccgate.broadcom.ie

Abstract
The problems posed by mission-critical legacy systems

- e.g., brittleness, inflexibility, isolation, non-extensibility,
lack of openness - are well known, but practical solutions
have been slow to emerge. Generally, organisations
attempt to keep their legacy systems operational, while
developing mechanisms which allow the legacy systems to
interoperate with new, modern systems which provide
additional functionality. The most mature approach
employs gateways to provide this interoperability.
However, gateways introduce considerable complexity in
their attempt to maintain consistency between the legacy
and target systems. This paper presents an innovative
gateway-free approach to migrating legacy information
systems in a mission-critical environment : the Butterfly
Methodology. The fundamental premise of this
methodology is to question the need for the parallel
operation of the legacy and target systems during
migration.

1. Introduction

Many organisations, although solvent and exhibiting
future promise, must overcome serious challenges if they
are to remain competitive in today’s fast changing
business and technological environments [4]. These
organisations would have been among the first to adopt
computer based information systems and leverage the
related benefits to become industry leaders. These same
information systems, referred to as legacy systems, are
now a roadblock to progress. The problems these
massively complex systems pose include :

• they cannot evolve to provide new functionality
required for their host organisation to remain
competitive;

• they run on obsolete hardware which is expensive
to maintain and reduces productivity due to its low
speed;

• maintenance is expensive, tracing failures is costly
and time consuming due to a lack of
documentation and a general lack of understanding
of the internal workings of the systems;

• integration efforts are greatly hampered by the
absence of clean interfaces.

Unfortunately, the replacement of legacy information
systems is a far from straightforward process. Switching
off a thirty year old system and plugging in a new feature
rich replacement overnight is not an option. The effort
involved in discovering exactly what a legacy system
does, never mind how it does it, may take many man
months. The development of the replacement system is
perhaps the most straightforward task once the required
functionality is clearly defined. However, the cut-over to
the target system should cause as little disruption as
possible to the current business environment. An
extensive testing program must then be undertaken to
ensure there are no inconsistencies between the output of
the legacy system and its replacement.

The problems posed by legacy systems have to be
solved. A partial solution, such as wrapping legacy
applications and leveraging the legacy data onto the
desktop through some form of federated database system
or data warehouse, is not enough. Therefore research is
currently being conducted into developing a safe and
cost-efficient way to guide legacy system migration as a
whole ([2], [5], [6], [8]).

In this paper a new approach to migrating legacy
information systems is presented: the Butterfly
Methodology. In the following section, current
approaches to legacy system migration are briefly
reviewed. The Butterfly Methodology is presented in
Section 3. Section 4 briefly discusses the properties of
the methodology. The concluding section presents a

summary of findings and discusses a number of future
directions.

2. Current research on legacy migration

Although legacy information system migration is a
major research issue, there are only a limited number of
general migration methods available. Tilley [8] discusses
legacy system reengineering from several perspectives:
engineering, system, software, management, evolution
and maintenance. A framework for legacy system
reengineering is proposed for each perspective. Using the
system reengineering framework, the implication is that
the legacy system will operate normally while the target
system is developed independently. When the target
system is complete, the legacy system will be shut down
and the target system switched on. However, the
proposed frameworks are presented at too high a level to
be applied in practice and no consideration is given to the
migration of legacy data.

Ganti and Brayman [5] propose general guidelines for
migrating legacy systems to a distributed environment.
Using these guidelines, the business is first examined and
the business processes found are re-engineered as
required. Legacy information systems are linked with
these processes to determine which systems have data and
business logic of value in the new target environment. A
set of processes is selected and the associated legacy
systems are analysed. New applications are then
developed to fit these processes. These guidelines
recognise that legacy system migration should cause as
little disruption to the current business environment as
possible, however it is unclear how the cut-over to the
new, separately developed, target system will be handled.

In their Chicken Little Methodology Brodie and
Stonebraker ([1], [2]) propose an 11 step generic
migration strategy employing complex gateways. In this
method the legacy and target information systems are
operated in parallel throughout the migration. Initially
the target information system is very small, perhaps only
one application with a very small database. However as
the migration progresses the target system will grow in
size until it performs all the functionality of the legacy
system which can then be retired. During the migration,
the legacy and target information systems interoperate to
form the operational mission-critical information system.
This interoperability is provided by a module known, in
general, as a gateway, “a software module introduced
between operation software components to mediate
between them” [2].

An example of Chicken Little’s general migration
architecture is shown in Figure 1 (modified from [2]). Data
is stored in both the migrating legacy and the growing
target systems. A forward gateway is employed to enable

the legacy applications access the database environment
in the target side of the migration process and a reverse
gateway is employed to enable target applications to
access the legacy data management environment.

In most cases, gateway co-ordinators have to be
introduced to maintain data consistency. However, as
Brodie and Stonebraker themselves recognise,
maintaining update consistency across heterogeneous
information systems represents a complex technical
problem which has no general solution and is an open
research challenge [2]. Thus it seems that to apply the
Chicken Little approach would represent a major
challenge to any migration engineer.

In summary, the few complete migration
methodologies available are either so general that they
omit many of the specifics or are too complex to be
applied in practice. Little focus is given to legacy data
migration in most methodologies. The Chicken Little
Methodology offers the most mature approach. However,
the need for the legacy and target systems to interoperate
during the migration process via the gateways proposed
adds greatly to the complexity of an already complex
process and is also a considerable technical challenge in
itself. This paper will explore a gateway-free approach to
legacy system migration.

3. The Butterfly Methodology

The objective of the Butterfly Methodology is to guide
the migration of a mission-critical legacy system to a
target system. The methodology eliminates, during the
migration, the need for system users to simultaneously
access both the legacy and target systems, and therefore,
to keep consistency between these two (heterogeneous)
information systems.

Co-OrdinatorCo-Ordinator

Forward GatewayForward Gateway

Legacy Component

Target Component

M 1
M 1

SI1SI1 UI1
UI1

M j
M j

SIjSIj UI j
UI j

SIkSIk UI k
UIk SImSIm UI m

UI m SIhSIh UI h
UI h SInSIn UIn

UIn

Mapping
Table

Mapping
Table

SI UI

Reverse GatewayReverse Gateway

Target DBMSTarget DBMS

M h
M h M n

Mn

SI System Interface

UI User Interface

M Application Module

Legacy Data /
Database Service

Legacy Data /
Database Service

Target
Data

Target
Data

Figure 1 An Example of Chicken Little’s
 General Migration Architecture

3.1 Overview

The Butterfly Methodology is being developed as part
of the MILESTONE project, an ongoing collaborative
project involving Trinity College Dublin, Broadcom
Éireann Research, Telecom Éireann, and Ericsson which
started in July 1996. The Butterfly Methodology is based
on the assumption that the data of a legacy system is
logically the most important part of the system and that,
from the viewpoint of the target system development it is
not the ever-changing legacy data that is crucial, but
rather its semantics or schema(s). Thus, the Butterfly
Methodology separates the target system development
and data migration phases, thereby eliminating the need
for gateways. To this end, several new concepts are
introduced : Legacy SampleData, Target SampleData and
Sample DataStore; TempStore; Data-Access-Allocator;
Data-Transformer; Termination-Condition and Threshold
Value.

Legacy SampleData is a representative subset of the
data in the legacy data store. Target SampleData is
transformed from the Legacy SampleData. A Sample
DataStore stores the Target SampleData based upon the
target system data model. The Sample DataStore is
employed to support the initial development and testing
of all target system components (except for data). Figure
2 illustrates the initial stage of migration using the
Butterfly migration. Figure 3 shows a scenario during the
legacy data migration.

Using the Butterfly Methodology, when the legacy
data migration begins, the legacy datastore is frozen to
become a read-only store. All manipulations on the
legacy data are redirected by the Data-Access-Allocator
(DAA). The results of these manipulations are stored in a
series of auxiliary datastores: TempStores (TS). The DAA
effectively stores the results of manipulations in the latest
TempStore and retrieves required data from the correct
TempStore (or TempStores in case of some derived data).
(See Figure 3.)

A Data-Transformer, named Chrysaliser, is employed
to migrate the legacy data to the target system.
Chrysaliser is responsible for transforming the data from
its legacy format to the data model format of the target
system. This transformation will depend on the target and
legacy schemas.

Chrysaliser first transforms all data in the frozen
legacy data store (TS0) to the target system. While this
data is being migrated, the DAA will store results of
manipulations on the legacy data to the first TempStore
TS1. When all data in the legacy data store has been
migrated, TS1 is frozen to be read-only. Chrysaliser will
then begin to transform TS1 to the target system. The
DAA will now store results of manipulations on legacy
data in a new TempStore, TS2. When TS1 has been
successfully migrated, TS2 will be frozen and migrated
and so on.

When the size of the current TempStore is less than or
equal to the Threshold Value (represented by ε), the
amount of time needed to migrate the data in this
TempStore is sufficiently small to allow the legacy
system to be brought down without causing any serious
inconvenience to the core business. The Threshold Value
will probably be determined by the administrator of the
legacy system. The Termination-Condition of the
Butterfly Methodology is met when TempStore TSn has
been fully transformed and, at the same time, there exists
a TempStore TSn+1 such that size(TSn+1) ≤ ε (n ≥0). Thus
using the Butterfly Methodology, at no time during the
migration process will the legacy system by inaccessible
for a significant amount of time .

The DAA and Chrysaliser are essential elements of the
Butterfly Methodology. The construction of DAA and
Chrysaliser will differ depending upon the type of the
legacy system migrating (e.g., file system, network
database, or relational database). The placement of DAA
and Chrysaliser is also a critical factor and affects the
degree of complexity and the length of the whole
migration process. Possible placement options include,

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

1RGTCVKXG

1RGTCVKXG

.GICE[

&CVC

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

&##
&##

%JT[UCNKUGT
%JT[UCNKUGT

65P�
65

P�

4GCF 1PN[

2WRC &CVC5VQTG

6CTIGV &CVC5VQTGU

/KFFNGYCTG0GVYCTG&$ 5GTXKEGU

���65�
65

�

65
�

65
�

6CTIGV

#RR
�

6CTIGV

#RR
�

���

6CTIGV

#RR
�

6CTIGV

#RR
�

6CTIGV

#RR
O

6CTIGV

#RR
O

���

65
P

65P

)TCRJKE 7UGT +PVGTHCEGU

.GICE[

&CVC5VQTG

.GICE[

&CVC5VQTG

5[UVGO &QEWOGPVCVKQP

'ZRGTVU�&GUKIP -PQYNGFIG

5[UVGO &QEWOGPVCVKQP

'ZRGTVU�&GUKIP -PQYNGFIG

/KITCVKQP QP

7+� #2� GVE�

/KITCVKQP QP

7+� #2� GVE�

5EJGOC #DUVTCEVKPI

&CVC 5CORNKPI

5EJGOC #DUVTCEVKPI

&CVC 5CORNKPI 5CORNG &CVC5VQTG
5CORNG &CVC5VQTG

���

.GICE[&CVC5VQTG
.GICE[&CVC5VQTG

1RGTCVKXG

1RGTCVKXG

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

6CTIGV

#RR
O

6CTIGV

#RRO
6CTIGV

#RR
�

6CTIGV

#RR
�

6CTIGV

#RR
�

6CTIGV

#RR�

)TCRJKE 7UGT +PVGTHCEGU

Figure 2 Building Up the Target System

Figure 3 Migrating Data in TempStore TS n

for example, embedding them into a file system,
implementing as an extended part of a transaction
processing system within a DBMS, or above the file or
DBMS systems as filters. The authors realise that this is a
critical issue and research results from the MILESTONE
project will be available in the future.

3.2 The Butterfly Methodology phases

In terms of the Butterfly Methodology, a legacy
system migration can be divided into six major phases.
Each phase consists of a number of individual, normally
independent, migration activities. Within each phase,
some activities are more crucial to the success of
migration than others. This paper concentrates on data
migration because this is the particular focus of the
Butterfly Methodology.

• Phase 0: Prepare for migration.
Once the decision to migrate a legacy system has been

made, the next stage is to prepare everything for the
migration. Although many issues essential to a migration
project have to be clarified at this stage, the Butterfly
Methodology considers the user requirements for
migration and target system determination to be most
important. The main activities within this phase are listed
in Figure 4.

• Phase 1: Understand the semantics of the legacy
system and develop the target data schema(s).
The activities identified within this phase are listed in

Figure 5. Activity 1.5 to finalise the migration
requirements is needed as it may not be possible to
identify all the requirements until the legacy system has
been understood.

A wide range of tools have been developed to assist in
this reverse engineering area and it is likely that more will
be developed in the future [7]. The Butterfly

Methodology will take advantage of these tools and
develop new tools only if it becomes absolutely
necessary. One such tool is Data-Access-Allocator
(DAA) developed by activity 1.6 which will be used to
redirect all manipulations of legacy.
• Phase 2: Build up a Sample Datastore, based upon

the Target SampleData, in the target system.
The main activities of this phase are to determine the

legacy SampleData and to develop the Chrysaliser.
Initially, the legacy SampleData will be transformed by
Chrysaliser to form the target Sample DataStore. This
will be used to develop and test the target system. Figure
6 lists the activities involved in this phase.

• Phase 3: Incrementally migrate all the components
(except for data) of the legacy system to the target
architecture.
“Forward” system engineering principles and methods

will be one of the guidelines for migration in this phase.
The Sample DataStore, built up in Phase 2, will be used to
support the cycle of the ‘design-develop-test’ for newly
developed target components. Figure 7 lists activities in
this phase .

• Phase 4: Gradually migrate the legacy data into the
target system and train users in target system.
This phase is mainly devoted to legacy data migration

and is the core part of the Butterfly Methodology. The
legacy data will be gradually migrated into the target
system by introducing a series of TempStores, the Data-
Access-Allocator (DAA) and the data-transformer
(Chrysaliser). The activities of this phase are listed in
Figure 8.

A more detailed discussion and analysis of the data
migration approach can be found in [9].

Figure 6 Migration Activities in Phase 2

Figure 5 Migration Activities in Phase 1

Phase 1:
1.1 Understand the legacy interfaces, identify redundancies and
 determine the function of the target interfaces;
1.2 Understand the legacy applications, identify redundancies and
 determine the function of the target applications;

 1.3 Understand the legacy data; identify redundancies and determine
 to-be-migrated data;

(optional) 1.4 Identify and understand interactions with other systems;
1.5 Finalise the migration requirements;
1.6 Develop the Data-Access-Allocator (DAA);

 1.7 Develop the target data schemas and determine the mapping rules.

Phase 2 :
 2.1 Determine the Legacy SampleData;
 2.2 Develop Chrysaliser;
 2.3 Transform the Legacy SampleData into the Target SampleData

 and building the Sample DataStore;

Phase 0:
 0.1 Get the migration preliminary requirements;

 0.1.1 Determine user requirements;
 0.1.2 Determine benchmarks for measurement of migration
 success;

 0.2 Determine the target architecture;
 0.3 Prepare the target hardware system;

Figure 4 Migration Activities in Phase 0

Figure 7 Migration Activities in Phase 3

Phase 3:
3.1 Migrate legacy interfaces;
 3.1.1 Migrate/develop a fragment of target interface;
 3.1.2 Test against Sample DataStore for Correctness;

(optional) 3.1.3 Validate against User’s requirements;
3.2 Migrate legacy applications;
 3.2.1 Migrate/develop a target application;
 3.2.2 Test against Sample DataStore for Correctness;

(optional) 3.2.3 Validate it against User’s requirements;
3.3 Migrate reusable legacy components;
3.4 Integrate Target components/system;
3.5 Test Target components/system for Correctness;
3.6 Validate Target components/system against User’s requirements;

(optional) 3.7 Train users on target components/system;

• Phase 5: Cut-over to the completed target system.
The last phase of the Butterfly Methodology is the cut-

over phase. Once the target system has been built up and
all the legacy data have been migrated, the new system is
then ready to run.

3.3 The workflow of the Butterfly Methodology

The Butterfly Methodology divides legacy system
migration into six main phases. Each phase consists of a
number of individual, normally independent, migration
activities. Within each phase some activities can proceed
in parallel with others. However, some activities will be
inter-dependent (i.e. activities 2.1 and 2.3; 4.3, 4.4, 4.5
and 4.6). In general these six phases should be conducted
in the sequence given which is based on the natural
principles of system development. Normally the
migration requirements for each legacy system will be
unique to the system and therefore the migration
workflow will also often be unique to the system. Hence,
the Butterfly Methodology provides a flexibility for
migration engineers. When desirable, activities can be
conducted independently in an order different to the
sequence given. Figure 10 shows a possible organisation
of the Butterfly Methodology workflow.

4. Discussion

The salient properties of the methodology can be
summarised as follows:

• clearly defined and strong support given to
testing: It has been documented in many case
studies that up to 80% of time spent on a
reengineering project can be made up of testing
[3]. Each step of the Butterfly Methodology can
be completely and successfully tested in practise.
Target applications can be exhaustively tested
against actual data held in the Sample Datastore.

• flexible: The methodology does not refer to any
particular migration tools (except for DAA and
Chrysaliser). Therefore, a choice of the most
applicable tools can be made from the wide range
currently available and these tools may be reused
in different migration projects.

• the total duration of the data migration can be
estimated: This is mainly due to the fact that the
migration time of legacy data can be very clearly
determined from the volume of the initial legacy
data (X0) in the legacy system together with the
speeds of DAA and Chrysaliser. In the planning
stages of any migration project this type of
information is invaluable.

• minimum intervention between the legacy
system and the target system: Only a single-way
data transformation is needed for on-line operation,
the rest can be done off-line.

• minimum interruption to legacy system: The
legacy system will continue to operate as normal
throughout the migration until the last TempStore
has reached the pre-determined threshold value ε.

0.1.1 0.1.2

0.2

0.3

1.1 1.2 1.3

1.4 1.5 1.6 1.7

3.3

3.1 3.2

Phase 3

3.2.1

3.2.2

3.2.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8 5.1

Phase 4 Phase 5

0.1
2.1

2.2

2.3

3.1.1

3.1.2

3.1.3

Phase 0 Phase 1 Phase 2

Figure 10 A Workflow of Butterfly Methodology

Figure 9 Migration Activities in Phase 5

Phase 5:
5.1 Cut over to the completed target system.

Figure 8 Migration Activities in Phase 4

Phase 4:
4.1 Incorporate DAA into legacy system;
4.2 Create TempStore TS1; set TS0 to read-only;
4.3 Migrate all the data in TS0 into the target datastores through the
 Chrysaliser. While this is taking place, all access to the legacy data
 store is redirected by the DAA and results of manipulations are
 stored in the new TempStore, TS1. Continue until TS0 has been fully
 migrated;
4.4 Create TempStore TS2; then set TS1 to read-only;
4.5 Migrate all the data in TS1 into the target datastore(s) through the
 Chrysaliser. All access to the legacy data is redirected by the DAA
 and manipulation results are stored in the new TempStore TS2.
 Continue until TS1 has been fully migrated;
4.6 Repeat step 4.4 and 4.5 for TSn+1 and TSn until the Termination-
 Condition is met, i.e. TSn has been fully transformed and, at the
 same time, there exists size(TSn+1) ≤ ε;
4.7 Freeze the entire legacy system and migrate all the data in TSn+1

 into target datastore(s) through the Chrysaliser;
4.8 Train users for the target system;

Consequently, the legacy system will never be
inaccessible for a significant amount of time.

• promotes parallel activities: It can be seen that
Phase 4 does not have to wait until Phase 3 has
completely finished. The employment of a Sample
DataStore allows planners to establish two distinct
co-operative project teams, one to work on the
target system development and the other to manage
the migration of legacy data. The Sample
DataStore also provides an excellent platform for
training users on the target system before the
migration is complete. This could greatly alleviate
the difficulties typically associated with the cut-
over stage.

From a pragmatic point of view, the main factor which
will determine whether or not this methodology is usable,

is the value of vu (here u is the speed of Chrysaliser

transforming the data, and v is the speed of the DAA
building up new TempStores). If v = 0, the methodology
reverts to a Cold Turkey [2] migration where all the data
is migrated in one massive operation. If v > u, then the
migration process will never finish. Other factors
relevant to the success of the methodology include:

• a thorough understanding of the legacy and
target systems;

• an accurate and concise sample datastore;
• a fast chrysaliser;

 • an efficient Data-Access-Allocator.

5. Conclusions and future directions

In this paper a new approach to the problem of legacy
system migration has been presented. The migration
process as a whole is a very complex procedure
encompassing many different fields of research. The
focus of discussion was thus necessarily limited. The
proposed Butterfly Methodology applies to the whole
process of legacy system migration with the main focus
specifically on the migration of legacy data in a mission-
critical environment. The Butterfly Methodology offers a
new, gateway-free approach to this problem. It represents
a departure from current thinking on how legacy systems
as a whole can be migrated to new architectures.

Immediate future work includes further investigating
the framework tool-kit which supports the Butterfly
Methodology to identify the necessary tools for each step
of the method. In addition, the Chrysaliser Data
Transformer and the DAA Data-Access-Allocator will be
implemented, and criteria and techniques to produce a
Sample Datastore will be developed. Many factors such
as the structure of the TempStores and the placement of
the Chrysaliser and DAA will affect the migration process
and research investigating these issues is ongoing. A

number of subsequent practical experiments will provide
results to illustrate the relationships between the u, v, X0,
and ε system variables.

6. References

[1] M. Brodie and M. Stonebraker, ‘DARWIN: On the
Incremental Migration of Legacy Information Systems’,
Technical Report TR-022-10-92-165 GTE Labs Inc.,
http://info.gte.com/ftp/doc/tech-reports/tech-reports.html,
March 1993.

[2] M. Brodie and M. Stonebraker, ‘Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach’,
Morgan Kaufmann Publishers Inc. 1995.

[3] G. Dedene and J. De Vreese, ‘Realities of Off-Shore
Reengineering’, IEEE Software, pp. 35-45, January 1995.

[4] P. Fingar and J. Stikeleather, ‘Distributed Objects for
Business: Getting started with next generation of
computing’, SunWorld Online, Vol. 10 No. 4,
http://www.sun.com/sunworldonline/swol-04-1996/swol-
04-oobook.html, April 1996.

[5] N. Ganti and W. Brayman, ‘Transition of Legacy Systems
to a Distributed Architecture’, John Wiley & Sons Inc.
1995.

[6] ESPRIT Project - Lancaster University, ‘RENAISSANCE
Project - Methods & Tools for the evolution and
reengineering of legacy systems’,
http://www.comp.lancs.ac.uk/computing/research/cseg/
projects/renaissance, November 1996.

[7] J. Schmidt, ‘ A Practical Implementation with Migration
Tools’, Chapter 10 of ‘Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach’, By
M. Brodie and M. Stonebraker, Morgan Kaufmann
Publishers Inc. 1995.

[8] S. R. Tilley and D. B. Smith, ‘Perspectives on Legacy
System Reengineering’, http://www.sei.cmu.edu/
~reengineering/lsyree, November 1996.

[9] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, R.
Richardson and D. O’ Sullivan, ‘Migrating Legacy
Systems : From a Caterpillar to a Butterfly’, Trinity
College Technical Report, January 1997.

