
Proccedings of the 17th International Database Conference (DATASEM '97), Brno, Czech Republic, October 12
- 14, 1997. pp 129-138, Ed. Czechoslovak Computer Experts.

 Legacy System Migration :
 A Legacy Data Migration Engine

Bing Wu*, Deirdre Lawless*, Jesus Bisbal*, Jane Grimson*
Vincent Wade*, Donie O’Sullivan#1, Ray Richardson#2

*: Computer Science Department, Trinity College, Dublin, Ireland.
Email: {name.surname}@cs.tcd.ie

#: Broadcom Éireann Research, Dublin, Ireland.
Email: #1 : dosullivan@ccgate.broadcom.ie; #2 : rr@broadcom.ie

Abstract: The widespread use of computer technology over several decades has
resulted in some large, complex systems which have evolved to a state where they
significantly resist further modification and evolution. These Legacy Information
Systems are normally mission-critical : if one of these systems stops working the
business may grind to a halt. Thus for many organisations, decommissioning is not an
option. An alternative solution is Legacy System Migration which has recently
become an important research and practical issue.

 This paper presents an approach to mission-critical legacy systems migration:
Butterfly methodology. Data migration is the primary focus of Butterfly methodology,
however, it is placed in the overall context of a complete legacy system migration.

Key Words - Legacy systems, migration methodologies, data migration.

1. Introduction
Legacy information systems1 typically form the backbone of the information flow

within an organisation and are the main vehicle for consolidating information about the
business. If one of these systems stops working the business will generally grind to a halt.
These legacy ISs have posed numerous and important problems to their host organisations
for years. The worst ones being:

• these systems usually run on obsolete hardware which is expensive to
maintain and reduces productivity due to its low speed;

• maintenance to software is generally expensive, tracing failures is costly and
time consuming due to the lack of documentation and a general lack of
understanding of the internal workings;

• integration efforts are greatly hampered by the absence of clean interfaces;
• legacy systems can hardly evolve to provide new functionality required by

the organisation.
Data held in these legacy systems is an important business resource. It represents

mission-critical business knowledge which cannot be easily replaced ([3], [6]). Following
currently accepted methods for legacy system migration, in particular data migration, few
efforts have been successful ([3], [4]). In view of this, many organisations are reluctant to
migrate their legacy systems to newer technologies and now find themselves in a catch 22

1 A legacy information system can be defined as “any information system that significantly resists modification
and evolution”, [3].

situation: mission critical legacy systems which are the life support system for the
organisation are also a road block to progress.

Thus there is an urgent need to provide methodologies, techniques and tools not
only for accessing the data which is locked in these closed systems, but also to provide a
strategy which will allow the migration of the systems to new platforms and architectures.
Up to now, the gateway approach2 seems to have dominated the thinking in this area. Whilst
gateways can provide interoperability between the migrating legacy system and its target
system, they also give rise to some very difficult problems, such as maintaining the
consistency of the data between the two systems.

This paper proposes that during the migration process it is not absolutely
necessary for the legacy system and its target system to interoperate. A gateway-free
approach to migrating legacy information systems is presented: the Butterfly Methodology.
The discussion of this paper focuses particularly on the issue of legacy data migration. In
the following section current approaches to legacy system migration are briefly reviewed.
Section 3 outlines the Butterfly methodology. Section 4 presents the data migration engine
of the Butterfly methodology in detail. Section 5 further analyses aspects of the
methodology. The concluding section presents a summary of findings and discusses a
number of future directions.

2. Brief review of migration research
Legacy system migration encompasses many research areas. A single migration

project could, quite legitimately, address the areas of reverse engineering, business
reengineering, schema mapping and translation, data transformation, application
development, human computer-interaction and testing. Due to space limitations, only a brief
outline of research directly related to legacy system migration, with particular focus given to
data migration, will be presented.

Ganti and Brayman [5] propose general guidelines for migrating legacy systems to
a distributed environment. Using these guidelines, the business is first examined and the
business processes found are re-engineered as required. Legacy information systems are
linked with these processes to determine which systems have data and business logic of
value in the new target environment. A set of processes are selected and the associated
legacy systems are analysed. Details about the data required for these processes are
extracted and transaction databases constructed through which the associated data will be
accessed by new applications. Mention is made of retaining logic encoded in applications
but it appears that the legacy systems will be discarded and replaced with new applications.
[5] recognises that legacy system migration should cause as little disruption to the current
business environment as possible. However, it is unclear how the cut-over to the new,
separately developed, target system will be handled. Thus, these guidelines are not really
suitable for use in migrating a mission-critical legacy system.

The Database First (Forward Migration) method [1] involves the initial migration
of legacy data to a modern, probably relational, Database Management System and then
incrementally migrating the legacy applications and interfaces. While legacy applications
and interfaces are being redeveloped, the legacy system interoperates with its target system
through a Forward Gateway. This enables the legacy applications to access the database

2 A Gateway is “A software module introduced between operation software components to mediate between
them”, [3].

environment in the target side of the migration process. This gateway translates and
redirects these calls forward to the new database service. Results returned by the new
database service are similarly translated for use by legacy applications.

Using the Database Last (Reverse Migration) Method [1] legacy applications are
gradually migrated to the target platform while the legacy database remains on the original
platform. The legacy database migration is the final step of the migration process. A
Reverse Gateway enables target applications to access the legacy data management
environment. It is employed to convert calls from the newly created applications and
redirect them to the legacy database service.

The Reverse Gateway will be responsible for mapping the target database schema
to the legacy database. This mapping can be complex and slow which will affect the new
applications. Also many of the complex features found in relational databases (integrity,
consistency constraints, triggers etc.), may not be found in the archaic legacy database, and
hence cannot be exploited by the new application. For both the Forward and Reverse
migration methods, the migration of the legacy data may take a significant amount of time
during which the legacy system will be inaccessible. When dealing with mission critical
information systems this may be unacceptable.
 In their Chicken Little methodology Brodie and Stonebraker ([2], [3]) propose an
11 step generic migration strategy employing complex gateways, shown in Figure 1. In this
method, the legacy and target information systems operate in parallel throughout the
migration. Initially the target information system is very small, perhaps only one application
with a very small target database. However as the migration progresses the target system
will grow in size. Eventually the target system performs all the functionality of the legacy
system which can then be retired. During migration, the operational mission-critical
information system will be some composite of the target and legacy information systems
using gateways to provide the necessary interoperability.

Using Chicken Little,
data is stored in both the
migrating legacy and the
growing target systems. In
most cases, gateway co-
ordinators [3] have to be
introduced to maintain data
consistency. However,
“Update consistency across
heterogeneous information
systems is a much more
complex technical problem
with no general solution yet
advised, and it is still an open

research challenge” [3]. Thus it seems that to apply Chicken Little approach would be a big
challenge to any migration engineer. Besides, Chicken Little does not provide any
guidelines on the testing aspects on migration, a necessity for any migration approach.

In summary, the few migration methodologies available are either so general that
they omit many of the specifics or are too complex to be applied in practice. Brodie and
Stonebraker’s Chicken Little methodology offers the most mature approach. However, the
need for the legacy and target systems to interoperate via gateways during the migration

 Step 1 : Incrementally analyse the legacy information system
 Step 2 : Incrementally decompose the legacy information
 system structure
 Step 3 : Incrementally design the target interfaces
 Step 4 : Incrementally design the target applications
 Step 5 : Incrementally design the target database
 Step 6 : Incrementally install the target environment
 Step 7 : Incrementally create and install the necessary
 gateways
 Step 8 : Incrementally migrate the legacy databases
 Step 9 : Incrementally migrate the legacy applications
 Step 10 : Incrementally migrate the legacy interfaces
 Step 11 : Incrementally cut over to the target information

Figure 1 Chicken Little Migration Approach

process adds greatly to the complexity of an already complex process and is also a
considerable technical challenge. Thus a need exists for a simple, safe, gateway-free
approach to legacy system migration.

3. The Butterfly methodology
The Butterfly methodology is being developed as part of the MILESTONE

project, a collaborative project involving Trinity College Dublin, Broadcom Éireann
Research, Telecom Éireann, and Ericssons. MILESTONE aims to provide a migration
methodology and a generic supporting tool-kit for the methodology to aid migration
engineers in the process of migrating legacy information systems to target systems. The
project began in July, 1996 and will finish in June, 1998. A trial legacy system migration
following Butterfly methodology is currently being planed and results will be available in
the future.

The objective of Butterfly methodology is to migrate a mission-critical legacy
system to a target system in a simple, fast and safe way. The methodology eliminates,
during the migration, the need to simultaneously access both the legacy and target systems,
and therefore, avoids the complexity of maintaining the consistency between these two
(heterogeneous) information systems.

It is very important to bear in mind that, using Butterfly methodology, the target
system will not be in production while the legacy system is being migrated. The legacy
system will remain in full production during the whole migration process. There will never
be a case where live data is stored, at the same time, in both the legacy and target systems.

Butterfly methodology divides legacy system migration into six major phases,
Figure 2. Due to the space limitation, this paper only discuss the data migration phase :
Phase 4. For the discussion of Butterfly methodology as whole, please refer to [7].

Before explaining the detail of
Butterfly data migration, it is worth
emphasising two points. First, Butterfly
methodology deliberately stores live data
at the legacy system side during
migration, and the target system will not
be in production before the full migration
process finishes. This is different from
gateway-based migration approaches
where live data is distributed at both
legacy and target systems during
migration. This presents a great technical
challenge to maintain data consistency,
for which no general solution is available
currently. Second, Butterfly methodology

proposes a legacy data migration engine, suitable for mission-critical system migration, so
that the legacy system need only be shut down for a minimal amount of time. This differs
from the so called Big-Bang, Forward and Reverse Migration [1] approaches where the
legacy system must be shut down for a considerable time to facilitate data migration before
the target system is made available.

Butterfly methodology deals with legacy system understanding and target system
development in phases 2 and 3. Target system development is supported by a sample-

 Phase 0 : Prepare for migration.
 Phase 1: Understand the semantics of the legacy
 system and develop the target
 data schema(s).
 Phase 2: Build up a Sample Datastore, based upon
 the Target SampleData, in the target system
 Phase 3: Migrate all the components (except for
 data) of the legacy system to the target
 architecture.
 Phase 4: Gradually migrate the legacy data into the
 target system and train users in target system
 Phase 5: Cut-over to the completed target system

Figure 2 Six phases of the
Butterfly methodology

datastore, derived from legacy data and mapped to target side. Once phases 0, 1, 2 and 3
have finished, Phase 4 : data migration can then start. Only after all data in the legacy
datastore and TempStores has been transformed to the target system, will the target system
be in production.

4. The data migration engine

4.1 Principles for data migration using the Butterfly methodology

Brodie and Stonebraker point out that “the fundamental value of a legacy IS is
buried in its data, not in its functions or code” [3]. On one hand, MILESTONE agrees that
the data of a legacy system is logically the most important part of the system. However, on
the other hand, MILESTONE also realises that from the viewpoint of the target system
development it is not the ever-changing legacy data that is crucial, but rather its semantics
or schema.

Once data migration commences, the legacy data store is “frozen” to be read-only.
Manipulations of legacy data are redirected by the Data-Access-Allocator (DAA), and the
results stored to a series of auxiliary datastores named TempStore(s) (TS). When legacy
applications access data, DAA retrieves data from the correct source, e.g. the legacy data or
the correct TempStore.

To be more specific, Butterfly methodology does not use gateways and introduces
several new concepts for the data migration:

• Sample DataStore, Legacy SampleData and Target SampleData;
• TempStore;
• Data-Access-Allocator;
• Data-Transformer;
• Termination-Condition and Threshold Value.

A Sample DataStore stores the Target SampleData based upon the target system
data model. The Target SampleData is transformed from the Legacy SampleData, which is
a representative subset of the data in the legacy data store3. The Sample DataStore is
employed to support the initial development and testing of all components (except for data)
of the target system.

In order to migrate the legacy data without the need for synchronised
manipulations of the target and legacy systems, Butterfly methodology employs a series of
auxiliary datastores: TempStores (TS). These TempStores record the results of
manipulations on the legacy data during the course of the migration. Once the migration of
legacy data commences, all manipulations on the legacy data are redirected by the Data-
Access-Allocator (DAA). The DAA effectively stores the results of manipulations in the
latest TempStore and retrieves required data from the correct TempStore (or TempStores in
case of some derived data).

Butterfly methodology employs a Data-Transformer, named Chrysaliser, to
migrate, in turn, the data in the legacy system as well as in the TempStores to the target
system. The Chrysaliser is responsible for transforming the data from its legacy format to
the data model format of the target system. This transformation will take the form of a set
of rules to be applied to the data. The rules will be derived from the earlier process of
determining a target schema which is conceptually equivalent to that of the legacy data
store.

3 System experts are responsible for ensuring the representativeness of the sample.

Butterfly methodology also introduces a Termination-Condition, and a Threshold
Value (represented by ε), to determine if the migration has reached the final stage for
cutting-over to the target system. ε is a pre-determined4 threshold value representing the
allowable amount of data in the final TS. If size(TS) ≤ ε, it indicates that the amount of
time necessary to migrate the data is sufficiently small to allow the legacy system to be
brought down without causing any serious inconvenience to the core business. The
Termination-Condition is met when TSn has been fully transformed and, at the same time,
there exists size(TSn+1) ≤ ε (n ≥0).

4.2 Data migration

Gradually migrate the
legacy data into the target
system by employing the
services of a series of
TempStores, a fast Data
Transformer (termed
Chrysaliser), and a Data-Access-
Allocator (DAA) as follows,
(see Figures 3, 4 5 and 6).

Step 4.1 Create TempStore TS1;
then set legacy datastore
(TS0) to read-only, (Figure
3).

Step 4.2 Migrate all the data in
TS0 into the target
datastores through the
Chrysaliser. While this
migration is taking place all
access to the legacy data
store is redirected by the
DAA and all the results of
manipulations are stored
into the new TempStore,
TS1. Continue until TS0
has been fully migrated,
(Figure 3).

Step 4.3 Create TempStore
TS2; then set TS1 to read-
only, (Figure 4).

4 Most likely by the Administrator of the Legacy Systems.

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

1RGTCVKXG

1RGTCVKXG

.GICE[

&CVC

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

&##
&##

%JT[UCNKUGT
%JT[UCNKUGT

4GCF 1PN[

2WRC &CVC5VQTG

6CTIGV &CVC5VQTGU

/KFFNGYCTG0GVYCTG&$ 5GTXKEGU

���65�
65�

6CTIGV

#RR�

6CTIGV

#RR�
6CTIGV

#RR�

6CTIGV

#RR�
6CTIGV

#RRO

6CTIGV

#RRO
���

)TCRJKE 7UGT +PVGTHCEGU

.GICE[

&CVC5VQTG

.GICE[

&CVC5VQTG

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

1RGTCVKXG

1RGTCVKXG

.GICE[

&CVC

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

&##
&##

%JT[UCNKUGT
%JT[UCNKUGT

4GCF 1PN[

2WRC &CVC5VQTG

6CTIGV &CVC5VQTGU

/KFFNGYCTG0GVYCTG&$ 5GTXKEGU

���65
�

65�
65

�

65
�

6CTIGV

#RR�

6CTIGV

#RR
�

6CTIGV

#RR�

6CTIGV

#RR
�

6CTIGV

#RRO

6CTIGV

#RR
O

���

)TCRJKE 7UGT +PVGTHCEGU

.GICE[

&CVC5VQTG

.GICE[

&CVC5VQTG

Figure 4 Migrating Data in TempStore TS1

Figure 3 Migrating Data in the Legacy
DataStore (TS0)

Step 4.4 Migrate all the data in
TS1 into the target
datastore(s) through
Chrysaliser. As before all
access to the legacy data is
redirected by the DAA and
all manipulation results are
stored in the new
TempStore TS2. Continue
until TS1 has been fully
migrated, (Figure 4).

Step 4.5 Repeat step 4.3 and
4.4 for TSn+1 and TSn until
the Termination-Condition
is met, i.e. TSn has been
fully transformed and, at
the same time, there
exists size(TSn+1) ≤ ε.
(Figure 5)

Step 4.6 Freeze the entire
legacy system and
migrate all the data in
TSn+1 into target
datastore(s) through the
Chrysaliser, (see Figure
6).

Once step 4.6 has
been finished, it is the time to
cut over to the completed

target system. (see Figure 7)

5. Analysis
It is possible to make

a number of observations with
regard to the Butterfly
methodology. This section will
illustrate the termination and
completeness of Butterfly
methodology, and also give
some performance estimate
when applying this method.

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

1RGTCVKXG

1RGTCVKXG

.GICE[

&CVC

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

&##
&##

%JT[UCNKUGT
%JT[UCNKUGT

65
P�

65
P�

4GCF 1PN[

2WRC &CVC5VQTG

6CTIGV &CVC5VQTGU

/KFFNGYCTG0GVYCTG&$ 5GTXKEGU

���65
�

65
�

65
�

65
�

6CTIGV

#RR
�

6CTIGV

#RR
�

���

6CTIGV

#RR
�

6CTIGV

#RR
�

6CTIGV

#RR
O

6CTIGV

#RR
O

���

65P
65

P

)TCRJKE 7UGT +PVGTHCEGU

.GICE[

&CVC5VQTG

.GICE[

&CVC5VQTG

���

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

.GICE[+PVGTHCEG

.GICE[#RRNKECVKQPU

&CVCDCUG 5GTXKEGU

1RGTCVKXG

1RGTCVKXG

.GICE[

&CVC

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

6WTPGF QP�

HQT

&GXGNQROGPV

CPF 6GUVKPI

%#6'42+..#4 5;56'/ %*4;5#.+5 5;56'/

&##
&##

%JT[UCNKUGT
%JT[UCNKUGT

65
P�

65
P�

(TQ\GP

2WRC &CVC5VQTG

6CTIGV &CVC5VQTGU

/KFFNGYCTG0GVYCTG&$ 5GTXKEGU

���65
�

65�
65

�

65
�

6CTIGV

#RR�

6CTIGV

#RR
�

���

6CTIGV

#RR�

6CTIGV

#RR
�

6CTIGV

#RRO

6CTIGV

#RR
O

���

65
P

65
P

)TCRJKE 7UGT +PVGTHCEGU

.GICE[

&CVC5VQTG

.GICE[

&CVC5VQTG

� � �

$ 7 6 6 ' 4 (. ; 5 ; 5 6 ' /

6 C T I G V & C V C 5 V Q T G U

/ KF F NG Y C T G 0 G VY C T G & $

� � �

6 C T I G V

R R �

6 C T I G V

R R �

6 C T I G V

R R �

6 C T I G V

R R �

6 C T I G V

R R O

6 C T I G V

R R O

� � �

) T C R J KE 7 U G T +P V G T H C E G U

F u l ly
O p e r a t iv e

F u l ly
O p e r a t iv e

a n d
U p - to - D a te

Figure 6 Migrating the last TempStore TSn+1

Figure 5 Migrating Data in TempStore TSn

Figure 7 The Fully Functional
Target System

5.1 Termination of data migration
Given a reasonably big Threshold Value ε, the migration process (on data) of

Butterfly methodology will terminate if the speed of transforming TempStore TSi using
Chrysaliser is greater than the speed of creating TempStore TSi+1 using Data-Access-
Allocator (i ≥ 0).

Suppose that the initial size of legacy data, size(TS0), is X0; the speed of
transforming legacy data into target datastore(s) is u; the speed of creating TempStore TS
using Data-Access-Allocator is v. Then, by the given precondition, it holds:

 v
u < 1 (1)

At any given moment, for any TempStore TSi, it can easily be seen that:

size(TSi) = ()X v
u

i

0 i > 0 (2)

As v
u < 1, therefore:

lim
i →∞

=size(TS)i 0 (3)

This obviously implies that there must exist a n ≥ 0 such that for every j ≥ n
size(TSj) ≤ ε n ≤ j (4)

According to the steps 4.5, 4.6 and Phase 5 of Butterfly methodology and equation
(4) it can be deduced that the migration process (on data) of Butterfly methodology will
terminate.

Of course the speeds of u and v are not constant but an averaged value will suffice.
It should be noted that the speed of v is a function of the transaction throughput which itself
will go through periods of high and low activity, (office hours vs. night and weekend
periods).

For any given migration it is possible to predict how many TempStores will be
needed. From (2) it can be seen that for the final TempStore TSn :

()X v
u

n

0 ≤ ε
So, n will be the first integer which satisfies:

n
X
u v

o≥ −
−

log log
log log

ε
(5)

By graphing the relationship between n and uv (see Figure 8) we can readily predict

the number of TempStores
needed for a given value of
ε and X0. In Figure 8, we
have assumed the Threshold
Value is 1 million (106)
bytes and have graphed
three scenarios, where the
legacy data store (TS0) is 1
billion (1012) bytes, 10
billion (10*1012) bytes, and
100 billion (100*1012) bytes
respectively.

Figure 8 The Relationship Between n and u
v

It can be seen that when X0 = 1 billion bytes and u is 5 times v it will take 9
TempStores for the data migration; when u is 10 times v, it will only take 6 TempStores,
etc..

Following on from this we see that it is possible to predict how long it will take to
perform a given legacy data migration. Once again from equation (2), we can see that the
time needed to complete the migration of TempStore TSi can be represented by:

()
t

X

ui

v
u

i

= 0
 (6)

Therefore, the total time of the whole data migration can be estimated based on the
speed of u and v before the migration begin.

5.2 The migrated data set

A final observation is with regard to the migrated data set of the Butterfly
methodology. Any data migration methodology would have to ensure that following the
migration the target data is equivalent to the initial legacy data5.

By the time the Butterfly methodology process terminates, the following equation
holds:

Target Data = Legacy Data6 (7)
It can be seen from the methodology in section 4.2 that at any moment n (≥ 1)

within step 4; the following equations hold:

Target Data = TSi
i

n

=

−

∑
0

1

(8)

Legacy Data = TSi
i

n

=
∑

0

(9)

Therefore,
Legacy Data = Target Data + TSn (10)

From step 4.6 and other phases of Butterfly methodology (Section 3), equation (10) implies
equation (7).

6. Conclusions and Future Directions
In this paper a new approach to the problem of legacy system migration has been

presented : the Butterfly methodology. The migration process as a whole is a very complex
procedure encompassing many different fields of research. The focus of discussion of this
paper was thus necessarily limited. The proposed Butterfly methodology applies to the
whole process of legacy system migration with the main focus specifically on the migration
of legacy data in a mission-critical environment. The Butterfly methodology is a simple,
safe, and open approach to this problem. It represents a departure from current thinking on
how legacy systems as a whole can be migrated to new architectures.

5 MILESTONE is aware that ‘dirty-data-cleaning’ may be needed here, but it is another research issue and beyond
the scope of this paper.
6 MILESTONE is aware that the quality of the legacy data will have an impact on its migration. However, this is
an issue for which no clear solution exists and should be addressed elsewhere. To the authors’ knowledge, no
existing migration methodology has addressed this issue. The completeness of Butterfly is illustrated by the fact
that if all legacy data is required in the target, then it can be done.

The main difference between Butterfly and other proposed migration
methodologies, is that Butterfly methodology is a gateway-free approach. It eliminates,
during migration, the need for system users to simultaneously access both the legacy and
target systems. There is therefore, no need to keep consistency between these two
(heterogeneous) information systems as Butterfly methodology always stores live data at
legacy system side! In practice, using gateway-based approaches, gateway co-ordinators [3]
have to be introduced to maintain data consistency. However, as Brodie and Stonebraker
point out “Update consistency across heterogeneous information systems is a much more
complex technical problem with no general solution yet advised, and it is still an open
research challenge” [3]. Thus to design and implement a gateway co-ordinator is a task
without general methods or even guidelines. In contrast, generic mechanisms of Butterfly’s
data transforming engine : DAA and Chrysaliser for legacy (flat file, hierarchical) systems
have been developed [8].

MILESTONE is an ongoing project, working with real life legacy systems in
Telecom Éireann, the Irish national telecommunications service provider. Immediate future
work for MILESTONE includes further investigating the framework tool-kit which supports
Butterfly methodology. Future work also includes an effort to implement the Chrysaliser
Data Transformer and the DAA Data-Access-Allocator subsystems for a migration process,
and criteria and techniques to develop a Sample Datastore. MILESTONE is aware that
many factors such as the structure of the TempStores and the placement of the Chrysaliser
and DAA will affect the migration process and is investigating these issues. A number of
subsequent practical experiments will provide results to illustrate the relationships between
the u, v, X0, and ε system variables. A trial migration applying Butterfly methodology to a
legacy system is being planned, and results of it will be available in the future.

References
[1] Bateman A. and Murphy J. “Migration of legacy systems”, School of Computer

Applications, Dublin City University, working paper CA - 2894.
[2] Brodie M. and Stonebraker M., “DARWIN: On the Incremental Migration of

Legacy Information Systems”, Distributed Object Computing Group, Technical
Report TR-0222-10-92-165, GTE Labs Inc., March 1993,
http://info.gte.com/ftp/doc/tech-reports/tech-reports.html.

[3] Brodie M. and Stonebraker M., “Migrating Legacy Systems Gateways, Interfaces
and the Incremental Approach”, Morgan Kaufmann, 1995.

[4] Fingar P., and Stikleather J., “Distributed Objects For Business”, SunWorld
Online, April 1996.

[5] Ganti N., Brayman W., “Transition of Legacy Systems to a Distributed
Architecture”, John Wiley & Sons Inc. 1995.

[6] I. Sommerville, “Software Engineering Environments”, 5th Ed., Addison-Wesley
1995.

[7] B. Wu, D. Lawless, J. Bisbal, J. Grimson, Vincent Wade, R. Richardson and
D. O’Sullivan , 'The Butterfly Methodology: A Gateway-free Approach for Migrating
Legacy Information Systems”, in Proceedings of the 3rd IEEE Conference on Engineering
of Complex Computer Systems (ICECCS ’97), Villa Olmo, Como, Italy.

[8] B. Wu, D. Lawless, J. Bisbal, J. Grimson, Vincent Wade, R. Richardson and
 D. O’Sullivan, ‘The mechanisms of DAA and Chrysaliser for Butterfly
 methodology', Technical report, Department of Computer Science, Trinity College, Dublin.

