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ABSTRACT

Computer graphics have long been used to help people
visualise complex entities such as machine components
and assemblies. Systems such as Computer-Aided
Design (CAD) applications allow the creation of models
and designs for objects by providing interactive tools that
can be manipulated by designers. An important facet of
interactive design is that it should be possible to see the
effects of changes made on models immediately, i.e. in
real-time. In this paper we are interested in applications
where renderings of complex objects, modelled using
Constructive Solid Geometry (CSG), can be updated
quickly enough to allow interactive use. The algorithms
developed in this paper to allow real-time rendering of
CSG-based objects require no specialised hardware or
software to perform their tasks. They merely need a
display adapter with stencil buffer support, and a
graphics language capable of manipulating the colour,
depth and stencil buffers provided by the display
hardware. They can be implemented on low-cost PC-
level systems and still prove capable of generating the
required number of frames per second to allow real-time
screen updates of CSG-modelled objects. Through
empirical studies and observation we have identified that
the algorithms developed here provide better
performance than equivalent algorithms.

1 INTRODUCTION

This paper describes new algorithms for rendering solid
objects modelled using Constructive Solid Geometry
(CSG)1. CSG is a solid modelling technique used in
applications such as Computer-Aided Design (CAD) to
allow users to create complex solid objects from existing
libraries of simpler objects. CSG uses Boolean operators
to manipulate primitive solids (e.g. cubes and spheres)
and assemblies of primitive solids. The Boolean
operators used by CSG are:

• Union
• Intersection
• Subtraction

The data comprising a CSG model consists of a tree-like
data structure containing nodes that describe the
primitives to use and the Boolean operations to perform
upon them (see Figure 1). The internal nodes of a “CSG
                                                       
1 Refer to [Foley et al 90], [Hearn and Baker 94], [Vivo
et al 92], [Su et at 91] and [Wyvill and Tosiyasu 85] for
more information on CSG and its application.

tree” data structure store the CSG operations to be
performed on the primitives stored at the leaf nodes.

Figure 1: A typical CSG tree containing CSG
operations in the internal nodes, and primitives in the
leaf nodes.

The algorithms proposed in this paper render the
effects of object intersection or subtraction on two
primitive objects in a process we will call “Binary
Composition”2. When rendering object intersection only
the volume containing both objects simultaneously
should be drawn, and for object subtraction the volume
in one object that does not also contain the subtracted
objects volume should be drawn. These algorithms must
be capable of generating a certain number of frames per
second to produce animated displays. The minimum
number of frames per second generally accepted for
smooth animations is ten, as with less than 10 FPS
animations appear jerky and unpleasant to users. [Boyse
and Gilchrist 82] propose rendering a CSG-based solid
by first constructing another model of it using algorithms
such as that from [Rossignac and Voelcker 89]. This
creates a Boundary Representation, or B-Rep, model
from the CSG model. The B-Rep is then rendered3. This
is too slow for real-time animation on low-end hardware
such as PC’s, however, and would require dedicated
graphics systems such as that proposed in [Nassar 92] for
adequate performance. To reduce the processing
overhead, and therefore take the best advantage of the
available computing resources, several CSG rendering
techniques propose rendering direct from the CSG tree,
without generation of a secondary model. [Goldfeather et
al 89], [Wiegand 96] and [McReynolds 96] all propose
algorithms for object rendering directly from a CSG tree.

                                                       
2 The compositon of all the objects stored in a CSG tree
we call “Complete Composition”. Refer to [Wiegand 96]
and [McReynolds 96] for details of how this can be
achieved.
3 Refer to [Pueyo and Mendoza 87] for another CSG
rendering algorithm that uses a B-Rep secondary model.



We wish to create algorithms that are capable of
rendering the effects of the intersection of two objects
and the subtraction of one object from another. The
algorithms must be capable of rendering enough frames
per second to produce smooth real-time animations.
There are two algorithms that need to be developed, one
to compute and render the intersection of two objects,
and another to compute and render the subtraction of one
object from another. These problems are similar, but not
the same. Therefore two separate algorithms have been
developed, and each will be discussed. The algorithm for
rendering object intersections will be called qAND (for
quick AND), and the other algorithm is called qSUB (for
quick SUB). An AND operation is an object intersection,
and a SUB operation is a subtraction of one object from
another. This paper describes these algorithms, and
examines their performance relative to existing
algorithms. Tests were performed to examine the
performance of the proposed qAND and qSUB
algorithms, and on existing AND and SUB algorithms to
allow for a comparison between the existing and the
proposed algorithms.

2 THE NEW ALGORITHMS

There are a number of possible approaches to rendering
CSG-based objects, including the use of basic geometric
object data, ray tracing and use of stencil buffers. The
algorithms described here use the latter approach because
it provides the best performance, and this is important for
applications requiring object animation. The qAND and
qSUB algorithms use three buffers supported in display
hardware. They are:

• The Colour Buffer: A colour buffer stores the
colour information for each pixel in a frame. There
can be more than one of these, for example there can
be separate colour buffer for red, green and blue
components of an image.

• The Depth Buffer: A depth buffer stores the depth
information for each point on the surface of an
object in a frame. This information consists of the
location on the Z-axis of each point.

• The Stencil Buffer: A stencil buffer acts as a mask,
determining what pixels in a frame can be written to,
and which cannot. Objects are drawn into a stencil
buffer and then other objects are clipped against the
information in the stencil buffer to determine what
parts of them should actually be displayed on-screen,
i.e. written into the colour buffers.

2.1 The qAND Algorithm

The qAND operation renders on-screen only the volume
containing both objects in a binary composition
simultaneously, i.e. A•B, or the object intersection. If we
consider the process of rendering the qAND of two
objects called, say, A and B, this problem consists of two
steps:

• Find the parts of A’s volume that exist inside B’s
volume, and draw them on-screen, and

• Find the parts of B’s volume that exist inside A’s
volume, and draw them on-screen.

The steps above, therefore, require that the qAND
algorithm be capable of finding any parts of the surface
of A that exist within the volume of B and drawing those
parts on-screen, and of finding the parts of the surface of
B that exist within the volume of A and drawing them
also. The combination of these two sets of surface points
is the qAND of the two objects.

The algorithm for qAND involves writing the
front faces of A into the stencil and depth buffers, but not
the colour buffers. Then the front faces of the other
object, B, are written into the colour buffers, but only
where points on the front faces of B fail the depth test
against the front faces of A and where A has been written
into the stencil buffer. This has the effect of rendering
any any surfaces of B that are inside A. The procedure is
then repeated, but in this second pass the objects are
reversed so that the surfaces of A that are inside the
volume of B are rendered into the colour buffers. The
composition of the writes from the two passes constitutes
the rendering of the intersection of the two objects.

Figure 2 illustrates the different rendering phases
in the qAND algorithm. Steps 1 and 2 discover what
parts of object B lie inside the volume of object A, and
render the surfaces of B inside this volume into the
colour buffer. Steps 3 and 4 perform exactly the same
operation, except this time objects A and B are swapped
so that the parts of A inside B are discovered and
rendered. The final image is created by this composition
of two sets of surfaces into the colour buffer. The first set
is written into the colour buffer at step 2 and the second
set is written at step 4. In total only 4 writes to display
buffers are required to produce a rendering of the
intersection of two objects (the writes to the depth and
stencil buffers in steps 1 and 3 are performed
simultaneously).

2.2 The qSUB Algorithm

The qSUB operation is slightly more complex than
qAND. The fundamental requirement of qSUB is to
render only the parts of one object that do not lie inside
the volume of another object, i.e. to render only the
intersection of one object with the complement of
another object. However this approach would be too
simplistic, as it also proves necessary to find any parts of
the subtracted object that should appear because they lie
inside the volume of the other object and should be
visible to the user to create the desired effect. The two
phases required in qSUB are:

1. Find the parts of the subtracted object that exist
inside the object being subtracted from and render
them.

2. Find those parts of the object being subtract from
that should be visible to the user, and render them.



If we are subtracting an object B from an object A then
the first phase in the qSUB algorithm involves drawing
the back faces of A into the depth and stencil buffers
only, i.e. not into the colour buffers. The back faces of B
are then drawn into the colour buffers where they pass
the depth test against A and A exists in the stencil
buffer.At this stage any back faces of B that exist inside
A’s volume will have been rendered into the colour
buffers. The next step is to draw the front-facing surfaces
of A into the colour buffer also to complete the image.
To achieve this this front faces of B are drawn into the
depth and stencil buffers only, and then the front faces of
A are drawn into the colour buffers where they pass the
depth test against B. This second phase to the algorithm
has drawn in the front faces of A where back facing
surfaces of B are not present, completing the rendering of
the overall qSUBed object.
Figure 3 illustrates the phases in the qSUB algorithm.
The parts of the object B are found, which are inside
another object A, from which B is being subtracted. Only
those parts of B that might need to be displayed to the
user are actually rendered into the colour buffer. This
occurs at step 2. Steps 3 and 4 find the parts of A that

should be displayed to the user, and render them into the
colour buffer also. This composites the two sets of writes
and completes the image. Once again only four writes are
required to display buffers to achieve the desired effect.

2.3 Additional Requirement for qAND
and qSUB

The qAND and qSUB algorithms described in this
chapter have an additional requirement for usage not
present for the AND and SUB algorithms. If two objects
that are non-intersecting in the Z-axis are combined using
the AND and SUB algorithms then the correct result will
be generated, i.e. nothing for AND, and the entire non-
subtracted object for SUB. The qAND and qSUB
algorithms require an extra step to correctly render the
results for this scenario. The extra step is the use of a
collision detection mechanism such as that provided in
[O’Sullivan 96] to decide whether or not to render a
result on-screen. If two objects do not intersect in the Z-
axis then nothing should be drawn. The new algorithms
work correctly for objects that intersect on the X or Y-
axis without this added step.

From step 2
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Figure 2: The Phases of the qAND algorithm



3 PERFORMANCE

The qAND and qSUB algorithms were derived from
existing algorithms in [McReynolds 96]. The intersection
and subtraction algorithms therein both require 9 writes
to the three buffers used, i.e. colour, depth and stencil, to
produce the required results. Therefore a series of tests
was performed to determine the performance
characteristics of both pairs of intersection and
subtraction algorithms, and their relative performance.
For each test the ability of the algorithms to produce real-
time animations, i.e. at least 10 FPS, was considered. A
total of 23 different tests were run. These were divided
into two phases:

1. Determination of the performance of the underlying
graphics system when rendering primitive objects
on-screen.

2. Determination of the performance of the intersection
and subtraction algorithms when rendering complex
objects on-screen.

Each test was run several times with different primitive
sizes and combinations being rendered in each run. The

results were collected and compared to determine the
effects of factors such as primitive complexity, size and
motion on the ability of the algorithms to produce real-
time results. Table 1 contains a list of the tests
performed, the operations carried out in each test and the
primitives used.

The operations performed are called ONE, OR,
AND or qAND and SUB or qSUB, and the results are
shown in Figure 4. ONE simply involves drawing a
primitive into the colour buffer with depth testing
enabled. OR draws two objects into the depth buffer,
again with depth testing enabled. AND and SUB are the
names we use for the intersection and subtraction
algorithms from [McReynolds 96], and qAND and qSUB
are the new intersection and subtraction algorithms
proposed in this paper. Tests 8 to 23 involved rendering
an animated sequence rendered using first the qAND or
qSUB algorithm, and then the AND or SUB algorithm,
respectively. This allowed a direct comparison to be
performed between the two pairs of algorithms. The tests
were run on a Dell Latitude CPi notebook PC, with a
266MHz Pentium II processor, 64Mb of RAM and a
Neomagic 128XD display adapter with 2Mb of video
RAM.
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Figure 3: The Phases of the qSUB algorithm.



Test Operations Description
1 ONE Cube with size 1 unit (cube size is relative to window size) drawn into

variable size window.
2 ONE Fixed size cube drawn into variable size window. Cube size remains the same

for each window size.
3 ONE Variable-sized cube drawn into fixed-size window.

4 ONE Variable-sized sphere drawn into fixed-size window.
5 OR Two variable-size cubes drawn into fixed-size window.
6 OR Two variable-size spheres drawn into fixed-size window.
7 OR Variable-size cube and sphere drawn into fixed-size window.
8,9 qAND, AND Cube-Cube Intersection.
10,11 qAND, AND Sphere-Sphere Intersection.
12,13 qAND, AND Cube-Sphere Intersection.
14,15 qSUB, SUB Cube-Cube Subtraction.
16, 17 qSUB, SUB Sphere-Sphere Subtraction.
18, 19 qSUB, SUB Cube-Sphere Subtraction.
20, 21 qAND, AND Cube-Cube Intersection, with cube rotation.
22, 23 qSUB, SUB Cube-Cube Subtraction, with cube rotation.

Table 1: Tests Performed

The first set of tests, from 1 to 7, proved that the
underlying graphic subsystem consisting of the
combination of the OpenGL graphics library used to
render the tests and the display hardware were fast
enough at rendering primitive solid objects such as
spheres and cubes on-screen to support the real-time
rendering of more complex objects, i.e. those produced
via qAND and qSUB.

In the remaining tests a direct comparison
between the existing AND and SUB algorithms, and the
qAND and qSUB algorithms presented in this paper
showed that the new algorithms were more efficient than
the older ones, and could thus render more frames per
second. The results of these tests are shown in Table 1.

4 CONCLUSIONS AND FUTURE
WORK

The tests performed upon the proposed and existing CSG
algorithms prove a number of points. The proposed
qAND algorithm offers better rendering performance
than the AND algorithm. It consistently renders more
frames per second than the older algorithm does, and so
it is more appropriate for real-time animation
applications. The proposed qSUB algorithm also shows
better performance than the SUB algorithm. For larger
objects it proves to be up to twice as fast as the existing
SUB algorithm. The proposed qAND and qSUB
algorithms show little performance degradation when
asked to render objects with translational and/or
rotational velocities. Since each frame in an animation is
generated from scratch, with no previous frame
information being reused, changes in object location or
rotation are handled as a normal occurrence by the
proposed algorithms. The little overhead that does appear

in, for example, rendering rotating objects can be
attributed to the amount of time taken to apply the
rotation matrix to the object’s description. A general
conclusion that can be made from the testing of the new
algorithms is that they do provide better overall rendering
performance than the older algorithms, and that, allowing
for certain limitations such as object size, they are
capable of generating real-time animations of CSG-based
objects.

Much scope for future research remains however,
the qAND and qSUB algorithms developed in this
dissertation leave side-effects such as unwanted
information about object surface depths in depth buffers.
If a complete object composition is to be performed from
a CSG tree then each binary composition performed at
the leaves of the tree must be composited together
according to the CSG operations at the internal nodes of
the tree to produce a rendering of the complete object.
Thus the next problem to be solved, after the binary
composition problem, is that of the complete
composition problem. The side-effects left behind by
each binary composition must be overcome so that each
binary composition can be rendered correctly into the
available colour and depth buffers. The stencil buffer
information can generally be ignored between binary
compositions as it only has an impact on the pair of
shapes that are being composited together. The new
algorithms for qAND and qSUB proposed in this
dissertation could be extended to encompass the
rendering of entire CSG trees modelling complex objects.
To allow this no unnecessary information could be left in
depth or stencil buffers after binary composition of
objects. This would also require a multi-pass approach.



ANDing Two Cubes using the AND Algorithms
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ANDing of Two Spheres
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Results of Tests 10 and 11

ANDing a Cube and a Sphere
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SUB of Two Cubes
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SUB of Two Spheres
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SUB of a Cube from a Sphere
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Results of Tests 18 and 19

ANDing of Two Cube - With Rotation about Y Axis
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SUBing Two Cubes - With Rotation about Y Axis
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Table 2: Test Results
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ONE operation draws a primitive

object (a cube).

OR operation draws the union of two

spheres.

qAND operation draws the intersection

of two cubes. The cubes were both

rotated by 20 degrees about the Y-axis

to produce the “wedge” shape shown.

qSUB operation subtracts a sphere

from a cube and draws the result. The

sphere was located up and to the right

of the cubes centre point, and slightly

closer to the observer’s position.

Figure 4: Application Screens


