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Summary


Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as a


model of human memory and remembering. It has been embraced by researchers of AI


applications as a methodology that avoids some of the knowledge acquisition and reasoning


problems that occur with other methods for developing knowledge-based systems.


Previous attempts to use Artificial Intelligence in Air Traffic Control (ATC) have never


attained the level of confidence necessary for controllers to effectively use it in the real


world. This lack of success is due in large measure to knowledge engineering difficulties in


modelling ATC decision making. In this thesis we describe the successful application of


case-based reasoning to this problem. We describe what was required to make CBR work


and asses the knowledge engineering impact of CBR. The novelty of the approach


presented in this thesis is in the manner that artificial intelligence is used as an intelligent


assistant rather than an expert system, and in the technique used, which is CBR instead of


the standard rule-based systems (RBS).


The acronym ISAC stands for Intelligent System for Aircraft Conflict Resolution. It is a


CBR system that helps air traffic controllers to solve conflicts between sets of aircraft. The


three stages of the decision making process for conflict resolution are: selection of the


aircraft to manoeuvre, deciding on the type of manoeuvre and specifying of the details of


the manoeuvre.


ISAC assists the controllers in the first two stages of this decision process. ISAC is


interesting in itself because of the critical safety issues involved and because of the question


of what constitutes a case in this problem domain.


Several issues were encountered during the development of ISAC. The most interesting


ones, that constitute the main contribution of this thesis, are:


• the analysis of the knowledge engineering problem;


• the use of a hierarchical case-based reasoning structure;


• the issues of case reuse and case representation;


• the analysis of the discriminatory power of the case parameters.
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Chapter 1


Introduction1


Despite the fact that modern aircraft are packed with sophisticated electronic equipment, air


traffic control (ATC) has always been more of an art than a science. Ground-based control


essentially consists of people following the progress of aircraft represented by points


derived from radar data and displayed on a flat display screen. The simple nature of the data


available means that the controllers themselves are required to build and maintain a mental


picture of extrapolated 4D traffic based on experience and other rather ill-defined heuristics.


Having done this, the controller must mentally compare every pair of predicted trajectories


to determine whether any pair of aircraft will pass within the minimum permitted separation


- in which case he is required to intervene in some way to resolve the potential conflict.


Such an unscientific approach to ATC is, however, becoming less and less acceptable.


Pressure for change is coming from two sources: firstly, the ATC world, as elsewhere, is


undergoing an information explosion - controllers potentially have access to gigabytes of


data of every sort, and have the possibility to communicate with aircraft and other ground


systems in ways, and at speeds, which were unimaginable when their practices were


conceived. Secondly, airlines are demanding greater efficiency and quality of service from


the air traffic control providers: efficiency, because ATC currently accounts for about 15%


of the price of a ticket, and quality of service to allow airlines to increasingly fly their


preferred and presumably near-optimal flight paths.


The problem cannot be approached from a uniquely technical viewpoint. Removal of the


“artisanal” aspects of ATC, particularly with regard to the task of preventing contact


between aircraft, touches the very heart of the profession. This, therefore, means that any


enhancement of the controller’s skills with automation must be done in a way which is


sympathetic to current practices and therefore acceptable to controllers.


                                               
1 This Ph.D. research has been funded by Eurocontrol Experimental Centre in Paris, the European Centre


for Air Traffic Control.
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Previous attempts to use Artificial Intelligence in ATC have never attained the level of


confidence necessary for controllers to effectively use it in the real world. This lack of


success is due in large measure to knowledge engineering difficulties in modelling ATC


decision making. In this thesis we describe the successful application of case-based


reasoning (CBR) to this problem. We describe what was required to make CBR work and


asses the knowledge engineering impact of CBR. The novelty of the approach presented in


this thesis is in the function of artificial intelligence used as an intelligent assistant more than


an expert system, and in the technique used, which is CBR instead of the standard rule-


based systems (RBS).


1.1 Case-Based Reasoning


“Case-based reasoning means reasoning based on previous cases or experiences. A case-


based reasoner uses remembered cases to suggest a means of solving a new problem, to


suggest how to adapt a solution that does not quite work, to warn of possible failures, to


interpret a new situation, to critique a solution in progress, or to focus attention on some


part of a situation or problem” (Leake, 1996).


The CBR cycle rarely occurs without human intervention. For example many CBR tools act


primarily as case retrieval and reuse systems. Case revision, i.e. adaptation, is often


undertaken by human managers of the case-base. This should not be viewed as a weakness


of CBR but as an encouragement for human collaboration in decision support (Watson,


1994).


CBR is a step ahead of the traditional RBS. The early systems, like DENDRAL, MYCIN


and PROSPECTOR, all operated in domains where there were good underlying models.


Unfortunately, in a commercial environment and outside of the Universities, many people


make decisions without reference to first principles and underlying causal or statistical


models. These people solve problems by using their experience (Watson, 1996).


CBR makes it possible to give solutions even if the domain is open-ended or ill-defined


(Leake, 1996). This seems to be one of the characteristic of ATC. Usually a controller


solves a conflict by referring to situations that he has already seen. Moreover, training on a


specific sector is essential to get used to the environment and more importantly to learn the


patterns of traffic that should automatically trigger the solution. For these and other


reasons, ATC seems to be a suitable domain for the application of CBR.


However the represent-retrieve-reuse model of CBR is often difficult to apply even in


situations where human competence is obviously reuse-based. This difficulty is almost
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always associated with the granularity of retrieval and the question of what constitutes a


case leads to the knowledge engineering problem.


1.2 Expert Systems versus Intelligent Agents


An expert system is a computer program that has the same competence as a human expert.


Moreover, it can increase its expertise on the domain and update its knowledge base while


in use. Expert systems are often used for the resolution of problems, for planning and for


design.


It should be pointed out that an expert system, like the majority of artificial intelligence


systems, is competent only in the domain that it has been taught. An expert system


competent in the ATC domain does not necessarily have to be competent in any other


domain. This is the purpose of artificial intelligence: finding algorithms to build computer


programs that can learn and apply the acquired knowledge, and not the commonly


perceived notion of building generic thinking machines. Deep Blue, the program that beat


Kasparov can be considered an artificial intelligence application specialised in the chess


domain. Criticisms of the type: “it beat Kasparov but it cannot talk” show that people still


have not understood the purpose of artificial intelligence. If people want to talk about


thinking machines, it is to cognitive science and not artificial intelligence that they should


refer. Artificial intelligence provides algorithms to cognitive scientists, but the domains are


different. In AI the performance is essential whereas in cognitive science, the imitation of


the brain is the main issue.


Lately, a new concept has appeared in the AI domain, the concept of Intelligent Agents. An


expert system tends to act as a substitute for humans whereas an intelligent agent helps and


co-operates with the human (Maes, 1994). In ATC it is not possible to substitute controllers


first of all for safety reasons, but for legal reasons, too.


If an expert system which is in charge of a production line makes an error, the worst thing


that can happen will result in a loss of time and money. Even if not desirable, this is


acceptable and the occasional loss of money is compensated by the savings that the


computerised system offers. Whenever an error from the expert system could cause either


injuries or loss of lives, its use must be considered very carefully. ATC is one of those


domains: there must always be a human to take the responsibility for the decisions taken.


But this human can be helped in making decisions by an intelligent agent. The use of an


intelligent agent will not only reduce the controller’s workload, but also reduce human


errors and biases (Kitano, 1996). Typical of an intelligent agent is the possibility of
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introducing thresholds that indicate how confident the system is about the solution that it is


presenting. The two thresholds usually present in an intelligent agent are called: “do-it” and


“tell-me” thresholds (Maes, 1994). Above the “do-it” threshold the agent automatically


executes an action without asking the user. Between the “do-it” and the “tell-me”


thresholds the agent gives a suggestion that is usually correct and below the “tell-me”


threshold the agent does not know what to do. This oncept, even if slightly modified, has


been used in the construction of our system2.


1.3 ISAC


The acronym ISAC stands for Intelligent System for Aircraft Conflict Resolution. It is a


CBR system that helps air traffic controllers to solve conflicts between sets of aircraft. The


three stages of the decision making process for conflict resolution are:


• selection of the aircraft to manoeuvre,


• decision on the type of manoeuvre and


• specification of the details of the manoeuvre.


The choices made depend on several factors: the geometry of the conflict, the capabilities of


the aircraft, their position relative to the destination, etc. ISAC is an intelligent agent that


assists the controllers in the first two stages of this decision process.


The advantages of early conflict prediction and resolution are the reduction of the


controller’s workload, relaxation of ATC restrictions and the possibility of having more


aircraft flying with a direct route and at preferred altitude profiles. It means that, with the


same constraints, both the controllers and the pilots will be more satisfied (Shively and


Schwamb, 1994).


In ISAC we introduce a new threshold, called “don’t do” threshold, which is coded inside


the system: if the similarity between the case and the target is below the “don’t do”


threshold, the system does not suggest any solution. The “tell-me” threshold is not in


ISAC’s code, but it is up to the controller to decide whether the solution is acceptable


(above the “tell-me” threshold) or not acceptable (below the threshold). This means that the


“tell-me” threshold, even if not explicitly stated, is implicitly used by the controller.


Finally, ISAC is interesting in itself because of the critical safety issues involved and because


of the question of what constitutes a case in this problem domain.


                                               
2 ISAC is considered an intelligent agent even if it does not operate autonomously, which is a characteristic


common to several intelligent agents.
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1.4 Contributions of this Thesis


Several issues were encountered during the development of ISAC. The most interesting


ones, that constitute the main contribution of ISAC, are:


• the analysis of the knowledge engineering problem;


• the suggestion of a hierarchical case-based reasoning structure;


• the issues of case reuse and case representation;


• the analysis of the discriminatory power of the case parameters.


These points, explained below, will be treated in more detail in the next chapters.


1.4.1 The Knowledge Engineering Problem


The Knowledge Engineering (KE) problem is not always treated in the intelligent agents or


expert systems literature because often the databases used for the evaluation of these


systems are toy-databases, i.e. databases that have been created especially with the purpose


of testing that particular system or databases that are already available. This was not the


case for ISAC, a system that had to be built to solve a real world problem widely known for


its complexity. This means that the power of ISAC is mainly in its database and in the


parameters used to describe it.


All the steps of the KE process are described explicitly in Chapter 6 and implicitly in all the


thesis: the understanding of the domain, the definition and acquisition of parameters, the


different approaches to important CBR issues and successive changes of direction, the


acquisition of the data with solutions for the construction of the case-base etc. are all


different aspects of the knowledge engineering problem. The last issue, i.e. the construction


of the case-base, has probably been one of the most problematic. The availability of the


flight plans of all the aircraft flying above Europe means that it is possible to easily extract a


lot of conflict descriptions. The problem is that these conflicts, to be stored in a case-base,


need a solution that has to be given by a controller, an operation that requires a lot of time.


This bottleneck shifted the focus from the effective acquisition of the case-base to the


development of a hierarchical structure and a different case representation.


1.4.2 The Hierarchical Structure


The need of solving multiple aircraft conflicts inspired the hierarchical structure. A multiple


aircraft conflict can involve 3 or more aircraft. It would be too difficult to build different


case-bases for three aircraft conflicts, four aircraft conflicts etc. For this reason, the conflict


has to be decomposed into two aircraft conflicts, but some high-level analysis has to be
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applied because the solution to a multiple aircraft conflict is not necessarily one of the


solutions of the component two aircraft conflicts. A hierarchical structure would allow


ISAC to use the same case-base for both two aircraft conflicts and multiple aircraft conflicts


with big savings in space and time.


1.4.3 Case Representation


The choice of the structure for a case is not obvious. A case could contain the description of


all the aircraft involved in a conflict or, alternatively, for each aircraft involved in the


conflict a new case could be created. While the first choice is more intuitive and closer to


the way the controllers think, the second one is more extendible. Having one case for each


aircraft facilitates the generalisation of the case-base to multiple aircraft conflicts because


the same cases containing one aircraft conflicts could be used for solving both two aircraft


or multiple aircraft conflicts. The problem with this case structure is that, by splitting the


conflict into two separate cases, there is the risk of loss of information.


Please note that two types of case reuse have been mentioned: case reuse with a hierarchical


structure and case reuse with the case representation. Those are two different approaches to


the same problem. The hierarchical structure reuses two aircraft conflicts for solving


multiple aircraft conflicts, independently of the structure used to represent a case. A


different approach is to change the case structure with the purpose of reusing each single


aircraft description in any type of conflict. Both the approaches have been developed.


Having all the aircraft described in the same case gives rise to the problem of deciding the


order in which the aircraft are described. For this purpose either all the combinations of the


aircraft could be stored as independent cases or a “canonical”, i.e. standard, form has to be


found. Again, both these approaches have been developed.


1.4.4 Discriminatory Power of the Parameters


Not necessarily all the parameters that describe a case have the same importance. Using


decision trees or calculating directly the discriminatory power of the parameters is a way of


better understanding the case-base under construction. Those two methods simply indicate


what are the most important parameters in the case description and could be useful to purge


some useless parameters or to better specify very important parameters in the case


description.


The task of effectively finding the weight of a parameter is quite difficult if it is up to a


human expert. A lot can be learnt about what parameters are important for retrieval by
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comparing similar cases in a case-base. It can be automatically determined which parameters


are necessary in predicting outcomes and weights to parameters can be assigned


accordingly. In the same manner it can be discovered which parameters are used in specific


contexts and determine localised parameter weights that are specific to individual cases. The


property of a parameter changing weight depending on the value of other parameters is


called context sensitivity.


1.5 Summary and Structure of this Thesis


In brief: the next two chapters deal with ATC and CBR. After a chapter with the technical


description of ISAC, the mainly theoretical chapter treating all the CBR issues is presented.


Then the chapter on knowledge engineering shows the process of building the system, the


chapter on introspective learning analyses this technique and finally the evaluation of the


system and the conclusion chapters judge whether the system has been successful in


marrying CBR and ATC.


In more detail: Chapter 2 introduces the reader to the basic concepts of air traffic control


and to HIPS which is a computer aided tool that helps the controller in the visualisation and


resolution of a conflict. The approach of other intelligent systems to the problem of ATC is


analysed and the points that could be useful for ISAC are highlighted.


Chapter 3 gives the background to case-based reasoning. The steps that constitute the


typical CBR system are explained, then a prototypical example is described. The related


literature is analysed to raise the CBR issues that will be treated in Chapter 5.


In Chapter 4 some technical issues like the interface between ISAC and HIPS, the structure


of the system and of the web of pointers used during the retrieval process are treated. The


parameter acquisition and the changes adopted during the knowledge engineering process


are justified. Of all the choices presented in Chapter 3, the most suitable for ISAC are


explained in Chapter 5. Issues like the case representation, the case structure, the coverage


of the case space with the alternative between a few gold standard cases and lots of noisy


cases, the possible solutions and the “don’t care” values are treated. Talking about the


importance of the parameters: the discriminatory power and the decision trees are treated in


Chapter 5 whereas Introspective Learning techniques will be analysed in Chapter 7. Finally,


the hierarchical structure for the resolution of multiple aircraft conflicts is analysed here,


applied in Chapter 6 and evaluated in Chapter 8.


The knowledge engineering problem is discussed in Chapter 6 with all the steps done to


build a realistic and robust system that could satisfy the controller’s needs.
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In Chapter 7 a comprehensive set of techniques for learning local and global parameter


weights are described. These techniques are evaluated on the ATC case-base and with other


case-bases. It is shown how introspective learning of parameter weights improves retrieval


and how it can be used to determine context sensitive local weights. Introspective learning


does not work well in case-bases containing only pivotal cases because there is no


redundancy to be exploited. It is shown that local weights are better than global weights in


the ATC domain and which update policies are most effective. Finally it is discussed how


the overfitting problem, common in introspective learning, can be avoided.


The evaluation of the different versions of the systems is in Chapter 8. The possible ways of


evaluating are analysed: “LeaveOneIN”, “LeaveOneOUT”3 and real test with traffic samples


from real time simulations. Some general conclusions on the performance of the system and


on the applicability of CBR to ATC are here and in Chapter 9. Figure 1.1 gives the plan of


the thesis.


Chapter 3
(CBR)


Chapter 4
(technicalities)


Chapter 8
(Evaluation)


Chapter 5
(CBR issues)


Chapter 6
(Knowledge
Engineering)


Chapter 2
(ATC)


Chapter 7
(Introspective
Learning)Appendix B


(parameter
weight)


Appendix A
(case-base
acquisition)


Appendix C
(Classes and
Functions)


Appendix D
(files)


Appendix E
(code)


CBR


Discriminatory
Power


Hierarchical CBR


Hierarchical
CBR


Chapter 1
(Introduction)


Chapter 9
(Conclusions)


Figure 1.1: Dependencies of the chapters.


                                               
3 In a “LeaveOneIN” simulation all the cases in the case-base are used as a target, but the target is left in the


case-base. When the case used as a target is taken out of the case-base the simulation is called


“LeaveOneOUT”.
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Chapter 2


Air Traffic Control


2.1 The Problem of Air Traffic Control


Traditionally, the stated objective of air traffic control is the safe, orderly and expeditious


flow of air traffic. Nowadays, it is necessary to add that air traffic control should be


impartial, cost effective, noise abating and fuel conserving. Current and future air traffic


control systems must meet these additional requirements without any sacrifice of the vital


essential safety, orderliness and expedition (Wiener and Nagel, 1988). This point of view is


the same as Shively and Schwamb in AIRPAC (1984): the solution to a conflict must


provide the minimum separation, achieve fuel efficiency, minimise the number of commands


and minimise the delay.


These conditions have to be respected by the controllers and obviously by any system that


tries to help them. Systems thinking is very similar to Human Factors thinking: it often


requires a statement of the obvious and to look outside the lines. The problem is that if the


obvious is stated people consider this simplistic and “obvious”, if the obvious is not stated it


is often missed and some expensive design errors can be made that only become apparent


when an accident occurs. When designing any ATC component, apart from the technical


aspects and feasibility, there is the need to examine the wider systems perspective to fully


understand its value and impact. An example can make this need more clear.


The following report of a flight on an Airbus 340 confirms what is being reported


elsewhere, i.e., A340s have a problem fitting into a congested organised track system, like


NOPAC (North Pacific Track structure), dominated by faster aircraft such as Boeing 747s,


because of their cruise speed.


The trouble began on the ground. The scheduled departure time was 5:15 p.m., but we had to


wait for a clearance because the ATC wanted to get faster traffic out ahead of us. At 5:35,


ATC told us they could give us a clearance up to flight level (FL) 280 then or we could get the


FL340 we wanted in about half an hour, so we took FL280, and took off 20 min behind


schedule.


After about an hour, we were cleared to go up to FL300, but still not FL340 we wanted. The


reason is two B747s were trailing us, and they had been given higher altitudes. The flight
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crew kept requesting higher altitudes, which they did not get because the ATC would not


place a slower airplane (A340 at Mach 0.82) ahead of faster ones (B747s at 0.85). The crew


spent the first half of the flight trying to figure out a way to get up to FL340. Finally they gave


up and called their dispatch office and got a new flight plan.


When we landed, the actual fuel on board was 9 tons versus 10.4 according to the original


flight plan. Since the winds were on the mark, the cost of flying at the lower altitude was


about 1.4 tons of extra fuel burn.


Thus we have an aircraft that may well be technically excellent and very economical to


operate, but in densely utilised airspace it will not be easy to achieve those economies


because of the wider system requirements. This is an example of how not fully applying a


systems view can lead to inefficiencies that probably appeared outside the scope of the


designers brief.


2.2 Principles of ATC


Commercial aircraft are controlled by ground-based air traffic controllers from the moment


the engines are started at the origin of the flight to the moment the engines are stopped at


the destination (Field, 1985). To facilitate the control task once the aircraft is en-route, the


airspace is divided into horizontally and vertically bounded sectors, each sector normally


being the responsibility of two controllers. The size of a sector depends on the amount of


traffic to be processed, the number of aircraft per hour normally being limited to around 30.


This means that in areas of high traffic density the sectors will tend to be smaller giving an


average transit time of around 6 or 7 minutes, whereas in low density areas with larger


sectors, transit time can be around 20 minutes.


Sector capability is an indicator of how busy a sector is, but it is difficult to calculate it


correctly. The capability of a sector used to indicate the maximum number of aircraft that


can enter a sector in one hour. This measure was too vague because the aircraft could arrive


at regular intervals or could enter the sector at the same time. More sophisticated measures


consider not only the number of aircraft that entered a sector but also the number of aircraft


who exited it. In this case the capability of a sector is the maximum number of aircraft that


can be in the sector at the same time.


Apart from national boundaries, the shape of the sector is normally a function of route


structure, a sort of road system in the sky normally followed by commercial aircraft. The


route structure has been designed so that major route crossing points do not occur near the


edges of the sectors to avoid co-ordination problems.
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In Europe, aircraft going Northbound, i.e. with heading from 0° to 180°, fly at odd levels,


i.e. 25, 27, 29 thousand ft, whereas aircraft going Southbound fly at even levels. In France


the separation is between Eastbound and Westbound aircraft because the majority of the


traffic through France is Northbound and Southbound.


Unidirectional airways are an exception to this rule. An example of unidirectional airway is


between London and Paris where 3 levels one above the other are used for aircraft going in


the same direction, making it easier for the controllers to change level to an aircraft without


crossing trajectories of aircraft going the other direction.


Figure 2.1: The radar screen.


Figure 2.1 shows a typical radar screen: the sector under examination (above the North Sea)


is in a darker grey. Two aircraft with their trajectories are shown. The darker segment


indicates a loss of separation between the two aircraft DLH407 and CCK177.


When an aircraft is about to enter a sector, the controller responsible for that sector is


notified of its arrival, and this should correspond more or less with its appearance on the


radar display. A short time later the controller assumes responsibility for the aircraft, a


complementary release of responsibility having taken place in the upstream sector. The
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bilateral agreement of the conditions for transfer from one sector to another is known as co-


ordination, and actually represents a substantial part of the controller’s workload.


It is then up to the controllers to see the flight through the sector and clearly the main


concern is that the aircraft transits the sector conflict-free. There is however a secondary


requirement which is to provide the aircraft with a cost and time-efficient passage.


A controller needs a licence specific to the sector to work on it. This, with the fact that the


licence is not valid if not used for six months, shows how important the training on a


particular sector is.


2.2.1 Types of Airspace


When a commercial aircraft takes off, the planning of the trajectory has already been done.


People tend to think of the control tower as the normal air traffic control workspace. In


fact, only those controllers handling air traffic in the immediate vicinity of the airport have a


direct view of the air traffic; most have no outside view at all. There are three types of


commercial airspace: en-route sectors, TerMinal control Area (TMA) and tower airspace.


There are 65 ATC centres in Europe and 400 in the USA that control the non-military


airspace. Military airspace is not considered in this work because of the different procedures


and priorities in use.


Traffic usually gets into an en-route sector already cruising and usually exits still cruising.


There are few level changes because sector exit levels have to be achieved and there are few


aircraft in evolution. When there is a conflict, the best manoeuvre would be a slight


horizontal turn, usually no more than 10-15°. When the controller is not too busy, an


aircraft can be put on purpose on a wrong level which is called Opposite Direction Level


(ODL). The workload cannot be too high because an aircraft in an ODL has to be


monitored by the controller. For example, above Ireland each morning there is a flow of


aircraft going from the USA to London, but not the other way around: the unused


westbound levels are reserved for eastbound traffic and the following sectors are ready to


accept aircraft at ODL.


TMA sectors are around airports and they are limited by a maximum flight level. Approach


controllers decide the arrival sequence and it is up to them to decide to have parallel


landings. In a TMA sector there are a lot of aircraft in evolution. A radar, i.e. horizontal,


solution is often used and an horizontal turn can be up to 60°. Because there are a lot of


aircraft in a restricted space, there are a lot of opposite direction conflicts and the


turbulence effect is even more important because the aircraft are close to each other. Speed
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differential could be useful for sequencing but not for conflict resolution. In general, en-


route sectors are simpler to control than TMA sectors.


Finally, there are the tower sectors that surround aerodromes. Separation is often kept with


direct sight, without the need of the radar. The separation between aircraft depends on their


type because each type generates a different turbulence. Usually there must be three minutes


between two aircraft landing or taking off. In Heathrow, where the traffic is more intense,


the separation has been reduced to two minutes.


2.3 Conflicts and Conflict Resolution


Internationally agreed rules exist defining separation standards below which aircraft are said


to be “in conflict”. The values of these separations vary according to a number of factors


such as the type of controlled airspace. Minimum horizontal separations are typically 5


nautical miles (1nm = 1852m) in radar controlled regions and either 1000 ft or 2000 ft


vertically, depending on altitude. In areas not covered by the radar the horizontal separation


is bigger, reaching even 40 nautical miles like in Turkey or 120 nautical miles like in Iran,


i.e. 15 minutes of horizontal separation. In (ICAO,1994 and ICAO,1996) the rules of the air


and air traffic services are explained and standardised.


Note that “conflict” is not synonymous with “collision” but is rather the infringement of the


applicable separation minima as can be read from the Daily Telegraph, August 1997:


Two British Airways jets, carrying more than 300 passengers, came within seconds of a mid-


air collision because of an error by an air traffic controller. The near-miss happened as the


two Boeing 757s were in a holding pattern awaiting permission to begin their approaches to


Heathrow.


One, flying from Paris with 165 passengers, was told to descend from 11,000 ft. It reached


10,400 ft before the crew realised that the second aircraft, at 10,000 ft, was maintaining its


altitude. The pilot of the higher plane quickly levelled out and turned sharply away from the


other, which was carrying 150 passengers from Geneva, before returning to his previous


altitude. The Civil Aviation Authority inquiry established that the emergency had occurred


because the controller handling the two flights had “inexplicably” issued the descent


instruction to the wrong aircraft.


At the time, the flights were so close that their altitude and flight number data on the


controller’s radar screen were overlapping and “virtually indecipherable”. By the time the


control centre’s “conflict alert” sounded, the descending pilot had already taken evasive


action. The captain of the Paris flight told investigators that if his plane had been fitted with


automatic collision avoidance systems, he would never have begun the descent. Such


equipment, called TCAS, will not be compulsory in Europe until the year 2000.
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The incident took place in November 1996, a week after the world’s worst mid-air crash when


a Saudi Arabian jumbo collided with a Kazakh cargo plane near Delhi. Almost 350 died.


In practice controllers will often apply separations significantly larger than 5 nautical miles


or 1000 ft, mainly due to the difficulties they have in accurately visualising future


trajectories and conflict situations. This has a number of implications: for example a


manoeuvre applied to resolve a conflict may end up significantly larger than is actually


necessary (i.e. non-optimal) and indeed, there will often be unnecessary intervention where,


had the aircraft continued on their existing trajectories, there would not actually have been a


loss of separation.


One of the most important advances in computer support for air traffic controllers in the


next few years will be the provision of relatively accurate predictions of future aircraft


trajectories. Such a development should in principle allow clearer visualisation of where


aircraft will go, and in particular whether they will be in conflict. Even with such


information, however, it is not immediately obvious how controllers could use it.


2.4 The HIPS System


One system which presents all this information in a usable way is HIPS (Highly Interactive


Problem Solver) (Meckiff and Gibbs, 1994), a system developed at the Eurocontrol


Experimental Centre in Paris. HIPS is a novel support tool which comprises two main parts:


firstly, it displays conflict situations relative to one selected aircraft in a time-independent


way, and secondly, it provides a means for the controller to modify trajectories and to find


solutions to these conflicts. A simple example follows which will help illustrate HIPS


techniques.


start of turn


EEC456
EEC123


loss of separation


planned tracks alternative tracks


Figure 2.2: A possible conflict representation.
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In Figure 2.2, the aircraft which interests us, EEC123, is traversing the airspace from left to


right. Its trajectory is in conflict with that of another aircraft, EEC456, which is travelling in


a northerly direction. The part of the trajectory for which there is a loss of separation


between EEC123 and EEC456 is marked with a thicker line. If we imagine that we wish to


solve this conflict by changing EEC123’s heading, we could attempt various new headings


assuming a certain point as our start of turn and for each one we could check for conflicts


and again mark any loss of separation in bold.


Having tried a number of possibilities the next step is to group together all the bold lines to


produce a single “no-go” zone as shown in Figure 2.3. This provides an immediate and


powerful visual device by which the controller can rapidly see that in this case the conflict


can be solved by a relatively small southward or a larger northward deviation to EEC123.


The example assumes linear constant-speed trajectories with the start-point of the


manoeuvre already known. Unfortunately these assumptions are unrealistic in real life which


means that the techniques used for generating the diagrams are quite complex. As well as


generating a horizontal view, a similar approach can be used to produce diagrams for


vertical and speed dimensions, giving a total of three pictures.


EEC456 EEC123


No-go zone


Figure 2.3: How HIPS represents the conflict.


Figure 2.4 (a) and (b) show two screen shots with the three HIPS windows and the no-go


zones. The display of Figure 2.4 (a) is similar to the radar screen shown in Figure 2.1. The


difference is in the red no-go zone that indicates the loss of separation between the two


aircraft. The green and black trajectory belongs to the aircraft DLH407. Between the


waypoints 3 and 4 this aircraft is in conflict with the aircraft CCK177. In Figure 2.4 (b), the


speed (above) and vertical (below) views are displayed. It is shown that the conflict happens


when the aircraft DLH407 descends from flight level 370 (37,000 ft) to 330.


The controller can try to solve the conflict by pulling the trajectory out of the red no-go


zone. In this particular situation, the best manoeuvre is to keep the aircraft DLH407 at level


370 because the controller knows that the aircraft is too far from destination, so it is too


early for a descent. The applied solution is shown in Figure 2.4 (c). The no-go zone is now
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yellow because it is not a conflict anymore, but is a potential conflict. The modified


trajectory is in white.


Figure 2.4 (a): The horizontal display in  HIPS.


2.5 Conflict Resolution Support for HIPS


HIPS does not, of itself, attempt to present complete solutions. It presents information to


the controller in a way that he can understand, and it is then up to him to find solutions.


This approach has been important in gaining a degree of acceptance. However, there are


still a number of steps to be taken between the time when a potential conflict is recognised,


and the implementation of the solution. In particular, the controller must:


• evaluate the conflict situation and decide which aircraft he is going to manoeuvre,


• decide which type of manoeuvre is appropriate and


• determine the details of the manoeuvre (e.g. turn right 10°, go 0.1 Mach faster etc.).


These decisions imply the examination of the horizontal, altitude and speed display for each


aircraft involved in the conflict. The aim of ISAC is to automatically highlight the display


corresponding to the best manoeuvre of the best aircraft. This means that ISAC has to


decide which aircraft has to be manoeuvred and the type of manoeuvre to avoid the conflict.


The given solution can be accepted by the controller who will complete it with a deeper
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specification of the manoeuvre, alternatively, it may be discarded because it is considered


not adequate. If this happens, the controller will choose another display of the six available.


The main purpose in having an intelligent system behind HIPS is to reduce the controller’s


workload. Moreover, the system could suggest a manoeuvre that did not come to the


controller’s mind, but is more efficient. Finally, HIPS and ISAC could be used as a training


tool for non-expert controllers. The technical description of ISAC is in Chapter 4.


Figure 2.4 (b): The speed and vertical  displays in  HIPS.


2.6 Experts Systems for Conflict Resolution in ATC


Air Traffic Control is one of the domains where AI is applied with some reticence because a


wrong decision could imply a loss of lives. That is why a characteristic common to all the


AI systems applied to ATC is that they help and support the controller but they never try to


substitute him. Some expert systems used in air traffic control are analysed below.
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AIRPAC


AIRPAC (Shively and Schwamb, 1984) is another rule-based system for aircraft conflict


resolution written in LISP. In contrast with ASTA, AIRPAC gives an explanation on how


the solution is reached. After the suggested manoeuvre has been applied, the conflict is


checked again to ensure that the solution does not generate new conflicts.


Figure 2.4 (c): The speed and vertical  displays in  HIPS with the solved conflict.


Three groups of parameters have been identified to describe a conflict: conflict description,


constraints on resolution and goals of resolutions. The conflict description contains two


subclasses:


• conflict situation with parameters like geometry, distance from unsafe separation,


aircraft relative position and speed,







32


• aircraft situation with parameters like speed, manoeuvre status at conflict and type of


aircraft.


A constraint can be generated by either the aircraft, e.g., maximum altitude, climb rate,


speed, pilot ability to comply, aircraft not subject to manoeuvre, or by the environment,


e.g., neighbouring aircraft, special-use airspace, severe weather, boundary considerations


etc.


Different goals of resolution have been identified. In absence of special aspects of the


conflict situation, AIRPAC reverts to a conflict resolution policy good for any type of


situation. As soon as a good solution is found the search is stopped.


Two sources of uncertainty are examined: the uncertainty due to the input data and the


uncertainty due to the heuristic knowledge. Input data could be incorrect because of the


estimation of aircraft flight paths based on flight plan data. Heuristic knowledge is not


always complete and consistent because of both general and specific problem solving


methods. Some parameters used in ISAC come from the list of rules used in AIRPAC.


ASTA


Another rule-based system that was intended to be part of ARC2000 is ASTA (Tumelin,


1990). It is written in PROLOG and its aim is to help the controller by giving him in


advance all the conflict-free trajectories and a proposed exiting altitude for all the aircraft


entering the sector.


In ASTA only two aircraft conflicts are considered and are classified in three classes that


depend on the horizontal geometry of the conflict: converging, catching-up and facing. The


“status” of an aircraft depends on its altitude profile and can be: cruising, climbing or


descending. Fourteen different conflict configurations are obtained from the combination of


the horizontal geometry and the altitude status. This categorisation was adopted with some


changes in the first version of ISAC’s case-base.


Three types of manoeuvres are considered in ASTA:


• change of the horizontal position (6 different manoeuvres like heading change,


maintaining heading for a longer period, direct route etc.)


• change of the vertical position (9 manoeuvres: level change, anticipate-delay descent-


climb etc.)


• change of performance (7 manoeuvres: speed change, increase-decrease climb-descent


rate).
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In ISAC this approach is simplified. There are only 3 possible manoeuvres: horizontal,


vertical and speed manoeuvre. When similar solutions are found in ASTA, an algorithm


chooses the solution that reduces most the length of the trajectory. This choice is not


optimal and a cost function would work better.


ASTA does not always find a solution. From ISAC’s point of view, this is acceptable,


because it operates as a support tool always under the supervision of the controller. A


problem with ASTA is that the solution given cannot be immediately understood by the


controller because it is often difficult to find the rules that brought to the solution. This is


typical of all the rule-based systems.


In ASTA two different cost functions are examined: the controller’s cost function and the


aircraft’s cost function. The parameters considered for the aircraft function are the safety,


the flight time increase, the fuel consumption and the respect of the scheduled arrival time.


For the controller’s cost function, the number of manoeuvres to avoid the conflict and the


environmental conditions are considered. These parameters should be kept in mind in case


the construction of a cost function in ISAC will be necessary.


ARC2000


In ARC2000 (Nicolaon and Tumelin, 1992), a system developed in Eurocontrol


Experimental Centre, Paris, the shortest path around the no-go zones is found


algorithmically. The system tries to move the selected aircraft from its trajectory to a new


one with a change in altitude, speed or horizontal position. ARC2000 defines the priorities


between flight phases and between aircraft and the manoeuvres to apply to the selected


aircraft. All the possible manoeuvres are successively tried and a cost is associated to each


solution. Then, the least expensive solution is chosen. The algorithms for the search of the


manoeuvre and the rules for its evaluation are implicit in the ARC2000 program code,


making it difficult to test, maintain or adapt to new problems. The actual weather is given


with wind speed and wind direction for 8 arbitrary altitudes and with temperature and


pressure at sea-level. All given values are constant over the whole simulation area and over


time. There are four vertical flight phases: climb, descent, pre-descent, cruise. In ISAC, no


difference is made between the pre-descent and the descent phases.


The rule-based system in ARC2000 gives the basic structure for the rule-based system in


RAMS, a Reorganised ATC Mathematical Simulator, (Model Development Group, 1995),


an analysis tool to increase the simulation capabilities.
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GEARS Conflict Resolution Algorithm


Also GEARS, Generic En-route Algorithmic Resolution Service, has as background the


ARC2000 research. The algorithm combines the two steps of finding the right manoeuvres


and putting them into the trajectory with the idea of the no-go zones (Irvine, 1997). Two


similarities with ISAC are that the algorithm needs a conflict detector and that the trajectory


predictor must provide reliable data.


The algorithm, that has applications in free-flight simulations, makes use of the concept of


preferred manoeuvre, candidate manoeuvres and avoiding manoeuvres (Irvine, 1997). The


right manoeuvres are recursively searched and the good ones are used to construct a set of


conflict-free trajectories. The Rubber-Banding heuristic proves to be particularly powerful


in avoiding the construction of sub-optimal trajectories. This heuristic comes from the idea


of threading a rubber band between fixed obstacles and then stretching it around the no-go


zones.


OASIS


The OASIS air traffic management system (Ljungberg and Lucas, 1992) performs tactical


air traffic management. In order to alleviate air traffic congestion the system maximise


runway utilisation. OASIS is agent-oriented: its major components are independent agents,


each solving a part of the overall problem. The system’s flexible behaviour results in part


from this co-operative problem solving approach, and in part from the multiple levels of


feedback employed between agents in the system and between the system and its


environment. OASIS computes the landing sequence using an any-time algorithm and is


implemented using the Procedural Reasoning System (PRS), a real time reasoning system


capable of reasoning about and performing complex tasks in a robust and flexible manner.


Other Systems


The most exotic AI techniques have been applied to ATC, from genetic algorithms


(Gotteland, 1995) to the use of the potential field method (Zeghal, 1994). In both these


approaches the conflict is simplified by considering only horizontal manoeuvres and aircraft


flying at the same level. Moreover, Gotteland assumes that the aircraft are cruising at the


same speed. When using the potential field method, the goal, which is the destination in the


ATC domain, produces an attractive potential which pulls the aircraft towards it, while the


obstacles, i.e., the other aircraft involved in the conflict and the environmental aircraft,


produce repulsive potentials which push the aircraft away from them.
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Another rule-based system that gives a solution in the form of a conflict free trajectory is


Aera (Hamrick, 1991). The possible manoeuvres given by the system are: vertical,


horizontal or speed change, a combination of the two, or a solution that involves two


aircraft. Approximately 100 rules are used to search for all the possible manoeuvres and to


rank them in a best-worst list. The system, written in LISP, is able to generate alternative


resolutions in case a pilot cannot accept the initial resolution. Aera’s algorithm takes into


account statistical uncertainty in the prediction of the future aircraft positions.


PLATONS (Ly, 1987) is a rule-based system written in PROLOG for altitude level


allocations planning. This is usually the job of one of the two controllers that monitor a


sector while the other tries to re-route aircraft to improve efficiency. In PLATONS, the


negotiation with the pilot is very important and the final decision depends on this.


In (Bayles et al., 1993), CBR is used to capture and analyse experiences of Traffic Flow


Management (TFM). The goal of TFM is to organise complex air traffic flows through busy


areas like airport sectors. ATC becomes relevant when TFM fails and there is a potential


conflict. Because ATC is different from TFM, the indices that describe a case are different:


in the system for TFM, more stress has been put on the weather conditions, on the day of


the week and on the period of the day. Moreover, the scope is not limited to only two or


three aircraft but to an entire group.


The typical CBR issues are treated. In particular, the domain of applicability which has been


limited to a specific situation. This happened because in a more general situation too many


parameters would have been necessary. The authors agree that CBR has some advantages


over RBS, but admit that “CBR must be complemented with other systems such as RBS to


build successful application, including our application” (Bayles et al., 1993).


Suggestions on the use of bayesian networks and fuzzy logic for conflict resolution are in


(Meckiff, 1994). The steps that compose the model are: definition of the inputs, definition


of fuzzification functions for the inputs, definition of the relationships and development of a


graphical model and assignment of conditional probability values to the relationship. This


model has not been implemented yet.


From the overview of all the systems it can be seen that the majority of them use either and


algorithmic approach or a rule-based approach. In both the situations the authors reported


problems, for example during the extraction of the knowledge from the knowledge base and


for the maintenance of the system. Case-Based Reasoning can help in these bottlenecks.


Even if it does not solve all the knowledge engineering issues, as reported above by Bayles,


it helps in reducing them. In the next chapters it will be shown how CBR reduces
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considerably the steps that come after the understanding of the domain, i.e. the need to


identify causal models in the problem domain is reduced.


2.7 The Future


Some of the biggest changes in the future of ATC will deal with the Human Machine


Interface (HMI) field like frequency congestion that indicates the difficulties in voice


communication between pilots and controllers. Some english controllers admitted that when


faced with a conflict involving, for example, an English and a Chinese aircraft they tend to


manoeuvre the English aircraft because they are sure that they will be better understood.


The apparent solution to frequency congestion will be digital data link (Perry, 1997). Some


of the areas not related to the HMI domain where the most effective changes will take place


are the introduction of the Reduced Vertical Separation Mode (RVSM), the introduction of


free flight and having controllers that will control some aircraft for all their journey and not


anymore only when the aircraft passes above a particular sector.


Nowadays, aircraft have a vertical separation of 1000 ft when they are below 29,000 ft and


2000 ft above this level because the higher an aircraft goes, the less precise the altimeter is.


RVSM has become possible now that aircraft have more precise instruments on board and


will imply a separation of 1000 ft even above 29,000 ft.


With the introduction of on-board tools like TCAS (Traffic alert and Collision Avoidance


System) in the USA since 1993 and in Europe from year 2000 the possibility of having


aircraft going on a straight line from departure to destination seems more feasible. In the


ATC communities there is a big debate on whether introducing free flight as it has already


been done in the USA above a certain flight level (40,000 ft). The problem is that


controllers do not feel at ease in a scenario where aircraft can arrive from anywhere and go


wherever they want because the controller cannot any more easily recognise conflicts. On


the other hand, the advantage of free flight would be in time and fuel saving because of the


reduction of the trajectories. Finally, with the new technology improvements, the new radar


have a much wider range and nowadays they can easily follow an aircraft along all its flight


path. Moreover the idea of having sectors that usually have different standards above each


country starts being considered obsolete. Mainly for these two reasons the controller might


change his function. He will not be anymore bounded by the sector’s borders having to


control only the aircraft the overfly it, but he will take care of the same aircraft for all the


duration of the flight, from departure to destination.
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Chapter 3


Case-Based Reasoning


Case-based reasoning has emerged from research in cognitive psychology as a model of


human memory and remembering. It has been embraced by researchers of AI applications as


a methodology that avoids some of the knowledge acquisition and reasoning problems that


occur with other methods for developing knowledge-based systems.


3.1 CBR Principles


The basic assumption of CBR is that, rather than solve a problem from first principles, it


may be easier to retrieve a similar problem and transform the solution to that problem. The


main issues to be considered in developing a CBR system are:


• representation and indexing,


• retrieval,


• adaptation,


• learning.


One of the central advantages in using a case-based approach to developing knowledge-


based systems (KBS) is that CBR systems can be developed without encoding a strong


domain theory for the problem domain. This means that CBR should avoid much of the


knowledge engineering bottleneck that is such a problem in KBS development. In the next


chapters it will be shown that although this might be true for toy systems, it is not


completely true for a real world application like ISAC.


3.1.1 Representation and Indexing


Problem solving episodes are represented as cases, the key part of the case being the set of


parameters that characterise it and the possible values that each parameter can assume. The


case description is then completed with its solution that can be either atomic or compound.


This is an important issue, since the performance will depend on the representation adopted


and a lot of knowledge engineering is needed. The parameters must represent all the
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knowledge necessary for the distinction of a case from the closest ones with a different


solution. Cases may be indexed on key parameters in order to facilitate retrieval.


Solutions to the case can be atomic, compound or compound-manipulable. An atomic


solution cannot be decomposed whereas a compound solution can be decomposed into one


or more components by some problem decomposition process (other than adaptation). A


compound-manipulable solution has components that can be manipulated during adaptation.


Incremental-CBR


An analysis of the use of CBR in different domains illustrates that the structure of


conventional CBR is very rigid when compared with the flexibility of reuse that humans


exhibit in problem solving. For some CBR tasks, like diagnosis, a full case description may


not be available in advance of case retrieval. The standard CBR methodology requires a


detailed case description in order to perform case retrieval and this is often not practical as


the case can be characterised by a large set of parameters, not all of which are required in


order to make a diagnosis. Moreover, many of these parameters will be expensive to


determine so it is desirable that the number required to deliver a good solution should be


minimised.


In this situation a technique called Incremental-CBR (Cunningham, Smyth and Bonzano,


1998) can be used. The incremental CBR mechanism can initiate case retrieval with a


skeletal case description which is used to retrieve a matching subset of the case-base. This


retrieved set is analysed to determine discriminating tests that the operator is asked to


perform. The Incremental-CBR technique proved capable of retrieving good matches while


requiring a minimal case description (Cunningham, Smyth and Bonzano, 1998).


3.1.2 Retrieval


The choice of the retrieval algorithm can increase or decrease the retrieval time but more


importantly, can influence the selected cases that lead to the final solution. The simplest and


most common retrieval algorithm is the Nearest Neighbour algorithm which is a lazy


learning flat search algorithm. A learning algorithm is lazy when the processing is deferred


to run-time. A consequence to this is that all the knowledge base has to be completely


searched every time the system is asked for a solution. Lazy learning algorithms do not


require any training period but are slow because the knowledge base has to be re-examined


at run-time.


As opposed to lazy learning algorithms we have eager ones. Eager learning algorithms


build a structure that represents the knowledge base before run-time. Approaches like
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Neural Networks (Naughton, 1995), (Micarelli and Sciarrone, 1996) or Decision Trees


(Quinlan, 1986) are of this type. They are very fast because the knowledge base is accessed


only during the training but not anymore at run-time. One disadvantage is that the training


period could be long. The two main alternatives for retrieval are k-NN retrieval and D-


Trees.


3.1.3 Adaptation


When the retrieved case is not a perfect match for the problem in question, it must be


adapted to fit the new situation. A lot of research has been done on adaptation even if in


(Barletta, 1994) it is argued that adaptation should be kept as simple as possible and should


not be essential for the success of a CBR system.


A preliminary analysis of the CBR literature suggests that CBR adaptation might be divided


into three categories arranged in order of increasing complexity as follows (Smyth and


Cunningham, 1993).


• Substitution Adaptation: this is the simplest type of adaptation and merely involves


adjusting or substituting some of the parameters in the solution.


• Transformational Adaptation: this adaptation is more complex and involves structural


changes to the solution.


• Generative Adaptation: this is the most complex adaptation and involves a reworking of


the reasoning process in the context of the new problem situation. Generative Adaptation


is also known as Derivational Analogy.


These different adaptation categories are appropriate for problems of different complexity.


Substitution Adaptation will only work for comparatively simple problems where the


solution statement is simple or atomic, e.g. it is expressible as a single price or a fault


category. Transformational Adaptation can work where the solution has a more complex


structure like in a plan but the components of the solution are not very interdependent.


Transformational Adaptation offers more coverage than Substitution Adaptation because


cases can be transformed into a wider variety of solutions but a more complete domain


model is required to do so (see Figure 3.1). This implies a deeper knowledge model. For


problems where the solutions are made up of interdependent components, as occurs in


design for instance, solutions are too brittle to be transformed in this manner. Instead, it is


necessary to re-generate solutions as is done in Derivational Analogy.
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Solution Space Solution Space
Substitution Transformation


Figure 3.1: Transformation adaptation has more coverage than
substitution.


3.1.4 Learning


Once new problems are solved with the aid of the CBR system, it may be useful to add them


to the case-base. This mechanism, which is called the update mechanism, reflects quite


closely human learning behaviour. From this point of view, the advantages of CBR over


Rule-based Systems (RBS) are noticeable. A new case can be added to the case-base with


no particular precaution, whereas a consistency check has to be done before adding a rule to


the knowledge representation of a RBS.


The extreme situation when two cases with identical descriptions but with different


solutions are introduced in the case-base should cause the system to give a double possible


solution without generating any inconsistency. This is one of the situations where the human


intervention is essential in the decision process as already mentioned in Chapter 1.


A policy is needed to decide whether it is worthwhile or not to update the case-base. If all


the new solved problems are added as cases, the case-base could become too big and the


retrieval process too slow. Moreover the solutions given by the system might not


necessarily change for the better if the updating is not supervised.


3.1.5 An Example


The Breathalyser (Doyle, 1997), a Web-based CBR application that predicts the blood


alcohol content, is an example of the CBR cycle presented above. A case is stored as a flat


parameter record and five parameters are used to characterise it: the gender and the weight


of the person, the units of alcohol consumed, whether the person consumed some food and


the duration of the drinking session. These five parameters come from the medical literature


on the subject. Each parameter has an importance weight which is fixed a priori by the


expert and remains the same for all the cases. In Chapter 7 we show how it is possible to
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automatically extract weights from a given case-base and to determine the context


sensitivity of the parameters.


In the Breathalyser process, the two main steps are retrieval and adaptation. The retrieval


engine retrieves the closest case to the input case, then the solution to this case is adapted


using adaptation rules automatically learned from the case-base (Hanney and Keane, 1996).


When applicable adaptation rules are found, the system is fairly accurate but when no


applicable rules are found, it is not as accurate, the accuracy depending on how close a


match for the case input is found in the case-base. As the case-base used with this project is


quite small, there are usually no very close matches although adaptation makes up for this in


a lot of situations. The information given when a solution is returned by the system gives


some indication of the accuracy of the answer.


Some sample cases and associated rules are shown in Figure 3.2.


CaseName n1 CaseName n55 CaseName n3 Casename n33
Gender male Gender male Gender female Gender female
FrameSize 1 FrameSize 1 FrameSize 4 FrameSize 6
AmountConsumed 1 AmountConsumed 3 AmountConsumed 4 AmountConsumed 3
Meal snack Meal snack Meal full Meal full
Duration 60 Duration 120 Duration 90 Duration 90
Solution 0.2 Solution 0.7 Solution 0.8 Solution 0.5


The rule generated by comparing cases n1 and n55 above is:


r0: if the units of alcohol consumed changes from 1 to 3 and the duration of the session changes from 60 to


120, then increase blood alcohol content by 0.5.


The rule generated by comparing cases n3 and n33 above is:


r25: if the frame-size changes from 4 to 6 and units of alcohol consumed changes from 4 to 3, then decrease


blood alcohol content by 0.3.


Figure 3.2: Some sample cases and associated rules.


The domain in which the Breathalyser works is a “weak theory” domain, i.e., there are no


applicable algorithms or formulæ to compute blood alcohol content from the five


parameters used to describe the cases. Therefore reasoning from cases is the only option.


The performance of the system support the assumption that CBR works well in “weak


theory” domains.


3.2 Overview of Relevant CBR Systems


In (Hanney et al., 1995) 53 case-based reasoners have been examined to build a taxonomy


of systems and tasks useful in the initial stages of the design of a CBR system. Four


dimensions for the classification of the CBR systems are identified.


• Whether adaptation is present or absent.
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• The solution is extrapolated from either a single or multiple cases.


• The solution is either atomic, compound or compound-manipulable.


• There may be considerable interaction between solution components constraining the


effectiveness of naïve manipulation during adaptation.


This classification and the initial understanding of the ATC domain from Chapter 2 give us


some directions on how to apply CBR to conflict resolution in ATC. Some of the hints from


the literature are useful, some others seemed to be useful at the beginning, but as our


understanding of the problem improved during the making of the system, they could not be


applied. In the next sections the initial approach to the system is presented, whereas in


Chapter 6 all the final choices are presented and justified. The technical aspects of the


system are discussed in Chapter 4.


3.2.1 The Case-Base


In a real world application such as this, there is a strong argument for populating the case-


base with hand-crafted high quality cases (gold standard cases). By doing this the system


should be able to fulfil its double function of helping the controllers in taking solutions and


teaching non-experts the steps to take the right solution. It seemed that a small set of cases,


30 to 50, would have been adequate, but when the real complexity of the system was


discovered the dimension of the case-base had to be increased of at least one order of


magnitude.


The alternative to the gold standard cases option is the use of learned cases. This option is


valid when certain situations will recur regularly and it is desirable that the system should be


able to learn good solutions as they are developed. For example, if two flights systematically


conflict in a particular configuration, it is desirable that the system is able to learn a good


solution to this conflict.


Learning from failures like in PROTOS (Bareiss, Porter and Murray, 1989) or storing


unsuccessful cases as done in CADET (Sycara and Navichandra, 1989) could be useful


when the system will focus on the solution of conflicts on a particular sector. If a particular


conflict configuration happens often and the most obvious solution is known not to be the


correct one, it could be useful to have a message that says: “do not choose this manoeuvre”.


This approach does not work in a very general situation because there would be too many


exceptions.
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Hierarchical Structure


As it will be explained in the next chapter, ISAC’s solution has two components: which of


the aircraft involved in the conflict has to be manoeuvred and the type of manoeuvre that


has to be applied. It seemed that because of this double solution each case could be broken


into two sub-structures, each one dealing with one part of the solution as done in APU


(Bhansali and Harandi, 1993) and ARCHIE (Domeshek and Kolodner, 1992). The


alternative of having one solution that includes both the components at the same time is


simpler and proved to work as well.


Very often in the ATC domain a conflict involves more than two aircraft. If this happens we


have a multiple aircraft conflict that can be decomposed into two aircraft conflicts. The


problem is that the resulting conflicts do not necessarily have solutions independent to each


other. Maybe a common solution could solve the multiple aircraft conflict more efficiently,


e.g., by manoeuvring the aircraft which is in conflict with all the other aircraft in the


conflict. With a multiple aircraft conflict a hierarchical structure of the same type as the


system Déjà-Vu (Smyth and Cunningham, 93) can be used and in Chapter 5 we show how.


We reuse the case-base of the two aircraft conflict by building some abstraction hierarchy as


done in CADET (Sycara and Navichandra, 1989).


3.2.2 The Case Representation


This proved to be the key issue in ISAC. A concrete case representation is available from


the host system that is the basis of the actual case representation, so the initial set of


parameters will be acquired from the host system as is done in Archie (Domeshek and


Kolodner, 1992). Many of the parameters are represented numerically but sometimes the


representation is expanded to produce some more abstract symbolic parameters that support


useful reminding in the case retrieval process. A similar approach for the conversion of


numeric parameters into symbolic ones with the use of ranges is used in CLAVIER (Hinkle


and Toomey, 1994). The parameters for the case representation come from the controller’s


habits in solving a conflict. An accurate description of some of these typical habits, called


“preferences”, is in (Meckiff, 1994).


In the original case representation we had two kinds of parameters: some used for the


retrieval of the case, others for the case adaptation and for building the solution. This


approach, inspired by the system Déjà-Vu (Smyth and Cunningham, 1993), has been


simplified after the first discussions with controllers because it became clear that all the
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parameters had to be taken into account for both the case retrieval and the solution.


Moreover our adaptation mechanism is almost non-existent (see next section).


In the system JULIA (Hinrichs, 1988), the unsolvable parameters are either weakened or


not considered. This is a quite common situation in the air traffic control domain, where, for


example, data and performance about an aircraft might not be available. If this happens the


controller uses his background knowledge. Our system can either retrieve the missing


information from a common database or simply assign a “don’t care” to the missing value. If


the database is well structured, the retrieval of the missing data should not take too long.


The case solution has, in Hanney’s terms, a compound manipulable structure (Hanney et al.,


1995) because it contains the name of the aircraft to manoeuvre and the kind of manoeuvre


and it can be extracted from more than one case. The option of storing the sequence of


manoeuvres necessary to solve the conflict as done in PRIAR (Kambhampati and Hendler,


1992), will be considered if the system will be asked to give more specific solutions. If more


than one case is retrieved, some control rules as used in PRODIGY (Carbonell and Veloso,


1988) could be useful.


Granularity of the Case Representation


In situations of increased traffic the future ATC scenario implies more complex conflicts


involving more than two aircraft. A key design criterion has been to develop a case


representation that will be extendible from two aircraft conflicts to conflicts involving three


or more aircraft. This militates against having a single conflict as the basic unit of retrieval,


i.e. the case (Bonzano, Cunningham and Meckiff, 1996). For reasons of economy in case


coverage, we want solutions in two-aircraft conflicts to be reusable in three-aircraft


conflicts, and so on. This means that conflicts should be decomposable so that the basic unit


of retrieval is an individual aircraft in a conflict. This problem of representing cases


describing two conflicting entities has already been faced in the CBR literature, for example


in two classical systems, Mediator (Simpson, 1985) and Persuader (Sycara, 1987), and


more recently in Truth-Teller (Ashley, 1995). In all these systems, perhaps because they


describe interaction between humans, there is a vocabulary to characterise the “type” of


conflict and this is critical in determining the solution. This is less true in ATC where the


solutions depend on the arrangement of the aircraft and the context of the individual aircraft


as described by their flight plans. The conflict between two aircraft can be described roughly


with one or two global parameters but the final solution depends on a lot of dependent


variables related to a single aircraft. For this reason the approach adopted in ISAC is
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somewhat different to the above systems, with an emphasis placed on some parameters that


describe an aircraft on its own. While our ultimate objective in developing ISAC is to have a


single aircraft as the unit of case retrieval, we have considered three case organisations in


detail. We have evaluated two alternatives with two aircraft per case and one alternative


with one aircraft per case as shown in Chapter 5.


3.2.3 The Retrieval Mechanism


The two serious alternatives for case retrieval have been presented in Section 3.1.2.


Retrieval may be based on a sequential search of the case-base using a tailored similarity


metric as a basis of comparison. Alternatively, the cases can be stored in a decision tree of


depth k, where k is the number of parameters considered in assessing similarity. Flat search


has the advantage that sophisticated similarity measures can be used like the Foot-Print


metric (Veloso and Carbonell, 1991) but it has the disadvantage that retrieval time increases


linearly with case-base size. This is particularly a problem if the case-base is to be allowed


to grow as may be the case in ISAC. Decision trees have the advantage that retrieval time is


practically constant as the case-base grows. However the search may prove to be myopic


with cases excluded from consideration because they do not match on a particular


parameter. The spreading activation mechanism used in ISAC is an hybrid approach


between the lazy learning mechanism and the eager one and is explained in detail in Chapter


4.


The way of calculating a similarity metric changed during the development of the system,


e.g., the way of considering a “don’t care” value and the numeric parameters similarity


policy, changed several times. There are different ways of calculating the similarity metric


depending on whether the parameters is symbolic or numeric. We use a more elaborate


version of the direct matching metric described in PRODIGY (Veloso and Carbonell,


1991): two parameters match either if they are equal or at least in the same range of values,


or if each argument of parameter A is of the same type of the corresponding argument of


parameter B. The Foot-Print metric is not used. This method identifies the set of weakest


preconditions necessary to achieve the goal. Then it recursively creates the Foot-Print of the


problem that has to be solved by projecting back its weakest preconditions into the initial


state.
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3.2.4 The Adaptation Mechanism and Update Mechanism


In our work, the adaptation is not very important because we assume that our case-base is


dense enough to always provide a case close enough to the problem that has to be solved.


In the conclusions we show that our assumption is wrong, the case-base is too complex and


can only be partially covered for one sector. Nevertheless adaptation is not used because if


there is adaptation there is a rule-based system behind it. If adaptation is too strong, the role


of CBR is reduced as seen in (Hanney and Keane, 1996) and (Doyle, 1997). The aim of our


research was to see how suitable CBR was for the ATC domain and for this reason we


wanted to keep the influence of any RBS at the minimum. This view is supported by


(Barletta, 1994) and from the development steps of the system CLAVIER (Hinkle and


Toomey, 1994). In CLAVIER case adaptation was performed only in its first version, but


the process was too error prone and in the final version it was up to the user to manually


adapt the case.


Adaptation requirements could be met using a small set of heuristic rules that adjust the


solution parameters. We would not aim to support any significant solution transformation in


the adaptation process. It appears that the basic substitutional adaptation will be adequate in


this situation. Case-base coverage should be sufficiently extensive that any structural


transformations will not be required if not at the beginning when the conflict, e.g., a multiple


aircraft conflict, has to be loaded for the retrieval as done in KRITIK (Goel and


Chandrasekaran, 1989).


An updating mechanism as used in PROTOS (Bareiss, Porter and Murray, 1989) would be


useful but in certain circumstances. The need to provide a learning facility in the system


introduces a problem of consistency. Different air traffic controllers may provide different


solutions to similar situations. Each controller has his own point of view depending on his


habits in solving conflicts.


If the system is to incorporate such a learning facility it will also introduce problems of


controlling case-base size. Prodigy is the only system where the time problem is treated


analytically, with a distinction between the retrieval time and the adaptation time (Veloso


and Carbonell, 1991) and advices for increasing the system performances, for example, by


changing the retrieval mechanism. An updating function will try to reduce the sum of these


two periods, by not keeping in the case-base solutions to problems that are easily and


correctly adapted (i.e. with a short adaptation time). By doing this, the retrieval time is not


increased because the case-base is not changed. Moreover, there will be a need to estimate


the coverage of individual cases in order to control redundancy in the case-base.
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It would be useful to be able to measure solution quality in order to rank different solutions.


This might be achieved by estimating the cost of different manoeuvres by using simple


estimates of fuel use and time use. In CASEY (Koton, 1988) such evaluation function


consists of a rule-based system which is, again, a problem due to the complexity of the rules


necessary to determine how good a solution is.


3.2.5 Time Constraints


The general architecture of a CBR system is discussed in (Hinrichs and Kolodner, 1991): all


the functions that constitute the system should be integrated to minimise redundancy and to


maximise efficiency. Information hiding and modularity should be achieved with a layered


architecture. Inheritance should be used to propagate some values to different cases


belonging to the same group. These guidelines have been useful for the definition of ISAC’s


structure. ISAC has to give the conflict solution as soon as the conflict is seen on the radar


screen. Potential conflicts are automatically recognised 20 minutes in advance, but this does


not mean that the system has 20 minutes to solve them because afterwards the controller


has to complete the solution with more details and this will need some more time.


Moreover, it is likely that other conflicts will appear and they may interfere with each other.


So the time for the retrieval of the case and for its adaptation is very short as in the real time


system ACBARR (Ram et al., 1992), where a robot under control cannot stop waiting for


the system to take the correct decision. In ACBARR the system cannot stop to update the


case-base because of the time constraints.


3.2.6 Introspective Learning and Discriminatory Power


REBECAS (Rougegrez-Loriette, 1994) predicts the fire behaviour in a wood. In this system


it is necessary to choose what are the most important parameters because there are so many


that it is impossible to check all of them. This implies the need of an expert to decide


priorities in the list of parameters. This is not a user friendly approach and the automatic


ways of learning the importance of the parameters given a case-base are more effective.


Two similar methods are shown in Chapters 5 where the discriminatory power of the


parameters is calculated and in Chapter 7 where an Introspective Learning mechanism is


presented.
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3.3 Conclusions


In this chapter we highlighted the theoretical basis of the work that we will describe in the


next chapters. As pointed out in Ram et al. (1992), the five points that have to be pursued


for the success of a CBR system are:


• the case-base must be complete,


• the case representation must contain all the relevant parameters,


• an efficient retrieving mechanism is needed,


• an efficient adaptation mechanism is needed,


• the solution must be evaluated in order to update the case-base or not.


The first three points listed above will be our list of priorities for the future work. The last


two points, adaptation and update could be either treated or not, depending on how the


other points are successful. We will see that the most difficult issue will be to have a well


covered case-base. Different approaches will be tried but no one will prove to be better than


the effective coverage with cases coming from the real world.
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Chapter 4


Structure of the System and Acquisition of the


Parameters


In this mainly technical chapter the architecture of ISAC is presented and the choices made


are justified. The spreading activation mechanism is compared with the standard flat search


mechanism and the advantages of the first are proved with some experiments. It is explained


how ISAC has been interfaced with the system that provides the radar screen and the


detection of the conflicts.


As it will be said in the next chapters, the process of the decision and acquisition of the


parameters involved several steps. Some parameters introduced at the beginning of the


knowledge engineering process have been discarded and other more descriptive parameters


have been introduced. The final part of this chapter is dedicated to the analysis of these


changes and the way these parameters are extracted from the data available. The reasons


why the language used to write ISAC is C++ are explained in the last section together with


some simplifications and assumptions.


4.1 The Environment and Technical Information


ISAC is a module of HIPS. HIPS, presented in Chapter 2, is embedded in a system called


GHMI4 that gives the controller a realistic environment to work. This system GHMI is


shown in Figure 2.1. When HIPS is called from GHMI the three HIPS windows appear with


all their usual functions, as seen in Figures 2.4 a, b and c.


                                               
4 The Programme for Harmonised Air Traffic Management Research in Eurocontrol (PHARE) is a multi-


year work programme, the objective of which is “to organise, co-ordinate and conduct - on a collaborative


basis - studies, experiments and trials aiming at proving and demonstrating the feasibility and merits of a


future air-ground integrated ATM system in all phases of flight”. Ground Human Machine Interface


(GHMI) is part of PHARE Demonstration 3 and consists of the development of guidelines for, and


prototyping of, a common man-machine interface to improve efficiency in the combined use of ground


functions.
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When a conflict is detected in HIPS, its description is sent to ISAC: i.e. the flight plan and


performance of the aircraft involved, the shapes of the no-go zones etc. Using this data,


ISAC selects the aircraft to manoeuvre and the type of manoeuvre which it sends back to


HIPS. Then HIPS can either highlight the display to be used by the controller in determining


the final details of the manoeuvre, or can simply open a window with a message for the


controller. Throughout this process, the controller has full visibility of all the data and has


full responsibility for the manoeuvre that will be communicated to the pilot. ISAC merely


suggests the “best” manoeuvre, based on the conflict solutions stored in its knowledge base.


The conflict resolution process with the interaction between HIPS and ISAC is shown in


Figure 4.1.


conflict
decision


Problem
representation


Name of aircraft
& manoeuvre


Selected
window


HIPS ISAC HIPS


updating


Controller


Figure 4.1: How ISAC is embedded in HIPS.


ISAC needs a supporting system with the ability to detect and describe the conflict. HIPS is


this system in the prototype presented here, but another similar system could be used. The


interface between ISAC and the supporting system varies depending on the data that the


system can provide. This means that the case description could change if the supporting


system is changed.


The current version of ISAC operates as a decision support system. It is certainly important


for its acceptance in the ATC culture that it should be a support system rather than an


expert system. The retrieval process is shown in Figure 4.2. A key criterion in the design of


the retrieval mechanism in ISAC is that it should be fast because it will be required to


operate in a real time environment. When a controller selects a conflict in HIPS for


resolution, ISAC must immediately suggest a solution. The retrieval mechanism that has


been settled upon is a two stage process. These two stages reflect the fact that the case


parameters are divided into constraints and ordinary parameters. The characteristics of the


domain dictate that there are some parameters that must be matched if cases are to be


considered similar. These parameters are considered constraints and the base filtering stage


selects cases that match on these constraints.


During the GHMI and HIPS start-up, ISAC loads the case-base into memory and builds a


network of pointers among the cases that will speed up the retrieval process. The Base
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Filtering mechanism discards from the case-base all those cases whose constraints do not


match those of the target exactly. This step is necessary because of the characteristics of the


domain but it also has the advantage that it reduces the size of the case-base before the


comparatively expensive spreading activation stage. The choice of constraints could


influence the competence of the system significantly because, as will be explained in Chapter


5, constraints cause cases to be eliminated from consideration.


Case Base
& Pointers
Case Base
& Pointers


targettarget


solution
Filtered
Case-Base Spreading


Activation
features


Initial
Filtering
constraints


Figure 4.2:  The case retrieval architecture in ISAC.


The objective of the next stage is to select cases that match the target best on the remaining


parameters. The outcome is equivalent to k-Nearest Neighbour (k-NN) retrieval but is


implemented as a spreading activation process for reasons of speed. The pointers link all the


cases that have the same value for a given parameter. During retrieval, activation is


calculated through these links. The importance of the different parameters is weighted and


activation is proportional to this importance. A more detailed description of the functions


executed by ISAC and the corresponding classes can be found in the next section.


In ISAC the solution can come from one or more cases and is compound manipulable


(following the convention introduced in Hanney et al., 1995). At the moment there is no


adaptation because the solution required does not specify the details of the manoeuvre and


the case coverage should be sufficiently extensive that any structural transformation is not


required. There is still some complexity in the reuse process in the aggregation of solutions


when different cases with different solutions are retrieved. The policy adopted is explained


in the section devoted to Solutions in Chapter 5.


4.2 Structures and Functions Used in ISAC


ISAC reads the case structure with the function ReadCaseStruct, then the case-base


with the function ReadCaseBase and finally the targets with the function


ReadAllTargets, where “target” is the conflict that has to be solved. The function


BuildWebOfPointers builds a web of pointers from the data read, then the retrieval is


started by the function FindCases. All of these functions are now examined in more


detail. The header files that contain all the classes and functions used in ISAC are in


Appendix C.
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The Case-Base and the Target(s)


In the case-base file, the symbol “@n” marks the beginning of a case description and its


name. The symbol “@s” marks the end of the case and its solution. All of the parameters are


identified by a couple:


(Parameter Name - Parameter Value).


The case-base and the target are stored in memory using the class OneCase, which


contains a list of parameters, each one stored in the class OneFeat. The structure of these


classes is shown in Figure 4.3. All the classes are defined in the file header1.h.
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Figure 4.3: The structure of the case-base in ISAC.


The functions defined in OneCase and OneFeat are used to get or store data and to


automatically scan the case-base to retrieve the desired information. In the class OneCase,


the field Activation, not depicted in the figure because it is used internally, is used
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during the retrieval. In the class OneFeat, only one of the fields NumericValue and


SymbolicValue is used depending on the type of the parameter. This is memory


consuming, but it is acceptable like other non-standard choices because the system is still a


prototype.


All the lists can be of any length, and the field next of the last element of each list points to


NULL. The target uses the same class used for storing the cases (OneCase), the only


difference being that the field Solution is left empty or, for evaluation purposes, stores a


solution suggested by the controller that is compared to the one found by ISAC. The two


functions that read the data from a file and create this structure are ReadCaseBase and


ReadAllTargets:


OneCase *CaseList=ReadCaseBase(FileWithCaseBase,StructList);


OneCase *TargetList=ReadAllTargets(FileWithTargets,StructList).


The function ReadCaseBase reads the file FileWithCaseBase, where all the cases


are stored. The structure StructList is used to check that the names of the parameters


and their values are acceptable. The function returns a pointer, CaseList, to the structure


shown in Figure 4.3.


The function ReadAllTargets reads the file FileWithTargets, where all the


targets are stored. The structure StructList is used again to check that the names of the


parameters and their values are acceptable. The function returns a structure similar to the


one returned for the CaseBase. The file CaseStructure is used to store all the


information concerning the parameters: the name of the parameter, whether it is a numeric


or symbolic value, whether it is a constraint or a normal parameter, its weight and, if it is a


symbolic parameter, the possible values. The weight field implies that a weight is assigned


to each parameter by an expert. In Chapter 7 a technique that automatically assigns the


weights to the parameters is described. When in evaluation mode, the file


FileWithTargets is artificially generated by an evaluation program and contains the


description of a conflict used to test the system. When in operation mode, the file


FileWithTargets is directly generated by HIPS and contains the description of the


conflict which is visualised on the radar screen. The files CaseStructure, CaseBase


and Solutions for the final version of the case-base used by ISAC are in Appendix D.


The Web of Pointers


The web of pointers is built during start up to speed up the retrieval process. For each


possible value of each symbolic parameter, a list that contains pointers to all the cases that
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have that value for that parameter is created. It would be inefficient to build the same kind


of web for numeric parameters by dividing the numeric values into ranges.


The web is built using the function BuildWebOfPointers:


branch *Branches=BuildWebOfPointers(StructList,CaseList).


An empty branch is built for each symbolic parameter’s value as read from StructList.


The case-base is then searched to find all the cases that have that particular value and a


pointer to that case is stored in the branch. The function returns a pointer, Branches, to


the structure shown in Figure 4.4.


ISAC automatically eliminates any possible ambiguity between identically named values of


different parameters by prepending on each value the name of the corresponding parameter.


For example, if both the parameters “faster” and “slower” have the same possible value


“easy”, these two values are represented as “faster-easy” and “slower-easy” in the web of


pointers.


The web speeds up the retrieval process because it takes less time to find all the cases that


have the same value for a certain parameter by starting from Branches, rather than having


to scan the entire case-base.


The Retrieval Mechanism


The retrieval of the best matching cases is executed by the function FindCases:


void FindCases(CaseList,TargetList,Branches,StructList).


In TargetList there could be either one or two targets depending on the case


representation. This function consists of a set of instructions that are executed for each


target present in TargetList.


For each target, the case-base is filtered according to the constraints, using the function


BaseFiltering. The pruned case-base is returned with the pointer SubList. If there


are no constraints, all the cases in the case-base are kept. The function


SpreadingActivation calculates how similar each case is to the target. This returns a


pointer, FinalList, to the list of all the cases that are equally most similar to the target


under examination. This list is passed to the function Analyse that extracts only one


solution for the target.


When these steps have been executed for all the targets, ChooseFinal finds the best


solution for the conflict by examining the solutions for each target. This solution is either


displayed on a window or it is sent back to HIPS, which highlights the window


corresponding to the best manoeuvre.
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Figure 4.4: The Branches structure.


Retrieval Time Reduction with Constraints and with Spreading Activation


As it can be seen from Figure 4.5, the retrieval time when there are two constraints instead


of one is smaller because less cases are passed to the function SpreadingActivation.


Different tests with case-bases of different dimensions have been performed and the


corresponding retrieval time is shown in the figure. CPU time rather than the clock time has


been used in both time simulations because it is more reliable. The problem of losing some


useful cases with the introduction of the constraints will be treated in Chapter 5.


In Figure 4.6, the retrieval time reduction using spreading activation is compared to that


using flat search. Four different situations have been tested: flat search with symbolic and


numeric parameters (F.S. N+S), flat search with only symbolic parameters (F.S. S),


spreading activation with symbolic and numeric parameters (S.A. N+S), spreading


activation with only symbolic parameters (S.A. S). The figure shows that the spreading


activation mechanism is faster than the flat search mechanism. Spreading activation only


works for symbolic parameters and does not work for numeric parameters. This explains


why the retrieval time with numeric and symbolic values is greater than that with only


symbolic values, (see figure).


The curves are not linear because in ISAC there are some functions that can only use flat


search, e.g., the function that resets all the activation values before a new simulation. These


functions will not be used in the real time system but are used here for evaluation purposes.
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A list of “activated cases” is not built because it would take too much time to check if an


activated case is already in the list.
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Figure 4.5: Retrieval time reduction when constraints are used.
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Figure 4.6: Retrieval time with spreading activation and with flat search.


Each simulation has been repeated several times and the average of the CPU time has been


calculated. The “TwoInOne” case representation was used (see Chapter 5), but it is


assumed that the results are extendible to any case representation.


4.3 The Acquisition of the Parameters in ISAC


In this section we describe the algorithms that are used for the extraction of parameters that


describe a conflict from the data structure used in HIPS. We report the final version of the
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algorithms and the differences from the original versions. The process of refining the


acquisition of the values from the data provided by HIPS has been run in parallel to all the


development steps. It was independent from the construction of the case-base, but,


obviously, essential for the performance of the system.


CaseName


The name of the case is usually the callsign of the aircraft if the representation is


“OneInOne”, (see Chapter 5). If the representation is “TwoInOne” the name is made up of


the two callsigns linked by an underscore. The time of acquisition is added to the end of the


case name to eliminate the possibility of duplicate case names. Otherwise, an aircraft being


involved in two different conflicts stored in the case-base would result in the same callsign


becoming the name of two different cases in the “OneInOne” case representation.


HorConflConf


This parameter indicates the Horizontal Conflict Configuration and can have four different


values: head-on, converging, diverging and crossing. The angle between the two vectors


that represent the trajectory of the aircraft before entering the no-go zone is calculated. The


angle is between the last waypoints before the no-go zone of the two trajectories and has as


vertex the centre of the no-go zone.


If the angle between the two aircraft is bigger than BiggestAngle (defined in the header


file to be equal to 155°), the value of HorConflConf is head-on. If the angle between these


two vectors is smaller than BiggestAngle, ISAC checks if there is more than one point


in common between the two trajectories. If there is only the conflict point in common


between the two trajectories, the value for HorConflConf is crossing because the angle is


already less than BiggestAngle. If there are two or more points in common, and if the


common points are the last points of the flight plan, then the aircraft are converging,


otherwise they are diverging.


The way the angle is acquired could change the final value. Earlier versions considered the


angle between the two vectors whose extremes are the last waypoint on the flight plan


before entering the no-go zone and the point where the trajectory crosses the border of the


no-go zone.


AltitudeNow


This parameter indicates the relative altitude of the two aircraft. Its value can be same if


between the two aircraft there is a difference in altitude smaller than 100 ft; it is different
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otherwise. In an earlier version of the system, this parameter had the two values higher and


lower, instead of the single value different, depending on which aircraft was at least 100 ft


higher or lower than the other. Discussions with controllers showed that this distinction was


not necessary.


AltConfiguration


AltConfiguration indicates the altitude profile of an aircraft. The three possible values are:


stable, climbing and descending. The altitude of the aircraft is checked before entering the


no-go zone and after exiting it. If there is a change in altitude bigger than 50 ft then the


aircraft is either climbing or descending.


In earlier versions of the system, the parameter “SomebodyClimbing”, extracted from


“AltConfiguration”, was used. It is not used any more because its information is redundant


and implicit in “AltConfiguration”.


Speed


This parameter depends on the relative speed between the two aircraft. If the first aircraft is


faster that the second one by more than SpeedDiff, the “Speed” is faster. Vice versa for


slower. If the two speeds do not differ by more than SpeedDiff, the value is same. All


the speeds are converted into Mach. The value of SpeedDiff is 0.1 Mach.


CloseToTOD


This is a number expressing the distance of the aircraft from the destination airport in


nautical miles. In earlier development steps, “CloseToTOD” was a symbolic parameter,


with values yes and no, depending on whether the aircraft was closer than 100 nautical miles


to the destination airport or not. The Top Of Descent (TOD) is usually 90-100 nautical


miles from the destination and indicates the start of the descent to the airport.


CloseToBoundaries


This is a number that indicates the distance in minutes between the first point of the


trajectory which is in the no-go zone and the entry or exit point in the sector, i.e., the points


of the trajectory which are on the sector boundaries. The exit point has to be considered


because a controller cannot manoeuvre an aircraft too close to the sector boundaries


because he might need to co-ordinate with another sector, which would increase his


workload. The entry point has to be considered also for the same reason.
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The distance from the entry and exit sector boundaries respectively are calculated and the


smaller time is kept. In earlier development steps, “CloseToBoundaries” was a symbolic


parameter with values yes and no, depending on whether the smallest of the two calculated


times was less than 4 minutes.


Manoeuvrability


This parameter used to depend on the percentage of accomplished trajectory and on the


performance of the aircraft. The combination of the two gave the manoeuvrability of an


aircraft. For example, an aircraft with good performance with a lot of fuel is not very


manoeuvrable.


The percentage of accomplished trajectory was calculated when the co-ordinates of the


actual position of the aircraft, the departure airport and the destination airport were known.


The performance was relative to the other aircraft involved in the conflict. An aircraft


belonged to one of the following four empirical classes of aircraft: fighter, high


performance, medium performance and low performance. An aircraft could have had better,


same or worse performance than the other.


The manoeuvrability was high if the percentage of accomplished trajectory was bigger than


75% and the performance of that aircraft was better than the other. If either the


performance was smaller than 75% or the performance was worse, the manoeuvrability was


low, otherwise it was medium. If the percentage of accomplished trajectory could not be


calculated, there was a direct correspondence between the performance and the


manoeuvrability: better performance → high manoeuvrability, same performance →


medium manoeuvrability and worse performance → low manoeuvrability.


The file with the look-up table for the type of aircraft and the correspondent performance


was empirically built by a controller and reflected his preference. An extract of the hard-


coded look-up table is shown below:


if((strcmp(type,"D328")==0)|| //if the type of the aircraft is either “D328”
   (strcmp(type,"AT42")==0)|| // or “AT42” or “FK27”, then the
manoeuvrability
   (strcmp(type,"FK27")==0)|| // returned is “1”, i.e. “low”
  return 1; // low


To solve this ad hoc and temporary situation, the BADA database (Bos, 1997) was used. In


the final version of ISAC, the manoeuvrability is a numeric value, average of the maximum


climb, cruise and descent Mach speeds of the aircraft. These are extracted from the BADA


performance file, available for each type of aircraft. The percentage of accomplished


trajectory has not been included yet in the final computation of this parameter.
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Priority


A flight can be of different types: commercial, business, military, transfer or training. A


commercial flight has the highest priority, a transfer and a military aircraft have the same


lowest priority. The priority is higher, lower or same depending on the type of flight of both


the aircraft in the conflict.


EasyToExitRight and EasyToExitLeft


These two parameters express how easy it is to exit the no-go zone by turning left or right.


An angle, with vertex in the trajectory point immediately before the no-go zone, is


calculated. This angle is the maximum of all the angles between the point on the trajectory


in the centre of the no-go zone and all the points on the border of the no-go zone. This


angle is called αconflict. At the same time, the angles generated by the no-go zones of the


other aircraft in the environment are calculated. The minimum of all these angles is called


αenvironment. If αconflict is smaller than αenvironment, the value of the parameter is difficult. It is


veryEasy if either the aircraft is already turning that direction and the angle is less than 10°


or if the angle is less than 5°. It is easy if the angle is less than 10°, possible if the angle is


between 10° and 15° and difficult if the angle is bigger than 15°.


LevelsAvailable


This parameter indicates which levels are available for the aircraft. If the aircraft is stable,


the possible values are:


• none, if in each of the two levels above and below there is at least one no-go zone


generated by another aircraft,


• above, if one of the two levels above is completely free,


• below, if one of the two levels below is completely free,


• yes, if there are any free levels above and below.


The “two levels above” refer to the level immediately above, even if it is reserved for the


other direction, and the level above this.


If the aircraft is climbing or descending the possible values are:


• none, if none of the intermediate levels, the starting level and the final level are free,


• yes, if there is at least one level which is completely free,


• spaces, if there are no levels completely free, but there are some spaces between the no-


go zones at some levels.







61


Faster and Slower


These two parameters indicate how easy it is to exit the no-go zone by increasing or


decreasing the speed. All the speeds are converted into Mach and the altitude of the aircraft


is supposed to be constant. All the border points of the no-go zone are taken into account


and the maximum difference between the actual speed and the speed that correspond to the


border points of the no-go zone in the speed display is calculated. If this difference is


smaller than 0.1 Mach then the value is easy, if it is less than 0.2 Mach, the value is


possible, otherwise it is difficult.


Agreements


This parameter indicates the agreements between the working sector and the next one. If


the aircraft has a short window in time for the border crossing and a fixed exit level, the


value is sequencing, otherwise it is notSequencing. This parameter is not yet used in ISAC


because no data from the flight plan supplies this information.


Rules for Determining the First Aircraft


Whenever a conflict between two aircraft appears, a set of four rules decides which aircraft


comes “first” and which “second” in the conflict description. This set is the result of an


empirical process and depends on some of the parameters that describe the conflict. In the


final version of ISAC the first aircraft is the one with the highest priority, i.e., the least likely


to be manoeuvred. The four rules used are:


• if an aircraft is flying at a cruise level, it should not be moved from that level;


• if an aircraft is far from its destination it is heavy because of its fuel load, so it is less


manoeuvrable;


• the aircraft with the worst performance is also the least manoeuvrable;


• a commercial aircraft should always have the fastest and least expensive route, if in


conflict with a military, business, training or transfer aircraft.


These four rules are all considered at the same time and contribute with the same weight to


the final decision.


4.4 Implementation Language


Because of the complexity of the system, the steps typical of the CBR process are executed


by different functions that are integrated to minimise redundancy (i.e., loss of time and


money) and to maximise efficiency. This has been achieved with information hiding and
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modularity. In Julia (Hinrichs, 1988), a similar structure is implemented with a layered


architecture. Inheritance is used to propagate some values to different objects of the same


group.


Previous expert systems, like AIRPAC, were written in LISP, but because this language is


too slow two solutions have been suggested:


• optimising the LISP code for speed or


• implementing the algorithms in a language faster then LISP (Shively and Schwamb, 1994).


The second option was taken when implementing ISAC. The most suitable language is C++.


Firstly because C++, with its low level structure close to the hardware architecture, is the


versatile and efficient. Furthermore, it automatically supports information hiding and


inheritance. Finally, because C++ is an easily portable language and the same program can


be run on different platforms without any changes (it will be shown later that this was not


always true in our situation).


Using a portable language is important because the problem solver module is independent


from HIPS and should be executed by “any available machine” (Meckiff and Gibbs, 1994),


communicating with its host with standard protocols.


Simplifications


Because of the complexity of the domain and because ISAC is still a prototype, a lot of


simplifications have been made. They will be highlighted in the relevant sections, mainly in


Chapter 5 where the CBR issues are treated.


Even if all the data for the conflict description is available, procedures for the treatment of


“don’t care” and “don’t know” values have been developed.


4.5 Summary


The technical description of ISAC and of the system in which it is embedded is given in this


chapter. It is explained how it works, how it is interfaced and the main structures and functions


used. Its internal architecture, the functions and the classes that constitute the core of ISAC are


described in more detail. Some results are shown to prove that the spreading activation retrieval


mechanism gives the same results but is faster than the flat search retrieval mechanism. Finally,


the acquisition of the parameters has been discussed and the different possibilities of acquisition


are analysed. All the parameters used in the final version of the case-base have been listed. We


have explained why some old parameters are not used anymore and the knowledge engineering


problem of changing the parameter that describe a case is highlighted.
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Chapter 5


CBR Issues


In the previous chapter the technical characteristics of the system have been examined,


whereas in this chapter some theoretical issues inherent to the CBR domain will be treated


in more detail. It is explained how the case representation with the possible solutions and


first of all the case structure have been influenced by the nature of the task. The problem of


reducing the size of a potentially huge case-base and the need of reusing cases justify the


introduction of three different case representations whose advantages and disadvantages are


explained. The issue of deciding whether to use gold standard cases or specific cases is


presented.


The possibility of deciding which are the most important parameters using either decision


trees or the information content of each parameter is analysed. A hierarchical CBR structure


is suggested for the solution of more complex air conflicts. Three possible architectures are


analysed and one of these will be actually implemented for the resolution of multiple aircraft


conflicts and evaluated. Finally, case adaptation is treated and we explain why the simplest


type of case adaptation is effective enough for ISAC.


5.1 Case Representation


Most of the initial development effort in ISAC was focused on case representation which is


typically the first step and main issue in the construction of an intelligent assistant. The


evaluation of the domain presented two problems: the macro problem of what should


constitute a case and the micro problem of how to characterise a case.


The construction of the system was characterised by the difficulty in determining the correct


parameters, where “correct” means capable of describing exactly what the controller


perceives on the radar screen. Moreover, the correct parameters having been identified, they


have to be correctly acquired from the data available in the environment. Determining the


correct conflict representation has involved extensive dialogues with ATC controllers and


then the manipulation of the data available from HIPS.







64


As shown in Figure 4.2, when HIPS detects a conflict, it passes its representation to ISAC.


All the data concerning the conflict that is available in HIPS is converted into parameters


useful for the case representation. The conversion process eliminates useless data and


transforms other data into more abstract and complex parameters. For example, the number


of passengers on an aircraft is discarded whereas data that is otherwise meaningless, such as


the co-ordinates of the no-go zones, becomes useful if related to the aircraft trajectory.


In a future scenario, more information will be made available provided by increasingly


precise and intelligent instruments. Moreover, datalink will improve the accuracy of the


manoeuvres available. Nowadays, the controller cannot ask to the pilot to accomplish a very


accurate manoeuvre. For example, if it is extrapolated from HIPS that the aircraft must turn


17° to the right to exit the horizontal no-go zone, the aircraft will have to turn at least 25°


to safely avoid any uncertainty. When a datalink connection between the control tower and


the aircraft becomes available, a “17°” manoeuvre will be possible and methodologies of


solving conflicts will change radically.


The process of determining the parameters was iterative and the selection of new


parameters was driven by the analysis of errors at each iteration. The different versions of


the case representation are shown in Chapter 6. The difficulty of determining a


comprehensive set of important parameters from dialogues with the controllers is


exacerbated by considerable differences in how individual controllers view and solve


conflicts. An example of these differences is demonstrated in the use of speed change as a


solution to a conflict. As it is known, HIPS provides a display showing how easy it is to


avoid the conflict by changing speed. Some controllers would never change the speed of an


aircraft which is climbing or descending even if HIPS indicates that it would be a very good


solution for both the controller (easy to implement) and the aircraft (time and fuel gain). On


the other hand, other controllers are not put off by the fact that an aircraft is climbing or


descending and they trust HIPS by giving a speed solution even if it did not occur to them


at first.


Another example that shows how differently a conflict can be represented in the controller’s


head is the concept of one aircraft “passing in front” of the other when there is a “crossing”


conflict. For some controllers it is an important issue, whereas for others it has no


importance at all.


A lot of effort has gone into trying to show to all the controllers the same environment tools


and the same set of conflicts in order to reduce any discrepancy in the resolution. In the end


there is a compromise between what is considered an important criterion and what can be
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extracted from the geometric information from HIPS. For the different ways of acquiring


the case-base, see Chapter 6 and for the description of how the case-base has been acquired


in practice, see Appendix A.


5.1.1 Case Space Coverage


The case space is the set of all the possible cases that could constitute the case-base and its


dimension depends on the parameters used to describe a case and their possible values. To


have a rough idea of how many unique cases there are in the case space it would be enough


to multiply together the number of possible values of each parameter. This is only possible if


all the parameters are symbolic. Further, some cases produced in this way may not occur in


practice.


To study case space coverage means to understand whether a case-base has enough cases


and whether they are representative enough to obtain an accurate solution. To have an


effective system, the case-base should be well covered, which does not mean that the case


space should include all possible cases, but at least those cases which are “pivotals” where


“a case is pivotal if its deletion from the case-base directly reduces the competence of a


system” (Smyth and Keane, 1995).


Two parameters that could help in the visualisation of the case space in order to indicate


whether it is well covered or not are AVE and SMA. AVE indicates the AVErage distance


in term of similarity of a case from all the other cases. SMA is the average of the SMAllest


distance of a case from all the others.


case


Case space
homogeneously


covered


Case space
covered


on the borders


Figure 5.1: Different types of case space coverage.


With these two parameters it is possible to calculate which zones of the case space are not


well covered by finding the cases that are furthest in terms of similarity from any other and


to add these cases with the right solution to the case-base. The problem that arise, while







66


using the two parameters AVE and SMA, is that they only indicate whether a case space is


homogeneously covered and this does not necessarily indicate that the case-base contains all


the pivotal cases. Usually the case space must be well covered first of all on the border of


the zones where the cases change solutions, as shown in Figure 5.1.


5.1.2 Gold Standard Cases versus Specific Cases


In the 1996 European Workshop on Case-Based Reasoning, two different points of view on


how a case-base should be covered were suggested: Michael Manago suggested that a case-


base should contain few clean cases; on the other hand, David Waltz suggested that in a


case-base there should be a lot of noisy cases. During the development of ISAC both the


alternatives have been tried.


The first approach to the construction of the case-base implied the use of prototypical cases,


i.e. very general cases, with their ideal solutions decided by a team of controllers. This case-


base should have been able to give solution to conflicts appearing in any sector and these


cases were called gold standard cases.


Further steps in the knowledge engineering process showed that this hypothesis was too


optimistic and that a lot of conflicts with the same description had differing solutions due to


their location in different sectors. This is because there are some parameters that are sector


dependent and hence cannot be stored in the case-base.


For this reason the choice of gold standard cases valid for any sector was abandoned in


favour of a more realistic case-base which focused on a particular sector. This required that


cases be recorded from a sector and solutions be generated by controllers that usually work


on that sector. By doing this, the effects of the “forgotten” parameters that depend on the


sector are minimised.


The concept of the gold standard cases can be reintroduced if the system is used for training


or teaching purposes. In this situation the case-base can consist of gold standard cases


whose ideal solutions are those taught to controllers.


The problem of different controllers having different solutions to exactly the same conflict in


the sector is still relevant as it can be seen in Figure 8.3(a), where the solutions given by


different controllers to the same conflicts are confronted. Assuming that all the controllers


that have been trained in the same sector will give coherent solutions is a big issue and will


be treated in more detail in the next chapters.
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5.1.3 Solution Representation


The solution granularity required of the system is the choice of the aircraft and the type of


manoeuvre. In a two-aircraft conflict either the first or second aircraft or both of them can


be manoeuvred. The aircraft can be manoeuvred in altitude, in speed or horizontally. In the


first steps of the knowledge engineering process, nine possible solutions have been


identified. These have been labelled “alt1”, “alt2”, “alt3”, “spe1”, “spe2”, “spe3”, “hor1”,


“hor2” and “hor3”. Where alt, spe and hor stand for altitude, speed and horizontal


manoeuvre respectively which can be applied to either the first (1), second (2) or both


aircraft (3).


In the last step of the knowledge engineering process, the altitude manoeuvre alt was


substituted by the more specific climb solution, upp, and descent solution, dow. With this


introduction the possible twelve solutions are: “upp1”, “dow1”, “upp2”, “dow2”, “upp3”,


“dow3”, “spe1”, “spe2”, “spe3”, “hor1”, “hor2” and “hor3”. These solutions are used in all


the case representations and they can be combined together when the solution to a conflict


is complex. For example, a speed manoeuvre combined with a gentle horizontal manoeuvre


might solve the conflict better than a sharp horizontal manoeuvre alone.


A horizontal manoeuvre implies turning right/left, a direct route to destination or a parallel


heading with the other aircraft. The horizontal manoeuvre does not specify whether the


aircraft has to turn right or left or the number of degrees. A manoeuvre with the “3” suffix


means that the manoeuvre can be applied either to both aircraft at the same time or to each


individually because the aircraft have exactly the same priority.


The manoeuvre suggested by ISAC should be the “best” manoeuvre for both controllers


and pilots, but because the case-base contains solutions given by controllers, it is more


likely that the controllers will be more satisfied than the pilots.


Usually when the controller’s workload is too high, the solution tends not to be very


convenient for the pilot because the controller has no time to decide on the most


economical solution for the aircraft. On the other hand, when the workload is low the


controller has time to come up with a better solution that may need more monitoring but is


less time and fuel expensive for the aircraft. The safest manoeuvre is an altitude manoeuvre


and that is why ISAC specifies more precisely the altitude manoeuvre. Figure 8.3(a) shows


that this is the manoeuvre most used by the controllers.


The policy for deciding the final solution when the retrieval process gives several cases with


different solutions is still not completely defined. With the “TwoInOne” case representation


there could be a number of cases which are similar to the target. In this situation the most
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commonly occurring among the retrieved solutions becomes the final solution. With the


“OneInOne” case representation there is one target for each aircraft and for each target


there is a list of the most similar cases. For both targets the most common solution is


extracted, then the two solutions are examined and a single coherent solution is extracted.


The solution for a multiple aircraft conflict is not the same as for a two aircraft conflict. The


format is: manoeuvre + name of the aircraft. The four possible manoeuvres are the same as


for a two aircraft conflict and a solution can be composed of more than one manoeuvre


applied to different aircraft.


5.1.4 Meaning of NIL Values


The NIL value of a parameter has two different meanings depending on the environment. If


a NIL value appears in the case-base it means that the value of the parameter is “don’t


care”. On the other hand, if a NIL value appears in a target it means that the parameter is


“not known”. In the particular situation of ISAC, the case-base should not contain any


unknown values because all the necessary parameters are available from the simulation


instruments.


How NIL Values are Treated During Retrieval


Quinlan (1993) suggests some possibilities for the treatment of unknown values depending


on the context: the use of the most probable value; the extrapolation of the value depending


on the context or the use of probabilities.


Originally, when either a numeric or symbolic parameter with NIL value was encountered


during the Spreading Activation process, its activation was incremented by 1, as if the


conflict parameter’s value was the same as the target’s. This is because the case could


possibly be a good solution for the target depending on the other parameters. On the other


hand, if the NIL value was in the target its activation would have not been increased to


avoid the risk of having too many retrieved cases at the end of the retrieval process.


When a different method of case acquisition was used, the policy for dealing with the NIL


values had to be changed. The new case acquisition consisted in building by hand a set of


representative cases instead of acquiring the cases directly from the traffic samples, this


operation being too time consuming. In this new case-base a lot of parameters had NIL


values and the above policy was not sufficiently discriminating. In the new policy the


activation of a NIL parameter is kept at zero and the final activation of each case is


weighted with the number of non NIL parameters in the case. With this policy the maximum


final activation of a case will be 1 when all the non NIL values of the case are the same as
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the target. Again, this policy is valid for both symbolic and numeric values. A simplified


version of this policy is to simply ignore the NIL value without counting the number of


parameters that have a non-NIL value. This is the policy adopted in the final version of


ISAC.


5.2 CBR versus Decision Trees


In a decision tree the parameters are ordered from the root of the tree, the most


discriminatory level, to the leaves, the least discriminatory level. The tree is built from a set


of cases whose solution is known. This is called supervised learning because the solutions


are given beforehand. Naturally, cases with the same parameter values that have different


solutions cause a problem of incoherence. The four steps to building a decision tree for a


given case-base are (Quinlan, 1986):


• extraction of a subset of cases;


• construction of the decision tree for the extracted subset;


• classification of the cases that were left out of the subset with the decision tree;


• addition of the cases that were not classified correctly to the subset and reconstruction


of the decision tree.


These steps have been implemented in C4.5 (Quinlan, 1993) and produce one of the


possible decision trees with the certainty that it works and is the simplest. ISAC has been


tested in comparison with C4.5 because decision trees could be useful in deciding which


parameters are non-redundant. The test, described in Appendix B, has been carried out with


one of the first versions of ISAC but the results can be generalised for all the versions of


ISAC because no big structural changes have been introduced afterwards.


Table 5.1 shows the results of the experiments done with the “LeaveOneIN” (the target is


left in the case-base) and “LeaveOneOUT” (the target is taken out of the case-base) with


C4.5 and ISAC. It can be seen that ISAC performs slightly better than C4.5. No tests have


been made with the new version of Quinlan’s program C5.0 (Quinlan, 1997) even if its


performance might have been better than C4.5 because this new version includes support


for boosting.


Table 5.1: Decision trees versus case-based reasoning.


LeaveOneIN LeaveOneOUT


C4.5 82% 71%


ISAC 97% 73%
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5.2.1 P-tasks and S-tasks


Comparing the performance of different learning algorithms is quite a common exercise. On


the other hand, an uncommon approach is to explain the performance of a system not with


the type of algorithm used but with the type of the task and the knowledge base used.


In (Quinlan, 1994), two types of tasks are identified: parallel and sequential tasks (P-tasks


and S-tasks). In a P-task, the output depends on the value of all the input parameters and


these values are examined simultaneously. In an S-task, the parameters are examined


sequentially and not necessarily all the values have to be given to reach the solutions.


Some learning algorithms have a strictly parallel approach to the task, while some others


have a typically sequential approach. For example, a P-task will be solved easily by a neural


network because all the inputs are processed at the same time whereas an S-task will be


more easily solved by a decision tree. CBR can easily solve both S-tasks and P-tasks, even if


it is closer to a parallel algorithm.


From the fact that ISAC performs better than C4.5, it can be argued that the task of conflict


resolution is essentially a P-task. This view is supported by conversations with air traffic


controllers in which the “global” view of the conflict is considered essential for its good


solution.


5.2.2 Discriminatory Power


ISAC gives the possibility of calculating the discriminatory power of the parameters that are


used in the case description. This function, independent from the k-NN retrieval mechanism,


can be used off-line to enhance the knowledge engineering process because it helps in better


understanding the parameters.


The mechanism of selecting discriminatory parameters is best explained in terms of building


a decision tree that has leaf nodes corresponding to the different diagnoses D. The set of


cases C is then located, or classified, on these nodes. It is important that the tree is in some


sense minimal so the choice of which parameter to test at any level of the tree is critical. In


ID3 this is done by selecting parameters based on their information content or


discriminatory power (Quinlan, 1986). The process used in ISAC is similar to that in ID3


except that the semantics of the branching in the decision tree is slightly different because of


the possibility of unknowns in the case parameters. A brief explanation of how the


discrimination works is as follows:


D={D1,…,Dd} is the set of possible classes or diagnoses;


C={C1,…,Cc} is the set of cases to classify;
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F={F1,…,Ff} is the set of expensive parameters, one of which is selected at each decision


point.


The set of cases can be seen as an information source producing one of d messages from the


set D. Let |Dj| represent the number of cases with diagnosis Dj. Then the expected


information needed to generate the appropriate message is:
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Figure 5.2: The root classification of the cases in C.
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information gained from using F, or the discriminatory power of F, is:
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Thus the parameter that leaves the smallest remainder is the most discriminating. So, at each


stage in the reduction of the set of cases, the most discriminating parameter is selected using


this criterion. The user is requested to determine the value of this parameter for the target


case. The cases in the candidate set that cannot match on this parameter are removed from
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the retrieved set. This process is repeated until the set reduces to one diagnosis or the target


case proves to be dissimilar to all the retrieved cases. This technique has proved remarkably


successful for retrieving good matches while requiring a minimum number of expensive


parameter values (Cunningham, Smyth and Bonzano, 1998). The discriminatory power


depends on how specialised the solution of the cases are. The basic information formula


given in (Quinlan, 1986) to calculate the discriminating power of the parameters involved in


the case description is:
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where p and q are the probability that a case gives solution P and Q. Moreover: p q+ = 1 .
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The Formula (5.1) deals only with cases with only 2 possible solutions but it can be


extended to any number of possible solutions (Levine, 1971 and Nosal, 1977). For example,


with three possible solutions, the information formula becomes:
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The information properties are still valid: if p = 0  then I p q r I q r( , , ) ( , )= returning to


Equation (5.1) again. If p = 0  and n = 0  then I p q r( , , ) = 0 . If p q r= = =
1
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 then


I p q r( , , ) log= −
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 which would equal 1 if log3  is used instead of log2 . In general, if


there are n possible values, logn  should be used to keep the value of maximum information


always at 1.


If the list of the most discriminatory parameters generated by C4.5 is confronted with the


list obtained with ISAC’s algorithm some discrepancies are evident. The root of the


decision tree generated by C4.5 is the most discriminatory parameter which is different from


the most discriminating parameters in the list generated by ISAC, as seen in Appendix B.


This is because, as already stated, ISAC and C4.5 calculate the discriminatory power with


two slightly different algorithms. The algorithm in C4.5 is more specific whereas the one


used in ISAC is more general. C4.5 calculates the information carried by each parameter


then it weights this value depending on the possible values that the parameter can have.


ISAC’s algorithm strictly calculates the information. Having the plate number of a car as a
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parameter, for example, is very discriminatory because when the plate number is known the


car is uniquely identified. On the other hand, the information carried by the plate number of


a car is very little because there are so many different plate numbers. In this situation, C4.5


would consider the plate number very discriminatory, whereas ISAC would not.


Some more considerations on the weights of the parameters and the possibility of changing


the weights to improve the performance of the system are in Chapter 7 where introspective


learning of parameters weight is analysed.


5.3 Case Structure


The motivation behind the development of ISAC is to reduce the decision making burden


on controllers in order to support operation in situations of increased traffic. This future


scenario also implies more complex conflicts involving more than two aircraft. A key design


criterion has been to develop a case representation that is extendible from two aircraft


conflicts to conflicts involving three or more aircraft. This militates against having a single


conflict as the basic unit of retrieval. For reasons of economy in case coverage, the solutions


for two-aircraft conflicts should be reusable in multiple aircraft conflicts. To do so, a


conflict should be decomposable so that the basic unit of retrieval is an individual aircraft in


a conflict.


This problem of representing situations involving two conflicting entities has already been


faced in the CBR literature, for example in two classical systems, Mediator (Simpson, 1985)


and Persuader (Sycara, 1987), and more recently in Truth-Teller (Ashley, 1995). In these


systems, perhaps because they describe interaction between humans, there is a vocabulary to


characterise the “type” of conflict and this is critical in determining the solution. In the ATC


domain the situation is different because the solutions depend on the arrangement of the


aircraft and the context of the individual aircraft as described by their flight plans. The


conflict between two aircraft can be described roughly with one or two global parameters


but the final solution depends on a lot of dependent variables related to a single aircraft. For


this reason the approach adopted in ISAC is somewhat different to the above systems, with


an emphasis placed on the parameters that describe the aircraft on its own.


While our ultimate objective in developing ISAC is to have a single aircraft as the unit of


case retrieval we have considered three case organisations in detail. Two different case


representations were adopted and tested.
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• The first option was to create one case for each conflict, with the description of both the


aircraft in the same case. This option will be referred as “TwoInOne”, because two


aircraft are in one case.


• The second option, referred to as “OneInOne”, was to create two separated cases for


each conflict, each one with the description of one aircraft.


Tables 5.2 and 5.3 show the two possible case descriptions.


Table 5.2: A conflict expressed in the “OneInOne” case representation.


Casename Case690(A) Casename Case690(B)
HorConflConf crossing HorConflConf crossing
AltitudeNow same AltitudeNow same
AltConfiguration stable AltConfiguration stable
Speed faster Speed slower
CloseToTOD 155 CloseToTOD 352
CloseToBoundaries 4.8 CloseToBoundaries 8.3
Manoeuvrability .78 Manoeuvrability .78
Priority same Priority same
EasyToExitHorizontally easy EasyToExitHorizontally possible
LevelsAvailable yes LevelsAvailable yes
Faster difficult Faster difficult
Slower difficult Slower difficult
Solution dow1 Solution dow2


 Table 5.3: A conflict expressed in the “TwoInOne” case representation.


Casename Case690
HorConflConf crossing
Priority same
AltitudeNow same
Speed faster
AltConfiguration(A) stable
CloseToTOD(A) 155
CloseToBoundaries(A) 4.8
Manoeuvrability(A) .78
EasyToExitHorizontally(A) easy
LevelsAvailable(A) yes
Faster(A) difficult
Slower(A) difficult
AltConfiguration(B) stable
CloseToTOD(B) 352
CloseToBoundaries(B) 8.3
Manoeuvrability(B) .78
EasyToExitHorizontally(B) possible
LevelsAvailable(B) yes
Faster(B) difficult
Slower(B) difficult
Solution dow1


5.3.1 The Canonical Form for Two-Aircraft Conflicts


Storing the description of the two conflicting aircraft in the same case is the most obvious


choice because it reflects the controller’s way of examining a conflict, but it presents two


problems: first, this case representation is not easily extendible to multiple aircraft conflicts,


second, it has to be decided which aircraft comes first in the conflict description. This


problem can be explained with an example.


Let us suppose that a conflict between two aircraft A and B is stored in the case-base in the


form A-B. If the same conflict has to be solved again, HIPS will send again the description
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of A and B to ISAC. ISAC could build either target A-B or, inverting the order, target B-A.


If the latter happens, the probability of finding the correct case A-B in the case-base is very


low.


An obvious but time and space consuming solution to this problem would be to build the


two cases A-B and B-A for each conflict involving A and B. The case-base will be twice the


normal size and the retrieval time will double.


Alternatively, the two targets X-Y and Y-X could be built for each conflict between X and


Y and the retrieval process has to be repeated once for each target. This means a doubled


retrieval time but no increase in the case-base dimension. The advantage of both these


solutions is that there is no loss of knowledge. The first option is referred in the experiments


as “TwoInOne.nonCanonical”.


An alternative solution is to produce a set of rules to decide which is the first and which is


the second aircraft in the case description. These rules have to be used during the


construction of the case-base and every time a new target problem is presented. A case


filtered by these rules is said to be expressed in the “canonical form”. The advantage of this


process is that neither the retrieval time nor the case-base dimension is increased. The


disadvantage is a possible loss of information as can be seen from the results of the


experiments. This option is referred to as “TwoInOne.canonical”. The rules for the decision


of the canonical form are described in Section 4.3.


The two “TwoInOne” case descriptions are derived from the “OneInOne” case description.


The only new parameter in the “TwoInOne” description was, at the beginning, “Similar”. If


the four rules indicated that both aircraft could come first in the conflict description the


value of the parameter “Similar” was “yes”. The utility of this parameter, redundant because


extracted from other parameters, was not proved. In fact, it has been shown that the use of


this parameter led to a decrease in performance (Bonzano, Cunningham and Meckiff, 1996).


In the “OneInOne” conflict representation the information about the other aircraft involved


is implicit in the environment description in the form of no-go zones. This suggests a


Hierarchical CBR structure (Smyth and Cunningham, 1992) where problems are


represented by multiple cases. This has the big advantage that the number of aircraft that


can be involved in a conflict is not limited to two. Moreover, the problem of deciding which


aircraft is first is avoided. However it is more difficult to come up with a set of parameters


that can capture all the details.







76


5.4 Hierarchical CBR for Multiple Aircraft Conflicts


In (Shively, 1984), three types of conflict sets have been identified as being the most


common:


• one versus one: the two conflicting aircraft are isolated from other conflicts;


• one versus two: two separated conflicts sharing a common aircraft;


• three-at-once: three conflicts among three aircraft.


The structure of ISAC presented up to now is able to solve conflicts belonging to the first


category: two aircraft conflicts (TACs). The problem of multiple aircraft conflicts (MACs)


is treated in this section.


Usually, in a TAC the aircraft that is moved is the one that will have the smallest delay. In a


MAC the situation is more complex. If a MAC is decomposed into TACs, there is the risk


of solving the wrong pair first. An overall view is necessary to decide which aircraft has to


be manoeuvred even if some old expert systems produced acceptable results with myopic


strategies explained later.


C


A


B C


B


A


Figure 5.3: Types of Multiple Aircraft Conflicts.


A MAC involving n aircraft can be of two types: simple MAC and complex MAC. In a


simple MAC all the n-1 conflicts are generated by the same aircraft. On the other hand, in a


complex MAC the conflicts are generated by different aircraft and there are at least n


conflicts.


The Point of View of the Controllers


The different approaches to conflict resolution typical of each controller become even more


evident when the conflict is a MAC. Some controllers consider only the complex MAC to


be a “real” MAC. A simple MAC is only seen as a succession of TACs which are more or


less interdependent.


When a complex MAC is decomposed into TACs, the TAC closest in time is selected.


When a simple MAC is decomposed the aircraft that is in conflict with all the others is


selected and the simplest or most desirable manoeuvre for this aircraft is chosen.
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Other controllers, when solving a MAC, examine the flight plans of all the aircraft involved,


then try to draw up a list of priority parameters such as: the aircraft with the longest


distance to cover, the sector exit co-ordination, the impact that a level change or a course


change to an aircraft would make to the other aircraft. If no particular priorities are found,


then the conflict that is closest in time is solved.


Figure 5.4: A simple MAC.


Independent of the method of solving the conflict, the aim of the solution is obviously the


same as for TACs: the controller has to try to minimise the penalty that the solving


manoeuvre will cause to the flights concerned. An evaluation of the current workload is also


a determining factor for the final decision. A complex vectoring (i.e. a sequence of


horizontal manoeuvres) situation may be the best solution, but a simple level change would


involve far less work and concentration. Sometimes, conflicts that are distant are not solved


because the situation may evolve in such a way that the conflict disappears due to altered
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aircraft performance, request for a reclearance from a pilot or another conflict involving one


of the original aircraft etc.


An example of a simple MAC is shown in Figure 5.4. The aircraft BAW5147 enters the


sector at flight level 390 then it descends to level 350. While descending it gets into conflict


with aircraft DLH438 coming from the opposite direction at level 370. While at level 350,


BAW5147 conflicts with aircraft DAL77 that was already stable at level 350. The solutions


to this conflict could be a composite manoeuvre consisting of an early descent for


BAW5147 and a turn to the right for DAL77.


Hierarchical CBR


The straightforward approach to the solution of MACs would be the creation of a new


case-base containing complex aircraft conflicts. This approach cannot be easily implemented


because a MAC can involve 3, 4 or more aircraft and it is not possible to build a coherent


structure for each possibility. Moreover, since a well covered case-base for TACs is already


very big, the case-base for MACs would be larger still, making it impossible to build it in


reality.


An alternative to the straightforward approach is a hierarchical structure. Three hierarchical


structures for the solution of the MAC are suggested: Independent CBR, Look ahead CBR


and Hierarchical CBR structure.
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Figure 5.5: Independent CBR.
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5.4.1 Independent CBR Structure


Let us suppose that the 3 aircraft A, B and C are involved in the MAC A-B-C where the


two TACs are A-B and A-C. The considerations valid for this simple MAC are valid even


for a complex MAC. As said in Section 5.3, with the “OneInOne” case representation an


independent case is created for each simple aircraft involved in the conflict. No track is kept


of the two TACs A-B and A-C because the conflicts are represented with no-go zones for


each aircraft. This means that the MAC is not decomposed into TACs. ISAC solves the


conflict for each of the aircraft involved in the MAC. The solutions found for each aircraft


are then confronted and a common solution for the MAC is extracted. This structure is


shown in Figure 5.5 and the name “Independent CBR” comes from the fact that the aircraft


are described in independent cases.


5.4.2 Look Ahead CBR Structure


High-level
analysis


ISAC
with


low-level
case-base


ISAC
with


low-level
case-base


A-B-C


A-CA-B


Solution to MAC


Solution to TACSolution to TAC


Figure 5.6: Look Ahead CBR.


With this structure, the MAC A-B-C is decomposed into the two TACs A-B and A-C


which are solved separately by the system either with the “TwoInOne” case representation


(canonical or non-canonical) or with the “OneInOne” case representation. Some heuristic


rules are necessary to combine the solutions to the TACs into a coherent solution for the


MAC. It should be noted that in this structure the “OneInOne” case representation is used


to solve the TACs separately, whereas in the Independent CBR structure the same case
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representation is immediately used to solve the MAC conflict. Figure 5.6 shows how the


Look Ahead CBR structure works.


5.4.3 Hierarchical CBR Structure


This structure is the most abstract and the one that brings the biggest changes to the original


structure of ISAC. The MAC A-B-C is examined at a high level to see if it is possible to


immediately find a solution. A new high level case-base must be introduced for this first


step. If no immediate solution is found, the high level case-base introduces some constraints


or new parameters that are then used in the next step where the low level case-bases for the


TACs are used. Again, the solutions found for the TACs have to be filtered to give a


coherent general solution.
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Figure 5.7: Hierarchical CBR.


One of the disadvantages of using a hierarchical approach is that a high level case-base


becomes necessary and this case-base has to be built from scratch. Some of the parameters


that might be used in the high level case-base are:


• geometrical description of the conflict (vertical view). Possible values for this parameter


could be: all same level, one climbing and others stable, one descending and others


climbing etc.
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• geometrical description of the conflict (horizontal view). Possible parameters: two


crossing, two catching up and one crossing etc.


• Is there an aircraft common to all the conflicts? (i.e., is it a simple MAC or a complex


MAC?).


• If yes, some data about the aircraft which is in conflict with all the others.


The output that the case-base will give, as seen in Figure 5.7, is either the solution to the


MAC or some extra constraints that can be used by  the low level case-bases.


High-level analysis


In Figures 5.5, 5.6 and 5.7 the last step before the final solution has been named “high level


analysis”. This analysis is necessary to extract a coherent global solution from the solutions


to the simple TACs. An example of a “cheap” analysis is to choose the solution of the TAC


that has been retrieved with the highest activation as the solution for the MAC. In this


situation the drawback is that the general view of the conflict is not taken into account.


Another example of analysis is that used in AIRPAC which chooses the first conflict in


order of time and applies that solution. AIRPAC first looks for a rule able to solve all the


conflicts in a co-ordinated way. If it does not find anything, it decomposes the conflict and


the sub-conflicts are solved (Shively, 1984). Even if the searching algorithm is faster


because only one solution for the first TAC is necessary, this analysis proves too myopic:


solving the first conflict in time is not necessarily the best global solution. In the latter


option the high-level analysis comes before an effective search because the first conflict


must be chosen. A similar structure occurs in the Hierarchical CBR structure where the


high-level case-base could be replaced by a set of rules that perform the same analysis.


Having all the solutions to the conflicts available, on the other hand, even if more time


consuming, gives a broader view of the conflict and thus the high-level analysis can be more


general. In Section 7.6 the structure adopted for the final version of ISAC is described with


the corresponding high-level rules.


5.5 Adaptation


The three possible types of adaptation have already been mentioned in Chapter 3.


Depending on the case representation adopted, different strategies are possible. As


suggested in (Barletta, 1994) and as implemented in most commercial tools, the adaptation


influence has been kept to the minimum. Adaptation is considered too expensive relative to
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retrieval because it is not general and not easily maintained. Moreover, the types of


adaptation that have been found to work in the real world are the simplest and that, in fact,


is what has been done for ISAC.


For these reasons, no adaptation is used for the “TwoInOne” case representation and the


solution of the retrieved case closest to the target is directly applied. Substitution


Adaptation is used for the “OneInOne” case representation because this representation


implies that each conflict is represented with two or more cases and a solution must be


retrieved for each one. This structure requires a policy for the extraction of the final


solution from the two sets of matching cases, because the two solutions could lead to an


incongruous situation.


In fact, this is a very delicate issue. Let us suppose that in the case-base there are two


conflicts A-B and C-D which are represented with four cases A, B, C, D. If X-Y is a new


conflict very similar to the conflict A-B, ISAC will build two cases X and Y and will start


the retrieval process. The retrieved cases will not necessarily be A and B, because the


retrieval results depend on the individual aircraft matching. It could happen that X on its


own is more similar to D and the retrieved conflict will be D-B instead of A-B. This is one


of the reasons why the case-base with the “OneInOne” case description performs less well


than the case-base with the “TwoInOne” case description. Our current policy is to select the


highest scoring case but more experimentation is required to clarify this issue.


5.6 Summary


In this chapter all the choices inherent to the CBR aspect of ISAC have been analysed and


justified. It is explained why three different case representation have been chosen for


evaluation and why the possible solutions for a case have increased from 9 to 12. The use of


the information carried by the parameters, shown by decision tree or the discriminatory


power, proved to be useful for the refinement of the parameters necessary in the case


description.


While adaptation issues have not been deeply treated because the adaptation process is


almost absent in ISAC, issues concerning a hierarchical structure that could deal with


multiple aircraft conflicts have been analysed in detail after having defined the problem with


the classification of multiple aircraft conflicts into two categories: simple and complex.
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Chapter 6


The Knowledge Engineering Problem


Having access to relevant case history in problem solving reduces the need for problem


analysis because solution chunks from old problems can be reused and less in-depth analysis


of the new problem is required. This suggests that developing CBR systems may require


less knowledge engineering than, say, rule-based or model-based approaches. It is generally


accepted among CBR researchers that this is only true to a limited extent. A CBR system


that is not built on the type of domain analysis that knowledge engineering involves will


probably not work very effectively (Cunningham, 1998).


The development of a knowledge-based system (KBS) involves: identifying a real world


problem solving task that is to be tackled, representing the key components of this task in


the KBS, and implementing the inference process that produces solutions. Thus there are


two key components involved in the knowledge engineering process. There is the task of


producing a representation of the problem that captures the key parameters and the task of


developing an inference mechanism that describes the causal interactions involved in


deriving solutions, as shown in Figure 6.1.


The inference mechanism is implemented using a case-base of solved problems and a


mechanism for retrieving and adapting these cases. Many implemented CBR systems


involve little or no adaptation and the reasoning mechanism is simply a retrieval system with


solutions being used intact or with adaptation performed by the user.


The knowledge is encoded in the system in:


• the knowledge representation used,


• the similarity metric utilised in identifying cases to be reused,


• the mechanism for adapting solutions, if any.


This agrees with the knowledge containers model presented in (Richter, 1995). The


development of the similarity metric and the adaptation mechanism is probably simpler than


alternative techniques provided the adaptation mechanism does not prove too complicated


(Cunningham, Finn and Slattery, 1994).
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If retrieval and adaptation mechanisms are easy to implement then CBR has clear


knowledge engineering advantages over “from first principles” techniques. However, this


analysis will be less important if the problem analysis task that produces the problem


representation should dominate in the knowledge engineering effort.


Reduces to problem of retrieval
(and adaptation) in CBR


Real World Problem


Determine Salient Parameters


Problem Representation


Inference


Solution


Common to CBR and RBS
A


B


Figure 6.1: Development of a KBS.


The main issue remains the knowledge representation. In the next sections an iterative


process of improving the representation driven by an analysis of the faulty solutions


produced by ISAC is analysed.


6.1 Getting Started (April 1995)


To start understanding the ATC domain, the available literature on ATC and on expert


systems has been investigated, as reported in Chapter 2. Talking to controllers and taking


part in real time simulations was another important step for the understanding of the


domain.


The Reduced Vertical Separation Mode (RVSM) simulation took place in the Eurocontrol


Experimental Centre, Paris in May 1995. The simulated sector was in Switzerland above the


Zurich airport, with Italy, France and Germany as bordering sectors. The aim of the


simulation was to measure the controllers workload at that time and in the year 2000, when


the traffic will be heavier, and to check if the controllers workload could be reduced with


the introduction of more flight levels. The two simulated scenarios were:


• the conventional scenario, with a flight level every 1000 ft below 29,000 ft and a flight


level every 2000 ft above 29,000 ft because the altitude instruments become less precise


at high altitude.
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• The RVSM scenario, which simulates the situation with an altitude separation of a 1000


ft everywhere because it is supposed that in the future the instruments on aircraft will be


precise even above 29,000 ft.


The participation in this simulation and the discussions with the controllers suggested some


initial ideas on what the parameters for the description of the conflict could be, the problems


that could be encountered and the assumptions to be made. Some of these assumptions are


still valid now, like the decision made to consider the zones where the weather conditions


are severe (Significant Meteorological Situations: SigMetS) as no-go zones. As a


consequence of this decision, there are no parameters in the conflict description mentioning


the weather and it is up to the program that detects conflicts to build the no-go zones


representing the SigMetS.


Another important initial decision was to assume that all the aircraft are Instruments Flight


Ruled and not Visual Flight Ruled. This assumption is acceptable if it is considered that


intelligent assistants will begin to help controllers in the future when aircraft will be better


equipped and will be able to fly guided by instruments in any phase of flight.


6.2 Initial System Description (from May 1995 to March 1996)


The first environment tool in which HIPS was embedded was a very simple visualisation


tool called “Pepsi3” representing the radar screen and the flight plan strips used by the


controllers. In “Pepsi3” a lot of significant parameters were missing. The first case-base was


built by showing the controllers some conflicts coming from very simple traffic samples and


by generalising from what was understood from the literature. This first case description is


reported in Table 6.1 with the name of the parameters and their possible values.


This first description was heavily influenced by two systems previously developed in


Eurocontrol Experimental Centre, Paris: ARC2000 (Nicolaon, 1992) and PAT Problem


Solver (Meckiff, 1994). Those two systems are treated in Chapter 2. The Phase of Flight’s


value “pre-descent” comes from ARC2000 but it was not used in the following steps of


ISAC’s development because it was considered too specific for the granularity of the


description needed.


In the case-base, each case has a name, is described using the above parameters and has a


solution which consists of the aircraft that has to be manoeuvred and the type of


manoeuvre. Two different case representations were adopted and tested: a representation


with the description of both the aircraft in the same case, referred to as “TwoInOne” and a


representation referred as “OneInOne” with the description of only one aircraft in each case.
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The advantages and disadvantages of each alternative have already been treated in Section


5.3.


Table 6.1: Initial case description.


Name of parameter Possible values


General parameters horizontal-conflict-configuration similar track, opposing track,


crossing track


medical-emergency yes, no


For each aircraft


involved in the conflict


size of the aircraft light, small, medium, heavy


absolute-speed numeric value


phase-of-flight-before conflict climb, cruise, pre-descent,


descent


phase-of-flight-during conflict climb, cruise, pre-descent,


descent


phase-of-flight-after conflict climb, cruise, pre-descent,


descent


altitudes before, during and after the


conflict


numeric value


is the aircraft close to the sector


boundaries?


yes, no


Aircraft capabilities can the aircraft go faster? yes, no


can the aircraft go slower? yes, no


can the aircraft climb? yes, no


can the aircraft descend? yes, no


can the aircraft turn left? yes, no


can the aircraft turn right? yes, no


Environment parameters is an altitude manoeuvre possible? above, below


is an horizontal manoeuvre possible? left, right


is a speed manoeuvre possible? acceleration, deceleration


Problems


The main problem encountered while preparing this first conflict representation was the


excessive simplicity, and sometimes superficiality, of many of the components: the conflicts


were badly specified, the environment was too unrealistic and the acquisition of the


parameters was not accurate.


The conflicts were badly specified because too much information was missing, like the


departure and arrival airports, the type of aircraft etc. The visualisation tool, “Pepsi3”, had
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been written only to show the ideas behind HIPS. Being a prototype, it was very simple


and, because it emphasised the geometrical aspect of the no-go zones, the initial case


description was mainly geometrical, with no reference to any aircraft performance. In the


subsequent steps of the knowledge acquisition process, more than one parameter that deals


with aircraft performance will appear. Talking with controllers and using more accurate


simulation tools showed that the performance parameters were necessary.


The acquisition of the parameters was a problem independent of the previous two. Two


conditions had to be satisfied: the possibility of extracting from the available data what the


controller could easily see on his radar screen and being sure that the extracted information


represents what the controller is actually seeing on the radar screen.


The first issue implied the manipulation of a lot of data and the use of a lot of geometry, e.g.


to find the angle to exit from a no-go zone. The second issue implied asking the controllers


a lot of questions to see if the acquired parameters were expressing exactly what he/she


intended. A list of all the algorithms used to acquire the parameters is in Chapter 4 with all


the changes made from the first draft until the final version listed along with some


alternatives.


The algorithms used in “Pepsi3” and its subsequent versions for the calculation of the no-go


zones, trajectories and aircraft performances have changed during the lifetime of the project


but it has always been assumed that these changes would be hidden from ISAC and its


behaviour would not be affected.


For the evaluation of this version of the retrieval mechanism and of the current case


representation, a case-base composed of gold-standard cases was built. Because the


parameters used were so simple, it seemed possible to cover almost all the case space with


gold standard cases. The “LeaveOneOUT” test on a case-base of 50 cases was adopted.


The results were quite good: the system found the same solution as the one given by the


controller in 95% of the conflicts. The issue of using either gold standard cases or cases


specific to a certain sector has already been discussed in Section 5.1.2.


These results were not reliable for two reasons: one, already mentioned, is that the domain


was too simplistic, but the main reason is that the solutions to the conflicts in the case-base


had been given by a non-expert, whose knowledge in the domain was limited to a small set


of empirical rules learned watching the controller solving the conflicts.


A CBR system, to work well, needs coherency in the solutions. When it seemed that the


controller was not coherent, a set of rules generating the solution was used to have an


“artificial” coherency. In reality, the “incoherent” solutions given by the controller were due
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to some parameters that had not been considered in the case description but that the


controller was automatically assuming by default depending on the conflict and on the


sector.


Summarising, the first step in the construction of the case-base was necessary to set all the


structures up and to prepare the retrieval engine, but the obtained system was a toy system


that did not have the robustness needed to work in the real world.


6.3 Interim Refinements Description (from April 1996 to June 1996)


The second step towards reaching a consistent case description was to gradually eliminate


the unrealistic factors. It was first decided to build a completely new case-base by using


traffic samples coming from real time simulations. Secondly, a new environment


visualisation tool called GHMI was introduced. This tool does not change the way of


displaying the three HIPS windows but simulates an actual radar screen for the visualisation


of the sector.


With this new environment the controllers felt more comfortable and the solutions given


became more precise. More complex parameters were used and the number of possible


values for each parameter augmented. The possibility of having more than one acceptable


solution was introduced for two reasons: either some parameters, whose variation could


lead to a different solution, were not considered or, more simply, the conflict could be


solved in more than one way.


The case structure and the case-base had to be completely rewritten. The traffic samples


available did not contain conflicts, and the creation of a conflict by slightly modifying the


flight plan was difficult: some of these slight changes seemed illogical to the controller, even


if, for a non-expert eye, there was nothing wrong (e.g., an aircraft far from destination


which is descended one level with the purpose of creating a conflict seems a plausible


manoeuvre to a non-expert eye. The same manoeuvre was illogical for the controller


because, to save fuel, an aircraft far from its destination should not descend).


A controller examined the entire set of new and more realistic conflicts and gave some


“non-artificial” solutions. It seemed that two problems had been solved: the conflict


description was more realistic compared to the previous tool “Pepsi3” and the solution had


been given by an expert. The new case structure with the parameters and values is in Table


6.2. Most of the parameters imply the existence of a “first” and a “second” aircraft. The set


of rules described in Section 4.3 decides which is the first aircraft and the “canonical” case


description, as discussed in Section 5.3.1, depends on those rules.
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Table 6.2: Interim case description.


Name of parameter Possible values


horizontal-conflict-configuration crossing, catching, joining, facing


altitude-intention


(profile of the two aircraft)


StableStable, StableDesc, StableClimb,


DescStable, DescDesc, DescClimb,


ClimbStable, ClimbDesc, ClimbClimb


altitude-now


(altitude of the first aircraft compared to the second)


higher, lower, same


speed (speed of the first aircraft compared to the second) faster, slower, same


horizontal-intention


(where are the aircraft turning)


LeftLeft, LeftStr, LeftRight, StrLeft, StrStr,


StrRight, RightLeft, RightStr, RightRight


performance


(performance of this aircraft compared to the other)


better, same, worse


miles-done (how many miles has the aircraft done) numeric value


miles-to-do (how many miles has the aircraft to do) numeric value


close-to-boundaries


(is the aircraft far from the sector boundaries?)


yes, no


same-destination


(are the two aircraft going to the same destination?)


yes, no


left-exit-no-go


(angle to exit the no-go zone by turning left, in degrees)


numeric value


right-exit-no-go


(angle to exit the no-go zone by turning right, in degrees)


numeric value


right-available (space available on the right, in degrees) numeric value


left-available (space available on the left, in degrees) numeric value


in-front-direct (does the aircraft pass in front of the other


one if it goes directly?)


yes, no


in-front-more-space (does the aircraft pass in front of the


other one if it goes where there is more space?)


yes, no


requested-level-free (which levels are available) None, YesRequested, YesOverInit,


YesBelowInit, Above&Below


faster


(percentage of speed increase to exit the no-go zone)


numeric value


slower


(percentage of speed decrease to exit the no-go zone)


numeric value


dimension-altitude-zone


(dimension of the no-go zone in the altitude display)


big, small







90


The most evident change to the previous description is that there are less parameters dealing


with the geometric description of the conflict and more parameters dealing with the


performance of the aircraft. The parameters implying a direct route (“InFrontDirect” and


“InFrontMoreSpace”) will not be used in the next steps because horizontal manoeuvres are


not very common. Parameters like “Horizontal Intention” that might seem essential to a


non-expert for understanding the geometry of the conflict were present in the initial


description but were discarded afterwards: the controller is not interested in knowing


whether the aircraft is turning right or left, but is only interested in knowing whether the


aircraft is turning or not.


From a practical point of view, the presence of the sector boundaries caused a lot of


problems in the automatic acquisition of the parameters.


The overall complexity affected the performance of the system. The case-base, constituting


of 60 “realistic” conflicts extracted from the available traffic samples, was tested with the


“LeaveOneOUT” method. The results, presented to the 1996 European Workshop on Case-


Based Reasoning (Bonzano, Cunningham and Meckiff, 1996), were worse than the results


of the toy system: only 70% of the solutions suggested by ISAC matched the solutions


given by the controller. The main reason for this was the lack of coverage of the space of all


the possible cases. A case-base of 60 cases was too small to cover the huge case space of


more than 4 million possible cases; this value is obtained by multiplying all the possible


symbolic values of all the parameters. Even if a large part of these cases would never appear


in the real world, 60 cases were not enough. Moreover, the introduction of the constraints


reduced the performance (Bonzano, Cunningham and Meckiff, 1996).


All the tests were performed using “HorConflConf” as the only constraint. This caused


some problems when particular geometries of conflict were encountered: for example, in the


case-base there were not enough “head-on” conflicts, so the solutions of most of the cases


where the constraint’s value was equal to “head-on” were solved incorrectly.


6.4 Third System Description (from July 1996 to September 1996)


After the toy system and the first attempt to work with a real world system, the need for a


bigger case-base was evident. Because of the lack of time, it was not possible to continue


acquiring conflicts from the traffic samples to build a bigger case-base. The 60 conflicts


coming from the real world simulation that constituted the case-base in the previous step


were kept as a test set. A new case-base was built from scratch by giving the controllers the


description of a general conflict and asking for its solution, then changing the parameters
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one by one and recording how the solution would change accordingly (see Appendix A).


This approach implies that a case is now hand written and not generated from a real traffic


sample, whereas before the case was automatically written by the environment visualisation


tool as soon as a conflict was displayed. In the meantime a new case representation was


introduced as reported in Table 6.3.


Table 6.3: Third case description.


Name of parameter Possible values


horizontal-conflict-configuration crossing, converging,


head-on, diverging


altitude-intention


(altitude profile of the aircraft at the beginning of the conflict)


stable, descending,


climbing


easy-to-exit-right


(how easy it is to exit the horizontal no-go zone by turning to the right)


veryEasy, easy, possible,


difficult


easy-to-exit-left


(how easy it is to exit the horizontal no-go zone by turning to the left)


veryEasy, easy, possible,


difficult


manoeuvrability (this depends on the aircraft type and on its fuel load) high, medium, low


close-to-TOD


(how many miles there are between the aircraft and the Top Of Descent)


numeric value


close-to-boundaries


(how many minutes from the sector boundaries the action point is)


numeric value


levels-available (which levels are available) none, yes, above, below,


withSpaces


faster (is it possible to exit the no-go zone by increasing speed?) easy, possible, difficult


slower (is it possible to exit the no-go zone by decreasing speed?) easy, possible, difficult


agreements (agreements with next sector) sequencing,


notSequencing


priority (a commercial aircraft has higher priority than a business or a


military aircraft)


higher, same, lower


altitude-now (altitude of the first aircraft compared to the second) different, same


speed (speed of the first aircraft compared to the second) faster, slower, same


similar (are the parameters AltitudeIntention, CloseToTOD,


Performance and Priority equal?)


yes, no


A drastic reduction of the parameters represented with numerical values is evident. It is


easier to store the controller’s knowledge with symbolic values because the controller


usually has a quick overview of a conflict and can give a qualitative description of it which


is better described with symbolic values. The acquisition interface uses all the data supplied
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by HIPS to create some symbolic values that express exactly what the controller thinks. The


performance of the system with this case representation is examined in more detail in


Chapter 8.


During this analysis, it was discovered that the controller’s workload heavily influences the


solution of the conflict even if it is not directly connected to the conflict description.


Depending on the workload, a controller could alter his behaviour. If the workload is low


the controller has time to choose a complex solution that will be less expensive for the


aircraft; on the other hand if the workload is high there is time only for a very simple but


sometimes expensive solution that does not need any monitoring. A way of calculating the


workload could be to count the number of aircraft that are visible on the radar screen and if


more than a certain percentage of the aircraft are climbing or descending than the workload


is considered high. This percentage threshold varies depending on the controller and each


controller could suggest different ways for the calculation of the workload. A futuristic


alternative could be to measure the workload on a biological basis: by measuring the stress


of the controllers with electrodes, the workload can be evaluated (Caloo, 1997). The


workload, as a parameter, has not yet been used in ISAC.


A new policy for the consideration of the NIL values was tried as explained in Section


5.1.4. With this new policy a lot of the conflicts that were different by non-significant


parameters were reduced into only one by assigning to the non-significant parameters a NIL


value. For this reason the 150 conflicts stored in the new case-base were representing, in


reality, many more conflicts.


The last change introduced during this stage was the evaluation strategy. The


“LeaveOneOUT” strategy was substituted by a more realistic test on the case-base using as


a test set the 60 conflicts coming from the real traffic samples as mentioned above.


6.5 Fourth System Description (from October 1996 to June 1997)


The case-base was once more judged as not being representative after some tests with


controllers. Moreover some parameters had to be changed and usually when a new


parameter is added to the case description its value is NIL for all the cases that were already


present in the case-base. But in ISAC’s particular situation this was not possible because the


new parameters were substituting some old ones. A new case-base was built with a lot of


numeric parameters coming directly from “raw” data with the aim of reducing to a


minimum the manipulation of the data. The final and current case description is reported in


Table 6.4.
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This is the final version for the non hierarchical structure. An example of a case expressed in


the “OneInOne” and “TwoInOne” case representation is in Tables 6.5 and 6.6. The


parameter “performance” is calculated with the help of the BADA5 database (Bos, 1997).


During the previous steps of ISAC’s engineering process, the performance categories had


been decided by a controller. This approach often implied that two aircraft belonging to the


same category were considered different by the controller but ISAC could not realise it. By


using a continuous parameter from BADA any ambiguity is eliminated.


Table 6.4: Final case description.


Name of parameter Possible values


horizontal-conflict-configuration crossing, converging, head-on, diverging


priority higher, lower, same


altitude-now different, same


speed faster, slower, same


altitude-configuration climbing, descending, stable


close-to-TOD numeric value


close-to-boundaries numeric value


manoeuvrability numeric value


easy-to-exit-horizontally veryEasy, easy, possible, difficult


levels-available yes, none, above, below, withSpaces


faster easy, possible, difficult


slower easy, possible, difficult


After realising that the most frequently used manoeuvre is the altitude manoeuvre and that


the horizontal and speed manoeuvres are not frequently used (see Figure 8.3), there was no


longer a need to discriminate between the two “easy-to-exit-right” and “easy-to-exit-left”


parameters: the more general “easy-to-exit-horizontally” parameter was introduced. For the


same reason, the “altitude” solution given by the system was changed into a more precise


“climbing” or “descending” solution (see Section 5.1.3).


The function that calculates the spreading activation was modified to shift the range of the


activation from “0 to 1” to “-1 to1”. With this new convention a parameter with a NIL


value has activation 0 which is intuitively more correct than having activation 0.5. For the


                                               
5 The Base of Aircraft Data (BADA) provides a set of ASCII files containing performance and operating


procedure coefficients for 165 different aircraft types. The coefficients include those used to calculate thrust,


drag and fuel flow and those used to specify nominal cruise, climb and descent speeds.
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symbolic parameters, if the value of the target is the same as the case’s value, the activation


is +1, otherwise it is -1.


For the numeric parameters, the activation is calculated with this formula:
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−
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where vc and vt are the case and target values and vmax and vmin are the maximum and


minimum values for that parameter in the case-base. This gives an activation that can vary


from -w to +w continuously instead of having a discrete value (+1, +0.75, +0.5 or 0) as it


was in the previous development step. Since the activation can be smaller than zero, the


system gives a solution only if the highest activation is bigger than zero, otherwise a


message saying “Unable to give solution” is prompted. If the highest activation of all the


cases in the case-base is smaller than zero it would mean that even the most similar case is


too far from the target to have an acceptable solution.


After some discussion with an expert on cognitive psychology experiments, a new policy for


the evaluation of the system was introduced and is described in Chapter 8. During this


development step, some experiments on introspective learning of local and global weights


have been performed and are discussed in Chapter 7.


Table 6.5: A conflict expressed in the “OneInOne” case representation.


Casename Case690(A) Casename Case690(B)
HorConflConf crossing HorConflConf crossing
AltitudeNow same AltitudeNow same
AltConfiguration stable AltConfiguration stable
Speed faster Speed slower
CloseToTOD 155 CloseToTOD 352
CloseToBoundaries 4.8 CloseToBoundaries 8.3
Manoeuvrability .78 Manoeuvrability .78
Priority same Priority same
EasyToExitHorizontally easy EasyToExitHorizontally possible
LevelsAvailable yes LevelsAvailable yes
Faster difficult Faster difficult
Slower difficult Slower difficult
Solution dow1 Solution dow2


 Table 6.6: A conflict expressed in the “TwoInOne” case representation.


Casename Case690
HorConflConf crossing
Priority same
AltitudeNow same
Speed faster
AltConfiguration(A) stable
CloseToTOD(A) 155
CloseToBoundaries(A) 4.8
Manoeuvrability(A) .78
EasyToExitHorizontally(A) easy
LevelsAvailable(A) yes
Faster(A) difficult
Slower(A) difficult
AltConfiguration(B) stable
CloseToTOD(B) 352
CloseToBoundaries(B) 8.3
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Manoeuvrability(B) .78
EasyToExitHorizontally(B) possible
LevelsAvailable(B) yes
Faster(B) difficult
Slower(B) difficult
Solution dow1


6.6 Hierarchical System (from June 1997 to October 1997)


The knowledge engineering steps seen until now focused on the resolution of two aircraft


conflicts (TACs). The last step to complete the system was the implementation of a


structure for multiple aircraft conflicts (MACs). The interface between GHMI and ISAC


has been changed to make it possible to acquire the description of more than two aircraft.


ISAC’s code, too, had to be changed.


As already said in the Case Structure section (5.3), a lot of choices made for the system


when solving TACs have been influenced by the fact that it was known that ISAC would


have had to solve MAC. The main issue was to reuse the case-base of TACs without having


to create from scratch a case-base of 3 aircraft conflicts, then 4 aircraft conflicts etc.


Of the three options for the resolution of a multiple aircraft conflict that have been


introduced in Section 5.4, the only one that has been implemented so far is a simplified


version of the “Look Ahead CBR”. The “Independent CBR” option has been discarded


because the performance of the system when using the “OneInOne” case representation was


not as good as the performance with the “TwoInOne” case representation. The


“Hierarchical CBR” option has not been implemented for reasons of time: the construction


of a new case-base implies finding from scratch new parameters and new cases to fill the


new case-base.


The heuristic rules used for the high level analysis have been suggested by controllers and


can easily be changed depending on the controller’s preferences. The rules should change


depending on the hierarchical structure used. For the “Look Ahead CBR”, they are:


• check if, among the solutions to the TACs, there is a solution common to all the TACs.


If yes, this common solution becomes the solution to the MAC.


• If no common solution is found, an aircraft manoeuvred in all the TACs is searched for.


If found, the solution valid for that aircraft is given as solution to the MAC.


• If no common aircraft is found, the TAC closest in time is solved and that solution


becomes the solution of the MAC.


For lack of time it has not been possible to implement all of these rules and in the evaluation


of the hierarchical structure presented in Chapter 8 the high level analysis consists only of


the first rule.
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6.7 Conclusions


In the previous sections the knowledge engineering process for the construction of ISAC


has been shown. The first stage involved an analysis of the problem that produced a


representation that can be manipulated by the reasoning system. The second stage involved


developing the reasoning mechanism that manipulates the problem representation to


produce a solution.


The second step was the easiest to accomplish. The coding of the retrieval algorithm and


adaptation, when present, was done without any major problems and, apart from difficulties


with the portability of some libraries (e.g. Motif), the system is able to work with any case-


base containing both numeric and symbolic parameters and no speed problems have been


encountered.


The first step was the most problematic. As described in (Bayles et al., 1993), a lot of hours


have been spent interviewing specialists and reading literature. As a starting point, an


available system was taken (Meckiff, 1994) and from that system the lengthy job of


acquiring the case-base began. Even if a lot of conflicts were available, their solutions were


not, making it impossible to build a case-base from the existing data. Different options have


been tried and the problem of having a representative case-base is not yet completely


solved.


When the number of cases and the methodology for acquiring them were first discussed, it


seemed that a case-base of 30-50 conflicts would have been big enough to start the tests


and that these conflicts could be hand crafted. As already explained, both of these


assumptions were wrong due to the complexity of the domain.


The absence of an adaptation mechanism made it necessary to have a case-base with good


coverage. Second, the complexity of the domain implied that the case-base contained lots of


cases. Finally, having a lot of conflicts in a case-base is not enough: each conflict needs a


solution, too. Moreover, the solutions must be coherent and must satisfy the controller.


Two conditions have to be respected in order to have an effective CBR system:


1. There must be enough cases drawn from the same sector. If cases are not from the same


sector and the case-base is used to solve conflicts on the same sector, the chances that a


similar conflict is already in the case-base is higher. Having cases belonging to the same


sector will reduce the complexity of the domain and the size of the case-base.
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2. The solutions to the conflicts that are stored in the case-base must be given by the


controllers that usually work on that sector. This will avoid the situation where


controllers give different solutions to the same conflict either because they have


different background or because they use the tools in a different way. Practices in use in


individual sectors will ensure that controllers working on the same sector will give


coherent solutions.


The tool used for displaying the conflicts influenced heavily the choice of the parameters


and the solutions of the conflicts. The more realistic the tool, the more reliable the solutions


given by the controller. The decision whether to use gold standard cases or noisy cases


depends on the way the case-base is acquired: gold standard cases will be used if the case-


base is built by hand but, on the other hand, the case-base will contain more noisy data if the


case-base is directly acquired from the sector.


Some data had to be entered by hand but in an operational system all the data should be


acquired electronically because the controllers will have neither time, nor inclination, to


enter all the data by hand.


It was anticipated that ISAC would not have had to deal with incomplete data in the traffic


samples used, but this was not true: the acquisition of some data was quite difficult and,


often, the data that the controller was acquiring very easily could not be translated so easily


into parameters for ISAC. Introspective Learning techniques could help in reducing the


negative effect of the lack of cases.


It can be said that it is true that CBR does not eliminate the knowledge engineering problem


but it does reduce it. With CBR, the parameters that describe a problem have to be found,


but how these parameters influence the decisions does not have to be discovered


(Thompson, 1997).


A


B


AB


A


B


Figure 6.2 (a,b,c): Different structures for the knowledge engineeing process.


The model of KE requirements described in Figure 6.1 can result in various specific


scenarios. The characteristic of specific applications will dictate the balance of effort
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between tasks A and B in Figure 6.2 where “A” represents the determination of salient


parameters, whereas “B” represents the inference mechanism. CBR is very effective in a


situation like in Figure 6.2(a), where the acquisition of the case-base and the decision of the


parameters is not as relevant as the retrieval component of the system. When the acquisition


of the case-base and the decision of the parameters becomes more dominant, like in Figures


6.2 (b) and (c), the advantages of CBR over RBS are less evident.


The main conclusion from those considerations, which will be more deeply analysed in the


last chapters, is this:


CBR can be used in the ATC domain iff an adequate case-base is available and if all the


cases come from the same sector with solutions given by controllers trained on that sector.
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Chapter 7


Introspective Learning of Parameter Weights


7.1 Introduction


As seen in the previous chapters, the descriptive parameters usually have different


discriminatory power. In this chapter the weight issues relating to the choice of weights are


analysed in more detail. When a k-Nearest Neighbour (k-NN) technique is used for case


retrieval, the accuracy depends on the weights assigned to the parameters. Recent research


in Machine Learning and Case-Based Reasoning has shown that Introspective Learning (IL)


of parameter weights can improve accuracy (Saltzburg, 1991; Fox and Leake, 1995;


Wetterschereck and Aha, 1995; Muñoz-Avila and Hüllen, 1996).


Developing the k-NN retrieval system used in ISAC has been problematic because not only


have the relevant parameters been difficult to determine but because the relative importance


of parameters has been difficult to gauge. Moreover some parameters were highly context


sensitive: i.e. parameters that were very predictive in some conflicts were not relevant in


others.


Two types of weights were analysed: local and global weights. If a parameter has a global


weight, its weight will be the same for all the cases in the case-base, i.e. its importance is the


same in all the cases. On the other hand, if a weight is local, its value could change


depending on the case under examination and on the values assumed by other parameters.


This option is more flexible if a parameter is context sensitive.


In this chapter we will present our experiences with introspective learning and describe the


lessons learned. We present four central findings:


• How weights should be adjusted.


• What cues should drive learning.


• When to use local and global weights.


• Introspective learning does not work well with pivotal cases.


We begin with a general review of introspective learning in the next section, then we


present the learning policies in Section 7.3. The updating policies are in Section 7.4 for local
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weights and in Section 7.5 for global weights. Section 7.6 is the evaluation section with the


performance comparison between global and local weights.


7.2 Background


Introspective learning refers to an approach to learning problem solving knowledge by


monitoring the run-time progress of a particular problem solver (Fox and Leake, 1995;


Leake, Kinley and Wilson, 1995; Oehlman, Edwards and Sleeman, 1995). In particular, we


have investigated the problem of learning parameter weights by monitoring the retrieval


performance of ISAC, work that is related to similar research in the machine learning


community (Saltzburg, 1991; Wettschereck and Aha, 1995; Wettschereck, Aha and Mohri,


1997).


Traditionally, Artificial Intelligence research has focused on the acquisition of domain


knowledge in order to provide basic problem solving competence and performance.


However, even when a reasoner has a correct set of knowledge it may still experience


reasoning failures. This can be explained as an inability of the reasoner to properly access


and apply its knowledge. For this reason researchers have looked at how monitoring


problem solving performance might lead to new learning opportunities that can improve the


way in which available knowledge is used. This form of introspective reasoning and learning


has become more and more important in recent years as AI systems have begun to address


real world problem domains, characterised by a high degree of complexity and uncertainty.


In such domains, where determining the necessary world knowledge is difficult, it is also


difficult to determine the correct reasoning approach to manipulate this knowledge


effectively. Hence the need for introspective learning, and its increasing popularity across a


range of AI problem solving paradigms, from planning to case-based reasoning.


Meta-planning was an early model of introspective reasoning found in the MOLGEN


planning system (Stefik, 1981). MOLGEN could, to some extent, reason about its own


reasoning processes. Meta-planning provided a framework for partitioning knowledge into


layers, separating planning knowledge (domain knowledge and planning operators) from


meta-knowledge (planning strategies). Introspective reasoning is implemented as planning


within the meta-knowledge layer.


SOAR (Laird, Rosenbloom and Newell, 1986; Laird, Newell and Rosenbloom, 1987) also


employs a form of introspective reasoning. It learns “meta-rules” which describe how to


apply rules about domain tasks and acquire knowledge. SOAR’s meta-rules are created by
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chunking together existing rules and learning is triggered by sub-optimal problem solving


results rather than failures.


Case-based reasoning researchers have also begun to understand the importance of


introspective reasoning. Fox and Leake (1995) describe a case-based system called


ROBBIE which uses introspective reasoning to model, explain, and recover from reasoning


failures. Building on ideas first put forward by Birnbaum et al. (1990), Fox and Leake take a


model-based approach to recognising and repairing reasoning failures. Their particular form


of introspective reasoning focuses on retrieval failures and case index refinement. Work by


Oehlmann, Edwards and Sleeman (1995) addresses the related topic of re-indexing cases,


through introspective questioning, to facilitate multiple viewpoints during reasoning. Leake,


Kinley, and Wilson (1995) describe how introspective reasoning can also be used to learn


adaptation knowledge in the form of adaptation cases.


Many case-based reasoning systems use the k-nearest neighbour (k-NN) classifier (or a


derivative) to retrieve cases. One of the problems with this approach is that the standard k-


NN similarity function is extremely sensitive to irrelevant, interacting, or noisy parameters.


The typical solution has been to parameterise the similarity function with parameter weights


so that, for example, the influence of irrelevant parameters can be de-emphasised through


the assignment of a low weight. However, suitable weight vectors are not always readily


available. This has lead to a number of parameter-weight learning algorithms which attempt


to introspectively refine parameter weights on the basis of problem solving successes or


failures.


7.3 Learning Policies


The basic idea behind the introspective learning of parameter weights is to increase or


decrease the weights of selected case parameters on the basis of problem solving


performance. Parameter weighting methods differ in terms of their learning criteria as well


as in terms of their update models.


There are four distinct policies that can drive learning (i.e. that trigger the change of a


parameter weight). Two basic learning criteria are used, failure-driven and success-driven.


Failure-driven methods only update parameter weights as a result of a retrieval failure, and


conform to the “if it’s not broken do not fix it” school of thought. Success-driven


approaches seek to update parameter weights as a result of a retrieval success. For each


approach the weights of matching and unmatching parameters are increased or decreased


accordingly.
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By changing the weights, we move the cases in the case space. We want the cases that led


to a correct solution to be “pulled” closer to the target and the cases that were retrieved


incorrectly to be “pushed” away from the target as can be seen in Figure 7.1.


A


Pull


T


B


Push


Figure 7.1: Pushing and pulling a case.


There are four possible learning policies; two cause a “push” and two cause a “pull”:


• GUM, Good Up Matching: the case retrieved from the case-base has the same solution


as the target in the training set (Good retrieval). We increase (Up) the weights of the


parameters that have the same value as the target (Matching values). By doing this we


increase even more the case’s activation, i.e. we “pull” the case towards the target.


• GDU, Good Down Unmatching: the case retrieved from the case-base has the same


solution as the target in the training set (Good retrieval). We decrease (Down) the


weights of the parameter that have a different value from the target (Unmatching values).


The non-matching parameters decrease the case activation even if we want this case to


be retrieved, so by decreasing their weights we again “pull” the case towards the target.


• BUU, Bad Up Unmatching: the case retrieved from the case-base has a different solution


from the target (Bad retrieval) and the weights of the parameters that have a different


value from the target (Unmatching values) are increased (Up). By doing this we “push”


the case away from the target because by subtracting an increased weight we reduce


even more the activation of the case.


• BDM, Bad Down Matching: the case retrieved from the case-base has a different


solution from the target (Bad retrieval) and the weights of the parameters that have the


same value as the target (Matching values) are decreased (Down) because these weights


contribute too much to the activation that we want to be low. So we are again “pushing”


the case away from the target.


Different parameter learning algorithms employ different combinations of these techniques.


By far the most common strategy is to use all four update policies (e.g., Salzberg, 1991,


Wettschereck and Aha, 1995). However, more focused strategies have also been adopted.
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For example, Muñoz-Avila and Hullen (1996) use the BUU and GDU policies to increase


or decrease the weights of unmatched parameters after a retrieval failure or success


respectively.


The way in which a parameter’s weight value is changed during learning, the update policy,


is also critical. One of the simplest approaches is to increase or decrease parameter weights


by a fixed amount. For example, this method is used in EACH (Salzberg, 1991) where all


four of the above learning policies are used to increase or decrease parameter weights by


some fixed amount ∆f. Salzberg reported that the benefits associated with the weight


learning depended on the value of ∆f, and that different values of ∆f worked better on


different data-sets. Muñoz-Avila and Hullen (1996) use a decaying update policy so that the


magnitude of weight changes decreases over time.


In general, the relationship between the learning policy, the update policy, and the


application domain is not at all clear and requires further work (this point is emphasised in


Wettschereck, Aha and Mohri, 1997). In particular, different policies have been reported to


give very different performance results. Moreover, the sensitivity of the learning algorithm


to noise and parameter interactions needs to be further studied.


7.4 Update Policies for Local Weights


Assigning global weights by hand to the parameters requires a deep domain knowledge but


it is still possible. On the other hand it is impossible to assign a local weight to all the


parameters of all the cases in a case-base. The alternative is to start with all the weights at


the same initial value and to use an introspective learning algorithm to update them.


When a parameter is symbolic, the activation of the case is increased by the weight w if the


values are matching, decreased by w if the values are non-matching and left as it is if one of


the two values is unknown. The activation increase for continuous parameters is


proportionate to the proximity of the parameter values: very different values get a negative


activation while similar values get a positive activation. The actual activation increase is


calculated as follows:
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−
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where vc and vt are the case and target values and vmax and vmin are the maximum and


minimum values for that parameter in the case-base. This gives an activation that can vary
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from -w to +w as before. The objective for introspective learning is to determine local


values for these weights for each parameter in each case in the case-base.


The weight can be updated by an update policy which modifies the existing weight by either


adding or multiplying by a constant. This weight change itself can be constant or it can


decay as the learning proceeds (Muñoz-Avila and Hüllen, 1996). We use a decay policy.


The formulæ for the increase and decrease adding option are as follows:
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where Kc indicates the number of times that a case has been correctly retrieved and Fc


reports the number of times that a case has been incorrectly retrieved. The ratio Fc/Kc


reduces the influence of the weight update as the number of successful retrievals increases


and is called the decay function.


The formulæ for the increase and decrease multiplying option are as follows:
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We evaluated both the alternatives of adding and multiplying and found little difference


between them - adding proved slightly better. The value ∆i determines the initial weight


change. We tested values of ∆i between 0.1 and 2 and settled on ∆i=1.0. There was little to


choose between values from 0.5 to 2 because the weight change decreases anyway.


When all the weights in a case have been updated they are normalised so that the maximum


activation remains the same for all cases in the case-base. This is done as follows:


w wik ik=
∑


Number of Features


wik


The normalisation is important to prevent popular cases becoming dominant attractors in


the case-base.


7.5 Update Policies for Global Weights


The global weight updating policies are derived from the local weight ones. Four global


update policies have been tested:
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S1. Each global weight is updated by adding/subtracting the constant quantity 0.1.


If the weight is to be increased:


w t w ti i( ) ( ) .+ = +1 01


If the weight is to be decreased:


w t w ti i( ) ( ) .+ = −1 01


This policy does not use a decay function, so it is necessary to keep the increment small,


otherwise a case that is retrieved too often will have big weights.


S2. Each global weight is updated by adding/subtracting the quantity 
F


K
c


c


.


If the weight is to be increased:


w t w t
F


Ki i
c


c


( ) ( )+ = +1


If the weight is to be decreased:


w t w t
F


Ki i
c


c


( ) ( )+ = −1


Note that Kc and Fc belong to the individual case and not to the parameter. This formula is


the same as for the local weights with the parameter ∆i=1.0.


S3. Each global weight is the average of all the corresponding local weights after they have


been trained with the policy shown in section 7.4. All the weights are considered to


calculate the average, even the weights that have not been updated (i.e. all the weights that


remain initialised at 1).


S4. Each global weight is the average of all the corresponding local weights, as in strategy


S3, but the average is calculated without considering the weights that have not been


changed during learning.


The strategies S3 and S4 are time consuming because a previous training of the local


weights would be necessary, but are useful to test if the global weights can carry as much


information as the local ones.


7.6 Evaluation


For all the experiments we used a case-base of 126 cases coming from the ATC domain, a


training set of 40 cases and a test set of 27 cases. Each case has 23 parameters, of which 19
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were symbolic and 4 numeric. The system iterated 20 times on the training set to extract the


best weights. The points in Figures 7.3 and 7.4 are the average of 50 experiments with


different combinations of test set and training set.


All the experiments have been repeated for both local and global weights and for the eleven


different combinations of learning policies:


• AllFour (GUM + GDU + BUU + BDM) where learning is driven by all the four policies;


• onlyBad (BUU + BDM) where learning is driven only by the badly retrieved cases


(failure driven);


• onlyGood (GUM + GUU) where learning is driven only by the correctly retrieved cases;


• onlyGUM and onlyGDU where learning is driven only by the cases that are correctly


retrieved;


• withoutGUM (GDU + BUU + BDM) and withoutGDU (GUM + BUU + BDM) where


the learning is driven by all the policies except from respectively GUM and GDU;


• onlyBUU and onlyBDM where the learning is driven only by the cases that are badly


retrieved;


• withoutBUU (GUM + GDU + BDM) and withoutBDM (GUM + GDU + BUU) where


the learning is driven by all the policies except from respectively BUU and BDM.


(Bonzano, Cunningham and Smyth, 1997,b).


7.6.1 Training the Case-Base


For the evaluation purposes we use three sets of cases: a case-base where the cases will


have their local weights adjusted during the introspective learning, a training set for


training the weights in the case-base and a test set for testing the error of the case-base. The


steps to train and verify the effectiveness of introspective learning are as follows (see Figure


7.2):


• We calculate the initial error on the test set and on the training set when all the weights


in the case-base are still set to 1: we call these error figures Ets and Etr.


I Introspective
 Learning


Training
Set


Case
Base


Test
Set


         Figure 7.2: The components in the introspective learning process.
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• We train the case-base by retrieving the k-Nearest Neighbours for each case in the


training set. The weights of the k cases are adjusted based on the various learning and


update policies. The values for Kc and Fc are also updated for these cases.


• This training step is repeated several times. Etr and Etr are calculated after each step.


7.6.2 Overfitting


In Figure 7.3 it can be seen that after each iteration Etr decreases, but not monotonically.


This was found for all the eleven learning policy alternatives. In all evaluations the best


figure for Etr was found within 30 iterations. As might be expected the weights start to


over-fit the training data by the time this best error is reached and the error on the test data


improves. For this reason we stop the training after 20 iterations and select the weight set


corresponding to the best value for Etr.
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Figure 7.3: Etr and Ets for the “Without GUM” policy for local weights.


The overfitting phenomenon happens when the weights become too specialised for the


training set and they loose the generality needed to solve the test set. The error on both the


training set and the test set decreases during the first iterations, but the more the case-base


learns about the training set, the more specific solutions it gives, so the error on the training


set keeps decreasing, but the error on the test set starts increasing again.


This phenomenon had been found on both local and global weights but only with some


policies (e.g., the combination “WithoutGUM” shown in Figures 7.4 a and b).


The graph shows that this is a well behaved learning process but there is evidently a need to


stop learning early. In practice this can be achieved using a separate validation set as


mentioned already.


In Figure 7.4(a) we show the behaviour of the case-base when the global weights are


updated with the strategy S1: after a few iterations, the global weights saturate and the
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error  increases because there is no update decay. In Figure 7.4(b) we show the same


behaviour with strategy S2: it can be seen that the saturation process is slightly less strong


because of the presence of the decay function.
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Figure 7.4 (a, b): Etr and Ets for the combination “Without GUM” (global weights).


The policy of iterating 20 times and keeping the weights that generated the smallest error is


time consuming. A better policy would be to use a validation set to determine when to stop


training but at present there are not sufficient cases in ISAC for this to be feasible. In this


situation we could use a technique called k-fold cross-validation for early stopping as


presented in (Hjorth, 1994) and below.


7.6.3 K-fold Cross-validation


The use of a validation set is useful to determine when it is the right time to stop iterating.


When a simple validation (hold out validation) approach is used, some of these cases have


to be withhold from the training set to be used in the validation set.


For example in a case-base of 150 cases, 100 cases could be used for training and 50 for


validation. I.e. we stop training with the 100 cases when the error on the 50 cases starts to


rise or we select the weights corresponding to the point when the error is smallest. This


approach is fine if there are loads of cases for training but if cases are scarce then 50 cases


are wasted.


In k-fold cross-validation all cases are used for training and for validation. One approach to


cross validation is to try and guess the training error that will produce the lowest test error.


The training data is divided into k sets and trained with k-1 sets. The training is stopped


when the error on the kth set is minimised. The training error corresponding to this is noted.


This is repeated k times and k estimates of test error and the k training errors corresponding


to these points would be available. The training is stopped when the average of these


training errors is reached. Thus all the data in training have been used.
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Let us imagine this situation: there are 100 cases and a five fold cross-validation is done


with 20 cases in the validation set each time. Let us suppose that for the five folds the


following results are obtained:


Iteration 12 9 14 13 17


Training Set Error 12% 15% 12% 14% 12%


Test Set Error 18% 20% 19% 25% 22%


e.g. for the 1st fold the best error on the Test Set is 18%, this occurs at the 12th iteration.


When all the data is used, training is stopped when the Training Set Error is


(12+15+12+14+12)/5. Alternatively it could be stopped when iteration (12+9+14+13+17)/5


is reached.


7.7 Results


We tested the effectiveness of learning local weights with the combinations of the updating


policies that we introduced previously; the results are shown in Table 7.1. All the 11


updating policies show a performance increase. The best increase of performance was


recorded with the combination “WithoutGUM”. On average, it seems that the combinations


where the failure driven policies are dominant are more effective than the combinations


where cues come from successful retrievals.


Table 7.1: Error on the Test Set.


Learning Policy Before Learning After Learning


Without GUM 47.2 % 22.1 %


Without GDU 47.2 % 23.7 %


Without BDM 47.2 % 26.7 %


Only BDM 47.2 % 29.7 %


Without BUU 47.2 % 29.9 %


Only Bad 47.2 % 31.8 %


All Four 47.2 % 31.9 %


Only BUU 47.2 % 32.7 %


Only Good 47.2 % 37.9 %


Only GDU 47.2 % 42.1 %


Only GUM 47.2 % 42.4 %


To test the robustness of the learning we also initialised the local weights with random


values from 0.5 to 1.5 instead of having the starting weights all equal to 1. The performance


increase was the same.
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7.7.1 Local versus Global


We repeated the same experiments with the global weights and the four different strategies


presented in Section 7.5. We were expecting a smaller scale increase in performance than


with the local weights. This was true on average, but, sometimes, for strategy S1 the


performance was better than the local weights. The results are shown in Figures 7.5 and 7.6.
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Figure 7.5: Error of global and local weights for the “withoutGUM” combination.
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Figure 7.6: Error of global and local weights for the “WithoutBUU” combination.


Our best results occur with the “WithoutGUM” learning policy for local weights. This


reduces the error from 47% to 22%. The best result with global weights is the 25% shown


in Figure 7.6. We would expect the difference between the best local result and the best


global result to be greater as more data becomes available for training.







111


7.7.2 Analysis of Context Sensitivity


Initial development on ISAC suggested that the parameters were quite context sensitive and


an examination of the learned weights confirms this to be the case. The histograms in


Figures 7.7 and 7.8 show distributions of weight values in the trained case-base for two


specific parameters, “LevelsAvailable” and “CloseToBoundaries”. In each case the range of


weights has been divided into 10 intervals and the frequencies of weights in each interval are


shown. Weights that remained unchanged at 1 have been removed. (Bonzano, Cunningham


and Smyth, 1997,a).
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Figure 7.7: The distribution of learned weights for the “LevelsAvailable” parameter.


In Figures 7.7 and 7.8, the Y-axis “Frequency” indicates the number of cases that had the


weight falling in the range reported in the X-axis.
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Figure 7.8: The distribution of learned weights for the “CloseToBoundaries” parameter.


The situation for the “LevelsAvailable” parameter shown in Figure 7.7 is the most typical,


showing quite a spread in weight values across the case-base. Thus the relative importance


of this parameter clearly changes from case to case and hence the parameter is of local


importance across the case-base. This accords with the semantic of this parameter because


it indicates whether other altitude levels are free and is only important when an altitude
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manoeuvre is being considered. By comparison the “CloseToBoundaries” parameter shown


in Figure 7.8 is evidently more global and again this makes sense in the problem domain. If


an aircraft is close to the boundary of the controller’s sector then this is always an important


consideration.


7.8 Introspective Learning with Pivotal Cases


Smyth and Keane (1995) show that a case-base can be reduced in size without losing


competence provided pivotal cases are not removed. A pivotal case is one that provides


coverage not provided by other cases in the case-base. This is related to the idea of having a


case-base of  ‘clean’ cases where cases are hand picked to be of good quality and to cover


particular areas of the problem domain.


It might be expected that a case-base composed of pivotal or ‘clean’ cases will not benefit


much from introspective learning of parameter weights. Introspective learning depends on


having adjacent cases so that the relevance of parameters can be determined. However, this


redundancy will not exist in a pivotal case-base.


To verify this hypothesis we ran two experiments: one with a toy case-base where cases


could be verified to be pivotal and one with the ISAC cases. Tests on the toy case-base


supported the hypothesis. The cases available in ISAC are specially prepared clean cases so


our hypothesis suggests that introspective learning will not work with these. From this 126


we prepared a case-base of 86 cases and a training set of 40 pivotal cases. For comparison


we also prepared a training set of 40 cases taken from real traffic samples. After training the


case-base with the training sets extracted from the case-base, we tested it with a test set also


taken from real traffic samples. This experiment was repeated 22 times with different


training sets. The results showed that training with pivotal (or clean) cases only produced an


improvement of just 7% while training with random cases produced an improvement of


18% (see Table 7.2).


Table 7.2: Pivotal versus non-pivotal Training Set.


Training Set Ets (before) Ets (after)


pivotal 39 % 32 %


real 39 % 21 %


This supports our hypothesis that introspective learning of parameter weights exploits


redundancy in the case-base and there is little redundancy in a case-base of pivotal or clean


cases.
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7.9 Conclusions


Learning local parameter weights greatly improves retrieval in ISAC. Our central


conclusions are:


• Because of the context sensitivity of parameters, local parameter weights are more


effective than global weights. We have shown that, for many parameters in ISAC, the


learned local weights vary considerably. This is predicted by our understanding that the


importance of many parameters in this domain is context sensitive. Presumably this


varies from problem to problem, however using local rather than global weights has


definitely been helpful here.


• Failure driven learning is most effective and the best policy is “WithoutGUM”. This


learning policy reduces the error in ISAC from 47% to 22%. It appears that failure


driven rather than success driven learning contributes most to this improvement. This


effect is not reported elsewhere so we need to determine why this is the case with ISAC.


• The learning process can overfit to the training set so an early stopping policy is needed.


A validation set can be used to achieve this.


We have also verified that introspective learning of parameter weights does not work well


when the cases used for training are pivotal. This is predicted by our understanding of the


need for redundancy in the case-base for introspective learning. So this finding should be


true in general.


In the future we propose to explore whether these findings generalise to other domains. We


also propose to explore any variation in performance between global and local weights as


the size of the case-base increases.







114


Chapter 8


Results and Evaluation


One of the most controversial steps in the development of ISAC has been its evaluation. In


the air traffic control domain there is the saying - “ask six controllers to solve a conflict and


you will get seven different answers”. This is obviously an exaggeration but it gives an idea


of how subjective the evaluation of a solution given either by a controller, or the system


itself, is. Consequently, the evaluation of this expert system is difficult.


The program of research between Trinity College, Dublin and Eurocontrol Experimental


Centre, Paris was intended to investigate the use of CBR to augment the capability of an


aircraft to carry out elaborate manoeuvres to avoid conflicting with others. One of the


research themes that was considered the most important was the validation of the method


used in view of the safety-critical nature of the overall problem and the definition of


confidence figures for solutions given by the system. These issues are treated in this chapter


with an analysis of the performance of the system. The evaluation recommended by an


experimental psychologist is explained and the different steps to evaluate ISAC are


discussed.


8.1 The Tests


The tests done with the controllers are intended to evaluate the performance of ISAC from


two different points of view: the correctness of the solution suggested by the system and the


reduction of the controller’s workload with the system implemented. The working tool that


the controllers use is HIPS, which is embedded in the GHMI environment. ISAC does not


change the global behaviour of the system, apart from a slight speed reduction which is


acceptable at this prototypical level.


All the tests done take into consideration the three case representations introduced earlier.


The case-base and the set of cases used for evaluation are based on the knowledge and


preference of only one controller and not from a collective decision of all the controllers.


The case structure does not have any constraints even if this possibility is available. All


parameters have the same weight unless otherwise stated. All the traffic samples came from
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en-route sectors, heavily conditioning the parameters used for the case description and the


solutions of the conflicts. CBR can be made to work in any kind of sector, but the


parameters describing a conflict and the solution to a conflict change with the type of


sector.


8.1.1 The People that Evaluated the System


The system has been evaluated by air traffic controllers of different nationalities working in


the Eurocontrol Experimental Centre in Paris. The typical career of these air traffic


controllers starts with an ATC course, then it continues with 15-20 years experience on


different airfields before joining Eurocontrol. Usually, in Eurocontrol, they work in real time


simulations or in human-machine interface.


The work experience of a controller influences heavily the solutions that he gives. A


controller who worked for a long period in a sector where the aircraft are usually cruising


will use radar vectoring more often than a controller who worked in an airport sector where


usually the safest and by far most common manoeuvre is a change in altitude.


For this reason, some questions have been asked to the controllers that took part to the


simulation.


• For how long have they been a controller.


• For how long have they been approach, TMA or radar controller.


• Which was the last type of controlling that they did.


The answers to these questions could give an insight into the relationship between a


controller’s background and the solutions he gives.


The way a conflict is solved nowadays is heavily influenced by the fact that the only way of


communicating is via voice messages. Moreover, the transmission is not always good. The


absence of a datalink often forces the controller to reduce to the minimum the number of


manoeuvres communicated to the pilot. This difficulty in communication is bad for two


reasons. First, the controller often suggests a manoeuvre bigger than the one strictly


necessary to avoid any further corrections that would mean a loss of time for the controller.


Unfortunately, the oversized manoeuvre causes delays in the flight plan of the aircraft.


Secondly, sometimes the controller waits for the conflict to evolve before taking a decision


and often, what seems to be a conflict is not so in the end.


The approach that controllers had toward ISAC and the possibility of having a computer


generated suggestion was almost always positive, even if they were sometimes a bit


sceptical because controllers are aware of the complexity of the domain. Some controllers
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were enthusiastic about the idea of a computer aiding the controller’s decisions. They


suggested further improvements that in some cases have been implemented, like the use of


the BADA database for the acquisition of the performance parameters.


8.2 Initial Tests


The initial tests were not reliable because the solutions of the cases had been generated with


an artificial set of rules and, as already said, were coherent but not realistic. Moreover there


were only 50 cases in the case-base and no test cases were available, so the


“LeaveOneOUT” evaluation technique had to be used. The results were very good: the


system gave the correct solution in more than the 90% of the cases but as said they were


not reliable as explained in Chapter 6.


The most important and helpful feedback from this evaluation came from verbal comments


made by controllers during the testing sessions. Moreover, this evaluation was useful for the


verification of the speed, efficiency and robustness of the tool in the hands of controllers.


In (Bonzano, Cunningham and Meckiff, 1996), it has been shown that the constraints are


useful in speeding up the system but do not have any significant effect on the system


competence as shown in Figure 8.1. The conclusion that can be drawn, i.e. that the use of


constraints not only reduces the retrieval time but it increases the performance too, has to


be tested with other case-bases before being confirmed and generalised. It should be noted


that the better performance of the “OneInOne” case representation will not be repeated in


the next steps of evaluation with more elaborated case-bases.
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TwoInOne.nonCanonical
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Figure 8.1: The effectiveness of the constraints on the performance of the system.
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During this first step in the evaluation, some tests have been done in parallel to evaluate the


speed performance of the spreading activation algorithm, with the results shown in Chapter


4. Other tests involved the construction of a decision tree based on the same data used by


ISAC. In Chapter 5 it has been shown that ISAC performs better than its corresponding


decision tree generated by C4.5.


8.3 Interim Step


A simplified traffic sample was used with the controllers for training and familiarisation


purposes. All the traffic samples have been engineered to include a significant number and


variety of conflicts. Tests took place in Summer 1996. All the sessions were individual and a


different traffic sample was used for each run. Each solution given by a controller was


recorded and compared with the solution given by ISAC and with the solution given by the


other controllers. The controller could either accept or discard the solution suggested by


ISAC.


The case-base used for the tests has been constructed by trying to put into a “case” form


some of the rules learned during the sessions with the controllers. The 150 cases that


constitute the case-base represent the knowledge of a particular controller and the solutions


are generated from a set of rules. The output of a rule usually does not depend on all the


parameters needed for the case description. For this reason, in a case-base generated from


some basic rules, a lot of parameters will be set to a NIL value. This case-base had not been


built for the traffic samples used for the tests, but was designed to be able to solve any kind


of conflict in any type of sector. It will be highlighted later how naive this assumption was.


The test set consisted of 67 conflicts extracted from real traffic samples, but not all the


conflicts had been solved by all the controllers for reasons of time. Only one controller


solved all of the 67 conflicts and at least two controllers solved 42 conflicts. Four different


situations have been tested.


• The “OneInOne” case representation was used and the solutions given by ISAC have


been compared to the solutions given by the only controller who solved all the conflicts.


• The same case representation, “OneInOne”, was used, but the solutions given by ISAC


have been compared to the solutions given by all the controllers.


• The “TwoInOne” case representation has been used, and the solutions given by ISAC


have been compared to the solutions given by the only controller who solved all the


conflicts.
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• The same case representation, “TwoInOne”, was used, but the solutions given by ISAC


have been compared to the solutions given by all the controllers.


The system performance is reported in Table 8.1. The conflicts solved by only one


controller have been identified with “One” whereas the tests done on the set of conflicts that


have been solved by all the controllers are indicated by “All”. For the “One” situation, a


suggestion was considered correct if the solution of the controller and the solution given by


ISAC were the same. In the “All” situation, ISAC’s solution was considered correct if at


least one of the controllers gave the same solution.


Table 8.1: ISAC’s performance.


Case Representation Controller % of correct solutions


OneInOne One 49%


TwoInOne One 71%


OneInOne All 83%


TwoInOne All 94%


It can be seen that the performance of the system with the “OneInOne” case representation


is in general worse than the performance with the “TwoInOne” case representation. This


trend, opposite to the one in the previous evaluation step, is confirmed in the final


evaluation step and is supported by the intuitive consideration that the “OneInOne” case


representation is less effective because less information about the global conflict and the


other aircraft is stored in the case. For this reason, the “OneInOne” case representation will


not be used in the final evaluation of the system. It will be possible to use it only when a


realistic and well covered case-base will be made available. The case-base used in the final


version, even if more complete, is still too small and oversimplified.


From a more accurate analysis of the results it was discovered that the majority of the errors


made by ISAC were due to a wrong choice of the aircraft to manoeuvre but not to the


incorrect type of manoeuvre. This was encouraging because the case-base used for the


evaluation contained very little knowledge about the choice of the aircraft.


From the performance, it was clear that a lot of work still had to be done on extending the


case-base, because 150 conflicts were not enough to characterise all the possible ATC


conflicts, and on the parameters acquisition, because it was not always obvious how to


convert into numbers what the controller sees on the radar screen.
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8.4 Final Evaluation Step


The structure of the final test has been defined with the help of an expert on psychological


experiments with the aim of gaining a better understanding of how the controller can


interact with ISAC and how the system performs.


The tests consist of three steps:


1. A conflict is shown to the controller.


2. The solution for the conflict is requested from the controller. This step could be skipped


if it would have been possible to pre-classify the bias of each controller by using


conflicts that had already been solved and stored.


3. ISAC gives, on purpose, either a good or a bad solution to the conflict. The controller


has to rank the given solution from 0 (very bad) to 7 (very good). The wrong solution is


a random solution chosen from the solutions that were not selected as good solutions


and it must be really bad, otherwise the results will not be reliable. Moreover, the


controller is asked why does he think that it is a good/bad solution and what changes


would he make to the solution to improve it. These questions are useful for building the


adaptation function.


Step 2 is necessary because controllers sometimes accept sub-optimal solutions, as the


controllers themselves confirm. By previously asking the controller for his solution, the risk


of the controller passively accepting the solution suggested by ISAC is avoided. Moreover,


with step 2, it is possible to evaluate whether or not the controller is biased: the percentage


of altitude, speed, and horizontal manoeuvres in the controller’s solutions is recorded. If a


controller gives more than one possible solution, the weight of each solution is reduced by


the number of solutions given.


Step 3, i.e. giving on purpose some bad and some good solutions, is necessary for different


reasons:


• to make sure that ISAC gives the correct solution. All the marks that the controller


gives to the solutions suggested by ISAC are averaged. The marks to the solutions that


ISAC gives wrongly on purpose are averaged together, the same is done for the marks


to the solutions that ISAC gives correctly on purpose. The greater the difference


between the average of the good and the average of the bad marks, the better ISAC


performed. The difference is visualised by the slope of the two lines in Figure 8.2: the


steeper the lines, the better. Obviously, the average of the good solutions must be bigger


than the average of the bad ones.
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• Step 3 is also necessary to examine if some types of conflicts are solved more effectively


than others. This could happen because either the controllers are biased or because


some problems are simpler than others.


• Finally, step three could be necessary to check against the bias. For some conflicts ISAC


would give a solution consistent with the bias whereas in other cases it would give a


solution not consistent with the bias.


An introductory page was given to all the controllers that took part to the simulations. The


way the tests were presented to the controllers was important because even a single


misleading word could have influenced the controllers and nullified the results. The first part


was intended to give a general background to the controller by explaining how ISAC


works. The second part is reported below:


“Some conflicts will be shown to the controller. When a conflict is detected, the system will automatically


display a solution. The controller will be asked to:


• rate the correctness of the solution given by ISAC with a mark from 0 (very bad) to 7 (very good);


• say what he dis/liked about the given solution;


• if he would have given a different solution, and to specify which.


Some of the solutions proposed may be deliberately incorrect. The duration of the evaluation will not take


more than 30 minutes per controller.”


The best thing would have been not to tell to the controllers that ISAC gives on purpose


some of the wrong decisions, but there was either the risk of the controllers loosing


confidence in a system with a low rate of good solutions or the possibility of the controllers


giving good marks to bad solutions purely to give us encouragement. In both cases, the


results of the evaluation would not have been valid. During the tests, the percentage of bad


solutions given by ISAC on purpose was 50%.


A problem arises if a controller does not use the full range of marks, i.e. from 0 to 7. If this


happens, there are two alternatives: either the controller’s results are discarded, which is not


possible, considering how difficult it was to get the assistance of a controller, or the marks


that he gave have to be normalised to fill the interval from 0 to 7. During the tests, all the


controllers made use of the full interval 0-7, eliminating the problem.


8.4.1 Results


The case-base used for the final round of tests has around 700 conflicts, i.e., 1400 cases in


the “TwoInOne.nonCanonical” case representation, which has the best performance of all
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three. This is the final case-base which also contains some conflicts stored with the purpose


of solving some multiple aircraft conflicts.


Because of time restrictions, the bias has not been used to calculate the performance of


ISAC. The controllers have been considered not biased and only the difference between


correct and wrong solutions has been calculated.


Table 8.2: How the solutions given by each controller are stored.


Conflict mark solution


e1 4b vector


e2 7g dowBAW


e3 0b dowIEA


e4 7g dowDLH


e5 7g dowBAW


e6 0b dowEIN or vector


e7 7g uppCOA


e8 0b dowCPA


e9 7g for dowBAL


“ 0g for horBoth


e10 7g dowAFL


e11 7b vector or descend any


e12 6g dowEIN


e13 0b dowSAS


e14 7g for dowATQ


“ 0g for horBAW


e15 0b vector


The wrong solutions that ISAC had to give on purpose was decided in advance and stored


in a different file for each controller. A shell in which ISAC was embedded was taking the


decision whether to give the wrong or correct solution depending on the name of the


controller and on the name of the conflict. This shell always gave the correct solution to


two conflicts that did not have any really wrong solution.


A table like Table 8.2 was created for each controller during the tests. The mark “4b” on


the first line of the table means that the controller gave a mark “4” to a “Bad” solution given


on purpose by ISAC. The mark “7g” on the second line, means that the controller gave a


mark “7” to a “Good” solution. In this table, the Conflicts “e9” and “e14” have different


marks for the two possible solutions that had been suggested by ISAC.
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The results of the evaluation are in Figure 8.3. It can be seen that the mark that all the


controllers gave to the wrong solutions suggested by ISAC was, on average, 
2 03


7


.
 , i.e.


29%, whereas the mark given to the good solutions was 
549


7


.
, i.e. 78%. The mark given by


the controller that generated the solutions for the cases in the case-base are respectively 
2


7
,


i.e. 28%, for the bad solutions and 
7


7
, i.e. 100%, for the good solutions. This discrepancy


in marks is due to the different preferences of each controller.
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Figure 8.2: Results of the evaluation.


Figure 8.3(a) shows nine piecharts, one for each controller involved in the final tests, that


report which are the preferences of the controller. Of the 15 conflicts that were shown to


the controller the percentage of times that a certain type of manoeuvre chosen was


recorded: horizontal manoeuvre (hor), vertical manoeuvre (alt) and speed manoeuvre (spe).


Figure 8.3(b) shows the averaged percentage of preferred manoeuvres for all controllers.


From Figure 8.3(b) it can be seen that controllers prefer to use a vertical manoeuvre


because it is the safest and the fastest to be communicated and implemented. From Figure


8.3(a) it can be seen that the preferences of each controller vary a lot. For example,


Controller Two and Controller Eight have opposite habits in the use of vertical and


horizontal manoeuvres. Some of these differences are due to the background of the


controllers or to the attitude they have towards HIPS. For instance, Controller Two had


been working for a long period in an overflying sector where the most common manoeuvre


is the horizontal one because a lot of aircraft are cruising, whereas Controller Eight had


been working for longer time in an approach sector where the most common manoeuvre is


the vertical one.
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Figure 8.3(a): Types of manoeuvres used by controllers to solve the test conflicts.


As mentioned above, the attitude of the controllers toward HIPS influenced the results, too.


Some controllers, sceptical about HIPS, were solving conflicts without using the help that


HIPS could have provided and in this situation the most common manoeuvre was, again, a


vertical manoeuvre because it is the one that needs the least visualisation. On the other


hand, the controllers that liked “playing” with HIPS used a higher percentage of horizontal


and speed manoeuvres because with HIPS, which has a superior graphical display of the


conflict, more possible solutions are shown.


Some tests on introspective learning of the parameters weights have been done in parallel to


the evaluation tests, during this final knowledge engineering step. These tests and the results


obtained have already been described in Chapter 7.
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Figure 8.3(b): Types of manoeuvres used by controllers in general.


8.5 Multiple Aircraft Conflicts Tests


Because no MACs were available in the traffic samples used, some conflicts had to be built


from scratch from already existing TACs and their consistency had to be checked by a


controller. The problem, already present with TACs, of creating realistic conflicts is even


more evident with MACs.


The evaluation tests for multiple aircraft conflicts have been done with the Look Ahead


structure for MACs described in Section 6.6, chosen from the alternative structures


presented in Chapter 5. In a Look Ahead structure, the MAC is decomposed into the


constituent TACs that are solved independently, then a high-level analysis extracts from the


solutions of the TACs the best solution for the MACs.


We are now going to show how the Look Ahead structure works when applied to a real


MAC, shown in Figure 8.4. In this conflict, the aircraft FIN1121 is crossing the trajectory


of the two aircraft SAS611 and SPAR64. At the same time, the aircraft SPAR64, behind, is


catching the SAS611, which is in front and slower. All the three aircraft are flying at the


same level.


The first step of the Look Ahead structure involves the resolution of the 3 constituent


TACs: SAS611-SPAR64, FIN1121-SAS611 and FIN1121-SPAR64. The solutions found


by ISAC for the three conflicts are, respectively, “lock the speed of SAS611 and SPAR64”,


“climb FIN1121” and “climb “FIN1121”.


The second step of the Look Ahead algorithm consists of a high-level analysis of the three


TACs solutions found and the extraction of a coherent one. Because there are three TACs,


at least two solutions have to be extracted. Because the solutions for the two TACs


FIN1121-SAS611 and FIN1121-SPAR64 are the same, this will be the final solution for the
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MACs altogether with the solution for the SAS611-SPAR64 conflict. The Look Ahead


structure for this MAC is shown in Figure 8.5.


Figure 8.4: A multiple aircraft conflict.


If no solution in common to all the TACs was found, ISAC would have suggested the


solution of the TAC closest in time as solution for the MAC.
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As already said, the high-level analysis could be refined with the introduction of either more


rules or a high-level case-base containing more general parameters. For example, a rule


stating that the aircraft which is in conflict with all the others should be moved, could be


added.


The conflict shown in Figure 8.4 is a complex MAC because there are 3 aircraft involved in


3 conflicts. The Look Ahead structure, and also the other two introduced in Chapter 5,


works for both simple and complex MACs.


The MACs used for the evaluation have been displayed on a web page. The possible use of


a browser to reduce time of the tests and to give the same treatment to all the controllers


has been essential. The use of HIPS gives a range of choices to the controller, which is


good in the TACs situation, but it is not as good in the more complex situation of the


MACs where too many solutions would be available, making it impossible to test ISAC.


High-level
analysis


ISAC
with


low-level
case-base


ISAC
with


low-level
case-base


FIN1121-SAS611-SPAR64


FIN1121-SAS611SAS611-SPAR64


Climb FIN1121 + Lock on
speed SAS611 and SPAR64


Climb FIN1121Lock on speed both
the aircraft


ISAC
with


low-level
case-base


FIN1121-SPAR64


Climb FIN1121


Figure 8.5: Look Ahead CBR for the sample MAC.


In conclusion, we can say that the mechanism for solving MACs works, but we cannot say


anything concrete about the coverage on MACs offered by the case-base.
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8.6 Conclusions


In this chapter we analysed the performance of ISAC in solving conflicts, both TACs and


MACs. Results regarding introspective learning of parameter weights, speed of the retrieval


algorithm and comparison with decision trees have been treated earlier on.


The performance of a CBR system in general and of ISAC in particular depends on how


well the case is described and on how densely and homogeneously the case space is


populated. The results of the evaluation take account of how happy the controller is and not


whether the correct solution has been chosen. The “correct” solution is a subjective decision


and would vary from controller to controller. Because the solutions in the case-base have


been given by a single controller, they reflect his preference.


The way of evaluating ISAC should change depending on its function. ISAC could be a


training tool for controllers not experienced on a new sector, or it could be a standardising


tool to homogenise the biased solutions that controllers might give.


As already mentioned, a controller usually has to train for more than one year on a certain


sector before beginning to work on it. This training is necessary to teach the controller the


optimal solutions for that particular sector, but it will influence his preferences and his


behaviour when he will change sector. For example, if a controller has worked for some


years in the approaching sector of a busy airport, where usually conflicts are solved


immediately with a vertical manoeuvre, when this controller will change sector, he will be


biased and will solve conflicts with a vertical manoeuvre.


Another factor that could influence the controller’s decision is the attitude towards the tools


used in the simulation: some controllers examine very deeply the conflict, some others do


not. Moreover some controllers already know the sector used for the tests, so they have an


advantage over controllers who had never seen the sector.


A solution to avoid the controllers’ biases would be to build a case-base containing conflicts


that happened in the same sector and to ask for their solutions from controllers who work


on that sector. Biases among controllers working on the same sector are less influencing


because, having learnt the same patterns, controllers will make the same assumptions on the


conflicts.


Asking a group of controllers to come up with a globally accepted solution, one of the


initial options, would take too much time. It could be assumed that the solutions generally


given by a group of controllers working on the same sector could be synthesised by one of


them, saving a lot of time.
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Initial reaction to the work from controllers was positive, with the feeling that it is an


appropriate line of research. The strongest point in favour of the tool was undoubtedly the


fact that the controller remained entirely in control of the resolution process, while


benefiting from the information provided by the HIPS displays and ISAC’s suggestions.
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Chapter 9


Conclusions and Future Work


The basic assumption underlying much of the work undertaken in the ATC research centres


such as the Eurocontrol Experimental Centre in Paris, is that air traffic will continue to


increase at a significant rate. Since most air traffic control facilities use practices and


equipment which were developed at least 20 years ago, it is natural to assume that new


approaches are needed for future scenarios with higher aircraft populations. Improvements


due to the reorganisation of route structures will rapidly reach a limit in airspace at which


point some fundamental changes will be needed. First of all, the utility of computer


assistance will increase due also to increased precision in predicted trajectories of aircraft.


The research presented in this thesis was intended to investigate the benefits from using


CBR in order to help controllers in aircraft conflict resolution. Different research themes


have been treated:


• the definition of the parameters that describe a conflict;


• the definition of an appropriate structure for the case-base that takes into account the


real time nature of the problem;


• the possibility of solving two aircraft conflicts and multiple aircraft conflicts;


• the development of a retrieval mechanism and of the evaluation of a prototypical


system;


• the validation of the method used in view of the safety-critical nature of the overall


problem.


The system as it is now is integrated with HIPS which is embedded in a specific simulation


environment for evaluation purposes, but it could be in theory integrated in any ATC tool,


provided that this tool can supply ISAC with the necessary data for the conflict description.


It is our opinion that only minor modifications would be needed to the structure of ISAC to


be used in any type of sector with any ATC tool. The existence of a reliable case-base for


the specific sector is a different and more fundamental problem.
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9.1 Lessons Learned


During this research, several lessons have been learned. Some are typical of all CBR


systems, whereas others are related to the knowledge engineering process and the problems


of building a system that has to work in the real world.


A Reliable Case-Base is Essential


When the number of cases and the methodology for acquiring them were first discussed, it


seemed that a case-base of 30-50 conflicts would have been big enough to start the tests


and that these conflicts could be hand crafted. As already explained, both of these


assumptions were wrong due to the complexity of the domain.


As described in (Leake, 1996, p.34), the most important component of a CBR system is its


library of cases. This was particularly true for ISAC. First, the absence of an adaptation


mechanism made it necessary to have a case-base with good coverage. Second, the


complexity of the domain implied that the case-base contained lots of cases. Finally, having


a lot of conflicts in a case-base is not enough: each conflict needs a solution, too. Moreover,


the solutions must be coherent and must satisfy the controller.


Two conditions have to be respected in order to have an effective CBR system:


1. there must be enough cases drawn from the same sector. If cases are from the same


sector and the case-base is used to solve conflicts on the same sector, the chances that a


similar conflict is already in the case-base is higher. Having cases belonging to the same


sector will reduce the complexity of the domain and the size of the case-base.


2. the solutions to the conflicts that are stored in the case-base must be given by the


controllers that usually work on that sector. This will avoid the situation where


controllers give different solutions to the same conflict either because they have


different background or because they use the tools in a different way. Practices in use in


individual sectors will ensure that controllers working on the same sector will give


coherent solutions.


The tool used for displaying the conflicts heavily influenced the choice of the parameters


and the solutions of the conflicts. The more realistic the tool, the more reliable the solution


given by the controller. The decision whether to use gold standard cases or noisy cases


depends on the way the case-base is acquired: if the case-base is built by hand, gold


standard cases will be used, on the other hand, if the case-base is directly acquired from the


sector, the case-base will contain more noisy data.







131


Some data had to be entered by hand but in an operational system all the data should be


acquired electronically because the controllers will have neither time, nor inclination, to


enter all the data by hand.


It was anticipated that ISAC would not have had to deal with incomplete data in the traffic


samples used, but this was not true: the acquisition of some data was quite difficult and,


often, the data that the controller was acquiring very easily could not be translated so easily


into parameters for ISAC. Introspective learning techniques, presented earlier on, could


help in reducing the negative effect of the lack of cases.


CBR is Better than RBS, but with Caveats


CBR reduces the knowledge engineering problem in comparison to RBS. The claim that


CBR systems can be implemented faster than model-based systems is supported by different


sources. For example, a study stated that it took two weeks to develop a case-based version


of a system that took four months to build in rule-based form (Watson, 1994). Also, and


more recently, developers confirmed that a rule-based system took more than eight times


longer to develop than a case-based system with the same functionality. They also claim that


the maintenance of the RBS is continual whereas the CBR system needs almost no


maintenance (Watson, 1994). The time to effectively build the structure that handles the


knowledge base in ISAC was short and almost no maintenance was necessary. Adding cases


to the case-base when a conflict was not correctly solved was also simple.


The time to construct ISAC is shorter than the time that would have been necessary to build


the equivalent rule-based system, but no comparison between the two algorithms could be


done from the point of view of the performance. In fact, from the available literature on


expert systems for ATC, it seems that the existing RBS are able to help the controllers only


in certain situations but are not reliable in a general context. Moreover, their maintenance


and update is very difficult.


The idea of using a cost function for estimating the effectiveness of a solution was


considered but discarded because it would have implied building a complete rule-based


system as complex and expensive as ISAC with the sole purpose of estimating the cost.


A very simple set of rules (2 rules) has been used in the hierarchical structure of ISAC.


Some rules are also used in the adaptation step, which is very simple at this stage but could


be increased if a more detailed solution had to be implemented. For these reasons, it has to


be said that CBR should be complemented with some other systems such as RBS to build


successful applications (Bayles et al., 1993).
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The Knowledge Engineering Problem


At the beginning of the project, a report with some hypotheses on important CBR issues


(Bonzano and Cunningham, 1995) was produced before having acquired a deep


understanding of the problem of ATC. There were hypotheses on the structure of the


system, on the programming language that could have been used, on the possible technical


and theoretical issues and their corresponding solutions, etc. Some of these hypotheses


were later revealed to be correct, whilst, others were not. For example, the speed of the


system in giving real time solutions was considered one of the biggest issues at the


beginning, but at the end it was not so. Moreover it was thought that the case-base


acquisition would have been one of the easiest tasks, but, on the other hand it revealed to be


one of the most difficult. These changes are just an indicator of how complex the process


has been.


The structure of ISAC changed numerous times. Several decisions had to be taken and they


did not only depend on the CBR nature of the problem, but also on its ATC nature.


Moreover, not only the restrictions coming from the ATC domain had to be taken into


consideration, but also the preferences of the controllers.


The Evaluation of ISAC is a Complex Issue


The performance of a CBR system in general and of ISAC in particular depends on how


well the case is described and on how densely and homogeneously the case space is


populated. The results of the evaluation take account of how happy the controller is and not


whether the correct solution has been given. The “correct” solution is a subjective decision


and could vary from controller to controller. Because the solutions in the case-base have


been given by a single controller, they reflect his preference.


The way of evaluating ISAC should change depending on its function. ISAC could be a


training tool for controllers not experienced on a new sector, or it could be a standardising


tool to homogenise the biased solutions that controllers might give.


The initial approach was to build a very general system able to solve any kind of conflict in


any sector, but the solutions are often strongly dependent on the sector where the conflict


happens. ISAC could easily store the experience that each controller needs on a particular


sector, but if it is kept too general it would loose this efficiency. Although controllers will


always have to approve the suggested solutions, ISAC could become a means of giving a


sort of standardised decision even if its main purpose remains the reduction of the


controller’s workload.
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Different Controllers can Give Different Solutions to the Same Conflict


As already mentioned, a controller usually has to train for more than one year on a certain


sector before beginning to work on it. This training is necessary to teach the controller the


preferred solutions for that particular sector, but it will not alter his preferences and his


behaviour when he changes sector. For example, let us consider a controller that has


worked for some years in the approaching sector of a busy airport where usually conflicts


are solved immediately with a vertical manoeuvre because it is the kind of manoeuvre that


needs the least monitoring. When this controller changes sector, he will always be biased


and will solve conflicts with a vertical manoeuvre.


Another factor that could influence the controller’s decision is the attitude towards the tools


used in the simulation: some controllers examine very deeply the conflict, some other do


not. Moreover some controllers already know the sector used for the tests, so they are


advantaged to respect to the controllers who had never seen the sector.


Also the separation minima adopted in HIPS for visualising the no-go zones could change


the solution given. If the separation minima is too big, HIPS will visualise conflicts that do


not exist in reality and the shape of the no-go zone will change, nullifying the solutions.


During a simulation, for example, there was a 27% increase in “speed” solutions when the


horizontal separation was reduced from 10 to 6 nautical miles.


A solution to avoid the controllers’ biases would be to build a case-base containing conflicts


that happened in the same sector and to ask for their solutions to controllers who work on


that sector. Biases among controllers working on the same sector are less influential


because, having learnt the same patterns, controllers will make the same assumptions on the


conflicts.


Asking a group of controllers to come up with a globally accepted solution, one of the


initial options, would take too much time. It could be assumed that the solutions generally


given by a group of controllers working on the same sector could be synthesised by one of


them, saving a lot of time.


CBR can be Useful in the ATC Domain


The current version of ISAC is a working prototype that has been used to evaluate the


performance of the case-base, the interactions with the controllers and the interface


protocol with HIPS. This version has already been fielded and it is under refinement. It


proved to be effective in helping controllers in doing their job and helped in suggesting a


possible working scenario: “even if the structure of ISAC does not need substantial
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alterations, the case-base will have to be specific for each particular sector. It could be built


by acquiring all the conflicts that will happen on that particular sector for a period that


could be as long as 6 months. Lots of conflicts will be very similar, but the case space of the


conflicts that are typical to a specific sector will be well covered. This is the only way to


avoid the problem of not having a real and good knowledge base. The case-base could


contain a small core of generic cases common to all the sectors, and it could be then


augmented with the sector specific cases over time.”


The air traffic controllers in Eurocontrol Experimental Centre and in Dublin airport have


been an integral part of designing ISAC and have been involved since the beginning of the


project. We had no difficulty getting co-operation from the controllers, and the only


negative point was our lack of ability in extracting and analysing their knowledge more


qualitatively.


9.2 Directions for Further Research


The current version of ISAC has accomplished most of the initial goals. Nevertheless there


still remain several unexplored paths, some already envisaged at the beginning of this


research, but even more had been discovered during the knowledge engineering process.


Obviously, the most immediate necessity for ISAC is the construction of an effective case-


base: big enough and with coherent solutions. To date we have tried to build a generic CBR


reasoner that could work in any situation. Now that the prototypical version is ready, a


system more specialised on a particular sector could be considered.


Some tests could be done to reduce the number of parameters used in the case description.


This could be obtained either with introspective learning techniques or by eliminating the


least discriminating parameters one by one and recalculating the performance each time.


More work on the hierarchical structure for multiple aircraft conflicts has to be done. The


rules used in the high level analysis could be substituted with a small and more general case-


base especially conceived for MACs. The parameters used in this case-base would be


different, even if still related, to the ones used in the case-base for TACs.


Other tests could calculate the effective bias of the controllers. If done with the suggested


new case-base, this could be useful to verify our assumption that the controllers working on


the same sector are not biased, or at least are all biased in the same way.


Some interdisciplinary work could be done. For example, some available databases such as


BADA, already used by ISAC, could provide more accurate parameters. Moreover, the
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parameter that indicates the workload could be measured with biological data that check the


controller’s stress.


The web of pointers with symbolic values, for the implementation of the retrieval


mechanism, was introduced with the purpose of having a fast system for real time


simulations. If the speed problem occurs again, it might be solved with the help of Neural


Networks (Naughton, 1995). An alternative solution could be the implementation of the


web of pointers for the numeric values. This would require the division into ranges of the


numeric values, which is not necessarily the best option and it would require a lot of


calculations.


Finally, some lines of research have been suggested on the implementation of methods for


deciding if a case space is well covered with the introduction of the two parameters AVE,


the average distance of each case from all the others, and SMA, the distance of a case from


the closest case. It would be interesting to evaluate the hypothesis that these two


parameters do not work well in a non homogeneously covered case-base.
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Appendix A


Acquisition of the Case-Base


As said in Chapters 6 and 8, one of the biggest problems in the project of ISAC has been


the acquisition of the case-base. As a temporary solution to the impossibility of creating a


case-base from the real traffic samples, an HTML form has been prepared to add by hand


the cases to the case-case. This appendix contains a short description of how this has been


done.


A.1 Structure


The HTML form, whose code is below, gives the list of parameters that constitute the case-


base with radio buttons for the possible values of the parameters. When the “submit” button


is pressed the form sends its data to the PERL script process_form.cgi that analyses


the data and sends it to the program Convert. This program reads the data and writes it


into the case-bases stored as text files.


A.2 The Form for the Acquisition of the Case-Base


<HTML>
<TITLE>CBR</TITLE>
<BODY bgcolor=white>


<strong><FONT SIZE=5>Add this case to the CaseBase</FONT></strong>
<FONT SIZE=2>


<FORM METHOD="POST" ACTION="process_form.cgi">


<strong>CaseName  </strong> (WITHOUT SPACES)
<INPUT TYPE=text NAME=CaseName SIZE=20 MAXLENGTH=60> (optional)<BR>


<strong>HorConflConf</strong>
<INPUT TYPE=radio NAME=HorConflConf VALUE="crossing">crossing
<INPUT TYPE=radio NAME=HorConflConf VALUE="converging">converging
<INPUT TYPE=radio NAME=HorConflConf VALUE="headon">headon
<INPUT TYPE=radio NAME=HorConflConf VALUE="diverging">diverging
<INPUT TYPE=radio NAME=HorConflConf VALUE="NIL" checked>NIL
<BR>
<strong>AltitudeNow</strong>
<INPUT TYPE=radio NAME=AltitudeNow VALUE="different">different
<INPUT TYPE=radio NAME=AltitudeNow VALUE="same" >same
<INPUT TYPE=radio NAME=AltitudeNow VALUE="NIL" checked>NIL
<BR>
<strong>Priority</strong>
<INPUT TYPE=radio NAME=Priority VALUE="higher">higher
<INPUT TYPE=radio NAME=Priority VALUE="same" >same
<INPUT TYPE=radio NAME=Priority VALUE="lower">lower
<INPUT TYPE=radio NAME=Priority VALUE="NIL" checked>NIL
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<BR>
<strong>Speed</strong>
<INPUT TYPE=radio NAME=Speed VALUE="faster">faster
<INPUT TYPE=radio NAME=Speed VALUE="same" >same
<INPUT TYPE=radio NAME=Speed VALUE="slower">slower
<INPUT TYPE=radio NAME=Speed VALUE="NIL" checked>NIL
<BR>
<table >
<td>
<FONT SIZE=2>
<strong>CloseToTOD(A)</strong>
<INPUT TYPE=text NAME=CloseToTOD SIZE=4 MAXLENGTH=20>
<BR>
<strong>CloseToBoundaries(A)</strong>
<INPUT TYPE=text NAME=CloseToBoundaries SIZE=4 MAXLENGTH=20>
<BR>
<strong>Manoeuvrability(A)</strong>
<INPUT TYPE=text NAME=Manoeuvrability SIZE=4 MAXLENGTH=20>
<BR>
<strong>AltIntention(A)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<INPUT TYPE=radio NAME=AltIntention VALUE="stable">stable
<INPUT TYPE=radio NAME=AltIntention VALUE="descending">descending
<INPUT TYPE=radio NAME=AltIntention VALUE="climbing">climbing
<INPUT TYPE=radio NAME=AltIntention VALUE="NIL" checked>NIL
<BR>
<strong>EasyToExitHorizontally(A)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<INPUT TYPE=radio NAME=EasyToExitHorizontally VALUE="veryEasy">veryEasy
<INPUT TYPE=radio NAME=EasyToExitHorizontally VALUE="easy" >easy
<INPUT TYPE=radio NAME=EasyToExitHorizontally VALUE="possible" >possible
<INPUT TYPE=radio NAME=EasyToExitHorizontally VALUE="difficult" >difficult
<INPUT TYPE=radio NAME=EasyToExitHorizontally VALUE="NIL" checked>NIL
<BR>
<strong>LevelsAvailable(A)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="none">none
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="yes" >yes
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="above">above
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="below">below
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="withSpaces">withSpaces
<INPUT TYPE=radio NAME=LevelsAvailable VALUE="NIL" checked>NIL
<BR>
<strong>Faster(A)</strong>
<INPUT TYPE=radio NAME=Faster VALUE="easy">easy
<INPUT TYPE=radio NAME=Faster VALUE="possible" >possible
<INPUT TYPE=radio NAME=Faster VALUE="difficult">difficult
<INPUT TYPE=radio NAME=Faster VALUE="NIL" checked>NIL
<BR>
<strong>Slower(A)</strong>
<INPUT TYPE=radio NAME=Slower VALUE="easy">easy
<INPUT TYPE=radio NAME=Slower VALUE="possible" >possible
<INPUT TYPE=radio NAME=Slower VALUE="difficult">difficult
<INPUT TYPE=radio NAME=Slower VALUE="NIL" checked>NIL
<BR>
</FONT>
</td>


<td>
<FONT SIZE=2>
<strong>CloseToTOD(B)</strong>
<INPUT TYPE=text NAME=CloseToTODB SIZE=4 MAXLENGTH=20>
<BR>
<strong>CloseToBoundaries(B)</strong>
<INPUT TYPE=text NAME=CloseToBoundariesB SIZE=4 MAXLENGTH=20>
<BR>
<strong>Manoeuvrability(B)</strong>
<INPUT TYPE=text NAME=ManoeuvrabilityB SIZE=4 MAXLENGTH=20>
<BR>
<strong>AltIntention(B)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
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<INPUT TYPE=radio NAME=AltIntentionB VALUE="stable">stable
<INPUT TYPE=radio NAME=AltIntentionB VALUE="descending">descending
<INPUT TYPE=radio NAME=AltIntentionB VALUE="climbing">climbing
<INPUT TYPE=radio NAME=AltIntentionB VALUE="NIL" checked>NIL
<BR>
<strong>EasyToExitHorizontally(B)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<INPUT TYPE=radio NAME=EasyToExitHorizontallyB VALUE="veryEasy">veryEasy
<INPUT TYPE=radio NAME=EasyToExitHorizontallyB VALUE="easy" >easy
<INPUT TYPE=radio NAME=EasyToExitHorizontallyB VALUE="possible" >possible
<INPUT TYPE=radio NAME=EasyToExitHorizontallyB VALUE="difficult" >difficult
<INPUT TYPE=radio NAME=EasyToExitHorizontallyB VALUE="NIL" checked>NIL
<BR>


Figure A.1: The form as shown by the browser.


<strong>LevelsAvailable(B)</strong>
<BR>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="none">none
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="yes" >yes
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="above">above
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="below">below
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="withSpaces">withSpaces
<INPUT TYPE=radio NAME=LevelsAvailableB VALUE="NIL" checked>NIL
<BR>
<strong>Faster(B)</strong>







150


<INPUT TYPE=radio NAME=FasterB VALUE="easy">easy
<INPUT TYPE=radio NAME=FasterB VALUE="possible" >possible
<INPUT TYPE=radio NAME=FasterB VALUE="difficult">difficult
<INPUT TYPE=radio NAME=FasterB VALUE="NIL" checked>NIL
<BR>
<strong>Slower(B)</strong>
<INPUT TYPE=radio NAME=SlowerB VALUE="easy">easy
<INPUT TYPE=radio NAME=SlowerB VALUE="possible" >possible
<INPUT TYPE=radio NAME=SlowerB VALUE="difficult">difficult
<INPUT TYPE=radio NAME=SlowerB VALUE="NIL" checked>NIL
<BR>
</FONT>
</td>
</table>
<BR>
<dt><strong>Best </strong>solution
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<input type=checkbox name=Supp1 > upp1
<input type=checkbox name=Sdow1 > dow1
<input type=checkbox name=Shor1 > hor1
<input type=checkbox name=Sspe1 > spe1 ||
<input type=checkbox name=Supp2> upp2
<input type=checkbox name=Sdow2> dow2
<input type=checkbox name=Shor2> hor2
<input type=checkbox name=Sspe2> spe2 ||
<input type=checkbox name=Supp3> upp3
<input type=checkbox name=Sdow3> dow3
<input type=checkbox name=Shor3> hor3
<input type=checkbox name=Sspe3> spe3
<BR>
<INPUT TYPE=submit VALUE=store>
<INPUT TYPE=reset VALUE=reset>
</FORM>
<hr>
</BODY>
</HTML>


A.3 The PERL file process_form.cgi


#!/opt/perl5/bin/perl -w
unshift @ISA, ".";
use CGI;
$query = new CGI;


$CaseName= $query->param(‘CaseName’);
$HorConflConf= $query->param(‘HorConflConf’);
$AltitudeNow= $query->param(‘AltitudeNow’);
$Priority= $query->param(‘Priority’);
$Speed= $query->param(‘Speed’);
$CloseToTOD= $query->param(‘CloseToTOD’);
$CloseToTODB= $query->param(‘CloseToTODB’);
$CloseToBoundaries= $query->param(‘CloseToBoundaries’);
$CloseToBoundariesB= $query->param(‘CloseToBoundariesB’);
$Manoeuvrability= $query->param(‘Manoeuvrability’);
$ManoeuvrabilityB= $query->param(‘ManoeuvrabilityB’);
$AltIntention= $query->param(‘AltIntention’);
$AltIntentionB= $query->param(‘AltIntentionB’);
$EasyToExitHorizontally= $query->param(‘EasyToExitHorizontally’);
$EasyToExitHorizontallyB= $query->param(‘EasyToExitHorizontallyB’);
$LevelsAvailable= $query->param(‘LevelsAvailable’);
$LevelsAvailableB= $query->param(‘LevelsAvailableB’);
$Faster= $query->param(‘Faster’);
$FasterB= $query->param(‘FasterB’);
$Slower= $query->param(‘Slower’);
$SlowerB= $query->param(‘SlowerB’);


$Supp1= $query->param(‘Supp1’);
$Sdow1= $query->param(‘Sdow1’);
$Shor1= $query->param(‘Shor1’);
$Sspe1= $query->param(‘Sspe1’);
$Supp2= $query->param(‘Supp2’);
$Sdow2= $query->param(‘Sdow2’);
$Shor2= $query->param(‘Shor2’);
$Sspe2= $query->param(‘Sspe2’);
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$Supp3= $query->param(‘Supp3’);
$Sdow3= $query->param(‘Sdow3’);
$Shor3= $query->param(‘Shor3’);
$Sspe3= $query->param(‘Sspe3’);


if (!$CaseName ) { $CaseName="NoName"; }
if (! $CloseToTOD) { $CloseToTOD="-999"; }
if (!$CloseToTODB) { $CloseToTODB="-999"; }
if (!CloseToBoundaries) { $CloseToBoundaries="-999"; }
if (!$CloseToBoundariesB) { $CloseToBoundariesB="-999"; }
if (!$Manoeuvrability) { $Manoeuvrability="-999"; }
if (!$ManoeuvrabilityB) { $ManoeuvrabilityB="-999"; }
if (!$Supp1 ) { $Supp1="off"; }
if (!$Sdow1 ) { $Sdow1="off"; }
if (!$Shor1 ) { $Shor1="off"; }
if (!$Sspe1 ) { $Sspe1="off"; }
if (!$Supp2 ) { $Supp2="off"; }
if (!$Sdow2 ) { $Sdow2="off"; }
if (!$Shor2 ) { $Shor2="off"; }
if (!$Sspe2 ) { $Sspe2="off"; }
if (!$Supp3 ) { $Supp3="off"; }
if (!$Sdow3 ) { $Sdow3="off"; }
if (!$Shor3 ) { $Shor3="off"; }
if (!$Sspe3 ) { $Sspe3="off"; }


system "/home/ist/bnz/public_html/CreateCB/g $CaseName $HorConflConf
$AltitudeNow $Priority $Speed $CloseToTOD $CloseToTODB $CloseToBoundaries
$CloseToBoundariesB $Manoeuvrability $ManoeuvrabilityB $AltIntention
$AltIntentionB $EasyToExitHorizontally $EasyToExitHorizontallyB
$LevelsAvailable $LevelsAvailableB $Faster $FasterB $Slower $SlowerB $Supp1
$Sdow1 $Shor1 $Sspe1 $Supp2 $Sdow2 $Shor2 $Sspe2 $Supp3 $Sdow3 $Shor3 $Sspe3";


A.4 The program Convert


This is a C++ program that first checks that a new case with exactly the same parameters’


values as one already in the case-base has not been submitted. Then the priority of the two


aircraft is calculated using the rules in Section 4.3. Afterward, all the parameters that


usually are calculated by the system GHMI when a case description is passed to ISAC have


to be calculated because Convert substitutes itself to GHMI. For example, the parameter


“Similar”, usually calculated by GHMI when a conflict is detected, has to be calculated


exactly in the same way by Convert using the data of the case description.


Finally the three case-bases, one for the “OneInOne” case representation and two for the


“TwoInOne” case representation (canonical and non-canonical) are written with the names:


cb1in1, cbcanonical and cbnonCan.


The code for Convert


#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>


char lista[12][5]=
 {"upp1", "dow1", "hor1", "spe1", "upp2", "dow2", "hor2", "spe2", "upp3",
"dow3", "hor3", "spe3"};


char* DelEOL(char* tok)
{
 int i=0;
 while((tok[i]!=‘ ‘)&&(tok[i] != ‘\n’)&&tok[i])
  i++;
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 tok[i] = ‘\0’;
 return tok;
}


char* other(char* value)
{
 if(strcmp(value,"different")==0)
  return "different";
 if(strcmp(value,"same")==0)
  return "same";
 if(strcmp(value,"better")==0)
  return "worse";
 if(strcmp(value,"worse")==0)
  return "better";
 if(strcmp(value,"higher")==0)
  return "lower";
 if(strcmp(value,"lower")==0)
  return "higher";
 if(strcmp(value,"faster")==0)
  return "slower";
 if(strcmp(value,"slower")==0)
  return "faster";
 if(strcmp(value,"NIL")==0)
  return "NIL";


 cout << "<BR> Error in function \"other\": not found " << value;
 return "nothing";
}


char* otherSol(char* value)
{
 if(strcmp(value,"upp1")==0)
  return "upp2";
 if(strcmp(value,"dow1")==0)
  return "dow2";
 if(strcmp(value,"upp2")==0)
  return "upp1";
 if(strcmp(value,"dow2")==0)
  return "dow1";
 if(strcmp(value,"hor1")==0)
  return "hor2";
 if(strcmp(value,"hor2")==0)
  return "hor1";
 if(strcmp(value,"spe1")==0)
  return "spe2";
 if(strcmp(value,"spe2")==0)
  return "spe1";
 return value;
}


main(int argc,char** argv)
{
 int i;
 char CaseName[32],Similar[5];
 FILE *cb1in1,*nonCan,*canonical,*cspace;


 cout << "Content-type:text/html\n\n";
 cout << "<HTML> <TITLE> form results </TITLE> <BODY>";


 // building string with all the values
 char AllTheValues[333];
 strcpy(AllTheValues,argv[2]);
 strcat(AllTheValues,"*");
 for(i=3;i<argc;i++)
  {
   strcat(AllTheValues,argv[i]);
   strcat(AllTheValues,"*");
  }
 cout << "<BR>Values passed from the form: " << DelEOL(AllTheValues) << "<BR>";


 // checking whether this string is already present in the case space
 char CaseInside[333];
 int AlreadyThere=0;
 cspace=fopen("CreateCB/CaseSpace","r");
 int aux=0;
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 while(fgets(CaseInside,332,cspace))
  {
   aux++;
   DelEOL(CaseInside);
   if(strcmp(CaseInside,AllTheValues)==0)
    AlreadyThere=1;
  }
 fclose(cspace);


 if(AlreadyThere)
  {
   cout << "<BR><BR><H1> Case ALREADY in the Case-base " <<


   " </H1> (not added)</BODY></HTML>";
   exit(0);
  }
 else // case not in the case space: writing it
  {
   cspace=fopen("CreateCB/CaseSpace","a");
   fprintf(cspace,"%s\n",AllTheValues);
   fclose(cspace);
  }


 cb1in1=fopen("CreateCB/cb1in1","a");
 nonCan=fopen("CreateCB/cbnonCan","a");
 canonical=fopen("CreateCB/cbcanonical","a");


 // choosing first aircraft for canonical description:
 // it is the one with the lower priority


 int mark1=0,mark2=0,first=1;
 // the higher the mark, the higher the priority
 strcpy(Similar,"no");


 // see if it is stable
 if(strcmp(argv[12],"stable")==0)
  mark1++;
 if(strcmp(argv[13],"stable")==0)
   mark2++;


 // see if close to dest (TOD)
 double aux1=atol(argv[6]),aux2=atol(argv[7]);
 if((aux1!=-999)&&(aux2!=-999))
  {
   if((aux1-aux2)>10)
    mark1++;
   if((aux2-aux1)>10)
    mark2++;
  }


 // see the manoeuvrability
 aux1=atol(argv[10]),aux2=atol(argv[11]);
 if((aux1!=-999)&&(aux2!=-999))
  {
   if(aux1<aux2-0.1)
    mark1++;
   if(aux2<aux1-0.1)
    mark2++;
  }


 // see the priority due to the category
 if(strcmp(argv[4],"higher")==0)
  mark1++;
 if(strcmp(argv[4],"lower")==0)
  mark2++;


 if(mark1<mark2)
  first=1;
 else if(mark2<mark1)
  first=0;
 else // if the aircraft are similar the first one becomes
      // AC1 because already under exam (less workload)
  {
   strcpy(Similar,"yes");
   first=1;
  }
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 double cTOD=atol(argv[6]),cTODb=atol(argv[7]);
 double cBound=atol(argv[8]),cBoundb=atol(argv[9]);
 double Man=atol(argv[10]),Manb=atol(argv[11]);


 // beginning HTML page and finding the name of the case
 if(strcmp(argv[1],"NoName")!=0)
  strcpy(CaseName,argv[1]);
 else
  {
   int IntNumber;
   char number[9];
   FILE *Fnumber;
   Fnumber=fopen("CreateCB/number","r");
   fscanf(Fnumber,"%s",number);
   fclose(Fnumber);
   Fnumber=fopen("CreateCB/number","r");
   fscanf(Fnumber,"%d",&IntNumber);
   fclose(Fnumber);
   Fnumber=fopen("CreateCB/number","w");
   fprintf(Fnumber,"%d",IntNumber+1);
   fclose(Fnumber);
   strcpy(CaseName,"Case");
   strcat(CaseName,number);
  }


 cout << "<hr> <FONT SIZE=19> <strong> " << CaseName
      << " </strong></FONT>added to the CaseBase<BR>";


 // Calculating Solution
 int FirstToPut=1;
 char sol[200],sol1[200];
 for(i=22;i<34;i++)
  if(strcmp(argv[i],"on")==0)
   if(FirstToPut)
    {
     FirstToPut=0;
     strcpy(sol,lista[i-22]);
     strcpy(sol1,otherSol(lista[i-22]));
     // otherSol calculates the solution for the second aircraft
    }
   else
    {
     strcat(sol,"&");
     strcat(sol1,"&");
     strcat(sol,lista[i-22]);
     strcat(sol1,otherSol(lista[i-22]));
    }


 // cb1in1 (A)
 fprintf(cb1in1,"@n %s(A)",CaseName);
 fprintf(cb1in1,"\nHorConflConf %s",argv[2]);
 fprintf(cb1in1,"\nAltitudeNow %s",argv[3]);
 fprintf(cb1in1,"\nAltConfiguration %s",argv[12]);
 fprintf(cb1in1,"\nSpeed %s",argv[5]);


 if(cTOD==-999)
  fprintf(cb1in1,"\nCloseToTOD NIL");
 else
  fprintf(cb1in1,"\nCloseToTOD %s",argv[6]);


 if(cBound==-999)
  fprintf(cb1in1,"\nCloseToBoundaries NIL");
 else
  fprintf(cb1in1,"\nCloseToBoundaries %s",argv[8]);


 if(Man==-999)
  fprintf(cb1in1,"\nManoeuvrability NIL");
 else
  fprintf(cb1in1,"\nManoeuvrability %s",argv[10]);


 fprintf(cb1in1,"\nPriority %s",argv[4]);
 fprintf(cb1in1,"\nEasyToExitHorizontally %s",argv[14]);
 fprintf(cb1in1,"\nLevelsAvailable %s",argv[16]);
 fprintf(cb1in1,"\nFaster %s",argv[18]);
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 fprintf(cb1in1,"\nSlower %s",argv[20]);
 fprintf(cb1in1,"\n@s %s\n\n",sol);


 // cb1in1 (B)
 fprintf(cb1in1,"@n %s(B)",CaseName);
 fprintf(cb1in1,"\nHorConflConf %s",argv[2]);
 fprintf(cb1in1,"\nAltitudeNow %s",other(argv[3]));
 fprintf(cb1in1,"\nAltConfiguration %s",argv[13]);
 fprintf(cb1in1,"\nSpeed %s",other(argv[5]));


 if(cTODb==-999)
  fprintf(cb1in1,"\nCloseToTOD NIL");
 else
  fprintf(cb1in1,"\nCloseToTOD %s",argv[7]);


 if(cBoundb==-999)
  fprintf(cb1in1,"\nCloseToBoundaries NIL");
 else
  fprintf(cb1in1,"\nCloseToBoundaries %s",argv[9]);


 if(Manb==-999)
  fprintf(cb1in1,"\nManoeuvrability NIL");
 else
  fprintf(cb1in1,"\nManoeuvrability %s",argv[11]);


 fprintf(cb1in1,"\nPriority %s",other(argv[4]));
 fprintf(cb1in1,"\nEasyToExitHorizontally %s",argv[15]);
 fprintf(cb1in1,"\nLevelsAvailable %s",argv[17]);
 fprintf(cb1in1,"\nFaster %s",argv[19]);
 fprintf(cb1in1,"\nSlower %s",argv[21]);
 fprintf(cb1in1,"\n@s %s\n\n",sol1);


 // NonCanonical (1)
 fprintf(nonCan,"@n %s_1",CaseName);
 fprintf(nonCan,"\nHorConflConf %s",argv[2]);
 fprintf(nonCan,"\nPriority %s",argv[4]);
 fprintf(nonCan,"\nAltitudeNow %s",argv[3]);
 fprintf(nonCan,"\nSpeed %s",argv[5]);
 fprintf(nonCan,"\nAltConfiguration(A) %s",argv[12]);


 if(cTOD==-999)
  fprintf(nonCan,"\nCloseToTOD(A) NIL");
 else
  fprintf(nonCan,"\nCloseToTOD(A) %s",argv[6]);


 if(cBound==-999)
  fprintf(nonCan,"\nCloseToBoundaries(A) NIL");
 else
  fprintf(nonCan,"\nCloseToBoundaries(A) %s",argv[8]);


 if(Man==-999)
  fprintf(nonCan,"\nManoeuvrability(A) NIL");
 else
  fprintf(nonCan,"\nManoeuvrability(A) %s",argv[10]);


 fprintf(nonCan,"\nEasyToExitHorizontally(A) %s",argv[14]);
 fprintf(nonCan,"\nLevelsAvailable(A) %s",argv[16]);
 fprintf(nonCan,"\nFaster(A) %s",argv[18]);
 fprintf(nonCan,"\nSlower(A) %s",argv[20]);


 fprintf(nonCan,"\nAltConfiguration(B) %s",argv[13]);


 if(cTODb==-999)
  fprintf(nonCan,"\nCloseToTOD(B) NIL");
 else
  fprintf(nonCan,"\nCloseToTOD(B) %s",argv[7]);


 if(cBoundb==-999)
  fprintf(nonCan,"\nCloseToBoundaries(B) NIL");
 else
  fprintf(nonCan,"\nCloseToBoundaries(B) %s",argv[9]);


 if(Manb==-999)
  fprintf(nonCan,"\nManoeuvrability(B) NIL");
 else







156


  fprintf(nonCan,"\nManoeuvrability(B) %s",argv[11]);


 fprintf(nonCan,"\nEasyToExitHorizontally(B) %s",argv[15]);
 fprintf(nonCan,"\nLevelsAvailable(B) %s",argv[17]);


 fprintf(nonCan,"\nFaster(B) %s",argv[19]);
 fprintf(nonCan,"\nSlower(B) %s",argv[21]);
 fprintf(nonCan,"\n@s %s\n\n",sol);


 // NonCanonical (2)
 fprintf(nonCan,"@n %s_2",CaseName);
 fprintf(nonCan,"\nHorConflConf %s",argv[2]);
 fprintf(nonCan,"\nPriority %s",other(argv[4]));
 fprintf(nonCan,"\nAltitudeNow %s",other(argv[3]));
 fprintf(nonCan,"\nSpeed %s",other(argv[5]));
 fprintf(nonCan,"\nAltConfiguration(A) %s",argv[13]);


 if(cTODb==-999)
  fprintf(nonCan,"\nCloseToTOD(A) NIL");
 else
  fprintf(nonCan,"\nCloseToTOD(A) %s",argv[7]);


 if(cBoundb==-999)
  fprintf(nonCan,"\nCloseToBoundaries(A) NIL");
 else
  fprintf(nonCan,"\nCloseToBoundaries(A) %s",argv[9]);


 if(Manb==-999)
  fprintf(nonCan,"\nManoeuvrability(A) NIL");
 else
  fprintf(nonCan,"\nManoeuvrability(A) %s",argv[11]);


 fprintf(nonCan,"\nEasyToExitHorizontally(A) %s",argv[15]);
 fprintf(nonCan,"\nLevelsAvailable(A) %s",argv[17]);
 fprintf(nonCan,"\nFaster(A) %s",argv[19]);
 fprintf(nonCan,"\nSlower(A) %s",argv[21]);


 fprintf(nonCan,"\nAltConfiguration(B) %s",argv[12]);


 if(cTOD==-999)
  fprintf(nonCan,"\nCloseToTOD(B) NIL");
 else
  fprintf(nonCan,"\nCloseToTOD(B) %s",argv[6]);


 if(cBound==-999)
  fprintf(nonCan,"\nCloseToBoundaries(B) NIL");
 else
  fprintf(nonCan,"\nCloseToBoundaries(B) %s",argv[8]);


 if(Man==-999)
  fprintf(nonCan,"\nManoeuvrability(B) NIL");
 else
  fprintf(nonCan,"\nManoeuvrability(B) %s",argv[10]);


 fprintf(nonCan,"\nEasyToExitHorizontally(B) %s",argv[14]);
 fprintf(nonCan,"\nLevelsAvailable(B) %s",argv[16]);
 fprintf(nonCan,"\nFaster(B) %s",argv[18]);
 fprintf(nonCan,"\nSlower(B) %s",argv[20]);
 fprintf(nonCan,"\n@s %s\n\n",sol1);


 // canonical
 if(first)
  {
 fprintf(canonical,"@n %s",CaseName);
 fprintf(canonical,"\nHorConflConf %s",argv[2]);
 fprintf(canonical,"\nPriority %s",argv[4]);
 fprintf(canonical,"\nAltitudeNow %s",argv[3]);
 fprintf(canonical,"\nSpeed %s",argv[5]);
 fprintf(canonical,"\nAltConfiguration(A) %s",argv[12]);


 if(cTOD==-999)
  fprintf(canonical,"\nCloseToTOD(A) NIL");
 else
  fprintf(canonical,"\nCloseToTOD(A) %s",argv[6]);
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 if(cBound==-999)
  fprintf(canonical,"\nCloseToBoundaries(A) NIL");
 else
  fprintf(canonical,"\nCloseToBoundaries(A) %s",argv[8]);


 if(Man==-999)
  fprintf(canonical,"\nManoeuvrability(A) NIL");
 else
  fprintf(canonical,"\nManoeuvrability(A) %s",argv[10]);


 fprintf(canonical,"\nEasyToExitHorizontally(A) %s",argv[14]);
 fprintf(canonical,"\nLevelsAvailable(A) %s",argv[16]);
 fprintf(canonical,"\nFaster(A) %s",argv[18]);
 fprintf(canonical,"\nSlower(A) %s",argv[20]);


 fprintf(canonical,"\nAltConfiguration(B) %s",argv[13]);


 if(cTODb==-999)
  fprintf(canonical,"\nCloseToTOD(B) NIL");
 else
  fprintf(canonical,"\nCloseToTOD(B) %s",argv[7]);


 if(cBoundb==-999)
  fprintf(canonical,"\nCloseToBoundaries(B) NIL");
 else
  fprintf(canonical,"\nCloseToBoundaries(B) %s",argv[9]);


 if(Manb==-999)
  fprintf(canonical,"\nManoeuvrability(B) NIL");
 else
  fprintf(canonical,"\nManoeuvrability(B) %s",argv[11]);


 fprintf(canonical,"\nEasyToExitHorizontally(B) %s",argv[15]);
 fprintf(canonical,"\nLevelsAvailable(B) %s",argv[17]);
 fprintf(canonical,"\nFaster(B) %s",argv[19]);
 fprintf(canonical,"\nSlower(B) %s",argv[21]);
 fprintf(canonical,"\n@s %s\n\n",sol);
  }
 else
  {
 fprintf(canonical,"@n %s",CaseName);
 fprintf(canonical,"\nHorConflConf %s",argv[2]);
 fprintf(canonical,"\nPriority %s",other(argv[4]));
 fprintf(canonical,"\nAltitudeNow %s",other(argv[3]));
 fprintf(canonical,"\nSpeed  %s",other(argv[5]));
 fprintf(canonical,"\nAltConfiguration(A) %s",argv[13]);


 if(cTODb==-999)
  fprintf(canonical,"\nCloseToTOD(A) NIL");
 else
  fprintf(canonical,"\nCloseToTOD(A) %s",argv[7]);


 if(cBoundb==-999)
  fprintf(canonical,"\nCloseToBoundaries(A) NIL");
 else
  fprintf(canonical,"\nCloseToBoundaries(A) %s",argv[9]);


 if(Manb==-999)
  fprintf(canonical,"\nManoeuvrability(A) NIL");
 else
  fprintf(canonical,"\nManoeuvrability(A) %s",argv[11]);


 fprintf(canonical,"\nEasyToExitHorizontally(A) %s",argv[15]);
 fprintf(canonical,"\nLevelsAvailable(A) %s",argv[17]);
 fprintf(canonical,"\nFaster(A) %s",argv[19]);
 fprintf(canonical,"\nSlower(A) %s",argv[21]);


 fprintf(canonical,"\nAltConfiguration(B) %s",argv[12]);


 if(cTOD==-999)
  fprintf(canonical,"\nCloseToTOD(B) NIL");
 else
  fprintf(canonical,"\nCloseToTOD(B) %s",argv[6]);


 if(cBound==-999)
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  fprintf(canonical,"\nCloseToBoundaries(B) NIL");
 else
  fprintf(canonical,"\nCloseToBoundaries(B) %s",argv[8]);


 if(Man==-999)
  fprintf(canonical,"\nManoeuvrability(B) NIL");
 else
  fprintf(canonical,"\nManoeuvrability(B) %s",argv[10]);


 fprintf(canonical,"\nEasyToExitHorizontally(B) %s",argv[14]);
 fprintf(canonical,"\nLevelsAvailable(B) %s",argv[16]);
 fprintf(canonical,"\nFaster(B) %s",argv[18]);
 fprintf(canonical,"\nSlower(B) %s",argv[20]);
 fprintf(canonical,"\n@s %s\n\n",sol1);
  }


 // writing values on HTML file
 cout << "<FONT SIZE=3> <BR> <TABLE border>";
 for(i=1;i<argc;i++)
  {
   if((i%5)==0)
    cout << "<TR>";
   cout << "<TD>" << i << ": " << argv[i] << "</TD>";
  }
 cout << "</TABLE> <BR>SOL: " << sol;


 cout << "</FONT> <P> <A HREF=\"form.html\">Add another case</A><BR>";
 cout << "</BODY></HTML>";
 fprintf(cb1in1,"\n\n");
 fprintf(nonCan,"\n\n");
 fprintf(canonical,"\n\n");


 fclose(cb1in1);
 fclose(nonCan);
 fclose(canonical);
}
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Appendix B


Decision Trees and Discriminatory Power


As said in Chapter 5, ISAC can convert the case-base from the ISAC format into a format


readable by C4.5. This has been useful for the comparison of the performance of ISAC and


C4.5. The first section of this appendix treats the issues related to the construction of the


decision tree by C4.5.


Moreover, ISAC gives the option of calculating the discriminatory power of the parameters


involved in the case description. This helps in deciding which parameters to use in the


retrieval process. The discriminatory power of the parameters involved in the final case


description is treated in the second section of this appendix.


B.1 Decision Tree


C4.5 (Quinlan, 1993) is a classifier system written in C for the UNIX environment. C4.5


starts with a large set of cases that already have a solution and scrutinise them for patterns


that allow the solutions to be reliably discriminated. In C4.5, the case-base is read with the


command “c4.5 -f namefile”, then the corresponding decision tree is built. For each


“namefile”, C4.5 will read 4 files:


• namefile.names that contains the parameters and the possible values;


• namefile.data with the case-base;


• namefile.test with the case description of a conflicts;


• namefile.sol with the solutions, one for each line, corresponding to the


namefile.test file.


These 4 files are created by ISAC that automatically translates the files containing the case-


base and the case structure into a format readable by C4.5. When the decision tree has been


built, the case-base is not necessary anymore. The command “consult -f namefile”


is used to test the tree built and all the cases in the file namefile.test are solved. The


correct solutions and the one retrieved by C4.5 are stored into a file called “results”


whose format can be read by the function “analyse” that gives the percentage of correct


solutions.
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ISAC automatically does all the “LeaveOneIN” and the “LeaveOneOUT” experiments by


using system calls to “c4.5” and “consult”. The code of the user interface has been


modified to make the system able to read the data and solutions directly from the test file.


For simplicity, the parameters that have a NIL value, which is represented by a “?” in C4.5,


are not used.


The decision trees shown in this appendix are generated with the default windowing and


pruning parameters. For a guide on how to use the C4.5 system see pp.81-91 in (Quinlan,


1993). The output given by C4.5 while working with the case-base of 51 cases used in the


first step of the knowledge engineering process is reported below. In this case-base, each


case is described by 38 parameters.


C4.5 [release 5] decision tree generator
----------------------------------------
    Options:


File stem <SymNum>
Read 51 cases (36 attributes) from cbase.data
Decision Tree:
RightExitNoGo(A) <= 3.16331 : spe3 (13.0/2.0)
RightExitNoGo(A) > 3.16331 :
|   TimeBefore(A) <= 17.9524 :
|   |   InFrontDirect(B) = no: alt2 (3.0)
|   |   InFrontDirect(B) = yes: hor2 (2.0)
|   TimeBefore(A) > 17.9524 :
|   |   GroundSpeed(A) <= 5.49952 :
|   |   |   TimeBefore(B) > 38.598 : alt3 (4.0)
|   |   |   TimeBefore(B) <= 38.598 :
|   |   |   |   Turning(A) <= -5.99759 : alt3 (3.0/1.0)
|   |   |   |   Turning(A) > -5.99759 : alt1 (17.0/2.0)
|   |   GroundSpeed(A) > 5.49952 :
|   |   |   HorConflConf = facing: hor3 (0.0)
|   |   |   HorConflConf = catching: hor3 (4.0)
|   |   |   HorConflConf = crossing: hor1 (5.0/2.0)


Tree saved
Evaluation on training data (51 items):


 Before Pruning           After Pruning
----------------   ---------------------------
Size      Errors   Size      Errors   Estimate
  16    7(13.7%)     16    7(13.7%)    (33.4%)


If the same experiment is repeated using only symbolic parameters, the output is:


C4.5 [release 5] decision tree generator
----------------------------------------
    Options:


File stem <onlySym>


Read 51 cases (26 attributes) from SymSbonz.data


Decision Tree:
Cruising(A) = no:
|   Similar = no:
|   |   HorConflConf = facing: alt1 (0.0)
|   |   HorConflConf = crossing: alt1 (12.0/1.0)
|   |   HorConflConf = catching:
|   |   |   AltProfile(A) = stable: hor3 (0.0)
|   |   |   AltProfile(A) = descend: alt1 (3.0/1.0)
|   |   |   AltProfile(A) = climb: hor3 (3.0)
|   Similar = yes:
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|   |   SpeedDec(A) = Big: alt1 (3.0/1.0)
|   |   SpeedDec(A) = VerySmall: alt3 (0.0)
|   |   SpeedDec(A) = Small:
|   |   |   AltProfile(B) = stable: hor1 (1.0)
|   |   |   AltProfile(B) = descend: alt3 (3.0)
|   |   |   AltProfile(B) = climb: alt3 (3.0)
Cruising(A) = yes:
|   InFrontSpace(A) = no: spe3 (13.0/2.0)
|   InFrontSpace(A) = yes:
|   |   SpeedDec(B) = Small: hor1 (6.0/3.0)
|   |   SpeedDec(B) = VerySmall: hor1 (0.0)
|   |   SpeedDec(B) = Big:
|   |   |   InFrontDirect(B) = no: alt2 (2.0)
|   |   |   InFrontDirect(B) = yes: hor2 (2.0)


Simplified Decision Tree:
Cruising(A) = no:
|   Similar = no:
|   |   HorConflConf = facing: alt1 (0.0)
|   |   HorConflConf = crossing: alt1 (12.0/2.5)
|   |   HorConflConf = catching:
|   |   |   AltProfile(A) = stable: hor3 (0.0)
|   |   |   AltProfile(A) = descend: alt1 (3.0/2.1)
|   |   |   AltProfile(A) = climb: hor3 (3.0/1.1)
|   Similar = yes:
|   |   SpeedDec(A) = Big: alt1 (3.0/2.1)
|   |   SpeedDec(A) = Small: alt3 (7.0/2.4)
|   |   SpeedDec(A) = VerySmall: alt3 (0.0)
Cruising(A) = yes:
|   InFrontSpace(A) = no: spe3 (13.0/3.6)
|   InFrontSpace(A) = yes:
|   |   SpeedDec(B) = Small: hor1 (6.0/4.3)
|   |   SpeedDec(B) = VerySmall: hor1 (0.0)
|   |   SpeedDec(B) = Big:
|   |   |   InFrontDirect(B) = no: alt2 (2.0/1.0)
|   |   |   InFrontDirect(B) = yes: hor2 (2.0/1.0)


Tree saved


Evaluation on training data (51 items):
 Before Pruning           After Pruning
----------------   ---------------------------
Size      Errors   Size      Errors   Estimate
  24    8(15.7%)     21    9(17.6%)    (39.1%)


The error obtained by using only symbolic parameters (15%) is slightly bigger than the error


by using both numeric and symbolic parameters (13%). The pruning option has not been


used for the comparison with C4.5 because pruning means generalising and the case-base


used here is too small to have the results affected by generalisation.


The simplified decision tree generated with the latest version of case-base is below. The full


tree has not been reported because it is too long. It can be clearly seen that the new decision


tree is much more complex than the previous one not only because there are more


parameters and more cases (1408 instead of 51), but because the case-base comes from real


conflicts with real solutions and has not been generated with a simple set of rules as done in


the first step of the knowledge engineering process.
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C4.5 [release 5] decision tree generator Wed Nov 26 11:37:03 1997
----------------------------------------


    Options:
File stem <forC45>


Read 1408 cases (21 attributes) from forC45.data


Simplified Decision Tree:


AltConfiguration(A) = stable:
|   CloseToTOD(A) <= 0 :
|   |   CloseToTOD(B) <= 10 :
|   |   |   AltConfiguration(B) = stable:
|   |   |   |   HorConflConf = diverging:
|   |   |   |   |   Manoeuvrability(B) <= 0.87 : hor1 (4.5/4.0)
|   |   |   |   |   Manoeuvrability(B) > 0.87 : hor3 (8.0/1.3)
|   |   |   |   HorConflConf = headon:
|   |   |   |   |   Manoeuvrability(B) <= 0.81 :
|   |   |   |   |   |   Manoeuvrability(B) > 0.77 : spe2 (3.3/2.2)
|   |   |   |   |   |   Manoeuvrability(B) <= 0.77 :
|   |   |   |   |   |   |   Manoeuvrability(A) <= 0.69 : hor1 (9.6/4.7)
|   |   |   |   |   |   |   Manoeuvrability(A) > 0.69 :
|   |   |   |   |   |   |   |   Manoeuvrability(B) > 0.69 : hor2 (11.2/1.5)
|   |   |   |   |   |   |   |   Manoeuvrability(B) <= 0.69 :
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) > 0.65 : hor3 (3.8/2.9)
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) <= 0.65 :
|   |   |   |   |   |   |   |   |   |   CloseToBoundaries(A) <= 1 :
spe1(4.3/3.3)
|   |   |   |   |   |   |   |   |   |   CloseToBoundaries(A) > 1 : hor2
(4.0/1.2)
|   |   |   |   |   Manoeuvrability(B) > 0.81 :
|   |   |   |   |   |   Manoeuvrability(A) <= 0.69 : hor3 (4.3/3.4)
|   |   |   |   |   |   Manoeuvrability(A) > 0.69 : hor1 (11.2/1.5)
|   |   |   |   HorConflConf = converging:
|   |   |   |   |   Manoeuvrability(A) <= 0.7 : hor2 (5.8/5.2)
|   |   |   |   |   Manoeuvrability(A) > 0.7 :
|   |   |   |   |   |   Manoeuvrability(B) <= 0.76 : spe3 (4.8/2.1)
|   |   |   |   |   |   Manoeuvrability(B) > 0.76 : hor3 (2.0/1.0)
|   |   |   |   HorConflConf = crossing:
|   |   |   |   |   Speed = same: hor3 (17.7/8.2)
|   |   |   |   |   Speed = slower: upp1 (3.9/3.2)
|   |   |   |   |   Speed = faster: upp2 (4.3/3.4)
|   |   |   AltConfiguration(B) = descending:
|   |   |   |   Manoeuvrability(B) > 0.77 : upp2 (22.4/2.7)
|   |   |   |   Manoeuvrability(B) <= 0.77 :
|   |   |   |   |   Manoeuvrability(A) <= 0.78 : upp2 (8.9/3.8)
|   |   |   |   |   Manoeuvrability(A) > 0.78 : upp1 (10.1/2.3)
|   |   |   AltConfiguration(B) = climbing:
|   |   |   |   Manoeuvrability(B) <= 0.67 :
|   |   |   |   |   Manoeuvrability(B) <= 0.65 :
|   |   |   |   |   |   HorConflConf = diverging: hor1 (1.4/1.3)
|   |   |   |   |   |   HorConflConf = headon: upp1 (0.0)
|   |   |   |   |   |   HorConflConf = converging: upp1 (10.8/7.8)
|   |   |   |   |   |   HorConflConf = crossing: upp2 (2.5/1.4)
|   |   |   |   |   Manoeuvrability(B) > 0.65 :
|   |   |   |   |   |   Manoeuvrability(A) <= 0.84 : dow1 (8.0/2.4)
|   |   |   |   |   |   Manoeuvrability(A) > 0.84 : hor1 (2.4/1.9)
|   |   |   |   Manoeuvrability(B) > 0.67 :
|   |   |   |   |   Manoeuvrability(B) > 0.85 : dow2 (19.3/4.8)
|   |   |   |   |   Manoeuvrability(B) <= 0.85 :
|   |   |   |   |   |   Faster(A) = difficult: hor3 (2.8/1.8)
|   |   |   |   |   |   Faster(A) = possible: dow2 (5.1/1.4)
|   |   |   |   |   |   Faster(A) = easy: hor3 (28.7/4.6)
|   |   CloseToTOD(B) > 10 :
|   |   |   CloseToTOD(B) <= 300 : dow2 (34.0/2.6)
|   |   |   CloseToTOD(B) > 300 : upp2 (4.0/2.2)
|   CloseToTOD(A) > 0 :
|   |   CloseToTOD(B) <= 0 : dow1 (33.3/2.6)
|   |   CloseToTOD(B) > 0 :
|   |   |   CloseToTOD(A) <= 300 :
|   |   |   |   CloseToBoundaries(B) <= 1.8 :
|   |   |   |   |   CloseToTOD(A) <= 234 :
|   |   |   |   |   |   Manoeuvrability(A) <= 0.84 :
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|   |   |   |   |   |   |   Manoeuvrability(B) <= 0.75 :
|   |   |   |   |   |   |   |   LevelsAvailable(A) = withSpaces: dow2 (0.0)
|   |   |   |   |   |   |   |   LevelsAvailable(A) = below: dow1 (3.0/2.5)
|   |   |   |   |   |   |   |   LevelsAvailable(A) = above: dow2 (0.0)
|   |   |   |   |   |   |   |   LevelsAvailable(A) = yes: dow3 (2.5/2.1)
|   |   |   |   |   |   |   |   LevelsAvailable(A) = none:
|   |   |   |   |   |   |   |   |   CloseToTOD(A) <= 63 : spe3 (2.3/1.9)
|   |   |   |   |   |   |   |   |   CloseToTOD(A) > 63 : dow2 (3.1/1.9)
|   |   |   |   |   |   |   Manoeuvrability(B) > 0.75 :[S1] ç
Subtree 1
|   |   |   |   |   |   Manoeuvrability(A) > 0.84 :
|   |   |   |   |   |   |   LevelsAvailable(A) = withSpaces: dow3 (0.0)
|   |   |   |   |   |   |   LevelsAvailable(A) = below: dow3 (10.0/2.4)
|   |   |   |   |   |   |   LevelsAvailable(A) = above: dow3 (0.0)
|   |   |   |   |   |   |   LevelsAvailable(A) = none: dow2 (9.0/1.3)
|   |   |   |   |   |   |   LevelsAvailable(A) = yes:
|   |   |   |   |   |   |   |   AltitudeNow = same: dow1 (2.6/1.6)
|   |   |   |   |   |   |   |   AltitudeNow = different: dow3 (19.4/1.3)
|   |   |   |   |   CloseToTOD(A) > 234 :
|   |   |   |   |   |   Manoeuvrability(B) > 0 : hor3 (4.0/1.2)
|   |   |   |   |   |   Manoeuvrability(B) <= 0 :
|   |   |   |   |   |   |   EasyToExitHorizontally(A) = difficult: hor1 (0.0)
|   |   |   |   |   |   |   EasyToExitHorizontally(A) = possible: hor1 (0.0)
|   |   |   |   |   |   |   EasyToExitHorizontally(A) = easy: hor1 (3.3/2.4)
|   |   |   |   |   |   |   EasyToExitHorizontally(A) = veryEasy: hor2
(6.7/4.7)
|   |   |   |   CloseToBoundaries(B) > 1.8 :
|   |   |   |   |   CloseToBoundaries(B) <= 2 :
|   |   |   |   |   |   Slower(B) = possible: hor2 (10.0/2.4)
|   |   |   |   |   |   Slower(B) = difficult:
|   |   |   |   |   |   |   Manoeuvrability(A) <= 0.88 : hor1 (16.7/3.2)
|   |   |   |   |   |   |   Manoeuvrability(A) > 0.88 : hor2 (4.5/1.2)
|   |   |   |   |   |   Slower(B) = easy:
|   |   |   |   |   |   |   Manoeuvrability(A) <= 0.76 : hor2 (4.4/1.2)
|   |   |   |   |   |   |   Manoeuvrability(A) > 0.76 : hor1 (4.3/1.6)
|   |   |   |   |   CloseToBoundaries(B) > 2 :
|   |   |   |   |   |   CloseToTOD(A) > 181 : upp1 (2.0/1.8)
|   |   |   |   |   |   CloseToTOD(A) <= 181 :
|   |   |   |   |   |   |   CloseToBoundaries(B) <= 8.3 : dow1 (10.0/1.3)
|   |   |   |   |   |   |   CloseToBoundaries(B) > 8.3 : dow3 (3.0/1.1)
|   |   |   CloseToTOD(A) > 300 :
|   |   |   |   CloseToTOD(B) <= 181 : dow2 (10.3/1.7)
|   |   |   |   CloseToTOD(B) > 181 :
|   |   |   |   |   AltConfiguration(B) = descending: upp2 (2.0/1.0)
|   |   |   |   |   AltConfiguration(B) = climbing: dow2 (2.0/1.0)
|   |   |   |   |   AltConfiguration(B) = stable:
|   |   |   |   |   |   Manoeuvrability(B) <= 0.77 : hor3 (14.0/2.5)
|   |   |   |   |   |   Manoeuvrability(B) > 0.77 : spe3 (3.0/2.1)
AltConfiguration(A) = descending:
|   CloseToTOD(B) <= 0 :
|   |   CloseToTOD(A) <= 10 :
|   |   |   LevelsAvailable(B) = withSpaces:
|   |   |   |   Manoeuvrability(B) <= 0 : upp1 (5.1/4.8)
|   |   |   |   Manoeuvrability(B) > 0 :
|   |   |   |   |   Manoeuvrability(A) <= 0.7 :
|   |   |   |   |   |   Manoeuvrability(B) <= 0.71 : dow1 (7.0/1.3)
|   |   |   |   |   |   Manoeuvrability(B) > 0.71 : upp1 (4.2/1.4)
|   |   |   |   |   Manoeuvrability(A) > 0.7 :
|   |   |   |   |   |   EasyToExitHorizontally(A) = difficult: upp2 (3.0/1.1)
|   |   |   |   |   |   EasyToExitHorizontally(A) = possible: upp2 (2.0/1.5)
|   |   |   |   |   |   EasyToExitHorizontally(A) = easy: upp1 (16.7/2.6)
|   |   |   |   |   |   EasyToExitHorizontally(A) = veryEasy: upp1 (18.2/1.5)
|   |   |   LevelsAvailable(B) = below:
|   |   |   |   Manoeuvrability(A) <= 0.72 : upp1 (24.6/6.8)
|   |   |   |   Manoeuvrability(A) > 0.72 :
|   |   |   |   |   AltConfiguration(B) = stable: upp1 (4.3/2.3)
|   |   |   |   |   AltConfiguration(B) = descending: upp1 (6.2/1.6)
|   |   |   |   |   AltConfiguration(B) = climbing: upp3 (4.2/1.3)
|   |   |   LevelsAvailable(B) = above:
|   |   |   |   AltConfiguration(B) = stable: upp1 (1.3/0.9)
|   |   |   |   AltConfiguration(B) = climbing: dow2 (4.7/2.7)
|   |   |   |   AltConfiguration(B) = descending:
|   |   |   |   |   Manoeuvrability(B) <= 0.77 : upp2 (38.7/12.6)
|   |   |   |   |   Manoeuvrability(B) > 0.77 :
|   |   |   |   |   |   EasyToExitHorizontally(B) = difficult: upp1 (2.5/1.1)
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|   |   |   |   |   |   EasyToExitHorizontally(B) = possible: upp1 (12.6/1.5)
|   |   |   |   |   |   EasyToExitHorizontally(B) = easy: upp2 (4.0/2.2)
|   |   |   |   |   |   EasyToExitHorizontally(B) = veryEasy: upp2 (6.6/3.9)
|   |   |   LevelsAvailable(B) = yes:
|   |   |   |   Manoeuvrability(A) <= 0.66 :
|   |   |   |   |   Manoeuvrability(A) <= 0 :
|   |   |   |   |   |   AltConfiguration(B) = stable: upp1 (2.0/1.3)
|   |   |   |   |   |   AltConfiguration(B) = descending: upp2 (20.9/11.6)
|   |   |   |   |   |   AltConfiguration(B) = climbing: upp1 (4.3/3.4)
|   |   |   |   |   Manoeuvrability(A) > 0 :
|   |   |   |   |   |   HorConflConf = diverging: upp2 (11.1/1.3)
|   |   |   |   |   |   HorConflConf = headon: dow2 (10.5/3.9)
|   |   |   |   |   |   HorConflConf = converging: dow2 (4.0/1.2)
|   |   |   |   |   |   HorConflConf = crossing: upp2 (8.1/1.3)
|   |   |   |   Manoeuvrability(A) > 0.66 :
|   |   |   |   |   Manoeuvrability(A) > 0.88 : upp1 (4.4/1.2)
|   |   |   |   |   Manoeuvrability(A) <= 0.88 :
|   |   |   |   |   |   CloseToBoundaries(A) > 4.4 : upp1 (3.8/1.2)
|   |   |   |   |   |   CloseToBoundaries(A) <= 4.4 :
|   |   |   |   |   |   |   AltConfiguration(B) = stable: upp2 (0.0)
|   |   |   |   |   |   |   AltConfiguration(B) = climbing: upp1 (2.4/1.4)
|   |   |   |   |   |   |   AltConfiguration(B) = descending:
|   |   |   |   |   |   |   |   Faster(A) = easy: upp2 (10.0/2.4)
|   |   |   |   |   |   |   |   Faster(A) = difficult:
|   |   |   |   |   |   |   |   |   Slower(B) = difficult: upp2 (6.6/1.9)
|   |   |   |   |   |   |   |   |   Slower(B) = possible: upp1 (0.6/0.6)
|   |   |   |   |   |   |   |   |   Slower(B) = easy:
|   |   |   |   |   |   |   |   |   |   Manoeuvrability(A) <=
0.77:upp1(10.4/3.4)
|   |   |   |   |   |   |   |   |   |   Manoeuvrability(A) > 0.77 :upp2
(2.7/1.7)
|   |   |   |   |   |   |   |   Faster(A) = possible:
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) <= 0.67 : upp1 (3.0/2.1)
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) > 0.67 : upp2 (29.7/2.4)
|   |   |   LevelsAvailable(B) = none:
|   |   |   |   AltConfiguration(B) = stable: upp1 (4.9/1.4)
|   |   |   |   AltConfiguration(B) = descending: upp1 (26.7/4.3)
|   |   |   |   AltConfiguration(B) = climbing: hor3 (7.6/3.1)
|   |   CloseToTOD(A) > 10 :
|   |   |   Manoeuvrability(B) <= 0 : upp1 (2.0/1.0)
|   |   |   Manoeuvrability(B) > 0 :
|   |   |   |   Manoeuvrability(B) <= 0.88 : dow1 (18.2/1.3)
|   |   |   |   Manoeuvrability(B) > 0.88 : dow2 (6.0/2.3)
|   CloseToTOD(B) > 0 :
|   |   CloseToTOD(B) <= 69 :
|   |   |   Manoeuvrability(B) > 0.78 : dow3 (10.0/1.3)
|   |   |   Manoeuvrability(B) <= 0.78 :
|   |   |   |   Manoeuvrability(A) <= 0 : dow3 (3.8/3.2)
|   |   |   |   Manoeuvrability(A) > 0 : dow2 (2.0/1.0)
|   |   CloseToTOD(B) > 69 :
|   |   |   CloseToTOD(B) <= 88 : dow2 (25.0/2.5)
|   |   |   CloseToTOD(B) > 88 :
|   |   |   |   Manoeuvrability(A) > 0.76 : upp1 (9.0/1.3)
|   |   |   |   Manoeuvrability(A) <= 0.76 :
|   |   |   |   |   CloseToTOD(B) > 155 : upp1 (3.8/2.9)
|   |   |   |   |   CloseToTOD(B) <= 155 :
|   |   |   |   |   |   CloseToTOD(B) <= 97 : upp3 (7.0/2.4)
|   |   |   |   |   |   CloseToTOD(B) > 97 : dow2 (7.2/2.3)
AltConfiguration(A) = climbing:
|   Manoeuvrability(A) <= 0 :
|   |   CloseToTOD(A) <= 234 : dow1 (67.1/51.8)
|   |   CloseToTOD(A) > 234 :
|   |   |   CloseToTOD(A) > 352 : upp1 (3.5/2.5)
|   |   |   CloseToTOD(A) <= 352 :
|   |   |   |   EasyToExitHorizontally(B) = difficult: hor1 (0.0)
|   |   |   |   EasyToExitHorizontally(B) = possible: hor1 (0.0)
|   |   |   |   EasyToExitHorizontally(B) = easy: hor2 (3.3/2.4)
|   |   |   |   EasyToExitHorizontally(B) = veryEasy: hor1 (6.7/4.7)
|   Manoeuvrability(A) > 0 :
|   |   LevelsAvailable(B) = none: dow1 (57.0/9.0)
|   |   LevelsAvailable(B) = withSpaces:
|   |   |   HorConflConf = diverging: dow1 (0.4/0.4)
|   |   |   HorConflConf = headon: hor1 (1.7/1.4)
|   |   |   HorConflConf = converging: hor3 (24.2/3.5)
|   |   |   HorConflConf = crossing: dow1 (19.1/2.4)
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|   |   LevelsAvailable(B) = below:
|   |   |   CloseToTOD(A) <= 80 :
|   |   |   |   Manoeuvrability(A) <= 0.65 : dow2 (13.2/1.5)
|   |   |   |   Manoeuvrability(A) > 0.65 :
|   |   |   |   |   Manoeuvrability(B) <= 0.7 :
|   |   |   |   |   |   Manoeuvrability(B) <= 0.62 : dow2 (2.2/1.2)
|   |   |   |   |   |   Manoeuvrability(B) > 0.62 : dow1 (24.5/4.6)
|   |   |   |   |   Manoeuvrability(B) > 0.7 :
|   |   |   |   |   |   LevelsAvailable(A) = withSpaces: dow2 (3.2/1.2)
|   |   |   |   |   |   LevelsAvailable(A) = above: dow2 (0.0)
|   |   |   |   |   |   LevelsAvailable(A) = none: dow2 (11.7/1.9)
|   |   |   |   |   |   LevelsAvailable(A) = below:
|   |   |   |   |   |   |   AltConfiguration(B) = stable: dow1 (2.1/1.5)
|   |   |   |   |   |   |   AltConfiguration(B) = descending: dow1 (0.3/0.3)
|   |   |   |   |   |   |   AltConfiguration(B) = climbing:[S2] ç Subtree 2
|   |   |   |   |   |   LevelsAvailable(A) = yes:
|   |   |   |   |   |   |   Manoeuvrability(B) <= 0.77 : dow1 (8.2/2.6)
|   |   |   |   |   |   |   Manoeuvrability(B) > 0.77 :
|   |   |   |   |   |   |   |   HorConflConf = headon: dow1 (7.0/1.3)
|   |   |   |   |   |   |   |   HorConflConf = converging: dow2 (1.7/1.4)
|   |   |   |   |   |   |   |   HorConflConf = crossing: dow2 (9.0/1.3)
|   |   |   |   |   |   |   |   HorConflConf = diverging:
|   |   |   |   |   |   |   |   |   Manoeuvrability(A) <= 0.81 : dow1 (3.0/1.1)
|   |   |   |   |   |   |   |   |   Manoeuvrability(A) > 0.81 : dow2 (6.0/1.2)
|   |   |   CloseToTOD(A) > 80 :
|   |   |   |   Manoeuvrability(A) <= 0.83 : upp3 (3.0/2.1)
|   |   |   |   Manoeuvrability(A) > 0.83 : dow3 (3.0/1.1)
|   |   LevelsAvailable(B) = above:
|   |   |   CloseToTOD(A) > 33 : dow1 (16.3/1.3)
|   |   |   CloseToTOD(A) <= 33 :
|   |   |   |   Manoeuvrability(B) <= 0.64 : hor3 (5.5/1.3)
|   |   |   |   Manoeuvrability(B) > 0.64 :
|   |   |   |   |   Manoeuvrability(B) <= 0.72 : upp2 (3.7/1.9)
|   |   |   |   |   Manoeuvrability(B) > 0.72 : dow1 (9.3/2.4)
|   |   LevelsAvailable(B) = yes:
|   |   |   CloseToTOD(A) <= 88 :
|   |   |   |   AltConfiguration(B) = stable:
|   |   |   |   |   HorConflConf = diverging: dow1 (5.9/2.8)
|   |   |   |   |   HorConflConf = headon: hor2 (2.2/1.6)
|   |   |   |   |   HorConflConf = crossing: dow2 (5.6/1.3)
|   |   |   |   |   HorConflConf = converging:
|   |   |   |   |   |   Faster(B) = difficult: hor3 (0.0)
|   |   |   |   |   |   Faster(B) = possible: dow1 (3.3/1.2)
|   |   |   |   |   |   Faster(B) = easy: hor3 (5.2/1.7)
|   |   |   |   AltConfiguration(B) = descending:
|   |   |   |   |   Manoeuvrability(A) <= 0.65 : dow2 (6.9/1.3)
|   |   |   |   |   Manoeuvrability(A) > 0.65 :
|   |   |   |   |   |   LevelsAvailable(A) = withSpaces: dow1 (0.0)
|   |   |   |   |   |   LevelsAvailable(A) = above: dow1 (2.3/1.9)
|   |   |   |   |   |   LevelsAvailable(A) = none: hor3 (6.1/1.4)
|   |   |   |   |   |   LevelsAvailable(A) = below:
|   |   |   |   |   |   |   Manoeuvrability(A) <= 0.7 : upp3 (4.5/1.6)
|   |   |   |   |   |   |   Manoeuvrability(A) > 0.7 : upp2 (3.1/1.2)
|   |   |   |   |   |   LevelsAvailable(A) = yes:
|   |   |   |   |   |   |   Manoeuvrability(A) <= 0.85 : upp2 (4.6/2.8)
|   |   |   |   |   |   |   Manoeuvrability(A) > 0.85 : dow1 (10.2/1.3)
|   |   |   |   AltConfiguration(B) = climbing:
|   |   |   |   |   EasyToExitHorizontally(B) = difficult: dow1 (3.3/1.4)
|   |   |   |   |   EasyToExitHorizontally(B) = veryEasy: dow2 (67.6/12.7)
|   |   |   |   |   EasyToExitHorizontally(B) = possible:
|   |   |   |   |   |   EasyToExitHorizontally(A) = difficult: dow1 (0.0)
|   |   |   |   |   |   EasyToExitHorizontally(A) = possible: dow1 (0.0)
|   |   |   |   |   |   EasyToExitHorizontally(A) = easy: dow2 (4.4/2.4)
|   |   |   |   |   |   EasyToExitHorizontally(A) = veryEasy: dow1 (7.7/1.8)
|   |   |   |   |   EasyToExitHorizontally(B) = easy:
|   |   |   |   |   |   Manoeuvrability(A) <= 0.63 : dow1 (4.0/1.2)
|   |   |   |   |   |   Manoeuvrability(A) > 0.63 :
|   |   |   |   |   |   |   Manoeuvrability(B) <= 0.7 : dow1 (6.0/3.4)
|   |   |   |   |   |   |   Manoeuvrability(B) > 0.7 :
|   |   |   |   |   |   |   |   Manoeuvrability(B) <= 0.78 : dow2 (11.6/1.4)
|   |   |   |   |   |   |   |   Manoeuvrability(B) > 0.78 :
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) <= 0.85 : dow1 (2.1/1.1)
|   |   |   |   |   |   |   |   |   Manoeuvrability(B) > 0.85 : dow2 (5.1/1.2)
|   |   |   CloseToTOD(A) > 88 :
|   |   |   |   AltConfiguration(B) = stable: dow2 (2.0/1.8)
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|   |   |   |   AltConfiguration(B) = descending: upp3 (5.0/2.3)
|   |   |   |   AltConfiguration(B) = climbing: dow3 (6.0/1.2)


Subtree [S1]
EasyToExitHorizontally(B) = difficult: upp2 (0.0)
EasyToExitHorizontally(B) = possible: upp2 (0.0)
EasyToExitHorizontally(B) = easy: upp2 (9.0/2.4)
EasyToExitHorizontally(B) = veryEasy: dow1 (3.0/1.1)


Subtree [S2]
EasyToExitHorizontally(A) = difficult: dow2 (0.0)
EasyToExitHorizontally(A) = possible: dow1 (3.0/1.1)
EasyToExitHorizontally(A) = easy: dow2 (4.0/1.2)
EasyToExitHorizontally(A) = veryEasy:
|   Priority = same: dow1 (0.5/0.5)
|   Priority = lower: dow1 (2.1/1.1)
|   Priority = higher: dow2 (3.1/1.2)


Evaluation on training data (1408 items):


 Before Pruning           After Pruning
----------------   ---------------------------
Size      Errors   Size      Errors   Estimate


 523  141(10.0%)    297  196(13.9%)    (30.7%)   <<


Where the subtrees S1 and S2 can be found in the tree and have been reported separately


for simplicity.


B.2 The Discriminatory Power in ISAC and C4.5


As said in Chapter 5, the algorithm used by ISAC for the calculation of the discriminatory


power is slightly different from the one used in C4.5. The discriminatory power for the


parameters in the latest case-base, as calculated by ISAC, is shown in Table B.1. The


smaller the value of remainder, the more discriminatory is the parameter.


By comparing the decision tree above with Table B.1, it can be seen that the parameter


“CloseToTOD(B)” is the most discriminatory for ISAC, whereas in C4.5 the most


discriminatory parameter, which is the root of the decision tree, is “AltConfiguration(A)”.


The reason of this discrepancy is because ISAC and C4.5 use slightly different algorithms


for the calculation of the information, as explained in Chapter 5.


As said in Chapter 4, the parameter “Similar” has not been used in the latest steps of the


knowledge engineering process because derived from other parameters already present in


the case description. This decision is supported by the fact that the discriminatory power of


this parameter is the lowest, see Table B.1.







167


B.3 Conclusion


In this appendix the utility of the discriminatory power of the weights is shown from two


points of view: on one hand, the discriminatory power is used to build a decision tree in


which the information contained in the case-base is stored. On the other hand, the


discriminatory power is simply used to build a list of the most important parameters. Some


discrepancies between the results of the two methods are shown here and are explained in


Chapter 5.


Table B.1: Discriminatory power from ISAC.


Building Decision Tree.....


Parameter Remainder Type of parameter
^^^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^^^^^
CloseToTOD(B) 1.9786  Numeric
CloseToTOD(A) 1.9786  Numeric
CloseToBoundaries(B) 2.0209  Numeric
CloseToBoundaries(A) 2.0209  Numeric
Manoeuvrability(B) 2.0341 Numeric
Manoeuvrability(A) 2.0341 Numeric
AltConfiguration(B) 2.2236 Symbolic
AltConfiguration(A) 2.2236 Symbolic
HorConflConf 2.7725 Symbolic
AltitudeNow 2.7905  Symbolic
EasyToExitHorizontally(B) 3.1536  Symbolic
EasyToExitHorizontally(A) 3.1536  Symbolic
LevelsAvailable(B) 3.6363  Symbolic
LevelsAvailable(A) 3.6363  Symbolic
Priority 3.6513 Symbolic
Slower(B) 4.0482 Symbolic
Slower(A) 4.0482 Symbolic
Faster(B) 4.0510 Symbolic
Faster(A) 4.0510 Symbolic
Speed 4.0624 Symbolic
Similar 4.1721  Symbolic
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Appendix C


Classes and Functions in ISAC


The file header1.h contains the definition of the classes and functions that constitute the


core of ISAC, i.e. the functions that are used at run-time, such as the retrieval function. On


the other hand, the file header2.h contains the definition of all the functions that have


been used during the knowledge engineering process to refine the case description (e.g., the


function that calculates the discriminatory power) and that are not necessary at run-time.


The use of global variables and the hard coding of some file names is not considered “clean”


programming but has been accepted in this prototypical version due to time restrictions.


C.1 The File header1.h


#define FileCaseBase "/dd/csc/abonzano/ISAC/CaseBase"
#define FileCaseStruct "/dd/csc/abonzano/ISAC/CaseStruct"
#define FileTarget "/dd/csc/abonzano/ISAC/target"
#define SolFile "/dd/csc/abonzano/ISAC/Solutions"
#define ResultsFile "/dd/csc/abonzano/ISAC/results"


//CASE STRUCT (bodies are in ReadCaseStruct.c)
//===========
class MiniCell
 {
  char name[64];
 public:
  MiniCell* next;
  MiniCell(MiniCell*,char*);
  char* GiveName() {return name;}
 };


class TypeNode
 {
  char name[32];
  int number,constraint,NumOfValues,sel;
  double remainder,min,max;
  double globalWeight,globalNewWeight,globalHiPerfWeight;
  MiniCell* PossValues;
 public:
  TypeNode* next;
  TypeNode (TypeNode*,int,int,int,char*,MiniCell*);
  char* GiveName() {return name;}
  MiniCell* GivePossValues() {return PossValues;}
  int GiveNumOfValues() {return NumOfValues;}
  int GiveConstraint() {return constraint;}
  int GiveNumber() {return number;}
  double GiveRemainder() {return remainder;}
  double GiveMin() {return min;}
  double GiveMax() {return max;}
  void PutRemainder(double num) {remainder=num;}
  void StoreMin(double val) {min=val;}
  void StoreMax(double val) {max=val;}
  void PrintForC45(char*);
  void StoreSel(int val) {sel=val;}
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  int GiveSel() {return sel;}
  double GiveWeight() {return globalWeight;}
  double GiveNewWeight() {return globalNewWeight;}
  void ChangeWeight(double);
  void ChangeHighest(double);
  void SwapWeights() {globalWeight=globalNewWeight;}
  void SwapHighest() {globalWeight=globalHiPerfWeight;}
 };


//CASE-BASE (bodies in ReadCaseBase.c)
//=========
class branch;
class OneCase;


class OneFeat
 {
  char FeatName[32];
  double NumValue;
  double weight,NewWeight,HighestPerfWeight;
  char SymValue[32];
 public:
  OneFeat* next;
  OneFeat(char*,OneFeat*,int);
  char* GiveName() {return FeatName;}
  char* GiveSymValue() {return SymValue;}
  double GiveNumValue() {return NumValue;}
  void PutFeatValue(char* ReadValue) {strcpy(SymValue,ReadValue);}
  void PutFeatValue(double val) {NumValue=val;}
  double GiveWeight() {return weight;}
  double GiveNewWeight() {return NewWeight;}
  void ChangeWeight(double);
  void ChangeHighest(double);
  void SwapWeights() {weight=NewWeight;}
  void SwapHighest() {weight=HighestPerfWeight;}
 };


class OneCase
 {
  char CaseName[32];
  char Solution[80];
  int NumNIL;
  double Activation;
  OneFeat* FeatList;
 public:
  double Kc,Fc;
  int ThisCaseIsUsed;
  OneCase* next;
  OneCase(char*,OneCase*,TypeNode*);
  void StoreFeatValue(char*,char*,double);
  void StoreFeatValue(char*,double,double);
  int GiveNumNIL() {return NumNIL;}
  double GiveNumValue(char*);
  char* GiveSymValue(char*);
  char* GiveName() {return CaseName;}
  void StoreSol(char*);
  char* GiveFirstSol();
  char* GiveSol() {return Solution;}
  void ResetAct() {Activation=0.0;}
  void AddAct(double);
  double GiveAct() {return Activation;}
  OneFeat* GiveFeats() {return FeatList;}
  double GiveWeight(char* FeatName);
  double GiveNewWeight(char* FeatName);
  void ChangeWeight(char*,double);
 };


//TREE FOR BASE FILTERING (Bodies in Tree.c)
//=======================
class SimCase
 {
  OneCase *ACase;
 public:
  SimCase *next;
  SimCase(OneCase*,SimCase*);
  OneCase* GiveCase() {return ACase;}
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  double GiveAct() {return ACase->GiveAct();}
  int GiveNumNIL() {return ACase->GiveNumNIL();}
  char* GiveName() {return ACase->GiveName();}
  char* GiveSol() {return ACase->GiveSol();}
  char* GiveFirstSol() {return ACase->GiveFirstSol();}
 };


class branch
 {
  char FeatValue[64];
  SimCase* ListOfCases;
 public:
  branch* next;
  branch(branch*,char*,char*);
  char* GiveName() {return FeatValue;}
  void AddACase(OneCase* OCase)
              {ListOfCases= new SimCase(OCase,ListOfCases);}
  SimCase* GiveList() {return ListOfCases;}
 };


//FOR THE FINAL SOLUTION
//=======================
class SAN
 {
  char name[32];
  char sol[32];
  double act;
 public:
  SAN *next;
  SAN(char*,char*,double,SAN*);
  char* GiveName() {return name;}
  char* GiveSol() {return sol;}
  double GiveAct() {return act;}
 };


class solsType
 {
 public:
  solsType(char*,int,solsType*);
  char name[12];
  int val;
  solsType *next;
 };


//GLOBAL VARIABLES
//================
extern int GUM;
extern int GDU;
extern int BUU;
extern int BDM;
extern int randomWeight;
extern int representation;
extern int MaxIterations;
extern int NumForTrainingSet;
extern int options;
extern int shift;
extern int multipl;
extern int average;
extern int global;
extern int DoAlsoGlobal;
extern int updateWeights;
extern int DoGraphic;
extern double MaxActivation;
extern char TypeOfSimulation[12];


//FUNCTIONS
//=========
int ThereAreNoConstraints(TypeNode*);
void Shuffle(char*,TypeNode*);


void wait();
void ATCBR(void);
char* DelEOL(char*);
char* Read(FILE*);
char** ReadSol(int*);
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void CreateCopy(char*);


TypeNode* ReadCaseStruct(char*);
void CheckMinMax(char*,double,TypeNode*);
MiniCell* ReadValues(int,FILE*);
int ItIsANumber(TypeNode*,char*);
int ItIsAConstraint(char*,TypeNode*);
void AddCaseToBranch(char*,char*,OneCase*,branch*);
branch* BuildWebOfPointers(TypeNode*,OneCase*);


OneFeat* BuildEmptyFeatList(TypeNode*);
OneCase* ReadCaseBase(char*,TypeNode*);
OneCase* ReadOneCase(char*,OneCase*,TypeNode*,FILE*);
OneCase* ReadAllTargets(char*,TypeNode*);
OneCase* ReadOneTarget(char*,OneCase*,TypeNode*,FILE*);
void FindCases(OneCase*,OneCase*,branch*,TypeNode*,char*);
double FindMaxAct(SimCase*);


SimCase* BaseFiltering(OneCase*,branch*,TypeNode*);
SimCase* CutSubList(SimCase*,SimCase*);
int ItIsIn(SimCase*,SimCase*);


void ResetActivation(OneCase*);
void ResetCaseBase(OneCase*);
void SpreadingActivation(SimCase*,TypeNode*,OneCase*,branch*);
void GlobalSpreadingActivation(SimCase*,TypeNode*,OneCase*,branch*);
void CalcSymAct(TypeNode*,OneCase*,branch*);
void CalcNumAct(TypeNode*,OneCase*,SimCase*);


SAN* Analyse(SimCase*,char*,double,SAN*);
char* ChooseFinal(SAN*);
char* FilterSol(char*,char*);


//SHOW
//=====
void ShowCaseStruct(TypeNode*);
void ShowCaseBase(OneCase*,TypeNode*);
void ShowBranches(branch*);
void ShowTarget(OneCase*,TypeNode*);
void WriteCaseBase(OneCase*,TypeNode*);


//DELETE
//=======
MiniCell* Delete(MiniCell*);
TypeNode* Delete(TypeNode*);
OneCase* Delete(OneCase*);
SimCase* Delete(SimCase*);
OneFeat* Delete(OneFeat*);
branch* Delete(branch*);
SAN* Delete(SAN*);
solsType* Delete(solsType*);


C.2 The File header2.h


#define BigFile "/dd/csc/abonzano/ISAC/BigCB"
#define InputFile "/dd/csc/abonzano/ISAC/simul"
#define InputFile2 "/dd/csc/abonzano/ISAC/simul2"
#define ForC45 "/dd/csc/abonzano/ISAC/forC45"
#define forGraph "/dd/csc/abonzano/ISAC/.numbers"
#define FileRealSet "/dd/csc/abonzano/ISAC/RealSet"


//NUMERIC REMAINDER (in NumericRemainder.c)
//======================
class cell
 {
  double val;
 public:
  cell *next;
  cell(double,cell*);
  void NewNext(cell* NEW) {next=NEW;}
  double GiveVal() {return val;}
 };
//LOCAL WEIGHTS
//=============
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extern int NumCasesRetrieved;
double Evaluate();
void ToyCaseBase();
void EliminateNIL(OneCase*,TypeNode*);
int CaseIsCorrect(char*,char*);
int StringsAreCompatible(char*,char*);
void PrepFilesForPiv(char*,TypeNode*);
void Training_Test(char*,TypeNode*);
void IntrospectiveTest(TypeNode*);
void TestForPivotals(TypeNode*);
void Histogram(TypeNode*,OneCase*);
void GlobalHistogram(TypeNode*);
double Testing(OneCase*,OneCase*,branch*,TypeNode*);
void NormalizeMaxActivation(OneCase*,TypeNode*);
void NormalizeGlobalMaxActivation(TypeNode*);
void LocalWeightsSum(SimCase*,OneCase*,TypeNode*);
void GlobalWeights(SimCase*,OneCase*,TypeNode*);
void LocalWeightsMul(SimCase*,OneCase*,TypeNode*);
void UpdateWeights(OneCase*,int);
void UpdateGlobalWeights(TypeNode*,int);
void UpdateHighest(OneCase*);
void UpdateGlobalHighest(TypeNode*);
void CalcAverageFromLocal(TypeNode*,OneCase*);


//SIMULATIONS
//============
void ToFile(OneCase*,FILE*,TypeNode*);
void LeaveOneOut(TypeNode*,OneCase*,branch*);
void LeaveOneIn(TypeNode*,char*);
void MakeSymmetric();
int NumOfCases(OneCase*);


//OLD METHOD (FLAT SEARCH)
//==========
void LeaveOneInO(TypeNode*,char*);
branch* BuildTreeO(TypeNode*,OneCase*);
void FindCasesO(OneCase*,OneCase*,branch*,TypeNode*,char*);
SimCase* SpreadingActivationO(SimCase*,TypeNode*,OneCase*);
void CalcSymActO(char*,char*,SimCase*);
void CalcNumActO(double,double,SimCase*,double,double);


//C4.5
//====
void C45_IN(TypeNode*);
void C45_OUT(TypeNode*);
void C45DataNames(TypeNode*,OneCase*);
void C45TestSol(TypeNode*,OneCase*,char*);
void ReadResults(char);
char* CheckNIL(char*);


//DECISION TREE
//=============
TypeNode* BuildDecTree(TypeNode*,OneCase*);
double Remainder(int,int,int*,int**);
double NumRem(OneCase*,TypeNode*,char**,int*,int);
double Info(int,int,int**);
double Weight(int,int,int*,int**);
TypeNode* OrderSList(TypeNode*);
cell* ReadAllNumbers(OneCase*,char*);
double FromOne(TypeNode*,OneCase*,double,char**,int*,int);


//BIG CASE-BASE
//==============
void BigCaseBase(TypeNode*);


//COVERAGE
//========
void FindNumbers(TypeNode*);
void SMA(TypeNode*);
void AVE(TypeNode*);
double NumCases(TypeNode*,int);
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Appendix D


The Data Files


This appendix shows the files that contain the knowledge base data which is read by ISAC


at the start up. The files CaseBase, Solutions and CaseStruct contain respectively


the case-base, the possible solutions for a case and the structure for the case. In the data


files, lines that begin with the symbol “//” are comment lines and are automatically skipped


by ISAC.


D.1 The file CaseStruct


Each parameter has the following fields that must be arranged in order on the same line:


• the name of the parameter,


• an integer that indicates whether the parameter has numeric (1) or symbolic values (0),


• an integer that indicates whether the parameter is a constraint (1) or not (0),


• a real number that indicates the weight of the parameter,


• if the parameter has symbolic values, the number of possible values.


Then, if the parameter has symbolic values, these values are listed one after the other, each


on a new line. The field reserved for the weight is used if the human expert has an idea of


the importance of each parameter in relation to all the others. Usually this is difficult to


decide upon and consequently the weight of the parameters is determined with introspective


learning techniques. If this happen, the weight values read from the file are discarded.


The case structure reported below is that for the “TwoInOne.canonical” and for the


“TwoInOne.nonCanonical” case representations.


// NO TABS ALLOWED, COMMENTS MUST BE AT THE BEGINNING OF THE LINE
// ALL POSSIBLE VALUES MUST BE ON A <<NEW>> LINE
// Information about the case structure
// Name-Of-The-Parameter Is-It-A-Number? Is-It-A-Constraint?
// Weight Num-Of-Possible-Values Values


HorConflConf 0 0 1 4
//----------
crossing
converging
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headon
diverging


Priority 0 0 1 3
//------
higher
lower
same


Similar 0 0 1 2
//-----
yes
no


AltitudeNow 0 0 1 2
//---------
different
same


Speed 0 0 1 3
//---
faster
slower
same


AltConfiguration(A) 0 0 1 3
//-------------
climbing
descending
stable


CloseToTOD(A) 1 0 1
//-----------


CloseToBoundaries(A) 1 0 1
//------------------


Manoeuvrability(A) 1 0 1
//----------------


EasyToExitHorizontally(A) 0 0 1 4
//----------------
veryEasy
easy
possible
difficult


LevelsAvailable(A) 0 0 1 5
//----------------


yes
none
above
below
withSpaces


Faster(A) 0 0 1 3
//-------
easy
possible
difficult


Slower(A) 0 0 1 3
//-------
easy
possible
difficult


AltConfiguration(B) 0 0 1 3
//-----------------
climbing
descending
stable


CloseToTOD(B) 1 0 1
//-----------


CloseToBoundaries(B) 1 0 1
//------------------


Manoeuvrability(B) 1 0 1
//----------------


EasyToExitHorizontally(B) 0 0 1 4
//----------------
veryEasy
easy
possible
difficult


LevelsAvailable(B) 0 0 1 5
//----------------
none
yes
above
below
withSpaces


Faster(B) 0 0 1 3
//-------
easy
possible
difficult


Slower(B) 0 0 1 3
//-------
easy
possible
difficult


The case structure reported below is that for the “OneInOne” case representation.


// NO TABS ALLOWED, COMMENTS MUST BE AT THE BEGINNING OF THE LINE
// ALL POSSIBLE VALUES MUST BE ON A <<NEW>> LINE
// Information about the case structure
// Name-Of-The-Parameter Is-It-A-Number? Is-It-A-Constraint?
// Weight Num-Of-Possible-Values Values


AltConfiguration 0 0 1 3
//--------------
climbing
descending
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stable


CloseToTOD 1 0 1
//--------


CloseToBoundaries 1 0 1
//---------------


AltitudeNow 0 0 1 2
//---------
different
same


Speed 0 0 1 3
//---
faster
slower
same


Manoeuvrability 1 0 1
//-------------


Priority 0 0 1 3
//------
higher
lower
same


HorConflConf 0 0 1 4


//----------
crossing
converging
headon
diverging


EasyToExitHorizontally 0 0 1 4
//--------------------
veryEasy
easy
possible
difficult


LevelsAvailable 0 0 1 5
//-------------
yes
none
above
below
withSpaces


Faster 0 0 1 3
//------------
easy
possible
difficult
Slower 0 0 1 3
//------------
easy
possible
difficult


D.2 The file Solutions


The first non-commented line of this file must contain the number of possible solutions.


These are then listed, as before, each one on a new line. The solutions should not be longer


than 32 characters. This file is the same for all the case representations.


// There must be the number of possible solutions
// and the names (not longer than 32 char)
12
upp1
dow1
upp2
dow2
upp3
dow3
spe1
spe2
spe3
hor1
hor2
hor3


D.3 The file CaseBase


Though the full case-base in the “TwoInOne.nonCanonical” case representation contains


around 1400 cases, only 20 are reported in this thesis. Because of the case representation,


all cases are repeated twice with the order of the aircraft swapped as shown below. For


example, Case697_1 and Case697_2 describe the same conflict. The case-base that
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uses the “TwoInOne.canonical” case representation contains only half of the cases, i.e.


around 700, one for each conflict, expressed in the canonical form.


@n Case697_1 @n Case697_2
HorConflConf diverging HorConflConf diverging
Priority same Priority same
AltitudeNow same AltitudeNow same
Speed slower Speed faster
AltConfiguration(A) stable AltConfiguration(A) stable
CloseToTOD(A) 147 CloseToTOD(A) 3112
CloseToBoundaries(A) 4.7 CloseToBoundaries(A) 2.7
Manoeuvrability(A) .71 Manoeuvrability(A) .83
EasyToExitHorizontally(A) veryEasy EasyToExitHorizontally(A) possible
LevelsAvailable(A) yes LevelsAvailable(A) below
Faster(A) difficult Faster(A) difficult
Slower(A) difficult Slower(A) difficult
AltConfiguration(B) stable AltConfiguration(B) stable
CloseToTOD(B) 3112 CloseToTOD(B) 147
CloseToBoundaries(B) 2.7 CloseToBoundaries(B) 4.7
Manoeuvrability(B) .83 Manoeuvrability(B) .71
EasyToExitHorizontally(B) possible EasyToExitHorizontally(B) veryEasy
LevelsAvailable(B) below LevelsAvailable(B) yes
Faster(B) difficult Faster(B) difficult
Slower(B) difficult Slower(B) difficult
@s dow1 @s dow2


@n Case698_1 @n Case698_2
HorConflConf crossing HorConflConf crossing
Priority same Priority same
AltitudeNow same AltitudeNow same
Speed slower Speed faster
AltConfiguration(A) stable AltConfiguration(A) stable
CloseToTOD(A) 80 CloseToTOD(A) 2973
CloseToBoundaries(A) 2.7 CloseToBoundaries(A) 4.3
Manoeuvrability(A) .7 Manoeuvrability(A) .83
EasyToExitHorizontally(A) possible EasyToExitHorizontally(A) veryEasy
LevelsAvailable(A) yes LevelsAvailable(A) yes
Faster(A) easy Faster(A) difficult
Slower(A) difficult Slower(A) difficult
AltConfiguration(B) stable AltConfiguration(B) stable
CloseToTOD(B) 2973 CloseToTOD(B) 80
CloseToBoundaries(B) 4.3 CloseToBoundaries(B) 2.7
Manoeuvrability(B) .83 Manoeuvrability(B) .7
EasyToExitHorizontally(B) veryEasy EasyToExitHorizontally(B) possible
LevelsAvailable(B) yes LevelsAvailable(B) yes
Faster(B) difficult Faster(B) easy
Slower(B) difficult Slower(B) difficult
@s dow1 @s dow2


@n Case699_1 @n Case699_2
HorConflConf converging HorConflConf converging
Priority same Priority same
AltitudeNow different AltitudeNow different
Speed same Speed same
AltConfiguration(A) stable AltConfiguration(A) climbing
CloseToTOD(A) 317 CloseToTOD(A) 417
CloseToBoundaries(A) 2 CloseToBoundaries(A) 2.8
Manoeuvrability(A) .85 Manoeuvrability(A) .85
EasyToExitHorizontally(A) veryEasy EasyToExitHorizontally(A) easy
LevelsAvailable(A) above LevelsAvailable(A) yes
Faster(A) difficult Faster(A) difficult
Slower(A) difficult Slower(A) possible
AltConfiguration(B) climbing AltConfiguration(B) stable
CloseToTOD(B) 417 CloseToTOD(B) 317
CloseToBoundaries(B) 2.8 CloseToBoundaries(B) 2
Manoeuvrability(B) .85 Manoeuvrability(B) .85
EasyToExitHorizontally(B) easy EasyToExitHorizontally(B) veryEasy
LevelsAvailable(B) yes LevelsAvailable(B) above
Faster(B) difficult Faster(B) difficult
Slower(B) possible Slower(B) difficult
@s dow2 @s dow1
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@n Case700_1 @n Case700_2
HorConflConf converging HorConflConf converging
Priority same Priority same
AltitudeNow different AltitudeNow different
Speed faster Speed slower
AltConfiguration(A) stable AltConfiguration(A) climbing
CloseToTOD(A) 417 CloseToTOD(A) 1323
CloseToBoundaries(A) 3.9 CloseToBoundaries(A) 3.3
Manoeuvrability(A) .83 Manoeuvrability(A) .71
EasyToExitHorizontally(A) veryEasy EasyToExitHorizontally(A) veryEasy
LevelsAvailable(A) above LevelsAvailable(A) yes
Faster(A) difficult Faster(A) difficult
Slower(A) difficult Slower(A) difficult
AltConfiguration(B) climbing AltConfiguration(B) stable
CloseToTOD(B) 1323 CloseToTOD(B) 417
CloseToBoundaries(B) 3.3 CloseToBoundaries(B) 3.9
Manoeuvrability(B) .71 Manoeuvrability(B) .83
EasyToExitHorizontally(B) veryEasy EasyToExitHorizontally(B) veryEasy
LevelsAvailable(B) yes LevelsAvailable(B) above
Faster(B) difficult Faster(B) difficult
Slower(B) difficult Slower(B) difficult
@s dow2&hor3 @s dow1&hor3


@n Case701_1 @n Case701_2
HorConflConf crossing HorConflConf crossing
Priority same Priority same
AltitudeNow same AltitudeNow same
Speed faster Speed slower
AltConfiguration(A) stable AltConfiguration(A) stable
CloseToTOD(A) 112 CloseToTOD(A) 210
CloseToBoundaries(A) 6.1 CloseToBoundaries(A) 2.9
Manoeuvrability(A) .8 Manoeuvrability(A) .75
EasyToExitHorizontally(A) veryEasy EasyToExitHorizontally(A) veryEasy
LevelsAvailable(A) above LevelsAvailable(A) yes
Faster(A) difficult Faster(A) easy
Slower(A) possible Slower(A) difficult
AltConfiguration(B) stable AltConfiguration(B) stable
CloseToTOD(B) 210 CloseToTOD(B) 112
CloseToBoundaries(B) 2.9 CloseToBoundaries(B) 6.1
Manoeuvrability(B) .75 Manoeuvrability(B) .8
EasyToExitHorizontally(B) veryEasy EasyToExitHorizontally(B) veryEasy
LevelsAvailable(B) yes LevelsAvailable(B) yes
Faster(B) easy Faster(B) difficult
Slower(B) difficult Slower(B) possible
@s dow1&hor3&spe3 @s dow2&hor3&spe3


The conflict named “Case697”, reported above in the “TwoInOne” case representation, is


reported here in the “OneInOne” case representation. The conflict has been split into two


separate cases, one for each aircraft involved in the conflict.


@n Case697(A) @n Case697(B)
HorConflConf diverging HorConflConf diverging
AltitudeNow same AltitudeNow same
AltConfiguration stable AltConfiguration stable
Speed slower Speed faster
CloseToTOD 147 CloseToTOD 3112
CloseToBoundaries 4.7 CloseToBoundaries 2.7
Manoeuvrability .71 Manoeuvrability .83
Priority same Priority same
EasyToExitHorizontally veryEasy EasyToExitHorizontally possible
LevelsAvailable yes LevelsAvailable below
Faster difficult Faster difficult
Slower difficult Slower difficult
@s dow1 @s dow2
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Appendix E


The Code


For space restrictions it is not possible to show all the C files that compose ISAC and the interface with HIPS and ISAC. For this reason, the names of


all the programs are listed but only the code of the most significant files is reported.


E.1 From ISAC


Files in the directory ISAC


BaseFiltering.C
BigCaseBase.C
C45.C
CaseBase
CaseStruct
DecisionTree.C
Filter.C
FindCases.C
FindSol.C
GlobalWeights.C
header2.h
ISAC
IntrospectiveLearning.C
Main.C
NumericRemainder.C
Old.C
Old2.C


Old3.C
Pivotal.C
ReadCaseBase.C
ReadCaseStruct.C
ReadTarget.C
RealSet
Show.C
Shuffle.C
Simulations.C
SolForMAC
Solutions
SpreadingActivation.C
Suggestion
TreeEqualWebOfPointer.C
WebOfPointers.C
Weights.C
discrim


header1.h
makefile
target
ISAC/R5/Src: the source files for the
C4.5 system
ISAC/cb1/cb2c/cb2n:
CaseBase
CaseStruct
RealSet
Solutions
target
ISAC/utilities:
AddEnd
AddOne
DisplayDir
EliminTab
MakeLoops
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Main.C


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <ctype.h>
#include <time.h>
#include "header1.h"
#include "header2.h"


int shift,representation,multipl,options,updateWeights;
int global,average,GUM,GDU,BUU,BDM;
int randomWeight,DoAlsoGlobal,DoGraphic;
char TypeOfSimulation[12];


char** ReadSol(int *NumSol)
{
 int i,NumFeat=0;
 char line[80],*token,String[32],**Sol;
 FILE *fileptr;
 //I read the possible solutions
 if(!(fileptr=fopen(SolFile,"r")))
  {
   cout << "\nError: can't open the file with the solutions: "
        << SolFile << "\n";
   exit(0);
  }
 strcpy(line,Read(fileptr));
 *NumSol=atoi(line);
 Sol= new char*[*NumSol];
 for(i=0;i<*NumSol;i++)
  {
   Sol[i]= new char[32];
   strcpy(line,Read(fileptr));
   token=strtok(line," ");
   strcpy(Sol[i],DelEOL(token));
  }
 fclose(fileptr);
 return Sol;
}


char* Read(FILE* fileptr)


{
 char line[80];
 while(fgets(line,80,fileptr))
  if(!(((line[0]=='/')&&(line[1]=='/'))||(line[0]=='\n')||
        (line[0]==' ')))
   return line;
 return NULL;
}


char* DelEOL(char* tok)
{
 int i=0;
 char ausil[80];
 strcpy(ausil,tok);
 while((tok[i]!=' ')&&(tok[i] != '\n')&&tok[i])
  i++;
 ausil[i] = '\0';
 return ausil;
}


void CreateCopy(char* filename)
// it copies the case-base into ".CBCopy" and ".CBCopyBis"
{
 char line[80];
 FILE *fileptr,*dest1,*dest2;
 if(!(fileptr=fopen(filename,"r")))
  {
   cout << "\nError: I cannot open file *" << filename <<
           "* for the Case Base\n";
   exit(0);
  }


 if(!(dest1=fopen(".CBCopy","w")))
  {
   cout << "\nError: can't open .CBCopy \n";
   exit(0);
  }


 if(!(dest2=fopen(".CBCopyBis","w")))
  {
   cout << "\nError: can't open .CBCopyBis \n";
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   exit(0);
  }


 while(fgets(line,80,fileptr))
  {
   fprintf(dest1,"%s",line);
   fprintf(dest2,"%s",line);
  }
 fclose(fileptr);
 fclose(dest1);
 fclose(dest2);
}


main(int argc,char** argv)
{
 char choice,TimeName[32];
 int repetition=2;
 OneCase *CaseList=NULL,*TargetList=NULL;
 branch *Branches=NULL;
 TypeNode *StructList=NULL;


 options=0;
 shift=7;
 multipl=0;
 NumForTrainingSet=40;
 MaxIterations=20;
 randomWeight=0;
 representation=2;
 DoAlsoGlobal=0;
 average=0;
 DoGraphic=0;


 if(argc==1)
  {
   cout << "\nParameters for ISAC:";
   cout << "\n -o show options";
   cout << "\n -r1 or -r2 (for OneInOne or TwoInOne)";
   cout << "\n -c numCases (num of cases in training Set)";
   cout << "\n -m0 if adding increment -m1 if multiplying";
   cout << "\n -s simulation (the config of GUM etc. we
want)";
   cout << "\n -a0 if weights=1 -a1 if random weights";
   cout << "\n -h value of shift";
   cout << "\n -u0 don't do experiment with global -u1 do
experiment";


   cout << "\n -x0 if I.L. on global feat, -x1 if global is
average di local";
   cout << "\n -y1 if I want graphic with perf on training set
and on test set";
   cout << "\n -i iterations (num of iterations)" << endl;
   exit(0);
  }


 for(int i=1;i<argc;i++)
  {
   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='O'))
    options=1;


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='R'))
    representation=argv[i][2]-48; // 1 or 2


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='A'))
    {
     randomWeight=argv[i][2]-48; // 0 or 1
     cout << "\nRandom Weights: " << randomWeight;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='M'))
    {
     multipl=argv[i][2]-48; // 0 or 1
     cout << "\nMultipl: " << multipl;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='C'))
    {
     NumForTrainingSet=atoi(argv[i+1]);
     cout << "\nNumForTrainingSet: " << NumForTrainingSet;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='X'))
    {
     average=argv[i][2]-48; // 0 or 1
     cout << "\nAverage for global: " << average;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='Y'))
    {
     DoGraphic=argv[i][2]-48; // 0 or 1
     cout << "\nDoing graphic" << endl;
    }
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   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='H'))
    {
     shift=atoi(argv[i+1]);
     cout << "\nShift: " << shift;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='U'))
    {
     DoAlsoGlobal=argv[i][2]-48; // 0 or 1
     cout << "\nDoAlsoGLobal: " << DoAlsoGlobal;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='I'))
    {
     MaxIterations=atoi(argv[i+1]);
     cout << "\nMaxIterations: " << MaxIterations;
    }


   if((argv[i][0]=='-')&&(toupper(argv[i][1])=='S'))
    {
     strcpy(TypeOfSimulation,argv[i+1]);


     if(strcmp(argv[i+1],"onlyBad")==0)
      {
       GUM=0; GDU=0; BUU=1; BDM=1;
       cout << "\nType of simulation: onlyBad";
      }
     else if(strcmp(argv[i+1],"onlyGood")==0)
      {
       GUM=1; GDU=1; BUU=0; BDM=0;
       cout << "\nType of simulation: onlyGood";
      }
     else if(strcmp(argv[i+1],"allFour")==0)
      {
       GUM=1; GDU=1; BUU=1; BDM=1;
       cout << "\nType of simulation: allFour";
      }
     else if(strcmp(argv[i+1],"onlyGUM")==0)
      {
       GUM=1; GDU=0; BUU=0; BDM=0;
       cout << "\nType of simulation: onlyGUM";
      }
     else if(strcmp(argv[i+1],"onlyGDU")==0)
      {


       GUM=0; GDU=1; BUU=0; BDM=0;
       cout << "\nType of simulation: onlyGDU";
      }
     else if(strcmp(argv[i+1],"onlyBUU")==0)
      {
       GUM=0; GDU=0; BUU=1; BDM=0;
       cout << "\nType of simulation: onlyBUU";
      }
     else if(strcmp(argv[i+1],"onlyBDM")==0)
      {
       GUM=0; GDU=0; BUU=0; BDM=1;
       cout << "\nType of simulation: onlyBDM";
      }
     else if(strcmp(argv[i+1],"withoutGDU")==0)
      {
       GUM=1; GDU=0; BUU=1; BDM=1;
       cout << "\nType of simulation: withoutGDU";
      }
     else if(strcmp(argv[i+1],"withoutGUM")==0)
      {
       GUM=0; GDU=1; BUU=1; BDM=1;
       cout << "\nType of simulation: withoutGUM";
      }
     else if(strcmp(argv[i+1],"withoutBUU")==0)
      {
       GUM=1; GDU=1; BUU=0; BDM=1;
       cout << "\nType of simulation: withoutBUU";
      }
     else if(strcmp(argv[i+1],"withoutBDM")==0)
      {
       GUM=1; GDU=1; BUU=1; BDM=0;
       cout << "\nType of simulation: withoutBDM";
      }
     else
      {
       cout << "\nNOT found the configuration *" << argv[i+1]
<<"*"<< endl;
       exit(0);
      }
    }
  }


 StructList=ReadCaseStruct(FileCaseStruct);
 //ShowCaseStruct(StructList);
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 //cout << "\nAlt: Shuffle works only for the TwoInOne case
representation!";
 //Shuffle(FileCaseBase,StructList);
 //Shuffle(FileRealSet,StructList);


 if(options)
  {
   cout << "\nOptions:";
   cout << "\n n\tnormal retrieval";
   cout << "\n w\tintrospective learning";
   cout << "\n p\ttest for pivotals";
   cout << "\n i\twith Target in CaseBase";
   cout << "\n l\twith Target NOT in CaseBase";
   cout << "\n b\tBig random Case Base";
   cout << "\n e\tEliminate NIL values";
   cout << "\n y\tbuild a toy CaseBase for pivotal";
   cout << "\n d\tdiscriminatory power";
   cout << "\n t\ttime calculation";
   cout << "\n o\ttime with old algorithm(FlatSearch)";
   cout << "\n 4\tC45(L.O.IN)";
   cout << "\n 5\tC45(L.O.OUT)";
   cout << "\n a\tcalculate AVE and SMA\n q\tquit" << endl;


   cout << "\nChoice: ";
   cin >> choice;


   switch(choice)
    {
     case 'n' : // ******real system**
             TargetList=ReadAllTargets(FileTarget,StructList);
             CaseList=ReadCaseBase(FileCaseBase,StructList);
             Branches=BuildWebOfPointers(StructList,CaseList);


FindCases(CaseList,TargetList,Branches,StructList,"times");
             TargetList=Delete(TargetList);
             break;


     case 'i' : // ******Leave One In**
             CreateCopy(FileCaseBase);
             LeaveOneIn(StructList,"times");
             break;


     case 'l' : // ******Leave One Out**
             CaseList=ReadCaseBase(FileCaseBase,StructList);
             Branches=BuildWebOfPointers(StructList,CaseList);


             LeaveOneOut(StructList,CaseList,Branches);
     break;


     case 'w' : // ******Introspective learning**
             IntrospectiveTest(StructList);
             break;


     case 'p' : // ******test for pivotals**
             TestForPivotals(StructList);
             break;


     case 'd' : // ******discrimination power**
             cout << "\nMust add \"None\" in file Solutions
and"
                  << "all cases must have a solution"
                  << "\nNow give a number";
             CaseList=ReadCaseBase(FileCaseBase,StructList);
             StructList=BuildDecTree(StructList,CaseList);
             break;


     case 'b' : // ******random case-base (leave one IN)**
             BigCaseBase(StructList);
             CreateCopy(BigFile);
             LeaveOneIn(StructList,"times");
             break;


     case 'e' : // ******Eliminate NIL values**
             CaseList=ReadCaseBase(FileCaseBase,StructList);
             EliminateNIL(CaseList,StructList);
             break;


     case 'y' : // *****Build a toy CaseBase for the pivotal
tests*
             ToyCaseBase();
             break;


     case 't' : // ******time with random case base**
        cout << "\nName of the output file: ";
             cin >> TimeName;
             BigCaseBase(StructList);
             CreateCopy(BigFile);
             cout << "\nrepetition=2" << endl;


     repetition=2;
             break;
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     case 'o' : // ******time with old algorithm*******
        cout << "\nName of the output file: ";
             cin >> TimeName;
             BigCaseBase(StructList);
             CreateCopy(BigFile);
             cout << "\nrepetition=2" << endl;


     repetition=2;
         break;


     case '4' : // ****C45(LeaveOneIN)*******
             CreateCopy(FileCaseBase);
             C45_IN(StructList);
         exit(0);
             break;


     case '5' : // ****C45(LeaveOneOUT)*******
             CreateCopy(FileCaseBase);
             C45_OUT(StructList);
         exit(0);
             break;


     case 'a' : // ***calculate AVE and SMA*****
             AVE(StructList);
             break;


     case 'q' :exit(0);


             break;


     default  :cout << "\n\nNo options with this key!!" <<
endl;
             exit(0);
    }
  }
 else // only retrieval
  {
   TargetList=ReadAllTargets(FileTarget,StructList);
   CaseList=ReadCaseBase(FileCaseBase,StructList);
   Branches=BuildWebOfPointers(StructList,CaseList);
   FindCases(CaseList,TargetList,Branches,StructList,"times");
   TargetList=Delete(TargetList);
  }


 system("rm -f .CB*");
 system("rm -f simul");
 system("rm -f simul2");
 system("rm -f BigCB");
 system("rm -f auxil");
 system("rm -f .CBCopy");
 system("rm -f .CBCopyBis");
 system("rm -f WrittenCaseBase");
 cout << "\n";
}


FindCases.C


#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>
#include <math.h>
#include "header1.h"
#include "header2.h"
#include <time.h>


double FindMaxAct(SimCase *SubList)
{
 double MaxAct=-999;
 SimCase *ptr=SubList;
 while(ptr!=NULL)
  {


   if(MaxAct<ptr->GiveAct())
    MaxAct=ptr->GiveAct();
   ptr=ptr->next;
  }
 return MaxAct;
}


void ResetActivation(OneCase *CaseList)
{
 OneCase *PCase=CaseList;
 while(PCase!=NULL)
  {
   PCase->ResetAct();
   PCase=PCase->next;
  }
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}


void ResetCaseBase(OneCase *CaseList)
{
 OneCase *PCase=CaseList;
 while(PCase!=NULL)
  {
   OneFeat *PFeat=PCase->GiveFeats();
   while(PFeat!=NULL)
    {
     PFeat->ChangeHighest(1.0);
     PFeat->ChangeWeight(1.0);
     PFeat->SwapWeights();
     PFeat=PFeat->next;
    }
   PCase->Kc=1.0;
   PCase->Fc=1.0;
   PCase->ThisCaseIsUsed=0;
   PCase->ResetAct();
   PCase=PCase->next;
  }
}


void FindCases(OneCase* CaseList,OneCase* TargetList,
               branch* Branches, TypeNode* StructList,
               char *TimeName)
{
 FILE *results;
 char FinalSol[160];
 SimCase *SubList=NULL,*FinalList=NULL,*ptr=NULL;
 double MaxAct=0;
 OneCase *PTarget=TargetList,*PCase=NULL;
 SAN *ListOfSol=NULL;
 long t1,t2;


 results=fopen(ResultsFile,"a");


 while(PTarget!=NULL)
  { //big loop
   fprintf(results,"\nTarget %s %s",PTarget-
>GiveName(),PTarget->GiveSol());
   if(ThereAreNoConstraints(StructList)) //No need of Base
filtering
    {
     PCase=CaseList;


     while(PCase!=NULL)
      {
       // The case goes in SubList only if it is not a target
       // for testing purposes
       if(PCase->ThisCaseIsUsed==0)
        SubList=new SimCase(PCase,SubList);
       PCase=PCase->next;
      }
    }
   else // There is at least one constraint
    SubList=BaseFiltering(PTarget,Branches,StructList);


   if(global==0)
    SpreadingActivation(SubList,StructList,PTarget,Branches);
   else


GlobalSpreadingActivation(SubList,StructList,PTarget,Branches)
;


   // I find the maximum activation
   MaxAct=FindMaxAct(SubList);
   //cout << "\nMaxAct: " << MaxAct;
   if(MaxAct>0) // if the max act is > 0 I give solution
    {
     ptr=SubList;
     while(ptr!=NULL)
      {
       if(ptr->GiveAct()==MaxAct)
        {
         fprintf(results,"\nRetrieved: %s %s %f",ptr-
>GiveName(),
                          ptr->GiveSol(),ptr->GiveAct());


         FinalList= new SimCase(ptr->GiveCase(),FinalList);
         NumCasesRetrieved++;
        }
       ptr=ptr->next;
      }


     if((updateWeights==1)&&(multipl==0)&&(global==0))
      LocalWeightsSum(FinalList,PTarget,StructList);
     if((updateWeights==1)&&(multipl==1)&&(global==0))
      LocalWeightsMul(FinalList,PTarget,StructList);
     if((updateWeights==1)&&(multipl==0)&&(global==1))
      GlobalWeights(FinalList,PTarget,StructList);
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     ListOfSol=Analyse(FinalList,PTarget-
>GiveName(),MaxAct,ListOfSol);
    }
   else // if max act is <=0 I don't give sol
    ListOfSol= new SAN("None","None",0,ListOfSol);


   SubList=Delete(SubList);
   FinalList=Delete(FinalList);


   ResetActivation(CaseList);
   PTarget=PTarget->next;
  } //big loop


 fclose(results);


 strcpy(FinalSol,ChooseFinal(ListOfSol));
 ListOfSol=Delete(ListOfSol);


 results=fopen(ResultsFile,"a");
 fprintf(results,"\nSol: %s",FinalSol);
 fprintf(results,"\n---------\n");
 fclose(results);


 char CommandLine[80],position[32],StringaDaStampare[320];


 FILE *TipoDiStringa;


 /*LBONZ*/


TipoDiStringa=fopen("/dd/csc/abonzano/GHMI/tipoDiStringa","r")
;
 fscanf(TipoDiStringa,"%s\n%s",position,StringaDaStampare);
 fclose(TipoDiStringa);


 // strcpy(FinalSol,FilterSol(FinalSol,StringaDaStampare));
 // FilterSol is for giving the wrong solution
 // and to make it readable to controllers


 strcat(StringaDaStampare,FinalSol);


 /*LBONZ*/
 strcpy(CommandLine,"/dd/csc/abonzano/ISAC/Suggestion -
geometry ");
 strcat(CommandLine,position);
 strcat(CommandLine," \"");
 strcat(CommandLine,StringaDaStampare);
 strcat(CommandLine,"\" &");
 system(CommandLine);
}


IntrospectiveLearning.C


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include "header1.h"
#include "header2.h"


int MaxIterations,NumCasesRetrieved;


double Evaluate()
{
 int ItIsCorrect;
 double
NumConflicts=0,NumCorrect=0,NumRetrieved,NumCorrectlyRetrieved
;
 double highestAct=0.0;


 char line[80],*token,Suggestion[80],TargetSol[80];


 FILE *fileptr=fopen("./results","r");


 while(fgets(line,80,fileptr))
  {
   if(line[0]=='T')
    {
     token=strtok(line," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     strcpy(TargetSol,DelEOL(token));
     NumRetrieved=0;
    }


   if(line[0]=='R')
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    {
     token=strtok(line," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     strcpy(Suggestion,DelEOL(token));
     strcat(Suggestion,"&end&");
     token=strtok(NULL," ");
     double activation=atof(token);
     if(highestAct<activation)
      {
       highestAct=activation;
       NumRetrieved=1;
       NumCorrectlyRetrieved=0;
      }
     else
      NumRetrieved++;


     if(CaseIsCorrect(Suggestion,TargetSol))
      NumCorrectlyRetrieved++;
    }


   if(line[0]=='S')
    {
     NumConflicts++;
     if(NumRetrieved!=0)
      NumCorrect+=NumCorrectlyRetrieved/NumRetrieved;
     highestAct=0.0;
    }
  }


 fclose(fileptr);
 double ToBeReturned=NumCorrect/NumConflicts*100;
 if(ToBeReturned>100)
  {
   cout << "\nexiting because the performance is bigger than
100: "
        << ToBeReturned << ". Check the file results" << endl;
   exit(0);
  }
 cout << "\nANALYSING RESULTS: " << 100-ToBeReturned  << " "
<< endl;
 return ToBeReturned;
}


void IntrospectiveTest(TypeNode *StructList)


{
 FILE *target,*globalTest;
 int i,MaxLoop;
 double Etr[20],Ets[20],MaxPerform;
 char FileName[32];
 OneCase
*CaseList=NULL,*TargetList=NULL,*testSet=NULL,*trainingSet=NUL
L;
 branch *Branches=NULL;


 for(i=0;i<MaxIterations;i++)
  {
   Etr[i]=0.0;
   Ets[i]=0.0;
  }


 Training_Test(FileRealSet,StructList);


 global=0;
 cout << "\n *****LOCAL WEIGHTS*****" << endl;
 testSet=ReadCaseBase("TestSet.bis",StructList);
 trainingSet=ReadCaseBase("TrainingSet.bis",StructList);
 CaseList=ReadCaseBase(FileCaseBase,StructList);
 Branches=BuildWebOfPointers(StructList,CaseList);


 updateWeights=0;
 MaxPerform=Testing(testSet,CaseList,Branches,StructList);
 cout << "\n*Error BEFORE IL on test set: " << 100-MaxPerform
<< endl;


 strcpy(FileName,"zzz.");
 strcat(FileName,TypeOfSimulation);


 globalTest=fopen(FileName,"a");
 fprintf(globalTest,"\n%f ",100-MaxPerform);
 fclose(globalTest);


 cout << "\n*Iterating on training set:";
 MaxPerform=0.0;
 for(i=0;i<MaxIterations;i++)
  {
   int VarChangeHighest=0;
   double ThisPerform;


   if(DoGraphic)
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    {
     updateWeights=0;
     Ets[i]=100-Testing(testSet,CaseList,Branches,StructList);
    }


   updateWeights=1;


ThisPerform=Testing(trainingSet,CaseList,Branches,StructList);
   if(ThisPerform>MaxPerform)
    {
     VarChangeHighest=1;
     MaxPerform=ThisPerform;
    }
   UpdateWeights(CaseList,VarChangeHighest);
   Etr[i]=100-ThisPerform;
  }
 UpdateHighest(CaseList);


 if(DoGraphic)
  {
   strcpy(FileName,"ppp.");
   strcat(FileName,TypeOfSimulation);
   strcat(FileName,".etr");
   FILE *fptr1=fopen(FileName,"a");
   strcpy(FileName,"ppp.");
   strcat(FileName,TypeOfSimulation);
   strcat(FileName,".ets");
   FILE *fptr2=fopen(FileName,"a");
   for(i=0;i<MaxIterations;i++)
    {
     fprintf(fptr1,"%2f\t",Etr[i]);
     fprintf(fptr2,"%2f\t",Ets[i]);
    }
   fprintf(fptr1,"\n");
   fprintf(fptr2,"\n");
   fclose(fptr1);
   fclose(fptr2);
   //Histogram(StructList,CaseList);
  }


 updateWeights=0;
 MaxPerform=Testing(testSet,CaseList,Branches,StructList);
 cout << "\n*Error AFTER IL on test set: " << 100-MaxPerform;


 strcpy(FileName,"zzz.");


 strcat(FileName,TypeOfSimulation);
 globalTest=fopen(FileName,"a");
 fprintf(globalTest,"\t%f",100-MaxPerform);
 fclose(globalTest);


 if(DoAlsoGlobal)
  {
   global=1;
   cout << "\n\n\n *****GLOBAL WEIGHTS*****" << endl;
   for(i=0;i<MaxIterations;i++)
    {
     Etr[i]=0.0;
     Ets[i]=0.0;
    }


   updateWeights=0;
   MaxPerform=Testing(testSet,CaseList,Branches,StructList);
   cout << "\n*Error BEFORE IL on test set: " << 100-
MaxPerform;


   strcpy(FileName,"zzz.");
   strcat(FileName,TypeOfSimulation);


   globalTest=fopen(FileName,"a");
   fprintf(globalTest,"\t%f",100-MaxPerform);
   fclose(globalTest);


   if(average==0)
    {
     cout << "\n*Iterating on training set:";
     MaxPerform=0.0;
     for(i=0;i<MaxIterations;i++)
      {
       int VarChangeHighest=0;
       double ThisPerform;
       if(DoGraphic)
        {
         updateWeights=0;
         Ets[i]=100-
Testing(testSet,CaseList,Branches,StructList);
        }


       updateWeights=1;


ThisPerform=Testing(trainingSet,CaseList,Branches,StructList);
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       if(ThisPerform>MaxPerform)
        {
         VarChangeHighest=1;
         MaxPerform=ThisPerform;
        }
       UpdateGlobalWeights(StructList,VarChangeHighest);
       Etr[i]=100-ThisPerform;
      } // end for
     if(DoGraphic)
      {
       strcpy(FileName,"ggg.");
       strcat(FileName,TypeOfSimulation);
       strcat(FileName,".etr");
       FILE *fptr1=fopen(FileName,"a");
       strcpy(FileName,"ggg.");
       strcat(FileName,TypeOfSimulation);
       strcat(FileName,".ets");
       FILE *fptr2=fopen(FileName,"a");
       for(i=0;i<MaxIterations;i++)
        {
         fprintf(fptr1,"%2f\t",Etr[i]);
         fprintf(fptr2,"%2f\t",Ets[i]);
        }
       fprintf(fptr1,"\n");
       fprintf(fptr2,"\n");
       fclose(fptr1);
       fclose(fptr2);
       //Histogram(StructList,CaseList);
      }
    }
   else // average==1
    {
     cout << "\nCalculating the average from the local..." <<
endl;
     CalcAverageFromLocal(StructList,CaseList);
    }
   UpdateGlobalHighest(StructList);


   updateWeights=0;
   MaxPerform=Testing(testSet,CaseList,Branches,StructList);
   cout << "\n*Error AFTER IL on test set: " << 100-
MaxPerform;


   strcpy(FileName,"zzz.");
   strcat(FileName,TypeOfSimulation);


   globalTest=fopen(FileName,"a");
   fprintf(globalTest,"\t%f",100-MaxPerform);
   fclose(globalTest);
  }
 testSet=Delete(testSet);
 trainingSet=Delete(trainingSet);
 CaseList=Delete(CaseList);
 Branches=Delete(Branches);
 StructList=Delete(StructList);
}


double Testing(OneCase *Set,OneCase *CaseList,branch
*Branches,TypeNode *StructList)
{
 FILE *target;
 OneCase *TargetList=NULL,*PTest=Set;


 system("rm ./results");


 while(PTest!=NULL)
  {
   target=fopen(FileTarget,"w");
   if(representation==1)
    {
     ToFile(PTest,target,StructList);
     fprintf(target,"\n");
     ToFile(PTest->next,target,StructList);
     PTest=PTest->next;
    }
   else
    ToFile(PTest,target,StructList);


   fprintf(target,"\n");
   fclose(target);


   TargetList=ReadAllTargets(FileTarget,StructList);
   FindCases(CaseList,TargetList,Branches,StructList,"times");
   TargetList=Delete(TargetList);


   PTest=PTest->next;
  }
 return Evaluate();
}
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E.2 Files for the Interface Between ISAC and GHMI


These are the files in the directory GHMI.


ISAC_Bada.C
ISAC_Bada.H
ISAC_Bada.data
ISAC_Calculate.C
ISAC_Calculate.H
ISAC_Functions.C
ISAC_Interface.C
ISAC_Interface.H
ISAC_MAC.C
ISAC_MAC.H
ISAC_Print.C
ISAC_Print.H


ISAC_twoAC
ISAC_wrongDir


e1 //TACs
evaluation1


k1 //MACs
konflict1


ISAC_wrongDir:
trafficSamples
zz_andy.bar


zz_dia.hun
zz_frank.dow
zz_guy.tod
zz_leif.lun
zz_loui.sil
zz_peter.eri
zz_ray.dowd
zz_rod.mcg


bada:
AT42__.PTF
SYNONYM.LST


ISAC_Bada.C


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream.h>


void FromBada(char *tipo,double *rate,double *MaxAlt)
{
 int TypeFound=0,typeLen;
 FILE *fileptr;
 char *token,line[180],fileName[12],tempFN[12];
 fileptr=fopen("ISAC_Bada.data","r");
 while(fgets(line,180,fileptr))
  {
   token=strtok(line,"_");
   strcpy(tempFN,token);


   token=strtok(NULL," ");
   while(strcmp(token,"*")!=0)
    {
     if(strcmp(token,tipo)==0)
      {
       strcpy(fileName,tempFN);
       TypeFound=1;
      }
     token=strtok(NULL," ");
    }
  }
 fclose(fileptr);


 if(TypeFound==0)
  {
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   printf("\nFile for the type NOT found!");
   fflush(stdout);
   exit(0);
  }
 typeLen=strlen(fileName);
 fflush(stdout);


 strcpy(line,"./bada/");
 strcat(line,fileName);
 for(int i=typeLen;i<6;i++)
  strcat(line,"_");
 strcat(line,".PTF");


 fileptr=fopen(line,"r");
 double aveSpeed=0.0,maxAlt=0.0;
 while(fgets(line,180,fileptr))
  {
   // extracting the MaxAltitude and ClimabRate
   token=strtok(line," ");
   if(strcmp(token,"climb")==0)
    {
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     aveSpeed=atof(token);
    }
   if(strcmp(token,"cruise")==0)


    {
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     aveSpeed+=atof(token);
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     maxAlt=atof(token);
    }
   if(strcmp(token,"descent")==0)
    {
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     token=strtok(NULL," ");
     aveSpeed+=atof(token);
    }
  }


 fclose(fileptr);
 *rate=aveSpeed/3;
 *MaxAlt=maxAlt;
}


ISAC_Calculate.C


#include "CoreConstants.H"
#include "HipsCore.H"
#include "Zones.H"
#include "Rules.H"
#include "Atmosphere.H"
#include "Constraints.H"
#include "HipsCoreAPI.h"
#include "AirPosition.H"
#include <stdio.h>
#include <math.h>
#include "ISAC_Calculate.H"


int CalculatePoints(Hips ph,OneAircraft *AC1,OneAircraft *AC2)
//==================


{
 double xbefore,ybefore;
 Hips_FlightPlan *Pfp;
 Hips_ConflictList *Pcl;


 // calculating the point on the boundary of the horizontal
no-go zone
 Pcl=Hips_GetConflicts(ph,AC1->name);
 int i=0;
 while(strcmp(Pcl->Conflict[i].EnvironmentName,AC2->name)!=0)
  {
   i++;
   if(i==Pcl->NumberOfConflicts)
   // it was -1 in two aircraft conflicts
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    {
     printf("\nWarning: these two aircraft are NOT
conflicting.\n\n");
     return 0;
    }
  }
 AC1->xOnConfl=Pcl->Conflict[i].Point[0].X;
 AC1->yOnConfl=Pcl->Conflict[i].Point[0].Y;
 AC1->timeOnConfl=Pcl->Conflict[i].Point[0].Time;


 // Calculating the point before the one on the conflict
 Pfp=Hips_GetFlightPlan(ph,AC1->name);
 i=0;
 while(AC1->timeOnConfl>Pfp->PlanPoint[i].Time)
 {
  xbefore=Pfp->PlanPoint[i].X;
  ybefore=Pfp->PlanPoint[i].Y;
  i++;
 }
 AC1->xbefore=xbefore;
 AC2->ybefore=ybefore;


 // verify for boundaries
 int NumOnBound=0;
 Pfp=Hips_GetFlightPlan(ph,AC1->name);
 i=0;
 while(i<Pfp->NumberOfPlanPoints)
  {
   if(Pfp->TrajData[i].OnBoundary==1)
    NumOnBound++;
   i++;
  }
 if(NumOnBound!=4)
  printf("\n###%s has %d points on boundaries!!!!###",
         Pfp->Name,NumOnBound);
 return 1;
}


void CalculateHorConflConf(Hips ph,OneAircraft
*AC1,OneAircraft *AC2)
//========================
{
 // four options (analysed in this order):
 // - head-on if angle bigger than 150


 // - converging if 2 or more pts in common and at the same
point in the future
 // - diverging if 2 or more pts in common and at separate
points in the future
 // - crossing if one point in common
 // I first see if they have more than 2 points together.
 // If yes I check whether they are converging or diverging
 // If not I check whether they are haed-on or crossing
 // all this is independent on the sector boundaries
 int i,j,CommonPoints=0,NOPP1,NOPP2;
 double HCCangle;
 char angle[12];


 HCCangle=GetAngle(AC1->xbefore,AC1->ybefore,
           AC1->xOnConfl,AC1->yOnConfl,


                   AC2->xbefore,AC2->ybefore,
           AC2->xOnConfl,AC2->yOnConfl);


 if(HCCangle>BiggestAngle)
  strcpy(angle,"headon");
 else
  { //huge if
   Hips_FlightPlan *Pfp;


   // I store in two vectors the flight plans of the two
aircraft
   // if the flight plan has more than 50 points I have an
error!
   double x1[50],y1[50],time1[50];
   double x2[50],y2[50],time2[50];


   Pfp=Hips_GetFlightPlan(ph,AC1->name); // first aircraft
   if(Pfp->NumberOfPlanPoints>50)
    {
     printf("\nWarning: %s Flight Plan with more than 50
points: ",AC1->name);
     printf("I cannot calculate the Horizontal Conflict
Configuration");
    }
   i=0;
   while(i<Pfp->NumberOfPlanPoints)
    {
     x1[i]=Pfp->PlanPoint[i].X;
     y1[i]=Pfp->PlanPoint[i].Y;
     time1[i]=Pfp->PlanPoint[i].Time;
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     i++;
    }
   NOPP1=Pfp->NumberOfPlanPoints-1;


   Pfp=Hips_GetFlightPlan(ph,AC2->name); // second aircraft
   if(Pfp->NumberOfPlanPoints>50)
    {
     printf("\nWarning: Flight Plan with more than 50 points:
");
     printf("I cannot calculate the Horizontal Conflict
Configuration");
    }
   i=0;
   while(i<Pfp->NumberOfPlanPoints)
    {
     x2[i]=Pfp->PlanPoint[i].X;
     y2[i]=Pfp->PlanPoint[i].Y;
     time2[i]=Pfp->PlanPoint[i].Time;
     i++;
    }
   NOPP2=Pfp->NumberOfPlanPoints-1;


   i=NOPP1;
   while(i>=0)
    {
     j=NOPP2;
     while(j>=0)
      {
       double dist;
       dist=((x1[i]-x2[j])*(x1[i]-x2[j])+
             (y1[i]-y2[j])*(y1[i]-y2[j]));
       if(dist<4)
        CommonPoints++;
       j--;
      }
     i--;
    }


   if(CommonPoints>1)
     // two or more points in common:
     // catching if one of the two last points is in common
     // and at the same time (less than 1 minute) and
     // at the same alt
     // otherwise diverging
    {


     // if any of this point is close to the other, then they
are catching
     // USE WIDESCREEN
     if( ((((x1[NOPP1]-x2[NOPP2])*(x1[NOPP1]-x2[NOPP2])+
            (y1[NOPP1]-y2[NOPP2])*(y1[NOPP1]-y2[NOPP2]))<4)&&


  ((time1[NOPP1]-time2[NOPP2])<1)) ||
        ((((x1[NOPP1-1]-x2[NOPP2])*(x1[NOPP1-1]-x2[NOPP2])+
           (y1[NOPP1-1]-y2[NOPP2])*(y1[NOPP1-1]-
y2[NOPP2]))<4)&&


  ((time1[NOPP1-1]-time2[NOPP2])<1)) ||
        ((((x1[NOPP1]-x2[NOPP2-1])*(x1[NOPP1]-x2[NOPP2-1])+
           (y1[NOPP1]-y2[NOPP2-1])*(y1[NOPP1]-y2[NOPP2-
1]))<4)&&


  ((time1[NOPP1]-time2[NOPP2]-1)<1)) ||
         ((((x1[NOPP1-1]-x2[NOPP2-1])*(x1[NOPP1-1]-x2[NOPP2-
1])+
            (y1[NOPP1-1]-y2[NOPP2-1])*(y1[NOPP1-1]-y2[NOPP2-
1]))<4)&&


  ((time1[NOPP1-1]-time2[NOPP2]-1)<1)) )
      strcpy(angle,"converging");
     else
      strcpy(angle,"diverging");
    }
   else // less than two points crossing
    strcpy(angle,"crossing");
  } // end of huge if
 strcpy(AC1->HorConflConf,angle);
 strcpy(AC2->HorConflConf,angle);
}


void CalculateAltitudeConfiguration(Hips ph,OneAircraft* AC1,
  OneAircraft* AC2,int alt,int alt1,


double time)
//=================================
{
 // is the a/c climbing, descending, stable? (WHEN THE
CONFLICT BEGINS)
 int NextAlt,NextAlt1,i;
 Hips_FlightPlan *Pfp;
 Hips_TrajPosition *Ptraj;


 strcpy(AC1->AltIntention,"stable");
 strcpy(AC2->AltIntention,"stable");


 Pfp=Hips_GetFlightPlan(ph,AC1->name);
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 Ptraj=Pfp->PlanPoint;


 i=0;
 while(Ptraj[i].Time<AC1->timeOnConfl)
  i++; // this is the trajectory point before the no-go zone
begins
 i--;


 if(i==Pfp->NumberOfPlanPoints-1)
  printf("\nsomething strange in AltIntention");


 if((int)Ptraj[i+1].Altitude-(int)Ptraj[i].Altitude>5)
  strcpy(AC1->AltIntention,"climbing");
 else if((int)Ptraj[i].Altitude-(int)Ptraj[i+1].Altitude>5)
  strcpy(AC1->AltIntention,"descending");


 Pfp=Hips_GetFlightPlan(ph,AC2->name);
 Ptraj=Pfp->PlanPoint;


 i=0;
 while(Ptraj[i].Time<AC1->timeOnConfl)
  i++; // the aircraft is before this trajectory point
 i--;


 if(i==Pfp->NumberOfPlanPoints-1)
  printf("\nsomething strange in AltIntention");


 if((int)Ptraj[i+1].Altitude-(int)Ptraj[i].Altitude>5)
  strcpy(AC2->AltIntention,"climbing");
 else if((int)Ptraj[i].Altitude-(int)Ptraj[i+1].Altitude>5)
  strcpy(AC2->AltIntention,"descending");


 // calculating SomebodyClimbing
 if((strcmp(AC1->AltIntention,"climbing")==0)||
    (strcmp(AC2->AltIntention,"climbing")==0))
  {
   strcpy(AC1->SomebodyClimbing,"yes");
   strcpy(AC2->SomebodyClimbing,"yes");
  }
 else
  {
   strcpy(AC1->SomebodyClimbing,"no");
   strcpy(AC2->SomebodyClimbing,"no");
  }
}


void CalculateEasyToExit(Hips ph,OneAircraft *AC1,OneAircraft
*AC2)
//======================
{
 // more accurate function: I don't calculate the angles from
where
 // the aircraft is, but from the previous pointS considering
the no-go zone
 // moreover, I don't use any more the centre of the conflict
but
 // the actual trajectory of the aircraft


 // EasyToExitRight/Left values:
 // - veryEasy (if the aircraft is already turning that
direction and the
 //   angle is less than 10 degrees or if the angle is less
than 5 degrees)
 // - easy (if the angle is less than 10 degrees)
 // - possible (if the angle is between 10 and 15 degrees)
 // - difficult (if the angle is bigger than 15 degrees)
 // All these value imply that there must not be other
environmental
 // no-go zones


 int i,j,startingK,first=1,last;
 double angle,globalAngle,lgap,rgap,lnogo,rnogo;
 double xextreme,yextreme;
 double SmallestLnogo=999,SmallestRnogo=999;
 double SmallestLavail=999,SmallestRavail=999;
 Hips_FlightPlan *Pfp;
 Hips_ZoneList *Pzl;
 Hips_Zone *Pz;
 Pzl=Hips_GetZones(ph,Hips_RouteDiagram);
 Pz=Pzl->Zone;
 Pfp=Hips_GetFlightPlan(ph,AC1->name);


 // I check if the aircraft is turning left or right
 while(Pfp->TrajData[first].OnBoundary!=1)
  first++;
 last=Pfp->NumberOfPlanPoints-1;
 while(Pfp->TrajData[last].OnBoundary!=1)
  last--;
 if(first>last)
  {
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   printf("\nError: something wrong in the flight plan of
%s\n\n",
           Pfp->Name);
   exit(0);
  }


 if(last==first+1)
  globalAngle=0;
 else
  globalAngle=GetAngle2(Pfp->PlanPoint[first-1].X,Pfp-
>PlanPoint[first-1].Y,


Pfp->PlanPoint[last].X,Pfp->PlanPoint[last].Y,
Pfp->PlanPoint[first].X,Pfp->PlanPoint[first].Y);


 // I need to find the point on the traj which is on the
sector boundary
 // but before the point on the no-go zone boundary


 for(int kk=0;kk<Pfp->NumberOfPlanPoints;kk++)
  if((Pfp->TrajData[kk].OnBoundary==1)&&
     (Pfp->PlanPoint[kk].Time<AC1->timeOnConfl))
   startingK=kk;


 while(AC1->timeOnConfl>Pfp->PlanPoint[startingK].Time)
  {
   double lnogo=0,rnogo=0,lavail=-90,ravail=90;
   for(i=0;i<Pzl->NumberOfZones;i++)
    {
     if(strcmp(Pz[i].EnvironmentName,AC2->name)==0)
      {
       for(j=0;j<Pz[i].NumberOfPoints;j++)
        {
         xextreme=Pz[i].Point[j].U;
         yextreme=Pz[i].Point[j].V;
         angle=GetAngle2(Pfp->PlanPoint[startingK].X,


 Pfp->PlanPoint[startingK].Y,
                AC1->xOnConfl,AC1->yOnConfl,


         xextreme,yextreme);
         if(angle<lnogo)
          lnogo=angle;
         if(angle>rnogo)
          rnogo=angle;
        }
      }
     else


      {
       for(j=0;j<Pz[i].NumberOfPoints;j++)
        {
         xextreme=Pz[i].Point[j].U;
         yextreme=Pz[i].Point[j].V;
         angle=GetAngle2(Pfp->PlanPoint[startingK].X,


 Pfp->PlanPoint[startingK].Y,
         AC1->xOnConfl,AC1->yOnConfl,
         xextreme,yextreme);


         if((angle<0)&&(fabs(angle)<fabs(lavail)))
          lavail=angle;
         if((angle<0)&&(angle<ravail))
          ravail=angle;
        }
      }
    }


   if(SmallestLnogo>fabs(lnogo))
    SmallestLnogo=fabs(lnogo);
   if(SmallestRnogo>fabs(rnogo))
    SmallestRnogo=fabs(rnogo);
   if(SmallestLavail>fabs(lavail))
    SmallestLavail=fabs(lavail);
   if(SmallestRavail>fabs(ravail))
    SmallestRavail=fabs(ravail);
   startingK++;
  }


 lnogo=fabs(SmallestLnogo);
 rnogo=fabs(SmallestRnogo);


 if(SmallestLavail<SmallestLnogo)
  lgap=0;
 else
  lgap=fabs(SmallestLavail-SmallestLnogo);


 if(SmallestRavail<SmallestRnogo)
  rgap=0;
 else
  rgap=fabs(SmallestRavail-SmallestRnogo);


 // here I should be able to determine whether the no-go zone
is on the
 // sector boundaries or not
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 // here I could put as the minimum angle not 10 but the
maximum between
 // 10 and globalAngle


 if(((rgap>5)&&(rnogo<10)&&(globalAngle>0))||(rnogo<5))
  strcpy(AC1->EasyToExitRight,"veryEasy");
 else if((rgap>5)&&(rnogo<10))
  strcpy(AC1->EasyToExitRight,"easy");
 else if((rgap>5)&&(rnogo<15))
  strcpy(AC1->EasyToExitRight,"possible");
 else
  strcpy(AC1->EasyToExitRight,"difficult");


 if(((lgap>5)&&(lnogo<10)&&(globalAngle<0))||(lnogo<5))
  strcpy(AC1->EasyToExitLeft,"veryEasy");
 else if((lgap>5)&&(lnogo<10))
  strcpy(AC1->EasyToExitLeft,"easy");
 else if((lgap>5)&&(lnogo<15))
  strcpy(AC1->EasyToExitLeft,"possible");
 else
  strcpy(AC1->EasyToExitLeft,"difficult");


 if((strcmp(AC1->EasyToExitRight,"veryEasy")==0)||
    (strcmp(AC1->EasyToExitLeft,"veryEasy")==0))
  strcpy(AC1->EasyToExitHorizontally,"veryEasy");
 else if((strcmp(AC1->EasyToExitRight,"easy")==0)||
    (strcmp(AC1->EasyToExitLeft,"easy")==0))
  strcpy(AC1->EasyToExitHorizontally,"easy");
 else if((strcmp(AC1->EasyToExitRight,"possible")==0)||
    (strcmp(AC1->EasyToExitLeft,"possible")==0))
  strcpy(AC1->EasyToExitHorizontally,"possible");
 else
  strcpy(AC1->EasyToExitHorizontally,"difficult");
}


void CalculateBoundaries(Hips ph,OneAircraft *AC)
//======================
{
 // The distance to the boundary is the distance between the
 // first point of the trajectory which is in the no-go zone
 // and the entry or exit point in the sector, i.e the points
 // of the trajectory which are on the boundary
 // the entry point is important, too, because if too close to
 // the entry point the controller should coordinate with the
 // previous sector


 int ind=0;
 double timeBefore,timeAfter;
 Hips_FlightPlan *Pfp;
 Pfp=Hips_GetFlightPlan(ph,AC->name);


 // I already have xOnConfl and yOnConfl, I need the xOnBound,
yOnBound
 while(Pfp->PlanPoint[ind].Time<AC->timeOnConfl)
  {
   if(Pfp->TrajData[ind].OnBoundary==1)
    timeBefore=Pfp->PlanPoint[ind].Time;
   ind++;
  }


 ind=0;
 while(!((Pfp->PlanPoint[ind].Time>AC->timeOnConfl)&&


 (Pfp->TrajData[ind].OnBoundary==1)))
  ind++;
 timeAfter=Pfp->PlanPoint[ind].Time;


 // ask NIGEL for here: is it 4 minutes from the a/c or
 // from the beginning of the conflict?
 // CloseToBound is the smallest time to go to the closest
boundary
 double minimus=timeAfter-AC->timeOnConfl;
 if(minimus>AC->timeOnConfl-timeBefore)
  minimus=AC->timeOnConfl-timeBefore;
 AC->CloseToBound=minimus;
}


void CalculateLevelsAvailable(Hips ph,OneAircraft *AC1,double
InitLevel,


      double time)
//===========================
{
 int i;
 level lev[NumLevels];
 double FinalLevel;
 Hips_FlightPlan *Pfp;


 Pfp=Hips_GetFlightPlan(ph,AC1->name);
 FinalLevel=Pfp->PlanPoint[Pfp->NumberOfPlanPoints-
1].Altitude;
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 // the final level is the altitude of the last point of the
flight plan


 // I look where in the trajectory, the a/c is
 int j=0;
 Hips_DiagramPoint Start;
 while((Pfp->PlanPoint[j+1].Time<time)&&((j+1)<Pfp-
>NumberOfPlanPoints))
  j++;
 Start=Hips_MapPoint(ph,Pfp-
>PlanPoint[j],Hips_AltitudeDiagram);


 ResetLevels(lev);
 CheckLevels(lev,ph,Start.U); // Start.U the X of the aircraft
in the


      // Hips_AltitudeDiagram


 // I look for the indices of the initial and final levels
 double ClosestFinal=999,ClosestInit=999; // this is the
distance of the


// actual aircraft level from one of the allowed
altitude levels
 int FinalInd=0,InitialInd=0;
 for(i=0;i<NumLevels;i++)
  {
   if(ClosestInit>(fabs(InitLevel-lev[i].name)))
    {
     ClosestInit=(fabs(InitLevel-lev[i].name));
     InitialInd=i;
    }
   if(ClosestFinal>(fabs(FinalLevel-lev[i].name)))
    {
     ClosestFinal=(fabs(FinalLevel-lev[i].name));
     FinalInd=i;
    }
  }


 //If the aircraft is Stable the possible values are:
 // - NONE (it means that in each of the levels above and
below there is at
 //         least a no go zone generated by another aircraft)
 // - YESABOVE (it means that one of the two levels above is
completely free)
 // - YESBELOW (it means that one of the two levels below is
completely free)


 // If the aircraft is climbing or descending the possible
values are:
 // - NONE (it means that none of the intermediate levels, the
starting level
 //         and the final level are free)
 // - YES (it means that there is at least one level
available: completely free)
 // - YESWITHSPACES (it means that there are no levels free,
but in some there
 //                  are some spaces between the no go zones)


 if(InitialInd==FinalInd)
  { // a/c is Stable
   int above=0,below=0;
   if((lev[InitialInd].free==1)||(lev[InitialInd+1].free==1)||
      (lev[InitialInd+2].free==1))
   above=1;
   if((lev[InitialInd].free==1)||(lev[InitialInd-1].free==1)||
      (lev[InitialInd-2].free==1))
   below=1;
   if((above==1)&&(below==1))
    strcpy(AC1->LevelsAvailable,"yes");
   else if(above==1)
    strcpy(AC1->LevelsAvailable,"above");
   else if(below==1)
    strcpy(AC1->LevelsAvailable,"below");
   else
    strcpy(AC1->LevelsAvailable,"none");
  }
 else
  { // a/c is climbing or descending
   int found=0,spaces=0;
   if(InitialInd>FinalInd) // descending
    for(i=InitialInd;i>=FinalInd;i--)
     {
      if(lev[i].free==1)
       found=1;
      if(lev[i].spaces==1)
       spaces=1;
     }
   else // climbing
    for(i=InitialInd;i<=FinalInd;i++)
     {
      if(lev[i].free==1)
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       found=1;
      if(lev[i].spaces==1)
       spaces=1;
     }
   if(found==1)
    strcpy(AC1->LevelsAvailable,"yes");
   else if(spaces==1)
    strcpy(AC1->LevelsAvailable,"withSpaces");
   else
    strcpy(AC1->LevelsAvailable,"none");
  }
}


void CalculateSpeed(Hips ph,OneAircraft *AC1,OneAircraft
*AC2,double time)
//=================
{
 // I calculate whether it is easy, possible or difficult to
exit the no-go
 // zone by increasing or decreasing the speed.
 // Easy -> change less than 0.01 Mach
 // Possible -> 0.02 M
 // Difficult -> 0.03 M and more
 // the value does not depend on the environment aircraft
(yellow no go zones)
 // but only on the red ones!!!!! CHANGE THIS!!!!!
 // fare come in Hor angle: calcola TUTTE le speed e prendo la
piu'
 // grossa per la red zone e la piu' piccola per la yellow
zone and see
 // if possible etc.
 int j,zindice;
 double mach;
 Hips_ZoneList *Pzl;
 Hips_Zone *Pz;
 Hips_FlightPlan *Pfp;
 Hips_DiagramPoint Start,Max,Min;
 Max.V=-999;
 Min.V=999;


 Pfp=Hips_GetFlightPlan(ph,AC1->name);
 Pzl=Hips_GetZones(ph,Hips_SpeedDiagram);
 Pz=Pzl->Zone;


 zindice=0;


 while(zindice<Pzl->NumberOfZones)
  {
   if(strcmp(Pz[zindice].EnvironmentName,AC2->name)==0)
    for(j=0;j<Pz[zindice].NumberOfPoints;j++)
     {
      if(Max.V<Pz[zindice].Point[j].V)
       {
        Max.V=Pz[zindice].Point[j].V;
        Max.U=Pz[zindice].Point[j].U;
       }
      if(Min.V>Pz[zindice].Point[j].V)
       {
        Min.V=Pz[zindice].Point[j].V;
        Min.U=Pz[zindice].Point[j].U;
       }
     }
   zindice++;
  }


 // I look where in the trajectory, the a/c is
 int i=0;
 while((Pfp->PlanPoint[i+1].Time<time)&&((i+1)<Pfp-
>NumberOfPlanPoints))
  i++;


 // I find the mach speed of the point where the a/c is
 if(Pfp->TrajData[i].CasNotMach==1)
  {
   // I convert from CAS to MACH
   printf("\nflying in CAS");
   mach=Mach_From_TAS(TAS_From_CAS(Pfp->TrajData[i].CasMach,


   Pfp->PlanPoint[i].Altitude),
      Pfp->PlanPoint[i].Altitude);


  }
 else
  mach=Pfp->TrajData[i].CasMach;


 // I look for the actual position of the a/c in the Speed
window
 double t,d,mt,md,MaxGS,MinGS,MaxMach,MinMach;
 FlightPosition fp;


 Start=Hips_MapPoint(ph,Pfp->PlanPoint[i],Hips_SpeedDiagram);
 UnMapPoint(Start,fp,Hips_SpeedDiagram,(HipsCore*)ph);
 t=fp.Time;
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 d=fp.Distance;


 // I look for the Mach speed of the Max & Min points
 // I suppose that the altitude remains the same
 UnMapPoint(Max,fp,Hips_SpeedDiagram,(HipsCore*)ph);
 mt=fp.Time;
 md=fp.Distance;
 MaxGS=(md-d)/(mt-t)*60;
 MaxMach=Mach_From_TAS(MaxGS,Pfp->PlanPoint[i].Altitude);


 UnMapPoint(Min,fp,Hips_SpeedDiagram,(HipsCore*)ph);
 mt=fp.Time;
 md=fp.Distance;
 MinGS=(md-d)/(mt-t)*60;
 MinMach= Mach_From_TAS(MinGS,Pfp->PlanPoint[i].Altitude);


 if(fabs(MaxMach-mach)<=0.01)
  strcpy(AC1->Faster,"easy");
 else if(fabs(MaxMach-mach)>0.02)
  strcpy(AC1->Faster,"difficult");
 else
  strcpy(AC1->Faster,"possible");


 if(fabs(mach-MinMach)<=0.01)
  strcpy(AC1->Slower,"easy");
 else if(fabs(mach-MinMach)>0.02)
  strcpy(AC1->Slower,"difficult");
 else
  strcpy(AC1->Slower,"possible");
}


void CalculateInFront(Hips ph,OneAircraft *AC1,OneAircraft
*AC2,


      double xstart,double ystart)
//===================
{
 // redo the function! don't use xstart & ystart
 /*
 Hips_ZoneList *Pzl;
 Hips_Centre *Pc;
 int i=0,NOC;
 char PassingInFrontDir[5],PassingInFrontSpace[5];
 double angle;


 strcpy(PassingInFrontDir,"no");


 strcpy(AC1->PIFSpace,"no");


 Pzl=Hips_GetZones(ph,Hips_RouteDiagram);
 NOC=Pzl->NumberOfCentres;
 Pc=Pzl->Centre;


 // Passing in front if going directly?
 while(strcmp(AC2->name,Pc[i].EnvironmentName)!=0)
  i++;
 angle=GetAngle2(xstart,ystart,Pc[i].Point.U,Pc[i].Point.V,
                 Pc[i].Vector.U,Pc[i].Vector.V);


 // Attention!!! FinalAngle is not calculated anywhere!!!!
 // look for it in CalculateAvailExit...
 if(((AC1->FinalAngle>0)&&(angle>0))||((AC1-
>FinalAngle<0)&&(angle<0)))
  strcpy(PassingInFrontDir,"yes");
 strcpy(AC1->PIFDirect,PassingInFrontDir);


 // Passing in front if going where there is more space?
 //ATTENTION! lgap lnogo are not calculated anywhere
 // if you need it go to CalculateEasyToExit
 if((AC1->lgap > AC1->rgap)&&(angle<0)) // more space on the
left and other a/c


    // is going to the left
  strcpy(AC1->PIFSpace,"yes");


 if((AC1->rgap > AC1->lgap)&&(angle>0)) // more space on the
right and other a/c
    // is going to the right
  strcpy(AC1->PIFSpace,"yes");*/
}


void CalculateFromTo(Hips ph,OneAircraft* AC)
//==================
{
 FILE *fileptr;
 //int trovati=0;
 int foundD=0,foundA=0;
 double dlat,dlon,alat,alon,blat,blon,doneTraj,toDoTraj;
 char line[80],*token,slat[12],slon[12],beacon[12];


 // for depart and arrival
 fileptr=fopen("aerodromes","r");
 while(fgets(line,80,fileptr))
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  {
   token=strtok(line," ");
   if(strcmp(token,AC->depart)==0)
    {
     foundD=1;
     token=strtok(NULL," ");
     strcpy(slat,token);
     token=strtok(NULL," ");
     strcpy(slon,token);
     dlat=LatToDouble(slat);
     dlon=LatToDouble(slon);
    }
   if(strcmp(token,AC->arrival)==0)
    {
     foundA=1;
     token=strtok(NULL," ");
     strcpy(slat,token);
     token=strtok(NULL," ");
     strcpy(slon,token);
     alat=LatToDouble(slat);
     alon=LatToDouble(slon);
    }
  }
 fclose(fileptr);


 // looking for the beacon name
 int ind=0;
 char auxBeacon[12];
 Hips_FlightPlan *Pfp;
 Pfp=Hips_GetFlightPlan(ph,AC->name);


 // I take the closest beacon to where the aircraft is.
 // Not geographical point because I don't have lat lon.
 while(Pfp->PlanPoint[ind].Time<AC->timeOnConfl)
  {
   //printf("\nworking on %s",Pfp->TrajData[ind].BeaconName);
   if(strcmp(Pfp->TrajData[ind].BeaconName,"#GEO")!=0)


    {
     strcpy(auxBeacon,Pfp->TrajData[ind].BeaconName);
     fileptr=fopen("AllBeacons","r");
     while(fgets(line,80,fileptr))
      {
       token=strtok(line," ");
       if(strcmp(token,auxBeacon)==0)
        {
         //printf("\nfound beacon: %s",auxBeacon);
         strcpy(beacon,auxBeacon);
         token=strtok(NULL," ");
         strcpy(slat,token);
         token=strtok(NULL," ");
         strcpy(slon,token);
         blat=LatToDouble(slat);
         blon=LatToDouble(slon);
        }
      }
     fclose(fileptr);
    }
   ind++;
  }


 if((foundD)&&(foundA))
  {
   doneTraj=DistanceFrom(dlat,dlon,blat,blon);
   toDoTraj=DistanceFrom(blat,blon,alat,alon);
   double perc=doneTraj/(doneTraj+toDoTraj);
  }


 if(foundA)
  { // CloseToTOD is the distance in miles from the TOD
   AC->CloseToTOD=DistanceFrom(blat,blon,alat,alon);
  }
 else
  AC->CloseToTOD=-999;
}


ISAC_MAC.C


#include <stdio.h>
#include <string.h>


void FindSolForMAC()


{
 int Found=0,NumberOfSol=0,Maxi,j,i=0,NOC[12],NumberOfSame;
 char *token,line[256],sols2[12][32],sols[12][32],man[12][8];
 char acMoved[12][12],ac1[12][12],ac2[12][12],aux[256];
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 FILE *fileptr;


 /*LBONZ*/
 fileptr=fopen("/dd/csc/abonzano/ISAC/SolForMAC","r");
 while(fgets(line,256,fileptr))
  {
   if(line[0]=='O')
    NumberOfSol++;
   if(strlen(line)>2)
    {
     strcpy(sols[i],line);
     NOC[i]=NumberOfSol;
     i++;
    }
  }
 fclose(fileptr);
 Maxi=i;


 for(i=0;i<Maxi;i++)
  {
   strcpy(aux,sols[i]);
   token=strtok(aux,"_");
   strcpy(man[i],token);
   token=strtok(NULL,"_");
   strcpy(ac1[i],token);
   token=strtok(NULL,"_");
   strcpy(ac2[i],token);
  }


 for(i=0;i<Maxi;i++)
  {
   if(man[i][0]=='h')
    strcpy(sols2[i],"hor");
   if(man[i][0]=='s')
    strcpy(sols2[i],"spe");
   if(man[i][0]=='u')
    strcpy(sols2[i],"upp");
   if(man[i][0]=='d')
    strcpy(sols2[i],"dow");


   if(man[i][3]=='1')
    {
     strcat(sols2[i],ac1[i]);
     strcpy(acMoved[i],ac1[i]);


    }
   if(man[i][3]=='2')
    {
     strcat(sols2[i],ac2[i]);
     strcpy(acMoved[i],ac2[i]);
    }
   if(man[i][3]=='3')
    strcpy(acMoved[i],"both");


  }


 // I check if there are sols in common for ALL the different
conflicts
 i=0;
 NumberOfSame=0;
 while(NOC[i]==1)
  {
   char solToCheck[32];
   strcpy(solToCheck,sols2[i]);


   for(j=0;j<Maxi;j++)
    {
     if((NOC[j]>1)&&(strcmp(solToCheck,sols2[j])))
      NumberOfSame++;
    }
    if(NumberOfSame+1==NumberOfSol)
     {
      Found=1;
      printf("\nFINAL SOL (FIRST STEP): %s",solToCheck);
     }
   i++;
  }


 // I check if there is a same aircraft moved in all the
conflicts
 // (useful to do?)


 // I solve the closest conflict in order of time
 printf("\n");
}






