
Code Generation with “Visual Modeller”

Patrick Fillatre

Abstract

“Visual Modeller” is a CASE tool that permits end-users to model business processes, using the

associated method “Visual Modelling”. It is also able to generate the database and a “front-end”

application from this model. Although this generation looks like an integrated process to the user, an

intermediary step exists. From the model of the business process, “Visual Modeller” first builds a

model of the application that will be generated (ie a model of the future system), and then from this

model, generates the database and the application.

This document describes the code generation process in “Visual Modeller”. How, from the business

process model, it builds a model of the application, called the generic application. The generic

application is greatly independent of the implementation environment; in fact, it is not built for any

particular environment, but rather in a generic environment, which characteristics are predefined,

independently of the characteristics of the implementation environment. This document describes why

this approach adjusts to the particularities of the user-centred method carried by “Visual Modeller”,

why it brings some benefits in dealing with the best design and development principles, why it

optimises the capability of “Visual Modeller” to generate some code for different environments.

Summary

1. The code generation process in “Visual Modeller”4

1.1. First step: building a generic application ..4

1.2. Separating different areas in the generic application ..5

1.3. The generation of code ...10

1.4. The user-interface of the generation of code in “Visual Modeller” ..12

1.5. State of the development...13

2. The generic application ...14

2.1. Objects of the generic application...14

2.2. Database objects ...16

2.3. Interface objects..18

2.4. Communications in the generic application ..20

3. Models for the generic application...21

3.1. Introduction ..21

3.2. The generic application...21

3.3. The business object...22

3.4. The database object ..23

3.5. The relational database object ..23

3.6. The interface object ..24

4. The generation of code..25

4.1. What strategy to access to the database ..25

4.2. More details on strategies used to implement the generic objects ..27

4.3. Implementation of the “naming operation” in the automata..29

4.4. The ancestor of all the automata of “Visual Modeller”...30

4.5. The automaton generating the code for the business objects ..32

4.6. The automaton generating the code for the database ..37

4.7. The automaton generating the code for the database objects ..41

5. Appendix...46

5.1. The functional model of the generation of code in “Visual Modeller”46

5.2. The project plan to develop the generation of code ..47

6. Bibliography ...48

1. The code generation process in “Visual Modeller”

1.1. First step: building a generic application

1.1.1. What is a generic application

“Visual Modeller” does not directly generate an application in the target development language and

system.

First it builds a model of the application from the business process model. This model of the

application is called a “generic application” because it is greatly independent of the implementation

environment: the environment system (also called the operating system), the computer language or the

“Database Management System” (DBMS) that will be used for the implementation do not need to be

specified. Only the configuration of the database(s) has to be specified: today it only means the type of

the database (relational, for example).

Second, the definitive application and the database are generated from this generic application.

1.1.2. Why a generic application

1.1.2.1. Adaptability from the business process model:

The method carried by “Visual Modeller” brings the particularity to be user-centred. It must support a

group of non-experts (e.g. end-users) specifying a model of a business process (which is not a model of

a system) in an intuitive, incremental and iterative way. In particular:

• it avoids “systems” abstractions; it rather uses concrete concepts that the users are familiar with (as

persons, organisations, documents)

• it supports unstructured model development

• it permits incomplete or incoherent or inconsistent representation of the business process it models

Building a generic application allows “Visual Modeller” to control and/or to adapt information got from

the business process model before generating the code, without altering the model of the business

process. “Visual Modeller” can make default choices for the generic application where lack of

consistency is detected in the model of the business process, or can optimise the representation stored it

this model when porting it to the generic application.

1.1.2.2. A better approach of the design of the application:

Building first a generic application, “Visual Modeller” can model the future system, that is the

application it will generate, using the more powerful concepts, even if they are not present in the

implementation environment. The characteristics of the generic environment are selected for:

• their power of representation

• their portability in multiple environments

Where “portability in multiple environments” of a concept means, the capability to implement what the

concept represents when the code is generated in various environments. Although, this does not mean

this concept must be present in all those environments: for example the “object-oriented” language

“C++” is a pre-compiler of “C”, applications exist in “MSDOS” environment, for text mode display,

with “graphical look-like” user-interface...

1.1.2.3. A better adaptability to implementation in multiple environments:

All the expertise required to design the application is applied to the generic application. The problems

we will encounter to adapt “Visual Modeller” to generate some code for a new environment is only an

implementation problem. We do not need to study a new design for the application, and generating

some code with “Visual Modeller” for a new environment should be easier.

1.1.3. The characteristics of the generic application

As the generic application is built in a generic environment, it assumes some characteristics upon it.

Here is the summary of the choices kept for the representation of the generic application:

• it is independent of the implementation environment, except for the configuration of the

database (because it implies some constraints on the design of the database)

• different and separated domains, areas compose the generic application (for example, we

separate the domain of the application and the user-interface in the generic application)

• its definition is object-oriented

• the controls within the generic application are managed by events and message sending

• its user-interface is an interactive graphical user interface

• it is an MDI application (Multiple Document Interface application)

1.2. Separating different areas in the generic application

1.2.1. Why separated areas in the generic application

Many works have been published demonstrating the advantages of separating different areas or domains

in the design and in the implementation of computer programs.

We will in particular, separate the domain of the application, that means the concepts of the business

process, from the other concepts concerning the treatments (functions) proposed by the application, the

presentation of the information, the database management. Each of these categories of concepts serves a

specific purpose in a specific domain, with specific evolution and constraints. Each one has a different

cycle of life, the domain of the application being normally the more stable.

In the generic application, as it exists today, we separate the management of:

• the business process

• the user-interface

• the database

As the representation of the generic application is object-oriented, each of these areas in the generic

application is associated to a specific type of object, respectively:

• the business objects

• the interface objects

• the database objects

The interface objects and the database objects are technology objects. That is not the case of the

business object: they are the objects of the business process (the domain of the application), they

correspond to the objects of the “real-world” in some litterature (see OOA/OOD “Object-Oriented

Analysis / Object-Oriented Design”, Coad and Yourdon, 1991).

Separating the model of the application in different areas is a design principle, but we also apply this

separation in the process of the generation of code, reducing its complexity.

The advantages are:

• separating problems of different nature

• preserving the objects of the business process model from alterations due only to the current state

of the art of the technology

• cutting down the complexity of the generation of code

• facilitating an iterative and incremental development of “Visual Modeller”

• facilitating group development on “Visual Modeller”

Remark: today, the activities are not represented in our models of the business processes.

The activities of the business process will be represented by “application objects”. An application

object will represent the control (for example, the synchronisation) of an activity. Although it will use

the methods of the business objects to represent the treatment part of the activity. This representation

still maintains the separation of the domain of the application from the other domains: the user-

interface, the functions of the application (the activities), the database management.

1.2.2. The domain of the application

The domain of the application is the business process. In the generic application, it is represented using

the business objects. A business object in the generic application corresponds to the definition of a

business object given by the OMG BOMSIG (“Object Management Group” “Business Object

Management Special Interest Group” - Minutes of the Berlin Meeting, BOMSIG, OMG, Document

Number 94-5-1, April 1994):

“A business object represents a thing active in the business domain including its business name,

attributes, behaviour, relationships and constraints. It represents a real-world concept.”

A business object could also be seen as an object of the “real-world”. They are created directly from

the model of the business process, even if “Visual Modeller” can then, optimise this hierarchy of

business objects in the model of the system (ie. the generic application).

1.2.3. The database management

In the generic application, the management of the database is the affair of the database objects. Each

persistent business object is associated to a database object, which:

• represents its image in the database

• offers some services of the database management (loading, updating, refreshing)

The database objects are built by “Visual Modeller” from the business objects of the generic

application.

As the database objects are technology objects, they reflect the constraints due to the technology used

for the database management. In the same time, one of their role is to hide this constraints to the

business objects. That is the reason, we produce the following hierarchy of database objects in the

generic application, where the database object is a virtual object. The business objects will always

access to the database via this virtual object, ignoring the implementation of the database.

DataBase Object

created (Y/N)
modified (Y/N)
deleted (Y/N)

load
create
save
delete
update
refresh
{abstract}

persistent

Extended Relational DB Object

persistent

Relational Data Base Object

Object Oriented DB Object

DataBase Object
System Architect

Thu Aug 22, 1996 14:23
Comment

Hierarchical DB Object

Only one type of database will be managed with the first version of “Visual Modeller”: the relational

database, as they are the reference type of database actually used on the market. By consequence, in the

prototype we did the amalgam between the database object and the relational database object. That is

what we will do from now in this document, in order to be concise.

The relational database is in the same time a good example of the problems we can encounter in linking

an object-oriented representation with a non object-oriented database. The power of representation of a

relational database is limited: the types of the fields (e.g. the attributes of a table in a relational

database) are very limited: they are only atomic types. By consequence, an object can only be

represented directly in a relational table if all its attributes have an atomic type which corresponds to a

field possible type. Furthermore, the inheritance principle is unknown in relational databases. By

consequence, more than one table can be necessary to represent a business object. Many strategies can

be considered to store a super-class, all with advantages and disadvantages. More generally, that means

that, depending on the constraints due to the configuration of the database, the structure of the

database is not necessarily a mirror of the structure of the persistent business object. This is

reflected by the following rules used by “Visual Modeller”:

• a business object can be represented by a hierarchy of database objects

• a database object can be a container of other database objects

• a database object, is not necessarily associated to a business object

• a persistent business object is associated with one database object

This means that when several database objects are needed to represent the image of a business object,

one database object is associated to the business object, and contains the other database objects,

directly or indirectly as the hierarchy of the database objects can have as many levels as needed. A

database object cooperates with the database objects of its sub-hierarchy to provide its services. Using

the database objects, we do not need to transpose the representation limits of the database, to the

representation of the business objects.

The notion of a database object is used to:

• manage the link between a business object and its image in the database

• hide the rules and the constraints implied by the configuration of the DBMS chosen for

implementation, from the business object

• hide from the business object , its representation in the database

• handle the updates from or to the DBMS (Database Management System).

As we can see, the set of the database objects represents in the same time the structure of the database.

The role of the database objects in the generic application is by consequence, dual as they represent:

• the link between the business objects and the database

• the model of the database

1.2.4. The user-interface

The user-interface of the generic application is an interactive GUI (Graphical User Interface), with an

MDI (Multiple Document Interface). Its representation in the generic application is object-oriented. In

the generic application, the objects used to represent it are the interface objects. They are technology

objects.

Each interface object represents a type of window of the user-interface, or a component of one of these

windows. It can be linked to one of the business objects of the generic application and indirectly, to the

business objects associated to it. This allow us to separate in the generic application the user-interface

and the domain of the application.

The layer oriented models for the design of user-interface describe the tasks of the user from an

abstract level to more and more concrete levels.

The task oriented models for the design of user-interface start from a formal description of the tasks.

The action oriented models for the design of user-interface suppose that the user interacts with the

system via the mental representation he has of the system. The task process is considered as a process

of execution and evaluation.

The control of the user-interface is action oriented. As the activities are not modeled today, the actions

offered by the user-interface are predefined in “Visual Modeller”. The generated application offers the

following services (actions):

• consulting existing objects

• modifying objects

• deleting objects

• creating objects

• accessing from one object, to its associated objects

The interface objects are built by “Visual Modeller” from the business objects of the generic

application. By consequence, the users do not need to build a dialogue specification. This is an

advantage as our objectives are that the end-users must be able to be the main actors of the development

process, from modelling themselves the business process, to the generation of the application.

Furthermore, linking directly the representation of the information in the user-interface to the concepts

of the business process (the business objects), we can suppose a good correspondence between:

• the user’s mental representation of the domain (if he knows the business process model!?)

• the information presented in the interface

This can an advantage for the goal of getting an intuitive user-interface. Although, we need to study

more in detail, how the activities of the business process will be presented in the application.

1.3. The generation of code

1.3.1. Languages used to generate the code in “Visual Modeller”

The generation of code is processed from the generic application. Each area of the generic application

provides a language for the generation of code.

As we aim to be able to adapt “Visual Modeller” to different implementation environments, these

languages have been designed as extensible languages: each of these languages provides a basic

language which permits:

• to access all the useful information contained in the generic application

• to navigate through this information

For each supported implementation environment, an extension of the basic language is specified outside

of “Visual Modeller”, using this basic language, contained in “Visual Modeller”, to specify the

extension.

Each language is managed through a tool we call an “automaton” in “Visual Modeller”.

1.3.2. Generation of code is a two steps process

The generation of code is processed by the automata in two steps. The automata (one for each language)

could execute concurrently each step, but all these automata must have finished one step before one can

start the next step. This constraint allows cooperation between the different types of objects in the

application. The steps of the generation of code process are the following:

• first, the automata give an implementation name to the objects of the generic application they

manage, and to their components (their attributes, their methods): we will call this step, the naming

operation.

• second, they generate the code for the implementation

1.3.3. The extensible language supported by the automata

Each automaton provides an alphabet composed of words which are associated to a predefined action

that can return a result. These words can be classified in three sets:

• the iterators go through the structure of the object of the generic application managed by the

automaton, updating the current local views on these objects. They point to the next item (an

object or a component of an object), returning a boolean value, true when the next item has been

found

• accessors which write in the automaton buffer information about the item currently pointed by the

local view

• the actions execute predefined actions, services offered by the automata

• the procedures which are expressions defined using the previous words

The actions offered by the automata are:

• “read” which writes a string of characters in the automaton buffer

• “makeFile” which creates a text file, closing the previously opened file if necessary

• “closeFile” which closes the opened text file

• “writeCode” which writes the value of the automaton buffer in the created text file

• “writeProject” which writes in the project file (known as the MAKE file for C programmers) the

value of the automaton buffer

The automaton provides two control structures:

• if(< iterators >) < word >

• while(< iterators >) < word >

The grammar of the language for the code generation can be summarized as follows:

procedure : expression + suite

expression : if(iterator) item

expression : while(iterator) item

expression : item

item : procedure

item : word

word : action

word : accessor

suite : { empty }

suite : expression + suite

action : read

action : makeFile

action : closeFile

action : writeCode

action : writeProject

The commands “iterator” and “accessor” offered by “Visual Modeller” are different for each automata,

as each provides access to a specific range of information about the generic application.

1.3.4. Adapting the language to a specified implementation environment

All these words provide a grammar which allow “procedures” to written in the language used to

generate the code. We decide now that these procedures must be regular on the left. This brings us

determinism and by consequence, high performance in the speed of generation of code.

As the grammar is very limited and simple, it is well designed for a visual programming of the

procedure words of the automata. Only these kind of words are specific to an implementation

environment, the others are natively provided by “Visual Modeller” as the basis of the language. For

each automaton, the procedure words are declared in a data file.

By consequence “Visual Modeller” is well adapted to generate some code for different environments.

To be able to generate some code for a new environment, we only need to be able to:

• provide the information on this environment required for the naming operation

• write the procedure words definition for the generation of code in this environment

1.4. The user-interface of the generation of code in “Visual

Modeller”

In “Visual Modeller”, the user asks for the generation of an application from the model of a business

process. He has to specify the target environment, development language, database and DBMS (for

example, Microsoft Windows 95, Microsoft Visual Basic, the localisation of the database and Oracle

DBMS). Then the generic application is generated, and from this generic application, the database is

updated or created, and the code for the generated application is produced.

The user does not see these different steps of the generation. During the code generation, no

intervention is required from the user. If the specifications in the business process model are incomplete

or incoherent, the generated application will be incomplete or incoherent or some default options will

be automatically chosen by the tool. So it is not necessary to develop an interface for the code

generation!

The generation of the generic application includes three steps:

1. the business objects are generated from the business process model, using a set of “business

objects generation rules”

2. from the business objects, the generation of the interface objects and the generation of the

database objects (including the design of the database) are realised independently, each one

with its proper set of rules (respectively the “interface objects generation rules” and the

“database management rules”)

3. the translation of the generic application in the specified environment with the specified tools

(development language, DBMS...). This step is detailed by the documents “Database

Implementation” and “Business Object Implementation”.

1.5. State of the development

1.5.1. The version of December of 1996

A first version of “Visual Modeller” for the generation of the generic application and for the generation

of code has been produced for the end of December of 1996 (see the project plan in appendix 2). It

generates two applications from a model produced by “Visual Modelling”:

• an application able to create or to update the corresponding relational database

• a front-end application

As we aim to develop iteratively and incrementally “Visual Modeller”, this first version has many

limitations which are detailed below.

Some limitations come that we do not now use all the modelling capabilities of the method. Thus the

activities of the business process model are now unknown in the generic application. By consequence,

the functions provided by the generated “front-end” application are limited: this “front end” application

offers the users an interface to access to the instances of the business objects defined in the generic

application. These instances are stored in one relational database (the concept of multi-databases is not

managed). The application offers the possibility to show, create, modify or delete some instances of

these objects. The associations between these objects are used by the application to:

• verify the integrity constraints (for example, when an order is created, an existing customer must

be associated to the order)

• offer access to the associated objects from a selected object in the interface (for example, from the

window displaying a customer, the user can get the display of all its orders)

From the generic application, the following restrictions are also done:

• one relational database only will be considered: “Microsoft Access”

• one implementation language only will be used: “Microsoft Visual Basic”

• no optimisation has to be considered now

• we don’t need to manage the events for the system failures

• we will not use the notion of event type (consequently to previous assertion)

• the notion of pre-condition and post-condition are ignored

Although, only the link with Microsoft Access databases will be tested, “Visual Modeller” is already

implemented for all the database linked with Microsoft Jet Database, a subset of the ODBC API

(“Object Database Connectivity Application Programming Interface”). The standard language SQL

(“Structured Query Language”) is used to

• create or update the database

• implement the queries to the database

For the prototype the procedure words will be directly implemented in the code of the automata. So we

don’t need to define:

• an interface to enter them

• an interpreter of the language of the automata

1.5.2. The current development

Currently two students are extending “Visual Modeller” so that it can generate some code for:

• Delphi (a Borland RAD - “Rapid Application Development” - product)

• Javascript and HTML (“Hyper-Text Meta-Language”), using Corbix

1.5.3. Future development

When the activity will be modeled, the application objects will be implemented. The states of the

business objects will be represented by the pre/post conditions, the actions of the business objects will

be used by the application objects.

Other improvements will be decided from the experiences got from the existing version of “Visual

Modeller”.

2. The generic application

2.1. Objects of the generic application

2.1.1. Three types of objects

The generic application representation is object-oriented. But its objects are not necessarily

implemented directly in the generated application: for example, if the implementation computer

language used is not object-oriented, rules of the same kind of those used to translate C++ in C can be

used, or input controls can be implemented directly in the user-interface instead of the business object

(on the same way an inline function is implemented in C++).

The objects of the generic application are broken down into the following three types of objects

(already described in the chapter 1):

• business objects

• database objects

• interface objects

The generic application will itself be represented as an empty, non persistent business object. All the

not dependent business objects (all those which are not a part of another object, unlike the object “order

line” existing only if it is associated to an object “order”, although it is not represented as an aggregated

object) are associated to the “generic application” business object. Therefore, the generic application

has a representation of itself, that it can manipulate. Thus, this choice allows a reflexive representation

of the generic application.

Note that it is disputable to represent the generic application as a business object, because the generic

application is not part of the business process model.

2.1.2. Generation rules to create the generic application

The generation tool in “Visual Modeller” uses generation rules to specify how to create an object in the

generic application, to update it or to aggregate it as part of another. There is a different set of

generation rules for each of the three types of object of the generic application, and even a different set

for each type of database. For the prototype, only the relational type of database can be selected.

The objective is to facilitate the process of construction of the generic application, which has to be an

evolutive and incremental process. But for the first prototype, as for the automata, these rules are

directly implemented in the code, although in a specific part of it.

2.1.3. Associations between the objects of the generic application

In the generic application, the associations between the objects of the generic application are described

as a one direction association between two business objects. By consequence, two instances of

association description are necessary to represent a dual way association. These two instances are

linked.

In the generic application, the associations between the business objects are first created from the

business process model. Then, while the generic application generates objects, it generates some

association between them. The generation rules of the generic application can produce some

modifications on these associations in the generic application. In particular, the generic application is

able to determine how an association will be used (never, only in one way or in both ways). Different

generation rules can be defined for different types of associations.

2.1.4. Actions and conditions

An action is a part of an object of the generic application: it corresponds to a method of the object. It is

an ordered set of blocks of code (a set of instructions in the notation of C, C++, Pascal...) and action

calls. The actions called can be actions of the same object or actions of other objects (in that case it

corresponds to a message sent to another object).

A condition is an action which returns a boolean result. It allows us to verify if the object is in the

predefined state described by the condition. Two conditions can be associated to one action. The action

will not be executed if the result of the pre-condition is “false”. The action will not be validated if the

result of the post-condition is “false”.

Using the notion of condition is not a necessity: the tests done in the conditions could be done in the

action. The post-condition is not easy to implement and also less useful than the pre-condition. It will

not be implemented in the first versions. Implementing the pre-condition alone (without the notion of

post-condition) is not difficult and will allow us to express explicitly some states for the related generic

application object.

2.2. Database objects

2.2.1. The consequences of the dual role of the database objects

As shown in a previous paragraph (see 1.2.3. The database management) the database objects have a

dual role in the generic application as they both represent:

• objects linking the persistent business objects with the database

• the model of the database

The attributes of a database object represent the fields of the table it is associated with. By

consequence, the limits of the database apply on these technology objects.

2.2.2. The construction of a database object

2.2.2.1. General principle

The database objects are constructed in the generic application, from the business object, after they

have been optimised. First one database object is constructed in the generic application for each

persistent business and associated with this business object.

2.2.2.2. Constraints on the representation of the attributes of the business objects

But, the constraints of representation on the attributes of a database object are more restricting than the

one upon the attributes of a business object; when the type of an attribute of a database object cannot

be associated with a type of field in the database, this attribute becomes a “sub-database object”: this is

a new database object contained by the previous database object, and not directly associated with any

business object.

This rule is sufficient to generate a correct model of database; but it presents the risk to split the

database structure in too many tables. We propose the following rule to improve the structure of the

database: if a “sub-database object” is contained by only one database object, and if one instance of its

container can be associated with only one instance of the “sub-database object”, then the structure of the

“sub-database object” is included in its container and the “sub-database object” does not exist any

more.

2.2.2.3. When the database does not support the notion of inheritance

An other problem has to be resolved: most of the types of database do not implement the notion of

inheritance. A business object can have many super-classes. There are two kinds of super-class:

• a super-class that can be instanciated

• a virtual super-class that is never instanciated

In the generic application, we will make the distinction between:

• the super-class that are also used as persistent business object

• the other super-classes, considered like virtual super-classes

When a persistent business object inherits from a super-class which is also a persistent business object,

we will treat this case as if, the first business object is always associated in a one to one relation with the

second one. Attention, this means that when the first business object is loaded from, or updated in the

database (updated meaning as well created, modified or deleted), the second one must be loaded or

updated too.

In a first step, we will apply the same rule for the virtual super-class, except if only one business object

directly inherits from it. In that case, the structure of the super-class business object is incorporated in

the structure of the database object associated with the sub-class business object. Attention, this rule

can be recursively applied if the sub-class business object is also a virtual super-class.

These solutions are simplistic. Perhaps this strategy does not provide the best performances, but it is

simple, and in the same time we can expect a structure of the database:

• that does not contain too many tables

• where the structures of the tables do not contain too much fields

2.2.2.4. A relational database object must contain an identifier

One constraint due to the relational database is that each table description must contain an identifier

field, which value can identify each line in this table. Therefore, when building the database objects in

the generic application, “Visual Modeller” has to verify the existence of an identifier. In the definition

of the business object a “unique value” constraint can be specified on some of their attributes. When the

relational database object is associated with a persistent business object, if the corresponding attribute

or set of attributes is present in the database object, it is therefore used as identifier in the relational

table. If not, a supplementary attribute is created in the relational database object to play the role of the

identifier. It is then invisible from the associated business object (if there is one) and the relational

database object is responsible for initialising the value of the identifier.

2.2.2.5. Associations between persistent business objects and relational databases

The relational database can represent more than only a translation of the static structure of the persistent

business object. In a relational database, the association between the persistent business object will

generate foreign keys and integrity constraints in the tables of the database.

It would also be possible to generate embedded procedures in the relational database, but this will not

be done in the first version of “Visual Modeller” because this is not a standard supported by all the

RDBMSs (“Relational Database Management System”). To implement the notion of embedded

procedures in relational databases, we will wait the stage of development in which “Visual Modeller”

will be able to adapt itself, or will be able to generate applications that can adapt themselves, to the

capabilities of the RDBMS(s) selected for the implementation.

2.3. Interface objects

2.3.1. A hierarchical structure of interface objects

An interface object is a component of the generic user-interface of the generic application. It describes

all the visual components of the generic user-interface. As the generic user-interface is an MDI (the

main window of the GUI of the application can contain different kind of child windows), the main

window, the child windows and their components (the fields, the buttons...) are represented by interface

objects.

Two types of interface objects are defined. These types are virtual (an interface object is always a

specialisation of these virtual objects):

• a control which represents an elementary component in a window, like a field or a button

• a frame which represents a form (it means a main or a child window or a dialogue box) or a set of

controls in a window (called an “inLine Display”)

2.3.2. Associations between the Interface and Business Objects

A frame represents:

• a set of controls (this set can be an entire form or an inline display - a component of a form)

• the association to one business object (the main associated business object) of all of these

controls, and indirectly their association to the business objects associated to the business object

linked with the frame.

By consequence, each of the controls of a frame is able to display an information from the main

associated business object, and eventually can be used to modify it (under the control of the business

object). As a form is a frame, each window of the user-interface can be related to a business object, or

several using the frames. This relation between a frame and a business object is used to link the user-

interface of the generic application with the business objects of the generic application.

2.3.3. “Inline display” objects

As a frame, an inline display is a type of interface object associated to one business object. It is

typically used to display the “lines” of a “header” represented by the main business object associated to

the form (for example the lines of an order in an “order form”).

If the business object associated to the form is the “application” business object (for example, in the

main window), inline displays can be used in this form to give a list of the instances of an associated

business object (for example the list of the customers).

The following will be implemented only as a rule for the generation of the generic application: “the

business object associated to the frame must be itself associated to the main business object associated

to the form containing the object display”. We will use “Visual Modeller” to verify this assertion.

2.3.4. “Field” objects

A field is a type of interface object directly contained in a frame (a “form” or an “inline display”). It

displays information obtained from the main business object associated to this “frame”. It can be an

output only field or an input (and output) field. For example, if we refer to Microsoft Window, the

labels, the fields, the combo-boxes, the list-boxes are represented by “field” objects in the generic

application.

To get the information, or to give it after an input, or to control the input, the field communicates with

this business object by a message. So the displayed information can be one of the following:

• an attribute of this business object

• a “derived” attribute of this business object

• an information from an object associated to this business object

This communication by message with the associated business object implies that the generic application

has to define in the business object methods to access its public attributes and methods to modify the

value of some of them. When the code is generated, it is possible to improve the performances of the

generated application by implementing “inline” (in the same meaning as in the C++ language) some of

this methods.

2.4. Communications in the generic application

2.4.1. Messages

The message is one of the ways the objects of the application can communicate together. Typically the

message is a dual ways synchronous communication established between a sender and a receiver. A

message carries:

• the reference of the sender

• the reference of the receiver

• a request which is represented by the called method of the receiver (and the parameters)

An object can send a message to another type of object if they are associated (for example, a form can

send a message to the business object which is the main business object associated to it).

The message corresponds to the notion of “message” used in the object-oriented programming

languages. It is implemented by a call to an object method. It is represented by the association “calls”

between two “actions” in the model.

2.4.2. Events

The event is one of the ways the objects of the application communicate together and the way they

communicate with the system. An event is an asynchronous communication. It carries:

• the reference of the sender

• a type of event (not used in a first time)

• an information

The receiver is not defined in the event. Several objects can receive and handle the same event. The

sender does not get a return value: it is a one way only communication. It does not need to know the

receivers of the events he sends.

The events are useful to make the business objects, the user interface, the database management system

and the environment system work together without being too closely dependent: each part doesn’t need

to know how the others are implemented, it has only to notify them of some events. It is particularly

useful to implement errors management.

During the code generation, depending on the characteristics of the selected development language, it is

possible not to implement the notion of event and replace it by the sending of a message to the objects

able to handle the sent event. Otherwise the events can be implemented for example with a queue of

sent events and a handler of events in some objects to receive and handle them. Some events (usually

the system error events) can also be implemented using the notion of exception.

2.4.3. Event Types

The characteristics of an event could be different following its type and also its implementation: a

“system error” event could be implemented using an exception, while the events of other types could be

implemented by sending some messages, or managing a queue of events and an event handler in each

receiving objects.

3. Models for the generic application

3.1. Introduction

These models have been generated with the CASE tool “System Architect” (a product of Popkin

Software & Systems Incorporated), using the OMT (“Object Modeling Technique”) method.

Note that all the objects (represented by a frame) marked with “o•o” are detailed in a sub-model.

3.2. The generic application

Association description

name
origin cardinality
destination cardinality
ordered (Y/N)
aggregation (Y/N)
used in application (Y/N)

persistent
DataBase Object

created (Y/N)
modified (Y/N)
deleted (Y/N)

load
create
save
delete
update
refresh
{abstract}

Interface Object

show
{abstract}

persistent

Application Object

name

{abstract}

persistent

Action

name

persistent

Event Type

name

persistent

CODE GENERATION
System Architect

Tue Sep 03, 1996 16:11
Comment

Condition

boolean return

persistent

event

information

Block of Code

persistent

Business Object

Generation rule

Application

has

dual

opposite direction assoc.

sends

calls

sender

receiver

has{ordered}

1+

has

method

associated with

destination of association
origin of association

1+

receive

receiver

1+

has

post-condition

1+

has

pre-condition

has

3.3. The business object

Business Object
System Architect

Mon Aug 26, 1996 17:43
Comment

Type of DataBase Attribute

Attribute of business object

property of component

Type of internal entity

Basic memory types

Component of model

Business Object

inherit
super-class

sub-class

corresponds

property name
has

generated from

model

generated from

model

attribute name
has

is type of

type of attribute

3.4. The database object

DataBase Object

created (Y/N)
modified (Y/N)
deleted (Y/N)

load
create
save
delete
update
refresh
{abstract}

persistent

Extended Relational DB Object

persistent

Relational Data Base Object

Object Oriented DB Object

DataBase Object
System Architect

Thu Aug 22, 1996 14:23
Comment

Hierarchical DB Object

3.5. The relational database object

Association

cardinality of Table 1
cardinality of Table 2

Relational Data Base Object

Type of DataBase AttributeRelational DataBase Table

Relational Data Base Object
System Architect

Thu Aug 22, 1996 16:16
Comment

Relational DataBase

Attribute link

Attribute of RDB

Model Set

Secondary Key

Primary Key

link

attrib. of table 2

link

attrib. of table 1

1+

details

link

Table 2

link

Table 1

1+

has

{ordered}

has

1+

has

{ordered}

has

generated from

root model set

contains is type of

type

attribute name
1+

has

access

has

part of

container

Note that each “attribute of RDB” represents also an attribute of the database object associated with its

“relational database table”.

3.6. The interface object

Form

open
close
{abstract}

persistent

Interface Object

show
{abstract}

persistent

Action

name

persistent

Interface Object
System Architect

Thu Aug 29, 1996 13:18
Comment

Frame

{abstract}

Control

{abstract}

Child Form

modal (Y/N)

inLine Display

persistent

button

persistent

Field

persistent

Menu Item

Main Form

Business Object

contains

displays

associated object

contains

1+

has

contains

execute

command

sub-menu name has

has

4. The generation of code

4.1. What strategy to access to the database

4.1.1. Using a standard multi-platform solution

Many solutions are available to access a database from an application; among them, some can be

considered as standards compatible with many DBMSs. By consequence, in the first version of “Visual

Modeller”, even considering its limitations, one of these standard solutions has been preferred to a

proprietary solution: the code generated in Microsoft Visual Basic does not use one of the proprietary

solution offered by this language (as its dedicated controls or commands), neither the database is not

created using the specific programming language VBA (“Microsoft Visual Basic for Applications”)

provided by the Microsoft Access DBMS.

4.1.2. The ODBC API solution

One of the more powerful solution to access the DBMSs with Microsoft Windows applications is to use

the Microsoft ODBC 2.0 API (“Open Database Connectivity Application Programming Interface”).

It is an extension to an industry standard (X/Open and SAG) which represents the core level of ODBC

(corresponding to the1992 X/Open and SAG CLI). There are clear indications that cooperation among

vendors and standards groups is producing a convergence of standards so that ODBC level API, the

revised X/Open CLI and the forthcoming ANSI/ISO standard CLI (“Client Level Interface”) will be one

and the same. Microsoft has committed to aligning ODBC 3.0 with the final ANSI/ISO standard for a

call-level interface.

ODBC 2.0 specifications defines three levels of API conformance. The level one has become the

generally accepted standard by Microsoft and the ODBC community:

• core level corresponds to the 1992 X/Open and SAG CLI specifications (22 functions)

• level 1 add 16 functions to the core level

• level 2 add 17 functions to the level one (including SQLForeignKeys and SQLPrimaryKeys)

Most popular database formats are accessible through an ODBC driver. ODBC is a multi-platform API:

there are implementation of driver managers and ODBC drivers for Microsoft Windows but also for

environments such as UNIX, OS/2, AIX, MacIntosh.

ODBC also provides functions (as other products do too, like the Intersolv’s QELIB library) that return

information about the drivers and the DBMSs features as the data types, the available SQL, the isolation

levels, the cursor commit behaviour, the system catalogue information, and so on. By consequence, the

ODBC API allows the undertaking of a generic approach but also an adaptive approach, which

means that the ODBC API can be seen with an API view but also with a product-specific view.

Using an adaptive approach, the generated application means that is able to adapt at run-time to the

capabilities of the ODBC driver for the used DBMS, offering by consequence higher performances.

The generic approach is a minimalist, least-common-denominator strategy for writing portable

applications.

The adaptive approach produces more powerful applications than the generic approach. But it is also

more complex, requires a lot more work of development and is not relevant in the minimalist approach

used for the development of our prototype. Although using the ODBC API in the prototype with a

generic approach, offers us the possibility to evolve latter (and incrementally) to an adaptive approach.

4.1.3. Creating the database with the ODBC API

ODBC provides the ability to create tables, but the problem of creating and initialising databases is not

within the scope of the ODBC API. Some SQL dialects support CREATE DATABASE statement, but it

is not a part of the ANSI SQL standard supported by ODBC. ODBC, the X/Open CLI, and the

forthcoming ANSI CLI don’t attempt to include database administration as part of a data access call-

level interface. Creating databases varies significantly from desktop to server and mainframe products.

4.1.4. The DAO solution

Microsoft proposes for Microsoft Windows a similar solution to the ODBC API: Microsoft DAO (“Data

Access Objects”).

DAO presents the following disadvantages compared to the ODBC API:

• the initial implementation of the object layer of DAO was a better solution for ODBC applications

that used complex queries and large tables. Writing directly to ODBC API generally produced better

performance for Visual Basic applications that used simple queries and small tables (see the article

of Ken North “ Understanding ODBC and multidatabase APIs” in the March 1994 issue of DBMS

that provides comparative performance data). Microsoft is wrapping the ODBC API in an object

interface based on OLE objects, so future Data Access Objects will be available across applications,

allowing ODBC API based applications to use DAO layer where it provides better performances.

• more DBMSs can be accessed by ODBC than by DAO.

• with the ODBC API, the applications can adapt at run-time to the capabilities of the ODBC driver

for the used DBMS

Nevertheless, DAO is retained for the prototype because:

• DAO can coexist with the ODBC API in the same application. It is possible to evolve progressively

from a DAO application to an ODBC API application, even to mix both solution in the same

application.

• the object layer of DAO provides a greater ease of use and transparency

• the more common DBMSs used on the market are accessible via DAO.

• DAO permits the creation or the update of a database

• as the ODBC API, DAO uses the SQL language to formulate queries to the DBMSs, which is a

widely recognised standard

4.1.5. Implementing the database objects with an “OLE” technology

We could have implemented the database objects with an OLE technology. This would have simplified

the generation of code for multiple programming environment, as the code for the database objects

would have been the same for all the environments supporting OLE.

As “Visual Modeller” generates limited applications in its first version, we can suppose the code it

generates could be completed by some developers. Also, we could wish to maintain this possibility in

the next versions of “Visual Modeller”. As “Visual Modeller” is not designed to be used by high-level

professionals in computer science, it is wished, at least now, to generate some code that can be easily

extended. If we generate now some OLE objects, a third development environment (C++) will be

necessary to be able to compile or update these objects.

By consequence, this solution has not been retained for the prototype.

4.2. More details on strategies used to implement the generic

objects

4.2.1. the aggregated objects

There is no particular treatment for the aggregated objects: if a generic object which is part of another

in the model has to be treated like an attribute of its container, this modification has already been done

in the generic object before its implementation (during the generic object optimisation phase).

Elsewhere the fact that the associated object is a part of the first one is useful only in the methods of its

container (mainly in the constructor and in the destructor) and eventually in its own methods. The

aggregated object is represented like an object associated to its container in the implemented

application.

4.2.2. the methods of the objects in a non OOPL

When the programming language used for the implementation is not an OOPL (“Object-Oriented

Programming Language”), the methods of the generic objects will be implemented as global functions

or procedures. We will use a rule similar to the one used by a pre-compiler C++ to translate a method

in a C function:

a method “m” of an object “o” will be implemented as a global function or procedure

of name “o_m” with a first parameter that will be a reference to an instance of an

object “o” (where “_” represents the linker character).

Parameters initialized in “Visual Modeller” define:

• the maximal length of the generated name (“o_m” in the example “o_m”)

• the maximal length of the prefix of the generated name (“o” in the example “o_m”)

• the linker character (“_” in the example “o_m”)

The prefix of the generated name can be truncated following the rules given in the paragraph about the

“naming operation”. The full name is then truncated following this same rule.

The prefix “o” given for each object (also known as the short name of the object) is unique. It is not

necessary but the generated sources will be more readable, being needed to calculate the short names

only one time, allowing best performances, the only disadvantage being the space required to store the

short name (in the generic objects).

4.2.3. the attributes of the objects

4.2.3.1. The name of the attribute must be unique within its scope

An attribute name needs only to be unique in its scope (that is the part of the application where it is

visible). The name of an attribute must only be unique among the other attributes and methods of its

object.

We decide that the name “a” of an attribute of an “object” “o” is unique in its form “o_a” (see the

description of the naming rule for the methods in the above paragraph) for the global application and

implemented in this form. It permits:

• to use only one list of the already used names because there is only one range of visibility for all the

application

• to avoid resolution of name conflicts consecutively to the implementation of the inheritance

4.2.3.2. If the non OOPL provides user-defined types

Most programming languages permit to declare “user-defined” types which are composed of other types

(like the structures “struct” in C, the “record” in Pascal, the “type” in Visual Basic). In that case an

object will be implemented as one of these types. The components of the type correspond to the

attributes of the object implemented as a user-defined type.

4.2.3.3. If the non OOPL does not provide user-defined types

In the non OOPL which do not provide user-defined types, the rules used to implement the names of the

methods of the objects in a non OOPL are also used to implement the names of the attributes of the

objects.

Each attribute of an implemented object is represented by a global variable when the type of the

attribute allows that.

4.2.3.4. When an attribute cannot be implemented as a variable

When the type of an attribute does not permit to implement it as a variable, the rules to implement an

object are applied to this attribute, and eventually the attributes of this attributes, and so on.

4.2.4. the inheritance between generic objects in a non OOPL

The inheritance needs to be translated too, when the implementation is done in a non object-oriented

programming language. We use the following rules:

The attributes of its super classes are duplicated in the derived object.

A method “m” of an object calls the method “m” of its super-class at the end of its

personal code if it does not override it.

We must say that with this strategy, we must translate the reference to the virtual object too. Late

binding (that is determining the class of an object at run-time) is still possible if we implement the class

(ie. the type) of an object as one of its attributes, so that, in the implementation, the “object” can

manipulate this information.

4.3. Implementation of the “naming operation” in the

automata

The rules to build a valid name of variable, type, function or method (...) are dependent of the used

programming language. By consequence, before processing the naming operation, an automaton must

get some information about the implementation language:

• is it object-oriented?

• has it the notion of user-defined compound types of data?

• what is the maximal length of the name of a variable?

• is the name of a variable case sensitive?

• what character (we call it the linker character) must be used to assemble two items in one name?

• what is the list of the forbidden characters when you name a variable, a function or a type?

An implemented name is built from the corresponding name used in the generic application. First, the

forbidden characters must be filtered. Then we will assume the following rule, that is true in most of the

programming language: a name must begin by an alphabetic character (ie. from “a” to “z”, or from “A”

to “Z”) or by an underscore character. Then if the used programming language is not case sensitive, the

proposed name is converted to lowercase...

But the main problem remains for the last step: we must ensure that the name we will use for the

implementation is unique in the part of the application where it is visible. At a first step, we will not

manage this notion of limited visibility in the application: anyway, we need a mechanism to construct a

unique name within an area. So, it is simpler to define that area as the entire application, and although

we believe managing several areas of visibility, it does not bring significant advantages.

To be able to build unique names and to be able to build names that verify the constraints of the

implementation language upon their maximal length, we use a truncating mechanism: an implemented

name is built from the corresponding name in the generic application. Its prefix is the generic name

truncated to the maximal length allowed by the implementation language minus the length of its suffix.

This suffix is the linker character followed by a number automatically incremented each time this suffix

is used for a new name. In fact, this method is similar to the one used by Microsoft Windows 95 to build

a MsDos file name from a long file name, using “~” as linker character.

A private attribute is defined in the objects of the generic application and their components to store the

name of the corresponding object in the generated system. In fact there are two implementation names

for the objects of the generic application: in case the implementation environment is not object-

oriented, a short name is built too for these objects. The name of their methods, and of their attributes if

the implementation language does not support the user-defined types, will be defined as the

concatenation of the short name of the object and of the name of the component. In that case, it means

the length of the name of the methods, and eventually of the attributes of the objects, will be shortened

so that the composed name remains within the maximal length permitted by the programming language.

4.4. The ancestor of all the automata of “Visual Modeller”

The class “GDAutomaton” is the description of a virtual automaton in “Visual Modeller”. All the

automata in “Visual Modeller” inherit from it. Seen from “Visual Modeller”, all the automata are

activated as a “GDAutomaton” object, without consideration for what they are implementing.

The method “getExtensionLg” does not exist in this version, issued from the prototype of “Visual

Modeller”. Its role will be to read the extension of the language for the generation of code by the

automaton. Waiting for this solution, in the prototype, the procedures to extend the language provided

by “Visual Modeller” to generate the code are directly implemented in the automata derived from

“GDAutomata”. By convention, the name of the methods implementing a procedure begin with

“decl”.

Note that the methods which name begins by:

• “setFirst” are accessors

• “getNext” are iterators

Declaration of the class “GDAutomaton” extracted from the source file “PSeudoGDModel.h”

class GDAutomaton: public CObject {
public:
 CString Title; // title of the automaton

protected:
 GDModel* GenApplDatas; // pointer to the generic application datas
 CFile implemFile; // implementation file
 int impFileStatus; // status of the implementation file (opened = 1)
 int objNameMaxLen; // max length of object name as “ObjN_AttribN"
 int varNameMaxLen; // max length of a name of variable, type, function
 BOOL isOOL; // is the implementation language Object Oriented ?
 BOOL caseSensitiveNames; // is naming (variables, types...) case sensitive ?
 TCHAR separator; // separates the prefix and the serial nb in a name

public:
 GDAutomaton(CString myTitle = "", GDModel* model = NULL);
 ~GDAutomaton();

 virtual void buildImplementedObj() = 0; // build source for implementation of
 generic objects
 void buildNamesForImplem(); // build the names for the implemented
 objects
 void linkGenAppl(GDModel* model); // link automaton and generic application

 virtual CString getObjectName() = 0; // current object name used for
 implementation
 virtual CString getAttribName() = 0; // current attribute name used for
 implementation

protected:
 virtual void setFirstObject() = 0; // set ready to read the first object
 virtual void setFirstAttrib() = 0; // set ready to read the first attribute

 virtual BOOL getNextObject() = 0; // read the next object
 virtual BOOL getNextAttrib() = 0; // read the next attribute

 CString getMethodName(const CString genericName)
 { return GenApplDatas->getMethodName(genericName, this);

 CString giveVarName(const CString proposal, // give name for variable
 const CString prefix = "");

 CString givePrefixName(const CString proposal); // give name for prefix
 inline COrdServer& usedNames(); // return the list of the used names

 // create an empty file
 int makeFile(const CString fileName, const CString extName);
 int closeFile(); // close the file opened with "makeFile"
 // method name used for implementation
 }

 void write(CString buffer) // write buffer in implementation file
 { implemFile.Write(buffer, buffer.GetLength());
 }

private:
 // apply the 1st set of naming constraints
 void setNamingRules(CString proposedName);
 // see "usedNames"
 CString giveNewName(int maxLength, const CString proposal);
};

4.5. The automaton generating the code for the business

objects

4.5.1. The declaration of the automaton used for the prototype

The class “GDBOAutomaton” is used in “Visual Modeller” to instantiate the automaton that

implements the business objects. In the prototype, it is dedicated to generate some code for the

programming language Microsoft Visual Basic. But this is only a simplification used for the prototype.

In the next versions of “Visual Modeller”, this automaton will be used to generate some code

indifferently for any programming language (see the paragraph describing the virtual automaton

“GDAutomaton” for more details).

Declaration of the class “GDBOAutomaton” extracted from the source file “Automata.h”

class GDBOAutomaton: public GDAutomaton {
public:
 GDBOAutomaton(CString myTitle, GDModel* model = NULL);
~GDBOAutomaton();

 void buildNamesForImplem(); // build the names for the implemented objects
 void buildImplementedObj(); // build the source to implement the BO
 // (where BO means business object)

private:
 // ... the iterators

 CString getObjectName() { return GenApplDatas->getObjectName(this); }
 CString getDBObjectName(); // name of database object associated to current BO
 CString getSupClassName() { return GenApplDatas->getSupClassName(this); }
 CString getAttribName() { return GenApplDatas->getAttribName(this); }
 CString getAttribType() { return GenApplDatas->getMemAttribType(this); }
 CString getAssoAttrQTxtVal() { return GenApplDatas->getAssoAttrQTxtVal(); }
 CString getAssocName() { return GenApplDatas->getAssocName(this); }
 CString getAssocObjName() { return GenApplDatas->getAssocObjName(); }
 CString getFornTableName() { return GenApplDatas->getFornTableName(); }
 CString getAssoDBForAttrName() { return GenApplDatas->getAssoDBForAttrName(); }
 CString getAssoAttrName() { return GenApplDatas->getAssoAttrName(); }

 // ... the accessors

 void setFirstObject() { GenApplDatas->setFirstBusinessObject(); }
 void setFirstSupClass() { GenApplDatas->setFirstSupClass(); }
 void setFirstAttrib() { GenApplDatas->setFirstAttrib(); }
 void setFirstForeignK() { GenApplDatas->setFirstForeignK(); }
 void setFirstAssoc() { GenApplDatas->setFirstAssoc(); }
 void setFirstAssoAttr() { GenApplDatas->setFirstAssoAttr(); }
 BOOL getNextObject() { return GenApplDatas->getNextBusinessObject(); }
 BOOL getNextSupClass() { return GenApplDatas->getNextSupClass(); }
 BOOL getNextAttrib() { return GenApplDatas->getNextAttrib(); }
 BOOL getNextForeignK() { return GenApplDatas->getNextForeignK(); }
 BOOL getNextAssoc() { return GenApplDatas->getNextAssoc(); }
 BOOL getNextAssoAttr() { return GenApplDatas->getNextAssoAttr(); }

 // ... the procedures, extension of the language for the generation of code
 // ... temporary methods for the prototype

 void declClassModHdr(); // to declare the header of a class module in VB
 void declObject(); // to declare a BO
 void declAttrib(); // to declare an attribute of a BO
 void declAssocQry(); // to declare the query objects to associated BO
 void declOneInstance(); // to declare one instance of a BO
 void declObjctMethod(); // to define the methods of a BO
 void declQryMethod(); // to declare the query method to current assoc.
 void declGlobal(); // to declare the global variables, objects
 void declIniFromAssoc(); // to declare initialisation of attribute
 // associated object
 void declResetValAttrib(); // to reset the value of an attribute to the
 // default value
 void declNullAssocObj(); // to reset the result of a query about the
 // association
 void declResAssocQry(); // to reinit the result of a query about the
 // association
};

4.5.2. An example of implementation of a business object with the prototype

4.5.2.1. The language in which the code is generated

The code to implement the business objects is generated in the programming language Microsoft Visual

Basic 4. This is not an OOPL (“Object-Oriented Programming Language”), but user-defined types

(composed of attributes of other types) can be defined. This language offers also an interesting feature:

the class module that allows simulating some characteristics of an object-oriented programming

language: each class module file allows the declaration of one object. This technique allows

polymorphism, encapsulation, but does not permit the inheritance to be managed by Visual Basic 4.

In Microsoft Visual Basic a variable name:

• must begin with an alphabetic character

• can’t contain an embedded period or type declaration character (ie. “$” or “%”)

• must be unique within the same scope

• must be no longer than 255 characters

• is not case sensitive (written in lower case by convention)

4.5.2.2. Example of extension of the language to generate the code

Here follow a short extract of a the source file implementing the automata in “Visual Modeller”. This

example shows the extension of the code generation language proposed by “Visual Modeller”, realized

by the implementation of the procedures. The name of the procedures are written in bold characters in

the following example.

Notice the other automata extend the language provided by “Visual Modeller” for the generation of

code in a quite similar manner.

Content of the source file “automata.cpp” implementing the automata in “Visual Modeller”

//--
// to declare a B.O.

void GDBOAutomaton::declObject() {
CString buffer;

makeFile("GenSource\\"+getObjectName(), ".CLS");
 if (impFileStatus != OPENED) return; // tested because uses "write"

declClassModHdr();
buffer = " --- Class Module of the Business Object '"+getObjectName()+"' ---

\"\n\n";
write(buffer);
buffer = "\n\n";
write(buffer);
while (getNextAttrib()) declAttrib();
setFirstAssoc();
while (getNextAssoc()) declAssocQry();
buffer = "Dim MyDBObject As "+getDBObjectName()+"\n\n";
write(buffer);
declObjctMethod();

// declOneInstance();
closeFile();

}
//--
// to declare an attribute of a B.O.

void GDBOAutomaton::declAttrib() {
CString buffer;

buffer = "Public "+getAttribName()+" As "+getAttribType()+"\n";
write(buffer);

}
//--
// to declare the queries to associated B.O.

void GDBOAutomaton::declAssocQry() {
CString buffer;

buffer = "Public To"+getAssocObjName()+" As DcQuery\n";
write(buffer);

}

4.5.2.3. The code generated

The automaton GDBOAutomaton of the prototype generates a Visual Basic class module file:

• for each business object of the generic application

• for the object DcQuery, specific to the applications generated in Visual Basic

An implemented (in Visual Basic) business object associated with persistent business objects, own, as

an attribute, one Visual Basic object “DcQuery” for each of these associated business objects. A

DcQuery object is used by the object implementing a business object, to send some queries to the

database concerning the instances of an associated business object. The DcQuery gets a Recordset as

the result of this query, allowing the application to create the corresponding business objects in

memory.

Content of the class module file “DcQuery.cls” generated in “Visual Basic 4”

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "DcQuery"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Attribute VB_Description = " --- Class Module of the Request Object "
' The "dc" prefix is reserved to the class defined by default in
' the application.

Public Rc_QueryResult As Recordset

'Constructor

Public Sub Class_Initialize()
End Sub

'Execute the request

Public Sub find(SQLStatmt As String)
 Set Rc_QueryResult = Dbdatabase.OpenRecordset(SQLStatmt, dbOpenDynaset)
End Sub

'Close the request

Public Sub dc_query_close()
 Rc_QueryResult.Close
 Rc_QueryResult = Nothing
End Sub

'Return the number of records in the result

Public Function count() As Integer
 If Rc_QueryResult = Nothing Then
 RetVal = 0
 Else
 RetVal = Rc_QueryResult.count
 End If
End Function

'Move on the first record of the result

Public Sub MoveFirst()
 Rc_QueryResult.MoveFirst
End Sub

'Move on the next record of the result

Public Sub MoveNext()
 Rc_QueryResult.MoveNext
End Sub

Private Sub Class_Terminate()
 On Error Resume Next
 Rc_QueryResult.Close
 Set Rc_QueryResult = Nothing

End Sub

Here follows an example of business object implemented by the prototype: it is an object “customer”

associated with zero to many objects “order”.

Content of the class module file “ObBOCustomer.cls” generated in “Visual Basic 4”

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "ObCustomer"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Attribute VB_Description = " --- Class Module of the Business Object 'ObCustomer' ---"

Public AtCust_Id As String
Public AtName As String
Public AtCompany As String
Public AtCategory As Integer
Public ToObOrder As DcQuery
Dim MyDBObject As ObDBCustomer

'constructor of "ObCustomer"

Public Sub Class_Initialize()
resetAttrib
Set MyDBObject = New ObDBCustomer

End Sub

'destructor of "ObCustomer"

Public Sub Class_Terminate()
Set ToObOrder = Nothing
Set MyDBObject = Nothing

End Sub

'to initialize the attributes of "ObCustomer" from the database.

Public Function load() As Boolean
load = MyDbObject.load(Me)

End Function

'to save "ObCustomer" in the database.

Public Sub save()
MyDbObject.save Me

End Sub

'to update "ObCustomer" in the database.

Public Sub update()
MyDbObject.update Me

End Sub

'to delete "ObCustomer" from the database.

Public Sub delete()
MyDbObject.delete Me

End Sub

'to load "ObCustomer" in the database from the result of a query.

Public Function loadFrQuery(ArResultQuery As Recordset)
loadFrQuery = MyDbObject.loadFrQuery(ArResultQuery, Me)

End Function

'reset the value of the attributes

Public Sub resetAttrib()
AtCust_Id = ""
AtName = ""
AtCompany = ""
AtCategory = 0
Set ToObOrder = Nothing
Set ToObOrder = New DcQuery

End Sub

'query on the association with "ObOrder"

Public Sub qryToObOrder
Dim SQLQuery As String

SQLQuery = "SELECT * FROM ObDBOrder WHERE "
SQLQuery = SQLQuery + "Cust_Id_1 = "+Chr(34)+AtCust_Id+Chr(34)
ToObOrder.find SQLQuery

End Sub

'initialise an associated object from the query on "ObOrder"

Public Sub IniMy_ObOrder(ArAssocObj As ObOrder)
ArAssocObj.loadFrQuery ToObOrder.Rc_QueryResult

End Sub

4.6. The automaton generating the code for the database

4.6.1. The declaration of the automaton used for the prototype

The class “GDRDBaseAutomaton” is used in “Visual Modeller” to instantiate the automaton that

generates the application whose role is to create or update the database.

Declaration of the class “GDRDBaseAutomaton” extracted from the source file “Automata.h”

class Dll GDRDBaseAutomaton: public GDAutomaton {

public:

 GDRDBaseAutomaton(CString myTitle, GDModel* model = NULL);

 ~GDRDBaseAutomaton();

private:

 COrdServer usedNames; // prefixs used to name variables, methods...

public:

 void buildNamesForImplem(); // build the names for the implemented objects

 void buildImplementedObj(); // build the database

private:

 CString getObjectName() { return GenApplDatas->getDBObjName(this); }

 CString getSupClassName() { return GenApplDatas->getDBSClassName(this); }

 CString getAttribName() { return GenApplDatas->getDBAttribName(this); }

 CString getAttribType() { return GenApplDatas->getDBAttribType(this); }

 BOOL getAttribIsUnique(){ return GenApplDatas->getAttribIsUnique(); }

 BOOL getAttribIsKey() { return GenApplDatas->getAttribIsKey(); }

 CString getForeignKeyName(); // name of current foreign key

 CString getForeignTableName(); // name of current table of current foreign key

 CString getFornKAttribName(); // name of current attribute of current foreign table

 CString getFornKAttrForName(); // name of current foreign attribute of foreign table

 void setFirstObject() { GenApplDatas->setFirstDBObject(); }

 void setFirstSupClass() { GenApplDatas->setFirstDBSupClass(); }

 void setFirstAttrib() { GenApplDatas->setFirstDBAttrib(); }

 void setFirstForeignK(); // sets Foreign Key read pointer ready to read 1st

 void setFirstFornKItem(); // sets Foreign Key Item pointer ready to read 1st

 BOOL getNextObject() { return GenApplDatas->getNextDBObject(); }

 BOOL getNextSupClass() { return GenApplDatas->getNextDBSupClass(); }

 BOOL getNextAttrib() { return GenApplDatas->getNextDBAttrib(); }

 BOOL getNextForeignK(); // reads next Foreign Key

 BOOL getNextFornKItem(); // reads next Foreign Key Item

 void declObject(); // to declare a table

 void declRelations(); // to declare the relations between the tables

 void declFirstAttrib(); // to declare the first attribute of a table

 void declNextAttrib(); // to declare a table attribute (except first one)

 void declFirstKeyItem(); // to declare the first item of the primary key

 void declNextKeyItem(); // to declare the next items of the primary key

 void declFirstUniqPrimK(); // to declare first item of unique on primary key

 void declForeignKey(); // to declare the foreign keys

 void declOneForeignKey(); // to declare one foreign key

 void declNextForeignKey(); // to declare a foreign key except the first one

 void declNextFornKeyItem(); // to declare the next items of the foreign key

 void declNextForeignItem(); // to declare the next attribute of foreign table

};

4.6.2. An example of creation/update of a database with the prototype

4.6.2.1. The language in which the code is generated

“Visual Modeller” creates a specific application to create/update the database. The generated

application is also implemented in Microsoft Visual Basic. But it uses only Microsoft Jet Database 3.0

(implementing the DAO) and SQL to control the database.

The constraints on the fields of a table and between the tables are also implemented.

4.6.2.2. An example of generation of code

Here follows as an example, the main file “Db_Make.sql” created by the prototype of “Visual

Modeller” for this application in a test. The way the language provided by “Visual Modeller” has been

extended by the automaton to obtain this result is not detailed here because it is very similar to the way

it is done by the automaton “GDBOAutomaton” generating the code implementing the business objects.

Content of the basic file “Db_Make.sql” generated in “Visual Basic 4” by “GDRDBaseAutomaton”

Attribute VB_Name = "Module1"
' --- Database Creation ---

Sub main()
Dim wspDefault As Workspace
Dim dbsNew As Database
Dim SQLStatmt As String
Dim TableName As String

ChDir "\Test_dev\CreateDb"
Set wspDefault = DBEngine.Workspaces(0)
On Error Goto ErrHdlrCantOpenDB
Set dbsNew = wspDefault.CreateDatabase("Test.MDB", dbLangGeneral, dbVersion30)
On Error Goto ErrHdlrCantCreateTable

TableName = "ObDBCustomer"

SQLStatmt = "CREATE TABLE ObDBCustomer ("
SQLStatmt = SQLStatmt+" Cust_Id TEXT CONSTRAINT IsUniqCust_Id UNIQUE, "
SQLStatmt = SQLStatmt+" Name TEXT, "
SQLStatmt = SQLStatmt+" Company TEXT, "
SQLStatmt = SQLStatmt+" Category INTEGER, "
SQLStatmt = SQLStatmt+" CONSTRAINT PrimaryKey PRIMARY KEY (Cust_Id)"
SQLStatmt = SQLStatmt+", CONSTRAINT UniqPrimK UNIQUE (Cust_Id)"
SQLStatmt = SQLStatmt+");"

dbsNew.Execute(SQLStatmt)

TableName = "ObDBOrder"

SQLStatmt = "CREATE TABLE ObDBOrder ("
SQLStatmt = SQLStatmt+" Order_Id TEXT, "
SQLStatmt = SQLStatmt+" Order_Date TEXT, "
SQLStatmt = SQLStatmt+" Description TEXT, "
SQLStatmt = SQLStatmt+" Cust_Id_1 TEXT, "
SQLStatmt = SQLStatmt+" Amount INTEGER, "
SQLStatmt = SQLStatmt+" CONSTRAINT PrimaryKey PRIMARY KEY (Order_Id, Cust_Id_1)"
SQLStatmt = SQLStatmt+", CONSTRAINT UniqPrimK UNIQUE (Order_Id, Cust_Id_1)"
SQLStatmt = SQLStatmt+");"
dbsNew.Execute(SQLStatmt)

TableName = "ObDBProduct"

SQLStatmt = "CREATE TABLE ObDBProduct ("
SQLStatmt = SQLStatmt+" Prod_Id TEXT CONSTRAINT IsUniqProd_Id UNIQUE, "
SQLStatmt = SQLStatmt+" Price INTEGER, "
SQLStatmt = SQLStatmt+" Description_1 TEXT, "
SQLStatmt = SQLStatmt+" CONSTRAINT PrimaryKey PRIMARY KEY (Prod_Id)"
SQLStatmt = SQLStatmt+", CONSTRAINT UniqPrimK UNIQUE (Prod_Id)"
SQLStatmt = SQLStatmt+");"
dbsNew.Execute(SQLStatmt)

TableName = "ObDBOrdLine"

SQLStatmt = "CREATE TABLE ObDBOrdLine ("
SQLStatmt = SQLStatmt+" Line_Number INTEGER, "
SQLStatmt = SQLStatmt+" Order_Id_1 TEXT, "
SQLStatmt = SQLStatmt+" Cust_Id_2 TEXT, "
SQLStatmt = SQLStatmt+" Quantity INTEGER, "
SQLStatmt = SQLStatmt+" Description_2 TEXT, "
SQLStatmt = SQLStatmt+" Prod_Id_1 TEXT, "
SQLStatmt = SQLStatmt+" CONSTRAINT PrimaryKey PRIMARY KEY (Line_Number, Order_Id_1,

Cust_Id_2)"
SQLStatmt = SQLStatmt+", CONSTRAINT UniqPrimK UNIQUE (Line_Number, Order_Id_1,

Cust_Id_2)"
SQLStatmt = SQLStatmt+");"
dbsNew.Execute(SQLStatmt)
On Error Goto ErrHdlrCantAlterTable

TableName = "ObDBCustomer"

TableName = "ObDBOrder"

SQLStatmt = "ALTER TABLE ObDBOrder "
SQLStatmt = SQLStatmt+" ADD CONSTRAINT to_DBCustomer FOREIGN KEY (Cust_Id_1)

REFERENCES ObDBCustomer (Cust_Id)"
dbsNew.Execute(SQLStatmt)

TableName = "ObDBProduct"

TableName = "ObDBOrdLine"

SQLStatmt = "ALTER TABLE ObDBOrdLine "
SQLStatmt = SQLStatmt+" ADD CONSTRAINT to_DBOrder FOREIGN KEY (Order_Id_1,

Cust_Id_2) REFERENCES ObDBOrder (Order_Id, Cust_Id_1)"
dbsNew.Execute(SQLStatmt)

SQLStatmt = "ALTER TABLE ObDBOrdLine "
SQLStatmt = SQLStatmt+" ADD CONSTRAINT to_DBProduct FOREIGN KEY (Prod_Id_1)

REFERENCES ObDBProduct (Prod_Id)"
dbsNew.Execute(SQLStatmt)

dbsNew.Close
MsgBox("Creation of the database completed.")

Exit Sub

ErrHdlrCantOpenDB:
Set dbsNew = wspDefault.OpenDatabase("Test.MDB")
Resume Next

ErrHdlrCantCreateTable:
MsgBox(Err.Description + Chr(13) + Chr(13) + "Can't create the table '" +

TableName + "'.")

Resume Next

ErrHdlrCantAlterTable:
MsgBox(Err.Description + Chr(13) + Chr(13) + "Can't alter the table '" +

TableName + "'.")
Resume Next

End Sub

4.7. The automaton generating the code for the database

objects

4.7.1. The declaration of the automaton used for the prototype

The class “GDRDBObjAutomaton” is used in “Visual Modeller” to instantiate the automaton that

implements the database objects. In the prototype, it is dedicated to generate some code for the

programming language Microsoft Visual Basic. But this is only a simplification used for the prototype.

In the next versions of “Visual Modeller”, this automaton will be used to generate some code

indifferently for any programming language (see the paragraph describing the virtual automaton

“GDAutomaton” for more details).

Declaration of the class “GDRDBObjAutomaton” extracted from the source file “Automata.h”

/*
 The following short-cuts are used:
 DBO Database Object
 ABO Associated Business Object (with the currently read database object)
 DB Database
 VB Visual Basic
*/

class GDRDBObjAutomaton: public GDAutomaton {
public:
 GDRDBObjAutomaton(CString myTitle, GDModel* model = NULL);
 ~GDRDBObjAutomaton();

 void buildImplementedObj(); // build the source to implement the database
objects

private:
 CString getObjectName() { return GenApplDatas->getDBObjName(this); }
 CString getSupClassName() { return GenApplDatas->getDBSClassName(this); }
 CString getAttribName() { return GenApplDatas->getDBAttribName(this); }
 CString getAttribType() { return GenApplDatas->getDBAttribType(this); }
 BOOL getAttribIsUnique(){ return GenApplDatas->getAttribIsUnique(); }
 BOOL getAttribIsKey() { return GenApplDatas->getAttribIsKey(); }

 void setFirstObject() { GenApplDatas->setFirstDBObject(); }
 void setFirstSupClass() { GenApplDatas->setFirstDBSupClass(); }
 void setFirstAttrib() { GenApplDatas->setFirstDBAttrib(); }
 BOOL getNextObject() { return GenApplDatas->getNextDBObject(); }
 BOOL getNextSupClass() { return GenApplDatas->getNextDBSupClass(); }
 BOOL getNextAttrib() { return GenApplDatas->getNextDBAttrib(); }

 // To manage the ABO = B.O. Associated with the currently read DBO
 inline CString getABOName(); // name of the ABO
 inline CString getABOSupClassName(); // name of current super-class of ABO
 inline CString getABOAttribName(); // name of current attribute of ABO
 inline CString getABOAttribType(); // name of type of current attribute of ABO
 // value of current attribute of ABO
 inline CString getABOAttribValue(CString prefix = "");
 // implemented name of generic method of ABO
 inline CString getABOMethodName(const CString genericName);

 inline void setABOFirstSupClass(); // set ready to access 1st superclass of ABO
 inline void setAOBFirstAttrib(); // set ready to access 1st attribute of ABO
 inline BOOL getABONextSupClass(); // access next super-class of ABO

 inline BOOL getABONextAttrib(); // access next attribute of ABO

 // The procedures to extend the language offered by “Visual Modeller”
 void declClassModHdr(); // to declare the header of a class module in VB
 void declObject(); // to declare a relational database object
 void declAttrib(); // to declare an attribute of a database object
 void declOneInstance(); // to declare one instance of a database object
 void declObjctMethod(); // to define the methods of a database object
 void declLoadAttrFDB(); // to load a RDBO attribute from the DB
 void declSaveAttrFDB(); // to save a RDBO attribute in the DB
 void delcCpToMemDBAttrNoK(); // to copy RDBO attributes to the ABO if not
identifier
 void declCpToMemDBAttr(); // to copy RDBO attributes to the ABO
 void declCpFrMemDBAttr(); // to copy a RDBO attribute from the ABO
 void declCmpBaNDBAttr(); // to compare loaded value from DB and current
value in database
 void declResetValAttrib(); // to reset the value of an attribute to the
default value
};

4.7.2. An example of implementation of a relational database object

Content of the class module file “ObBDBCustomer.cls” generated in “Visual Basic 4”

VERSION 1.0 CLASS
BEGIN
 MultiUse = -1 'True
END
Attribute VB_Name = "ObDBCustomer"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Attribute VB_Description = " --- Class Module of the Database Object 'ObDBCustomer' -
--"

' Each attribute of a database object is in fact an array.
' Each index 'n' of an attribute name 'atn...' has the following meaning:
' 0 = loaded value in the database for ABO (associated business object)
' 1 = current value of the ABO when DB (database) update is required
' 2 = current value in the DB when DB update is required

'Some notation rules:
' Rc is the prefix of the Recordset objects
' Ar is the prefix of the arguments of the methods, of the functions

Public At0Cust_Id As String
Public At1Cust_Id As String
Public At2Cust_Id As String
Public At0Name As String
Public At1Name As String
Public At2Name As String
Public At0Company As String
Public At1Company As String
Public At2Company As String
Public At0Category As Integer
Public At1Category As Integer
Public At2Category As Integer
Private St_ldFromDB As Integer
Private RcRecordInDB As Recordset

' to reset the value of the attributes.

Private Sub resetAttrib()
St_ldFromDB = 0
At0Cust_Id = ""
At1Cust_Id = ""
At2Cust_Id = ""
At0Name = ""
At1Name = ""
At2Name = ""
At0Company = ""
At1Company = ""
At2Company = ""
At0Category = 0
At1Category = 0
At2Category = 0

End Sub

'to initialize the attributes of a database object from the database.

Private Sub loadFrDB(ByRef ArARecordSet As Recordset, ArAttribType As Integer)
St_LdFromDB = 1
If ArAttribType = 0 Then

At0Cust_Id = ArARecordSet.Fields("Cust_Id")
Else

If ArAttribType = 2 Then
At2Cust_Id = ArARecordSet.Fields("Cust_Id")

End If
End If
If ArAttribType = 0 Then

At0Name = ArARecordSet.Fields("Name")
Else

If ArAttribType = 2 Then
At2Name = ArARecordSet.Fields("Name")

End If
End If
If ArAttribType = 0 Then

At0Company = ArARecordSet.Fields("Company")
Else

If ArAttribType = 2 Then
At2Company = ArARecordSet.Fields("Company")

End If
End If
If ArAttribType = 0 Then

At0Category = ArARecordSet.Fields("Category")
Else

If ArAttribType = 2 Then
At2Category = ArARecordSet.Fields("Category")

End If
End If

End Sub

'to save the attributes of a database object in the database.

Private Sub saveToDB(ByRef ArMemObjct As ObCustomer)
At1Cust_Id = ArMemObjct.AtCust_Id
At1Name = ArMemObjct.AtName
At1Company = ArMemObjct.AtCompany
At1Category = ArMemObjct.AtCategory
WsWorkSpace.BeginTrans
On Error Goto CantUpdate
If RcRecordInDB.RecordCount = 0 Then RcRecordInDB.AddNew Else RcRecordInDB.Edit
RcRecordInDB.Fields("Cust_Id") = At1Cust_Id
RcRecordInDB.Fields("Name") = At1Name
RcRecordInDB.Fields("Company") = At1Company
RcRecordInDB.Fields("Category") = At1Category
RcRecordInDB.Update
WsWorkSpace.CommitTrans

Exit Sub

CantUpdate:
MsgBox(Err.Description + Chr(13) + Chr(13) + "Cannot update record(" +

Chr(34)+ArMemObjct.AtCust_Id+Chr(34) + ") in ObDBCustomer")
WsWorkSpace.CommitTrans

End Sub

'to initialise the associated business object except its identifier.

Private Sub iniMemObjXctK(ByRef ArMemObjct As ObCustomer)
ArMemObjct.AtName = At0Name
ArMemObjct.AtCompany = At0Company
ArMemObjct.AtCategory = At0Category

End Sub

'to initialise the associated business object.

Private Sub iniMemObj(ByRef ArMemObjct As ObCustomer)
ArMemObjct.AtCust_Id = At0Cust_Id
ArMemObjct.AtName = At0Name
ArMemObjct.AtCompany = At0Company
ArMemObjct.AtCategory = At0Category

End Sub

'constructor of "ObDBCustomer"

Public Sub Class_Initialize()
Set RcRecordInDB = Nothing
resetAttrib

End Sub

'destructor of "ObDBCustomer"

Public Sub Class_Terminate()
if St_ldFromDB = 1 then RcRecordInDB.Close
Set RcRecordInDB = Nothing

End Sub

'initialize the attributes of a business object from the database.

Public Function load(ByRef ArMemObjct As ObCustomer) As Boolean
Dim SQLQuery As String

SQLQuery = "SELECT * FROM ObDBCustomer WHERE "
SQLQuery = SQLQuery + "Cust_Id = " + Chr(34)+ArMemObjct.AtCust_Id+Chr(34)

Set RcRecordInDB = Dbdatabase.OpenRecordset(SQLQuery, dbOpenDynaset)
If RcRecordInDB.RecordCount = 1 Then

loadFrDB RcRecordInDB, 0
Else

resetAttrib
End If
iniMemObjXctK ArMemObjct
load = (RcRecordInDB.RecordCount = 1)

End Function

'save the attributes of a business object in the database.

Public Sub save(ByRef ArMemObjct As ObCustomer)
saveToDB ArMemObjct
RcRecordInDB.Close
Set RcRecordInDB = Nothing

End Sub

'update the attributes of a business object in the database.
'if they have not already been modified in the database since
'the database object has loaded them.

Public Sub update(ByRef ArMemObjct As ObCustomer)
Dim I, Lo_failure As Integer

Lo_failure = 0
loadFrDB RcRecordInDB, 2

' to compare the loaded and current values of the object in the database.

If At0Cust_Id <> At2Cust_Id Then Lo_failure = 1
If At0Name <> At2Name Then Lo_failure = 1
If At0Company <> At2Company Then Lo_failure = 1
If At0Category <> At2Category Then Lo_failure = 1
If Lo_failure = 1 Then

I = MsgBox("Can't save the object ObCustomer")
Else

saveToDB ArMemObjct
End If

End Sub

'delete a business object from the database,
'if they have not already been modified in the database since
'the database object has loaded them.

Public Sub delete(ByRef ArMemObjct As ObCustomer)
Dim Lo_failure As Integer

Lo_failure = 0
loadFrDB RcRecordInDB, 2

' to compare the loaded and current values of the object in the database.

If At0Cust_Id <> At2Cust_Id Then Lo_failure = 1
If At0Name <> At2Name Then Lo_failure = 1
If At0Company <> At2Company Then Lo_failure = 1
If At0Category <> At2Category Then Lo_failure = 1
If (Lo_failure = 1) Or (RcRecordInDB.RecordCount <> 1) Then

MsgBox("Cannot delete record(" + Chr(34)+ArMemObjct.AtCust_Id+Chr(34) + ") in
ObDBCustomer")
Else

WsWorkSpace.BeginTrans
On Error Goto CantDelete

RcRecordInDB.Delete
WsWorkSpace.CommitTrans

End If
Exit Sub

CantDelete:
MsgBox(Err.Description + Chr(13) + Chr(13) + "Cannot delete record(" +

Chr(34)+ArMemObjct.AtCust_Id+Chr(34) + ") in ObDBCustomer")
WsWorkSpace.CommitTrans

End Sub

'initialise the attributes of a business object from a query in the database.

Public Function loadFrQuery(ByRef ArARecordset As Recordset, ByRef ArMemObjct As
ObCustomer)
loadFrDB ArARecordset, 0
iniMemObj ArMemObjct
loadFrQuery = load(ArMemObjct)

End Function

5. Appendix

5.1. The functional model of the generation of code in “Visual

Modeller”

The following functional model shows how “Visual Modeller” first constructs a generic application,

separated in different domains (or areas). Each domain is materialised by a particular kind of generic

object. The business objects (representing the domain of the application) are built and optimised from

the model of the business process (represented by a model set in “Visual Modelling”), and then used as

the basis to construct the other generic objects.

Then the generation of code is funded upon the generic application, which is a model of the application

and a model of the database.

code generation
System Architect

Fri Aug 23, 1996 16:45
Comment

P generates
Code for

application

P generates
DataBase

P generates
DB objects

P generate
interface
objects

P generate
business
objects

D DataBase

D Model Set

D Application

D Specification of
environment

D specification of DBD Gen. rules for DB
objects

D Gen rules for
Interface objects

D gen. rules for
business objects

applies

interface objects

business objects

applies

applies

business object

applies

business objects

applies

component...

This functional model has been generated with the CASE tool “System Architect” (a

product of Popkin Software & Systems Incorporated), using the OMT (“Object Modeling

Technique”) method.

5.2. The project plan to develop the generation of code

This document aims to present how work was shared between people involved in the development of

the first version of the tool for the generation of code in “Visual Modeller”.

Each task is represented by a rectangle. The person who was in charge of the task is designed by the

note in italic characters in the right bottom angle. That is:

• “PJ” for P.J. McKenna

• “Pat” for P. Fillâtre

The note in bold characters in the left bottom angle indicates what kind of result the task has to produce.

The notation is the following:

• “.BAS” for the production of a basic source file

• “.FRM” for the production of a form file

• “.MAK” for the production of a project management file

6. Bibliography

 [JENNINGS, 1996] Jennings R.

Database developper’s guide with Visual Basic, 2nd Ed.

SAMS Publishing, 1996

 [KRUGLINSKY, 1996] Kruglinsky D. J.

Inside Visual C++

Microsoft Press, 1996

[NORTH, 1995] North K.

Windows Multi-DBMS Programming

John Wiley & sons, 1995

[RUMBAUGH, 1995] Rumbaugh J., Blaha M. et al.

OMT: Modelisation et conception orientee objet

Masson - Prentice Hall, 1995

