Code Generation with “Visual Modeller”

Patrick Fillatre

Abstract

“Visual Modeller” is a CASE tool that permits end-users to model business processes, using the
associated method “ Visual Modelling”. It is also able to generate the database and a “ front-end”
application from this model. Although this generation looks like an integrated process to the user, an
intermediary step exists. From the model of the business process, “ Visual Modeller” first builds a
model of the application that will be generated (ie a model of the future system), and then from this

model, generates the database and the application.

This document describes the code generation process in “ Visual Modeller” . How, from the business
process model, it builds a model of the application, called the generic application. The generic
application is greatly independent of the implementation environment; in fact, it is not built for any
particular environment, but rather in a generic environment, which characteristics are predefined,
independently of the characteristics of the implementation environment. This document describes why
this approach adjusts to the particularities of the user-centred method carried by “ Visual Modeller”,
why it brings some benefits in dealing with the best design and development principles, why it

optimises the capability of “ Visual Modeller” to generate some code for different environments.



Summary

1. The code generation process in “Visual Modeller” ..........ccccoooiiiiiiiiiiinns 4
1.1. First step: building ageneric appliCation ...........oocoeierereienese e 4
1.2. Separating different areasin the generic appliCation ..o 5
1.3. The generation Of COOR .......couiiiiiiiiiieeer ettt se e sa s 10
1.4. The user-interface of the generation of codein “Visua Modeller” .........ccoovvniiiinninnenn 12
1.5. State of the deVEIOPMENL...........oo bbb e 13
2. The generic appliCatioN ......cevuveiiiie e 14
2.1. Objects of the generic apPliCaLION. ..o e 14
2.2. Database ODJECES .......eoees e bbb 16
2.3, INLEITACE ODJECLS.....eeeeete ettt b e et b e bt b e st b e et b e 18
2.4. Communications in the generic appliCatioN ..........ccooeiirire e 20
3. Models for the generic application ...........cccoeeiieiiiiieieeiiiiii e, 21
R0 I g1 o [FTox i T o PR PTSTPRPRPRSPRIN 21
3.2. The generiC PPl CALION. ......coeeeiie ettt ettt e e et bbbt aeebe e enas 21
3.3, ThE DUSINESS ODJECL......eviictiieeete ettt st st st eb e e 22
3.4. The datahase ODJECE .........cueiii e et e s re e sreeneesanas 23
3.5. Therelational datahase ObJECL ..........ccciviiiiii e 23
3.6. TheINLEITACE ODJECL ... .ot e b bbb e 24
4. The generation Of COUE......uuuiiiiiii i 25
4.1. What strategy to access to the database ..o 25
4.2. More details on strategies used to implement the generic ObJECtS .........covevereieienene s 27
4.3. Implementation of the “naming operation” in the aUtOMataL............cccveereereeneinerrereees 29
4.4. The ancestor of all the automata of “Visual Modeller” ..o 30
4.5. The automaton generating the code for the business ObJECLS........ccccvcvvivvceviinievce s 32
4.6. The automaton generating the code for the database ...........coeeereeriririeiciecee e 37

4.7. The automaton generating the code for the database objects..........cccvevrinnicininiiice 41



5. Appendix

................................................................................................... 46
5.1. The functional model of the generation of code in “Visual Modeller” ............ccooeveneninnnene. 46
5.2. The project plan to develop the generation Of COOE.........cooeirinriireiniene e 47

6. BibliOgrapny ... 48



1. The code generation process in “Visual Modeller”

1.1. First step: building a generic application

1.1.1. What isa generic application

“Visual Modeller” does not directly generate an application in the target development language and
system.

First it builds a model of the application from the business process model. This model of the
application is called a “generic application” because it is greatly independent of the implementation
environment: the environment system (also called the operating system), the computer language or the
“Database Management System” (DBMS) that will be used for the implementation do not need to be
specified. Only the configuration of the database(s) has to be specified: today it only means the type of
the database (relational, for example).

Second, the definitive application and the database are generated from this generic application.

1.1.2. Why a generic application

1.1.2.1. Adaptability from the business process model:

The method carried by “Visual Modeller” brings the particularity to be user-centred. It must support a
group of non-experts (e.g. end-users) specifying a model of a business process (which is not a model of

asystem) in an intuitive, incremental and iterative way. In particular:

« itavoids“systems’ abstractions; it rather uses concrete concepts that the users are familiar with (as
persons, organisations, documents)
* it supports unstructured model development

* it permitsincomplete or incoherent or inconsistent representation of the business process it models

Building a generic application allows “Visual Modeller” to control and/or to adapt information got from
the business process model before generating the code, without atering the model of the business
process. “Visua Modeller” can make default choices for the generic application where lack of
consistency is detected in the model of the business process, or can optimise the representation stored it

this model when porting it to the generic application.



1.1.2.2. A better approach of the design of the application:

Building first a generic application, “Visual Modeller” can model the future system, that is the
application it will generate, using the more powerful concepts, even if they are not present in the

implementation environment. The characteristics of the generic environment are selected for:

 their power of representation

* their portability in multiple environments

Where “ portability in multiple environments’ of a concept means, the capability to implement what the
concept represents when the code is generated in various environments. Although, this does not mean
this concept must be present in all those environments: for example the “ object-oriented” language
“C++” isapre-compiler of “C”, applications exist in “ MSDOS'’ environment, for text mode display,

with “ graphical look-like” user-interface...

1.1.2.3. A better adaptability to implementation in multiple environments:

All the expertise required to design the application is applied to the generic application. The problems
we will encounter to adapt “Visual Modeller” to generate some code for a new environment is only an
implementation problem. We do not need to study a new design for the application, and generating

some code with “Visua Modeller” for anew environment should be easier.

1.1.3. Thecharacteristics of the generic application

As the generic application is built in a generic environment, it assumes some characteristics upon it.

Here isthe summary of the choices kept for the representation of the generic application:

e it is independent of the implementation environment, except for the configuration of the
database (because it implies some constraints on the design of the database)

» different and separated domains, areas compose the generic application (for example, we
separate the domain of the application and the user-interface in the generic application)

» itsdefinitionisobject-oriented

* the controls within the generic application are managed by events and message sending

« itsuser-interface is an interactive graphical user interface

o itisan MDI application (Multiple Document Interface application)
1.2. Separating different areas in the generic application

1.2.1. Why separ ated areasin the generic application

Many works have been published demonstrating the advantages of separating different areas or domains

in the design and in the implementation of computer programs.



We will in particular, separate the domain of the application, that means the concepts of the business
process, from the other concepts concerning the treatments (functions) proposed by the application, the
presentation of the information, the database management. Each of these categories of concepts serves a
specific purpose in a specific domain, with specific evolution and constraints. Each one has a different

cycle of life, the domain of the application being normally the more stable.
In the generic application, asit exists today, we separate the management of:

» the business process
» theuser-interface
» thedatabase

As the representation of the generic application is object-oriented, each of these areas in the generic

application is associated to a specific type of object, respectively:

» the business objects
« theinterface objects

» the database objects

The interface objects and the database objects are technology objects. That is not the case of the
business object: they are the objects of the business process (the domain of the application), they
correspond to the objects of the “real-world” in some litterature (see OOA/OOD “Object-Oriented
Analysis/ Object-Oriented Design”, Coad and Y ourdon, 1991).

Separating the model of the application in different areas is a design principle, but we also apply this

separation in the process of the generation of code, reducing its complexity.
The advantages are:

* separating problems of different nature

» preserving the objects of the business process model from alterations due only to the current state
of the art of the technology

 cutting down the complexity of the generation of code

 facilitating an iterative and incremental development of “Visual Modeller”

« facilitating group development on “Visual Modeller”

Remark: today, the activities are not represented in our models of the business processes.

The activities of the business process will be represented by “ application objects’. An application
object will represent the control (for example, the synchronisation) of an activity. Although it will use

the methods of the business objects to represent the treatment part of the activity. This representation



still maintains the separation of the domain of the application from the other domains: the user-

interface, the functions of the application (the activities), the database management.

1.2.2. The domain of the application

The domain of the application is the business process. In the generic application, it is represented using
the business aobjects. A business object in the generic application corresponds to the definition of a
business object given by the OMG BOMSIG (“Object Management Group” “Business Object
Management Special Interest Group” - Minutes of the Berlin Meeting, BOMS G, OMG, Document
Number 94-5-1, April 1994):

“ A business object represents a thing active in the business domain including its business name,

attributes, behaviour, relationships and constraints. It represents a real-world concept.”

A business object could also be seen as an object of the “ real-world”. They are created directly from
the model of the business process, even if “Visual Modeller” can then, optimise this hierarchy of

business objects in the model of the system (ie. the generic application).

1.2.3. The database management

In the generic application, the management of the database is the affair of the database objects. Each

persistent business object is associated to a database object, which:

* representsitsimage in the database

» offers some services of the database management (loading, updating, refreshing)

The database objects are built by “Visual Modeller” from the business objects of the generic

application.

As the database objects are technology objects, they reflect the constraints due to the technology used
for the database management. In the same time, one of their role is to hide this constraints to the
business objects. That is the reason, we produce the following hierarchy of database objects in the
generic application, where the database object is a virtual object. The business objects will always

access to the database via this virtual object, ignoring the implementation of the database.



DataBase Object
System Architect
Thu Aug 22, 1996 14:23
omment:

DataBase Object

created (Y/N)
modified (Y/N)
deleted (Y/N)

load
create
save
delete
update
refresh
{abstract}

persistent

0eo Object Oriented DB Object Hierarchical DB Object
Extent Relational DB
Relational Data Base Object tended Relational Object

persistent

Only one type of database will be managed with the first version of “Visua Modeller”: the relational
database, as they are the reference type of database actually used on the market. By consequence, in the
prototype we did the amalgam between the database object and the relational database object. That is

what we will do from now in this document, in order to be concise.

The relational database isin the same time a good example of the problems we can encounter in linking
an object-oriented representation with a non object-oriented database. The power of representation of a
relational database is limited: the types of the fields (e.g. the attributes of a table in a relational
database) are very limited: they are only atomic types. By consequence, an object can only be
represented directly in arelational table if al its attributes have an atomic type which corresponds to a
field possible type. Furthermore, the inheritance principle is unknown in relational databases. By
consequence, more than one table can be necessary to represent a business object. Many strategies can
be considered to store a super-class, al with advantages and disadvantages. More generally, that means
that, depending on the constraints due to the configuration of the database, the structure of the
database is not necessarily a mirror of the structure of the persistent business object. This is
reflected by the following rules used by “Visua Modeller”:

» abusiness object can be represented by a hierarchy of database objects
» adatabase object can be a container of other database objects
» adatabase object, is not necessarily associated to a business object

» apersistent business object is associated with one database object

This means that when several database objects are needed to represent the image of a business object,

one database object is associated to the business object, and contains the other database objects,



directly or indirectly as the hierarchy of the database objects can have as many levels as needed. A
database aobject cooperates with the database objects of its sub-hierarchy to provide its services. Using
the database objects, we do not need to transpose the representation limits of the database, to the

representation of the business objects.
The notion of a database object is used to:

» manage the link between abusiness object and its image in the database

* hide the rules and the constraints implied by the configuration of the DBMS chosen for
implementation, from the business object

« hide from the business object , its representation in the database

* handle the updates from or to the DBM S (Database Management System).

As we can see, the set of the database objects represents in the same time the structure of the database.
Therole of the database objects in the generic application is by consequence, dual asthey represent:
¢ thelink between the business objects and the database

* the model of the database

1.2.4. The user-interface

The user-interface of the generic application is an interactive GUI (Graphical User Interface), with an
MDI (Multiple Document Interface). Its representation in the generic application is object-oriented. In
the generic application, the objects used to represent it are the interface objects. They are technology

objects.

Each interface object represents a type of window of the user-interface, or a component of one of these
windows. It can be linked to one of the business objects of the generic application and indirectly, to the
business objects associated to it. This allow us to separate in the generic application the user-interface

and the domain of the application.

The layer oriented models for the design of user-interface describe the tasks of the user from an

abstract level to more and more concrete levels.
The task oriented models for the design of user-interface start from a formal description of the tasks.

The action oriented models for the design of user-interface suppose that the user interacts with the
system via the mental representation he has of the system. The task process is considered as a process

of execution and evaluation.

The control of the user-interface is action oriented. As the activities are not modeled today, the actions
offered by the user-interface are predefined in “Visual Modeller”. The generated application offers the

following services (actions):

» consulting existing objects



* modifying objects
* deleting objects
e creating objects

» accessing from one object, to its associated objects

The interface objects are built by “Visual Modeller” from the business objects of the generic
application. By consequence, the users do not need to build a dialogue specification. This is an
advantage as our objectives are that the end-users must be able to be the main actors of the devel opment

process, from modelling themselves the business process, to the generation of the application.

Furthermore, linking directly the representation of the information in the user-interface to the concepts

of the business process (the business objects), we can suppose a good correspondence between:

» theuser’'smental representation of the domain (if he knows the business process model!?)

» theinformation presented in the interface

This can an advantage for the goa of getting an intuitive user-interface. Although, we need to study

morein detail, how the activities of the business process will be presented in the application.

1.3. The generation of code

1.3.1. Languages used to generate the codein “Visual Modeller”

The generation of code is processed from the generic application. Each area of the generic application

provides alanguage for the generation of code.

As we aim to be able to adapt “Visua Modeller” to different implementation environments, these
languages have been designed as extensible languages. each of these languages provides a basic

language which permits:

» toaccess all the useful information contained in the generic application

* tonavigate through thisinformation

For each supported implementation environment, an extension of the basic language is specified outside
of “Visual Modeller”, using this basic language, contained in “Visua Modeller”, to specify the

extension.

Each language is managed through atool we call an “automaton” in “Visual Modeller”.



1.3.2. Generation of codeis atwo steps process

The generation of code is processed by the automata in two steps. The automata (one for each language)
could execute concurrently each step, but all these automata must have finished one step before one can
start the next step. This constraint allows cooperation between the different types of objects in the

application. The steps of the generation of code process are the following:

« firgt, the automata give an implementation name to the objects of the generic application they
manage, and to their components (their attributes, their methods): we will call this step, the naming
operation.

» second, they generate the code for the implementation

1.3.3. The extensible language supported by the automata

Each automaton provides an alphabet composed of words which are associated to a predefined action

that can return aresult. These words can be classified in three sets;

« the iterators go through the structure of the object of the generic application managed by the
automaton, updating the current local views on these objects. They point to the next item (an
object or a component of an object), returning a boolean value, true when the next item has been
found

» accessors which write in the automaton buffer information about the item currently pointed by the
local view

» the actions execute predefined actions, services offered by the automata

» the procedures which are expressions defined using the previous words

The actions offered by the automata are:

« “read” which writesastring of charactersin the automaton buffer

«  “makeFile” which creates atext file, closing the previously opened file if necessary

» “closeFile” which closesthe opened text file

» “writeCode” which writes the value of the automaton buffer in the created text file

* “writeProject” which writes in the project file (known as the MAKE file for C programmers) the

value of the automaton buffer

The automaton provides two control structures:

o if(<iterators>) <word>

» while( <iterators>) < word >

The grammar of the language for the code generation can be summarized as follows:



procedure . expression + suite

expression . if(iterator ) item
expression : while( iterator ) item
expression . item

item . procedure
item : word

word . action
word . accessor
suite : { empty }
suite . expression + suite
action : read

action : makeFile
action . closeFile
action : writeCode
action : writeProject

The commands “iterator” and “accessor” offered by “Visual Modeller” are different for each automata,

as each provides access to a specific range of information about the generic application.

1.3.4. Adapting the language to a specified implementation environment

All these words provide a grammar which allow “procedures’ to written in the language used to
generate the code. We decide now that these procedures must be regular on the left. This brings us

determinism and by consequence, high performance in the speed of generation of code.

As the grammar is very limited and simple, it is well designed for a visual programming of the
procedure words of the automata. Only these kind of words are specific to an implementation
environment, the others are natively provided by “Visual Modeller” as the basis of the language. For

each automaton, the procedure words are declared in a datafile.

By consequence “Visual Modeller” is well adapted to generate some code for different environments.

To be able to generate some code for a new environment, we only need to be able to:

» provide the information on this environment required for the naming operation

» writethe procedure words definition for the generation of code in this environment



1.4. The user-interface of the generation of code in “Visual

Modeller”

In “Visual Modeller”, the user asks for the generation of an application from the model of a business
process. He has to specify the target environment, development language, database and DBMS (for
example, Microsoft Windows 95, Microsoft Visual Basic, the localisation of the database and Oracle
DBMS). Then the generic application is generated, and from this generic application, the database is
updated or created, and the code for the generated application is produced.

The user does not see these different steps of the generation. During the code generation, no
intervention is required from the user. If the specifications in the business process model are incomplete
or incoherent, the generated application will be incomplete or incoherent or some default options will
be automatically chosen by the tool. So it is not necessary to develop an interface for the code

generation!
The generation of the generic application includes three steps:
1. the business objects are generated from the business process model, using a set of “business

objects generation rules’

2. from the business objects, the generation of the interface objects and the generation of the
database objects (including the design of the database) are realised independently, each one
with its proper set of rules (respectively the “interface objects generation rules’ and the
“ database management rules’)

3. thetrandation of the generic application in the specified environment with the specified tools
(development language, DBMS...). This step is detailed by the documents “Database

Implementation” and “Business Object Implementation”.
1.5. State of the development

1.5.1. Theversion of December of 1996

A first version of “Visual Modeller” for the generation of the generic application and for the generation
of code has been produced for the end of December of 1996 (see the project plan in appendix 2). It
generates two applications from a model produced by “Visua Modelling”:

e an application able to create or to update the corresponding relational database

« afront-end application

As we aim to develop iteratively and incrementally “Visual Modeller”, this first version has many
limitations which are detailed below.



Some limitations come that we do not now use al the modelling capabilities of the method. Thus the
activities of the business process model are now unknown in the generic application. By consequence,
the functions provided by the generated “front-end” application are limited: this “front end” application
offers the users an interface to access to the instances of the business objects defined in the generic
application. These instances are stored in one relational database (the concept of multi-databases is not
managed). The application offers the possibility to show, create, modify or delete some instances of
these objects. The associations between these objects are used by the application to:

» verify the integrity constraints (for example, when an order is created, an existing customer must
be associated to the order)
» offer access to the associated objects from a selected object in the interface (for example, from the

window displaying a customer, the user can get the display of al its orders)

From the generic application, the following restrictions are also done:

« onerelational database only will be considered: “Microsoft Access’

» oneimplementation language only will be used: “Microsoft Visual Basic”

* no optimisation has to be considered now

« wedon't need to manage the events for the system failures

« wewill not use the notion of event type (consequently to previous assertion)

 thenotion of pre-condition and post-condition are ignored

Although, only the link with Microsoft Access databases will be tested, “Visual Modeller” is aready
implemented for all the database linked with Microsoft Jet Database, a subset of the ODBC API
(“Object Database Connectivity Application Programming Interface”). The standard language SQL
(“ Structured Query Language”) is used to

e create or update the database

e implement the queriesto the database

For the prototype the procedure words will be directly implemented in the code of the automata. So we
don’t need to define:

* aninterfaceto enter them

e aninterpreter of the language of the automata



1.5.2. Thecurrent development

Currently two students are extending “Visual Modeller” so that it can generate some code for:

» Delphi (aBorland RAD - “Rapid Application Development” - product)
e Javascript and HTML (“Hyper-Text Meta-Language”), using Corbix

1.5.3. Future development

When the activity will be modeled, the application objects will be implemented. The states of the
business objects will be represented by the pre/post conditions, the actions of the business objects will
be used by the application objects.

Other improvements will be decided from the experiences got from the existing version of “Visual
Modeller”.

2. The generic application

2.1. Objects of the generic application

2.1.1. Threetypes of objects

The generic application representation is object-oriented. But its objects are not necessarily
implemented directly in the generated application: for example, if the implementation computer
language used is not object-oriented, rules of the same kind of those used to translate C++ in C can be
used, or input controls can be implemented directly in the user-interface instead of the business object

(on the same way an inline function isimplemented in C++).

The objects of the generic application are broken down into the following three types of objects
(already described in the chapter 1):

* business objects
e database objects

* interface objects

The generic application will itself be represented as an empty, non persistent business object. All the
not dependent business objects (all those which are not a part of another object, unlike the object “order
lineg” existing only if it is associated to an object “order”, although it is not represented as an aggregated
object) are associated to the “generic application” business object. Therefore, the generic application
has a representation of itself, that it can manipulate. Thus, this choice alows a reflexive representation

of the generic application.



Note that it is disputable to represent the generic application as a business object, because the generic

application is not part of the business process model.

2.1.2. Generation rulesto create the generic application

The generation tool in “Visual Modeller” uses generation rules to specify how to create an object in the
generic application, to update it or to aggregate it as part of another. There is a different set of
generation rules for each of the three types of object of the generic application, and even a different set

for each type of database. For the prototype, only the relational type of database can be selected.

The objective is to facilitate the process of construction of the generic application, which has to be an
evolutive and incremental process. But for the first prototype, as for the automata, these rules are

directly implemented in the code, although in a specific part of it.

2.1.3. Associations between the objects of the generic application

In the generic application, the associations between the objects of the generic application are described
as a one direction association between two business objects. By consequence, two instances of
association description are necessary to represent a dual way association. These two instances are
linked.

In the generic application, the associations between the business objects are first created from the
business process model. Then, while the generic application generates objects, it generates some
association between them. The generation rules of the generic application can produce some
modifications on these associations in the generic application. In particular, the generic application is
able to determine how an association will be used (never, only in one way or in both ways). Different

generation rules can be defined for different types of associations.

2.1.4. Actions and conditions

An action isa part of an object of the generic application: it corresponds to a method of the object. It is
an ordered set of blocks of code (a set of instructions in the notation of C, C++, Pascal...) and action
calls. The actions called can be actions of the same object or actions of other objects (in that case it

corresponds to a message sent to another object).

A condition is an action which returns a boolean result. It allows us to verify if the object is in the
predefined state described by the condition. Two conditions can be associated to one action. The action
will not be executed if the result of the pre-condition is “false”. The action will not be validated if the

result of the post-condition is“false”.

Using the notion of condition is not a necessity: the tests done in the conditions could be done in the
action. The post-condition is not easy to implement and also less useful than the pre-condition. It will

not be implemented in the first versions. Implementing the pre-condition alone (without the notion of



post-condition) is not difficult and will allow us to express explicitly some states for the related generic

application object.

2.2. Database objects

2.2.1. The consequences of the dual role of the database obj ects

As shown in a previous paragraph (see 1.2.3. The database management) the database objects have a
dual role in the generic application as they both represent:

« objectslinking the persistent business objects with the database

* the model of the database

The attributes of a database object represent the fields of the table it is associated with. By

consequence, the limits of the database apply on these technology objects.

2.2.2. The construction of a database object

2.2.2.1. General principle

The database objects are constructed in the generic application, from the business object, after they
have been optimised. First one database object is constructed in the generic application for each

persistent business and associated with this business object.

2.2.2.2. Constraints on the representation of the attributes of the business objects

But, the constraints of representation on the attributes of a database object are more restricting than the
one upon the attributes of a business object; when the type of an attribute of a database object cannot
be associated with a type of field in the database, this attribute becomes a “ sub-database object”: thisis
a new database object contained by the previous database object, and not directly associated with any

business object.

This rule is sufficient to generate a correct model of database; but it presents the risk to split the
database structure in too many tables. We propose the following rule to improve the structure of the
database: if a “sub-database object” is contained by only one database object, and if one instance of its
container can be associated with only one instance of the “ sub-database object”, then the structure of the
“sub-database object” is included in its container and the “sub-database object” does not exist any

more.

2.2.2.3. When the database does not support the notion of inheritance

An other problem has to be resolved: most of the types of database do not implement the notion of

inheritance. A business object can have many super-classes. There are two kinds of super-class:



e asuper-classthat can be instanciated

e avirtua super-classthat is never instanciated

In the generic application, we will make the distinction between:
* the super-classthat are also used as persistent business object

» the other super-classes, considered like virtual super-classes

When a persistent business object inherits from a super-class which is also a persistent business object,
we will treat this case as if, the first business object is always associated in a one to one relation with the
second one. Attention, this means that when the first business object is loaded from, or updated in the
database (updated meaning as well created, modified or deleted), the second one must be loaded or
updated too.

In afirst step, we will apply the same rule for the virtual super-class, except if only one business object
directly inherits from it. In that case, the structure of the super-class business object is incorporated in
the structure of the database object associated with the sub-class business object. Attention, this rule

can be recursively applied if the sub-class business object is also a virtual super-class.

These solutions are simplistic. Perhaps this strategy does not provide the best performances, but it is

simple, and in the same time we can expect a structure of the database:

* that does not contain too many tables

* wherethe structures of the tables do not contain too much fields

2.2.2.4. A relational database object must contain an identifier

One constraint due to the relational database is that each table description must contain an identifier
field, which value can identify each line in this table. Therefore, when building the database objects in
the generic application, “Visual Modeller” has to verify the existence of an identifier. In the definition
of the business object a“unique value” constraint can be specified on some of their attributes. When the
relational database object is associated with a persistent business object, if the corresponding attribute
or set of attributes is present in the database object, it is therefore used as identifier in the relational
table. If not, a supplementary attribute is created in the relational database object to play the role of the
identifier. It is then invisible from the associated business object (if there is one) and the relational

database object is responsible for initialising the value of the identifier.



2.2.2.5. Associations between persistent business objects and relational databases

The relational database can represent more than only atranglation of the static structure of the persistent
business object. In a relational database, the association between the persistent business object will

generate foreign keys and integrity constraints in the tables of the database.

It would also be possible to generate embedded procedures in the relational database, but this will not
be done in the first version of “Visua Modeller” because this is not a standard supported by all the
RDBMSs (“Relational Database Management System”). To implement the notion of embedded
procedures in relational databases, we will wait the stage of development in which “Visual Modeller”
will be able to adapt itself, or will be able to generate applications that can adapt themselves, to the
capabilities of the RDBMY(s) selected for the implementation.

2.3. Interface objects

2.3.1. A hierarchical structure of interface objects

An interface object is a component of the generic user-interface of the generic application. It describes
all the visual components of the generic user-interface. As the generic user-interface is an MDI (the
main window of the GUI of the application can contain different kind of child windows), the main
window, the child windows and their components (the fields, the buttons...) are represented by interface

objects.

Two types of interface objects are defined. These types are virtual (an interface object is always a

specialisation of these virtual objects):

» acontrol which represents an elementary component in awindow, like afield or abutton
« aframe which represents aform (it means a main or a child window or a dialogue box) or a set of

controlsin awindow (called an “inLine Display”)

2.3.2. Associations between the Interface and Business Objects

A frame represents:

» aset of controls (this set can be an entire form or an inline display - a component of aform)

» the association to one business object (the main associated business object) of all of these
controls, and indirectly their association to the business objects associated to the business object
linked with the frame.

By consequence, each of the controls of a frame is able to display an information from the main
associated business object, and eventually can be used to modify it (under the control of the business
object). As aform is a frame, each window of the user-interface can be related to a business object, or
several using the frames. This relation between a frame and a business object is used to link the user-

interface of the generic application with the business abjects of the generic application.



2.3.3.“Inlinedisplay” objects

As a frame, an inline display is a type of interface object associated to one business object. It is
typically used to display the “lines’ of a“header” represented by the main business object associated to

the form (for example the lines of an order in an “order form”).

If the business object associated to the form is the “application” business object (for example, in the
main window), inline displays can be used in this form to give a list of the instances of an associated

business object (for example the list of the customers).

The following will be implemented only as a rule for the generation of the generic application: “the
business object associated to the frame must be itself associated to the main business object associated

to the form containing the object display”. We will use “Visual Modeller” to verify this assertion.

2.3.4.“Field” objects

A field is a type of interface object directly contained in a frame (a “form” or an “inline display”). It
displays information obtained from the main business object associated to this “frame”. It can be an
output only field or an input (and output) field. For example, if we refer to Microsoft Window, the
labels, the fields, the combo-boxes, the list-boxes are represented by “field” objects in the generic
application.

To get the information, or to give it after an input, or to control the input, the field communicates with

this business object by a message. So the displayed information can be one of the following:

e an attribute of this business object
e a“derived” attribute of this business object

« aninformation from an object associated to this business object

This communication by message with the associated business object implies that the generic application
has to define in the business object methods to access its public attributes and methods to modify the
value of some of them. When the code is generated, it is possible to improve the performances of the
generated application by implementing “inling” (in the same meaning as in the C++ language) some of
this methods.

2.4. Communications in the generic application

2.4.1. Messages

The message is one of the ways the objects of the application can communicate together. Typically the
message is a dual ways synchronous communication established between a sender and a receiver. A

message carries:



» thereference of the sender
» thereference of the receiver

» arequest which isrepresented by the called method of the receiver (and the parameters)

An object can send a message to another type of object if they are associated (for example, a form can

send a message to the business object which is the main business object associated to it).

The message corresponds to the notion of “message” used in the object-oriented programming
languages. It is implemented by a call to an object method. It is represented by the association “calls’

between two “actions’ in the model.

2.4.2. Events

The event is one of the ways the objects of the application communicate together and the way they

communicate with the system. An event is an asynchronous communication. It carries:

 thereference of the sender
e atypeof event (not used in afirst time)

e aninformation

The receiver is not defined in the event. Several objects can receive and handle the same event. The
sender does not get a return value: it is a one way only communication. It does not need to know the

receivers of the events he sends.

The events are useful to make the business objects, the user interface, the database management system
and the environment system work together without being too closely dependent: each part doesn’t need
to know how the others are implemented, it has only to notify them of some events. It is particularly

useful to implement errors management.

During the code generation, depending on the characteristics of the selected development language, it is
possible not to implement the notion of event and replace it by the sending of a message to the objects
able to handle the sent event. Otherwise the events can be implemented for example with a queue of
sent events and a handler of events in some objects to receive and handle them. Some events (usually

the system error events) can also be implemented using the notion of exception.

2.4.3. Event Types

The characteristics of an event could be different following its type and aso its implementation: a
“system error” event could be implemented using an exception, while the events of other types could be
implemented by sending some messages, or managing a queue of events and an event handler in each

receiving objects.



3. Models for the generic application

3.1. Introduction

These models have been generated with the CASE tool “System Architect” (a product of Popkin

Software & Systems Incorporated), using the OMT (“Object Modeling Technique”) method.

Note that all the objects (represented by a frame) marked with “o® 0" are detailed in a sub-model.

3.2. The generic application

CODE GENERATION
System Architect
Tue Sep 03, 1996 16:11
Comment

[eX_Jo)
Generation rule

calls
receiver
~ Sends
lsender
Block of Code N ction event Event Type
{ordered}  "as
n
ame has name
method 1+ ¥
persistent persistent
persistent
1+
receive
has
has
has
Condition
boolean return
di
persistent pre-condition
[Application Object receiver
origin of association
has name
{abstracty
Ipersistent
|Association description
name
origin cardinality
destination cardinality
dered (YIN)
aggregation (Y/N)
used in application (Y/N)
[ Yol o [ ]
Business Object associated with |DataBase Object Interface Object
persistent
created (Y/N)
modified (Y/N)
deleted (Y/N) {abstract
load persistent
create
save
delete
update
Application refresh

{abstract}

opposite direction assoc.

dual




3.3. The business object

Business Object
System Architect
Mon Aug 26, 1996 17:43
Comment:

Type of DataBase Attribute

corresponds

model

Type of internal entity

Basic memory types

type of attribute

is type of

Attribute of business object

property of component

generated from

has

Business Object

attribute nam|

super-class

general

model

ed from

Component of model

property nanC

sub-class

erit




3.4. The database object

DataBase Object
System Architect
Thu Aug 22, 1996 14:23
omment:

DataBase Object

created (Y/N)
modified (Y/N)
deleted (Y/N)

load
create
save
delete
update
refresh
{abstract}

persistent

0eo Object Oriented DB Object Hierarchical DB Object
Extent Relational DB
Relational Data Base Object tended Relational Object

persistent

3.5. The relational database object

Relational Data Base Object
System Architect
Thu Aug 22, 1996 16:16
Comment
Relational Data Base Object
container
part of
ha
access
Relational DataBase Relational DataBase Table |Attribute of RDB type [ Type of DataBase Attribute
contains rem—e— has is type of
Kottribute name P
1+
14
Table 1 {ordered} attrib. of table 1
Table 2
generafed from Primary Key {ordered] attrib. of table 2
has
has
root model set
Model Set
Secondary Key
has
°
hias
[Association Atribute link link
details
link of Table 1
- of Table 2 1+ link
i

Note that each “attribute of RDB” represents also an attribute of the database object associated with its
“relational database table”.




3.6. The interface object

. o
nterface Object interface Object
System Architect
Thu Aug 29, 1996 13:18
Comment show
abstract)
ipersistent
Control Frame
Business Object has [Action s
contains displays
» a execute
{abstract} lfabstract} @ name
associated object 1+
command
persistent sub-mé- name
inLine Display
contains Form
persistent jopen
close
abstract}
persistent
button Field
Child Form
Main Form
contains _g|modal (Y/N)
persistent persistent bl

has




4. The generation of code

4.1. What strategy to access to the database

4.1.1. Using a standard multi-platform solution

Many solutions are available to access a database from an application; among them, some can be
considered as standards compatible with many DBMSs. By consequence, in the first version of “Visual
Modeller”, even considering its limitations, one of these standard solutions has been preferred to a
proprietary solution: the code generated in Microsoft Visual Basic does not use one of the proprietary
solution offered by this language (as its dedicated controls or commands), neither the database is not
created using the specific programming language VBA (“Microsoft Visual Basic for Applications’)
provided by the Microsoft Access DBMS.

4.1.2. The ODBC API solution

One of the more powerful solution to access the DBMSs with Microsoft Windows applications is to use

the Microsoft ODBC 2.0 API (“Open Database Connectivity Application Programming Interface™).

It is an extension to an industry standard (X/Open and SAG) which represents the core level of ODBC
(corresponding to the1992 X/Open and SAG CLI). There are clear indications that cooperation among
vendors and standards groups is producing a convergence of standards so that ODBC level API, the
revised X/Open CLI and the forthcoming ANSI/ISO standard CLI (“Client Level Interface”) will be one
and the same. Microsoft has committed to aligning ODBC 3.0 with the final ANSI/ISO standard for a

call-level interface.

ODBC 2.0 specifications defines three levels of API conformance. The level one has become the

generally accepted standard by Microsoft and the ODBC community:
« corelevel corresponds to the 1992 X/Open and SAG CLI specifications (22 functions)
e level 1 add 16 functionsto the core level

e level 2 add 17 functionsto the level one (including SQLForeignKeys and SQLPrimaryKeys)

Most popular database formats are accessible through an ODBC driver. ODBC is a multi-platform API:
there are implementation of driver managers and ODBC drivers for Microsoft Windows but also for
environments such as UNIX, OS2, Al X, Maclntosh.



ODBC aso provides functions (as other products do too, like the Intersolv's QELIB library) that return
information about the drivers and the DBMSs features as the data types, the available SQL, the isolation
levels, the cursor commit behaviour, the system catalogue information, and so on. By consequence, the
ODBC API allows the undertaking of a generic approach but also an adaptive approach, which
means that the ODBC API can be seen with an API view but also with a product-specific view.

Using an adaptive approach, the generated application means that is able to adapt at run-time to the
capabilities of the ODBC driver for the used DBMS, offering by conseguence higher performances.

The generic approach is a minimalist, least-common-denominator strategy for writing portable

applications.

The adaptive approach produces more powerful applications than the generic approach. But it is also
more complex, requires a lot more work of development and is not relevant in the minimalist approach
used for the development of our prototype. Although using the ODBC API in the prototype with a

generic approach, offers us the possibility to evolve latter (and incrementally) to an adaptive approach.

4.1.3. Creating the database with the ODBC API

ODBC provides the ability to create tables, but the problem of creating and initialising databases is not
within the scope of the ODBC API. Some SQL dialects support CREATE DATABASE statement, but it
is not a part of the ANS SQL standard supported by ODBC. ODBC, the X/Open CLI, and the
forthcoming ANS CLI don't attempt to include database administration as part of a data access call-

level interface. Creating databases varies significantly from desktop to server and mainframe products.

4.1.4. The DAO solution

Microsoft proposes for Microsoft Windows a similar solution to the ODBC API: Microsoft DAO (“Data
Access Objects’).

DAO presents the following disadvantages compared to the ODBC API:

« theinitia implementation of the object layer of DAO was a better solution for ODBC applications
that used complex queries and large tables. Writing directly to ODBC API generally produced better
performance for Visual Basic applications that used simple queries and small tables (see the article
of Ken North “ Understanding ODBC and multidatabase APIS’ in the March 1994 issue of DBMS
that provides comparative performance data). Microsoft is wrapping the ODBC API in an object
interface based on OLE objects, so future Data Access Objects will be available across applications,
allowing ODBC API based applications to use DAO layer where it provides better performances.

¢ more DBMSs can be accessed by ODBC than by DAQO.

« with the ODBC API, the applications can adapt at run-time to the capabilities of the ODBC driver
for the used DBMS



Nevertheless, DAQO is retained for the prototype because:

«  DAO can coexist with the ODBC API in the same application. It is possible to evolve progressively
from a DAO application to an ODBC API application, even to mix both solution in the same
application.

¢ theobject layer of DAO provides agreater ease of use and transparency
¢ themore common DBM Ss used on the market are accessible via DAO.
e DAO permits the creation or the update of a database

¢ as the ODBC API, DAO uses the SQL language to formulate queries to the DBMSs, which is a
widely recognised standard

4.1.5. Implementing the database objectswith an “OLE” technology

We could have implemented the database objects with an OLE technology. This would have simplified
the generation of code for multiple programming environment, as the code for the database objects

would have been the same for all the environments supporting OLE.

As “Visual Modeller” generates limited applications in its first version, we can suppose the code it
generates could be completed by some developers. Also, we could wish to maintain this possibility in
the next versions of “Visual Modeller”. As“Visual Modeller” is not designed to be used by high-level
professionals in computer science, it is wished, at least now, to generate some code that can be easily
extended. If we generate now some OLE objects, a third development environment (C++) will be

necessary to be able to compile or update these objects.

By consequence, this solution has not been retained for the prototype.

4.2. More details on strategies used to implement the generic

objects

4.2.1. the aggregated objects

There is no particular treatment for the aggregated objects: if a generic object which is part of another
in the model has to be treated like an attribute of its container, this modification has already been done
in the generic object before its implementation (during the generic object optimisation phase).
Elsewhere the fact that the associated object is a part of the first one is useful only in the methods of its
container (mainly in the constructor and in the destructor) and eventually in its own methods. The
aggregated object is represented like an object associated to its container in the implemented

application.



4.2.2. the methods of the objectsin a non OOPL

When the programming language used for the implementation is not an OOPL (“Object-Oriented
Programming Language”), the methods of the generic objects will be implemented as global functions
or procedures. We will use a rule similar to the one used by a pre-compiler C++ to trandate a method

in aC function:

a method “m” of an object “0” will be implemented as a global function or procedure

of name “o_m” with a first parameter that will be a reference to an instance of an

object “0” (where represents the linker character).

Parametersinitialized in “Visual Modeller” define:
» the maximal length of the generated name (“o_m” in the example“o_m")

« the maximal length of the prefix of the generated name (“0” in the example“o_m”)

e thelinker character (“_” inthe example“o_m")

The prefix of the generated name can be truncated following the rules given in the paragraph about the

“naming operation”. The full name isthen truncated following this samerule.

The prefix “ 0" given for each object (also known as the short name of the object) is unique. It is not
necessary but the generated sources will be more readable, being needed to calculate the short names
only one time, allowing best performances, the only disadvantage being the space required to store the

short name (in the generic objects).

4.2.3. the attributes of the objects

4.2.3.1. The name of the attribute must be unique within its scope

An attribute name needs only to be unique in its scope (that is the part of the application where it is
visible). The name of an attribute must only be unique among the other attributes and methods of its

object.

We decide that the name “a@’ of an attribute of an “object” “0” is unique in its form “o_a’ (see the
description of the naming rule for the methods in the above paragraph) for the global application and

implemented in this form. It permits:

» touseonly onelist of the already used names because there is only one range of visihility for all the

application



« toavoid resolution of name conflicts consecutively to the implementation of the inheritance

4.2.3.2. If the non OOPL provides user-defined types

Most programming languages permit to declare “user-defined” types which are composed of other types
(like the structures “struct” in C, the “record” in Pascal, the “type” in Visual Basic). In that case an
object will be implemented as one of these types. The components of the type correspond to the

attributes of the object implemented as a user-defined type.

4.2.3.3. If the non OOPL does not provide user-defined types

In the non OOPL which do not provide user-defined types, the rules used to implement the names of the
methods of the objects in a non OOPL are also used to implement the names of the attributes of the

objects.

Each attribute of an implemented object is represented by a global variable when the type of the
attribute allows that.

4.2.3.4. When an attribute cannot be implemented as a variable

When the type of an attribute does not permit to implement it as a variable, the rules to implement an

object are applied to this attribute, and eventually the attributes of this attributes, and so on.

4.2.4. theinheritance between generic objectsin a non OOPL

The inheritance needs to be translated too, when the implementation is done in a non object-oriented

programming language. We use the following rules:

The attributes of its super classes are duplicated in the derived object.

A method “m” of an object calls the method “m” of its super-class at the end of its

personal code if it does not override it.

We must say that with this strategy, we must translate the reference to the virtual object too. Late
binding (that is determining the class of an object at run-time) is still possible if we implement the class
(ie. the type) of an object as one of its attributes, so that, in the implementation, the “object” can

manipulate this information.



4.3. Implementation of the “naming operation” in the

automata

The rules to build a valid name of variable, type, function or method (...) are dependent of the used
programming language. By consequence, before processing the naming operation, an automaton must

get some information about the implementation language:

e isit object-oriented?

» hasit the notion of user-defined compound types of data?

* what isthe maximal length of the name of avariable?

* isthe name of avariable case sensitive?

» what character (we call it the linker character) must be used to assemble two items in one name?

« what isthelist of the forbidden characters when you name a variable, a function or atype?

An implemented name is built from the corresponding name used in the generic application. First, the
forbidden characters must be filtered. Then we will assume the following rule, that is true in most of the
programming language: a name must begin by an alphabetic character (ie. from “a’ to “z”, or from “A”
to “Z") or by an underscore character. Then if the used programming language is not case sensitive, the

proposed name is converted to lowercase...

But the main problem remains for the last step: we must ensure that the name we will use for the
implementation is unique in the part of the application where it is visible. At a first step, we will not
manage this notion of limited visibility in the application: anyway, we need a mechanism to construct a
unique name within an area. So, it is simpler to define that area as the entire application, and although

we believe managing several areas of visibility, it does not bring significant advantages.

To be able to build unigue names and to be able to build names that verify the constraints of the
implementation language upon their maximal length, we use a truncating mechanism: an implemented
name is built from the corresponding name in the generic application. Its prefix is the generic name
truncated to the maximal length allowed by the implementation language minus the length of its suffix.
This suffix is the linker character followed by a number automatically incremented each time this suffix
isused for anew name. In fact, this method is similar to the one used by Microsoft Windows 95 to build

aMsDos file name from along file name, using “~" aslinker character.

A private attribute is defined in the objects of the generic application and their components to store the
name of the corresponding object in the generated system. In fact there are two implementation names
for the objects of the generic application: in case the implementation environment is not object-
oriented, a short name is built too for these objects. The name of their methods, and of their attributes if
the implementation language does not support the user-defined types, will be defined as the

concatenation of the short name of the object and of the name of the component. In that case, it means



the length of the name of the methods, and eventually of the attributes of the objects, will be shortened

so that the composed name remains within the maximal length permitted by the programming language.

4.4. The ancestor of all the automata of “Visual Modeller”

The class “GDAutomaton” is the description of a virtual automaton in “Visual Modeller”. All the
automata in “Visual Modeller” inherit from it. Seen from “Visual Modeller”, all the automata are

activated as a“ GDAutomaton” object, without consideration for what they are implementing.

The method “getExtensionLg” does not exist in this version, issued from the prototype of “Visua
Modeller”. Its role will be to read the extension of the language for the generation of code by the
automaton. Waiting for this solution, in the prototype, the procedures to extend the language provided
by “Visual Modeller” to generate the code are directly implemented in the automata derived from
“GDAutomata’. By convention, the name of the methods implementing a procedure begin with

decl”.

Note that the methods which name begins by:
o “setFirst” are accessors

e “getNext” areiterators

Declaration of the class “GDAutomaton” extracted from the source file “ PSeudoGDM odel .h”

cl ass GDAut omaton: public CObject {

public:
CString Title; /1 title of the autonaton
pr ot ect ed:
GDMWbdel * GenAppl Dat as; /1 pointer to the generic application datas
CFile i mpl enfi | e; /1 inplenentation file
int i mpFi | eSt at us; /1 status of the inplementation file (opened = 1)
int obj NameMaxLen; /1 max | ength of object name as “Cbj N _Attri bN'
int var NameMaxLen; /1 max length of a nane of variable, type, function
BOOL i sOOL; /1 is the inplenentation | anguage Cbject Oriented ?
BOOL caseSensitiveNanes; // is naming (variables, types...) case sensitive ?
TCHAR separator; /| separates the prefix and the serial nb in a nane
publi c:
GDAut omaton( CString nyTitle = "", GDVbdel * nodel = NULL );
~GDAut ormat on() ;
virtual void buildl npl enentedj () = O; /1 build source for inplenentation of
generic objects
voi d bui | dNanesFor | npl en() ; /1 build the nanes for the inplenented
obj ects
voi d I'i nkGenAppl ( GDVbdel * nodel ); /1 link automaton and generic application
virtual CString getQbjectNane() = O; /1 current object name used for
i npl ement ation
virtual CString getAttribNane() = O; /1 current attribute name used for
i npl ement ation
prot ect ed:
virtual void setFirstmject() = 0; /'l set ready to read the first object
virtual void setFirstAttrib() = 0; /] set ready to read the first attribute




virtual BOOL get Next GI){ ect 8

0; /1 read the next ob{ ct
virtual BOOL get Next Attrib I/

0; read the next attribute

CString get Met hodNane( const CString genericNanme )
{ return GenAppl Dat as- >get Met hodNane( genericNane, this );

CString giveVar Nane( const CString proposal, /1 give nanme for variable
const CString prefix ="" );
CString givePrefixName( const CString proposal ); /1 give nanme for prefix
inline COdServer& usedNanes(); Il return the list of the used nanes
/] create an enpty file
int makeFi | e( const CString fileNanme, const CString extNanme );
int closeFile( ); /1 close the file opened with "makeFile"

/1 method nanme used for inplenentation

voi d wite( CString buffer ) I/l wite buffer in inplenentation file
{ inplenFile.Wite( buffer, buffer.GetLength() );
}

private:
/1 apply the 1lst set of nanming constraints
voi d set Nam ngRul es( CString proposedNane );
/1 see "usedNames"
| CString gi veNewNane( int maxLength, const CString proposal );

[}

4.5. The automaton generating the code for the business

objects

4.5.1. Thedeclaration of the automaton used for the prototype

The class “GDBOAutomaton” is used in “Visual Modeller” to instantiate the automaton that
implements the business objects. In the prototype, it is dedicated to generate some code for the
programming language Microsoft Visual Basic. But thisis only a simplification used for the prototype.
In the next versions of “Visual Modeller”, this automaton will be used to generate some code
indifferently for any programming language (see the paragraph describing the virtual automaton

“GDAutomaton” for more details).

Declaration of the class “GDBOAutomaton” extracted from the source file “ Automata.h”

cl ass GDBQAut omat on: public GDAut omaton {
public:
GDBQAut omat on( CString nmyTitle, GDVbdel* nodel = NULL );
~CGDBQAuUt onat on() ;

voi d bui | dNanesFor | npl en() ; /1 build the names for the inplenented objects
voi d bui | dI npl ement edObj () ; // build the source to inplenment the BO
/'l (where BO neans busi ness object)

private:
/1l ... the iterators

CString getObjectNanme()
CString getDBObjectNane();
CString getSupCl assNane()

{ return GenAppl Dat as- >get Cbj ect Name( this ); }

/1 name of database object associated to current BO
{ return GenAppl Dat as- >get Supd assNarme( this ); }
CString getAttribName() { return GenAppl Dat as->getAttri bNane( this ); }
CString getAttribType() { return GenAppl Dat as- >get MemAttri bType( this ); }
CString getAssoAttrQrxtVal () { return GenAppl Dat as- >get AssoAttrQTxtVal (); }
CString getAssocNane() { return GenAppl Dat as- >get AssocNarme( this ); }
CString getAssocObj Nane() { return GenAppl Dat as- >get AssocCbj Nane(); }
CString getFornTabl eNanme() { return GenAppl Dat as- >get For nTabl eNare(); }
CString getAssoDBForAttrName() { return GenAppl Dat as- >get AssoDBFor Attr Nanme(); }
CString getAssoAttrNane() { return GenAppl Dat as- >get AssoAttrNarme(); }

/'l ... the accessors




voi d set Fi rst Obj ect () { GenAppl Dat as- >set Fi r st Busi nessCbj ect(); }
voi d set Fi rst SupC ass() { GenAppl Dat as- >set Fi rst Supd ass(); }
voi d setFirstAttrib() { GenAppl Dat as->setFirstAttrib(); }
voi d set Fi r st For ei gnK() { GenAppl Dat as- >set First Forei gnK(); }
voi d set Fi rst Assoc() { GenAppl Dat as- >set First Assoc(); }
voi d set First AssoAttr () { GenAppl Dat as- >set Fi rst AssoAttr(); }
BOOL get Next Qbj ect () { return GenAppl Dat as- >get Next Busi nessChj ect(); }
BOOL get Next SupCl ass() { return GenAppl Dat as- >get Next Supd ass(); }
BOOL get Next Attrib() { return GenAppl Dat as->get Next Attrib(); }
BOOL get Next For ei gnK() { return GenAppl Dat as- >get Next Forei gnK(); }
BOOL get Next Assoc() { return GenAppl Dat as- >get Next Assoc(); }
BOOL get Next AssoAttr () { return GenAppl Dat as- >get Next AssoAttr(); }
/1 ... the procedures, extension of the |anguage for the generation of code
/1 ... tenmporary nmethods for the prototype
voi d decl d assMbdHdr () ; /] to declare the header of a class nodule in VB
voi d decl Ooj ect (); // to declare a BO
voi d decl Attrib(); /1 to declare an attribute of a BO
voi d decl AssocQy(); /1 to declare the query objects to associated BO
voi d decl Onel nstance() ; /1 to declare one instance of a BO
voi d decl Ooj ct Met hod() ; /1 to define the nethods of a BO
voi d decl QyMet hod() ; I/l to declare the query nethod to current assoc.
voi d decl d obal (); /1 to declare the global variables, objects
voi d decl | ni FromAssoc(); // to declare initialisation of attribute
/'l associ ated obj ect
voi d decl Reset Val Attrib(); // to reset the value of an attribute to the
/1 default val ue
voi d decl Nul | AssocOnj () ; /1 to reset the result of a query about the
/] association
voi d decl ResAssocQy(); /l toreinit the result of a query about the
/] association

};

4.5.2. An example of implementation of a business object with the prototype

4.5.2.1. The language in which the code is generated

The code to implement the business objects is generated in the programming language Microsoft Visual
Basic 4. This is not an OOPL (“Object-Oriented Programming Language”), but user-defined types
(composed of attributes of other types) can be defined. This language offers also an interesting feature:
the class module that alows simulating some characteristics of an object-oriented programming
language: each class module file allows the declaration of one object. This technique alows

polymorphism, encapsulation, but does not permit the inheritance to be managed by Visual Basic 4.

In Microsoft Visual Basic avariable name:

e must begin with an al phabetic character

e can't contain an embedded period or type declaration character (ie. “$" or “%")
¢ must be unique within the same scope

¢ must be no longer than 255 characters

¢ isnot case sensitive (written in lower case by convention)

4.5.2.2. Example of extension of the language to generate the code

Here follow a short extract of a the source file implementing the automata in “Visual Modeller”. This

example shows the extension of the code generation language proposed by “Visual Modeller”, realized




by the implementation of the procedures. The name of the procedures are written in bold charactersin

the following example.

Notice the other automata extend the language provided by “Visua Modeller” for the generation of

code in aquite similar manner.

Content of the source file “automata.cpp” implementing the automatain “Visua Modeller”

R e
/1l to declare a B.QO

voi d GDBQAut ormat on: : decl Qbj ect () {
CString buffer;

makeFi | e( "GenSource\\"+get Obj ect Nane(), ".CLS" );
if ( inpFileStatus != OPENED ) return; /'l tested because uses "wite"

| decl G assMvodHdr ();
buffer = " --- Class Mdule of the Business bject '"+getbjectName()+"' ---
\"\'n\n";
wite( buffer );
buffer = "\'n\n";
wite( buffer );
while ( getNextAttrib( ) ) declAttrib();
set Fi rst Assoc();
whil e ( get Next Assoc( ) ) decl AssocQy();
buffer = "Dim MyDBObj ect As "+get DBOhbj ect Nane() +"\n\n";
wite( buffer );
decl Obj ct Met hod() ;
I decl Onel nst ance() ;
closeFile();

voi d CDBQAut ormat on: : decl Attrib() {
CString buffer;

buffer = "Public "+getAttri bName()+" As "+getAttri bType()+"\n";
wite( buffer );

/ to declare the queries to associated B. O

~ ———
~

voi d GDBQAut onat on: : decl AssocQy() {
CString buffer;

buffer = "Public To"+get AssocObj Nane()+" As DcQuery\n";
wite( buffer );

4.5.2.3. The code generated

The automaton GDBOAutomaton of the prototype generates a Visual Basic class modulefile:
« for each business object of the generic application

« for the object DcQuery, specific to the applications generated in Visual Basic

An implemented (in Visual Basic) business object associated with persistent business objects, own, as

an attribute, one Visual Basic object “DcQuery” for each of these associated business objects. A



DcQuery object is used by the object implementing a business object, to send some queries to the
database concerning the instances of an associated business object. The DcQuery gets a Recordset as
the result of this query, allowing the application to create the corresponding business objects in

memory.

Content of the class modulefile “DcQuery.cls’ generated in “Visual Basic 4”

VERSI ON 1. 0 CLASS

BEG N
MiltiUse = -1 'True

END

Attribute VB _Name = "DcQuery"

Attribute VB Creatable = True

Attribute VB _Exposed = True

Attribute VB Description =" --- dass Mdule of the Request bject

' The "dc" prefix is reserved to the class defined by default in
the application.

Public Rc_QueryResult As Recordset

' Const ructor

Public Sub dass_Initialize()
End Sub

' Execut e the request

Public Sub find(SQ.Statnt As String)
Set Rc_QueryResult = Dbdat abase. OpenRecordset (SQLStat nt, dbOpenDynaset)
End Sub

'Cl ose the request

Public Sub dc_query_cl ose()
Rc_QueryResul t. d ose
Rc_QueryResult = Not hi ng

End Sub

"Return the nunber of records in the result

Public Function count() As Integer
If Rc_QueryResult = Nothing Then
RetVal =0
El se
Ret Val = Rc_QueryResul t. count
End | f
End Function

'Move on the first record of the result

Public Sub MveFirst ()
Rc_QueryResul t. MoveFi r st
End Sub

' Move on the next record of the result

Public Sub MoveNext ()
Rc_Quer yResul t . MbveNext
End Sub

Private Sub d ass_Term nate()
On Error Resunme Next
Rc_QueryResul t. d ose
Set Rc_QueryResult = Not hi ng




[End Sub

Here follows an example of business object implemented by the prototype: it is an object “customer”

associated with zero to many objects “order”.

Content of the class module file “ObBOCustomer.cls’ generated in “Visual Basic 4”

VERSI ON 1. 0 CLASS
BEG N
MiltiUse = -1 'True
END
Attribute VB _Nanme = "ObCustoner”
Attribute VB Creatable = True
Attribute VB _Exposed = True
Attribute VB Description =" --- dass Mdule of the Business bject 'Custonmer' ---"

Public AtCust_Id As String
Public AtNane As String
Publ i c At Conpany As String
Public AtCategory As Integer
Public ToObOrder As DcQuery

| Di m MyDBOhj ect As ChDBCust oner

'constructor of "CbCustoner"

Public Sub Cass_Initialize()
resetAttrib
Set MyDBOhj ect = New CbDBCust oner
End Sub

"destructor of "CbCustoner"

Public Sub O ass_Ternminate()
Set ToObOrder = Nothing
Set MyDBObj ect = Not hi ng

End Sub

"toinitialize the attributes of "oCustonmer" fromthe database.
Public Function load( ) As Bool ean

| oad = MyDbObj ect. |l oad( Me )
End Function

'"to save "CbCustoner" in the database.

Public Sub save( )
M/DbChj ect . save Me
End Sub

'to update "ObCustoner” in the database.

Public Sub update( )
MyDbChj ect . updat e Me
End Sub

"to delete "ObCustoner” fromthe database.

Public Sub delete( )
M/DbChj ect . del ete Me
End Sub




"to |l oad "OhCustoner" in the database fromthe result of a query.

Public Function | oadFrQuery( ArResultQuery As Recordset )
| oadFr Query = MyDbObj ect . | oadFr Query( ArResult Query, M )
End Function

"reset the value of the attributes

Public Sub resetAttrib()

AtCust_Id = ""
At Name = ""
At Conpany = ""
At Category = 0
Set ToGhOr der
Set ToObOr der

End Sub

Not hi ng
New DcQuery

'query on the association with "CbOrder”

Public Sub qryToGhOr der
Dim SQLQuery As String

SQLQuery "SELECT * FROM CbDBOr der WHERE "
SQLQuery SQLQuery + "Cust_Id_1 = "+Chr(34)+AtCust _I| d+Chr (34)
ToOrder. find SQLQuery

End Sub

"initialise an associated object fromthe query on "CbO der"

Public Sub I ni M/_ObOrder( ArAssocCbhj As ObOrder )
Ar AssocObj . | oadFr Query ToCbOrder. Rc_QueryResul t
End Sub

4.6. The automaton generating the code for the database

4.6.1. The declaration of the automaton used for the prototype

The class “GDRDBaseAutomaton” is used in “Visual Modeller” to instantiate the automaton that

generates the application whose role is to create or update the database.

Declaration of the class “GDRDBaseAutomaton” extracted from the source file “ Automata.h”

class DIl GDRDBaseAutomaton: public GDAutomaton {
public:

GDRDBaseA utomaton( CString myTitle, GDModel* model = NULL );

~GDRDBaseA utomaton();
private:
COrdServer usedNames; // prefixs used to name variables, methods...

public:




void  buildNamesForlmplem(); // build the names for the implemented objects

void  buildimplementedObj(); // build the database

private:
CString getObjectName()  { return GenAppl Datas->getDBObjName( this); }

CString getSupClassName() { return GenApplDatas->getDBSClassName( this); }

Cstring getAttribName() { return GenApplDatas->getDBAttribName( this); }
CString getAttribType() { return GenApplDatas->getDBAttribType( this); }
BOOL getAttriblsUnique(){ return GenApplDatas->getAttriblsUnique(); }

BOOL getAttriblsKey() { return GenApplDatas->getAttriblsKey(); }

CString getForeignkKeyName();  // name of current foreign key
CString getForeignTableName(); // name of current table of current foreign key

CString getFornK AttribName();  // name of current attribute of current foreign table

CString getFornK AttrForName();  // name of current foreign attribute of foreign table

void setFirstObject() { GenApplDatas->setFirstDBObject(); }

void setFirstSupClass() { GenApplDatas->setFirstDBSupClass(); }

void setFirstAttrib() { GenApplDatas->setFirstDBALtrib(); }

void setFirstForeignK();  // sets Foreign Key read pointer ready to read 1st
void setFirstFornKlItem(); // sets Foreign Key Item pointer ready to read 1st
BOOL getNextObject() { return GenApplDatas->getNextDBObject(); }
BOOL getNextSupClass() { return GenApplDatas->getNextDBSupClass(); }
BOOL getNextAttrib() { return GenApplDatas->getNextDBALtrib(); }

BOOL getNextForeignK();  // reads next Foreign Key

BOOL getNextFornKIitem(); // reads next Foreign Key Item

void declObject(); // to declare atable

void declRelations(); /I to declare the relations between the tables
void declFirstAttrib();  // to declare the first attribute of atable

void decINextAttrib(); I/ to declare atable attribute (except first one)
void declFirstkeyltem(); // to declarethefirst item of the primary key

void decINextKeyltem();  // to declare the next items of the primary key




void declFirstUnigPrimK(); // to declare first item of unique on primary key

void declForeignKey(); /I to declare the foreign keys

void declOneForeignKey(); // to declare one foreign key

void declNextForeignKey(); //to declare aforeign key except the first one
void decINextFornKeyltem(); // to declare the next items of the foreign key

void declNextForeignitem(); // to declare the next attribute of foreign table

4.6.2. An example of creation/update of a database with the prototype

4.6.2.1. The language in which the code is generated

“Visual Modeller” creates a specific application to create/lupdate the database. The generated
application is also implemented in Microsoft Visual Basic. But it uses only Microsoft Jet Database 3.0
(implementing the DAO) and SQL to control the database.

The constraints on the fields of atable and between the tables are also implemented.

4.6.2.2. An example of generation of code

Here follows as an example, the main file “Db_Make.sgl” created by the prototype of “Visual
Modeller” for this application in a test. The way the language provided by “Visua Modeller” has been
extended by the automaton to obtain this result is not detailed here because it is very similar to the way

it is done by the automaton “GDBOAutomaton” generating the code implementing the business objects.

Content of the basic file“Db_Make.sql” generated in “Visua Basic 4" by “GDRDBaseAutomaton”

Attribute VB _Nanme = "Mdul el"
' --- Database Creation ---

Sub nai n()
Di m wspDef aul t As Wor kspace
Di m dbsNew As Dat abase
Dim SQLStatnt As String
Di m Tabl eName As String

ChDir "\Test_dev\ Creat eDb"

Set wspDefault = DBEngi ne. Wr kspaces(0)

On Error Goto ErrHdlrCant QpenDB

Set dbsNew = wspDef aul t. Creat eDat abase( "Test.MDB", dbLangGeneral, dbVersion30 )
On Error Goto ErrHdlrCant CreateTabl e

Tabl eName = " CbDBCust oner "

SQLStatnt = " CREATE TABLE ObDBCustoner ( "

SQ@Statnt = SQStatnt+" Cust_Id TEXT CONSTRAI NT |sUni qCust_Id UN QUE,
SQ.Statnt = SQ.Statnt+" Name TEXT, "

SQLStatnt = SQ.Statnt+" Conpany TEXT,

SQ.Statnt = SQ.Statnt+" Category |NTECGER, "

SQ@Statnt = SQStatnt+" CONSTRAINT PrinmaryKey PRI MARY KEY ( Cust_Id )"
SQLStatnt = SQ.Statnt+", CONSTRAI NT Uni gPrinK UNIQUE ( Cust_Id )"
SQStatnt = SQStatnt+" );"




dbsNew. Execute( SQ.Statnt )
Tabl eName = " CbDBOr der "

SQ.Statnt = "CREATE TABLE ChDBOrder (

SQ.Statnt = SQ.Statnt+" Oder_Id TEXT, "

SQ@Statnt = SQStatnt+" O der_Date TEXT,

SQ.Statnt = SQ.Statnt+" Description TEXT, "

SQ.Statnm = SQ.Statnt+" Cust_Id_1 TEXT, "

SQLStatm = SQStatnt+" Amount | NTEGER, "

SQ@Statnt = SQStatnt+" CONSTRAINT PrinmaryKey PRI MARY KEY ( Order_ld, Cust_Id_1)"
SQLStatnt = SQ.Statnt+", CCNSTRAI NT UnigPrinkK UNTQUE ( Order_Id, Cust_Id_1)"
SQStatnt = SQStatnt+" );"'

dbsNew. Execute( SQ.Statnt )

Tabl eName = " CbDBPr oduct "

SQLStatnt = " CREATE TABLE ObDBProduct ( "

SQ@Statnt = SQ@Statnt+" Prod_ld TEXT CONSTRAI NT |sUnigProd_Id UN QUE,

SQLStatnt = SQStatnt+" Price | NTEGER, "

SQ@Statnt = SQStatnt+" Description_1 TEXT,

SQLStatnt = SQ.Statnt+" CONSTRAINT PrimaryKey PRI MARY KEY ( Prod_Id )"

SQ@Statnt = SQStatnt+", CONSTRAI NT UnigPrinK UNIQUE ( Prod_Id )"

SQLStatnt = SQLSt at nt e+ )"

dbsNew. Execute( SQStatnt )

Tabl eName = " CbDBOr dLi ne"

SQ@.Statnt = "CREATE TABLE GbDBOr dLi ne (

SQ.Statnt = SQ.Statnt+" Line_Nunber | NTEGER, "

SQStatnt = SQStatnt+" Oder_ld_ 1 TEXT,

SQLStatnt = SQ.Statnt+" Cust_Id_2 TEXT, "

SQStatnt = SQ.Statnt+" Quantity | NTEGER,

SQ@Statnt = SQStatnt+" Description_2 TEXT, "

SQStatnt = SQStatnt+" Prod_ld_1 TEXT, "

SQLStatnt = SQLStatnt+" CONSTRAINT PrinmaryKey PRI MARY KEY ( Line_Nunber, Oder_Id_1,
Cust _I1d_2 )"

SQLStatnt = SQStatnt+", CONSTRAINT UnigPrinK UNIQUE ( Line_Nunber, Oder_Id_1,
Cust_Id_2 )"

SQ.Statnt = SQ.Statnt+" );"
dbsNew. Execut e( SQLSt at nt
On Error Goto ErrHdlrCant Al terTable

Tabl eNamre = " GbDBCust oner"
Tabl eNamre = " GbDBOr der "

SQ.Statnt = "ALTER TABLE GbDBOrder "

SQStatnt = SQ.Statnt+" ADD CONSTRAINT to_DBCustomer FOREIGN KEY ( Cust_Id_ 1 )
REFERENCES (bDBCustoner ( Cust_Id )"

dbsNew. Execute( SQ.Statnt )

Tabl eName = " CbDBPr oduct "
Tabl eNane = " bDBOr dLi ne"

SQ@Statnt = "ALTER TABLE CbDBOrdLi ne "

SQ@Statnt = SQStatnt+" ADD CONSTRAINT to_DBOrder FOREIGN KEY ( Oder_ld_1,
Cust_1d_2 ) REFERENCES DBOrder ( Order_ld, Cust_ld_1 )"

dbsNew. Execut e( SQLStatmt )

SQ.Statnt = "ALTER TABLE GbDBOrdLine "

SQ@Statnt = SQ@Statnt+" ADD CONSTRAINT to_DBProduct FOREIGN KEY ( Prod_ld_1 )
REFERENCES (bDBPr oduct ( Prod_Id )"

dbsNew. Execute( SQ.Statnt )

dbsNew. Cl ose
MsgBox( "Creation of the database conpleted." )
Exit Sub

Er r Hdl r Cant OpenDB:
Set dbsNew = wspDef aul t. OpenDat abase( "Test.MDB" )
Resume Next

Er r Hdl r Cant Cr eat eTabl e:
MsgBox( Err.Description + Chr(13) + Chr( 13 ) + "Can't create the table '" +
Tabl eName + "'." )




Resune Next
Err Hdl r Cant Al t er Tabl e:

MsgBox( Err.Description + Chr(13) + Chr( 13 ) + "Can't alter the table '" +
Tabl eName + "'." )

Resume Next
End Sub

4.7. The automaton generating the code for the database

objects

4.7.1. The declaration of the automaton used for the prototype

The class “GDRDBObjAutomaton” is used in “Visual Modeller” to instantiate the automaton that
implements the database objects. In the prototype, it is dedicated to generate some code for the
programming language Microsoft Visual Basic. But thisis only a simplification used for the prototype.
In the next versions of “Visual Modeller”, this automaton will be used to generate some code
indifferently for any programming language (see the paragraph describing the virtual automaton

“GDAutomaton” for more details).

Declaration of the class *GDRDBObjAutomaton” extracted from the source file “ Automata.h”

/k

The followi ng short-cuts are used:
DBO ........ Dat abase Obj ect
ABO ........ Associ at ed Business (bject (with the currently read database object)
DB ......... Dat abase
VB ......... Vi sual Basic

*/

cl ass GDRDBObj Aut omat on: public GDAut omat on {

publi c:
GDRDBOhj Aut omat on( CString nyTitle, GDVodel * model = NULL );
~CGDRDBOhj Aut ormat on() ;
voi d bui | dl npl ementedObj (); // build the source to inplement the database

obj ects

private:
CString getObjectNanme() { return GenAppl Dat as- >get DBObj Narme( this ); }
CString getSupd assName() { return GenAppl Dat as- >get DBSC assNane( this ); }
CString getAttribName() { return GenAppl Dat as->get DBAttri bName( this ); }
CString getAttribType() { return GenAppl Dat as->get DBAttri bType( this ); }
BOOL get AttriblsUnique(){ return GenAppl Datas->get Attribl sUnique(); }
BOOL get Attri bl sKey() { return GenAppl Dat as->get AttriblsKey(); }
voi d set Fi rst Obj ect () { GenAppl Dat as->set First DBObj ect(); }
voi d set First SupC ass() { GenAppl Dat as- >set Fi r st DBSupCl ass(); }
voi d setFirstAttrib() { GenAppl Dat as->setFirstDBAttrib(); }
BOOL get Next Obj ect () { return GenAppl Dat as- >get Next DBObj ect (); }
BOOL get Next SupC ass() { return GenAppl Dat as- >get Next DBSupd ass(); }
BOOL get Next Attrib() { return GenAppl Dat as- >get Next DBAttri b(); }
/1 To manage the ABO = B.O Associated with the currently read DBO
inline CString getABONane(); /1 nanme of the ABO
inline CString getABCSupC assNane(); /1 name of current super-class of ABO
inline CString getABQAttribNanme(); /1 nanme of current attribute of ABO
inline CString getABQAttribType(); /1 name of type of current attribute of ABO

// value of current attribute of ABO

inline CString getABQAttribValue( CString prefix ="" );

/1 inplenented nanme of generic method of ABO
inline CString getABOWethodNane( const CString genericNanme );

nline void set ABOFi rst SupCl ass(); // set ready to access 1st superclass of ABO
nline void set AOBFi rstAttrib(); /1 set ready to access 1st attribute of ABO
nl i ne BOOL get ABONext Supd ass(); /| access next super-class of ABO




inline BOOL get ABONext Attrib(); /'l access next attribute of ABO

/1 The procedures to extend the | anguage offered by “Visual Modeller”

voi d decl C assvbdHdr () ; /1 to declare the header of a class nodule in VB

voi d decl Ovj ect (); /1 to declare a rel ational database object

voi d decl Attrib(); /1 to declare an attribute of a database object

voi d decl Onel nst ance() ; /1 to declare one instance of a database object

voi d decl Obj ct Met hod() ; /1 to define the nmethods of a database object

voi d decl LoadAttr FDB() ; /'l to load a RDBO attribute fromthe DB

voi d decl SaveAttr FDB() ; /1l to save a RDBO attribute in the DB

voi d del cCpToMenDBAttrNoK(); // to copy RDBO attributes to the ABO if not
identifier

voi d decl CpToMenDBAt tr () ; /1 to copy RDBO attributes to the ABO

voi d decl CpFr MenDBAt tr(); /1 to copy a RDBO attribute fromthe ABO

voi d decl CmpBaNDBAt tr () ; /! to conpare |oaded value from DB and current
val ue in database

voi d decl Reset Val Attrib(); I/l to reset the value of an attribute to the

default val ue

4.7.2. An example of implementation of arelational database object

Content of the class module file “ObBDBCustomer.cls’ generated in “Visual Basic 4”

VERSI ON 1. 0 CLASS
BEG N
MiltiUse = -1 'True
END
Attribute VB _Name = "CbDBCustomer"
Attribute VB Creatable = True
Attribute VB _Exposed = True
Attribute VB Description =" --- Class Mdul e of the Database (bject 'CbhDBCustoner' -

Each attribute of a database object is in fact an array.
Each index 'n' of an attribute nane 'atn...' has the follow ng neaning:

' 0 = |l oaded value in the database for ABO (associ ated busi ness object)
' 1 = current value of the ABO when DB (database) update is required
' 2 = current value in the DB when DB update is required

Some notation rul es:
Rc is the prefix of the Recordset objects
" Ar is the prefix of the argunents of the nethods, of the functions

Public AtOCust_Id As String
Public At1Cust_Id As String
Public At2Cust_Id As String
Public AtONane As String
Public At 1Nane As String
Public At2Nane As String
Publ i c At OConpany As String
Publ i c At 1Conpany As String
Publ i c At 2Conpany As String
Public AtOCategory As |nteger
Public At 1Category As I|nteger

Public At2Category As |nteger
Private St_I dFronDB As | nteger
Private RcRecordl nDB As Recordset

to reset the value of the attributes.

Private Sub resetAttrib()
St_IdFronDB = 0
AtOCust _Id "

At 1Cust _|I
At 2Cust _|
At ONanme =
At INanme =

At 2Narme = ""

At 0Conpany "
At 1Conpany "
At 2Conpany
At 0Cat egory
At 1Cat egory
At 2Cat egory

End Sub

d
d ="

1nn
o




"toinitialize the attributes of a database object fromthe database.

Private Sub | oadFrDB( ByRef ArARecordSet As Recordset, ArAttribType As Integer )
St_LdFromDB = 1

If ArAttribType = 0 Then

AtOCust _Id Ar ARecor dSet . Fi el ds("Cust _Id")
| Else
If ArAttribType = 2 Then
At 2Cust _Id = Ar ARecordSet. Fi el ds(" Cust _I d")
End | f
End | f

If ArAttribType = 0 Then
At OName = Ar ARecor dSet. Fi el ds(" Nanme")
El se

If ArAttribType = 2 Then
At 2Name = Ar ARecor dSet. Fi el ds(" Narme")
End | f
End | f
If ArAttribType = 0 Then
At OConpany = Ar ARecor dSet . Fi el ds(" Conpany")
El se

If ArAttribType = 2 Then
At 2Conpany = Ar ARecor dSet . Fi el ds(" Conpany")
End | f
End | f
If ArAttribType = 0 Then
At OCat egory = Ar ARecor dSet. Fi el ds(" Cat egory")
El se
If ArAttribType = 2 Then
At 2Cat egory = Ar ARecordSet. Fi el ds(" Cat egory")
End | f
End | f
End Sub

'"to save the attributes of a database object in the database.

Private Sub saveToDB( ByRef ArMenObjct As ObCustoner )
At1Cust _|d = ArMen(bjct.AtCust_Id
At INarmre = Ar Mentbj ct . At Nane
At 1Conpany = Ar Men(hj ct . At Conpany
At 1Cat egory = Ar Men(Obj ct . At Cat egory
WWor kSpace. Begi nTr ans
On Error Goto Cant Update
I f RcRecordl nDB. RecordCount = 0 Then RcRecor dl nDB. AddNew El se RcRecor dl nDB. Edi t
RcRecordl nDB. Fi el ds("Cust _1d") = At1Cust_Id
RcRecor dl nDB. Fi el ds("Nane") = At 1Nane
RcRecor dl nDB. Fi el ds(" Conmpany") = At 1Conpany
RcRecor dl nDB. Fi el ds(" Cat egory") = At 1Category
RcRecor dl nDB. Updat e
WWor kSpace. Conmi t Tr ans

Exit Sub

Cant Updat e:

MsgBox(  Err.Description + Chr(13) + Chr(13) + "Cannot update record("
Chr (34) +Ar Menbj ct . At Cust _| d+Chr(34) + ") in CoDBCustoner")

WWor kSpace. Conmi t Tr ans
End Sub

"to initialise the associ ated busi ness object except its identifier.

Private Sub ini MenObj Xct K( ByRef ArMen(Objct As CbCustoner )
Ar Men(bj ct . At Nane = At ONane
Ar Menm(bj ct . At Conpany = At 0Conpany
Ar Menm(bj ct . At Cat egory = At 0Cat egory

End Sub

"to initialise the associated busi ness object.

Private Sub ini Membj ( ByRef ArMentbjct As (bCustoner )
Ar Menm(bj ct. At Cust _Id = AtOCust _Id
Ar Men(bj ct . At Nane = At ONane
Ar Menm(bj ct . At Conpany = At 0Conpany
Ar Menm(bj ct . At Cat egory = At O0Cat egory
End Sub




‘constructor of "CbDBCustoner"

Public Sub dass_Initialize()
Set RcRecordl nDB = Not hi ng
resetAttrib

End Sub

|" destructor of "CbDBCustoner"”

Public Sub d ass_Termi nate()
if St_IdFronDB = 1 then RcRecordl nDB. Cl ose
Set RcRecordl nDB = Not hi ng

End Sub

"initialize the attributes of a business object fromthe database.

Public Function | oad( ByRef ArMen(bjct As CbCustoner ) As Bool ean
Dim SQLQuery As String

SQLQuery
SQQuery

Set RcRecordl nDB = Dbdat abase. OpenRecordset ( SQLQuery, dbOpenDynaset )
I f RcRecordl nDB. RecordCount = 1 Then
| oadFr DB RcRecordl nDB, 0

"SELECT * FROM CbhDBCust oner WHERE "
SQQuery + "Cust_Id =" + Chr(34)+Ar Menbj ct . At Cust _| d+Chr (34)

El se
resetAttrib
End |f
i ni MenDbj Xct K Ar MenDbj ct
load = ( RcRecordl nDB. RecordCount = 1)
End Function

'save the attributes of a business object in the database.

Public Sub save( ByRef ArMentbjct As bCustoner )
saveToDB Ar Menbj ct
RcRecor dl nDB. O ose
Set RcRecordl nDB = Not hi ng

End Sub

"update the attributes of a business object in the database.
"if they have not already been nodified in the database since
'the dat abase object has | oaded them

Public Sub update( ByRef ArMenObjct As CbCustoner )
Diml, Lo_failure As Integer

Lo_failure =0
| oadFr DB RcRecordl nDB, 2

' to conpare the | oaded and current values of the object in the database.

If AtOCust_Id <> At2Cust_Id Then Lo _failure = 1
If AtONane <> At2Nane Then Lo_failure =1
I f At OConpany <> At 2Conpany Then Lo_failure =1
If AtOCategory <> At2Category Then Lo_failure =1
If Lo_failure = 1 Then
I = MsgBox("Can't save the object ObCustoner")
El se
saveToDB Ar Mentbj ct
End | f
End Sub

"del ete a business object fromthe database,
"if they have not already been nodified in the database since
'the dat abase object has | oaded them

Public Sub del ete( ByRef ArMenthjct As CbCustoner )
DimLo_failure As Integer

Lo _failure =0
| oadFr DB RcRecordl nDB, 2

to conpare the | oaded and current values of the object in the database.




AtOCust _Id <> At2Cust _Id Then Lo_failure =1
At ONane <> At2Nane Then Lo_failure =1
At 0Conpany <> At 2Conpany Then Lo_failure =1
At OCat egory <> At2Category Then Lo_failure =1
(Lo_failure = 1) O (RcRecordlnDB. RecordCount <> 1) Then
MsgBox( "Cannot delete record(" + Chr(34)+ArMenCbjct.AtCust_Id+Chr(34) + ") in
GbDBCust oner ")

| Else

—h —h —h —h —h

WWor kSpace. Begi nTr ans
On Error Goto CantDel ete
RcRecor dl nDB. Del et e
WWor kSpace. Conmi t Tr ans
End |f
Exit Sub

Cant Del et e:

MsgBox(  Err.Description + Chr(13) + Chr(13) + "Cannot delete record(" +
Chr (34) +Ar MenDbj ct . At Cust _I d+Chr(34) + ") in CbDBCustoner")

WsWor kSpace. Conmi t Tr ans
End Sub

"initialise the attributes of a business object froma query in the database.

Public Function |oadFrQuery( ByRef ArARecordset As Recordset, ByRef ArMenbjct As
OhCust oner )

| oadFr DB Ar ARecordset, 0

i ni MenObj  Ar Men(hj ct

| oadFr Query = | oad( ArMenObjct )
End Function




5. Appendix

5.1. The functional model of the generation of code in “Visual

Modeller”

The following functional model shows how “Visual Modeller” first constructs a generic application,
separated in different domains (or areas). Each domain is materialised by a particular kind of generic
object. The business objects (representing the domain of the application) are built and optimised from
the model of the business process (represented by a model set in “Visual Modelling”), and then used as

the basis to construct the other generic objects.

Then the generation of code is funded upon the generic application, which is a model of the application
and amodel of the database.

code generation

System Architect
Fri Aug 23, 1996 16:45 D gen. rules for D Gen. rules for DB D specification of DB

Comment business objects objects

applies applies

business object

component... ;
D Model Set ponen P generate P generates applies |
—>|  business DB objects — —
business objecispjects T
buSiness objfcts
. P ‘
D Genrules for  applies ir%:gcaée ‘
Interface objects objects
| P generates D DataBase
. A DataBase
interface objects ‘ \
D Specification of \
environment ‘ ‘
_ ‘ [ P generates —
‘ applies L = Code for D Application

application

This functional nodel has been generated with the CASE tool “System Architect” (a
product of Popkin Software & Systens Incorporated), using the OWI (“Qbject Mbdeling
Techni que”) et hod.



5.2. The project plan to develop the generation of code

This document aims to present how work was shared between people involved in the development of

the first version of the tool for the generation of codein “Visual Modeller”.

Each task is represented by a rectangle. The person who was in charge of the task is designed by the

notein italic charactersin the right bottom angle. That is:

e “PJ for P.J. McKenna
« “Pat” for P. Fillatre

The notein bold charactersin the left bottom angle indicates what kind of result the task has to produce.

The notation is the following:

e “.BAS’ for the production of abasic sourcefile
* “.FRM" for the production of aform file

« “.MAK?" for the production of a project management file

generate generic
business objects

L PJ

optimize business generate implemeanted

object business objects
i BAS Pat
generate generic L generate implemented
interface objects interface objects —
PJ FRW
.BAS P
generate generic generate database
database objects Dat

SQL run-time

Pat

generate implemented
database objects
.BAS Pat

make the target application
.BAS
JHAK P

The generic application The implemented application




6. Bibliography

[JENNINGS, 1996]

[KRUGLINSKY, 1996]

[NORTH, 1995]

[RUMBAUGH, 1995]

Jennings R.
Database developper’s guide with Visual Basic, 2™ Ed.

SAMS Publishing, 1996

Kruglinsky D. J.
Inside Visual C++

Microsoft Press, 1996

North K.
Windows Multi-DBMS Programming

John Wiley & sons, 1995

Rumbaugh J., BlahaM. et d.
OMT: Modelisation et conception orientee objet

Masson - Prentice Hall, 1995



