
A Semi-group of Hashing Functions & Hash

Tables

Arthur Hughes
University of Dublin,

Trinity College, Dublin, Ireland

e-mail: Arthur.P.Hughes@cs.tcd.ie

January 19, 1997

Abstract

A model of a hash table is reviewed and problems with the model and
operations on the model are identified. A collection of isomorphic monoids
is found, in each of which will be a semi-group, represented hashing func-
tions and hash tables. One of the semi-groups is used to redefine the
previously examined operations. Finally, some algebraic questions arising
from the model are answered.

1 Introduction

Searching for a particular object in a collection of objects is fundamental to
computer science. A number of efficient searching procedure exist. One such
technique is that of hashing with ‘overflow chaining’. Hashing is used in the
UNIX file system, to buffer data block of opened files. This report re-examines
a model of a hash table and presents a new one. The models are presented using
the Irish School of Constructive Mathematics, see Mac an Airchinnigh [2, 3, 4].
In which algebraic structures and morphisms are used to specify and develop
software systems.

2 A Model of a Hash Table

A model of a hash table is developed in Mac an Airchinnigh [2, pages 386 – 397]
as a sequence of sequences of words, (W �)�. The type of hash table modelled
is one with ‘overflow chaining’ to deal with collisions when words are hashed,
see Knuth [8, pages 506 – 549]. In most implementations of this kind of hash
table the ‘overflow chains’ of words are sorted and do not contain duplicities.
Thus a more appropriate choice of space would be, (W �

≤!)
�, where W �

≤! denotes
the space of sorted unique sequences of words. This choice of space is still too
large because when a hash table is implemented the ‘overflow chains’ should be

1

disjoint, that is, a word can be on one and only one ‘overflow chain’. The right
choice of domain will make the modelling process simpler and with also allow
the hidden algebraic structures underlying the system to filter through. This
choice of space is partially solved by the introduction of an invariant.

2.1 The Invariant

The invariant on the space of sequences of sequences of words introduced is one
which ensures

• the number of ‘overflow chains’ in a hash table is a prime number greater
than one hundred,

• each ‘overflow chain’ in a hash table is different and finally,

• each ‘overflow chain’ in a hash table does not contain duplicate words.

This is stated formally for a hash table τ ∈ (W �)� as

is− prime (len τ) ∧ len τ > 100 ∧
len τ = card elems τ ∧ ∧/(len = card elems)�

τ

This invariant does not ensure the following properties normally associated with
a hash table

• the ‘overflow chains’ in a hash table are normally sorted,

• the ‘overflow chains’ in a hash table are normally disjoint and finally,

• a hash table should be a ‘reflection’ of a hashing function.

Thus the given invariant is not sufficient. The required space will be developed
in this report. Clearly identifying the space to be modelled has previously led
to the development of new monoids, see Hughes and Mac an Airchinnigh [7],
this will also be true of this report. The operations on a hash table must also
be modelled.

2.2 The Operations

Operations on a hash table are developed in Mac an Airchinnigh [2, pages 388 –
289]. The definitions of the operations make use of a hashing function h ∈ Z

W
p

which is a total function from words to the set {0, . . . , p} where p is a prime.
This function on given a word will return the number of the ‘overflow chain’
which the word should be on. A hashing function is a projection of words onto
their corresponding ‘overflow chain’ number, thus each hashing function parti-
tions the space of words, see Goldblatt [6, pages 88 – 90]. Mac an Airchinnigh [2,
page 392] refers to this function as a ‘magic’ function. The hashing function is
not ‘magic’, it is the key to the semantics of modelling the hash table, not just
in the definition of the operations on the hash table. The hashing functions will

2

be use to define the space which will model hashing functions and their corre-
sponding hash tables. The operations as defined have a number of problems
associated with them. The first operation dealt with is the creation of a new
hash table.

2.2.1 The New Operation

This operation must create a new hash table. The number of ‘overflow chains’
in the hash table to be created must be given and then the operation will create
a sequence of empty sequences each representing an empty ‘overflow chain’.

New : N → (W �)�

New(p) � 〈si : si = Λ ∧ 0 ≤ i ≤ p− 1〉
This definition is not adequate because

• when a hash table is created a hashing function for the table should be
chosen, no decision on a hashing function is made in the above definition
of the new operation,

• the quantification in the definition is not aesthetically appealing.

Entering a word into a given hash table is the nexted operation examined.

2.2.2 The Enter Operation

Given a word and a hash table the enter operation places the word on the
appropriate ‘overflow chain’ in the hash table. This is done using a hashing
function h ∈ Z

W
p , by splitting the hash table into three parts

• τl the begin of the hash table where the word should not appear,

• 〈τh(w)〉 the ‘overflow chain’ which the word should be placed on,

• τr the end of the hash table where the word should also not appear

and then adding the word to the head of the ‘overflow chain’ which it should
be on. Finally the table is reformed by concatenating the three parts together
again.

Ent : W → ((W �)� → (W �)�)
Ent[[w]]τ � let τ = τl

∧ 〈τh(w)〉 ∧ τr

in τl
∧ 〈〈w〉 ∧ τh(w)〉 ∧ τr

Subject to the pre-condition which ensures that the word to be entered in the
table is not already on the ‘overflow chain’ which it should be on

pre-Ent : W → ((W �)� → B)
pre-Ent[[w]]τ � let τ = τl

∧ 〈τh(w)〉 ∧ τr

in¬χ[[w]]τh(w)

This definition of the enter operation with its precondition has a number of
problems

3

• the hashing function used to split the hash table is pulled out of nowhere,

• the hash table may not be a ‘reflection’ of this hashing function,

• the splitting of the hash table into three parts is difficult to grasp, this
has been learned by teaching this model of a hash table to undergraduate
students,

• two enter operations one after the other with different hashing functions
could place a word on two ‘overflow chains’ and thus violate the condition
that the ‘overflow chains’ should be disjoint,

• the operation has a pre-condition associated with it, which could be re-
moved by redefining the operation,

• the uses of the let and in keywords are not aesthetically appealing and
inconsistent with other uses of these keywords.

The lookup operation is examined finally.

2.2.3 The Lookup Operation

A hash table was developed to improve searching performance. The lookup
operation should model this searching process. Again a hashing function h ∈ Z

W
p

is used to find which ‘overflow chain’ the word should be on. This ‘overflow
chain’ is then searched for the word.

Lkp : W → ((W �)� → B)
Lkp[[w]]τ � let τ = τl

∧ 〈τh(w)〉 ∧ τr

inχ[[w]]τh(w)

This definition has similar problems to the definition of the enter operation

• the hashing function used to find the ‘overflow chain’ is pulled out of
nowhere,

• the hash table may not be a ‘reflection’ of this hashing function,

• as the ‘overflow chains’ may not be sorted, thus χ[[w]] must represent a
linear search on the ‘overflow chain’. The characteristic function should
represent a binary search on a sorted ‘overflow chain’,

• if a hashing function is used which hash the word to a ‘overflow chain’
which it is not on then lookup will perform incorrectly,

• the uses of the let and in constructs are not aesthetically appealing.

After examining the operations and the problems associated with them, it is
clear that a hash table and its hashing function should be kept together at all
times; a hash table on its own is useless as no word can be looked up efficiently
for example.

4

3 Towards a Space

The key to the development of a space of hash tables is recognising the fact
that a hash table is not one object, but two objects, a hashing function and a
table which is a ‘reflection’ of the hashing function. This section will develop a
number of spaces which will approximate a hash table space.

The first space is M0 ⊂ PW ×W → Zp, an element of this space is a tuple
containing a set of words and a partial mapping from words to integers modulo
p, where the set of words is a subset of the the domain of the partial mapping,
(S, η) ∈ M0 iff S ⊂ dom η. The subset H0 = PW × Z

W
p of the space M0 is

the first approximation to a space of hash tables. An element of H0 is a tuple
containing a set of words (representing the table) and a total mapping from
words to integers modulo p (representing the hashing function).

H0 ⊂ M0 ⊂ PW ×W → Zp

The next space M1 is formed by applying the mapping

< π2, � >: M0 →M1 ⊂ W → Zp ×W → Zp

to the space M0. An element of the space M1 is a tuple containing two partial
mapping where the second mapping is a restriction of the first mapping. The
subset H1 of the space M1 is formed by applying the above mapping to the
set H0. The space H1 is the next approximation to a space of hash tables.
An element of this space is a tuple containing a total mapping from words to
integers modulo p (representing the hashing function) and a restriction of this
total mapping (representing the table).

H1 ⊂ M1 ⊂ W → Zp ×W → Zp

Using the mapping

(I × ()−1) : M1 →M2 ⊂ W → Zp × Zp →P ′W

the space M2 is formed as the image of the space M1. An element of the space
M2 is a tuple containing two partial mapping where the second mapping is an
inverse image of a restriction of the first mapping. Again the space of hash
tables is approximated by a space H2 ⊂ M2 formed by applying the above
mapping to the space H1. An element of the space H2 is a tuple containing
a total mapping from words to integers modulo p (representing the hashing
function) and a mapping from integers modulo p to sets of words (representing
the table).

H2 ⊂ M2 ⊂ W → Zp × Zp →P ′W

The elems mapping from sorted unique sequences to sets is a one-to-one
mapping and hence has an inverse map elems−1, from sets to sorted unique

5

sequences. The next space formed is M3 which is the image of the space M2

under the mapping

(I × (I → elems−1)) : M2 →M3 ⊂ W → Zp × Zp →W+
≤!

An element of the space M3 is a tuple containing two partial mappings where the
second mapping is related to the first, by the construction. The space H3 ⊂ M3

formed by applying the above mapping to the space H2 will approximate a
space of hash tables. An element of the space H3 will be a tuple containing
a total mapping from words to integers modulo p (representing the hashing
function) and a mapping from integers modulo p to sorted unique sequences of
words (representing the table), this mapping does not map to any null sequences
(representing empty ‘overflow chains’).

The final space M4 is formed by applying the mapping

< π1,Λrng π1 † π2 >: M3 →M4 ⊂ W → Zp × Zp →W �
≤!

to the space M3. An element of the space M4 is a tuple containing two map-
pings where again the second mapping is related to the first mapping. The
space H4 is formed by applying the above mapping to the space H3, an element
of this space is again a tuple containing a total mapping from words to inte-
gers modulo p (representing the hashing function) and a mapping from integers
modulo p to sorted unique sequences of words, were the sequence may be empty
(representing the table with empty ‘overflow chains’). The space H4 is the final
approximation of a space of hash tables. Binary operations will now be placed
on the space developed.

3.1 Some Monoids, Semi-groups and Morphisms

This section will develop monoids from the spaces defined in the previous section,
in such away that the mapping between the spaces will become morphisms. A
binary operation is placed first on the space M0 such that a monoid will be
formed. Then a binary operation is placed on the space M1 in such away that
the mapping < π2, � > between the spaces becomes a morphism. This process
is then continued for the remaining spaces.

The binary operator placed on the space M0 is the direct product operator
of the monoid sets under union and the monoid of maps under override. Note
that M0 is not the entire direct product space. What will this operator do to
the space H0 which is representing a space of hash tables? The operator must
have a meaningful interpretation with respect to hash tables.

Lemma 1 If (S1, η1), (S2, η2) ∈ M0 then with respect to the operation defined
by

(S1, η1)(S2, η2) = (S1 ∪ S2, η1 † η2)

the space M0 ⊂ PW ×W → Zp becomes a monoid with identity (∅, θ), also the
space H0 ⊂ M0 becomes a semi-group.

6

What interpretation can be given to this operation in terms of hash tables? This
operation is taking two hash tables and forming a new hash table, where the
new hash table contains the words from both hash tables, hashed with respect
to a new hashing function, which is the hashing function from the first hash
table override by the hashing function from the second hash table.

Next a binary operation is placed on the space M1. This operation will
take two tuples each containing two mappings, where the second mapping is a
restriction of the first mapping, and combine them to form a new tuple where
the second mapping is a restriction of the first mapping. This is useful for
combining hash tables, as the words in the first hash table are rehashed by the
second hashing function and then joined with the second hash table.

Lemma 2 If (η1, µ1), (η2, µ2) ∈ M1 then with respect to the operation defined
by

(η1, µ1)(η2, µ2) = (η1 † η2, �[[domµ1]](η1 † η2) ∪ µ2)

the space M1 ⊂ W →Zp ×W →Zp becomes a monoid with identity (θ, θ), also
the space H1 becomes a semi-group.

The lemma uses the gluing operation, ∪, on maps, see [5]. This operation in-
corporates the map extend operation, �, for joining two disjoint maps together.
The operation also joins two maps which agree on a common domain together.

The spaces M0 and M1 are now monoids. Is the mapping < π2, � >:
M0 →M1 between them a morphism?

Lemma 3 The mapping < π2, � >: M0 → M1 between the monoids M1 and
M1 is an isomorphism.

Proof If (S1, η1), (S2, η2) ∈ M0, so S1 ⊂ dom η1 and S2 ⊂ dom η2, then

< π2, � > (S1, η1)(S2, η2)
= < π2, � > (S1 ∪ S2, η1 † η2)
= (η1 † η2, �[[S1 ∪ S2]](η1 † η2))
= (η1 † η2, �[[S1]](η1 † η2) ∪ �[[S2]](η1 † η2))
= (η1 † η2, �[[dom � [[S1]]η1]](η1 † η2) ∪ �[[S2]]η2)
= (η1, �[[S1]]η1)(η2, �[[S2]]η2)
= < π2, � > (S1, η1) < π2, � > (S2, η2)

So the mapping is a morphism between the spaces. This proof displays a hidden
lemma: given a mapping µ ∈ X → Y and sets S1, S2 ∈ PX then

�[[S1 ∪ S2]]µ = �[[S1]]µ ∪ �[[S2]]µ

This equality will take the form of a morphism under the change of notation
�µ(S) = �[[S]]µ. This sort of notation change has occurred before in relation

7

to the characteristic function χS(x) = χ[[x]]S. The above equality is rewritten
below in the new notation

�µ(S1 ∪ S2) = �µ(S1) ∪ �µ(S2)

It clearly has the form a morphism. More will be said about this in the future
work section.

Does the mapping (π2, �) preserve the identities of the monoids?

< π2, � > (∅, θ)
= (θ, �[[∅]]θ)
= (θ, θ)

Finally, the mapping is one-to-one and onto between the spaces M0 and M1,
hence the mapping is an isomorphism.

The remaining spaces are turned into monoids by placing binary operations
on them. The binary operations are chosen so as the mapping defined in the
previous section become isomorphisms. The space M2 is turned into a monoid
by the lemma below.

Lemma 4 If (η1, β1), (η1, β2) ∈ M2 then with respect to the operation defined
by

(η1, β1)(η2, β2) = (η1 † η2, (I → �[[∪/rng β1]])′(η1 † η2)−1 ©∪ β2)

where the prime denotes removal of entries of the form z �→ ∅, the space M2 ⊂
W → Zp × Zp → P ′W becomes a monoid with identity (θ, θ), also the space
H2 ⊂ M2 becomes a semi-group.

This lemma uses an indexed monoid operation, ©∪ , see [4, pages 28 – 29]. This is
the gluing operator in an inverted world. The operator will union two relations
(represented as mappings) together, forming a new relation (represented as a
mapping). Next the the merge sort operator, �, see [2, page 112], is indexed,
©� . This operator is used in the definition of the binary operation placed on
the space M3 in the lemma below.

Lemma 5 If (η1, σ1), (η2, σ2) ∈ M3 then with respect to the operation defined
by

(η1, σ1)(η2, σ2) = (η1 † η2, (I → �[[∪/Pelems rng σ1]])′(I → elems−1)(η1 † η2)−1 ©� σ2)

where the prime denotes removal of entries of the form z �→ Λ, the space M3 ⊂
W → Zp × Zp → W+

≤! becomes a monoid with identity (θ, θ), also the space
H3 ⊂ M3 becomes a semi-group.

Finally, an operation is placed on the space M4. This operation is similar to the
binary operation introduced in the lemma above, except the priming is removed.
This allows the forming empty ‘overflow chains’.

8

Lemma 6 If (η1, τ1), (η2, τ2) ∈ M4 then with respect to the operation defined
by

(η1, τ1)(η2, τ2) = (η1 † η2, (I → �[[∪/Pelems rng τ1]])(I → elems−1)(η1 † η2)−1 ©� τ2)

the space M4 ⊂ W → Zp × Zp →W �
≤! becomes a monoid with identity (θ, θ) ,

also the space H4 ⊂ M4 becomes a semi-group.

This final semi-group H4 is used in this report to model a space of hash tables
and the operations on hash tables. The collection of monoids and semi-groups
are related by the mappings defined in the previous section - these mappings
become morphisms because of the choice of operators placed on each space.

Lemma 7 The monoids M1,M2,M3,M4 are isomorphic, also the semi-groups
H1,H2,H3,H4 are isomorphic, the isomorphisms being the mappings between
the spaces defined above.

The proof of this Lemma is left as an exercise. The modelling of the operations
on a hash table is now re-addressed.

3.2 The Operations

The operations of creating a new hash table, entering a word into a hash table
and looking up a word in a hash table are now re-expressed, also the operation
of rehashing a hash table is addressed. In the operations below a hash table
will be an element of the semi-group H4. The enter and rehash operations
will be defined in terms of the binary operation on the semi-group. In finding
this model of a hash table, we see that the binary operation introduced models
both enter and rehash. To find a semi-group of hash tables the issues of enter
and rehash had to be resolved, the algebra introduced in the previous section
demonstrated this.

3.2.1 The New Operation

To create a new hash table a hashing function must be provided or chosen. This
is modelled by passing the chosen hashing function as a parameter to the new
operation.

New : Z
W
p →H4

New(h) � (h,Λrng h)

The new operation forms a tuple containing the given hashing function and an
empty hash table.

3.2.2 The Enter Operation

The operation takes a word and a tuple containing a hashing function and a
hash table as parameters. The operation creates a tuple containing the hashing

9

function and a mostly empty hash table (the table just contains the word to be
hashed) and then combines this tuple with the tuple passed in, using the binary
operation of the semi-group H4.

Ent : W → (H4 →H4)
Ent[[w]](h, τ) � (h, τ)(h,Λrng h † [h(w) �→ 〈w〉])

3.2.3 The Lookup Operation

The lookup operation must return whether a word is in a given hash table.
The operation uses the hashing function which comes with the hash table to
find which ‘overflow chain’ the word should be on, then this ‘overflow chain’ is
searched for the word.

Lkp : W → (H4 → B)
Lkp[[w]](h, τ) � χ[[w]]τ(h(w))

The characteristic function here denotes the binary search of the sorted unique
‘overflow chain’ for the word.

3.2.4 The Rehash Operation

If the ‘overflow chains’ in a given hash table are growing to large, the words in
the hash table can be rehashed by a new hashing function, so that the lengths
of the ‘overflow chains’ are reduced. The rehash operation takes a new hashing
function and a hash table (a tuple containing a hashing function and a table) and
then combines the tuple with a new tuple containing the new hashing function
and an empty hash table, using the binary operation of the semi-group H4.

Reh : Z
W
p → (H4 →H4)

Reh[[g]](h, τ) � (h, τ)(g,Λrng g)

4 Future Work

The restriction of a map by a set is a mapping from tuples containing a set and
a map to a map,

� : PX ×X → Y −→ X → Y
� : (S, µ) �→ �(S, µ)

This mapping can be curried in two different ways

• first with respect to the set yielding a mapping from maps to maps re-
stricted by the set,

� : PX −→ (X → Y) −→ (X → Y)
�S : µ �→ �(S, µ)

for all maps µ ∈ X → Y .

10

• second with respect to the map yielding a mapping between sets and the
map restricted by these sets,

� : (X → Y) −→ PX −→ (X → Y)
�µ : S �→ �(S, µ)

for all sets S ∈ PX.

Each curried mapping prompt two algebraic questions,

• firstly, are the curried mappings �S , �µ morphisms?

• secondly, does the collection of all mappings �S for S ∈ PX form a
monoid? This can also be asked of the collection of all mappings �µ for
µ ∈ X → Y .

Both of these questions have been answered for the curried mapping �S , in [2,
pages 123 – 127]. The results contained there are repeated here for completeness.
The answers for the curried mapping �µ are new and are introduced below.

Is the mapping �S a morphism? The mapping �S sends maps to maps. The
space of maps forms a monoid (X → Y, †, θ), the curried mapping �S is an
endomorphism of this monoid.

�S : (X → Y, †, θ) −→ (X → Y, †, θ)
�S(µ1 † µ2) = �S(µ1) † �S(µ2)
�S(θ) = θ

Is the collection of mappings �S for S ∈ PX a monoid? This collection of
mappings is denoted by �PX . As �S1 , �S2 ∈ �PX ⊂ (X → Y)(X→Y) they can
be combined by map composition, �S1 ◦ �S2 , but is the composed mapping in
�PX? The composed mapping is

�S1 ◦ �S2 = �S1∩S2

thus a monoid of endomorphisms is formed (�PX ⊂ (X → Y)(X→Y), ◦, �X).
Is the mapping �µ a morphism? This curried mapping sends sets to maps.

The space of sets forms a monoid (PX,∪, ∅). The image of the mapping �µ,
denoted �µ(PX) ⊂ X → Y , is the space of all submaps of µ, that is ν ∈ �µ(PX)
iff �µ(dom ν) = ν. The space �µ(PX) becomes a monoid with the gluing oper-
ator, (�µ(PX) ⊂ X → Y,∪, θ). The curried mapping �µ is a homomorphism
between these monoids,

�µ : (PX,∪, ∅) −→ (�µ(PX) ⊂ X → Y,∪, θ)
�µ(S1 ∪ S2) = �µ(S1) ∪ �µ(S2)
�µ(∅) = θ

Is the collection of mappings �µ for µ ∈ X → Y a monoid? This collection
of mappings is denoted �X→Y . Before this questions is addressed a direct power
monoid must be introduced, see [1, pages ? – ?]. Taking the monoid of maps

11

under override, (X → Y, †, θ), the PX direct power monoid can be formed,
((X → Y)PX , †, θPX). Now the space �X→Y is contained in the space (X →
Y)PX , thus the morphisms �µ1 , �µ2 ∈ �X→Y can be combined using the direct
power operator, �µ1 † �µ2 , but is the result another element of the space �X→Y ?
If S ∈ PX is a set then

(�µ1 † �µ2)(S)
= �µ1(S) † �µ2(S)
= �S(µ1) † �S(µ2)
= �S(µ1 † µ2)
= �µ1†µ2(S)

Thus,

�µ1 † �µ2 = �µ1†µ2

Hence a monoid of morphisms is formed, (�X→Y ⊂ (X → Y)PX , †, �θ). This
monoid is a submonoid of the above direct power monoid.

Much work remains to be done here, such as

• apply the above process to the mapping which removes a set from a map.

• the interrelations between these.

• the implications of the above results on the semantics of hashing.

These will be examined in future work.

5 Summary

This report introduced a number of isomorphic monoids, each of which contains
a semi-group, which represents a space of hashing function and hash tables. The
operations of enter and rehash are defined using the binary operation of one of
the introduced semi-groups. Some new algebra is also introduced.

I wish to thank Andrew Farrell, who endured and corrected many of my
errors. Dr. Mı́cheál Mac an Airchinnigh inspired the above work by his previous
writings. I thank for this. I also wish to wish to thank the other members of the
Irish School of Constructive (Applied) Mathematics, Dr. Andrew Butterfield,
Dr. Hugh Gibbons, Alexis Donnelly, John Walsh, Colman Reilly and Dara
Gallagher for their continued support of my work.

References

[1] Dara Gallagher Alexis Donnelly and Arthur Hughes. On the inheritance of
monoid properties in indexed structures, a tale of three proofs. Technical
report, Department of Computer Science, Trinity College Dublin, March
1996.

12

[2] Mı́cheál Mac an Airchinnigh. Conceptual Models and Computing. PhD
thesis, Department of Computer Science, Trinity College Dublin, 1990.

[3] Mı́cheál Mac an Airchinnigh. Tutorial lecture notes on the irish school of
the vdm. In S. Prehn and W. J. Toetenel, editors, VDM’91:Formal Soft-
ware Development Methods, volume 2 of Lecture Notes in Computer Science,
pages 141 – 237. Springer-Verlag, 1991.

[4] Mı́cheál Mac an Airchinnigh. Formal methods and testing. In Tutorial
Notes:6th International Software Quality Week, Software Research Institute,
625 Third Street, San Fancisco, CA 94107-1997, 1993.

[5] Mı́cheál Mac an Airchinnigh. Grounded bills of materials. The glueing
operator is introduced in this reports, 1996.

[6] R. Goldblatt. Topoi:The Categtorical Analysis of Logic, volume 98 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 1984.

[7] Arthur Hughes and Mı́cheál Mac an Airchinnigh. The inverse map monoid.
This report develops an inverse map monoid isomorphic to the monoid of
maps under override, August 1995.

[8] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

13

