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Abstract

Traditional con�gurable operating systems typically provide a �xed

and limited set of functionality. We propose a metalevel architecture,

where application-de�ned objects can choose from a rich selection of

possible con�gurations and are therefore able to dynamically change

the way in which they are executed to the con�guration that suits best.

This allows applications to adapt operating system behaviour to even

unanticipated requirements during run-time. A distributed applica-

tion processing multimedia data serves as an example to illustrate the

concepts described.

1 Introduction

Traditional con�gurable operating systems typically provide a �xed and lim-

ited set of functionality. With the advent of a new generation of applications

such as multimedia systems, where the applications must be able to adapt to
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changing requirements during run-time, such limited operating system sup-

port may be a hinderence to maintaining the level of e�cieny these operating

systems were con�gured for. Since the applications have to be adaptable, op-

erating systems in turn must be able to support adaption during run-time.

Besides traditional functionality such as scheduling and storage management,

this means o�ering interfaces which allow applications to control the way an

operating system provides this functionality [KL93, KTW92]. It is no longer

su�cient for an operating system just to o�er scheduling functionality, for ex-

ample, without providing a means to change the way it does this scheduling,

i.e. choosing individual scheduling policies. Another example is persistence:

should the size of objects, which are persistent, change during the life-time

of the application, the operating system has to adapt its mechanisms and

policies to provide the most e�cient solution for a given object size [ZK93].

This paper presents a solution to this problem. We facilitate this adapta-

tion process by employing a re
ective architecture, where application-de�ned

objects (the units of computation in our model) are able to choose from a

rich selection of possible con�gurations and are therefore able to dynamically

change the way in which they are executed to the con�guration that suits

best.

The remainder of this paper is organized as follows: after this introduction

we discuss the underlying operating system framework named Tigger which

serves as an implementation basis for the concepts presented in this paper.

We use an example from the �eld of multimedia computing to illustrate

the use of this architecture. Sections on implementation issues with some

performance �gures and a discussion of related work conclude this paper.

2 Tigger

Tigger is an object-support operating system framework [CHJ+94] which

serves as the environment for implementing the concepts presented in this

paper. This framework provides typical operating system services such as

persistence and scheduling using objects as the basic units of computation.

A general feature of this framework is its ability to be tailored to the speci�c

needs of di�erent target environments.

Interactive video games provide one possible target environment for the Tig-
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ger framework. Since these video games are highly interactive, they have

requirements in terms of support for (soft) real-time object behavior. This

support then has to be provided by the underlying instantiation of Tig-

ger. Therefore, an instantiation of the framework which is aimed at this

target environment has to provide this real-time support by means of real-

time scheduling of threads as well as real-time synchronization protocols. In

contrast, the requirements in terms of persistence are constrained to sim-

ple services such as transferring an object state from and to disk if indeed

persistence is needed at all.

In addition to these general requirements, individual applications which are

part of these environments have their own demands in terms for speci�c

algorithms or mechanisms which the underlying framework has to supply. A

video game using multimedia data such as a video clip, for example, may

need a particular real-time scheduling mechanism, depending on the type of

multimedia data it has to process. These requirements may even vary during

the run-time of this application.

The functionality of a particular instantiation of Tigger is subdivided into

single components or subframeworks responsible for implementing speci�c

object support services. These subframeworks can then be con�gured to

meet the needs of speci�c application areas such as video games.

3 Structuring the Metalevel

From an application-oriented point of view the functionality supplied by an

instantiation of Tigger is structured as depicted in Fig. 1. This overall archi-

tecture named Piglet is detailed in the following sections.

3.1 The Metalevel

The basic unit of computation in our model are objects. To control the way

these objects are executed, we employ a concept called metaobjects [Mae87].

Since these metaobjects know about the internal organization and structure
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Figure 1: Metalevel Structure of Tigger

of application-de�ned objects1, they are able to control certain aspects of the

execution of those baselevel objects. The entirety of all metaobjects is called

a metaspace.

Piglet, the metalevel architecture of Tigger, structures this metalevel into

three groups of entities which represent the nature of the underlying instan-

tiation of a Tigger.

1Also called baselevel objects|or baseobjects for short [ZC95a]|to emphasize the dif-
ference between base- and metalevel.
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3.2 Metanuclei

As discussed above, Tigger is a collection of subframeworks responsible for

implementing various algorithms dealing with single aspects such as process

management. Towards applications, the contents of each of these subframe-

works are represented by metanuclei. Metanuclei are a means for grouping all

the mechanisms and policies regarding a certain functionality that a particu-

lar instantiation of Tigger supports. Take process management as an exam-

ple. A process management metanucleus for real-time support includes real-

time scheduling policies and synchronization protocols. Metanuclei therefore

contain the relevant code of one speci�c operating system functionality.

3.3 Metaregions

Each metanucleus consists of a set of metaregions. A metaregion in turn

consists of a (possibly empty) set of metaobjects implementing the same

functionality and expose the same interface to application-de�ned objects.

The di�erence between the individual metaobjects forming a metaregion is

their behavior when providing this functionality. For example a scheduler

metaregion being part of a real-time metanucleus consists of di�erent sched-

uler metaobjects realizing di�erent real-time scheduling algorithms. They all

exhibit the same functionality (i.e. scheduling) but do it di�erently accord-

ing to the algorithm that they implement. Another example is a metaregion

containing di�erent pagers realizing object persistence. Pagers aimed at dif-

ferent object sizes all do the same thing: transferring the state of objects to

and from disk. The way they achieve this is di�erent depending on the size

of the object.

In addition to the individual metaobjects, each metaregion has a controller

which allows metaobjects to be attached to objects and allows a metare-

gion to be queried about its contents and the capabilities of the individual

metaobjects. This part of the interface is used by objects to control which

metaobject of the metaregion is controlling a certain aspect of its behavior.

Besides this controller interface, each metaregion de�nes a common interface

for the metaobjects this metaregion contains. This common interface part

of the metaobjects2 is then used by applications to change the way in which

2The interface of a metaobject is also known as a metaobject protocol
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they are executed. To continue the scheduler example from above, methods

provided by this scheduler MOP include yielding the CPU and waiting for

another thread to �nish; these methods all have to be implemented by the

individual metaobjects which are part of the metaregion.

Compared to traditional approaches to organizing metaobjects such as the

multi-model re
ection framework [OIT93] or Apertos [Yok93], metaregions

have two distinct advantages. First of all, a metaregion can capture a com-

mon part of the metaobjects that it contains. For example consider support

for thread management to be provided by a scheduler metaregion. Since each

scheduler metaobject has to manage queues containing various threads (such

as queues for active or blocked threads), this common functionality can be

implemented by the metaregion.

This can easily be done when an object-oriented programming language sup-

porting inheritance such as C++ [Str92] is used to implement metaregions.

The individual metaobjects are then derived from a baseclass providing the

common interface of the metaregion.

The second advantage is that metaregions introduce a statically typed meta-

level. One of the advantages of this static typing is that the source code

can be compiled into machine code instead of being interpreted at run-

time [CW85, DT88]. Although not all binding decisions can be made at

compile-time, more e�cient mechanisms such as virtual function tables [ES91]

can be employed which result in a faster overall execution of the program

compared to just interpreting it at run-time. A detailed discussion of metare-

gions can be found elsewhere [ZC95a].

3.4 Metaobjects

Metaobjects implement the non-algorithmic behavior of objects, i.e. they

control the way in which these objects are executed. The responsibilities of

the metaobjects are twofold: on one side they are in charge of supplying the

implementation of the MOP representing the metaregion as explained above;

on the other side they intercept individual method calls to the baseobjects

transparently. This allows the functionality associated with the metaobjects

to actually take place.

(MOP) [KdRB91].
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Take persistence as an example. Suppose a programmer wants to maintain

the state of an object beyond the run-time of a particular program this object

is part of. He or she does so by telling the metaobject which is in charge of

implementing persistence that the state of the baseobject is now persistent

by calling a suitable method provided by the MOP of this metaobject. When

this object is about to be destroyed (for example at the end of the run-time of

the application), the metaobject intercepts this destruction process in order

to save the state for the object to secondary storage.

read 
from

network /
disk

process
the multi-

media data

write on
speaker /
window

Generic Multimedia Object

Figure 2: A Baseobject Processing Multimedia Data

4 An Example

This section uses an example of a multimedia baseobject to explain the con-

cepts discussed above. This object consists of three internal building blocks

as depicted in Fig. 2. A source side gathers the data (either from a network

connection or from secondary storage) which is then processed and displayed

on a screen or output to a speaker. Examples of multimedia data include

audio data streams which are �ltered by the processing stage or video data

streams encoded according to MPEG [Gal91] which are decompressed by the

processing stage.
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Figure 3: The Metalevel Structure of the Multimedia Object

This multimedia object uses an active object model allowing multiple threads

to be active inside the object at any point in time. This baseobject employs

two metanuclei: one for real-time functionality and one for persistence (see

Fig. 3). Each of these metanuclei contains one metaregion3.

The real-time metanucleus contains a metaregion responsible for schedul-

ing the threads associated with the di�erent active object models (di�erent

models for active objects can be identi�ed depending on when a thread is

associated with a particular method of the object [YT89]). These schedulers

implement di�erent real-time scheduling algorithms such as priority-based

scheduling (prio), Least Slack Time First (lstf) [DM89], Rate-Monotonic

(rm) and Earliest Deadline First (edf) [LL73].

The persistence metanucleus contains a metaregion providing pagers sup-

porting di�erent object sizes. These pagers are responsible for transferring

3The actual structure of these metanuclei is more complex. Due to space constraints,
a detailed discussion is omitted.
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object states to and from secondary storage and all employ di�erent algo-

rithms for doing so depending on the object size at which they are targeted.

To be most e�cient when dealing with small object sizes, the relevant meta-

object groups small objects onto a memory page before storing this page on

disk. In contrast to this, the metaobject aimed at supporting large object

sizes may avail of certain features of the storage subsystem such as burst

transfer.

To motivate the ability to change an object's behavior|i.e. the way its

code is being executed|imagine the following situation. Currently, the ob-

ject described above is displaying an MPEG-encoded video clip from disk.

Depending on the parameters of this video clip such as compression ratio,

an edf-scheduler metaobject has been chosen to control the method which

decompresses the video clip from the scheduler metaregion. Since MPEG-

encoded video clips tend to be large, it also uses the metaobject aimed at

large objects from the pager metaregion.

Now suppose the user on whose behalf this object is executing requests a

change of media type. Displaying of the video clip has to be stopped and

some audio track should be �ltered and played back instead. In order to

maintain e�ciency, the object has to change both the scheduler metaobject

and the pager metaobject. Since audio streams tend to be smaller than video

streams, the object now selects a pager metaobject aimed at smaller object

sizes. In addition to this, the scheduler metaobject is changed from edf to a

metaobject implementing an rm policy since the time it takes to process the

audio data stream does not vary as this was the case with the MPEG-encoded

video stream.

The necessary changes of the metaobjects are initiated via an interface pro-

vided by the metaregions. To the application programmer, the exchanging

of metaobjects and the resulting metaregion-internal actions happen trans-

parently. All he or she has to do to trigger this change is to detach the old

metaobject from the object and to attach it to the new metaobject. Both

methods are part of the metaregion controller interface.

Tab. 1 brie
y sketches the most important methods de�ned by the generic

part of the metaregion interface. query returns a list of the metaobjects that

a metaregion de�nes, attach allows an object to link a metaobject to itself,

and detach �nally reliquishes this link again.
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query() ! (mo1, mo2, : : : , mon)

attach(metaobject)

detach(metaobject)

Table 1: Generic Interface de�ned by the Metaregion

5 Implementation

Because two of our main goals for this project are portability and e�ciency,

we chose C++ as our primary implementation language. C++ will also be our

�rst supported language for application-development making use of our me-

talevel architecture. Since C++ is a compiled language, a preprocessor will be

employed to modify the source code accordingly to make method interception

possible [CM93, Chi95]. This modi�ed source code is then compiled using

an ordinary C++ compiler and linked with the necessary metalevel support.

5.1 Internal Organization

Internally, our metalevel architecture is structured as depicted in Fig. 4.

The solid arrow represents an explicit invocation of metaregions which are

members of a metanucleus done by an application in order to control which

metaobjects are attached to it or to simply call individual metaobjects. The

dashed arrows represent the 
ow of control that takes place during method

interception at run-time. When a method which is part of an object (the

checked part of the baseobject in Fig. 4) is entered or left, a trap occurs

to the generic part of Piglet (named Piglet Core). This generic part then

takes care of distributing the noti�cation of this method call to the indi-

vidual metaobjects in the di�erent metanuclei. Upon method interception,

these metaobjects can take the appropriate action depending on the policy

or mechanism they implement.

Internally, a metanucleus maintains a database of baseobject characteristics.

Due to the nature of the di�erent metanuclei, these characteristics are highly

metanucleus-dependent. To continue the real-time example from above, in

addition to the particular real-time scheduling policy which can be derived
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Figure 4: Implementation of the Metalevel Architecture

from the metaobject controlling this baseobject, a record of this database

would also contain parameters such as period and deadline of the threads

attached to the methods.

Instead of having a metanucleus-wide database of baseobject records, an al-

ternative would be to have the metaregions manage their own object database

(perhaps derived from some generic baseclasses). But doing so would cause

too much overhead in term of memory consumption (esp. when there are

many metaregions inside a metanucleus) and lookup-time, because then each

metaobject would have to do its own lookup upon invocation instead of doing

it once on entering a metanucleus (cf. Sect. 5.2).

These object characteristics can be subdivided into two parts: a default part

which applies to all instances of a template and a baseobject-speci�c part

which is individual to this baseobject. A template corresponds to a class in

class-based languages such as C++[Str92] or Ei�el [Mey92] or to prototypes in

languages based on delegation such as Self [US87]. This allows a two-staged

hierarchy: a default value can be applied to all future instances of a template
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which then can be changed when an instance|a object|is actually created.

5.2 Performance

Tab. 2 gives some performance �gures for our prototype implementation of

Piglet (all values in microseconds). All measures were conducted using a 90

MHz Pentium-based PC clone with 32 MB of main memory and a second-

level cache of 256 kB. To eliminate any e�ects of a cold cache, only a hundred

objects were used. These objects then issued a synthetic load onto the me-

talevel in terms of method access and thereby trapping to the metalevel.

Trap into Piglet Core 2.4

Null Metaobject 33.3

Object Lookup 14.4

Table 2: Performance Figures of the Prototype Implementation

The �rst row reports the overhead associated with trapping from the base- to

the metalevel. In the current implementation, this re
ects the performance

loss caused by the modi�ed source code. Basically, this consists of testing a

single bit, a conditional branch if no metalevel interception takes place or an

indirect call to Piglet Core if a metaobject requested a metalevel interception

(MLI) and eventually an indirect call to the original method. This indirect

call is responsible for the sub-optimal performance, because it causes the

processor-internal pipeline to stall and issuing of wait-states until the pipeline

is re-�lled. Instead of wrapping the original method, an alternative would

have been to inject the metalevel-trapping code directly into the original

method of the object. But this would have caused various problems with the

preprocessor so we preferred this simpler but slightly slower option.

In addition to this overhead caused by the injected code, the second row gives

the actual time it takes to route the 
ow of control from the base- to the

metalevel. Here, a null metaobject which immediately returns after being

called states the overall overhead induced by the metalevel. This �gure gives

an impression of how big the price is that has to be paid for the bene�ts our

architecture entails.
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The last row states how long it takes to perform a lookup of a object de-

scription in the database maintained by each metanucleus. Note that this

cost occurs only once when the 
ow of control enters the metanucleus before

distributing the MLI to the individual metaregions by a suitable dispatcher

inside the metanucleus. Another option would have been to let each metaob-

ject do its own lookup but this would have result in an additional performance

penalty because most metaobjects need this information anyway.

5.3 Current Status

As discussed above, a prototype implementation of the metalevel architecture

has been built and measured. But just a metalevel architecture on its own

without additional functionality is not very useful but merely a proof of

concept. Therefore, we are currently in the process of tying a small real-time

executive, which is named Roo and is part of the overall Tigger instantiation

for real-time support [ZC95b], to this metalevel architecture. In addition

to the scheduling support discussed above, this real-time executive, which is

aimed at the support of soft real-time behavior, provides di�erent real-time

synchronization mechanisms and active object models.

In combination with Piglet, this allows applications to recon�gure their op-

perating support environments to their speci�c needs in terms of support

for soft real-time at run-time as discussed in Sect. 4. Connecting di�erent

subframeworks for the support of persistence and other operating system

services to Piglet is planned for the future.

6 Related Work

The architecture discussed above allows applications to tailor the behavior

of an operating system dynamically in order to be able to adapt changing re-

quirements. Traditional operating system frameworks such as Choices [CIJ+91,

CIMR93] and re
ective systems like Apertos [Yok93, LYI95] typically o�er

only a very limited choice of mechanisms which they support. In contrast to

this, our approach provides the programmer with a rich selection of possible

algorithms and policies to choose from. This prepackaging of functionality

does not necessarily have to be expensive as one might expect. A recent
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e�ort concerned with the design and implemention of the process manage-

ment metanucleus for real-time support showed that using operating system

framework techniques result in small run-time overhead but provided a rich

set of functionality [ZC95b].

Another recent approach to adaptable systems consists of allowing applica-

tions to dynamically insert code into an operating system kernel. But as one

can imagine, there are several problems associated with this variant; a breach

of security and consistency of the overall system is one of them. In order to

overcome this security problem, run-time checks have to be inserted, which

result in a less e�cient system. Our design, however, prevents any breaches

of security. By placing metaregions and metaobjects in separate protection

domains such as address spaces, we prevent any tampering with the code of

metaregions and metaobjects.

Examples for this second 
avor of adaptable systems are Spin and Bridge [BSP+95,

W+93]. But these proposals tend to either compromise e�ciency or are too

restrictive regarding the mechanisms a programmer can use when developing

kernel-code [B+94, SB94]. For example Wahbe et al [W+93] report up to 12 %

fault isolation overhead when trying to prevent any breach of consistency.

7 Conclusion

We presented a metalevel architecture for the dynamic adaption of operating

system behavior. By structuring the metalevel into metanuclei, metaregions

and metaobjects, we provide a means for the application programmer to

select the functionality the current environment requires, thereby catering

for the ability to change this functionality should this become necessary. By

using the example of a object processing multimedia data, we motivated the

necessity for an adaptable application support environment.

We implemented our architecture using object-oriented design and mecha-

nisms. Performance �gures of a prototype implementation give some impres-

sions of the costs which are involved using the above architecture.
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