
Meta-Object Protocols for C++: The Iguana Approach

Brendan Gowing� Vinny Cahill

Distributed Systems Group,

Department of Computer Science,

Trinity College,

Dublin 2,

Ireland.

http://www.dsg.cs.tcd.ie/

Abstract

Meta-Object Protocols (MOPs) are an impor-

tant aspect of object-oriented reective pro-

gramming. A number of C++ extensions have

been implemented that include certain reective

features, however none of these provides a fully

featured MOP. In this paper, we describe an

extended version of C++ called Iguana that al-

lows various features of the C++ language to

be rei�ed and their implementations (dynami-

cally) modi�ed. We show how Iguana can be

used to write compiled reective software.

1 Introduction

The Meta-Object Protocol (MOP) of the

CLOS programming language [KRB92] is an

exemplary model of how to provide fully-

functional reective support in a language.

C++ [Str91], which has become a very pop-

ular general{purpose programming language,

has by default no such reective or meta-

level features1, though a number of previ-

ous extensions support rei�ed method dispatch

[KHL+93], object creation and member ac-

cess [CM93]. In this paper, we present the

Iguana programming language which extends

�bgowing@dsg.cs.tcd.ie
1If you discount the facility to overload a number of

the standard operators, such as ->, new, etc.

C++ with MOP features.

The development of Iguana has been moti-

vated by our research into adaptable operating

system software. We have chosen to use reec-

tion as a mechanism for implementing dynam-

ically adaptable system components [GC95].

We were, however, faced with the problem of

choosing a programming language that sup-

ported both reection and the complexity of

operating system implementation (such as ma-

chine level representation). We therefore chose

to add reective features to C++ as it could

already support system software development.

Essentially, a MOP [KRB92] speci�es the

implementation of a reective object-model.

We consider that a program's meta-level is an

implementation of the object model supported

by that language. Thus, a MOP speci�es which

meta-level objects are needed to implement an

object model, be it as a consequence of rei�ca-

tion or a meta-level declaration. A MOP itself

can be said to be instantiated as a \MOP in-

stance" when each of its meta-level objects are

instantiated. Signi�cantly, the interfaces ex-

ported by each of the meta-objects become the

interface of that MOP.

Iguana includes the following features:

� Multiple, �ne-grained MOPs: Objects

within a single program can use di�erent

object models.

1

� Meta-level classes and objects.

� Rei�cation categories: A list of object

model features that Iguana can reify. See

Appendix A.

� MOP declaration: Syntax for de�ning

MOPs consisting of meta-level objects and

rei�cation category declarations.

� MOP selection: The mechanism for asso-

ciating base-level objects with one or more

MOPs.

� Mechanisms for invoking meta-level ob-

jects.

� A meta-level class library containing MOP

implementations.

Supporting multiple MOPs and multiple

MOP instances allows distinct object models

to be used. For example, a distributed object

could use a distributed object model while its

peers continue to use the standard C++ ob-

ject model. The object models speci�ed by

a MOP are implemented by meta-level classes

and their instances. By default Iguana does

not reify anything. Rei�cation categories pro-

vide the opportunity to speci�cally reify a com-

ponent of the object model. In this fashion, a

compiled program does not have to su�er the

performance overheads of a \reify everything"

policy.

MOP declaration is the mechanism for spec-

ifying which rei�cation categories will be used

and which meta-level objects will implement

an object model. MOP selection is the mech-

anism that base-level objects use to bind

themselves to an implementation of an object

model. Base-level objects can subsequently in-

voke meta-level objects explicitly through the

base-level objects meta member, or implicitly

through the rei�cations made to support the

object model.

Finally, Iguana has a meta-level class library

which contains the meta-level classes needed

to implement a number of standard (in Iguana

terms) object models.

In this paper, we describe the meta-level fea-

tures of the Iguana language. In the next sec-

tion we discuss some related work. Section 3

discusses the reasons why we have introduced

the concepts of �ne-grained MOPs and explicit

rei�cation categories into Iguana. Section 4

presents the syntax of the Iguana extensions

to C++. In Section 5, we present an exam-

ple MOP supporting active objects. Section 6

discusses performance. Section 7 describes the

status of the current implementation of Iguana,

while section 8 concludes the paper.

2 Related Work

The �rst language to feature a MOP was

CLOS, the Common Lisp Object System

[KRB92]. CLOS implements OO program-

ming in a LISP environment. Before CLOS,

a number of distinct OO programming exten-

sions had been added to LISP, each with their

own features and eccentricities. The nascent

CLOS, by using a MOP, was not only able to

supply a \greatest denominator" OO system

which supported the majority of OO features

provided by the existing systems, but was also

an open and adaptable implementation which

could be modi�ed to provide features that were

not part of standard CLOS behaviour. Iguana

takes the MOP precedent of CLOS, but builds

on it by allowing multiple MOPs to coexist and

features selective rei�cation through rei�cation

categories.

For other languages, the way their meta-level

interactions occur are less formally speci�ed.

Often, the meta-level facilities are somewhat

limited in comparison to the abilities of the

CLOS MOP. This is especially so for compiled

languages. For example, OpenC++ Version

1 [CM93] only rei�es method dispatch, object

creation and object member access. However,

despite the lack of dynamic binding between

meta- and base-levels, OpenC++ has been suc-

cessfully used to implement atomic data types

[SW95]. Similarly, MeldC [KHL+93] only rei-

�es method dispatch. Iguana supports a larger

2

set of rei�able language constructs and also al-

lows dynamic meta-level/base-level binding.

The AL-1/D [OIT93, OI94] reective pro-

gramming language implements a Multi-Model

Reection Framework (MMRF).MMRF allows

the meta-level to be split into modules of meta-

level objects called `models'. Models can be

compared to Iguana's �ne-grained MOPs but

do not support inheritance, as �ne a granu-

larity, or feature combination. AL-1/D does

not seem to support dynamic modi�cation of

it's meta-level, a feature which is available in

Iguana through the rei�cation categories.

An alternative form of MOP is the \compile-

time" MOP as exhibited by both MPC++

[Ish94] and OpenC++ Version 2 [Chi95].

MPC++ is a \metalevel processing" version of

C++ in which the meta-level architecture spec-

i�es an abstract C++ compiler. At compile

time, the programmer can use the meta-level

features of the MPC++ compiler to extend the

syntax of the language with new features. Es-

sentially, MPC++ is an open implementation

of a C++ compiler, where the compiler itself

is rei�ed as a MOP, which can be extended at

compile time. However, the code generated by

the compiler is not reective, although reec-

tive extensions could possibly be added using

the notational extension feature. The focus of

Iguana is very di�erent. OpenC++ Version 2

is a similar system where a compile-time MOP

describes the behaviour of the compiler and

guides the code generating process.

Iguana aims at generating reective software

instead of being a reective compiler itself. The

Iguana syntax can not be extended, but the

MOP part of the syntax is su�ciently general

so as to allow new meta-level concepts to be ex-

pressed easily. More importantly, Iguana has

been designed to explicitly facilitate dynami-

cally adaptable objects, i.e., objects whose be-

haviour can be adapted at runtime.

3 Compiling Reective Lan-

guages

MOPs have typically been developed in the

domain of the interpreted language. There is

good reason for this. For a program to be inter-

preted, an interpreter must construct a lot of

behavioural information about that program,

such as appropriate dispatching functions to

use, inheritance hierarchy lookup, etc.2 This

information is not used directly by the pro-

gram, but is instead meta-level information

needed by the interpreter to execute the pro-

gram.

In reective programming, however, reec-

tion occurs when the subject of a computation

is the actual interpretation of the program; i.e.,

the reective computation is computing an as-

pect of how to interpret the program. The re-

ective program can then adapt its own inter-

pretation via modi�cations of the meta-level

information. To support this feature, mecha-

nisms are needed to access and e�ect the meta-

level behavioural information. For this to occur

dynamically, adaption of the meta-level must

be able to occur at run-time as the program

executes.

As an interpreter has already constructed a

signi�cant amount of meta-level information,

extending the interpreter to be reective only

involves adding support for exposing the meta-

level information to the base-level program, al-

lowing the program to inuence the decision

making process of the interpreter and e�ect

its own behaviour through modi�cation of the

meta-level information and mechanisms.

In the case of compilers, the meta-level infor-

mation that is constructed at compile time is

rarely maintained beyond the compilation pro-

cess. True, a certain amount of meta-level in-

formation can be found in the debugging data

2We use the term meta-level information to de-

scribe both the tables of data associated with interpre-

tation/compilation and the implicit knowledge main-

tained by the interpreter/compiler to order its decision

making process regarding the behaviour of the base-

level program.

3

that compilers can provide, but this typically

only consists of tables of symbols and their ap-

propriate o�sets into either code or data sec-

tion. There is no easy way to use such sparse

information to e�ect the behaviour of the pro-

gram. Also the behaviour of the object model

has been literally hard coded into the program.

In this regard, the object model is implicit and

can not be altered.

Adding reection to a compiled language

thus entails maintaining the meta-level infor-

mation beyond the compilation process and

also embellishing the generated code with the

appropriate links to the meta-level information

that controls its behaviour. The obvious so-

lution would be to ensure that the compiler

would indiscriminately generate meta-level in-

formation for every element of the program's

object model. But this presents a signi�cant

problem: the program now has the increased

execution overhead involved in evaluating the

links and meta-level information, and it is also

wasteful of both compilation time and storage

space, especially in the case where the meta-

level information of a program component will

never be used.

To solve this problem, Iguana supports rei�-

cation categories and multiple, �ne-grained

MOPs. Rei�cation categories attempt to min-

imise execution overhead by o�ering the pro-

grammer the opportunity to selectively choose

which object model elements need to be rei-

�ed. Thus rei�cation only occurs where it is

expressly needed. Multiple �ne-grained MOPs,

as well as supporting the notion of multiple ob-

ject models, address the problem of meta-level

information bloating the executable image by

supporting the implementation of a modular

meta-level architecture. Meta-level informa-

tion is only generated for an object that selects

a MOP.

Rei�cation category selection can only occur

within a MOP declaration. Thus it is the act of

MOP selection by an object which determines

what meta-level information will be available

to that object and in what ways it will be rei-

�ed.

3.1 Rei�cation Categories

In order to avoid falling into the \reify ev-

erything" trap and its subsequent performance

overhead for compiled programs, Iguana uses

rei�cation categories to indicate to the com-

piler where rei�cation should occur. Every re-

ective language will have a set of object model

elements which can be rei�ed. These elements

correspond to Iguana's rei�cation categories

but, unlike the typical reective language, rei�-

cation categories are not implicit. In Iguana,

there is an explicit process of selection which

can only occur within the context of a MOP

declaration.

Black Box using
some Reification
 Categories

Adaption by
inserting new
meta−level
objects.

Closed Black Box
 Implementation

(a) (b)

(c)

Open Implementation

(d)

Figure 1: This example shows (a) a black

box approach to object model implemen-

tation, (b) an \open" implementation,

(c) rei�cation categories exposing parts

of the object model, and (d) adaption

via dynamically rebinding meta-level ob-

jects.

Whereas the CLOS MOP automatically

maintains method information in a language

4

accessible manner, i.e., methods are always rei-

�ed, Iguana allows each MOP to specify which

rei�cation categories the MOP needs to use.

Figure 1 shows the distinction between (a) a

black box object model implementation, where

no adaption can be performed, (b) the open

implementation which has all elements of the

object model rei�ed, and (c) the rei�cation cat-

egory version where meta-level objects are ex-

posed for certain features of the object model.

Part (d) of �gure 1 shows how adaption can be

achieved through dynamic rebinding of meta-

level objects.

For each rei�cation category that is used,

two actions will be performed by Iguana.

First, the actual rei�cation will be performed

which involves modifying any a�ected base-

level classes to use a di�erent object model

mechanism than the default. Secondly, a

meta-level object which implements the new

mechanism will be associated (i.e., dynamically

linked) with the base-level objects.

As an example, consider the case of the in-

vocation rei�cation category. When the state-

ment reify Invocation; appears in a MOP

declaration, it will cause the Iguana prepro-

cessor to create an invocation meta-level ob-

ject and reify invocation within the base-level

objects which have selected the MOP. In this

particular case, the meta-level object that

has been created will be given the default

name of invoke and be an instance of class

MInvocation.

3.2 Multiple, Fine-Grained MOPs

Iguana provides the ability to have multiple,

�ne-grained MOPs. This interesting feature

means that an application can have objects

that use di�erent object models. Essentially,

this means that an object's meta-level imple-

mentation can di�er signi�cantly from the im-

plementation of another object's meta-level,

even though the objects are part of the same

application. In an example where active ob-

jects and \normal" C++ passive objects co-

exist in the same application, we describe the

\active object" object model as co-existing

with the other object models.

An object that subsequently needs to modify

its object model (or more correctly, modify its

meta-level implementation) can do so knowing

that any changes will not a�ect other object

models. We term this feature as being \meta-

level locality of change."

In Iguana, MOPs can actually be quite �ne-

grained. From our research into operating sys-

tem design, we consider that a �ne-grained

modular approach to meta-level implementa-

tion can more easily facilitate both its imple-

mentation and runtime adaption. Thus a pro-

grammer can design a MOP which only im-

plements a particular form of invocation and a

separate MOP which only implements a partic-

ular form of method dispatching. The combi-

nation of both of these MOPs can then provide

an implementation of invocation and dispatch-

ing for base-level objects, but yet the imple-

mentation is separated into the two modular

components.

4 Iguana Syntax

In this section we describe the extensions made

to the syntax of C++ to support reection.

Iguana is implemented as a preprocessor which

reads in the Iguana source, digests the meta-

level extensions, makes the appropriate meta-

level modi�cations, and then outputs modi�ed

C++ code. If little use has been made of the

reective features then there will be little di�er-

ence between the input and output code. After

the preprocessing has completed, Iguana will

invoke a C++ compiler to compile the output

code into an executable.

4.1 Meta-Level Classes and Objects

Syntactically, there is no di�erence between

meta-level and base-level classes and objects.

Meta-level classes and objects are declared us-

ing the existing C++ syntax. The features that

do distinguish between base- and meta-level are

5

where an object is declared and what its func-

tionality is. Meta-level classes and objects are

usually declared within a MOP declaration and

their functionality usually concerns meta-level

features, such as method dispatch, which would

make their inclusion at the base-level rather

meaningless and somewhat impractical.

An example of where a class could be use-

fully employed by both the meta- and base-

levels occurs with general purpose classes such

as lists, arrays, etc., where the functionality is

somewhat generic.

By convention, the classes in the Iguana

Meta-Level Class Library (see Section 4.6) have

names beginning with a capital `M'. This is

meant to be an indication to a programmer

that instances of these classes would not make

very good base-level objects. However, this is

by no means a part of the language speci�ca-

tion and programmers can choose to name their

meta-level classes as they like.

4.2 Rei�cation Categories

As explained above, Iguana is a compiled lan-

guage which uses rei�cation categories to se-

lectively choose what language elements must

be rei�ed. A rei�cation category can only be

selected within a MOP declaration (see Sec-

tion 4.3) so that rei�cation will only occur in

accordance with the chosen categories of the

MOP.

Syntax for choosing a rei�cation category

starts with the reify keyword which is fol-

lowed by the name of a single category that

must be rei�ed, for example Dispatch. Each

rei�cation category has a default meta-level

class and instance name. In the dispatch ex-

ample, the default names are MDispatch and

dispatch respectively. Consequentially, for an

object that has selected a MOP which includes

a reify Dispatch; statement, that object

will have a meta-level object called dispatch

which is an instance of the (meta-level) class

MDispatch. Also, the code generated for the

object by Iguana will use the dispatch object

to perform method dispatch.

The default meta-level class and instance

name can be overridden using two optional pa-

rameters to the reify command. The �rst of

these is the alternative class name. For ex-

ample, if a programmer had implemented their

own dispatching mechanism in a class called

MyDispatcher, a subclass of MDispatch, then

that can be installed as the dispatcher by using

reify Dispatch: MyDispatcher;.

The second optional parameter similarly

allows an alternative choice for the name

of the meta-level instance. Instead of us-

ing the default dispatch, a programmer

can select that their own identi�er be used;

e.g., reify Dispatch: MyDispatcher dis;,

which just means that method dispatch for ob-

jects that have selected the MOP containing

this statement will be directed at an object

named dis instead of the default dispatch.

Note, however, that the instance name param-

eter can only be present if it is preceded by the

class parameter.

The following are some possible examples of

reifying classes:

1. reify Class; Classes will be rei�ed and

exist at runtime as instance objects of the

default class MClass and named mclass.

2. reify Class: MyMetaClass; The classes

rei�ed by this statement will be instances

of the class MyMetaClass but will still be

given the default instance name of mclass.

3. reify Class: MyMetaClass myclass;

In this case, the rei�ed classes will be in-

stances of class MyMetaClass and name

myclass.

See Appendix A for a list of Iguana's rei�cation

categories.

4.3 MOP Declaration

Syntactically, de�ning a MOP in Iguana is not

unlike de�ning a C++ class. A MOP decla-

ration starts with the keyword protocol and

6

consists of a name, an optional list of base-

MOPs (as opposed to a class's list of base-

classes), and a brace-enclosed list of member

components separated into sections.

The member components of a MOP de�ni-

tion are either object declarations and rei�-

cation category declarations or references to

other MOP declarations. The former must ap-

pear in either the local, shared or global sec-

tions, while the latter denote a MOP depen-

dency relationship and must appear in the de-

pendent section. All sections are optional but

must appear in the following order:

1. The dependent section: In this section,

a programmer can list the other MOPs

upon which the one being declared is de-

pendent. This will tell Iguana that it must

ensure to include the dependent MOPs in

any associated objects meta-level. Note,

that this is not inheritance, but a hor-

izontal relationship between MOPs; i.e.,

one MOP cannot function correctly with-

out the presence of another contemporary

MOP.

2. The local section: Object declarations

and rei�cation category declarations in

this section will cause object model meta-

level objects to be instantiated privately

to an associated base-level object.

3. The shared section: Object declara-

tions and rei�cation category declarations

in this section will be shared by all base-

level objects associated with the MOP.

This is a similar concept to C++'s static

class members.

4. The global section: The global section

is used for declaring globally shared meta-

level objects and rei�cation category gen-

erated objects.

Thus a complete MOP de�nition could look

like:

protocol SuperMOP;

protocol FundamentalMOP;

protocol MyMOP : SuperMOP

{

dependent:

FundamentalMOP;

local:

Object myPrivateMetaObject;

reify Class : MClass

myPrivateClass;

shared:

Object objSharedByMetaLevel;

global:

Object objGloballyShared;

};

4.4 Protocol Selection

Protocol selection is the act of associating one

or more MOPs with a base-level object. In

Iguana terminology, a base-level object which

selects a MOP is said to be associated with

the MOP. There are four forms of selection in

Iguana: class protocol selection, default pro-

tocol selection, instance protocol selection and

expression protocol selection. All forms of se-

lection use the \selection operator" (==>) to

introduce a list of comma separated MOP iden-

ti�ers.

Class protocol selection is the most com-

mon mechanism for selecting MOPs. When

originally designing Iguana, we hypothesised

that the best person for deciding which MOPs

should be used with an object would be the

programmer/designer creating the class for the

object, as they would know the internal de-

tails of the class. During experimentation with

a prototype version of Iguana, we found that

this was too strict a generalization and that, in

fact, it would be useful to (a) set a default set

of MOPs which would be associated with all

classes in a �le (default protocol selection), (b)

associate a MOP with an object at the object's

instantiation (instance protocol selection), and

(c) be able to associate a MOP with an expres-

sion (expression protocol selection), a useful fa-

cility for some specialised cases.

7

4.4.1 Class Protocol Selection

Class protocol selection is the association of

one or more MOPs with class instances. In a

class declaration, the programmer can include

a list of MOPs which will form the meta-level

for instances of the class. The syntax for this is

placed between base-class inheritance (if there

are any) and the brace-enclosed list of mem-

bers. The selection operator (==>) is followed

by a list of the MOPs to be selected; e.g.:

class X : SuperX ==> MetaX, MetaX2

{ ...

};

Note that the meta-level association is made

between the class instance objects and not the

class itself. If classes are rei�ed, any of the

MOPs that a class has selected will not form

part of the class's meta-level. Instead, the

meta-level class of which the base-level will be

an instance must select the MOPs for its in-

stances.

4.4.2 Default Protocol Selection

For a common MOP, such as the standard

C++ MOP MetaCpp, it is useful to have a

mechanism for declaring that all classes should

select the given MOP. To do this, the default

protocol selection construct allows a MOP to

be selected by all classes from the declaration

to the end of the �le. The mechanism includes

the facility to turn o� the default selection on

a per MOP basis.

As an example, the following is used to en-

sure that all classes select the MetaCpp MOP

(line 1) while line 6 shows the MetaCpp MOP

being removed from the default protocol selec-

tion list before a class Y is de�ned and subse-

quently re-selected. In this case, Y would use

the standard black box implementation of the

C++ object model:

[1] protocol default ==>

[2] MetaCpp;

[3]

[4] class X {};

[5]

[6] protocol default ==>

[7] --MetaCpp;

[8] class Y {...};

[9] protocol default ==>

[10] ++MetaCpp;

Note that default MOP selection only provides

defaults for class protocol selection. Instance

and expression protocol selection are left un-

a�ected. Also note the ++ and -- operators.

These respectively add or remove a MOP from

the list of MOPs that will be associated with

a base-level object. When these operators are

left out of a MOP selection statement, the de-

fault behaviour is to add a MOP to the MOP

list. It is common practice not to use ++ op-

erator, especially with class protocol selections

where the additive behaviour is the most com-

mon.

4.4.3 Instance Protocol Selection

Whereas class protocol selection associates a

MOP with all instances of a class, instance pro-

tocol selection associates a MOP only with a

single instance object. The syntax involves fol-

lowing the object declaration with the selection

operator (==>) and a list of MOPs. For exam-

ple, given a MOP called Distributed which

implements support for distributed objects, a

distributed Integer can be declared as:

protocol Distributed;

Integer i ==> Distributed;

The actual implementation of this feature in-

volves replacing the declared class of the object

with a sub-class which contains the necessary

meta-level adjustments. In the above exam-

ple, the preprocessor would alter the declara-

tion to make it become Integer__Meta1 i;

and precede it with a de�nition for the

Integer__Meta1 class. Other instances of class

Integer will not be a�ected. New classes with

the __Meta su�x are only generated for in-

stance protocol selection and expression pro-

tocol selection where necessary. If there are

8

no other Integer instances which select the

Distributed MOP, then i in this case will be

the only instance of Integer__Meta1.

4.4.4 Expression Protocol Selection

We have found that in some cases it is use-

ful to have a part of a MOP used under very

specialised circumstances. As an example, con-

sider the following. We were using Iguana to

implement a reective user-space thread pack-

age. As a part of the thread packages im-

plementation, we had considered that a very

\clean" context switch could be written based

on object invocation. By clean we meant that

context switching should be both easy to write

and also easy to use.

By structuring the thread package to con-

text switch at an object invocation, program-

mers would be able to perform seamless context

switches by simply invoking the method of an

object. Thus, to switch context to a thread in

another object, a method in that object was

simply invoked.

The second bene�t related to implemen-

tation. It was easier to implement context

switching knowing that a context switch always

occurs at a method invocation boundary.3

Having decided that this was a good way of

implementing context switching for both the

scheduler and threads releasing control of the

CPU, our next problem was to actually imple-

ment it in Iguana. By reifying invocation using

class or instance protocol selection, all the invo-

cations in an object would also trigger context

switches, something we wanted to avoid.

Our solution is to use expression proto-

col selection, where a MOP to be used with

an expression is selected from within that

expression.4 The syntax involves enclosing the

expression in parenthesis and inserting a selec-

tion operator and a list of MOPs at the end

3As an aside, context switching on exit from a

method can be achieved by reifying MethodAccess.
4This does not prevent other MOPs which do not

reify invocation from coexisting.

of the expression, but before the closing paren-

thesis. For example:

[1] protocol ContextSwitchInvoke

[2] {

[3] local:

[4] reify Invocation:

[5] MContextSwitch;

[6] };

[7]

[8] class MContextSwitch:

[9] MInvocation

[10] { };

[11]

[12] void X::y (void)

[13] {

[14] (obj->method() ==>

[15] ContextSwitchInvoke);

[16] }

Notice how we do not have to include any con-

cepts such as context switching which would

be alien to the C++ (and hence Iguana) de�-

nition. By simply reifying an existing language

construct, in this case method invocation, we

can use that to insert the appropriate piece of

code which meets our requirement.

So, how does this work? Essentially, the

Iguana preprocessor will reify invocation for

the expression. This means that the method

invocation on obj will be transformed into a

meta-level invocation to a send method. In

this case, the send method is a member func-

tion of the class MContextSwitch. Thus the

line

(obj->method() ==>

ContextSwitchInvoke);

is transformed into a statement such as

(meta->invoke->send

(obj, Object::method, NULL));

This mechanism was originally called state-

ment protocol selection, but the tighter granu-

larity of expressions o�ers greater exibility.

9

4.5 Meta-Level Invocations

Invoking a meta-level object is achieved

through the meta class member, i.e., in a

method, a programmer can invoke the send

method of an MInvocation meta-level object

via:

meta->invoke->send (...);

The address of a meta-level object is also avail-

able, so the following is valid code to copy the

invocation meta-level object to a local pointer:

MInvocation* myInvokerMLO =

meta->invoke;

As meta is a pointer, a base-level object is

dynamically bound to its meta-level objects.

Re-binding to a di�erent meta-level is simply a

matter of replacing one or more of the existing

meta-level objects. For example, for an object

to replace its invocation meta-level object, it

simply has to replace it with a new invocation

object:

MInvocation* tmp = meta->invoke;

meta->invoke =

new MInvocationType2;

delete tmp;

The old invocation meta-level object can only

be deleted if it is local, i.e., not shared with

other objects. It is also possible for an object

to replace its entire meta-level with one from

another class, such as:

Meta* tmp=meta;

meta = (Meta*) new

SomeOtherClass::Meta;

delete meta;

In this case, a new meta-level will be con-

structed for the object. This can, however,

be a somewhat hazardous process if the rei�-

cation categories of the meta-level's are di�er-

ent. There is as yet no process of migration

in Iguana to provide automatic checking for

meta-level compatibility like that provided by

the Apertos operating system [Yok93].

4.6 Meta-Level Class Library

The Iguana Meta-Level Class Library is a

library of meta-level classes that implement

meta-level language related concepts. For ex-

ample, it contains classes such as MClass,

MDispatch, MInvocation, etc. These provide

implementations of the default behaviour for

MOPs such as MetaCpp, the standard C++

MOP.

The Meta-Level Class Library consists of:

� A set of header �les for standard

MOP declarations (such as MetaCpp and

MinCpp standard C++ MOPs), identi�-

able through their \.mop" �le extensions.

� A set of header �les for the standard

classes which implement the standard

MOPs.

� An actual library containing the im-

plementation of the standard meta-level

classes, against which Iguana code can be

linked.

5 Example: C++ Active Ob-

jects

As an example of how Iguana can be used, con-

sider the implementation of active objects in

C++. For our example, we consider an ac-

tive object to be an object which has one or

more threads associated with it. In this partic-

ular case, we will be creating a thread for each

method within an object. This might seem

to be extravagant, but remember that we will

only be making active objects out of the in-

stances of those classes which actually select

the ActiveDispatcher, presented below, as

one of their MOPs. The beauty of this example

is that programmers can write multi-threaded

applications using the ActiveDispatcher MOP

without having to explicitly make thread and

locking calls in the base-level classes.

We begin by writing the actual MOP decla-

ration:

10

[1] protocol ActiveDispatcher

[2] {

[3] local:

[4] reify Dispatch:

[5] MActiveDispatcher;

[6] reify MethodAddress;

[7] reify StateAccess:

[8] MLockableAccessor;

[9] };

Here, we have declared that message dis-

patch (line 4), method addresses (line 6) and

state access (line 7) should be rei�ed; i.e., at

runtime message dispatch should be trapped,

the addresses of methods should be main-

tained, and accessing a component of an ob-

ject should be trapped. We have then cho-

sen the class MActiveDispatcher to imple-

ment the dispatching routine (line 5), and class

MLockableAccessor to implement state access

(line 8). Method addresses do not need a class

to be speci�ed because we want to use the de-

fault MMethod class (line 6).

Notice how we have not rei�ed any abstract

notions such as threads or locking. In a reec-

tive language, one can typically only reify ex-

isting language constructs. As neither Iguana,

nor its parent C++, have a language-level

thread construct, threads can not be rei�ed.

Instead, we must reify the language elements

that will allow us to implement what we desire

but using a thread class.

The code for class MActiveDispatcher in-

cludes the dispatchmethod which implements

the actual dispatching of method invocations:

class MActiveDispatcher:

MDispatcher

{

int size;

Bool* activities;

Thread** threads;

public:

MActiveDispatcher ();

void dispatch (MObject*,

MMethod*,MActFrame*);

};

MActiveDispatcher::

MActiveDispatcher (void)

{

size = methodAddress->size();

activities = new Bool [size];

threads = new Thread* [size];

for (int i=0; i<size; i++)

{

activities[i] = FALSE;

threads[i] =

new Thread (&BASE::method);

}

}

The method for implementing dispatch can

then be written as follows:

void MActiveDispatcher::

dispatch (MObject* obj,MMethod* m,

MActFrame* p)

{

int i=methodAddress->number(m);

threads[i]->queue

(new MInvocation(m,p));

}

As there are multiple threads executing in

a single object, some form of locking must be

implemented to ensure that data integrity is

maintained. By reifying state access to use the

MLockableAccessor, we can ensure that state

updates maintain integrity.

Finally, for an object to be an active object,

the ActiveDispatcher can be selected by that

object either through its class or at declara-

tion time. For example, the former situation

occurs with any instance of class Server while

the object client, an instance of the none-

active Client class (declaration not shown),

has selected the ActiveDispatcher in its dec-

laration.

class Server ==> ActiveDispatcher

{

int i;

public:

Server ();

11

Result& process (...);

};

Server serve;

Client client ==> ActiveDispatcher;

6 Performance

There are a number of factors that contribute

to the cost of applications compiled with

Iguana:

1. The number of indirections required to ini-

tiate dynamic binding;

2. The number of meta-level invocations;

3. The cost of computation at the meta-level;

4. The cost of object creation.

The following tests were all conducted on a

33MHz 486-DX PC running the Linux oper-

ating system.

6.1 Indirections

On our test platform, the number of indirec-

tions used by Iguana causes an extra four move

instructions5 to be used per invocation to ob-

tain a reference to the destination meta-level

object. This is a direct consequence of us-

ing the dynamically bound meta as a reference

pointer to an objects meta-level and dynami-

cally bound component references to the actual

meta-level objects. For example, the meta-

level invocation needed to invoke a meta-level

reception object of a base-level object obj is:

obj->meta->reception->receive (...);

An alternative approach would have been to

atten the references by using a non-reference

member object for the meta-level and to have

5All four of these move instructions were of the

more expensive register-memory format as opposed to

register-register | an indication of the limited general

purpose registers available on the test platform's 486-

based architecture.

separately identi�able component meta-level

objects. In such a case, the above statement

would become:

obj.meta_reception.receive (...);

We chose not to implement such a format be-

cause the performance gain was minimal and

could not be compared to the advantages of

(a) having a dynamically bound and adaptable

meta-level and (b) having a single encapsulated

meta-level for each object which can easily be

altered as a whole. See Section 4.5 for an ex-

ample of point (b) in use. The cost of Iguana

indirections per-meta-level invocation is given

in the table in Figure 2

6.2 Invocations and Computations

The number of meta-level invocations that

must be made to implement a base-level feature

relates to the number of rei�cation categories

that are used; an extra meta-level invocation

must be made for each rei�cation category. For

example, the following timings in Figure 2 were

gained by comparing a typical C++ object in-

vocation with a reective equivalent. The �rst

�gure shows the cost of a C++ invocation (and

function execution). Then, using Iguana, the

same invocation was timed using one rei�ca-

tion, i.e., Reception. This increased the cost

of the invocation by half as it added one in-

termediate meta-level invocation. Using three

rei�cations (namely, Invocation, Reception,

and Dispatch) adds the cost of an extra three

meta-level invocations on to the cost of the

base-level invocation and the subsequent time

is approximately four times that of the C++

invocation.6

It must be noted that the expense involved

with rei�cation categories is only paid by re-

ective objects because they have selected a

6In some simple cases where only one rei�cation was

used, Iguana has actually reduced the cost of method in-

vocation by 14%{17% over the equivalent C++. These

can be attributed to the attening of some base-level in-

directions and virtual function dispatch by the Iguana

preprocessor.

12

Iguana Invocation Timings

Iguana Indirection 0.78 �secs.

C++ Invocation 2.064 �secs.

1 Rei�cation 3.009 �secs.

3 Rei�cations 8.535 �secs.

4 Rei�cations 21.646 �secs.

Figure 2: Rei�ed and non-rei�ed timings

for method invocation/dispatch.

protocol. Invocations between non-reective

C++ objects are not encumbered in any way.

This contrasts favourably to AL-1/D, which

does not support rei�cation categories or �ne-

grained MOPs, where modi�cations to sup-

port distributed computing caused a 20-fold in-

crease in local message communication [OI94].

What these �gures do not show is the cost

of meta-level computation, i.e., the particu-

lar functionality supported by a given meta-

level and the overhead that is involved. For

example, the performance of a meta-level im-

plementing distributed computing facilities has

by de�nition to be worse than a contemporary

non-reective, non-distributed C++ program,

as the former must include the cost of network

communication. An example of such compu-

tation is shown in our �nal entry in Figure 2.

In this case we used the same three rei�cation

categories from the previous test and added

DispatchAccess as the fourth. The imple-

mentation for the dispatch access meta-level

object used a naive lookup mechanism which,

although simple to implement, demonstrated

sub-optimal performance. This increased the

cost of the invocation to over ten times that of

the original C++. This emphasises the point

that meta-level programming can be expensive

when care is not taken in its implementation.

6.3 Object Creation

Another performance issue that requires con-

sideration when programming in Iguana is that

the creation of reective objects is more expen-

sive than the creation of their non-reective

counter-parts. This is due to the fact that a

reective object needs to have its meta-level

constructed at creation time. In the case where

an object uses only shared meta-level objects,

the cost is merely in terms of the number of

meta-level object references which have to be

bound to the shared meta-level objects. How-

ever, for non-shared local meta-level objects

each must be allocated and constructed as part

of the base-level object creation process.

7 Status

We are now in our second implementation of

Iguana. Our initial prototype implementation

was limited in two ways: �rst, for ease of im-

plementation, its parser was not designed to

parse all of the C++ base language. Sec-

ondly, as a prototype we did not implement

all of the categories of rei�cation (which also

meant that the prototype implementation's

Meta-Level Class Library was quite small).

Not only has Iguana's syntax changed from the

initial implementation, but we have also reor-

ganized and increased the number of rei�cation

categories.

As of writing, we are in the process of com-

pleting the implementation of the complete

Iguana language on Unix platforms using the

Cppp C++ front-end parser from Brown Uni-

versity. The new version will include support

for all of the C++ base language, code genera-

tion for the larger set of rei�cation categories,

and a more substantial Meta-Level Class Li-

brary.

8 Summary and Conclusion

In this paper, we presented the Iguana pro-

gramming language. Iguana is an extended

version of C++ which includes support for re-

ective programming.

To prevent incurring unnecessary overhead,

Iguana does not implement a \reify every-

thing" policy. Instead, programmers can se-

lectively choose which object model elements

13

(rei�cation categories) need to be rei�ed to

achieve their task at hand. This process of se-

lection occurs within a MOP declaration. For

a given MOP declaration, any number of the

rei�cation categories can be selected.

Iguana supports multiple MOPs, meaning

that there can be many actual MOP decla-

rations, each oriented towards a speci�c task.

Also a MOP can be said to be \instantiated",

i.e., each of the meta-level objects in the MOP

are instantiated. Iguana also supports the use

of multiple MOP instances. In this fashion,

di�erent base-level objects can have di�ering

meta-level objects instantiated from distinct

MOPs and which implement di�erent meta-

level features and rei�cations.

References

[Chi95] S. Chiba. A Metaobject Protocol

for C++. In 10th Conference on

Object-Oriented Programming Sys-

tems, Languages, and Applications,

pages 285{299, 1995.

[CM93] S. Chiba and T. Masuda. De-

signing an Extensible Distributed

Language with a Meta-Level Ar-

chitecture. In O.M. Nierstrasz,

editor, 7th European Conference

for Object-Oriented Programming,

ECOOP '93, Springer-Verlag LNCS

707, pages 482{501, July 1993.

[GC95] B. Gowing and V. Cahill. Making

Meta-Object Protocols Practical for

Operating Systems. In 4th Interna-

tional Workshop on Object Orien-

tation in Operating Systems, pages

52{55, 1995.

[Ish94] Y. Ishikawa. Metalevel Architecure

for Extended C++. Technical Re-

port TR-94024, Tsukuba Research

Center, 1994.

[KHL+93] G.E. Kaiser, W. Hseush, J.C. Lee,

S.F. Wu, E. Woo, E. Hilsdale, and

S. Meyer. MeldC: A Reective

Object-Oriented Coordination Lan-

guage. Technical Report CUCS-

001-93, Columbia University, NY,

January 1993.

[KRB92] G. Kiczales, J. Des Rivieres, and

D. G. Bobrow. The Art of the

Metaobject Protocol. MIT Press,

1992.

[NY93] S. Nishio and A. Yonezawa, editors.

Lecture Notes in Computer Science

742, Kanazawa, Japan, November

1993. Springer-Verlag.

[OI94] H. Okamura and Y. Ishikawa. Ob-

ject Location Control Using Meta-

level Programming. In M. Tokoro

and R. Pareschi, editors, 8th Euro-

pean Conference in Object-Oriented

Programming, LNCS 821, pages

299{319, Bologna, Italy, July 1994.

Springer-Verlag.

[OIT93] H. Okamura, Y. Ishikawa, and

M. Tokoro. Metalevel Decompo-

sition in AL-1/D. In Nishio and

Yonezawa [NY93], pages 110{127.

[Str91] B. Stroustrup. The C++ Program-

ming Language. Addison-Wesley, 2

edition, 1991.

[SW95] R.J. Stroud and Z. Wu. Us-

ing metaobject protocols to im-

plement atomic data types. In

9th European Conference on Object-

Oriented Programming (ECOOP),

pages 168{189, Aarhus, Denmark,

August 1995.

[Yok93] Y. Yokote. Kernel Structuring

for Object-Oriented Operating Sys-

tems: The Apertos Approach. In

Nishio and Yonezawa [NY93], pages

145{0.

14

A Iguana Rei�cation Categories

Iguana Rei�cation Categories

Name Default Class Default Instance Description

ActivationFrame MActFrame actFrame Rei�cation

of method activation frames, activa-

tion frame meta-level objects contain

method parameters.

Class MClass mclass Reify a class to exist as a meta-level

class instance at run-time.

Creation MCreation mcreate Rei�cation of object creation, similar

to overloading the new operator.

Deletion MDeletion mdelete The opposite to creation and bearing

a kinship with delete operator.

Dispatch MDispatch dispatch Rei�cation of the receipt of messages

and their dispatch to the appropriate

methods.

DispatchAccess MDispatchAccess dispatchAccess Rei�cation of the method lookup

mechanism.

Identity MIdentity identity An object's identity can be rei�ed as

an object.

Inheritance MInheritance inheritance Reify the inheritance mechanism of

C++; The MInheritance class does

not provide features such as evolution

or dynamic inheritance. These are left

to speci�c subclasses.

InheritanceTree MInheritanceTree inheritanceTree A rei�cation of an object's inheritance

tree. Can provide access to all the

super/base-classes of an object.

Invocation MInvocation invoke Method invocations are rei�ed to use

a meta-level implementation as op-

posed to the default C++ object mod-

els implementation.

Method MMethod method Methods are rei�ed to appear as ob-

jects at run time.

MethodAccess MMethodAccess methodAccess Rei�cation of the entering and exit

(access) of a method.

MethodAddress MMethodAddress methodAddress A method address table can be rei�ed

as an object. This provides access to

an explicit (and more complete) form

of the standard C++ virtual function

table.

MethodName MMethodName methodName Rei�cation of a table of method sym-

bolic names.

Object MObject object A meta-level reference for base-level

objects.

15

Iguana Rei�cation Categories (continued)

Name Default Class Default Instance Description

Reception MReception reception The act of receiving a message by

a base-level object before it is dis-

patched can be rei�ed.

State MState state An object's state information can be

made available as a distinct object.

StateAccess MStateAccess stateAccess Rei�cation of access to an object's

state information.

StateAddress MStateAddress stateAddress A table of addresses to the members

of an object's state.

StateName MStateName stateName A table of symbolic names used by ob-

jects to reference their state.

Source MSource source Runtime access to source code. Typi-

cally useful for debugging.

Type MType type The type of an object is rei�ed as an

object. The new draft C++ standard

is now proposing its own runtime type

system.

TypeSoft MTypeSoft typeSoft Reify a soft typing mechanism where

compile time type checking is not

performed. This is similar to the

Smalltalk/Objective-C type system

where messages can be sent to objects

even though it is not known if their is

a corresponding method to implement

the message.

16

