
Flexibility in Object-Oriented Operating

Systems: A Review

Vinny Cahill

Department of Computer Science

Trinity College Dublin

Abstract

This report presents a review of recent research into exible operating

systems. In this context, exible operating systems are taken to be

those whose designs have been motivated to some degree by the desire

to allow the system to be tailored, either statically or dynamically, to

the requirements of speci�c applications or application domains. We

begin by presenting a review of recent research into exible system

software with particular emphasis on the motivations for providing

exibility and the di�erent approaches to achieving exibility that are

available. We then provide an overview of the main technologies for

achieving exibility in system software that have been employed. As it

turns out, the use of object orientation is a common feature of many

exible operating systems. Thus, in order to more fully illustrate the

use of object-orientation to achieve exibility, we review a number of

the most inuential object-oriented operating systems in detail.

Document Identi�er TCD-CS-96-05

Document Status Technical Report

Created 12 July 1996

Revised 24 May 1996

Distribution Public
c 1996 TCD CS

Permission to copy without fee all or part of this material is granted provided that the

TCD copyright notice and the title of the document appear. To otherwise copy or republish

requires explicit permission in writing from TCD.



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 1

This report presents a review of recent research into exible operating systems. In this context,

exible operating systems are taken to be those whose designs have been motivated to some

degree by the desire to allow the system to be tailored, either statically or dynamically, to the

requirements of speci�c applications or application domains.

Section 1 presents a review of past research into exible operating systems with particular

emphasis on those that have employed object-oriented techniques to achieve exibility. As

will be seen, the use of object orientation is a common feature of many exible operating

systems. Section 2 continues from section 1 by reviewing a number of the most inuential object-

oriented operating systems in detail. Finally, Section 3 summarises the report and provides some

perspectives on the use of object-orientation to achieve exibility in system software.

It should be noted that this report presents only a summary of our review. A more complete

presentation of this review is available on the World Wide Web (www) and includes links to

www pages describing groups, projects, and individuals currently doing research in this area as

well as an annotated bibliography containing several hundred entries [17].

1 Towards Flexible Operating Systems

Operating-systems research has always been driven by developments in technology as well as by

goals such as improved performance, increased modularity, and the desire to improve exibility.

Technological developments such as the introduction of reduced instruction set architectures,

the increased availability of shared-memory multi-processors, or the widespread deployment of

high-speed and high-bandwidth networks continue to have an enormous impact on the design of

new operating systems. Improving the performance of the various services traditionally provided

by operating systems such as thread management, virtual memory, or the �le system has likewise

always been at the heart of operating-systems research. Recently, perhaps in response to the

accelerating pace of advances in technology, increased modularity has also become an important

goal both to improve portability and to make system development and maintenance easier.

Finally, exibility { the ability to design systems that can be tailored to the requirements of

speci�c applications or application domains { has always been something of a holy grail for the

designers of operating systems. This has never been more so than at present as is evident from

recent workshops and conferences such as [3] or [4].

1.1 Why Flexibility?

In [24], Draves identi�es a number of problems that can be addressed by making operating

system software more exible:

� feature de�ciency: the operating system does not provide some feature required by the

application;

� performance: (some) operating system services do not provide performance that is accept-

able to the application;

� version skew: the application is dependent on a di�erent version of the operating system

for its correct operation.



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 2

To these might be added \feature abundance". Feature abundance occurs when the operating

system provides superuous features that, although not used by the application, result in some

(avoidable) runtime overhead.

Clearly, increased exibility should allow operating systems to be more easily tailored to provide

(only) the features required by the applications to be supported. It is perhaps not so obvious

how increasing exibility might improve performance. The essential observation is that every

operating system embodies particular trade-o�s concerning the way in which the services that

it provides are implemented. Typically, in general-purpose operating systems, these trade-

o�s are made to suit the requirements of what are perceived to be typical applications. The

resulting trade-o�s will certainly not be the right ones for every application resulting in sub-

optimal performance for some applications. There is a substantial body of evidence showing

that, for some applications at least, exploiting knowledge of the application in making these

trade-o�s can substantially improve performance. Kiczales et al. [48] use the term mapping

dilemma to refer to these trade-o�s and characterise a mapping dilemma as a \crucial strategy

issue whose resolution will invariably bias the performance of the resulting implementation".

Decisions as to how to resolve mapping dilemmas are called mapping decisions and a mapping

conict occurs when the application performs poorly as a result of an inappropriate mapping

decision. Increased exibility is intended to allow mapping decisions to be more easily made on

an application-speci�c basis.

1.2 Approaches to Achieving Flexibility

Two basic approaches to achieving exibility can be distinguished: static exibility and dynamic

exibility. Static exibility allows system software to be tailored to one application, set of

applications, or some particular hardware con�guration, as required, at its build time, i.e.,

when it is compiled, linked, or loaded (depending on the software development process used).

Dynamic exibility allows system software to be tailored to the needs of current applications at

run time.

Three major approaches to building dynamically exible system software can be identi�ed. One

approach is to build general-purpose systems that provide services supporting a range of di�erent

policies, which are suitable for the requirements of a wide range of applications, together with a

set of service-speci�c interfaces allowing applications to have input into the choice of policies to

be used according to their particular requirements. Such systems have been variously referred to

as supporting selection [49] or parametric variation [8] and are referred to in this report as being

adaptable. Examples of adaptable systems include the SunOS operating system, which allows

applications to provide advice to the virtual memory system via the madvise system call, and

the Mach microkernel whose thread scheduling subsystem also accepts hints from applications

as described in [11]. Although few systems support it, a further step in this direction would be

to have the system itself choose the appropriate policies to be used for particular applications

from those available { perhaps based on analysis of their past behaviour. Such systems are

referred to in this report as being adaptive.

Another approach to building dynamically exible system software is to allow the application to

be involved in some way in the implementation of a service, perhaps by having the service make

an upcall to a module, provided by the application, that implements some policy required by the



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 3

service [49], or by allowing the application to interpose code at the interface to the service [8].

Such systems are referred to in this report as being modi�able. Examples of systems supporting

this kind of exibility include both the Mach and Chorus microkernels, via their external pager

interfaces [67, 1], and the system call interposition toolkit for Mach 2.5 described in [39].

The other major approach to building dynamically exible system software is to provide a means

of allowing (some) system services to be added or replaced at run time in order to support

new or di�erent functionality for particular applications. Such systems are referred to in this

report as being con�gurable and also extensible if they support the addition of new system

services as well as replacement of existing services. Most microkernel-based operating systems

are con�gurable in that they allow those parts of the operating system implemented as user-

mode servers to be installed or replaced at runtime. The Spin microkernel also allows services

to be installed dynamically into the kernel [9]. (Obviously, supporting multiple mechanisms and

policies simultaneously or the ability to dynamically add or replace system services incurs some

runtime overhead.)

To build statically exible system software requires a system architecture that can be imple-

mented in a number of di�erent ways in order to include the mechanisms and policies required

by di�erent applications. The system architecture typically describes a number of subsystems

of which di�erent implementations exist. A system is built by choosing from the available

subsystem implementations at build time. New implementations of particular subsystems can

obviously be provided as required. Such systems are referred to in this report as being cus-

tomisable. Examples of customisable systems include the Choices [19] and Peace [65] operating

systems. In the case of static exibility, the system architecture may be said to be extensible if it

has been designed to facilitate the introduction of further subsystems, which provide additional

functionality that is not already provided for by the architecture.

The various approaches to achieving exibility are not mutually exclusive and di�erent systems

may employ more than one. For example, the Peace operating system can be con�gured

dynamically [60]. It is also worth noting that the distinction between a customisable system

and a con�gurable one may be small in practice. A con�gurable system that provides minimal

mandatory functionality but allows the system services required by a particular application to

be loaded dynamically is very close to a customisable system. The former has at least some �xed

component and may incur overheads in accessing system services that are dynamically loaded.

1.3 Qualities of Flexible System Software

Flexibility, however it is supported, is not a binary attribute; di�erent systems o�er di�erent

degrees of exibility. While there is no absolute metric by which to judge the degree of exibility

of a system, Kiczales and Lamping [47] have identi�ed a number of \qualities" that can be used

to discuss the exibility of a system:

� incrementality refers to the degree to which the e�ort necessary to specialise an imple-

mentation is proportional to the amount of change required [49];

� scope control refers to the degree to which the e�ect of modi�cations to the implementation

of a service a�ect all or only some of the clients of that service { ideally such modi�cations

should only a�ect those clients that desire it;



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 4

� interoperability is the degree to which applications that use non-standard mapping deci-

sions can interact with other applications; and �nally,

� robustness is the degree to which the implementation is graceful in the face of bugs in

extensions.

1.4 Technologies for Achieving Flexibility

Recent developments in operating system architecture have been dominated by the transition

from so-called monolithic operating systems to those based on microkernel technology. The

introduction of microkernels has been largely motivated by the promise of better support for

distributed and multi-processor systems (i.e., a response to recent technological advances) as

well as improved modularity and exibility albeit at the cost of poorer performance in some

cases [12].

However, the use of microkernel technology is not the only possible approach to improved exi-

bility. In fact, �ve distinct, although not mutually exclusive, technologies that have been or are

being employed to achieve exibility can be identi�ed:

� microkernel technology;

� application-speci�c operating systems;

� object orientation;

� program families; and

� open implementation and reection.

Most operating systems that have exibility as a goal employ some combination of these tech-

nologies as illustrated in �gure 1.

Mach CHORUS SPIN Choices Apertos Spring Exokernel Cache Kernel PEACE Lipto PANDA

Microkernel

Application-specific
operating systems

Object orientation

Reflection

Program families

Figure 1: Technologies employed in exible operating systems.



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 5

Microkernel Technology

Compared to traditional monolithic operating system designs, microkernels primarily o�er in-

creased exibility by allowing large parts of the operating system to be implemented as one or

more (user-level) servers. Microkernels typically provide low-level abstractions such as tasks,

threads, virtual address spaces, and ports for local inter-process communication (ipc). Higher-

level abstractions such as particular process abstractions as well as services such as �le man-

agement and network communication are typically implemented by servers. The e�ect of this

separation is that the kernel can support di�erent operating system personalities, simultaneously

or at di�erent times, thereby providing the exibility necessary to address feature de�ciency and

version skew problems. For example, the Mach microkernel has been used to support various op-

erating system personalities ranging from Ms-dos to 4.3Bsd Unix and Vms [12]. Likewise, the

Chorus microkernel supports both Unix and an object-support operating system personality

known as Cool [50]. In general, multiple versions of the same personality can coexist.

This separation also allows application developers the choice of implementing directly on the

microkernel interface as well as on an appropriate operating system personality thereby avoiding

feature abundance. For example, real-time or embedded applications that have no need for the

full generality of a traditional operating system might be implemented directly on the microker-

nel interface thereby optimising their use of system resources and improving performance.

Flexibility is also improved because modifying components of the operating system implemented

as servers is simpler than modifying integrated components of a monolithic kernel. Thus, new

implementations of particular services can be developed and installed more easily. However, it

is worth noting that the granularity of such changes, i.e., the granularity of scope control, is

quite coarse since the unit of replacement is typically a server and all clients of that server are

a�ected. Likewise, the degree of incrementality is quite low since there is typically no speci�c

support for modifying a single server.

Microkernels have also attempted to provide increased exibility in other ways. For example,

as described previously, Mach provides an interface to its thread scheduling mechanisms that

allows applications to inuence their scheduling policy. Moreover, microkernels usually allow

some aspects of the abstractions that they provide to be implemented in cooperation with

applications; the best known example is probably the use of external pagers to support the

microkernel's virtual memory system. Provision of an external pager allows an application to

control paging operations on its data, often at quite a �ne granularity of scope control (since

di�erent pagers can be used for di�erent regions of a single address space). Extensions to

the external paging interface also allow applications to be involved in page replacement policy

decisions [51]. Again, incrementality is poor since, in the absence of additional support, every

pager has to be written from scratch.

Notwithstanding the considerable advantages that microkernels o�er over traditional operating

system designs in terms of exibility, it is still worth noting that with the exception of some of

the mechanisms outlined in the previous paragraph, the kernels themselves tend to be rather

inexible. Internal modularity is usually emphasised in order to isolate machine dependencies

and thereby improve portability. However, the range of policies and mechanisms supported is

usually quite static and not capable of being easily altered to respond to the characteristics

of particular applications. Moreover, the division of functionality between kernel and servers

is typically �xed. The Chorus microkernel addresses this issue to some extent by allowing



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 6

privileged servers to be loaded into the kernel's address space [57]. In that sense, Chorusmay be

said to provide an extensible kernel. This de�ciency of previous microkernels was also addressed

explicitly in the design of the Spin kernel [9]. The main goal of the Spin design was to make

the kernel extensible and con�gurable by allowing applications to dynamically install so-called

extensions into the kernel; such extensions may change both the interface and implementation

of the kernel. In contrast to other microkernels, Spin provides only a default set of low-level, or

core, services that are responsible for managing memory and processor resources. Applications

are expected to implement higher-level kernel abstractions to suit their own needs by means of

extensions built from these core services. For example, Spin provides only very primitive support

for multiplexing the processor among multiple threads of control and an application can provide

its own thread package and scheduler as an extension that runs within the kernel. Language and

link-time mechanisms are used to protect operating system code running in the kernel address

space while providing extensions with �ne-grained protected access to core services and services

provided by other extensions (often at the cost of only a single procedure call). In particular, the

Spin kernel and extensions are implemented in a type-safe language (Modula-3). As a result,

extensions cannot access memory or execute privileged instructions unless they have been given

explicit access through an interface.

Application-Speci�c Operating Systems

In [5], Anderson put the case for what he termed \application-speci�c operating systems". The

goal of an application-speci�c operating system is to deliver high-performance, combined with

the ease of sharing resources and data among applications and the simpler programming model

found in general-purpose operating systems, without requiring the application programmer to

(re)write large parts of the operating system as had traditionally been the case. In Anderson's

proposal as much of the operating system as possible is pushed out into runtime libraries linked

with each application. The role of the operating system kernel is then reduced to mediating ap-

plication requests for physical resources and enforcing hardware protection boundaries between

applications. The runtime library linked with each application is responsible for providing the

traditional operating system interface to applications.

While Anderson did not describe a speci�c operating system implemented according to this

principle, a number of other researchers have proposed operating system designs conforming to

this general approach, most notably Panda [7], V++ [21], and ExOS/Aegis [29]. In each case,

the designers have proposed kernels that are responsible only for mediating application requests

for physical resources and enforcing hardware protection boundaries between applications as

suggested by Anderson. All higher level operating-system mechanisms and policies, which could

bene�t from application-oriented specialisation, are intended to be implemented in user-level

servers and libraries.

Anderson's position was probably motivated by his earlier experience with scheduler activations

[6] in which the implementation of kernel threads in Topaz was modi�ed so that the kernel was

only responsible for the allocation of processors to applications while the applications themselves

were made responsible for actually scheduling threads (in user mode). However, his approach

can also be seen as a natural evolution of the microkernel-based approach to operating system

design. In this context, the main innovation can be seen as the provision of kernel interfaces

that expose the management of physical resources to applications rather than providing higher-



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 7

level interfaces as in traditional microkernels. The task of building the application-speci�c

operating system outside of the kernel remains. Interestingly, the designers of most of the

existing application-speci�c operating systems have suggested using object-oriented techniques

to provide customisable implementations of the user-level components of the system. In addition,

in most cases the supervisor-mode component of the operating system, although small, is �xed.

Aegis allows application code to be dynamically loaded into, and run, in the kernel address

space using a variety of techniques to protect other code running in the same address space from

malicious interference. The Spin microkernel mentioned previously falls somewhere between an

application-speci�c operating system, as de�ned by Anderson, and a traditional microkernel in

that it provides a small set of core kernel services from which application-oriented services can

be built. However, in the case of Spin those services are expected to be implemented by in-kernel

extensions rather than by runtime libraries.

Object Orientation

A complementary approach to the development of exible system software is that based on the

use of object-oriented techniques. While both traditional and microkernel-based operating sys-

tems have been implemented in object-oriented programing languages, Russo [58] characterises

an object-oriented operating system as one that is both implemented using object-oriented tech-

niques and provides its services via invocations on system objects. Object-oriented operating

systems are attractive for a number of reasons. Object orientation is currently the software

engineering discipline of choice in the computer industry. The advantages { from the software

engineering point of view { of using object-oriented analysis, design, and implementation tech-

niques are well known [13] and include code reuse, improved portability, easier maintenance, and

incremental extensibility. For these reasons, it seems only natural to use these same techniques

in the design and implementation of operating systems. Indeed, this observation has lead some

researchers to conclude that object-oriented operating systems are \boring" as a research topic

[34]. However, object-oriented operating systems o�er a number of other advantages in addition

to those already mentioned. The use of object-oriented techniques to design an operating sys-

tem provides the opportunity to build highly customisable systems. Object-oriented operating

systems, such as Choices, that are based on frameworks support code reuse and customisation

through the use of inheritance [19]. Moreover, system classes may be exposed to applications

so that they can take advantage of inheritance and polymorphism to provide specialised imple-

mentations of some system services for their own needs as in Panda [7]. Choices is reviewed in

detail in section 2.1 as being representative of this approach.

Recent multi-server microkernel-based operating systems have also made extensive use of object

orientation, in particular, to de�ne the interfaces between the various servers making up the (dis-

tributed) operating system [32, 52]. Use of object-oriented interfaces allows a clean separation of

interface from implementation permitting multiple implementations of a service to coexist and,

in particular, allowing applications to provide their own implementations of system services. As

[34] points out, such separation of interface and implementation blurs the distinction between

applications and system services allowing users to acquire and install \shrink-wrapped" system

services from multiple vendors and install them (possibly dynamically) as long as they conform

to the appropriate interfaces.

Furthermore, the use of object orientation allows location-transparent access to distributed



1 TOWARDS FLEXIBLE OPERATING SYSTEMS 8

services to be provided via remote object invocation (roi) and hence provides a good basis for

so-called \single system image" distributed operating systems. Location transparency allows the

con�guration of the system (including the distribution of servers) to be adjusted dynamically. It

is interesting to note that microkernel-based operating systems are now employing the kind of

support o�ered by object-support operating systems { such as roi, dynamic linking, and garbage

collection { to implement their servers [61]. Section 2.4 describes Spring as being representative

of the application of object-orientation in a distributed multi-server operating system.

Notwithstanding the availability of support for location-transparent object invocation, most mi-

crokernel based operating systems distinguish services provided by the microkernel (and accessed

via system calls) and those provided by servers (and perhaps accessed via object invocation).

Moreover, most still map a server to a protection domain. A notable exception that emphasises

orthogonality between modularity and protection is Lipto [28], which is reviewed in detail in

section 2.2.

Program Families

An alternative approach to the design of (statically) exible system software, which predates the

recent interest in microkernels and object orientation, is based on the use of program families.

Parnas [53] de�nes program families as \sets of programs whose common properties are so ex-

tensive that it is advantageous to study the common properties of the programs before analysing

individual members". The members of a family might di�er only in that they run on di�erent

hardware con�gurations, because they embody di�erent mapping decisions due to their intended

use, or because some members of the family provide only a subset of the features of other mem-

bers so that their clients do not have to pay the costs associated with the resources consumed

by unused features [54].

In order to support �ne-grained customisation of the members of a program family, its design

begins by identifying a minimal subset of system functions that might conceivably perform a

useful service. This minimal subset may be su�cient for the needs of some clients { in which

case it is referred to as a minimal but perfect subset . Thereafter, further members of the family

are implemented by making minimal extensions , which provide additional functionality, to the

system. Essentially, each extension de�nes a new virtual machine that is available to clients.

[54] claims that maximum exibility is achieved when the smallest possible extensions are made

in each iteration. However, as discussed in [65] there is a trade-o� between taking such a pure

bottom-up approach to the design of a program family { in which a number of extensions may be

needed before a system meeting the needs of any client emerges { and taking a more pragmatic

approach which is driven top-down by application requirements { leading to a design in which

extensions are dictated by the immediate needs of some clients.

Operating system designs based on the use of program families were proposed as early at the

1970s [33]. However, this approach was largely ignored by operating-systems researchers until

the widespread adoption of object-oriented software engineering techniques and their application

to operating systems in the late 1980s. As described in [40], the minimal subset of system

functions is naturally implemented as a set of superclasses and minimal system extensions can

be introduced by means of subclassing. The design of the Peace object-oriented operating

system is based on this principle and is reviewed in detail in section 2.3.



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 9

Open Implementation and Reection

Recently Kiczales has proposed a new model of abstraction for software engineering known

as the open implementation model [45, 48, 49, 47]. The basis of this model is the argument

that while the traditional information hiding/black-box model of abstraction shields clients of

an abstraction from having to know the details of how that abstraction is implemented, it also

prevents them from altering those details when desirable. In preference, clients of an abstraction

should be able to exercise some control over the mapping decisions made in its implementation.

Kiczales advocates distinguishing the base interface of an abstraction, which o�ers the usual

functionality of the abstraction, from the meta interface, which allows clients to control how

certain aspects of the abstraction are implemented. Rather than exposing all the details of the

implementation, the meta interface should provide an abstract view of the implementation that

allows clients to adjust the implementation in well-de�ned ways.

Open implementation provides a model for how exible software systems could be built as well

as a common basis for discussing the designs of existing exible systems. Indeed much of the

terminology used to describe exible systems in this chapter { mapping dilemmas, scope control

and incrementality { has its roots in the open implementation community. Kiczales claims that

many existing approaches to providing exibility in system software can be understood in terms

of the open implementation model and the separation between base and meta interfaces. For

example, the Mach external pager interface can be seen as a meta interface to the Mach virtual

memory system.

The model of open implementation was an outcome of work on the use of metaobject protocols

in the implementation of object-oriented programming languages [46]. A metaobject protocol is

essentially a meta interface to the implementation of a language's object model that allows the

application programmer to control how certain aspects of the object model { such as object invo-

cation, dispatching, or inheritance { are implemented. The use of metaobject protocols is itself

a synthesis of earlier work on reection and object orientation. A reective system is essentially

one which is implemented in terms of itself, for example, in the case of programming languages,

a reective language is one where the implementation of the language uses the language itself.

Parallel work has applied these same ideas to object-oriented operating systems leading to the

development of reective object-oriented operating systems, most notably Apertos [66]. While

these systems o�er the potential of being highly con�gurable, to date their performance has been

poor. However, on-going research into the use of techniques such as dynamic code generation

may alleviate these problems in the future [55].

2 Inuential Object-Oriented Operating Systems

Section 1 reviewed a number of di�erent approaches to achieving exibility in systems software.

This section continues by reviewing a number of object-oriented operating systems that have

been particularly inuential or are otherwise noteworthy.



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 10

2.1 Choices { An Object-Oriented Operating System Framework

Choices [18, 19] is an object-oriented operating system under development at the University

of Illinois at Urbana-Champaign since 1987. Native implementations of Choices exist for the

Sun SPARCstation 1 and 2, the Encore Multimax, Ibm-compatible Intel 386- and 486-based

personal computers (pcs) and the Intel Hypercube. In addition, a version of Choices, known as

VirtualChoices, runs above SunOS 4.1.

The Choices project was perhaps the �rst to explicitly undertake the design and implementation

of a family of operating systems using object-oriented techniques. In particular, Choices pio-

neered the use of frameworks as the basis for the design of an operating system family. As such,

Choices has been highly inuential and has inspired much of the recent interest in object-oriented

operating systems.

Goals and Approach

The primary goal of the Choices project was to explore the use of object-oriented techniques for

the design of a family of operating systems for distributed- and shared-memory multi-processors.

The Choices design is intended to allow the construction of customised operating systems by

permitting a high degree of application-speci�c specialisation including the provision of support

for real-time and embedded systems [18]. A design methodology based on object-orientation

and the use of frameworks was adopted in order to support customisation as well as to facilitate

both design and code reuse between members of the operating system family through the use

of inheritance. The design in intended to encourage modi�cations and extensions, to support

porting, and to facilitate maintenance.

The design of Choices is captured as a framework that describes the fundamental (abstract)

components of the system and the ways in which they interact. At runtime, a Choices system

consists of a collection of objects that implement all aspects of the system including the ap-

plication and hardware interfaces as well as all operating system resources, mechanisms, and

policies.

In fact, Choices was designed as a hierarchy of frameworks. The top-level framework de�nes

abstract classes representing the fundamental components of the system and constraints to

which its sub-frameworks must conform. The constraints imposed by the framework on its

sub-frameworks ensure that they may be integrated in a consistent manner to form a Choices

system. The sub-frameworks represent subsystems of the operating system and introduce spe-

cialisations of the abstract classes de�ned by the top-level framework. The sub-frameworks

may also introduce additional abstract classes and constraints. Each (sub-)framework de�nes

interfaces as methods on abstract classes but restricts the implementation of those interfaces

by the constraints that it imposes. The components, interfaces, and constraints introduced by

the framework and its sub-frameworks are common to all members of the operating system

family and represent the common architecture shared by all family members. In this sense,

the framework supports design reuse across all the members of the operating system family. A

particular operating system, i.e., a particular instantiation of the Choices framework, is built

by introducing concrete classes implementing the components de�ned by the framework.



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 11

The Choices Framework

In Choices, the top-level framework introduces three fundamental abstractions: processes (i.e.,

threads), domains (i.e., virtual address spaces) and memory objects as illustrated by its entity

relationship diagram shown in �gure 2. Choices sub-frameworks describe various subsystems

including process management, memory management, persistent storage, message passing, com-

munication protocols, and device management. For example, �gure 3 shows the entity relation-

ship diagram illustrating the main abstractions of the memory-management sub-framework.

- A has exactly one of B

- A has zero or more of B

A B

A B

Process Domain
Memory
Object

Figure 2: The Choices framework.

Domain
Memory
Object

Address
Translation

Memory
Object
Cache

Physical
Memory

- A has exactly one of BA B

- A has zero or more of BA B

- A has zero or one of BA B

Figure 3: The Choices memory-management sub-framework.

A Choices system includes a single kernel domain and a number of user domains . Both the

user and kernel domains may support multiple processes. System processes run in the kernel

domain in supervisor mode while application processes run in user domains (and may run in

the kernel domain as a result of a system call). The framework supports the use of numerous

scheduling policies as well as gang scheduling for tightly-coupled, shared-memory multi-processor



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 12

applications.

The memory-management sub-framework supports multiple 32-bit virtual address spaces, one-

and two-level paging, and shared memory. Memory objects, backed by di�erent data sources,

can be mapped into di�erent regions of a virtual address space and can have their own individual

page replacement policies. Memory objects can be used to implement shared memory, since they

can be mapped into multiple virtual address spaces simultaneously, as well as memory-mapped

�les, since they can be backed by a �le. Later versions of Choices support persistent objects as

a further specialisation of the memory object abstraction and distributed shared memory (dsm)

by allowing memory objects to be mapped at multiple nodes simultaneously.

The persistent storage sub-framework supports a number of di�erent record and stream-oriented

�le systems as well as a persistent object store (pos). This includes the 4.2Bsd, System V

Unix, and Ms-dos �le system interfaces and disk formats. The design allows any selection or

combination of the available storage systems to be included in a single Choices system.

The message-passing sub-framework supports a range of options for each of the major func-

tional components of a message-passing system including the choice of message transport mech-

anism, synchronisation mechanism, and reliability semantics. Likewise, the communications

sub-framework supports a number of communications protocols including the Internet proto-

col stack. Finally, the device management sub-framework provides device abstractions and the

ability to dynamically load device drivers.

In Choices, the interface to the kernel is provided by a collection of kernel objects. Applications

that need to call the kernel must �rst lookup the required kernel object in a privileged name

server. If the caller is authorised to invoke the requested object, the name server allocates a

proxy for the target object in read-only memory in the caller's address space and registers the

proxy with the kernel. The proxy acts as a capability for the kernel object. The caller can

subsequently invoke the proxy as if it were the target object. When invoked, the proxy code will

trap into the kernel to invoke the kernel object that it represents (after appropriate protection

checks have been carried out to verify the source of the request).

Support for Distributed and Persistent Programming

Choices was originally developed as an operating system for distributed- and shared-memory

multi-processors providing such parallel programming functionality as multiple threads per ad-

dress space, various synchronisation mechanisms, gang scheduling, and message passing. Later

versions of Choices added additional support for distributed and persistent programming in C++

including support for roi and dsm.

Page-based dsm is supported by a specialisation of the memory-management sub-framework

that allows a single memory object to be mapped in multiple address spaces on di�erent nodes

of a network. The dsm protocol employed supports a multiple-reader/single-writer policy using

write invalidation [38, 20].

Access to remotely created C++ objects is also supported by an extension of the kernel object

proxy mechanism that allows access to remote objects using the underlying Choices message-

passing primitives [22].

Persistent C++ objects are supported as a specialisation of the �le system sub-framework. User-



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 13

de�ned subclasses of the class AutoLoadPersistentObject support automatic activation (and

deactivation) on demand [19]. References between such persistent C++ objects are implemented

as instances of subclasses of the class Reference. An instance of Reference stores a descriptor

for the target persistent object that includes its location in the �le system. The Reference

class hierarchy mirrors the AutoLoadPersistentObject class hierarchy allowing almost all uses

of persistent objects to be type checked at compile time. Use of Reference also allows the use

of references to persistent C++ objects to be syntactically identical to the use of references to

ordinary C++ objects. Garbage collection of acyclic persistent data structures based on reference

counting is also supported [20]. Finally, dsm can be used to access remote persistent objects.

2.2 Lipto { Orthogonality of Modularity and Protection

Lipto [27, 28] is an object-oriented operating system developed at the University of Arizona

between 1991 and 1993. Lipto was developed as a prototype implementation of an object-

oriented architecture for a family of portable distributed operating systems.

Goals and Approach

The primary goal of the Lipto project was the development of a new operating system archi-

tecture supporting both a high degree of application-speci�c customisability and con�gurability,

and, a high degree of portability. The underlying philosophy was that applications should be

provided only with the functionality that they need from their operating systems and should

not have to pay a performance penalty due to unused functionality.

Central to the Lipto approach are two basic principles. The �rst principle is that operating

systems should be built from collections of composable and con�gurable services . The second

principle is that modularity { the division of a program (in this case the operating system) into

separate loosely-coupled units exporting well-de�ned interfaces { is orthogonal to protection

and should therefore be decoupled from protection in the operating system architecture. Such

decoupling is a prerequisite for �ne-grained and e�cient system customisation and con�guration.

While the importance of modularity in operating system design is well known, most operating

system architectures have tended to tightly couple modularity and protection. For example,

in conventional microkernel architectures the unit of modularity is a \server" and servers are

mapped one-to-one on to protection domains. In such architectures, modularity is necessarily

coarse-grained due to the cost of crossing protection boundaries. The operating system designer

is forced to make a trade-o� between modularity and performance. Moreover, the division of

functionality between di�erent servers, as well as between servers and the kernel, is normally

static and made as an early design decision. The result is the traditional debate within the

operating systems research community as to what should be \in the kernel" and what should

be implemented in user space. Due to the coarse granularity of modules, application-speci�c

customisation { in particular incremental customisation { of the system is di�cult.

The Lipto argument is that, by decoupling modularity and protection, decomposition of the sys-

tem into modules can proceed according to best-practice software engineering principles without

concern for the cost of crossing protection domains. The assignment of modules to protection

domains then becomes a matter of con�guration. In this way, the trade-o� between modular-



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 14

ity and performance traditionally made early in the design of an operating system becomes a

trade-o� between protection and performance made at system con�guration time. Moreover, the

granularity at which the system can be customised is much �ner and the assignment of modules

to protection domains can be done on an application-speci�c basis.

Given a �ne-grained decomposition of the system into modules, operating system services can

then be composed dynamically from appropriate collections of modules without regard for the

eventual con�guration of the modules with respect to protection domains.

The major requirement for supporting these goals is the provision of location-transparent oper-

ation invocation between modules that is optimised for the common case of collocated modules.

Given location-transparent operation invocation, modules can use other modules without knowl-

edge of whether they are currently located within the same or a di�erent protection domain.

E�cient local invocation allows the e�cient implementation of services composed of modules

located within a single protection domain { comparable to monolithic operating system archi-

tectures { without the need to sacri�ce modularity.

Architecture and Infrastructure

Lipto's architecture (see �gure 4) consists of: a �xed nucleus, referred to as the nugget , which

provides only functionality that must be implemented in supervisor mode; infrastructure sup-

porting modules and objects, in particular, location-transparent operation invocation and dy-

namic binding; and, �nally, a con�gurable and extensible collection of modules implementing

other operating system services. The nugget provides a minimal set of trusted services including

low-level process and memory management (i.e., the implementation of address spaces including

the kernel address space). As well as supporting location-transparent operation invocation, the

module and object infrastructure supports dynamic loading of module implementations. Mod-

ules can be assigned arbitrarily to address spaces (i.e., protection domains) including the kernel

address space.

In Lipto, a module provides the implementation of one or more types of object. Objects are

passive, encapsulate state, and export a set of operations. The composition of services from

modules is governed by abstract interface de�nitions called service classes . A service class

de�nes a downcall interface and an upcall (or callback) interface for each of the object types

used to provide a service in that class. Each module implements exactly one service class. A

service is composed by building a graph of modules in a bottom-up fashion starting from modules

in service classes that need no underlying services. Service classes form a hierarchy according to

a conformity relationship and Lipto supports both inheritance of interfaces and polymorphism.

Modules that implement the same service class, i.e., that provide the same abstract interface,

are interchangeable. Moreover, a client requiring a module that implements a particular service

class can also use any module in a service class that is a descendent of the required service class

in the inheritance graph.

The main feature of the infrastructure supporting modules and objects is location-transparent

operation invocation. In order to support �ne-grained modularity, the invocation mechanism is

optimised for the common case of collocated modules. Virtual addresses are used as object ref-

erences and proxies are used to represent non-local objects and to forward invocation requests

to the objects that they represent. Binding to a service is accomplished using the so-called



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 15

MOI

- Domain

- Module

- "depends on"

- module and object
infrastructure

Nugget

User

Kernel

UserUser

MOI MOI MOI

MOI

Figure 4: The architecture of Lipto.

system directory. Clients lookup services in the system directory using service identi�ers and

are returned references to the appropriate server objects. Object location, authentication, and

binding all happen as a side e�ect of service lookup, e�ectively establishing a connection be-

tween client and server, and further optimising invocation performance. The underlying remote

procedure call (rpc) service used for operation invocation is itself con�gurable depending on

the location of client and server. Di�erent rpc protocols can be used for cross-address-space

and remote invocations. A protocol called user-kernel rpc is used when objects in user address

spaces invoke objects located in the local kernel address space and a protocol called kernel-user

rpc when objects in the kernel address space invoke objects in local user address spaces.

It is important to note that Lipto does not require that modules be written in any particular

language, object-oriented or otherwise, as long as the implementation of objects respects the

encapsulation required by the architecture. Likewise, the Lipto architecture does not support

inheritance of module implementations relying instead on composition to achieve code reuse.

Moreover, Lipto speci�cally does not provide object support mechanisms such as persistence or

migration, preferring to leave that task to higher-level subsystems. However, the designers do

advocate that distributed applications be implemented in languages that support distributed

and persistent objects [26].

Finally, although Lipto supports incremental con�guration of operating system services via

composition, actually carrying out such con�guration requires that applications be provided

with a meta-level interface allowing them to control the composition of the services that they

use [25].

2.3 Peace { An Object-Oriented Operating System Family

Peace [65] is the name given to a family of operating systems developed at the German National

Research Center for Information Technology between 1990 and 1993. Peace, which stands



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 16

for Process Execution And Communication Environment (and also for the key design goals of

the project Portability, E�ciency, Adaptability, Con�gurability, and Extensibility), is a second

generation object-oriented operating system family which evolved from a previous microkernel-

based operating system family developed between 1986 and 1990, and also known as Peace.

The Peace family of operating systems is targeted primarily at distributed-memory paral-

lel computers, in particular, massively parallel machines with (potentially) thousands of pro-

cessing nodes. Peace runs as a native operating system on the Manna supercomputer and

PowerPC-based massively parallel computers, and as a guest system above Parix, SunOS 4.1,

and Windows-NT.

Goals and Approach

Perhaps the major goal of Peace was to develop an operating system architecture capable of

delivering good communication performance to parallel applications. In particular, one of the

main goals of the design was to minimise both the message-startup time and communication

latency associated with message-passing operations. Message-startup time is described as the

processing time lost to a program as a result of it issuing a request to transmit a message.

Communication latency is the one-way, end-to-end time required to transmit and deliver a

message including both the protocol overhead at each end and the network latency. The Peace

designers assert that message-startup time is the dominant factor since communication-latency{

hiding techniques (such as the use of multiple threads) are available. Experience with the

previous microkernel-based implementation of Peace showed that the major source of message-

startup overhead is operating system software, particularly where message startup requires a

protection boundary between kernel and user space to be crossed. Figures given in [64] show

that multi-tasking overhead for nodes running a single application task contributed 74% of the

message-startup time in that version of Peace.

The fundamental tenets underlying the design of Peace are that the design of an operating

system for a massively parallel machine should be based on a family of operating systems (in

which each member of the family is tailored to the needs of speci�c applications) and that the

implementation of a family of operating systems should be based on the use of object orientation.

Thus, applications do not have to pay for unnecessary functionality, in particular, unnecessary

isolation of kernel and user space where only a single application task per node is required.

As described in section 1.4, the design of an operating system family begins by de�ning a minimal

subset of system functions providing a collection of fundamental abstractions. This minimal

subset may be su�cient for the needs of some applications { in which case it is referred to as a

minimal but perfect subset { or may simply serve as the basis for implementing minimal system

extensions towards the requirements of speci�c applications. In fact, a particular application

can be seen as the �nal system extension. While the design of an operating system family does

not imply any particular implementation technique, the Peace designers consider that it is

\almost natural to construct program families by using an object-oriented framework" [65]. The

minimal subset of system functions is implemented as a set of superclasses and minimal system

extensions are introduced by means of subclassing. Moreover, polymorphism allows di�erent

implementations of the same interface to coexist. Finally, providing an object-oriented interface

allows applications to specialise operating system abstractions by means of inheritance.



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 17

The designers of Peace rejected a design based on the use of an underlying microkernel. Micro-

kernels provide multi-tasking support by default and thus introduce both unnecessary function-

ality and resulting overhead for many parallel applications in which only a single task per node is

required. Moreover, microkernels introduce mandatory isolation of kernel and user space, often

making access to the network extremely heavyweight (due to the need to cross the kernel/user

protection boundary) and resulting in poor message-startup time.

Although realising that support for kernel isolation and multi-tasking are required by some paral-

lel applications, in particular to allow scaling transparency whereby the number of tasks used by

the application is independent of the number of nodes, the Peace philosophy dictates that they

should not be imposed on all applications unnecessarily. Thus, the Peace family of operating

systems includes members supporting nodes with di�erent operating modes including single-

user/single-tasking (sust), single-user/multi-tasking (sumt), multi-user/single-tasking (must)

and multi-user/multi-tasking (mumt) nodes. The Peace family-based approach to operating

system design therefore subsumes the traditional microkernel-based approach.

The same philosophy is applied to the design of the Peace communications subsystem. Realising

that the choice of protocol depends on the operating mode of the system, the nature of the

application, the communication paradigm used at the application programming interface, and

the interconnection network provided by the parallel machine, the designers of Peace based the

design of the communications subsystem on a protocol suite from which appropriate protocol

implementations may be chosen.

In addition, while applications should be provided with transparent access to �le, input/output

(i/o), and other system services, the Peace design recognises that not all nodes need to pro-

vide these services. Moreover, such services need only be loaded as used. Thus, the design

supports a dynamically alterable operating system structure based on incremental loading (and

replacement) of services as required.

In summary, Peace supports both horizontal extension and vertical extension where the former

refers to the introduction of new abstractions and the latter to the provision of new implemen-

tations of an abstraction by customisation or component replacement.

The Peace Family

A member of the Peace family is composed of three major functional components known as the

nucleus , the kernel , and pose (the Parallel Operating System Extension) as shown in �gure 5.

The nucleus acts as the minimal subset of system functions and provides a runtime executive for

thread processing and ipc. The nucleus is node-dependent, present on every node of the parallel

machine, and acts as the software backplane connecting all the components running on the

machine. The nucleus interface de�nes an abstract data type of which several implementations

exist depending primarily on the desired operating mode of the node on which the nucleus will

run. The implementations of this abstract data type de�ne a nucleus family on top of which the

Peace parallel operating system family is implemented.

The second major functional component is the kernel providing thread management (including

the ability to create and delete threads), device abstractions, and propagation of traps and

interrupts. The kernel need not be present on every node and hence its services may be accessed



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 18

Nucleus Kernel

PEACE

P {arallel}

O {perating}

S {ystem}

E {xtension}

Application

Figure 5: The major components of Peace.

remotely. The kernel is however node-dependent since it may need access to speci�c devices or

perform other functions that, although not being hardware dependent, must be executed locally

at the appropriate node, for example, creation of a new thread.

Finally, pose provides application-oriented operating system services including memory man-

agement, �le management and i/o. Again, pose need not be present on every node and its

services may be accessed remotely. pose is neither hardware- nor node-dependent.

The nucleus and kernel are bundled together as a single entity , known as the kernel entity ,

which can be loaded to bootstrap a node. In general, entities correspond to tasks and form

the units of distribution in the system. Entities can be loaded dynamically and are used to

represent system extensions. pose is composed of a number of entities that can be loaded on

any appropriate node as required. Thus, pose is a dynamically alterable component supporting

incremental loading of the operating system. Whether an entity shares a node with another

entity is a matter of con�guration rather than design.

All of the components described above are represented by objects (active objects in the case

of the kernel and pose) and their services accessed via local, cross-address-space or remote

invocation as appropriate. As will be described below, such an object invocation might result

in loading of the entity providing the required service.

The nucleus family (see �gure 6) encompasses members implementing a number of variants of

the four di�erent operating modes outlined above. The most primitive sust family member

provides network communication and non-preemptive thread processing. The next member

provides preemptive thread scheduling based on a timer and thereby allows both kernel and

application threads to share a node. The �nal sust member provides the basis for higher-level

multi-user and multi-tasking family members by providing support for nucleus separation. This



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 19

requires that traps be used to call the nucleus although no memory protection is provided.

Nucleus separation also allows the operating mode of a node to be changed dynamically by

replacing the kernel entity with a di�erent version and changing the trap vector table entries

that point to nucleus functions [41].

single-user/single-tasking

network communication

thread scheduling

nucleus separation

kernel isolation

network integrity

multi-user/
single-tasking

task scheduling

task isolation

single-user/
multitasking

multi-user/multitasking

security
- inherits from

Figure 6: The Peace nucleus family.

The must family members allow a multi-node machine to be partitioned among di�erent users

at the same time. Each node is assigned to a single user at a time and multiple users must

be able to share the machine's interconnection network safely. This requires that the network

interface of each node be protected so that one user's application cannot interfere with another's.

Thus, the basic must family member supports memory protection and vertical isolation of the

kernel entity forcing applications that wish to access the network to do so via the nucleus.

A further must family member adds support for capability-based object addressing so that

one application cannot use communication endpoint identi�ers referring to objects belonging to

another application.

The sumt family members naturally support multiple tasks per node where each task consists of

a collection of threads. The basic sumt family member adds support for task scheduling while

a further member adds support for horizontal isolation of tasks based on memory protection (as

well as vertical isolation of the kernel).

Finally, the mumt family member combines features of both the must and sumt members to

provide both network security and protected address spaces.

Based on the architecture and di�erent operating modes outlined above, Peace distinguishes

three di�erent types of nodes, each of which supports a number of di�erent con�gurations (see

�gure 7). User nodes are dedicated to the execution of user applications. A user node runs



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 20

a nucleus and may run a kernel. The nucleus may provide single- or multi-tasking with �xed

numbers of threads and tasks. If the kernel is present, thread and task creation are supported.

System nodes provide globally accessible operating system services, always run a kernel, and

may run pose. A system node that does not run pose only provides access to local devices

(i.e., it acts as a device server), while a node that runs pose may provide higher-level operating

system services. Finally, generic nodes run a nucleus, kernel, and pose and support user and

operating-system applications in multi-tasking mode. posemay run in supervisor mode, yielding

a monolithic kernel organisation, or user mode, yielding a microkernel-like kernel organisation.

All of these con�gurations can coexist in the same system. Peace can also be layered above an

existing operating system (see �gure 8) to support parallel processing on workstation clusters.

single-tasking
(static threads)

multitasking
(static threads)

single-tasking
(dynamic threads)

multitasking
(dynamic threads)

system server

device server

multitasking
(microkernel)

multitasking
(monolith)

User Nodes

Network

Generic Nodes

System Nodes

- application

- POSE

- nucleus

- kernel

- protection boundary

- optional protection boundary

Figure 7: Native Peace con�gurations.



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 21

Network

Host

Host

Host

- application

- POSE

- nucleus

- kernel

- protection boundary

Host - host operating system

Host

Host

Figure 8: Hosted Peace con�gurations.

Using Peace

The Peace nucleus implements a software backplane for parallel applications that provides

thread processing and inter-process communication. Technically, the nucleus is provided as a

number of C++ class hierarchies. The question then arises as to how applications actually use

the nucleus. Two di�erent approaches are possible yielding two di�erent views of Peace.

In the object-oriented view, the class hierarchies comprising the nucleus are fully exposed to

application programmers allowing them to customise the system to their own needs. Thus a

completely application-oriented operating system results. While providing maximum exibility,

this approach has a number of drawbacks. For example, application programmers may be over-

whelmed by the complexity of the full class hierarchy. More practically, application programmers

are limited to using the system implementation language to develop their applications.

The alternative view is a class-based one in which the internals of the system are hidden behind

a number of interface classes implementing application-oriented abstractions and supporting

di�erent language bindings. Of course, these interface classes are replaceable and may be dif-

ferent for di�erent types of applications. The interface classes are derived from the appropriate



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 22

system classes by means of inheritance. In this view, the software backplane is seen as providing

a number of building blocks { thread location, communication, and scheduling { from which

di�erent application-oriented execution models may be provided. Each execution model is char-

acterised by a speci�c process and communication model. In most cases, the interface classes

can be implemented very e�ciently in a small number of C++ statements. Moreover, it is still

possible for application programmers to implement higher-level abstractions starting from those

provided by the interface classes, using inheritance or otherwise, in a user-level runtime library.

Incremental Loading and Recon�guration

Another goal of Peace was to overcome the performance problem associated with bootstrap-

ping a massively parallel machine consisting of very many nodes. To tackle this problem Peace

supports incremental bootstrapping of a parallel machine by allowing individual nodes to be

bootstrapped only as required. A similar approach is applied to the bootstrapping of the op-

erating system. In fact, most services provided by Peace are only loaded on demand. Such

incremental loading of the operating system results in a completely application-oriented operat-

ing system con�guration and avoids overhead due to the presence of unnecessary functionality.

Furthermore, services that have been loaded previously, but are no longer required, may be

discarded.

Kernel and pose services are provided by active objects that may be installed and discarded

dynamically and are hence referred to as transient objects . These objects are always accessed

via object invocation and incremental loading is triggered by the object invocation system when

it discovers (for example, from the communications subsystem) that the entity encapsulating

the required object is not currently loaded. Entity loading (including loading of the kernel entity

at a node to be bootstrapped) is supported by fundamental pose services that must be present

at some node in the system [60]. Transient objects may be discarded explicitly by their clients

or may shut themselves down as appropriate.

Incremental loading can also be applied to a subset of the functions provided by the nucleus

if required. Since nucleus functions are provided by passive, as opposed to active, objects, a

nucleus that supports such incremental loading must include mechanisms to detect attempts to

use functions that are not currently loaded. The responsibility for actually loading the required

functions rests with pose.

Dual Objects

To support the development of parallel (and distributed) applications as well as operating system

services, Peace provides language support for distributed objects based on a novel object model

supporting dual objects [42], which is reminiscent of the fragmented object model of Fog [30]. A

dual object is a distributed object represented by a single prototype and one or more likenesses .

The prototype maintains both the public and private state of the dual object and is typically

located at a single node although it may migrate between nodes dynamically. A likeness acts

both as a (possibly inconsistent) replica of the public state of the dual object and as a proxy for

the prototype. Invocations on a dual object may be performed locally on the likeness (if they

only need access to the public state of the object) or remotely on the prototype via the likeness.

Vertical consistency between likeness and prototype is maintained by (optional) uni�cation and



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 23

extraction during invocations. Uni�cation replaces the public state of the prototype with the

state maintained by the likeness. Extraction generates a new likeness from the public state of

the prototype. Maintaining horizontal consistency between likenesses is the responsibility of the

application programmer.

Dual objects are supported by clerks where a clerk is a thread responsible for creating prototypes

of some type and executing remote invocations on them. Clerks may be created at many nodes

and requests to create prototypes must be directed to an appropriate clerk and may lead to

dynamic loading of the clerk's code. In a typical scenario, a binding between a likeness and a

clerk is established when the likeness's constructor is executed and a corresponding prototype

is created at the clerk. Future invocations on the likeness result in remote invocation requests

for the prototype being executed by the clerk.

A number of di�erent parameter passing modes for references and pointers are supported includ-

ing standard modes such as call-by-value, call-by-result, and call-by-value-result but not call-

by-reference. For references, call-by-value-result is the default. In addition to these standard

parameter passing modes, call-by-copy and a variant of Emerald's call-by-move [10], referred to

as call-by-vanish, are supported. Call-by-vanish moves the target object but does not maintain

local references to it at the source node. Finally, call-by-likeness allows a likeness to be sent in

a remote invocation request. Since possession of a likeness allows methods to be invoked on a

remote object, this mode subsumes call-by-reference.

Language support for dual objects is provided by the P++ preprocessor for C++. Classes marked

as global are interpreted as dual object classes and appropriate prototype, likeness, and clerk

classes generated. Both the prototype and likeness classes can be individually named and are

introduced as formal types. Hence it is possible to derive a dual object class from a likeness

class resulting in a truly \distributed" object.

2.4 Spring { An Object-Oriented, Multi-Server, Operating System

Spring [52, 35] is an object-oriented multi-server operating system originally developed at Sun

Microsystems Laboratories between 1989 and 1993 with subsequent development being under-

taken at SunSoft. At the time of writing Spring runs on Sun SPARCstations 2, 5, 10, and

20.

Spring was conceived as a next-generation operating system designed speci�cally for a networked

world. The design of Spring consequently emphasises support for the development of distributed

applications and services, and support for a high degree of location transparency. Another major

concern was to provide strong support for security. Finally, the design stresses modularity as a

means of improving the exibility and extensibility of the system, as well as its maintainability

and the ease with which new applications and services can be installed.

Goals and Approach

The rationale for the Spring project is based on the premise that, while existing operating

systems provide many useful and indeed necessary features, they also lack a number of features

that are necessary in a modern operating system. Chief among these are adequate support for

distributed applications (including sophisticated distributed system services), strong support



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 24

for security (especially in the distributed case), and support for multi-threading and multi-

processing. Other problems with current operating systems identi�ed by the designers of Spring

include the di�culty of delivering, maintaining, and evolving the system. Thus Spring was

intended to improve \dramatically" on current systems and, in particular, to make distributed

programming \signi�cantly" easier while still supporting existing applications and interworking

with existing networked systems [23].

The architecture of Spring is characterised by a strong emphasis on modularity. All the com-

ponents of the system are de�ned by tightly-speci�ed fully-abstract interfaces allowing multiple

implementations of any component to coexist transparently to its clients. Most components

of the operating system are thus regarded as replaceable parts. Interfaces are de�ned in an

interface de�nition language (idl) that is both similar to, and a forerunner of that standardised

by the Object Management Group (omg) in its Common Object Request Broker Architecture

(corba) [31]. Use of an idl makes interfaces language-independent and hence contributes to

the openness of the system. Spring idl also supports interface inheritance. Hence, at run-

time a client expecting to use a component supporting some given interface may actually use a

component supporting a derived interface.

In addition to the emphasis on modularity, the designers of Spring adopted object orientation

as the basis for providing location transparency. Almost all components of the system are

implemented as objects managed by a set of object managers that are themselves objects.

Access to all services is via location-transparent secure object invocation. Any given object

can be located in the same address space as its clients, in a di�erent address space, or on a

remote machine. From a programmer's point of view there is no distinction between local and

remote objects. Moreover, there is no distinction between applications and system services.

Both are implemented as objects and accessed via object invocation. Thus, the distribution of

system services is transparent and, in this sense, Spring is inherently distributed.

The Spring Architecture

The architecture of Spring is fairly conventional in that it is based on the use of an underlying

microkernel that provides the low-level support for the other components of the system, which

are implemented by object managers running in user mode (see �gure 9). Most components

are provided as dynamically loadable modules. At boot time the operating system makes the

decision as to which components are loaded into which address spaces so that related components

can be grouped together [35].

The Spring microkernel consists of two major subcomponents: the nucleus and the virtual

memory manager (vmm). The Spring nucleus provides domains (i.e., tasks) and threads , and

supports secure cross-domain object invocation based on doors . A door is essentially a software

capability for an entry point to a domain. A door is represented by a program counter value

(to which control is transferred by the nucleus during an invocation via the door) and a value

speci�ed by the domain to which the door refers (which might be used to identify a particular

object within the domain). Doors are unforgeable and are maintained by the nucleus. Domains

refer to doors via domain-local door identi�ers. Possession of a door confers the right to carry

out an invocation via the door. A door can only be obtained with the permission of the domain

to which it refers or of a third party that already possesses the door. The target domain can



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 25

- object server

Spring Microkernel

Nucleus VMM

libue

libue

Shell

X Server

Unix Process
Server

Dynamic
Linker

tty Server

File ServerIP Server

Authentication
Manager

Spring
Application

Spring
Application

Figure 9: The architecture of Spring.

revoke access to a door at any time. The implementation of doors is optimised for invocations

having only a small number of parameters (which can be transferred via registers) while the

Spring virtual memory system provides support for the transfer of large volumes of page-aligned

data in door invocations. Although users perceive both sides of a cross-domain invocation as

being executed by di�erent threads, in fact the nucleus supports hand-o� scheduling based

on a scheduling abstraction known as a shuttle. Invocations destined for remote domains are

forwarded via user-mode network proxies that implement di�erent protocol stacks.

The vmm is also fairly conventional supporting demand-paged virtual memory and providing

address spaces and memory objects representing memory that can be mapped into one or more

address spaces [44]. The vmm manages local physical memory and page replacement, and

caches pages of memory objects implemented by (external) pagers. The vmm allows di�erent

memory objects supporting di�erent views of (for example, di�erent access rights for) the same

underlying memory to coexist on a node while sharing the same physical memory cache. The

design of the vmm distinguishes between the memory object itself and the object on which

paging operations relating to the memory object are invoked by the vmm { the pager object for

the memory object. This allows the external pager to implement the memory object and the

pager object in di�erent domains. The vmm's interface to the external pager is provided by a

cache object for each mapped memory object. The vmm also supports copy-on-write and move

operations for page-aligned data transfer. These are, in turn, used in the implementation of

door invocation.

Among the various user-mode services provided by Spring are �le services, name services and a

Unix emulation service. Spring provides a distributed �le service supporting an on-disk Unix

compatible �le system. The Spring �le service also supports memory-mapped �les (by virtue of

the fact that �le objects are derived from memory objects) and a caching layer implements local

caching of remote �les thereby minimising network access.

Spring supports general-purpose name services allowing symbolic names to be associated with

objects of arbitrary types. A name service is build up from a collection of context objects . A



2 INFLUENTIAL OBJECT-ORIENTED OPERATING SYSTEMS 26

context stores a collection of name bindings between names and object references analogous to

a conventional directory. Since contexts are objects, a name binding for a context can be stored

in any other context allowing arbitrary naming graphs to be created. The naming services are

also used to support persistence as described below.

Finally, in line with the goal of supporting existing applications, Spring provides a Unix emula-

tion service implemented by a library and associated server [43]. Although binary compatibility

with Unix was not a goal of Spring, and is not supported, the Spring Unix emulation supports

a large subset of the system calls provided by SunOS 4.1 and runs dynamically-linked SunOS

4.1 executables without modi�cation. The goal of the Unix subsystem design was to reuse as

many of the standard Spring services, such as the �le service and naming service, as possible

and only provide the additional support necessary to map between the interfaces provided by

these services and that of Unix. Hence, the Unix emulation library mainly keeps track of the

relationship between Unix �le descriptors and the corresponding Spring objects, delivers signals,

and supports program startup. The Unix server, known as the Process Manager, maintains the

parent-child relationship between processes, keeps track of process and group identi�ers, for-

wards signals, and implements sockets and pipes. System call redirection is based on replacing

libc with the Spring Unix emulation library, libue, at exec time.

Support for Distributed and Persistent Programming

As described previously, support for distributed programming was at the heart of the design

of Spring. The interfaces to all the components of the system are de�ned in Spring idl and

almost all components are accessed using location-transparent object invocation. Spring sup-

ports transparent access to objects whose implementations are local to their clients' domains

as well as those implemented by object managers in other, possibly remote, domains. Object

invocation is supported by an idl compiler that generates the client and server stubs used by the

object invocation mechanism. At this level the Spring object invocation mechanism is similar

to many rpc implementations. However, in Spring the interface-speci�c stub code generated

by the idl compiler makes use of a so-called subcontract to actually carry out an invocation

[36]. Subcontracts are (replaceable) modules that implement the basic mechanisms to support

object invocation and argument passing depending on the desired semantics of the invocation.

For example, di�erent subcontracts might be used to carry out a a simple remote invocation, an

invocation on a replicated object, or an invocation on a persistent object. Any set of interface-

speci�c stubs can work with any subcontract and vice versa. Thus, all subcontracts provide a

standard interface to client stubs including routines to marshal the current object, unmarshal

an object, and carry out an invocation as well as some other miscellaneous routines.

In Spring, objects are always conceived of as existing at their clients; if objects are manager-

based then their manager only maintains their underlying state. At the client, an object consists

of a method table, a subcontract-operations vector, and a representation. The method table is

bound to the code for the object's stubs while the subcontract-operations vector points to the

subcontract operations to be used by the stubs. The representation will typically include one of

more doors providing access to the underlying state of the object wherever it may be located.

Spring also supports the notion of compatible subcontracts since interface-speci�c unmarshalling

code may receive objects that use di�erent subcontracts. In this case, dynamic linking of the



3 PERSPECTIVES ON OBJECT-ORIENTED OPERATING SYSTEMS 27

correct subcontract code is used to recover and allow the stubs to continue correctly.

The designers of Spring tried to take a very general approach to support for persistence. They

identi�ed a number of desirable attributes of such support including provision for allowing

objects of any type to be made persistent, for new persistent types to be added to a running

system, for persistent objects to be shared between users, for naming and object services to be

separated, for persistent and transient name spaces to be supported, and, �nally, for objects

to contain references to both persistent and transient objects. As a result, they de�ned a

framework allowing an object manager to control how its objects are made persistent based on

the concepts of freezing (generating a persistent representation of an object known as a freeze

token) and pickling (storing an object's state stably), and the use of a name service to support

persistence. When an object is bound to a name in the persistent part of the name space,

the name service freezes the object automatically. A name server that supports this feature is

known as a persistent name server and the name space that it maintains as a persistent name

space. The framework de�nes the interface between the name service and an arbitrary object

manager that allows persistence to be managed securely. However, as described in [56], the

framework does not provide support for handling inter-object references in persistent objects

nor for garbage collection.

3 Perspectives on Object-Oriented Operating Systems

Choices is probably the best known of the various object-oriented operating systems that have

been developed to date and has consequently been highly inuential. The Choices project

demonstrated that the well-known advantages of object-oriented design and implementation

could be obtained in the context of an operating system without loss of performance [59]. The

use of an object-oriented design allowed Choices to provide customisability and extensibility as

expected. Moreover, the Choices experience has provided valuable guidance to the developers of

other object-oriented operating systems concerning the design, organisation, and use of frame-

works. On the other hand, Choices is clearly de�cient in a number of respects. Notwithstanding

the fact that some support for embedded applications was provided [18], Choices essentially

provides a family of multi-user/multi-tasking operating systems based on a kernel architecture

that is somewhere between a traditional monolithic kernel and a microkernel. Thus, although

the design is based on a program family, it can be said that \the minimal subset of system

functions" is rather large and hence the resulting potential for customisation rather modest.

Lipto's main contribution is in showing that modularity and protection can be decoupled in the

design of an object-oriented operating system. Lipto uses location-transparent object invocation

to allow operating system services, which are modelled as collections of objects, to be con�gured

in di�erent ways with respect to protection domains. In Lipto, the kernel/user boundary is

con�gurable and the trade-o� between protection and performance that is made when deciding

what functionality to put in the kernel and what functionality to put in user space can be made

dynamically. On the down side, Lipto includes a �xed mandatory supervisor-mode component

that, as far as can be determined, implements multiple address spaces per node. Hence, although

Lipto is more con�gurable, like Choices, it essentially provides a multi-user/multi-tasking oper-

ating system.

In contrast to Choices, the Peace project took a more purely family-based approach to the



REFERENCES 28

design of an object-oriented operating system. The result is a system that can be customised

to provide instantiations supporting a number of di�erent operating modes ranging from those

supporting only a single user and single task per node to those supporting multiple users and

multiple tasks per node. The designers of Peace were motivated primarily by the desire to

provide optimal system support for di�erent (sets of) parallel applications running on massively-

parallel computers. Like Lipto, Peace also supports a high degree of system con�gurability.

The use of location-transparent object invocation allows many services to be con�gured to run

either in supervisor mode or user mode transparently to their clients. In addition, operating

system services modelled as collections of objects can be loaded on demand as they are invoked.

Spring is reviewed here because it represents the state of the art in the design of general-purpose

object-oriented operating systems. Spring represents a synthesis of previous work on object-

oriented and microkernel-based operating systems. While the overall architecture of Spring is

similar to that of other multi-server microkernel-based operating systems such as Chorus or

Mach-US [61], Spring is most interesting in that it employs a general-purpose object-support

infrastructure, which provides location-transparent object invocation, to access (distributed)

services. Thanks to its use of location-transparent object invocation, Spring supports the same

degree of con�gurability of service placement as Lipto and Peace. However, it is based on a

traditional multi-tasking microkernel.

References

[1] Vadim Abrossimov, Marc Rozier, and Marc Shapiro. Generic virtual memory management

for operating system kernels. In Proceedings of the 12thSymposium on Operating Systems

Principles, pages 123{136. ACM Special Interest Group on Operating Systems, December

1989. Also Technical Report CS/TR-89-18.2, Chorus Syst�emes.

[2] ACM Special Interest Group on Operating Systems. Proceedings of the 14thSymposium on

Operating Systems Principles, December 1993. Also Operating Systems Review, 27(5).

[3] ACM Special Interest Group on Operating Systems. Proceedings of the 6thSIGOPS Euro-

pean Workshop, September 1994.

[4] ACM Special Interest Group on Operating Systems. Proceedings of the 15thSymposium on

Operating Systems Principles, December 1995. Also Operating Systems Review, 29(5).

[5] Thomas E. Anderson. The case for application-speci�c operating systems. In Proceedings of

the 3rdWorkshop on Workstation Operating Systems, pages 92{94. IEEE Computer Society,

IEEE Computer Society Press, April 1992.

[6] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Sched-

uler activations: E�ective kernel support for the user-level management of parallelism. In

Proceedings of the 13thSymposium on Operating Systems Principles, pages 95{109. ACM

Special Interest Group on Operating Systems, October 1991. Also Operating Systems Re-

view, 25(5).

[7] Holger Assenmacher, Thomas Breitbach, Peter Buhler, Volker Huebsch, and Reinhard

Schwarz. The PANDA system architecture - a pico-kernel approach. In Proceedings of the



REFERENCES 29

4thWorkshop on Future Trends of Distributed Computing Systems, pages 470{476. IEEE

Computer Society Press, September 1993.

[8] Arindam Banerji and David L. Cohn. An infrastructure for application-speci�c customisa-

tion. In Proceedings of the 6thSIGOPS European Workshop [3], pages 154{159.

[9] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin G�un Sirer, Marc E. Fiuczyn-

ski, David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and perfor-

mance in the SPIN operating system. In Proceedings of the 15thSymposium on Operating

Systems Principles [4], pages 267{284. Also Operating Systems Review, 29(5).

[10] Andrew Black, Norman C. Hutchinson, Eric Jul, Henry M. Levy, and Larry Carter. Dis-

tribution and abstract types in Emerald. IEEE Transactions on Software Engineering,

SE-13(1):65{76, January 1987.

[11] David L. Black. Scheduling support for concurrency and parallelism in the Mach operating

system. IEEE Computer, 23(5):35{43, May 1990.

[12] David L. Black, David B. Golub, Daniel P. Julin, Richard F. Rashid, Richard P. Draves,

Randall W. Dean, Alessandro Florin, Joseph Barrera, Hideyuki Tokuda, Gerald Malan, and

David Bohman. Microkernel operating system architecture and Mach. In Proceedings of

theUsenix Workshop on Microkernels and Other Kernel Architectures [63], pages 11{30.

[13] Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-

jamin/Cummings, Redwood City, CA, 1994.

[14] Luis-Felipe Cabrera and Norman C. Hutchinson, editors. Proceedings of the 3rdInternational

Workshop on Object-Orientation in Operating Systems. IEEE Computer Society, IEEE

Computer Society Press, December 1993.

[15] Luis-Felipe Cabrera and Eric Jul, editors. Proceedings of the 2ndInternational Workshop on

Object-Orientation in Operating Systems. IEEE Computer Society, IEEE Computer Society

Press, September 1992.

[16] Luis-Felipe Cabrera, Vincent Russo, and Marc Shapiro, editors. Proceedings of the

1stInternational Workshop on Object-Orientation in Operating Systems. IEEE Computer

Society, IEEE Computer Society Press, October 1991.

[17] Vinny Cahill. Research projects in object-support, object-oriented, and extensible operating

systems. WWW page http://www.dsg.cs.tcd.ie/research/os relwork.html, November 1995.

[18] Roy H. Campbell, John H. Hine, and Vincent F. Russo. Choices for mission critical com-

puting. Studies in Computer and Communication Systems, chapter 2, pages 11{20. IOS

Press, Amsterdam, Netherlands, 1992.

[19] Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, Frameworks and Re�nement.

Computing Systems, 5(3):217{257, Summer 1992.

[20] Roy H. Campbell and Peter W. Madany. Considerations of persistence and security in

choices, an object-oriented operating system. In John Rosenberg and J. Leslie Keedy, edi-

tors, Security and Persistence, Workshops in Computing, pages 289{300. Springer-Verlag,



REFERENCES 30

May 1990. Proceedings of the International Workshop on Computer Architectures to Sup-

port Security and Persistence of Information.

[21] David R. Cheriton and Kenneth J. Duda. A caching model of operating system kernel

functionality. In Proceedings of the 1stSymposium on Operating Systems Design and Imple-

mentation, pages 179{193. Usenix Association, November 1994.

[22] Amitabh Dave, Mohlale� Se�ka, and Roy H. Campbell. Proxies, application interfaces, and

distributed systems. In Cabrera and Jul [15], pages 212{220.

[23] Thomas W. Doeppner. The Spring operating system: Internals overview. Tutorial presented

at 1stSymposium on Operating Systems Design and Implementation, November 1994.

[24] Richard P. Draves. The case for run-time replaceable kernel modules. In Proceedings of the

4rdWorkshop on Workstation Operating Systems [37], pages 160{164.

[25] Peter Druschel. E�cient support for incremental customization of OS services. In Cabrera

and Hutchinson [14], pages 186{190.

[26] Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Lipto: A dynamically

con�gurable object-oriented kernel. IEEE Technical Committee on Operating Systems and

Application Environments Newsletter, 5(1):11{16, Spring 1991.

[27] Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Service composition in

Lipto. In Cabrera et al. [16], pages 108{111.

[28] Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Beyond micro-kernel design:

Decoupling modularity and protection in Lipto. In Proceedings of the 12thInternational

Conference on Distributed Computing Systems, pages 512{520. IEEE Computer Society

Press, June 1992.

[29] Dawson R. Engler, M. Frans Kaashoek, and James W. O'Toole Jr. Exokernel: An op-

erating system architecture for application-level resource management. In Proceedings of

the 15thSymposium on Operating Systems Principles [4], pages 251{266. Also Operating

Systems Review, 29(5).

[30] Yvon Gourhant and Marc Shapiro. FOG/C++: A fragmented-object generator. In Pro-

ceedings of theUsenix C++ Conference [62], pages 63{74.

[31] Object Management Group. The Common Object Request Broker: Architecture and Speci-

�cation. Object Management Group, July 1995. Revision 2.0.

[32] Paulo Guedes and Daniel P. Julin. Object-oriented interfaces in the Mach 3.0 multi-server

system. In Cabrera et al. [16], pages 114{117.

[33] A.N. Habermann, Lawrence Flon, and Lee Cooprider. Modularization and hierarchy in a

family of operating systems. Communications of the ACM, 19(5):266{272, May 1976.

[34] Graham Hamilton, Yousef A. Khalidi, and Michael N. Nelson. Why object oriented oper-

ating systems are boring. In Cabrera et al. [16], pages 118{119.



REFERENCES 31

[35] Graham Hamilton and Panos Kougiouris. The Spring nucleus: A microkernel for objects.

In Proceedings of the 1993Summer Usenix Conference. Usenix Association, June 1993.

[36] Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract: A exible base

for distributed programming. In Proceedings of the 14thSymposium on Operating Systems

Principles [2], pages 69{79. Also Operating Systems Review, 27(5).

[37] IEEE Computer Society. Proceedings of the 4rdWorkshop on Workstation Operating Sys-

tems. IEEE Computer Society Press, October 1993.

[38] Gary M. Johnston and Roy H. Campbell. An object-oriented implementation of distributed

virtual memory. In Proceedings of the Workshop on Experiences with Building Distributed

and Multiprocessor Systems, pages 39{57. Usenix Association, 1989.

[39] Michael B. Jones. Interposition agents: Transparently interposing user code at the system

interface. In Proceedings of the 14thSymposium on Operating Systems Principles [2], pages

80{93. Also Operating Systems Review, 27(5).

[40] J�org Cordsen and Wolfgang Schr�oder-Preikschat. Object-oriented operating system design

and the revival of program families. In Cabrera et al. [16], pages 24{28.

[41] J�org Cordsen and Wolfgang Schr�oder-Preikschat. Towards a scalable kernel architecture. In

Proceedings of the Autumn '92 Openforum Technical Conference, pages 15{33, November

1992.

[42] J�org Nolte. Language level support for remote object invocation. Technical Report 654,

GMD, June 1992.

[43] Yousef A. Khalidi and Michael N. Nelson. An implementation of UNIX on an object-

oriented operating system. In Proceedings of the 1993Winter Usenix Conference, pages

469{479. Usenix Association, January 1993.

[44] Yousef A. Khalidi and Michael N. Nelson. The Spring virtual memory system. Technical

Report SMLI TR-93-9, Sun Microsystems Laboratories, Inc., February 1993.

[45] Gregor Kiczales. Towards a new model of abstraction in software engineering. In Cabrera

et al. [16], pages 127{128.

[46] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, Cambridge, MA, 1991.

[47] Gregor Kiczales and John Lamping. Operating systems: Why object-oriented? In Cabrera

and Hutchinson [14], pages 25{30.

[48] Gregor Kiczales, John Lamping, Chris Maeda, David Keppel, and Dylan McNamee. The

need for customisable operating systems. In Proceedings of the 4rdWorkshop on Workstation

Operating Systems [37], pages 165{169.

[49] Gregor Kiczales, Marvin Theimer, and Brent Welch. A new model of abstraction for oper-

ating system design. In Cabrera and Jul [15], pages 346{349.



REFERENCES 32

[50] Rodger Lea, Christian Jacquemot, and Eric Pillevesse. COOL: System support for dis-

tributed programming. Communications of the ACM, 36(9):37{46, September 1993.

[51] Dylan McNamee and Katherine Armstrong. Extending the Mach external pager interface to

support user-level page replacement policies. In Proceedings of theUsenix Mach Workshop,

pages 17{29. Usenix Association, March 1990.

[52] James G. Mitchell, Jonathan J. Gibbons, Graham Hamilton, Peter B. Kessler, Yousef A.

Khalidi, Panos Kougiouris, Peter W. Madany, Michael N. Nelson, Michael L. Powell, and

Sanjay R. Radia. An overview of the Spring system. In Proceedings of 39thIEEE Interna-

tional Computer Conference. IEEE Computer Society Press, February 1994.

[53] David L. Parnas. On the design and development of program families. IEEE Transactions

on Software Engineering, SE-2(1):1{9, March 1976.

[54] David L. Parnas. Designing software for ease of extension and contraction. IEEE Transac-

tions on Software Engineering, SE-5(2):128{137, March 1979.

[55] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye, Lak-

shmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic incremental specialization:

Streamlining a commercial operating system. In Proceedings of the 15thSymposium on Op-

erating Systems Principles [4], pages 314{324. Also Operating Systems Review, 29(5).

[56] Sanjay R. Radia, Peter W. Madany, and Michael L. Powell. Persistence in the Spring

system. In Cabrera and Hutchinson [14], pages 12{23.

[57] Marc Rozier, Vadim Abrossimov, Fran�cois Armand, Ivan Boule, Michel Gien, Marc Guille-

mont, Fr�ed�eric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre L�eonard, and Will

Neuhauser. Overview of the Chorus distributed operating system. In Proceedings of

theUsenix Workshop on Microkernels and Other Kernel Architectures [63], pages 39{69.

[58] Vincent F. Russo. Object-oriented operating system design. IEEE Technical Committee on

Operating Systems and Application Environments Newsletter, 5(1):34{38, Spring 1991.

[59] Vincent F. Russo, Peter W. Madany, and Roy H. Campbell. C++ and Operating Systems

Performance: a Case Study. In Proceedings of theUsenix C++ Conference [62], pages

103{114.

[60] Henning Schmidt. Making Peace a dynamic alterable system. In Proceedings of the 2nd

European Distributed Memory Computing Conference, volume 487 of Lecture Notes in Com-

puter Science, pages 422{431. Springer-Verlag, April 1991.

[61] J. Mark Stevenson and Daniel P. Julin. Mach-US: UNIX on generic OS object servers.

In Proceedings of theUsenix Technical Conference, pages 119{130. Usenix Association,

January 1995.

[62] Usenix Association. Proceedings of theUsenix C++ Conference, April 1990.

[63] Usenix Association. Proceedings of theUsenix Workshop on Microkernels and Other Ker-

nel Architectures, April 1992.



REFERENCES 33

[64] Wolfgang Schr�oder-Preikschat. Peace { a software backplane for parallel computing. Par-

allel Computing, 1993. To appear.

[65] Wolfgang Schr�oder-Preikschat. The Logical Design of Parallel Operating Systems. Prentice

Hall, London, 1994.

[66] Yasuhiko Yokote. The Apertos reective operating system: The concept and its implemen-

tation. In Andreas Paepcke, editor, Proceedings of the 1992Conference on Object-Oriented

Programming Systems, Languages and Applications, pages 414{434. ACM Special Interest

Group on Programming Languages, ACM Press, October 1992. Also SIGPLAN Notices

27(10), October 1992.

[67] Michael Young, Avadis Tevanian Jr., Richard F. Rashid, David B. Golub, Je�rey Eppinger,

Jonathan J. Chew, William J. Bolosky, David L. Black, and Robert Baron. The duality of

memory and communication in the implementation of a multiprocessor operating system.

In Proceedings of the 11thSymposium on Operating Systems Principles, pages 63{76. ACM

Special Interest Group on Operating Systems, November 1987. Also Technical Report

CMU-CS-87-155.


