
Aspects - Composing CSCW Applications.

Stephen Barrett and Brendan Tangney

Distributed Systems Group, Department of Computer Science,

Trinity College Dublin, Ireland.

E-mail: fStephen.Barrett,Brendan.Tangneyg@dsg.cs.tcd.ie

Fax: +353-1-6772204

ABSTRACT: Current approaches to CSCW application support are limited by their failure to

support application distribution, internal application concurrency, anonymous communication, easy

application integration, and run-time application behaviour modi�cation. This paper argues that

these limitations may be addressed at the language level. Accordingly, we introduce a new model

and language which assimilates CSCW requirements as features tailored to the construction of open

systems.

KEY WORDS: CSCW, Composition

1 Introduction

\Every interesting concurrent system is built from independent agents which communi-

cate"

[Milner, 1992]

C
OMPUTER Supported Cooperative Work is the �eld concerned with how people collaborate
on any given task, and how computer applications, called groupware applications, may be

developed to augment and better facilitate this process. It re
ects a change in emphasis from
the traditional use of the computer to solve problems to using the computer to facilitate human
interaction [Ellis et al., 1991].

Researchers in the �eld have begun to explore how one might provide generic support for a
wide range of groupware. This research has followed two threads which may be characterised as
extending either current language models or current operating system support with functionality
tailored to the needs of groupware applications. For example, Dourish [Dourish, 1994] has explored
the applicability of re
ection in toolkit design. His approach simpli�es the construction of spe-
ci�c classes of groupware supported by his toolkits. He reports that adding re
ection to the
programming language via a re
ective toolkit facilitates the building of groupware applications
that are open to change. For example, a data management subsystem of a groupware application
may be required to operate in a centralised or decentralised manner and potentially switch between
the two at run-time. Dourish argues that using re
ection in a CSCW toolkit is an appropriate
mechanism for meeting this requirement. The alternative and more generic approach advocated by
[Benford and Mariani, 1993], is to provide run-time support services separate from the application.
Examples of services required by groupware include data sharing managers, vote managers, event
managers and organisational databases. Research in this area is still in its infancy, with success
being principally in the area of shared databases. This provides some support for application
inter-working through shared data services.

Through a synthesis of CSCW literature (see section 4) we have identi�ed a set of fundamen-
tal CSCW support requirements for which no existing solution provides full support. They are:



application distribution, (internal application) concurrency, anonymous communication, easy appli-

cation integration, and run-time behaviour modi�cation. This paper argues that these requirements
may be usefully supported at the language level as features of a new object model. In particular
it is argued that groupware applications required to inter-work with other applications are best
constructed as open systems. By this we mean that they are best constructed as recomposable
compositions of collaborating objects [Nierstrasz, 1995].

The open systems approach is impeded by limitations of current object-oriented and other pro-
gramming techniques, in particular their failure to support object composition [Nierstrasz, 1995].
For example, abstract data types provide no means of expressing inter-object behavioural relation-
ships [Sullivan and Notkin, 1992]. These relationships lay buried in the code of methods. Thus the
object oriented approach, while having many advantages, does not allow us to specify the behaviour
of groups of objects; it does not support composition.

Of the CSCW requirements we have identi�ed, an object model which supports application
distribution, concurrency, and anonymous communication is a su�cient platform on which to build
a new open system model speci�cally tailored to the support of groupware. We are currently
engaged in the design and implementation of this model, called the Aspect model. It in turn is
based on a distributed event based object model known as ECO [Starovic et al., 1995]. It extends
ECO to support inter-working and run-time modi�cation of groupware applications.

The layout of the rest of this short paper is as follows. The following section and section 3
outline our model and language. Section 4 brie
y discusses related work. Section 5 presents a
summary of our approach. Finally in section 6 we report on the status of our current work and
outline our future plans.

2 The Aspect Model

The distinctive feature of ECO is that it supports anonymous communication (asynchronous
implicit invocations), a decoupling of event raising from event handler invocations1. ECO objects
do not reference other ECO objects. Instead, an underlying run-time is responsible for distribution
of events generated by ECO objects.

The aspect model is an object oriented composition model. An aspect is a speci�cation detailing
how a composite component may be instantiated by composing a set of sub-components. An aspect
speci�cation includes some type information (called a slot and expressed through an extended
type model) describing each sub-component needed in the composite component. Any ECO object
whose type conforms to a slot in an aspect may be used as a sub-component in that aspect. In our
model, all objects are augmented by a extended type description, called a shape, which is used to
determine conformance.

A good analogy for the aspect model is a child's jigsaw of the sort that has a frame into which
pieces may be slotted. The pieces correspond to sub-components. Each has a speci�c shape which
correspond to the sub-components type. The frame of the puzzle corresponds to an aspect. It has
slots with speci�c shapes that pieces must conform to if they are to be slotted in. Any piece may
be �tted into a speci�c slot if its shape conforms to the slot irrespective of whether the piece was
originally made for that jigsaw or not. We say then that the sub-component �lls the slot. The
new piece need only conform to the shape. It may, for example be a di�erent colour or material.

An aspect speci�cation is implemented by an aspect object, which in e�ect implements an al-
ternative to the default ECO run-time. It �lters the communications both between sub-components
under its control and between sub-components and entities external to the composition. The �l-
tering policy implemented is speci�ed in the aspect speci�cation. To instantiate a composite com-
ponent (which we generally refer to as an aspect instance), one places a set of sub-components
under the control of an aspect object. We characterise our model as a two level computation in

1This is a more powerful model than the synchronous implicit model of method invocation via indirection. If

required , synchronisity may be constructed above an event model.



which the communications of a base level of sub-components is rei�ed by a meta-level aspect object.
The aspect model is recursive. In addition to slots describing sub-components, an aspect spec-

i�cation includes an extended type description (the frame itself has a shape). An aspect instance
may therefore be used as a sub-component in another aspect. In this way, the aspect model pro-
vides a means of instantiating an aspect as a composition of sub-aspects2. Ultimately recursion in
the model bottoms out to a collection of ECO objects (each augmented with a shape).

An aspect speci�es a �ltering policy for both external events arriving at an aspect instance, and
for events generated by its sub-components. This is done at two levels. First, the aspect speci�es
the set of events that may be exported from the aspect and the set of events that may received
by the aspect. Second, an aspect's slot descriptions specify, for each sub-component, the set of
events each sub-component may generate and the set of events each may receive. This speci�cation
is imposed on a sub-component �lling a slot. An event arriving at an aspect from some external
entity will be propagated only to those sub-components �lling slots whose description includes the
event as an incoming event. An event generated by some sub-component will be propagated by the
aspect (object) to peer sub-components according to the same criteria. However, if the event is of
a type that may be exported to entities outside the aspect, then the aspect (object) will in addition
export that event. In this way, a sub-component contributes to the functionality of the composite
component both by generating events propagated externally, and by handling events delegated to
it by the aspect object.

The aspect run-time allows sub-components to be dynamically replaced via a dynamic type con-
formance check performed by the aspect object. An application may thus be tailored dynamically
to its possibly heterogeneous run-time environment by replacing unsuitable sub-components with
others designed to integrate with local applications, system services or hardware con�gurations.
More radical functional modi�cation may be achieved in an application by selectively replacing an
application's aspect objects with others which implement alternative aspect speci�cations. One
may, for example, add new slots to the aspect or even new components and functionality to the
application. Through aspects, our model provides de�nite points of composition at which the
structure of an application may be rede�ned. At any point, the scope for transformation of a
sub-component is limited only by the slot it �lls.

3 The Aspect Language

We are currently developing a semantic model for the de�nition of aspects as linguistic con-
structs separate from the instances of abstract data types they compose. We have adopted
the semantic approach of [Helm et al., 1990], namely the expression of composition separately
and distinctly from class de�nition, over the alternative of modeling behavioural relationships
as classes [Sullivan and Notkin, 1991]. We have identi�ed a number of open issues in the design
of a language supporting our model. Chief among these is development of a type theory for plug
compatibility of aspects [Nierstrasz and Papathomas, 1990].

Type conformance to slots is the only limitation placed on a sub-components use. Sub-
components may, for example, originate from unrelated code bases. Type information for each
sub-component is required beyond compile time that describes its behaviour. Signatures do not
provide enough information about the behaviour of an object to determine if it is safe to use in
a new context [Nierstrasz and Papathomas, 1990]. Some information will be needed about how it
appears to behave externally when exposed to particular events. Furthermore, ECO objects may
dynamically modify their interface (through subscription and unsubscription of events). To extend
our analogy, an sub-component's shape may vary over time. This complicates the description of an
object's type to include state. The relationship between sub-component and slot is not that of sim-
ple sub-typing. Though simple sub-typing may suggest conformance between a sub-component and

2In this sense, an aspect is an equivalent abstraction to a subsystem of an object-oriented framework.



a slot, the restrictions placed upon a sub-component by a slot may result in that sub-component
exhibiting incorrect behaviour.

4 Related Work

The underlying approach to events employed in ECO is very similar in spirit to that employed
in many preceding CSCW systems, the subscription based active e-mail system Khronika being a
good example [Lovstrand, 1991].

CSCW research has identi�ed a need for increased 
exibility in the construction and behaviour
of groupware applications. The focus of much research is moving from monolithic application
architectures to applications composed of independent but communicating computational units.
Systems developed using this latter approach have been demonstrated to be more 
exible and dy-
namically con�gurable. Examples of such systems and research e�orts include the Btron2 Window
system[Koshizuka, 1994], rendezvous [Hill et al., 1993] and ODP [Roseman and Greenberg, 1993].
However, these systems do not provide support for all the CSCW requirements we have identi�ed.

Underlying collective support is advocated in [Benford and Mariani, 1993]. However, our ap-
proach di�ers in that we feel that supporting CSCW requirements is best achieved by supporting
an appropriate object model and programming paradigm for CSCW rather than try to overcome
the inadequacies of existing ones.

We have drawn on research in the �eld of composition [Kaiser and Garlan, 1987, Nierstrasz, 1995,
Helm et al., 1990] in the development of our model. However, though compositional models of sys-
tems such as BETA [Knudsen et al., 1993] were found to be similar to ours, there are important
di�erences. Our concept of composition seems more 
exible as our aspects are truly independent
computational modules whereas existing research into composition has focussed on composition
as purely a language construct integrated at compile time. In our model an application is a re-
de�nable set of independent but communicating aspects. This application model is supported by
Parnas [Parnas, 1979] who argues that the presence or absence of an application component should
be transparent to the other components.

5 Summary

An application is traditionally constructed by compiling code to produce an executable binary.
This binary may, during execution, create objects which persist beyond the execution of the ap-
plication. It may create many processes and may even migrate execution to other machines in a
distributed system. It is still one program however: one binary. The aspect model is quite di�erent
from this. An aspect based system is constructed by manipulating the interactions of numerous
stand-alone components. Interactions between components are anonymous: they simply act on
events of unknown origin delivered by the aspect runtime and generate and pass new events to the
runtime. By managing the propagation of events, an aspect runtime can coordinate a collection of
components to produce application like behaviour. An aspect system can be viewed as application
but its nature, as we have illustrated, is quite di�erent from that of a traditional application. The
boundary de�ning the set of interacting components is 
exible. We can replace or add components.
We can redesign the way its elements interact. We can even subsume the set in a larger set by
establishing communication links between elements of it and other aspect systems. Whether we
call the resulting system an application or a collection of applications is not clear, and therefore
not very meaningful. If an aspect system is to be called an application then it is a very loose use
of the word.



6 Current status

At time of writing, we have developed a linguistic approach broadly suitable to our Aspect model
which we are using to test our ideas. We are currently elaborating both this linguistic approach
and our model. Our medium term goals are the development of a type model compatible with
our requirements, the de�nition of a prototype language built on this, and compiler and run-time
support.

Acknowledgements

The authors would like to acknowledge the contributions of Stephen Brown and Brian Breath-
nach.

References

[Benford and Mariani, 1993] Benford, S. and Mariani, J., editors (1993). Requirements and

Metaphors of Shared Interaction. Lancaster University. Esprit Basic Research project 6225,
D4.1.

[Dourish, 1994] Dourish, P. (1994). Designing for change: Re
ective metalevel architectures for
deep customisation in cscw. Technical report, Rank Xerox EuroParc, Cambridge, UK.

[Ellis et al., 1991] Ellis, C., Gibbs, S., and Rein, G. (1991). Groupware,some issues and experiences.
Communications of the ACM, 34(1).

[Helm et al., 1990] Helm, R., Holland, I. M., and Gangopadhyay, D. (1990). Contracts: Specifying
behavioral compositions in object-oriented. In Conference on Object-Oriented Programming:

Systems, Languages, an Applications. European Conference on Object-Oriented Programming,
pages 169{180. ECOOP/OOPSLA, ACM Press.

[Hill et al., 1993] Hill, R. D., Brinck, T., Patterson, J. F., Rohall, S. L., and Wilner, W. T. (1993).
The rendezvous language and architecture. Communication of the ACM, 36(1):63{67.

[Kaiser and Garlan, 1987] Kaiser, G. E. and Garlan, D. (1987). Melding software systems from
reusable building blocks. IEEE Software, pages 17{24.

[Knudsen et al., 1993] Knudsen, J. L., Lofgren, M., Madsen, O. L., and Magnusson, B. (1993).
Object Oriented Environments, The Mjolner Approach. The Object-Oriented Series. Prentice
Hall.

[Koshizuka, 1994] Koshizuka, N. (1994). Btron2 Window System: A window System Facilitating

Cooperation among GUI Applications in Distributed Environments. PhD thesis, Department
of Information Science, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113
Japan.

[Lovstrand, 1991] Lovstrand, L. (1991). Being selectively aware with the khronika system. In
Proceedings of the European Conference on Computer Supported Collaborative Work (ECSCW),
Amsterdam.

[Milner, 1992] Milner, R. (1992). A calculus of communicating systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin Heidelberg NewYork.

[Nierstrasz, 1995] Nierstrasz, O. (1995). Requirements for a composition language. In Proceedings

of the ECOOP 94 workshop on Models and Languages for Coordination and Parallelism and

Distribution, LNCS. Springer Verlag.



[Nierstrasz and Papathomas, 1990] Nierstrasz, O. and Papathomas, M. (1990). Towards a type
theory for active objects. In Conference on Object-Oriented Programming: Systems,Languages,

and Applications/European Conference on Object-Oriented Programming. OOPSLA/ECOOP,
ACM Press.

[Parnas, 1979] Parnas, D. L. (1979). Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, SE-5(2):128{137.

[Rodden and Blair, 1992] Rodden, T. and Blair, G. (1992). Distributed systems support for com-
puter supported cooperative work. Computer Communications, 15(8).

[Roseman and Greenberg, 1993] Roseman, M. and Greenberg, S. (1993). Building 
exible group-
ware through open protocols. In Conference on O�ce Information Systems, pages 279{288.
ACM.

[Starovic et al., 1995] Starovic, G., Cahill, V., and Tangney, B. (1995). An event based object
model for distributed programming. This conference.

[Sullivan and Notkin, 1991] Sullivan, K. J. and Notkin, D. (1991). Behavioural relationships in
object-oriented analysis. Technical Report 91-09-03, Department of Computer Science and En-
gineering, University of Washington, Seattle, WA 98195 USA.

[Sullivan and Notkin, 1992] Sullivan, K. J. and Notkin, D. (1992). Behavioural relationships. Tech-
nical Report 92-03-08, Department of Computer Science and Engineering, University of Wash-
ington, Seattle, WA 98195 USA.


