
Aontas: The CaberNet Technical

Abstracts Service

Paul Taylor

October 1995

Distributed Systems Group

Department of Computer Science

University of Dublin

Trinity College, Dublin 2, Ireland.

Fax: +353-1-6772204

Tel: +353-1-6081531

Email: pftaylor@dsg.cs.tcd.ie

Abstract

CaberNet is the ESPRIT network of excellence in distributed systems consisting of several

European research groups. CaberNet has industrial a�liates who receive regular informa-

tion about the research activities of CaberNet members. Most CaberNet members produce

technical reports which are of interest to the industrial a�liates and other researchers world-

wide. This document describes the design and implementation of a uni�ed technical report

service.

A contributing CaberNet site just has to make a bibliography available on a local machine.

This bibliography is retrieved by a central site and any new or revised records are placed into

a database. These records are processed by a professional library cataloguer who ensures that

the information is relevant, complete and correct. The processed records may be searched

over the world-wide-web and may be used to generate a summary of recent technical reports

that is given to the industrial a�liates.

Document Status Draft

Distribution CaberNet

Document # TCD-CS-95-18

c
 1995 University of Dublin

Permission to copy without fee all or part of this material is granted provided that the copyright notice, and

the title and authors of the document appear. To otherwise copy or republish requires explicit permission

in writing from the University of Dublin.

CONTENTS 1

Contents

1 Introduction 2

2 Design 2

2.1 Bibliographic records : 3

2.2 Document database : 5

2.3 Document retrieval : 6

2.4 Processing submitted records : 7

2.5 Installation of processed documents : 9

2.6 Report generation : 10

2.7 The Dienst system : 11

2.8 Other services : 11

3 Implementation 12

3.1 Document database : 12

3.2 Perl packages : 13

3.3 Document retrieval : 18

3.4 CGI programs : 18

3.5 Dienst integration : 24

3.6 HTTP Server : 25

4 Performance 27

4.1 Parsing CS-TR records : 27

4.2 Database operations : 28

4.3 CGI programs : 29

5 Future directions 29

A Software requirements 30

A.1 Server-side requirements : 30

A.2 Client-side requirements : 30

1 INTRODUCTION 2

1 Introduction

CaberNet [3] is the ESPRIT Basic Research Network of Excellence in distributed comput-

ing systems architectures. Consisting of several internationally ranked European research

groups who are researching the problems and opportunities of large-scale distributed sys-

tems, CaberNet's goal is to coordinate and strengthen the research and industrial linkages

of these groups. CaberNet's industrial a�liates receive regular information about the

research activities of the CaberNet members and CaberNet members bene�t from the

possibilities of technology transfer to industry.

Most CaberNet members are regularly producing technical reports (TRs) which may be of

interest to the industrial a�liates and to other researchers world-wide with an interest in

distributed computing systems. This document describes the design and implementation

of a prototype technical reports service which provides a uni�ed, remotely accessible,

collection of TRs produced by CaberNet members.

Contributing CaberNet sites make available a �le containing bibliographic records of re-

cent TRs produced by that site. These records are collected by a central site and new

or revised documents are retrieved. The records are then processed by a professional li-

brary cataloguer who can ensure that the information about the documents is relevant,

complete, and correct. Accepted documents are made available over the World-wide-web

(WWW) [18] using Cornell's Dienst [7] search engine. Summary reports of recent TRs are

produced periodically to be sent to the industrial a�liates. These reports, which include

the abstracts of the TRs, may be used to select interesting or relevant TRs for further

investigation.

A distinguishing feature of this TR service over other similar services is the inclusion of

the cataloguer. This has the e�ect of maintaining a high level of quality in the information

presented over the WWW and to the industrial a�liates.

The remainder of this document is as follows. Section 2 describes the design of the TR

server. A prototype implementation is covered in detail in section 3 and some perfor-

mance �gures for this implementation are presented in section 4. Finally, possible future

directions are discussed in section 5.

2 Design

Figure 1 shows the main steps involved in the processing of the technical reports.

A publishing organisation (i.e., a contributing site) creates a �le containing bibliographic

records in the standard format which is placed on an FTP or HTTP server. This �le is

retrieved periodically and new or revised records are placed into a database. Each record

includes information allowing the retrieval of a PostScript [15] version of the document

and this is also retrieved and placed in the database. The records are then processed to

ensure that they are relevant and that the information is correct and complete. Processed

documents are either accepted or rejected and the placement of the documents in the

database changes to re
ect these decisions.

Once a number of documents have been processed, the accepted documents are moved

2 DESIGN 3

Step 1: Collection of remote bibliographies
Step 2: Processing of documents
Step 3: Installation of processed documents
Step 4: Generation of summary reports

Summary of
recent techni-
cal reports
from CaberNet
sites.Bin

3 4

Rejected Main

2 3

Accepted2Pending1

Dienst
Search
Engine

Contributing
Sites

Figure 1: Steps in the processing of technical reports

to the main part of the database and made accessible over the WWW using the search

engine and browsing facilities of Dienst. At this point the publishing organisations are

given feedback on those documents which were accepted or rejected.

Periodically (e.g., every six months) a summary report of recently installed TRs may be

produced. These reports contain information such as the documents' title, authors and

abstract and may be sent to CaberNet's industrial a�liates. The reports may be used to

select TRs of interest.

The remainder of this section is as follows. Section 2.1 describes the format for biblio-

graphic records and section 2.2 describes the architecture of the document database. The

retrieval, processing and installation of documents is described in sections 2.3, 2.4, and 2.5

respectively. Report generation is described in section 2.6 and the integration with Dienst

is described in section 2.7. Finally, some other services are described in section 2.8.

2.1 Bibliographic records

The format of bibliographic records used by the TR service is de�ned by RFC-1807 [12]

which superceeds RFC-1357 [6]. Within this document the format is known as the \Com-

puter Science Technical Report" or CS-TR format.

A CS-TR record consists of a set of �elds consisting of a tag followed by some data, the

format of which is determined by the preceeding tag. Tags are identi�ed by a word followed

2 DESIGN 4

by two colons (\::").

Each record has a document identi�er which uniquely identi�es the document. The doc-

ument identi�er is placed after the id and end tags and consists of two parts seperated

by two slashes (\//"): a publisher identi�er and a report identi�er. A publisher identi�er

uniquely identi�es a publishing organisation which may be a research insistitute, a group

within a University or a large project. Report identi�ers are the identi�ers assigned to

documents by the publishing organisation.

For a complete description of the format, refer to RFC-1807, however the following is a

description of the important parts of CS-TR records relating to this TR service:

1. The text of a record is written using the ISO-8859-1 encoding of the Latin-1 character

set [10]. This allows the use of diacritics from most European languages as well as

other symbols.

2. Each record should supply at least the following �elds in addition to the manda-

tory �elds: title, author, contact, date, other access and abstract. For

withdrawn records (see below), the abstract may be omitted.

3. A contact �eld giving an email address should follow each author �eld. At least

the primary author of a document should have a contact �eld.

4. The other access �eld is used to specify the location of a PostScript �le for the

document as a URL [2]. The �le may be compressed as indicated by one of the

su�xes: \.Z", \.gz", or \.z".

5. If the withdraw �eld is present, the document is considered to be withdrawn.

6. In general, the more information supplied in the record, the better.

There follows an example CS-TR record. Note that not all possible �elds are represented.

It is recommended that contributing sites follow the format of this record.

BIB-VERSION:: CS-TR-v2.1
ID:: TCD-DSG//TCD-CS-92-22

ENTRY:: July 18, 1995
ORGANIZATION:: Trinity College Dublin. Distributed Systems Group

TITLE:: Supporting Object Oriented Languages On The Comandos Platform
TYPE:: Technical Report

REVISION:: April 1992; added appedix
AUTHOR:: Cahill, Vinny
CONTACT:: Vinny Cahill <vjcahill@dsg.cs.tcd.ie>
AUTHOR:: Horn, Chris
AUTHOR:: Starovic, Gradimir
AUTHOR:: Lea, Rodger
AUTHOR:: Sousa, Pedro
DATE:: May 1991
PAGES:: 12

COPYRIGHT:: Copyright c
 TCD 1991. All rights reserved. Permission
is granted for any academic use of the report.

OTHER_ACCESS:: URL:file://ftp.dsg.cs.tcd.ie/pub/doc/TCD-CS-92-22.ps.gz
RETRIEVAL:: Send a SAE to The Librarian, Department of Computer Science,

Trinity College, Dublin 2, Ireland.
RETRIEVAL:: This report is avaliable via anonymous FTP from

2 DESIGN 5

ftp.dsg.cs.tcd.ie using the path
/pub/doc/TCD-CS-92-22.ps.gz.

KEYWORD:: Comandos
KEYWORD:: Distributed Systems
KEYWORD:: Object Orientation

MONITORING:: Commission of the European Communities, Brussels, Belgium.
FUNDING:: Esprit Project Comandos
CONTRACT:: Esprit Project 891/1029
LANGUAGE:: English

NOTES:: Also available in Proceedings of the 1991 ESPRIT Conference.

ABSTRACT::

The Comandos project is designing and implementing a platform to
support distributed persistent applications. In particular the
platform supports the object oriented style of programming. An
essential requirement of the Comandos platform is that it must support
applications written in a variety of existing as well as new (object
oriented) programming languages. Moreover, the platform must support
interworking between different languages. Each language may naturally
have its own object model and execution structures implemented by a
language specific runtime system. Rather than forcing each language to
adopt a common object model and execution structures in order to
exploit the distribution and persistence support provided by the
Comandos platform, Comandos provides a generic runtime system on top
of which individual language's specific runtimes may be implemented.
In this paper we show how a language specific runtime for an existing
language such as C++ can be constructed above the Comandos generic
runtime.

END:: TCD-DSG//TCD-CS-92-22

2.2 Document database

The document database is used to hold data on TRs in addition to other information

that may be of use in various parts of the system. The minimum data for each document

is a CS-TR record. Documents are uniquely identi�ed in the database by their CS-TR

document identi�er.

The database is logically tree structured. All data is accessible given a tuple of the form

(collection, docid , data�le). At the highest level the database is split into several col-

lections. A collection may be viewed as a holding place for a set of related documents

(e.g., the Reports collection contains documents for reports of recent TRs) or as repre-

senting the state of a document (e.g., the Pending collection holds submitted documents

that are awaiting processing). At the next level are the holding places for the documents

themselves. For each document, there may be several types of data held in data �les.

Apart from the CS-TR record, most documents also have a PostScript representation of

the document. (The current system only supports PostScript.)

There are seven collections in the current system: Accepted, Bibs, Deleted, Main, Pending,

Rejected and Reports. The purpose of each collection is described below.

Accepted Documents which have successfully passed the �rst processing phase are placed

here after being in the Pending collection. This collection serves as a holding place

for documents waiting to be installed into the Main collection.

2 DESIGN 6

Bibs This collection holds CS-TR records containing information about each publishing

organisation. This information is used, for example when retrieving remote bibli-

ographies and to send email to the publisher.

Deleted All records that have been deleted are placed here. This collection is special in

that all records placed in this collection are no longer accessible. This provides a

primitive backup facility.

Main This collection contains fully processed documents which may be searched using Di-

enst. Documents are placed here from the Accepted collection during the installation

process.

Pending This collection holds documents that are awaiting processing. They are placed

here during the collection process when the remote bibliographies are processed.

After processing they are moved to either the Accepted or Rejected collections.

Rejected Documents which have failed the �rst processing phase are placed here after

being in the Pending collection. Later, these documents will be deleted.

Reports When a report of recent TRs is produced the PostScript for the report along

with a CS-TR record is placed in this collection.

Other collections may be added if they are needed.

The architecture of the TR database is based on the recommended architecture for Dienst

document databases [11] with the addition of collections. The resulting architecture may

be compared with Cornell's Digital Library architecture [16].

2.3 Document retrieval

Each publishing organisation is expected to maintain a bibliography of CS-TR records

which can be retrieved given a URL. The selection of TRs in the bibliography, the creation

of CS-TR records and the frequency with which new records are added is the responsibility

of each organisation.

The Bibs collection contains a CS-TR record for each publishing organisation. This record

gives details about the publishing organisation and must follow the following conventions:

� The document identi�er in the id and end �elds must consist of the string \CABER-

NET//" followed by the publisher identi�er (in upper-case) for the CaberNet site.

� The organization �eld must give a short textual name of the organisation pub-

lishing the documents. There should only be one such �eld.

� The contact �elds must specify email addresses which must be given in one of two

formats: \Name <id@address>" or \id@address". These contact addresses are used

for automatic and manual feedback via email. There may be several such �elds.

� The other access �eld must specify a URL giving the location of the CS-TR

bibliography. Only http and ftp protocols are supported. There should only be one

such �eld.

2 DESIGN 7

� There is no special meaning for any of the other �elds and they may be supplied if

desired.

Below is an example of such a record:

BIB-VERSION:: CS-TR-v2.1
ID:: CABERNET//TCD-DSG

ENTRY:: June 19, 1995
ORGANIZATION:: Trinity College Dublin. Distributed Systems Group

TITLE:: Bibliography of Technical Reports
TYPE:: CS-TR Bibliography

AUTHOR:: Taylor, Paul
CONTACT:: Paul Taylor <pftaylor@dsg.cs.tcd.ie>

DATE:: June 19, 1995
OTHER_ACCESS:: URL:ftp://ftp.dsg.cs.tcd.ie/pub/doc/cabernet/tr.bib

END:: CABERNET//TCD-DSG

Periodically (e.g., once a day, week or month) all bibliographies from contributing sites are

processed. This involves iterating though the records in the Bibs collection and retrieving

each remote bibliography. Each record in each of the bibliographies is processed and is

inserted into the Pending collection if and only if (a) the record is currently not in any

collection or (b) the record is in a collection but the revision �elds of the two records are

di�erent. Note that if a document is being withdrawn, it must contain a withdraw �eld

and a new revision �eld.

When a record is placed in the Pending collection, an attempt is made to retrieve the

PostScript version of the document speci�ed by the URL given in the other access

�eld of the record. Failure to retrieve the PostScript document is tolerated as it may be

retrieved later when processing the records. If a bibliography contains any errors none of

its records are inserted into the Pending collection.

When all bibliographies have been processed an email message is sent to the person re-

sponsible for processing the records containing a brief summary of those records that were

inserted into the Pending collection. This serves as a means of noti�cation since there

may be long periods when no new records are inserted. This email is only sent if one or

more records were inserted. A email message is also sent to the maintainer of the service

containing a full report on the collection process, even if no records were inserted. This

serves as a regular reminder that the collection service is running correctly.

No email is sent to the contributing sites at this point since the records have not been

processed.

2.4 Processing submitted records

Processing of CS-TR records involves taking each record in the Pending collection moving

the record to either the Accepted or Rejected collections. Records may also be modi�ed

to add information, to change the ordering of �elds, to correct mistakes or to change the

format of the record. When editing the record it may be necessary to view the PostScript

version of the document for more information.

2 DESIGN 8

If a record is correct and relevant, the record is moved to the Accepted collection. If, for

some reason, the record cannot be processed or is found to be irrelevant, the record is

moved to the Rejected collection.

Viewing collections

A means is provided to view the records in a particular collection. When viewing a

collection, the information displayed for each record consists of the document identi�er,

the title and authors, the last modi�ed date of the record and the PostScript document

and the size of the PostScript document.

Both the order in which the records are displayed (based on the last modi�ed data of the

record) and the number of records displayed may be changed.

Searching for a document

It is possible to edit a record without browsing through a collection by specifying a docu-

ment identi�er. This is useful, if the exact location of the record is not known.

Editing Records

When a record is selected (e.g., when viewing a collection or searching for a particular

record) the full text of the CS-TR record may be modi�ed.

After modifying the record, the modi�cations must be committed. Committing will check

the record for any errors and if none are present the modi�ed version of the record will be

written to the database. If there are any errors, these will be displayed and the record will

not be written to the database. This prevents incorrectly formatted records from entering

the database.

During editing of a record there are also options to view or print the PostScript of the

document or to send email to the contact person for the publishing organisation (see

below). If the PostScript for the document is not currently in the database, it is retrieved

when the records is selected to be edited. The PostScript document may also be retrieved

at any later time. This may be useful if, for example, the original PostScript contained

some errors and had to be regenerated.

Moving and deleting records

When all modi�cations to a record have been made the record may be moved to another

collection. From the Pending collection the record should be moved to either the Accepted

or Rejected collections. However, records may be moved freely between any collections.

Records may also be deleted. Here, the record is actually moved to the Deleted collection

but it will appear that the record is no longer in the database. This is a safety feature

which allows deleted records to be recovered if the need arises.

2 DESIGN 9

Printing documents

While editing a record it is sometimes useful to have a hard copy of the PostScript doc-

ument on hand. This can be used to make sure that the contents of the CS-TR record

match the information in the document. Since this will usually only require the header

pages (i.e., those pages that contain the title, authors and abstract), the printing service

allows a selection of pages to be printed.

The printing service can also be for other purposes, for example to print out the summaries

of recent TRs (see section 2.6).

The PostScript document may also be viewed on-line using a suitable PostScript viewer.

Mailing the publisher

When editing a record it may be necessary to obtain information that is not available from

the record or the PostScript document. Thus, it is possible to send email to a contact

addresses for the document's publishing organisation. The email addresses are obtained

from the contact �elds in the publishing organisation's CS-TR record and not from the

current record being edited.

Creating new records

New records may be created when viewing a collection by specifying the document identi-

�er of the new record. The record is initially placed in the current collection and consists

of a subset of the CS-TR �elds. Only the �elds bib-version, id, entry and end have

default values �lled in. The document identi�er of the new record must not currently

exist, otherwise the creation will fail.

2.5 Installation of processed documents

Once a number of records have been processed and placed into either the Accepted or

Rejected collections, the documents can be installed. There are four steps in the installation

process:

1. All records in the Accepted collection are moved to the Main collection. If any of the

records being installed contain a withdraw �eld, the record is processed as normal

except that the PostScript for the document is deleted (the record remains in the

Main collection).

2. All records in the Rejected collection are deleted (they are actually moved to the

Deleted collection).

3. The accepted records are installed into the Dienst (see section 2.7 for details).

4. Email is sent to the contact addresses for publishing organisations informing them

which documents have been accepted and rejected. This email is only sent if one or

more of a publishing organisation's documents were accepted or rejected.

2 DESIGN 10

When a contributing site receives this email, all rejected records should either be

removed from the bibliography or corrected in some manner so they will be accepted

next time. Failure to remove rejected records will mean that they will be placed

into the Pending collection the next time the bibliography is processed. Accepted

records may be removed or replaced by the processed versions (see section 2.3). Once

a document has been accepted the record will not be processed again unless a new

revision of the record is created.

The purpose of the Accepted collection is to act as a bu�er between the Pending and Main

collections. It allows documents to be accepted as a batch rather than one at a time. The

advantages of doing this is that contributing sites receive a single email rather than one

email per document and the installation of documents into the search engine can be done

in one go.

2.6 Report generation

An important aspect of the TR service is the ability to generate summary reports of recent

TRs and distribute these reports either by surface mail or electronically to CaberNet's

industrial a�liates. These reports contain information from the CS-TR records including

the abstract and the document identi�er and may be used by the industrial a�liates to

select exactly those reports in which they are interested.

The decision of which TRs to include in a report is based entirely on whether a TR

has been included in a report previously and only documents in the Main collection are

considered. This method is simplistic but other ways of selecting reports are ine�ective.

For example, the date �eld could be used to select reports over a given period, from say

May 1995 to October 1995. However since the date �eld is not mandatory and the order

in which records are o�ered by contributing sites cannot be predicted, this method fails

to be of any use. Another selection method could be to use the last modi�ed time of

CS-TR records. Normally, this would be the time when the documents are installed into

the Main collection. However, CS-TR records may be edited even while they are in the

Main collection so this method also fails to be of any use.

When a report is generated, a CS-TR record for the report is created and placed into

the Reports collection. These records may be viewed and edited in the same way as

any other records in the document database. Similarly the PostScript �le for a report

is included in the Reports collection and may be viewed and printed. The document

identi�ers for reports are of the form \CABERNET//REPORT-n" where n is the report

number. Report numbers start at 1 and increase by 1 each time a new report is generated.

Each document which has been included in a report has a data �le containing the document

identi�er of the report.

A report contains the following information for each included document: title, list of au-

thors, publishing organisation's name (taken from the information in the Bibs collection),

abstract and the document identi�er.

Reports may also be regenerated by specifying the document identi�er of the report. This

is provided in case there is a change in the way reports are formatted or in the information

2 DESIGN 11

content of a report.

2.7 The Dienst system

Dienst (Distributed Interactive Extensible Network Server for Techreports) [7, 11] is a

server and protocol that provides distributed document libraries over the WWW. The

Dienst document model provides both multiple formats (e.g., PostScript, OCR, etc.) and

document parts (e.g., view the whole document or a particular page). Thumbnail images

may be used to browse through a document. Keyword searches (over authors, titles and

abstracts) are provided using inverted indices as well as the ability to browse documents

in the library. Bibliographic records are in RFC-1357/1807 format.

In this TR service, Dienst is being used for its sophisticated searching and browsing

capabilities. The Dienst server runs in \stand-alone" mode which means it does not

provide access to other Dienst servers. In the future, full integration with other servers is

possible.

Since the document database is designed with Dienst in mind and both systems share

a common format for describing bibliographic records, integrating the two systems is

straightforward. The Dienst server is con�gured to use theMain collection as its document

library.

During the installation of documents from the Accepted collection to the Main collection,

the inverted indices used by Dienst are extended to include the new documents. (The

inverted indices are built from information contained in the CS-TR records.) To force the

Dienst server to reload the new indices, a signal is sent to the server process.

The other part of the integration is making the searching and browsing facilities available

via a HTTP server.

2.8 Other services

There are two other services which are useful to users responsible for maintaining a CS-TR

bibliography: CS-TR validation and a means of retrieving processed CS-TR records.

Bibliographic record validation

A contributing site must produce a bibliography of CS-TR records for TRs at that site.

When remote bibliographies are collected and placed in the Pending collection, the bib-

liographies must contain correct CS-TR records, otherwise the records are not accepted.

The make sure that the contributing sites only supply correctly formated records the

validation service should be used.

The CS-TR validation service is given the URL of a remote bibliography. The bibliography

is retrieved and all the CS-TR records contained within are parsed. If any errors or

warnings are found these are displayed. Error messages are displayed along with the line

that caused the error.

3 IMPLEMENTATION 12

Retrieval of CS-TR records

When CS-TR records are submitted by a contributing site, the records are processed,

(hopefully) accepted and placed in the Main collection. If a revision of a record is created

by a site, the revised record is placed into the Pending collection and must be processed

again. If the previous version of the record required many changes, it can be frustrating

to the person processing the record to have to redo all those changes. Thus, a means of

retrieving processed records is provided.

The retrieval service is given a document identi�er search pattern and displays all records

matching this pattern in the Main collection. The search method may be either an exact

match (to retrieve a single record) or a regular expression (to retrieve several records). The

latter method can be used to retrieve all records from a particular publishing organisation

by using a regular expression of the form \^pub-id//" where pub-id is the identi�er of the

publishing organisation. Records from other collections may also be retrieved.

3 Implementation

This section describes a prototype implementation of the TR service which will be used

to evaluate both the TR service as a whole and details of the design and implementation.

The prototype is written in Perl [17] on SunOS 4.1.3 and should be portable to any UNIX

platform. The implementation of the database architecture is described in section 3.1.

Several packages providing useful routines have been written. The interfaces to these

packages are given in section 3.2. The program responsible for the collection and processing

of remote bibliographies is described in section 3.3.

Those parts of the service concerned with the processing, installation, validation and

retrieval of CS-TR records are implemented as CGI [5] programs accessed using HTML

forms [14] over the WWW. The advantage of this approach is that it avoids the necessity

of distributing code (to the contributing sites and to the person responsible for processing

the records) by distributing only the interface. The service is easily made available on a

large number of platforms since all that is required is a suitable WWW client. Section 3.4

gives detailed descriptions of each of the CGI programs that make up the TR service.

The integration of this TR service with the Dienst server is explained in section 3.5. The

use of CGI programs and Dienst in the TR service requires the use of a HTTP server.

The requirements and con�guration of the server is discussed in section 3.6.

Note that the implementation requires that the root directory of the service is contained

in the environment variable \TRS ROOT" (including the HTTP server and the Dienst

server).

3.1 Document database

The document database is implemented on a UNIX directory hierarchy. The top-level

directory contains an index and a subdirectory for each collection.

The index maps document identi�ers to collection names and contains an entry for each

3 IMPLEMENTATION 13

document in the database. Each entry is a line of the form \docid = collection". The

index is stored in a �le called \INDEX".

Below each collection subdirectory are the document subdirectories. These are imple-

mented as a two-level hierarchies formed by the publisher and report identi�er parts of

the document identi�ers. In each document subdirectory are the data �les which have the

form \report-id .su�x" where su�x identi�es the type of the data in the �le (e.g., CS-TR

records have the su�x \bib" and PostScript �les have the su�x \ps").

Root

TCD-DSG

Pending Accepted ...Main

...

CS-TR-95-12

CS-TR-95-12.ps CS-TR-95-12.bib ...

...

Figure 2: Implementation of the document database

As an example, if the document whose identi�er is \TCD-DSG//CS-TR-95-12" is in the

Main collection, the CS-TR record for this document would be in the �le \: : :/Main/TCD-

DSG/CS-TR-95-12/CS-TR-95-12.bib" (see �gure 2).

3.2 Perl packages

There are �ve Perl packages: \bibdb" provides access to the document database, \con�g"

contains con�guration settings, \cstr" provides routines to parse CS-TR records, \html-

doc" provides routines to format information in HTML, \mail" provides email facilities,

and \web" contains miscellaneous HTML and WWW routines.

Perl package \bibdb"

This package provides routines to browse and modify the document database. All rou-

tines are atomic in the sense that they either succeed or fail and leave the database

untouched. Protection against concurrency is provided at the level of individual routines

and is done using �le locking. A routine may be either read-only or modifying. Multiple

\read-only" routines may be active at once, but a modifying routine has exclusive access

to the database. Modifying routines are generally less e�cient than read-only routines

since they must update the database index �le. If an errors occurs in any of the routines,

an error message is contained in the variable $error; otherwise the variable $error is

empty.

3 IMPLEMENTATION 14

contents(collection) { Returns a list of the document identi�ers belonging to documents

in the collection collection. The document identi�ers are not returned in any partic-

ular order. If an error occurs, an empty list is returned (this is also the return value

for an empty collection so the $error variable should be consulted). (Read-only.)

delete record(docid, collection) { Removes the document identi�ed by docid in the col-

lection collection from the database. All data�les belonging to the document are

deleted. Returns non-zero if successful; otherwise returns zero. (Modifying.)

doc path(docid, collection) { Returns the base path of data �les for the document identi-

�ed by docid in the collection collection. A particular data �le path may be obtained

by appending a string of the form \.su�x" to the returned path. If an error occurs,

returns an empty string. (Read-only.)

locate collection(docid) { Returns the name of the collection in which the document

identi�ed by docid is located. If an error occurs, returns an empty string. (Read-

only.)

move(docid, from, to, no index) { Moves the document identi�ed by docid from the col-

lection from to the collection to. All data �les belonging to the document are moved.

If no index is non-zero the entry for docid is removed from the index �le making it

appear that the documement has been deleted. Returns non-zero if successful; oth-

erwise returns zero. (Modifying.)

read record(docid, collection) { Reads and parses the CS-TR record for the document

identi�ed by docid in the collection collection. This routine uses the \cstr" package

(see below) to do the parsing, so the data from the record is available via the \cstr"

package variables. If no errors occured returns non-zero; otherwise returns zero. If

a zero is returned and $error is empty, that means an error occurred during the

parsing of the record. (Read-only.)

record path(docid, collection) { Returns the path for the CS-TR record for the docu-

ment identi�ed by docid in the collection collection. If any errors occurred, returns

an empty string. (Read-only.)

write record(docid, collection, record) { Writes the CS-TR record contained in record

for the document identi�ed by docid in the collection collection. The CS-TR record

is assumed to be correct. Returns non-zero if successful; otherwise returns zero.

(Modifying.)

Perl package \con�g"

This package contains variables used to con�gure the system. The most important ones

are:

$www host & $www port { The fully quali�ed name of the host and port respectively

to which the HTTP server is connected.

3 IMPLEMENTATION 15

%NAME { Long and short names for the service and a pseudo publisher identi�er for

the service.

%COLLECTIONS { The set of database collections each of which is mapped to a short

textual description.

%EMAIL { Email addresses for the maintainer and the person responsible for processing

the records.

%URL { URLs for various parts of the system.

%PROG { Full pathnames for programs used by the system.

%PRINTERS { The set of printers to which PostScript documents may be printed. Each

printer is mapped to a textual description of the printer.

%DEFAULT { Various default values.

Perl package \cstr"

This package provides extensible routines to parse CS-TR records and bibliographies.

Information extracted from records is available via variables.

parse(�lename) { Reads and parses the contents of the �le �lename which is assumed to

contain a set of CS-TR records (see parse fh for more details). Returns non-zero if

the �le was read and parsed successfully; otherwise returns zero.

parse fh(fh, �lename) { Reads and parses the set of CS-TR records from the �le-handle

fh (�lename is the name of the �le associated with the �le-handle).

During parsing, the data parts of each �eld are collected into list and scalar tag-

variables based on the name of the tag associated with the �eld. Thus, for a �eld

called tag , all its data parts for the current record are in the list @tag and the last

seen data part is in the scalar $tag . These variables are always in lower-case and any

dashes in the tag names are converted to underscores in the variable names. The

complete text of the record is collected and formatted in the variable $record.

For each �eld in a CS-TR record there is a mapping to a tag-routine. This mapping

may be changed so that user de�ned tag-routines are called instead of the default

ones. This is done by modifying the associative array %TAG (all �eld names are in

upper-case). The interface to all tag-routines is

tag-routine(tag, data, �lename, lineno)

where tag is the name of the �eld, data is the value of the �eld, �lename is the

name of the �le being parsed, and lineno is the line number of the �eld. To ensure

correct behaviour, user tag-routines should call the associated default tag-routine

before doing anything else.

There are �ve special tag-routines that are called during parsing: <START-BIB>

is associated with the start of the �le; <END-BIB> is associated with the end of

3 IMPLEMENTATION 16

the �le; <START-RECORD> is associated with the start of a record; <END-RECORD> is

associated with the end of a record; <ERROR> is associated with error occurrences;

and <WARNING> is associated with warning occurrences. For the latter two, the

data parameter contains the error or warning message; for all the other special tag-

routines the data parameter is empty.

Any errors encountered during parsing are collected in the list @ERRORS. All errors

are in the form \�lename: lineno: message". Similarly, warnings are collected in the

list @WARNINGS. All warnings are in the form \�lename: lineno: warning: message".

Returns non-zero if the �le was read and parsed successfully; otherwise returns zero.

split docid(docid) { Returns a list consisting of the two parts of the document identi�er

docid: publisher identi�er and report identi�er. If any errors occur, a list with two

empty strings is returned.

Perl package \htmldoc"

This package provides routines to write HTML for CS-TR records and other purposes.

This is useful to achieve a standard look for HTML pages.

action bar(docid, collection, actions) { Outputs an action bar for the document identi-

�ed by docid in the collection collection. There are four possible actions which may

be contained in the list actions: \Edit" makes a link to edit the CS-TR record for

the document; \Mail" makes a link to send email to the contact address for the doc-

ument's publisher; \Print" makes a link to print the document; and \View" makes

a link to down-load the PostScript for the document.

cstr errors(�le, limit) { Displays parse errors and warnings in CS-TR records and bib-

liographies. This assumes that one of the parsing routines in the \cstr" package has

just been called either directly or indirectly via the routine \bibdb'read record". �le

is the name of the �le containing the CS-TR records and limit is the maximum num-

ber of errors to display (a value of zero means no limit). The messages are displayed

alongside the line that caused the error or warning.

display doc(docid, collection) { Displays information on the document identi�ed by do-

cid in the collection collection. This assumes that one of the parsing routines in

the \cstr" package has just been called either directly or indirectly via the routine

\bibdb'read record". The information displayed consists of the document identi�er,

the document's title, the list of authors, the last modi�ed date of the CS-TR record

and PostScript �le and the size of the PostScript �le (if any).

menu bar(topic) { Displays a menu bar with links to important pages such as the home

page, Dienst search page, database top-level page etc. A link is also made to the

on-line help information on the topic topic.

Perl package \mail"

This package provides a single routine to send email messages.

3 IMPLEMENTATION 17

send(subject, message, from, recipients) { Sends an email message to the addresses in

the list recipients. subject is the subject �eld of the message, from is the sender's

email address and message is the body of the message. Returns non-zero if no errors

occurred; otherwise returns zero. Any error output from the mail program (i.e.,

\sendmail") is collected in the variable $error.

Perl package \web"

This package provides miscellaneous WWW routines.

ReadParse { Stephen Brenner's routine to collect CGI paramaters into variables.

compressed(path) { Returns non-zero if path represents a compressed �le; otherwise

returns zero. This is done by examining the su�x of path.

decode entities(text) { Returns a modi�ed version of text with all Latin-1 entities of

the form \&name;" converted to the ISO-8859-1 encoding for that entity.

decode html(text) { Returns a modi�ed version of text in which HTML entity encodings

of the form \&name;" and \&#num" are substituted with the character they represent.

encode html(text) { Returns a modi�ed version of text in which characters from the

upper end of the Latin-1 character set and the characters &, < and > are substituted

with entity encodings of the form \&#num;" and \&name;" respectively.

extract url { Returns a URL extracted from the last CS-TR record parsed by one of

the \cstr" package parsing routines. Returns the URL if one was found; otherwise

returns an empty string.

footer { Outputs a standard HTML footer consisting of the name of the service and an

email address to contact for further information.

headers(title, progname) { Outputs HTTP responce headers and HTML header infor-

mation. title is the title of the page being produced; progname is the name of the

program (usually $0). If the program is a non-parsed-header program (see sec-

tion 3.4) as indicated by the occurrence of the string \nph-" in progname, suitable

HTTP response headers are output and bu�ering is turned o� on standard output.

This is followed by a MIME document type header and HTML for the \TITLE" and

\H1" elements.

retrieve document(url, path, uncompress) { Retrieves the document speci�ed in the

URL given in url and places it in the �le given by path. If uncompress is non-zero,

the �le is also uncompressed. Returns non-zero if the �le was successfully retrieved

and written; otherwise returns zero. (Note that if the document is empty, the �le is

removed and zero is returned.)

3 IMPLEMENTATION 18

3.3 Document retrieval

The program \collector" is responsible for retrieving remote bibliographies and placing new

and revised records in the Pending collection. The program should be run periodically

(e.g., once a week), for example as a \cron" script or using the \at" program.

The program works in three phases. In phase one all the CS-TR records in the Bibs

collection are processed. For each record, the CS-TR bibliography speci�ed in the URL

contained in the record is retrieved and written to a data �le with the su�x \cstr".

Phase two processes all CS-TR bibliographies that were successfully retrieved. Each bib-

liography is parsed and information contained in each of the records is collected. This

information consists of the URL for the PostScript document, the contents of the revi-

sion �eld and the complete text of the record. The bibliography is not processed if it

contains any errors.

Once a bibliography has been completely processed, each record is examined to see if it

should be placed in the Pending collection. The record is inserted if it does not already exist

in the database or if it does exist but the revision �elds of the two records are di�erent.

If a record is inserted, an attempt is made to retrieve the documents's PostScript �le.

In phase three, email messages are sent to the person responsible for processing the records

and to the service maintainer. The former email is only sent if one or more records were

placed in the Pending collection. The contents of the email contain the list of documents

inserted and an indication of whether they were new records or revisions of previous

records. The latter email is always sent and consists of a verbose status report.

The program \get url" is responsible for retrieving remote documents (e.g., CS-TR bib-

liographies and PostScript �les) given a URL. The program is based on Perl programs

developed by Oscar Nierstrasz and Lee McLoughlin.

3.4 CGI programs

There are eight CGI programs supporting the TR service: \db" for viewing and editing the

document database; \help" for accessing on-line help information; \install" for installing

accepted documents into theMain collection; \mail" for sending email; \print" for printing

all or parts of a document; \report" for generating reports of recent TRs; \request" for

retrieving processed CS-TR records; and \validate" for validating CS-TR records and

bibliographies.

CGI parameters may be input using both the \GET" and \POST" HTML form methods.

Some of the programs may be accessed by anybody while others require authentication.

It is assumed that the HTTP server performs the authentication and passes the identi�er

of the user to the programs via the environment variable \REMOTE USER". For these

programs, the user \browse" is allowed read-only access.

CGI programs come in two forms: standard and non-parse-header (NPH) form [1, 5].

NPH programs are distinguished from standard programs by the occurrence of the string

\nph-" in the program name. In a NPH program, it is the program itself and not the

server which must output a HTTP response header. Also, the output of NPH programs is

3 IMPLEMENTATION 19

not sent indirectly via the server. This means that NPH programs are potentially faster

and the results may be output without being bu�ered. The latter feature is important

as it allows a WWW client to display a page as the data is received thus reassuring the

end user that something is happening. Each CGI program described below comes in both

forms, implemented using a symbolic link.

CGI program \db"

Synopsis: Provides the ability to view and edit the document database.

Parameters:

collection { The name of a database collection.

docid { A document identi�er.

limit { A positive integer (default: 0).

move to { The name of a database collection.

order { One of three possible values: \None", \Ascending", or \Descending".

record { The text of a CS-TR record.

retrieve { One of two possible values: \on" or \o�".

Description: This program works in three di�erent ways depending on the parameters

docid and collection. If neither is supplied, a top-level page is output giving the list of

collections and the number of documents in each collection.

If collection is supplied and docid is not, the output is a view of the speci�ed collection.

For each document in the collection, the document's identi�er and title are displayed

along with the last modi�ed time of the CS-TR record and an indication of whether the

PostScript �le for the document is available. Each document identi�er may be selected to

edit that document. The limit parameter speci�es the maximum number of documents

to display (0 means no limit). The order parameter can be \None", \Ascending" or

\Descending" and refers to the ordering of the documents based on the last modi�ed date

of the CS-TR record.

If db is supplied and collection is not, the collection containing the speci�ed document

is located and the CS-TR record for the document is edited (see below).

If both db and collection are supplied, the CS-TR record for the document is edited.

This allows the text of the record to be modi�ed and then committed to the database.

Also, the document may be moved to another collection or deleted. If record is supplied,

it is �rst checked for errors. If there are any, these are displayed; otherwise the value of

record is written to the database as the CS-TR record for the document. However if

record is \new" a new record is created (providing docid does not exist in the database).

If move to is supplied, the document is moved to the speci�ed collection. Finally, if

the PostScript �le for the document does not exist or the value of retrieve is \on", the

PostScript �le is retrieved from the URL speci�ed in the CS-TR record.

Note that while editing a record, characters in the upper part of the Latin-1 character set

may be entered using the form \&name;", where name is the Latin-1 entity name.

3 IMPLEMENTATION 20

Output: The output consists of a standard header, a menu bar, the body and a standard

footer. For the top-level page, the body consists of a list of collections and a form to edit a

CS-TR record given a document identi�er. When viewing a collection, the output consists

of the list of documents followed by a form to alter the order and limit of the list. There

is also a form to specify the document identi�er of a record to be created. When editing

a record, the output consists of information on the document and a form for editing the

CS-TR record. The form allows modi�cation of the text of the record and the speci�cation

of a new collection for the record.

Access: This program is protected using basic authentication. Only privileged users

may change the state of the database; the user \browse" may only browse documents.

CGI program \help"

Synopsis: Displays help information on a speci�c topic.

Parameters:

topic { A text string.

Description: This program is used to access on-line help information on a speci�c topic

that is speci�ed in the topic parameter. The topic string is converted to lower-case and all

non alpha-numeric characters are removed. The resulting string names a help-�le located

in a special directory. The help-�le consists of HTML and may also contain embedded

Perl commands bracketed with hash characters (\#"). These commands, which must be

contained within a single line, are substituted with the result of evaluating the command.

If the command is of the form \&topic('a', 'b')", the result is a HTML link to the

help topic a anchored to the text b.

Output: The output consists of a standard header, a menu bar, a form for inputting a

new help topic, the information on the selected help topic (if any) and a standard footer.

Access: No access restrictions.

CGI program \install"

Synopsis: Installs accepted documents into the Main collection.

Parameters:

action { One of two possible values: \Install documents" or empty (default).

3 IMPLEMENTATION 21

Description: This program is used to install documents from the Accepted collection

into the Main collection so they may be searched using the Dienst software. If action

is empty, a list of publishing organisations is produced. For each publisher, the number

of document in the Accepted and Rejected collections belonging to that publisher is also

listed.

If action is \Install documents" the following four actions are done:

1. All documents in the Accepted collection are moved to the Main collection and all

documents in the Rejected collection are deleted (moved to the Deleted collection).

2. An email message is send to the contact address for each publisher for which at least

one document was either accepted or rejected.

3. The accepted documents are installed into the Dienst system (see section 3.5 below

for details).

4. A HTML document which lists the current publishing organisations is produced.

Output: The output consists of a standard header, a menu bar, the list of publishers,

the status of the four actions (if these are done) and a standard footer.

Access: This program is protected using basic authentication. Only privileged users

may install documents.

CGI program \mail"

Synopsis: Sends an email message.

Parameters:

action { One of two possible values: \Send Message" or empty.

from { Email address.

publisher { A publishing organisation's identi�er.

subject { A short text string.

text { A (possibly long) text string.

to { Comma separated list of email addresses.

Description: This program is used to send email. If action is \Send Message" a mes-

sage is composed using the parameters subject, from and text and is sent to the users

speci�ed in to (the parameters to, from and text must not be empty). If publisher is

speci�ed, the message is sent to the contact address speci�ed in the CS-TR record for the

named publisher held in the Bibs collection. The email message is sent using the \send-

mail" program. A footer identifying the source of the message is appended to the body of

the message.

3 IMPLEMENTATION 22

Output: The output consists of a standard header, a menu bar, a form for specifying

parameters (if action is empty), the status of sending the message (if action is \Send

Message"), and a standard footer.

Access: This program is protected using basic authentication. Only privileged users

may send email.

CGI program \print"

Synopsis: Prints all of or part of a PostScript document.

Parameters:

action { One of three possible values: \Print Document", \Show Print

Queue", or \Search for Document".

collection { The name of a database collection.

docid { A document identi�er.

new docid { A document identi�er.

pages { A selection of pages in the format of the \psselect" program.

printer { A text string.

Description: This program provides a way of printing a document identi�ed by the

parameters docid and collection. If action is \Print Document" and a valid document

has been selected, the document is printed to the printer speci�ed in printer. If pages is

speci�ed, the program \psselect" is �rst used to extract the desired selection of pages and

the result is printed. If action is \Show Print Queue" the print queue for the selected

printer is shown. If action is \Search for Document" the document identi�er identi�er by

new docid is selected.o

Output: The output consists of a standard header, a menu bar, information on the

selected document (if any), a form for submitting requests, the result of a request (if any)

and a standard footer.

Access: This program is protected using basic authentication. Only privileged users

may submit the action \Print Document". The user \browse" may perform all other

actions.

CGI program \report"

Synopsis: Generates a new report or regenerates an existing report of recent TRs.

3 IMPLEMENTATION 23

Parameters:

action { One of three possible values: \Generate new report", \Regenerate

report", or \List current reports".

number { An integer value greater than zero.

Description: If the action parameter is \Generate new report", a report of recent TRs

is produced. A CS-TR record for the new report is created and placed in the Reports

collection along with the PostScript for the report. The reports selected consist of all

documents in the Main collection which have not previously been included in an existing

report. When a document has been included in a report, the document identi�er of the

report is stored in a report data �le in the documents directory using the su�x \report".

If action is \Regenerate report" the report identi�er by number is regenerated. This

involved �nding all documents whose report �le contains the identi�er of the report being

regenerated.

When a document is included in a report, the document identi�er of the report is placed

in a data �le with the su�x \report". Generation of a new report selects those documents

with no \report" data �le; regeneration of an existing report selects those documents

whose \report" data �le contains the document identi�er of the report being regenerated.

Reports are generated by creating a LaTEX �le which is processed and converted to a

PostScript �le. The LaTEX document uses the style �le \isolatin1.sty" so that Latin-1

characters are rendered correctly. The �le \preamble.tex" is prepended to the LaTEX doc-

ument; this �le contains macros for formatting the information from the CS-TR records.

Output: The output consists of a standard header, a menu bar, a form for the three

actions, the status of the report generation (if a report was generated), a list of current

reports (in descending order of report number) and a standard footer.

Access: This program is protected using basic authentication. Only privileged users

may generate or regenerate reports. The user \browse" may view current reports.

CGI program \request"

Synopsis: Extracts CS-TR records from a collection based on a document identi�er

search pattern.

Parameters:

collection { The name of a database collection (default \Main").

pattern { A text string.

type { One of two possible values: \exact" or \regexp" (default \regexp").

3 IMPLEMENTATION 24

Description: The \request" CGI program searches the database collection speci�ed

in the parameter collection for CS-TR records whose document identi�er matches the

search pattern in the parameter type. Two types of search patterns are supported. If the

parameter type is \exact" there must be an exact match; if type is \regexp" there match

is based on a Perl regular expression. The former search type returns at most one record

while the latter may return more than one record.

Output: The output consists of a standard header, a menu bar, a search form, the

results of the search (if pattern is supplied), and a standard footer.

Access: No access restrictions.

CGI program \validate"

Synopsis: Validates CS-TR records and bibliographies.

Parameters:

action { One of two possible values: \Validate Bibliography" or \Validate

Record".

limit { A positive integer (default: 0).

record { Text of a CS-TR record.

url { A URL (protocols http and ftp only).

Description: This program is used to validate either a single CS-TR record or a bibli-

ography of CS-TR records and to display any errors encountered. If action is \Validate

Bibliography" the bibliography speci�ed in the URL in the parameter url is retrieved and

validated. If action is \Validate Record" the text speci�ed in record is validated. If any

errors are found, these are displayed alongside the line that caused the error. A limit on

the number of errors displayed may be speci�ed in limit.

Output: The output consists of a standard header, a menu bar, the result of parsing

the record or bibliography, a form for submitting requests and a standard footer.

Access: No access restrictions.

3.5 Dienst integration

The Dienst software requires local customisation to enable it to access the collection of

documents. Routines are provided to:

1. traverse the document collection and call a routine for each document found;

3 IMPLEMENTATION 25

2. given the path for a document's directory, return the document identi�er for that

document;

3. given a document identi�er, return the document directory for that document; and

4. various other small routines dealing with the structure of document identi�ers.

Implementation of these routines is simple because the architecture of the document

database is based on Dienst recommendations and both systems use the same format

for document identi�ers.

Dienst also needs con�guration for items such as the hostname and port for the HTTP

server, the email address of the maintainer and the list of publishing organisations. Since

both systems share a common implementation language (i.e., Perl), this con�guration is

simple since much of this information is already present in the package \con�g". The

list of publishing organisations is created during installation of documents into the Main

collection and written to a �le which is included by the Dienst software.

Dienst allows browsing based on years. However, the information about which year a

document was published in comes from the document identi�er and not from the CS-TR

record. This is done because years are typically encoded into report identi�ers. In this

service, the format of report identi�ers varies between publishing organisation's so this

feature of Dienst has been disabled.

During the installation process, apart from creating the list of publishers, the Dienst server

needs to be informed that new documents have been installed. Doing this �rst requires

extending the inverted indices used by Dienst and then getting Dienst to reload these

indices.

The inverted indices are build using the program \build-inverted-indexes.pl" which can

takes a list of document identi�ers (which may be contained in a �le), reads the CS-TR

record for each document and uses this information to extend the indices. To force the

Dienst server to reload the indices, the signal SIGUSR2 must be delivered to the server

process. Also, sending the signal SIGUSR1 forces the server to reload the con�guration

code (this is necessary since the list of publishers may have changed). Finding the process

identi�er of the server processes is done by searching the Dienst log for the last occurrence

of the string \Dienst started as process pid" where pid is the required process identi�er.

3.6 HTTP Server

The HTTP server requires integration with the TR service and with the Dienst server.

Any HTTP server may be used if it:

1. implements the CGI (the ability to run NPH programs is desirable but not manda-

tory); and

2. provides basic authentication for \GET" and \POST" methods.

The information here shows the con�guration required for version 3.0 of the CERN

server [4]. In the following, assume that root is the path of the top-level directory of

3 IMPLEMENTATION 26

the service (i.e., the value of the \TRS ROOT" environment variable). The con�guration

assumes that the HTTP server is used exclusively for the TR service, though integration

with an existing server is possible.

The CERN server con�guration �le requires the following general settings:

ServerRoot root/httpd
HostName hostname

Port port

AccessLog root/logs/httpd-log
ErrorLog root/logs/httpd-errors
PidFile root/logs/httpd-pid

where hostname and port are the hostname and port of the HTTP server as speci�ed in

the \con�g" Perl package.

A rule must be added to enable CGI programs to be executed. All CGI programs are

in directory \cgi-bin" and those requiring authentication are placed in the subdirectory

\auth". (The reason for this separation is that the CERN server requires that all protected

CGI programs have an entry in an ACL �le and there is no way of specifying an entry with

no ACL.) The following three lines specify the \protection setup �le" for the protected

CGI programs the \Exec" rule for all CGI programs:

Protect /TRS/auth/* root/httpd/trs.auth
Exec /TRS/auth/* root/cgi-bin/auth/*
Exec /TRS/* root/cgi-bin/*

Next are the \Exec" rules for the Dienst server:

Exec /TR/* root/dienst/Kernel/nph-dienst_stub.pl
Exec /Server/* root/dienst/Kernel/nph-dienst_stub.pl
Exec /Document/* root/dienst/Kernel/nph-dienst_stub.pl
Exec /MetaServer/* root/dienst/Kernel/nph-dienst_stub.pl
Exec /Submit/* root/dienst/Submit/submit.pl
Exec /Misc/* root/dienst/Misc/*

Finally, there are two \Pass" rules. The �rst is used when down-loading PostScript docu-

ments and the second is used for ordinary HTML documents (the Dienst HTML documents

are included in this root directory using symbolic links.)

Pass /DB/* root/db/* Pass /* root/doc/html/*

The protection setup �le \trs.auth" is used to specify information used in authenticating

access to the protected CGI programs:

AuthType Basic
ServerId Technical-Report-Service
PasswordFile root/httpd/passwd
GroupFile root/httpd/group
GetMask trs

Only members of the group \trs" are allowed access to the protected CGI programs. This

group, in addition to the privileged users, contains the user \browse" and this user does

not require a password.

4 PERFORMANCE 27

The ACL �le \cgi-bin/auth/.www acl" directory ensures that all privileged CGI programs

are authenticated for \GET" and \POST" methods. The �le contains just one line:

* : GET,POST : trs

4 Performance

This section presents performance �gures for selected parts of the TR service. All �gures

were obtained using the \gettimeofday" system call on a lightly loaded SPARC Classic

workstation running SunOS 4.1.3 and version 5.0 of perl. The programs, libraries and the

document database were on a local disk.

Figures are presented for parsing CS-TR records (section 4.1) and database operations

(section 4.2).

4.1 Parsing CS-TR records

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Number of records

small
large

Figure 3: Parsing CS-TR records

Figure 3 shows times for parsing two types of CS-TR records (using the \parse" operation

from the \cstr" package):

1. \small" | the smallest possible record consisting of the four mandatory �elds id,

bib-version, entry and end (size: 69 bytes).

2. \large" | a typical record consisting of 29 �elds including an abstract (size: 1696

bytes).

The �gures represent the time to parse a �le consisting of a number of records. Each �le

was parsed several times and the average elapsed time was used.

4 PERFORMANCE 28

The times are high (e.g., approximately 330ms for the large records) due to the extensible

nature of the \parse" operation and the way in which information from the record is

collected. Both of these are done using the Perl \eval" statement which is costly.

4.2 Database operations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
on

ds
)

Number of records in database

contents
read_record

write_record
move

Figure 4: Database operations

The times for four database operations from the package \bibdb" are shown in �gure 4.

The operations are \contents", \read record", \write record", and \move".

For each operation, the �gures were obtained by calling the operation several times and

taking the average of the elapsed time. The number of records in the database was varied

from 0 to 1000.

The times for \contents", \write record" and \move" increase linearly as the number of

records in the database increases. This is due to the index �le which is read for all read-only

operations and read and written for all modifying operations.

The \read record" operation is constant because it does not read the index �le. The

average time for this operation is 355ms which is due to the fact that the \parse" operation

is called.

The times for the \move" operation are high because it is a combination of \read record"

and \write record".

5 FUTURE DIRECTIONS 29

4.3 CGI programs

5 Future directions

There are many ways in which the current TR server could be improved. Some ideas are

given below.

Security The \Basic" form of authentication provided by HTTP 3.0 is not secure [1]

(i.e., passwords are transmitted from the client to the server as plain-text). Further

protection could be provided by only allowing access from certain machines. However, to

achieve a more secure implementation would require either a better form of authentication

or not using the WWW to access the document database.

More
exible WWW clients The
exibility of the access to the document database

is limited by the power of WWW clients. For example, CS-TR records are edited within

the \TEXTAREA" HTML element. It would be better if the client knew that CS-TR

records were being edited so that formatting would be easier. One possible avenue is to

make use of the ability to down-load code from the server to the client as is done in the

HotJava [9] WWW client.

E�ciency Some parts of the implementation need to be improved regarding perfor-

mance (see section 4). Some of these problems could be attributed to the design of a

component while others are due the the interpreted nature of Perl. Once the prototype

has settled it may be worthwhile rewriting the system in C or C++.

Non-WWW based interface The decision to use a WWW based interface to access

the document database needs to be reevaluated after the prototype has been in use for some

time. It this decision turns out to be problematic (e.g., due to security concerns or lack of

exibility at the client side) non-WWW based interface will have to be considered. One

possible alternative would be to use a graphical interface implemented with Tcl/Tk [13].

Email services Currently documents are submitted by making a bibliography available

via a URL. This could be extended by allowing people to email CS-TR records to the

server. The email facility could also be used to perform searches, document retrieval,

validation, etc.

Search engines There is no reason why other search engines cannot be used instead

or alongside the Dienst search engine. Also, installed records could be placed into other

distributed bibliography systems such as Refdbms [8]. This would require converting the

CS-TR record to refer format.

Other formats The current implementation only supports PostScript as the format for

documents. This could be extended to support other formats such as DVI, OCR etc.

A SOFTWARE REQUIREMENTS 30

Fault tolerance The operations on the document database (i.e., those provided by the

Perl package \bibdb") could be made to tolerate faults better. This could range from

using a full transaction facility to managing faults and concurrent accesses better.

A Software requirements

Below is a list of software requirements for the server side (i.e., the site running the HTTP

server) and the client side (i.e., users such as the cataloguer and researchers searching the

database).

A.1 Server-side requirements

� A HTTP server. In addition to serving HTML documents, the server must im-

plement the CGI and (NPH programs should also be supported but is not strictly

necessary) and provide authentication (e.g., CERN httpd, NCSA httpd).

� The Dienst server and utilities.

� Compression and decompression software (e.g., the standard UNIX utilities \com-

press" and \uncompress" or the GNU gzip package).

� The LaTEX document processing system and a converter from the DVI format output

by LaTEX to PostScript (e.g., \dvips").

� The \psselect" program for extracting a selection of pages from a PostScript docu-

ment.

� The UNIX utilities \lpr" and \lpq" to print �les and show the contents of a print

queue.

� The \sendmail" program.

� The \perl" programming language. (Dienst only works with versions 4.x of Perl.)

� Miscellaneous UNIX utilities such as \cp" and \rm".

A.2 Client-side requirements

� A HTML client which should support a limited subset of HTML 3.0 (particularly

tables and multiple \submit" buttons).

� A PostScript viewer (e.g., \ghostview").

REFERENCES 31

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol -

HTTP/1.0. [ONLINE], August 1995. Available at http://www.w3.org/hypertext/

www/protocols/http1.0/draft-ietf-http-v10-spec-02.ps.

[2] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform resource locators

(URL). RFC-1738, December 1994.

[3] CaberNet: Computing architectures for basic European research. [ONLINE], July

1995. Available at http://cabernet.esprit.ec.org/cabernet/.

[4] CERN httpd 3.0 guide. [ONLINE], October 1994. Available at http://www.w3.org/

pub/WWW/Daemon/User/.

[5] The common gateway interface speci�cation version 1.1. [ONLINE], September 1995.

Avaliable at http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

[6] Danny Cohen. A format for e-mailing bibliographic records. RFC-1357, July 1992.

[7] James R. Davis and Carl Lagoze. A protocol and server for a distributed digital techni-

cal report library. Technical Report TR94-1418, Cornell University, Ithaca, NY 14853,

June 1994. Available at http://cs-tr.cs.cornell.edu:80/TR/CORNELLCS:TR94-1418.

[8] Richard A. Golding, Darrell D. E. Long, and John Wilkes. The refdbms distributed

bibliographic database system. In Proceedings of Usenix Winter Technical Conference,

San Francisco, CA, January 1994. Usenix Association.

[9] James Gosling and Henry McGilton. The Java Language Environment: A White

Paper. Sun Microsytems, May 1995.

[10] ISO 8859-1:1987 Information processing { 8-bit single-byte coded graphic character

sets { Part 1: Latin alphabet No. 1. International Standards Organisation, 1987.

[11] Carl Lagoze, Erin Shaw, James R. Davis, and Dean B. Kra�t. Dienst: Implementation

reference manual. Technical Report TR95-1514, Cornell University, Ithaca, NY 14853,

May 1995. Available at http://cs-tr.cs.cornell.edu:80/TR/CORNELLCS:TR95-1514.

[12] Rebecca Lasher and Danny Cohen. A format for bibliographic records. RFC-1807,

June 1995.

[13] John Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[14] Dave Raggett. HyperText markup language speci�cation version 3.0. [ONLINE],

March 1995. Available at http://www.w3.org/hypertext/WWW/MarkUp/html3/

CoverPage.html.

[15] Ed Taft and Je� Walden. PostScript language reference manual. Addison-Wesley,

Reading, MA, 2nd edition, 1985.

[16] William Turner. The document architecture for the cornell digital library. RFC-1691,

August 1994.

REFERENCES 32

[17] Larry Wall. The Perl Programming Langauge. O'Reilly & Associates, 1990.

[18] World Wide Web Consortium. The world wide web initiative: The project.

[ONLINE], September 1995. Available at http://www.w3.org/hypertext/WWW/

TheProject.html.

