
Making Meta-Object Protocols Practical for Operating Systems

Brendan Gowing� Vinny Cahill

Distributed Systems Group, Computer Science Department,

Trinity College, Dublin 2, Ireland.

Abstract
This position paper considers how Meta-Object Pro-

tocol (MOP) technology can be used to support operat-
ing system
exibility including the dynamic adaption
and extension of the system. We are interested in ap-
plying MOPs to a domain (that of operating systems)
where they have had little acceptance. We believe that
this is largely due to the complexity of operating sys-
tem software and the possible security loophole(s) that
MOPs can introduce. We address these problems by
the novel use of multiple, �ne-grained MOPs and a
category of MOPs called Extension Protocols to pro-
vide controlled, secure extension without the limita-
tions of prede�ned \hooks" into the operating system.

1 Introduction
Operating system designers are catering for an in-

creasingly diverse range of application requirements

by designing
exible systems. The noticeable increase

in designs that include micro-kernel technology to sup-

port user-space replaceable system services is one ef-

fect of this change. However, the user-space server is a

very coarse-grained structure, not easily subjected to

incremental modi�cation [DPH92][MA90]. It is also

di�cult to dynamically extend the services provided

by these systems, be they kernel or user space based.

The solution then is to have a dynamic system

structure, which in our case is object-oriented, that

can cater for the di�ering requirements that applica-

tions place on system services. As applications are ac-

tivated dynamically, the object-space in which these

applications execute is continuously growing, shrink-

ing, and altering to accommodate new application ob-

jects. It then follows that the system services which

support such an application object space must also

be dynamically able to grow, shrink and alter them-

selves to accommodate the requirements of application

objects while avoiding system shutdowns for updates.

Certainly a di�cult task in a standalone system, but

one whose di�culty can be greatly increased by dis-

tribution and heterogeneity.

In this position paper, we consider the use of Meta-

Object Protocols (MOPs) as a mechanism for speci-

fying the structure of
exible, open, object-oriented,

system software that can be dynamically adapted and

extended in a non-predetermined manner. We outline

some of the problems faced when using MOPs in op-

erating systems, and how they may be overcome by

�bgowing@dsg.cs.tcd.ie

using multiple, �ne-grained MOPs and a category of

MOPs called Extension Protocols.

2 Related Work
There are currently a number of operating systems

supporting extensibility. A common feature of many

of these systems is the use of \hooks" into the system

system to cater for dynamic extension. This means

that the set of possible extensions is limited by the

number of hooks that the designers have included. It

also requires a certain amount of precognition on the

part of the designer to include the appropriate hooks

for the intended application base, if the latter can in-

deed be predicted. Our proposal di�ers from these

approaches by including extension protocols which are

used to suitably modify an object system's implemen-

tation to incorporate (possibly unpredictable) new be-

haviour.

Examples of systems utilising hooks include SPIN

and the caching kernel. In SPIN [B
+
94] \spindles"

can be dynamically hooked into the kernel at runtime.

However, the prede�ned set of points at which exten-

sions can be linked into the kernel are �xed. Simi-

larly, the Caching kernel [CD94] can load speci�c ker-

nel modules into a \cache" in kernel space, but the

type of services are pre-de�ned and are limited to be-

ing either kernels, address spaces, memory spaces, and

processes, i.e. there are no user-de�nable services al-

lowed.

A related system, the Kernel Toolkit (KTK)

[GMSS94], supports con�gurable object-oriented ap-

plications where attributes are manipulated by poli-
cies. However, KTK does not support run-time exten-

sibility, as attributes and policies are �xed at compile

time.

Apertos [Yok92] was the �rst OS developed us-

ing re
ection, meta-objects and object/meta-object

separation. It o�ers a scheme of \extensible hooks"

through re
ectors. The re
ector class hierarchy only

supports a single MOP which, though it is expand-

able through compile-time inheritance, only supports

Actor-like, single-threaded, active objects as the sys-

tem's executable entity. However, dynamic extensi-

bility of the kind in which we are interested is not

supported in the current release as neither alteration

of re
ector classes nor addition to the hierarchy of re-

ector classes is allowed at runtime.

3 Applying MOPs to OSs
Operating systems are large, complex pieces of soft-

ware which must be secure against tampering. The

history of OS design includes tight, inter-component

coupling in an attempt to minimise execution time on

processors with low computational power. Moreover,

it cannot be denied that as computers develop, their

operating systems are experiencing a similar growth

and are becoming unwieldy. The need to support new

software features and hardware devices is increasingly

bloating the system software [PW94].

In order to tackle this problem, we are building on

a body of research into object-oriented operating sys-

tems [Rus91][C
+
94] and the success of Meta-Object

Protocols in the area of
exible language runtimes

[KRB92][SKT94]. A Meta-Object Protocol is the spec-
i�cation of an object system's open implementation
in terms of the meta-objects and classes needed to

realise the system's intended behaviour [KRB92]. In

this context, the protocol documents the objects which

implement a system's objects; i.e., it is not concerned

with the speci�cation of an object's interface, but the

speci�cation of the implementation of the objects. An

operating system can be e�ectively constructed by \in-

stantiating" the hierarchy of MOPs specifying system

services. By this we mean that the classes speci�ed in

the MOP are collectively instantiated. Just as an ob-

ject is an instance of a class, we use the termMOP in-
stance to describe the set of objects instantiated from

the classes speci�ed in the MOP.

Despite arguments in favour of the use of MOPs

in open system software [KLM
+
93], the MOP has had

little if no impact on the operating system community.

We believe that this is largely due to the complexity

of an operating system's intricate structure
1
and the

possible security loopholes. Whereas the workings of a

programming language's run-time can be adequately

described by a MOP, an entire operating system is a

far more daunting proposition. The issues to be solved

include (a) deriving an appropriate \OS MOP", (b)

altering (dynamic adaption or extension) the compo-

nents of such a large compiled system, and (c) the

seemingly large security loophole of allowing an ap-

plication to manipulate system services. We address

(a) by using multiple, �ne-grained MOPs, where sys-

tem software is decomposed [Mae94] into constituent

services and represented by individual MOPs
2
; (b) by

introducing a system of controlled extension through

a category of MOPs that we call Extension Protocols;
and (c) by separating the MOP from the mechanism

of extension. These topics are covered in the following

subsections.

3.1 Developing a MOP for an OS
Essentially, the kernel, user-space servers and run-

time support systems all provide services. Combining

all of these services into a single MOP would be a

highly complex task, so we are isolating the decom-

posed services [Mae94] and specifying each one with

its own MOP. In this fashion, the operating system

can be described by a collection of MOPs o�ering dis-

parate or similar services to clients.

1Especially in the case of legacy system software.
2To our knowledge, no other system attempts to use more

than a single MOP.

The following list gives an indication of the na-

ture of the MOPs that we are working with: Boot-

strap Management, Thread Management, Storage

Management, Memory Management, Device Manage-

ment, Object Name Management, Distribution Man-

agement, User Management, Time Management, vari-

ous Language Run-time MOPs, and of course, Exten-

sion Protocols for specifying various extension policies.

Our proposed method of bootstrapping an oper-

ating system based on MOPs involves instantiating

the set of fundamental MOPs that provide minimal

system services. The contents of the set are neces-

sarily dependent upon the intended use of the sys-

tem, so that, for example, an embedded OS might not

need user management functions and have only lim-

ited �le system functions. After instantiating MOPs

for thread and �le system management, a user man-

agement MOP can be instantiated to solicit for users.

At this point the number and type of MOPs that are

then loaded depends ultimately on what the users do.

For example, if a user has �les stored on a separate

�le system from the boot �le system, then the sec-

ond �le system has to have a MOP instantiated for

it by the minimal system that is available. As appli-

cations are chosen for execution by the various users,

they and the MOPs that they require services from are

also instantiated. In this fashion, the system is built

up in response to user requirements to accommodate

the particular applications being executed.

Memory Manager MOP

AddressTransTable

....

PagedAddressSpace

....

PageStore

....

AddressComponent

....1+

PageReplacementPolicy

.... PRPolicy_FIFO

.... PRPolicy_LRU

....
PRPolicy_MRU

....

1+

Figure 1: A paged memory manager MOP show-
ing its constituent classes, including various
page replacement policies (PRPolicy XXX).

MOPs can bene�t from the use of inheritance. A

MOP as a set of classes o�ers extension through sub-

classing [KRB92]. A similar feature has already been

exploited by other
exible systems [Rus91][C
+
94]. As

an example, consider a Thread System which caters

for di�erent processors via alternate Processor and

Context classes, which inherit from base processor

and context classes, and which o�er alternate schedul-

ing policies in a SchedulerPolicy class hierarchy.

Now, using MOPs and without any prescience on the

part of the system's designer, the thread system can

be extended even though the existing object interface

does not support extension. For example, dynamically

extending the thread package by adding a new class

to the SchedulerPolicy hierarchy may have been an

obvious candidate for inclusion as part of the pack-

age's interface, but replacing the Context with one

that maintains application dependent debugging in-

formation is less predictable as a requirement.

Figure 1 shows a simpli�ed MOP for memory man-

agement. Given that applications tend to di�er in

their page replacement requirements, this MOP in-

cludes a small hierarchy of page replacement pol-

icy classes. The PRPolicy XXX classes contain al-

ternative algorithms, such as \most recently used"

in PRPolicy MRU. Applications can then choose the

most appropriate policy through an Extension Proto-

col. Figure 2 shows application-level objects which

have a Memory Manager MOP instance as part of

their meta-level. In turn, the memory manager has

an extension protocol as part of its meta-level. In

this example, although the memory manager already

has a set of scheduler policies, new ones can be added

by using an specialised extension protocol. Figure 2

simply shows how an extension protocol can support

adaption by allowing application software to select an

appropriate page replacement policy by calling the se-
lectPRPolicy method, despite the fact that the orig-

inal memory manager design did not have to include

such a facility.

1+

change to:

"meta−level
 invocation"

Application Objects

Extension
Protocols

(Meta−Level)

(Meta−meta−level)

AddressSpaceExt

....

selectPRPolicy
....

PagedAddressSpace
....

AddressComponent

....

PRPolicy_FIFO

....

....

PRPolicy_MRU

....

PRPolicy_LRU

....

PRPolicy

Memory Manager Instance

Figure 2: Adapting the memory manager by dy-
namically (i.e., at runtime) changing the page
replacement policy from a generic version to
one that implements the least recently used al-
gorithm.

3.2 Dynamic Adaption and Extension
We have identi�ed four categories of adaption and

extension that must be supported:

1. Adaption: where the components, algorithms or

policies are selected or tuned by a client object.

2. Extension by Replacement: of either a MOP

instance in its entirety or an object within that

MOP (such as one that implements a certain pol-

icy).

3. Extension by Modi�cation: an existing object
is extended in some way by either adding to its

representation or interface.

4. Extension by Introduction (of new phe-
nomena): covers either the introduction of a new
service implemented as a new MOP instance, or

the introduction of a new class into a MOP in-

stance.

Figure 3 shows an example of Extension by Intro-

duction. In this case, an application object wants to

plug its own page replacement policy object into the

memory manager of its meta-level. Here, the exten-

sion protocol has an addPRPolicymethod to cater for

just such an eventuality. The method should be able

to suitably modify the MOPs instance to accommo-

date the new object as well as ensure the integrity of

the memory manager by validating that the operation

does not create any security infringements.

1+

change to:

Application Objects

Extension
Protocols

(Meta−Level)

(Meta−meta−level)

PagedAddressSpace
....

AddressComponent

....

....

PRPolicy

Memory Manager Instance

....

PRPolicy_MRU

....

PRPolicy_myMedia

PRPolicy_FIFO

....

....

PRPolicy_LRU

PRPolicy_myMedia

AddressSpaceExt

....

selectPRPolicy

....

addPRPolicy

Figure 3: A new page replacement policy be-
ing plugged in using addPRPolicy method of an
Extension Protocol class.

3.3 Security
Typically, language runtimes speci�ed by a MOP

o�er client objects the opportunity of using a second or

meta- interface [KRB92] which supports access to the

internals of the system's implementation. The com-

ponents of the MOP can usually then be replaced at

runtime as required. Obviously, a similar scheme is

not suitable for an operating system, where arbitrary

modi�cations of shared services, whether malicious or

not, can have hazardous a�ects on system integrity.

We thus consider that services and the objects that

implement them are resources that can be either lo-

cal, shared or global.

The intention is that while global and shared re-

sources have to be protected against tampering, local

resources can be less restricted; destructive modi�ca-

tions will only be possible for local resources where

the harm can be localised using either hardware ad-

dress space boundaries or a software scheme such as

in [WLAG93]. Also, by marking the memory pages

storing a MOP instance as read only, the meta-level

objects can be protected against tampering while still

in the same address space as insecure application-level

code. The Extension Protocol can then control the

extension process by maintaining stringent criteria for

MOP instance extension. For example, an extension

protocol for a �le system MOP may only allow bu�er

and device driver extensions to be made, such that

new bu�ers of the appropriate size can be added to

the �le system and local device drivers may be loaded

for devices, but not unloaded. In this way, the exten-

sion protocol acts as a \�rewall" between the MOP

instance's objects and all other objects.

Note, however, we do not want to rule out the possi-

bility that a MOP might include either an unsafe local

resource which executes in a privileged mode of the

processor or a shared resource maintained in an ad-

dress space with local resources. Although dangerous

for mainstreamoperating systems, it may be a require-

ment for a particular embedded system design. In the

case of the former, a similar system to [WLAG93] can

be utilised to maintain protection while the latter can

use protected memory pages or virtual resources.

However, there are a number of open issues that

we are still examining. They include: Which poli-

cies/MOPs, if any, should never be extensible? What

extension protocols are generic (can be applied to ob-

jects or MOPs at any level of the software hierarchy;

i.e., from the system service level at the bottom to the

application software at the top)? Minimising cross

address-space utilisation (including examining cross

address space information replication and part page

sharing for quick access). The use and e�ciency of

virtual resources; i.e., having a globally shared re-

source locally visible to an application's object but

represented securely by being a virtual resource. The
interesting area of extending Extension Protocols.

4 Summary
The goal of this position paper was to explain how

Meta-Object Protocols, a feature of many
exible lan-

guage run-time systems, can be made applicable to

operating systems. To do this we have extended the

MOP paradigm to include co-existing multiple, �ne-

grained MOPs which use Extension Protocols to sup-

port dynamic (i.e., at runtime) adaption and extension

of application and system software securely.

References
[B+94] B.N. Bershad et al. SPIN { An Extensible Mi-

crokernel for Application-speci�c Operating Sys-

tem Services. In 6th European SIGOPS Workshop,

1994.

[C+94] V. Cahill et al. Extensible Systems - The Tigger

Approach. In 6th European SIGOPS Workshop,

1994.

[CD94] D.R. Cheriton and K.J. Duda. A Caching Model

of Operating System Kernel Functionality. In 6th

European SIGOPS Workshop, 1994.

[DPH92] P. Druschel, L. L. Peterson, and N. C. Hutchinson.

Modularity and Protection Should be Decoupled.

In The 3rd Workshop on Workstation Operating

Systems, pages 95{97. IEEE, April 1992.

[GMSS94] A. Gheith, B. Mukherjee, D. Silva, and K. Schwan.

KTK: Kernel Support for Con�gurable Objects

and Invocations. In 2nd International Workshop

on Con�gurable Distributed Systems. IEEE, ACM,

March 1994.

[KLM+93] G. Kiczales, J. Lamping, C. Maeda, D. Keppel, and

D. McNamee. The Need for Customizable Operat-

ing Systems. In The 4th Workshop on Workstation

Operating Systems, pages 165{169. IEEEComputer

Society Press, October 1993.

[KRB92] G. Kiczales, J. Des Rivieres, and D. G. Bobrow.

The Art of the Metaobject Protocol. MIT Press,

1992.

[MA90] D. McNamee and K. Armstrong. Extending The

Mach External Pager Interface To Accomodate

User-Level Page Replacement Policies. In Usenix

Mach Workshop, October 1990.

[Mae94] C. Maeda. Flexible System Software Through Ser-

vice Decomposition. In OOPSLA '94 Workshop on

Flexibility in System Software, 1994.

[PW94] C. Pu and J. Walpole. A Case for Adaptive OS Ker-

nels. In OOPSLA '94 Workshop on Flexibility in

System Software. Oregon Graduate Institute, 1994.

[Rus91] V.F. Russo. An Object-Oriented Operating Sys-

tem. PhD thesis, University of Illinois at Urbana-

Champaign, 1991.

[SKT94] N. Saji, T. Kageyama, andM. Tajiri. C++ Metaob-

ject on CLOS MOP. InOOPSLA '94 Workshop on

Multi-Language Object Models, 1994.

[WLAG93] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Gra-

ham. E�cient Software-Based Fault Isolation. In

14th ACM Symposium on Operating System Prin-

ciples, December 1993.

[Yok92] Y. Yokote. The Apertos Re
ective Operating

System: The Concept and Its Implementation.

In Object-Oriented Programming Systems, Lan-

guages, and Applications '92, volume 28 of ACM

SIGPLAN Notices, pages 414{434.ACM Press, Oc-

tober 1992.

