
VOID Shell Speci�cation

Vinny Cahill, Andrew Condon, Dermot Kelly, Stephen

McGerty, Karl O'Connell, Gradimir Starovic, Brendan

Tangney

Distributed Systems Group,

Department of Computer Science,

Trinity College,

Dublin 2,
Ireland.

Abstract

This document gives the speci�cation of the VOID Shell described in the

previous deliverables 1.2.1 and 1.3.1

An overview of the document is given followed by chapters on; the state chart

tool for game design; the implementation of events and the object model

(ECO); the class hierarchy for game development.

Document Identi�er MOONLIGHT Deliverable 1.5.1

Document Status ACCEPTED

Created 14 February 1995

Revised 31 March 1995

Distribution PUBLIC
c 1995 TCD DSG

Permission to copy without fee all or part of this material is granted provided that the TCD

copyright notice and the title of the document appear. To otherwise copy or republish requires

explicit permission in writing from TCD.

Contents

1 Document Summary 4

1.1 Introduction : 4

1.2 The Entity Editor : 4

1.3 Implementing the Object Model : 5

1.4 The VOID Libraries : 6

2 Entity Editor Interfaces 8

2.1 Introduction : 8

2.2 Entities : 9

2.2.1 Objects and Entities : 9

2.2.2 Virtual World Entities : 10

2.2.3 Assumptions about the Object Model : 10

2.2.4 Entity Structure : 10

2.2.4.1 Attributes : 11

2.2.4.2 Actions : 11

2.2.4.3 State Machine : 11

2.2.4.4 Queue : 12

2.2.5 Entity Operation : 12

2.2.6 Example Entity : 12

2.2.7 State Based vs Attribute Based : 13

2.3 Statechart Notation : 13

2.3.1 Statecharts : 13

2.3.2 Depth : 14

2.3.3 Orthogonality : 14

2.3.4 Broadcast Communication : 15

2.3.5 State Transitions : 16

2.3.6 Unstable States : 16

2.3.7 Non-determinism of Transitions : 17

2.3.8 Non-determinism of Execution Order : 19

2.3.9 Legality of State Transitions : 19

2.3.10 Default States : 21

2.3.11 Histories : 21

2.3.12 Example : 21

2.4 Entity Editor Graphical User Interface : 22

2.4.1 Requirements : 22

2.4.2 Related Applications : 24

2.4.3 Application Window/Screen : 24

2.4.4 Menu bar : 25

2.4.4.1 File Menu : 25

2.4.4.2 Edit Menu : 25

1

2.4.4.3 Search Menu : 25

2.4.4.4 View Menu : 25

2.4.4.5 Project Menu : 26

2.4.5 Project Window : 26

2.4.6 Entity Window : 26

2.4.6.1 Graphical View : 26

2.4.6.2 Hierarchical View : 28

2.4.6.3 Button Bar : 29

2.4.6.4 Transition Popup Window : 29

2.4.6.5 Attributes Popup Window : 30

2.4.6.6 Named Actions Popup Window : : : : : : : : : : : : : : : : : : : 30

2.4.7 Summary : 30

2.5 Entity De�nition File Format : 30

2.5.1 Storage requirements : 31

2.5.2 File Format Philosophy : 32

2.5.3 Format Syntax : 32

2.5.4 Grammar : 34

2.5.5 Example : 35

2.6 Entity Editor Code Generator : 37

2.6.1 Starting Point : 37

2.6.2 No Reverse Engineering : 38

2.6.3 Basic Statechart to Code Mapping : 38

2.6.3.1 Direct Mappings : 38

2.6.3.2 Event Handling : 39

2.6.3.3 State Maintenance : 39

2.6.3.4 Scope in Actions and Constraints : : : : : : : : : : : : : : : : : : 40

2.6.4 Simple Example : 40

2.6.4.1 Depart-on Lists : 41

2.6.4.2 C++/ECO Code : 41

2.6.5 Depth : 43

2.6.6 Orthogonality : 45

2.6.7 Unstable states : 46

2.6.8 Non-determinism : 47

2.6.9 Summary : 48

3 ECOlib: Support For Events, Constraints, and Objects 49

3.1 Introduction : 49

3.1.1 Programming with events, constraints, and objects : : : : : : : : : : : : : : 49

3.1.2 Assumptions about the ECOlib environment : : : : : : : : : : : : : : : : : 50

3.2 The ECOlib interface : 51

3.2.1 The ECOLib internals : 51

3.2.2 The primitives of the interface : 52

3.2.2.1 Priorities : 55

3.2.3 The prede�ned events : 55

3.3 Summary : 59

4 The VOID Libraries 60

4.1 Introduction : 60

4.2 Contents : 61

4.3 Structure of the libraries : 61

4.3.1 Rami�cations of multiple target platforms : : : : : : : : : : : : : : : : : : : 61

4.3.2 Rami�cations of functional divisions : 61

2

4.4 Platform and products : 61

4.5 Functionality : 62

4.6 Design diagrams : 63

4.6.1 Using inheritance for multi-platform support : : : : : : : : : : : : : : : : : 63

4.6.2 Generic types and simpli�ed interfaces : 63

4.7 Development Strategy : 63

4.7.1 Object oriented design and programming : : : : : : : : : : : : : : : : : : : 64

4.7.2 Encapsulating existing libraries : 64

4.7.3 Applications : 66

4.8 Summary : 67

A Interfaces to the libraries 68

A.1 Graphics classes : 68

A.1.1 Abstract Base Classes for graphics : 68

A.1.2 Graphics class instantiations for GUL : 68

B ECOsim: class support for event-based programming 84

B.1 Introduction : 84

B.1.1 Motivation : 84

B.2 ECOsim: the user interfaces : 85

B.2.1 Writing a program using events : 85

B.2.2 Creating events and entities using ECOsim : : : : : : : : : : : : : : : : : : 86

B.2.3 Writing programs which use entities and events : : : : : : : : : : : : : : : : 88

B.3 Design and Software Architecture of ECOsim : 88

B.3.1 ECOsim Implementation : 90

B.4 Future work : 92

C The ECO model: events + constraints + objects 93

C.1 Introduction : 93

C.2 Objects, events, and constraints : 94

C.2.1 Declaring events : 95

C.2.2 Notify constraints : 96

C.2.3 Pre and Post constraints : 96

C.2.4 Announcing events and subscribing to events : : : : : : : : : : : : : : : : : 97

C.2.5 Implementation : 99

C.3 Examples : 100

C.4 Related work : 102

C.5 Conclusions, present state and future work : 104

3

Chapter 1

Document Summary

1.1 Introduction

This chapter gives an overview of the document. It explains the relationship to the earlier deliv-

erable [57] and to the other design documents that have been produced since then.

This document is divided into 3 main chapters each one describing one of the 3 main components

of VOID, namely the statechart tool - used in high level game design - the class hierarchy - which

provides both libraries and standard classes and ECOlib - the library which implements the novel

MOONLIGHT object model. A brief introduction to each chapter is given below.

Since the delivery of the last document [57] much work has been done on progressing the

design of VOID. Two major documents were produced after detailed consultation with the other

partners. One progressed the design of the statechart notation and the other the object model.

The important sections of these documents are incorporated into this deliverable in order that it

can stand as comprehensive design and speci�cation document in its own right. The sections in

question are x2.2 and x2.3 and appendix C.

Appendix A contains the full speci�cation of the current VOID libraries in the form of C++

header �les.

In order that progress not be delayed while waiting upon the completion of ECOlib - the

implementation of the object model - a simpli�ed single node no frills ECO simulator has been

written and is in current use in application development. ECOsim is described in appendix B

The following sections introduce the main chapters of the report.

1.2 The Entity Editor

The Entity Editor, referred to as the Entity Behaviour De�nition Tool in the previous deliverable,

is a tool for specifying Entity classes using statechart notation. An Entity is simply a high level

abstraction of an object. Entities exist in event based object models, such as that provided by

C++/ECO.

The most signi�cant di�culty in designing a notation to describe entity behaviour is achieving a

balance between its expressive power and its simplicity. The ideal notation would allow a designer,

with minimal programming skills, to quickly specify the behaviour of an entity at a high level.

Statecharts were chosen as the basic mechanism for describing behaviour. The state machine

triggers the execution of actions, which must be coded by the user.

The general structure of the Entity Editor is presented in �gure 2.1. As statecharts are graphical

in nature, a Graphical User Interface (GUI) is required. Statecharts are somewhere between

drawings and programs, so the GUI should adopt many of the standards set by typical drawing

programs and integrated compilers.

4

GUI
Front-end

Definition
Entity

File

Code
Generator C++/ECO

Entity Definition
Generator

Figure 1.1: General structure of the Entity Editor.

The Entity De�nition Generator drives the GUI, and allows the user to create and edit the

Entities and their statecharts. It is also capable of saving and loading Entity classes, in the form

of an Entity De�nition File (EDF). This is purely a storage format, and is not intended to be used

for execution purposes.

To allow the Entity Editor to produce executable code, the EDF is read into a Code Generator,

which outputs compilable source code. While it would be desirable to make the whole process

language independent, initial designs only consider the C++/ECO case. This code can then be

compiled, linked and executed in the VOID execution environment.

It is commonly accepted that design and implementation occur in cycles. Initial implementation

of these proposals may result in changes to the design.

1.3 Implementing the Object Model

In the ECO model 1 objects communicate among themselves using events and constraints. An

event represents something that can happen, and it has name and zero or more parameters. The

name of an event allows the objects to refer to a speci�c event among all the events. The parameters

of an event have type (e.g., an integer or a character string). For the speci�c occurrence of an

event the parameters are instantiated with values. These values, together with the event name,

describe to the objects what happened, i.e., describe the speci�c occurrence of an event2.

An object encapsulates some data and some processing. An object can tell other objects about

something that happened, and it can react if it is told by other objects that something happened.

The former is accomplished by announcing an event, and the latter by binding a method of the

object to the required event. This binding can be dynamic, i.e., it is allowed to unbind a method

from an event. The same method can be bound to several events, and the same event can have

several methods (of the same or of di�erent objects) bound to it. A binding can be established

only if the signatures of the event and of the method match (if they have the same number of

parameters, and the types of the corresponding parameters are the same).

Constraints enable more exible event-method bindings and more exible processing of event

noti�cations. An object may conditionally be interested in some event: it is interested only if the

speci�c event parameter has a speci�c value or any value from a range of values when the event

is announced. This can be expressed using the so called Notify constraints. In addition to this,

1A fuller description of the model is given in appendix C.
2In the following text we use \event" for both an event and an event occurrence. The context will indicate the

correct interpretation.

5

an object may decide, based on the object's local state when it is told about an event, that the

processing of the event should be postponed or even cancelled.

The ECOlib library implements a low-level runtime support for the events constraints and

objects. It maintains information about classes, objects, events and their occurrences, and infor-

mation about various bindings. It knows about a number of prede�ned events. The library itself

uses events. More about the ECO model, and a programming language syntax for this model, can

be found in Appendix C. The separation of functionality between the ECOlib and its client is

shown in Figure 3.1.

ECOlib

ECOlib client

- announces events: user-defined & pre-defined

- (un)subscribes from/to events

- processes events using: enqueue, dequeue,
 process_active, process_passive,
 discard_single, discard_all

- stores information about:

 * classes, objects, methods

 * events

 * bindings (method - event)

- implements the primitives,
- knows about pre-defined events,
- implements event deliveries

Figure 1.2: Separation of functionality between the ECOlib and ECOlib client code.

1.4 The VOID Libraries

The VOID libraries are a a key part of the MOONLIGHT strategy for improving productivity in

the development of video-game and virtual world programs. The libraries provide a uni�ed and

consistent interface to the various kinds of functionality that are required, such as two and three

dimensional graphics, input control, detection of collision between entities in the virtual world and

so on.

The libraries are one of three parts to the uni�ed solution that TCD is proposing, the other

parts being:

� an Entity Editor tool capable of automatic generation of application code from a graphical

notation (statecharts);

� run-time support, called ECO, for event-based programming.

In the text below we describe the relationship between the VOID libraries and these other

components.

6

Relationship to Entity Editor One of the key points in our approach to rapid prototyping

of video games and virtual worlds is the use of a graphical notation to specify the behaviour of

the entities. The VOID libraries are the key to allowing these speci�cations to become prototypes:

they provide the code that is used to provide functionality for entities. By framing the various

underlying software packages (such as GUL) in a consistent, object-oriented C++ library the Entity

Editor tool will be able produce working programs automatically.

Relationship to ECO The VOID libraries are basically independent of (but compatible with)

the ECO library, at least in this initial release. In e�ect the VOID libraries and the ECOlib form

twin supports for the Entity Editor. This is because programs written using statecharts need the

event support provided by the ECOlib. If these event-based programs are video-games then they

will also require the functionality provided by the VOID libraries.

Relationship to ECOsim In this release of the libraries we include a library called ECOsim,

which contains some simple class-based support for event-based programming. The purpose of

this library is to allow development of programs using the libraries in advance of completion of the

ECO model.

The class support is neither particularly e�cient nor fully-featured, but it does o�er a signi�cant

advantage over programming in straight C++: namely that it is not straight C++. Programs

written using the standard models of invocation and named addressing of C++ will have a very

di�erent structure to those developed using events. Therefore, if code developed using the early

versions of the libraries is to be of any use subsequently it should be developed using an event-based

approach.

7

Chapter 2

Entity Editor Interfaces

2.1 Introduction

GUI
Front-end

Definition
Entity

File

Code
Generator C++/ECO

Entity Definition
Generator

Figure 2.1: General structure of the Entity Editor.

The Entity Editor is a tool for specifying Entity classes using statechart notation. An Entity is

simply a high level abstraction of an object. Entities exist in event based object models, such as

that provided by C++/ECO.

The most signi�cant di�culty in designing a notation to describe entity behaviour is achieving a

balance between its expressive power and its simplicity. The ideal notation would allow a designer,

with minimal programming skills, to quickly specify the behaviour of an entity at a high level.

Statecharts were chosen as the basic mechanism for describing behaviour. The state machine

triggers the execution of actions, which must be coded by the user.

The general stucture of the Entity Editor is presented in �gure 2.1. As statecharts are graphical

in nature, a Graphical User Interface (GUI) is required. Statecharts are somewhere between

drawings and programs, so the GUI should adopt many of the standards set by typical drawing

programs and integrated compilers.

The Entity De�nition Generator drives the GUI, and allows the user to create and edit the

Entities and their statecharts. It is also capable of saving and loading Entity classes, in the form

of an Entity De�nition File (EDF). This is purely a storage format, and is not intended to be used

for execution purposes.

To allow the Entity Editor to produce executable code, the EDF is read into a Code Generator,

which outputs compilable source code. While it would be desirable to make the whole process

8

language independent, initial designs only consider the C++/ECO case. This code can then be

compiled, linked and executed in the VOID execution environment.

It is commonly accepted that design and implementation occur in cycles. Initial implementation

of these proposals may result in changes to the design.

2.2 Entities

The following is a discussion of the concepts underpinning the MOONLIGHT entity.

2.2.1 Objects and Entities

One should be aware of the distinction between the objects of the MOONLIGHT object model and

the entities de�ned by the MOONLIGHT Entity Editor using the statechart notation.

The object model is a relatively low level abstraction, and deals with the problem of supporting a

system with many objects communicatingwith one another by raising events. Just as C++ provides

an underlying model that supports C++ objects and message passing, the MOONLIGHT object

model supports MOONLIGHT objects and event raising.

Just as one can write programs in C++, one will be able to write programs using the MOON-

LIGHT object model. However, both these programming paradigms are relatively low level.

To build up to a higher level, the concept of an entity is introduced. These are similar to

objects, but support more advanced programming mechanisms.

Consider the typical process of converting a C program into an executable image. The C is

�rst compiled into assembly language, which is in turn assembled into an executable program. C

is very di�erent from assembly language, however the compiler establishes a mapping from one to

the other.

Similarly the MOONLIGHT Entity Editor should establish a mapping from the high level

description of an entity to the lower level concept of a MOONLIGHT object. In theory it should

be possible for the Entity Editor to produce code for any object model that supports events. So

in the initial design of the notation, only a limited number of assumptions are made about the

underlying object model.

The essential point is that entities are higher level abstractions than objects, which are easier to

work with. The user need not be concerned with the fact that entities are implemented as objects.

Similarly, it is possible to think in terms of objects, and ignore the concept of an entity altogether

- one would simply be programming at a lower level.

Objects

Entities

Virtual World Entities

Entities derived from the Moonlight

Active objects executing a state machine

with control over Attributes and Actions.

Capable of raising and detecting events

and of having local data variables.

base Virtual World Entity class.

Figure 2.2: Levels of abstraction.

9

2.2.2 Virtual World Entities

As described in the previous section, entities are a high level abstraction of objects. However, there

are some basic similarities between the two. Just as there are classes and instances of objects, there

are classes and instances of entities. The Entity Editor will produce descriptions of entity classes,

from which the VOID execution environment will create instances. In other words, the principles

of the entity-oriented paradigm are similar to the principles of the object-oriented paradigm.

Another similarity is the presence of inheritance. Entity classes can be derived from other

entity classes. For the purposes of VOID, a standard entity class hierarchy will be provided for

use by the game developer. One particular entity class will provide the basic facility of existence

in the Virtual World. Entity classes derived from this class will be considered as Virtual World
Entity classes.

For example, one may de�ne a score-keeping entity, which simply counts the number of aliens

the player destroys. Such an entity does not exist in the Virtual World, and so its class is not

derived from the base Virtual World Entity class. It is simply an ordinary entity, that is acting as

a counter. However, the player and the alien entities do exist in the Virtual World, and so their

entity classes are derived from the base Virtual World Entity class.

So we now have the concept of an object, of an entity and of a special type of entity known as

a Virtual World entity (see Figure 2.2).

2.2.3 Assumptions about the Object Model

The underlying system is considered to be composed of objects capable of raising parameterised

events and responding to events generated by themselves or other objects. An object simply

declares interest in certain events, and the object environment guarantees it will be informed

whenever they are raised. If an object wishes to raise an event, it does not need to have any

knowledge of those objects that have registered interest in the event (see Figure 2.3). This is in

contrast to the traditional object model that requires an object to send messages to objects of

which it has direct knowledge.

Object C

Object B

Object D

Object A

Event X

Figure 2.3: Object broadcasting event.

The objects are instances of classes. Just as in C++, a class is simply a description of the local

data and methods of the objects that will be instantiated from the class. However, unlike C++,

the methods are conceptually invoked when an event is raised, and not when a message is passed

speci�cally to the object.

2.2.4 Entity Structure

Entities have four conceptual components (see Figure 2.4):

� Attributes, which contains the entity's user-de�nable variables.

10

� Actions, which can update attributes and raise events.

� State machine, which maintains the objects state and deals with the processing of events and

state transitions. It is made up of the statechart logic and the state variables.

� Event queue, which holds a sequenced list of events the object has declared an interest in,

and that have been raised.

Events
Queue

Attributes

ActionsState machine

Statechart logic

State variables

Figure 2.4: Conceptual internals of an entity.

2.2.4.1 Attributes

Attributes are variables that are private to an entity. They are de�ned by the user and can be

used just as a C++ programmer would use variables de�ned in a C++ class. If an entity class is

de�ned as having three Attributes (say Colour, XPosition and YPosition), then all instances of

that class will have these three attributes. Their current values are independent of the state of the

statechart.

2.2.4.2 Actions

An Action can perform a sequence of basic instructions; namely, the assignment of values to the

attributes of the entity and the raising of events. The only values available to the script are the

entity's attributes, the parameters of the action and the current state of the state machine.

In practice it is envisaged that the action will be a fragment of code of the underlying object

model language (in this case C++/ECO), and so all the standard constructs it supports will be

available.

Ideally though, it would be desirable to constrain the user to perform only assignment and event

raising. This would ensure that all the constructs for looping and conditional execution would be

represented by the statechart and not in the code of the actions.

In practise, two types of actions exist: named and direct. A direct Action is simply a fragment

of code which is associated with a transition between two states in the State machine. Such actions

are imbedded within the state machine. A named Action is much like a function. It is a fragment

of code with a name, which can be invoked from anywhere that the action is in scope.

2.2.4.3 State Machine

An entity's state machine is described by statecharts, the syntax of which will be examined later.

For the moment, consider it to be a standard state machine. In any given state, the entity is

11

interested in a particular set of events. The arrival of these events cause transitions to new states,

which might be concerned with a di�erent set of events.

Just as a traditional state machine determines whether a sequence of inputs is valid for that

particular machine (or more exactly, the language the machine is interpreting), event driven stat-

echarts determine valid sequences of events that the object can deal with. This is why our model

uses a queue to sequence the events.

The operation of the state machine is as follows: Once an event is detected at the head of the

event queue, a list is made of the state changes that it triggers. The event is then removed from

the head of the queue and the state changes are executed.

If it happens that the new state is not interested in the next event on the queue, then that

event simply causes no state changes, and is discarded. This is reasonable when one considers that

the basic purpose of the statechart is to describe valid sequences of events.

The state variables simply store the current state of the state machine. These variables are

quite di�erent in nature to the attributes described above. The attributes are de�ned explicitly by

the user, and are updated explicitly by the execution of actions. The state variables are de�ned

implicitly by the Entity Editor, depending on the statechart drawn by the user. While they are

visible to the user (to see the current state of the entity) they are modi�ed exclusively by the state

machine of the entity when transitions occur.

2.2.4.4 Queue

As mentioned already, the state machine determines a valid sequence of events to which the entity

can respond. Ideally, it would be possible to respond to each event instantaneously, and so no

queueing of events would be needed. However, since an event may trigger any number of actions,

each taking an indeterminant length of time to execute, the noti�cation of other events must be

queued while these actions are executing.

2.2.5 Entity Operation

The users perception of an entity is that it has a single thread of execution, which is constantly

waiting for the arrival of a relevant event. Once such an event arrives, the thread wakes up, causes

some state transition in the state machine, and possibly executes some actions as dictated by the

transitions. When the actions are �nished, the thread goes back to waiting for another event.

As already mentioned, the arrival of events is queued, so no event is missed or lost as a result of

executing some action while it arrived.

In e�ect the thread is executing a state machine whose inputs are events and whose outputs are

a sequence of actions to be executed. The fact that the same thread executes the state machine

as executes the actions means that no queued events are processed until the actions triggered by

the last event have been executed to completion.

2.2.6 Example Entity

Consider a very simple entity, as in Figure 2.5. This entity models the idea that a computer is

either `up' (working okay), or is `down' (has been switched o�). In addition, it keeps a count as to

the number of times that the computer has been `booted up' (turned on).

The designer of this entity would have speci�ed the simple statechart; de�ned the attribute

boots (the counter); and entered the code for the action Bootup. The Entity Editor would then

have examined the statechart and determined that one state variable, computer, which can hold

the value Up or Down, is required to hold the current state of the entity.

The statechart is like a map. It does not hold the current state, but it does dictate what state

transitions can occur, and what Actions they should trigger. It is the state variables that hold the

current state.

12

Queue

Bootup:

boots := boots+1
computer

Down Up
off

on/Bootup

computer: Down

State variables

State chart

State machine Actions

Attributes

boots: 4

on

Figure 2.5: Example `Computer' Entity.

In the example, the state machine is in state Down and some other entity has just raised the

event on. The statechart indicates that in this situation the state should change to Up and action

Bootup should be executed. This increments the value of boots. So as a result of an event the

state of the entity is updated and an action is executed.

2.2.7 State Based vs Attribute Based

Note that the state of the state machine and the value of the attributes are quite independent

of one another. This means that our statechart model of an entity is state based, rather than

attribute based.

In other words, when an entity is in a particular state, it says nothing about the values of the

attributes. In e�ect, the states have no formal meaning, other than to indicate that some set of

events can be accepted at this point in the life cycle of the entity.

However, from an intuitive point of view, a state can have signi�cant meaning. The simple fact

that each state has a name means that a statechart can give a very good picture of what it does.

But briey consider the merits of an attribute based system: If the notation allowed the user to

specify that in one state (x < 10) is true, and in another state (x >= 10) is true; then transitions

between states would occur depending on the value of x. However, while this may be a useful

facility in many situations it introduces data dependencies on state transitions. These would be

too time consuming to maintain in a soft real time environment, and so will not be supported.

2.3 Statechart Notation

This section describes the notation used in VOID to specify the state machine of an entity class.

Remember that the responsibility of the state machine is to specify what events trigger what

actions at each of the intuitive states of the entity's life cycle. The states have no formal meaning

in the context of the attributes of the entity.

2.3.1 Statecharts

The notation used by entities to represent their state machine is that of Statecharts, �rst introduced
by David Harel in 1987 [32]. Harel lists the following advantages that statecharts have over their

more primitive cousins, State Transition Diagrams. Central to the criticism is the argument that

STDs do not scale well.

13

� State diagrams are \at". They provide no natural notion of depth, hierarchy, or modularity,

and therefore do not support stepwise, top-down or bottom-up development.

� State diagrams are uneconomical when it comes to transitions. An event that causes the same

transition from a large number of states, such as a high-level interrupt, must be attached to

each of them separately resulting in an unnecessary multitude of arrows.

� States diagrams are extremely uneconomical when it comes to the number of states required,

especially if a separate state is used to represent each value that a variable can take on.

As the system under description grows linearly, the number of states grows exponentially,

and the conventional FSM formalism forces one to explicitly represent them all.

� Finally, state diagrams are inherently sequential in nature and do not cater for concurrency

in a natural way.

Harel goes on to describe statecharts as:

statecharts = state diagrams + depth+ orthogonality + broadcast communication (2.1)

Graphically, states are represented by rectangles with rounded edges. If a state has sub-states,

then a horizontal line divides the rectangle into two sections, one for the state's name and one for

the representation of its sub-states.

Transitions have a start state and an end state (which may be one and the same) and are

denoted by an arrow connecting two states.

Within a given entity class, all state names must be unique. This restriction does not apply to

transitions, which are labelled with the event and action that apply to it.

2.3.2 Depth

The primary addition to STDs that statecharts provide is to allow states to possess sub-states with

an XOR relationship. This enables groups of transitions in a STD, triggered by the same event,

to be speci�ed with a single transition in the corresponding statechart as illustrated in following

two diagrams.

The internal transitions obey an exclusive-or rule: thus in Figure 2.7 being in state P means

being in either state A, B or C but excludes being in more than one of them at once.

S A CB
α αα

β β β

Figure 2.6: Replicated transitions in an STD

2.3.3 Orthogonality

The second improvement that statecharts bring to STDs is the ability to separate aspects of state

that have no inter-dependency. This prevents the combinatorial explosion of states that occurs

with STDs.

14

S A CB

P

α αα

β

Figure 2.7: Statechart showing elimination of replicated transitions

The notation used is a dotted line partitioning a state into two orthogonal child-states. The

parent is then said to be in both of these child-states, hence this is known as an AND decomposition.
Again, two diagrams (Figures 2.8 and 2.9) serve to show the advantage that this notation has

over the conventional STD, even for relatively small machines. The A and B states have been

separate into the orthogonal state Q, and the X, Y and Z states have been separated into state

R.

AX AY AZ

BY BZBX

α α αβ β β

γ

γγ

γ γ

γ

Figure 2.8: STD with implied orthogonal states

P

A

Y Z

X

B

γ
γ

γ

Q R

α β

Figure 2.9: Statechart with orthogonal states

2.3.4 Broadcast Communication

Statecharts do not limit the one to many nature of events as a communication mechanism. An

event is sent to all interested parties both within the orthogonal states of a statechart and outside

15

to other entities.

2.3.5 State Transitions

A state transition is a uni-directional path linking two states. It represents a potential change from

one state to another. The syntax of the annotations on the arrow of a transition are as follows:

Event(Event-Parameters)[Constraint]/Action(Action-Parameters)

Some examples are presented in Figure 2.10. The top example shows the general syntax.

The next example indicates that there is a transition from left to right when the Quit event

is detected. The next shows a parameterised event Add(n) triggering action Increment if the

constraint [n==1] is true. The �nal example shows a transition which invokes action MoveLeft(1)

when event JoystickLeft is detected.

All transitions from a stable state must be triggered by an event. The event parameters are

optional, depending on whether the event supports them. The optional constraint expression is

a function of the attributes, state variables and the event parameters. The optional action is

executed whenever the transition is traversed.

A transition is said to be active if the following are true:

� The state machine is in the source state of the transition.

� The event that triggers the transition is at the head of the entity's event queue.

� The constraint evaluates to true.

Once all the active transitions within the state machine have been identi�ed, the event is

removed from the head of the queue.

Then, for each state that has an active transition leaving it, the associated action is executed;

the source state is left; and the destination state is entered.

Note, if event parameters were to be mapped directly to action parameters, there would be the

limitation that only certain actions could be triggered by certain events.

Event(a,b...)[constraint]/Action(x,y,...)

Quit

Add(n) [n==1] / Increment

JoystickLeft / MoveLeft(1)

Figure 2.10: Examples of annotated transitions.

2.3.6 Unstable States

In order to allow sequencing, iteration and conditional execution of actions in response to a single

event, the concept of the unstable state is introduced. This is a state which is left the moment it

16

is entered. None of the transitions leaving it can be dependent on the raising of an event. The

notation uses a diamond within a state box to indicate that it is unstable. While the transitions

are not triggered by events, constraints can still be applied, and actions can still be triggered.

To force at least one transition to be active when in the unstable state, each unstable state

must have one completely unconstrained transition leaving it. This transition is only taken when

no other transition is active.

The simplest use of an unstable state is to ensure the sequencing of actions in response to an

event (see Figure 2.11). Here � triggers Action1, followed by Action2.

The unstable state also allows for the conditional movement from one state to one of many

other states in response to a single event (see Figure 2.12). Iteration is also possible, though this

introduces the possibility of in�nite loops (see Figure 2.13). Note that in this example there are

two transitions from state T to state B. One gives the speci�c exit condition for the loop, and

the other is the required unguarded transition for the unstable state. The guarded transition is

redundant in this case.

A
α

C
/ Action1 / Action2

B

Figure 2.11: Single Event triggering sequence of actions using unstable states.

Unstable state

/DefaultAction

[x==1]/CaseOne

A [x==2]/CaseTwo

Z

Y

X

T
α / Init

Figure 2.12: Selection implemented using an unstable state.

A
α [x==10]

[x<10] / LoopAction

T B
/ Init

x := x + 1

x := 0

Figure 2.13: Iteration implemented using an unstable state.

2.3.7 Non-determinism of Transitions

As with STDs, statecharts can have sets of transitions that are non-deterministic. For statecharts

Lucas [39] describes three categories: pure non-determinism, potential non-determinism and ap-

parent non-determinism.

17

Pure Non-determinism This is identical to non-determinism in a State Transition Diagram:

from one state there are two transitions with di�erent destination states (as in Figure 2.14), and

both occur as a result of the same event. It is thus arbitrary which is taken.

Potential Non-determinism In this case the two transitions are conditional: hence there is

non-determinism only if both conditions are true. (See Figure 2.15)

Apparent Non-determinism This case is illustrated by the two transitions triggered by event

� in Figure 2.16. Lucas speci�es \outermost" �rst semantics in this case, so the result is actually

deterministic and is a transition to child-state Y. This approach preserves the \black box" nature

of state P and so is preferable. (See Figure 2.16)

The MOONLIGHT approach to non-deterministic state transitions is as follows: If a state

has more than one active transition as a result of an event noti�cation, then one of the active

transitions is chosen arbitrarily as the transition to follow. This applies for both pure and potential

non-determinism.

The argument for this stance is that a statechart containing non-determinism is badly speci�ed.

Obviously it would be desirable to warn the user if they specify such a statechart, but this may not

always be possible - especially in the case of potential non-determinism. The problem is placed in

the hands of the user of the Entity Editor.

X

Y

A
α

α

Figure 2.14: Pure Non-determinism.

A

Y

X

α

α [x == 1]

[x >= 1]

Figure 2.15: Potential Non-determinism.

A X Y

P

α α

Figure 2.16: Apparent Non-determinism.

18

2.3.8 Non-determinism of Execution Order

The user perceives the entity as being maintained by a single thread of execution. In a situation

where an event triggers more than one action (see Figure 2.17) these actions are perceived as

executing sequentially rather than concurrently.

This is desirable, as we wish to shelter the user of the Entity Editor from the complexities of

concurrency. In the example, the perception will be that either ActionF followed by ActionG

was executed, or that ActionG followed by ActionF was executed. The order of execution of

actions triggered by a single event is non-deterministic.

Consider another example (See Figure 2.18): If the current state is fA,Xg then � will trigger

four actions. However, the only facts that can be declared about the order of their execution are

that ActionD will occur before ActionE; and ActionF will occur before ActionG.

P

A

B

α α

X

Y

/ ActionF / ActionG

Q R

Figure 2.17: Non-deterministic execution order of Actions.

P

B

A X

Y/ ActionE / ActionG

/ ActionD / ActionFα α

Q R

T S

Figure 2.18: Non-deterministic execution order with unstable states.

2.3.9 Legality of State Transitions

Where transitions do not intersect with a state boundary, they are allowed (see Figure 2.19),

regardless of whether the source or destination are XOR, AND or elementary states. Transitions

that cross the dotted boundary of an AND state are illegal (see Figure 2.20), as it would leave one

side of the boundary without an active state.

A transition can pass out of a state boundary if that state is an XOR state (see Figure 2.21),

but not if it is an AND state (see Figure 2.22). This is to prevent two di�erent transitions leaving

the AND state and going to di�erent states outside the AND state.

Transitions can pass in through a state boundary of an XOR or an AND state, overriding the

default or the history (see Figure 2.23).

19

Figure 2.19: Valid transitions not crossing boundaries.

Figure 2.20: Illegal cross-AND-barrier transition.

Figure 2.21: Valid outward XOR transition.

αα

Figure 2.22: Illegal outward AND transitions.

Figure 2.23: Valid inward transitions.

20

2.3.10 Default States

Any state which contains sub-states can be considered as a `black box' state. Within such a state

there should be an indication of which state is the default. This allows transitions to enter the

black box state without having to know which particular sub-state should be entered as well.

A default state simply has a short arrow pointing from a dot to one of the internal states. In the

example (see Figure 2.24), if event � occurs while in state S then the black box state P is entered,

with sub-state fA,Xg. However, if event � occurs, then P is entered with sub-state fB,Xg.

P

Q R

A

B

γ

X

γ

Y

S
α

β

Figure 2.24: Example of default states.

2.3.11 Histories

Any state can be equipped with a history which will cause the state to re-enter its last child-state

rather than the default child-state (if the state is being entered for the �rst time then the default

will be used). Histories may be shallow or deep: the latter recursively implies a history for every

sub-state within the state with the history. The two notations are shown in �gure 2.25 where

child-state Q has deep history, and R has shallow history.

H H

P

γ

γ

γ

A

BC

X

Y

γ
γ

Q R α

α
T

*

Figure 2.25: Example of history.

2.3.12 Example

As an example of the notation, consider the following bounded bu�er example: An entity is required

to act as a bounded bu�er, storing a �xed number of items. These items are entities themselves,

who attempt to enter the bu�er of their own accord. They either succeed or fail, as arbitrated by

the bounded bu�er entity, and are informed as such.

As can be seen from Figure 2.26 the bounded bu�er Entity has two elementary states, Not

Full and Full. While in the Not Full state, the event AddToBuffer is accepted and triggers the

Add(itemRef) action. The destination state depends on which transition is followed; which in

turn depends on the outcome of the constraints. The itemRef parameter is a unique identi�er for

the item entity.

21

The Add action decrements the free attribute, and raises a SuccessAdd(itemRef) event

which reports back to the original item.

The item entity is expect to raise a RemoveFromBuffer(itemRef) event at some later time,

which has the conceptual e�ect of removing the item from the bu�er. This event is acceptable in

both states of the bounded bu�er entity, except when there are no items in the bu�er.

An simple item entity is given in Figure 2.27. The event � triggers the JoinBuffer action,

which raises the AddToBuffer event. The parameter selfRef is a standard value available to all

entities, representing a unique entity identi�er. The Wait state waits for the failure or success

noti�cation and moves on to the appropriate state. The constraints on these transitions ensure

that the item only uses events which are intended for it, as opposed to other items. Finally, event

� triggers the LeaveBu�er action, which sends the RemoveFromBuffer event to the bu�er entity.

Not Full

Full
AddToBuffer(itemRef)

AddToBuffer(itemRef)
[free==1] / Add(itemRef)

[free>1] / Add(itemRef)
AddToBuffer(itemRef)

/ FailAdd(itemRef)

Add(itemRef) :
raise SuccessAdd(itemRef);
free := free -1;

FailAdd(itemRef) : raise FailedAdd(itemRef);

free := free + 1;

Actions Attributes

free : int

Remove :

RemoveFromBuffer / Remove

[free<10] / Remove
RemoveFromBuffer

Bounded-Buffer

Figure 2.26: Example of a Bounded-Bu�er entity.

2.4 Entity Editor Graphical User Interface

This section discusses the requirements of the Entity Editors' user interface by considering two

things; the objectives of a user attempting to create many entity classes for a video game, and the

style of interface provided by existing applications similar in nature to the Entity Editor.

A prototype user interface is proposed, detailing the layout of the windows, menus, and popups.

2.4.1 Requirements

At a basic level, the purpose of the Entity Editor is to allow the user to specify Entity classes.

This includes de�ning statecharts, attributes, actions, events and the inheritance structure. (See

Figure 2.28). Speci�cally, it's purpose is to specify Entity classes for use in video games and virtual

worlds.

In the course of writing even the simplest of video games, the user will probably create several

Entity classes. It would be useful to adopt the concept of a project, which references many entity

22

Actions

JoinBuffer : raise AddToBuffer(selfRef)

LeaveBuffer : raise RemoveFromBuffer

α / JoinBuffer

Start

Wait Result

SuccessAdd(itemRef)
[itemRef==selfRef]

[itemRef==selfRef]
FailedAdd(itemRef)

Okay

Failed

/ LeaveBufferβ

Finish

Item

Figure 2.27: Example of a simple item entity.

Statechart

Attributes Actions

Events

Figure 2.28: Aspects of an Entity class de�ned by the Entity Editor.

23

classes and maintains the event de�nitions used by the Entities. (See Figure 2.29). By opening

a particular project, the user has an easy way of working with that particular set of Entities and

Events. The project can have Entity classes added to it, or removed from it. One Entity class may

be referenced in many di�erent projects.

Maintaining projects could be considered ancillary to the purpose of the Entity Editor, but as

it is intended as a useful tool for creating the many entities of a video game it would be best to

consider these aspects of the tool early on in the design process.

Wall

Project: TankGame

Tank

Events:Entities: Tick

Collide

Collide

Figure 2.29: Project holding references to Entity class de�nitions.

2.4.2 Related Applications

Ideologically the Entity Editor falls somewhere between the modern day integrated compiler and

the drawing package. The project management aspects are heavily inuenced by compilers such

as THINK-C on the Macintosh, Borland C++ and MS-Visual C++ on the PC (under Windows).

The Entity speci�cation aspects are more akin to a drawing package, or visual database, as found

in ClarisWorks by Claris corp.

As far as possible, the design of the user interface to the Entity Editor has attempted to reect

the look and feel of these (and so many other) applications. While the GUI paradigm is far from

standard, a number of common themes and ideas do exist.

Increasingly users expect certain facilities from any application that aspires to being considered

GUI driven. This fact adds considerably to the work required in designing a good user interface.

The pay back comes with the reduced training time for users of the application, as they are already

familiar with many of the basic concepts.

2.4.3 Application Window/Screen

This is the containing workplace associated with the Entity Editor. Depending on the particular

GUI, it is either an application window with menu bar (in the case of WINDOWS) or simply a new

set of menus in the common menu bar (in the case of the Macintosh). Under WINDOWs, all the

sub-windows opened by the application appear to be contained within the application window. In

contrast, the Macintosh has no concept of an application window, and simply allows any program

to place a window anywhere on the screen. The menu bar, however, changes depending on which

application is active.

24

2.4.4 Menu bar

The Entity Editor presents one commonmenu bar. While this may be duplicated for each window,

depending on the GUI, each will look the same (see �gure 2.30). The workings of the menu bar

are closely tied to the particular GUI.

Find Again
Close

Save
Save As...
Revert

Print

Quit

New

File Edit Search View Project

Cut
Copy
Paste

Undo

Graphical
Hierarchical

All transitions
No transitions
Trans on select

New project

Close project

Remove Entity

Find...

Graph depth...

Open... Open project...

Add Entity...

Figure 2.30: Entity Editor common menu bar.

2.4.4.1 File Menu

This menu deals with the general management of Entity windows. The New, Open... and Close

options open a new (empty) Entity class window, load one from disk and close the current one,

respectively. The Save and Save As options allow the Entity to be saved to disk. Print outputs

the contents of the current window to the printer, and Quit exits the program (prompting if a

save is required).

2.4.4.2 Edit Menu

The Undo option attempts to undo the last operation. It is not always available, but can be

useful in certain situations. The Cut, Copy and Paste options act on the currently selected

graphical or text piece, and have their usual meanings. Cut removes the selection and places it in

the clipboard. Copy copies (as opposed to removes) the selection into the clipboard. Paste takes

the contents of the clipboard and copies it to the workplace.

2.4.4.3 Search Menu

This provides two options: Find, which brings up a standard search window (see Figure 2.31)

allowing the user to enter the requirements of the search; and Find Again which repeats the last

search to �nd the next match.

The search facility allows the user to �nd particular Entity classes, or particular Actions or

Attributes of a class. When a particular Entity window is active, then the search is automatically

limited to that window (unless All Entities is checked). When the Project window is active, the

search covers all the entities.

2.4.4.4 View Menu

The �rst two options a�ect either the Project window or the current Entity window, depending

on which is active. Graphical changes the current window so that it displays a graphical rep-

resentation of it's contents. In the case of the Project window, a horizontal class hierarchy is

25

Search for :

which can be an
Entity class name
Attribute
Action
State name

Search
All Entities
Case sensitive
Complete match

Cancel Find

Figure 2.31: Search Window.

displayed. For the Entity window a standard statechart is shown. Hierarchical changes the view

to a hierarchical listing of the principle items of the window. The general layout is similar for both

the Project window and the Entity windows.

When the view is graphical, the Graph depth... option allows the user to specify how many

nested levels to attempt to render. This allows the user to prevent very deep (and graphically

small) sub-states being rendered. Note that regardless of the current Graph depth, if a state is

graphically too small due to it's depth, it will not be rendered.

2.4.4.5 Project Menu

All project related options are placed here. The standard New Project, Open Project and

Close Project options work in the standard way. One point to note is that only one project can

be open at a time.

The Add Entity option allows you to add an existing entity to the project. Remove Entity

removes the currently selected Entity from the project.

2.4.5 Project Window

There can be at most one project window open in any one instance of the Entity Editor. This

window presents a view of the basic MOONLIGHT entity class hierarchy together with any user

de�ned Entity classes added to the project (see Figure 2.32).

The class hierarchy can be represented in a graphical or hierarchical manner depending on

which view is selected in the View menu. By double clicking on a particular Entity class in the

project window, an Entity window is opened on that class.

The button bar of the project window allows new events to be de�ned. The entities within the

project only have access to the events de�ned in the current project. The pointer button allows

Entity classes to be moved around in the graphical view.

2.4.6 Entity Window

The Entity window allows the user to specify the statechart, attributes, actions and events used

by a particular entity class. It has two viewing modes, Graphical and Hierarchical.

2.4.6.1 Graphical View

The statechart is rendered using similar notation to that described in the previous section for the

graphical view (see Figure 2.33). The notational di�erences are purely for legibility.

26

File Edit Search View Project

Events

EntityBase Inputs

Position

Audio

Image Collision

Tank

Wall

Figure 2.32: Project Window.

Moving

Stationary

File Edit Search View Project

ActionAttr

Tank

Alive

Dead

Movement

Empty

Full

Weapons

Info about transitions/states

Figure 2.33: Graphical View of Entity Window.

27

File Edit Search View Project

Dead

Alive

Movement

Moving

Forward

Backward

Stationary

Weapons

Empty

Not Empty

Tank

Attr Action

Figure 2.34: Hierarchical View of Entity Window.

XOR and AND states may not have their sub-states rendered. As signi�cant depth in a

statechart may cause the sub-states to appear very small, some XOR and AND states may be

rendered in an abreviated way. Instead of the name appearing in the title bar and the sub-states

appearing below the bar, the title bar is empty and the name appears below it. Two factors a�ect

whether or not a state will be abbreviated; the current Graph depth, and the visible size of the

rendered state.

For example, the Moving state in �gure 2.33 is actually an XOR state with two sub-states.

However, they would be too small to see, so the abreviated form is used.

Also for legibility reasons, transition annotations are not placed on the statechart diagram.

Instead, they are displayed in the information panel at the bottom of the window when the pointer

is over a particular transition.

The graphical view is used to create the statechart. The button bar at the top of the window

has a number of icons which are used to add new states and transitions to the statechart. In

addition, the states may me moved around, resized and edited.

The outermost visible with the graphical view may not be the outermost state of the whole

statechart. By double clicking on the title of the outermost visible state, the view is redrawn with

the parent state of that state as the outermost visible. Similarly, if a sub-state is double clicked

on, it becomes the outermost visible state.

The main drawback with the graphical view is the limit as to how much information can be

legibily displayed.

2.4.6.2 Hierarchical View

All statechart sub-states are shown concisely in the hierarchical view. However, no transitions are

show. The states are displayed in a vertical list with sub-states placed under their parent state and

indented slightly. In the case of an XOR state, a single vertical line joins the sub-states to their

parent state. For AND states, two parallel lines are used (See Figure 2.34). By double clicking on

any state name, the view changes to the graphical view, with that state as the outermost visible.

With the hierarchical view it is possible to see that the Moving state is an XOR state made

up of two sub-states, Forward and Backward.

28

2.4.6.3 Button Bar

The button bar provides the tools to allow new states to be added to the statechart. Note that

most of the facilities are only available while in the graphical view. There is a button to:

� change the pointer to the default mode of operation. That is, to drag and resize existing

states;

� add a new elementary state to the statechart;

� add a new unstable state;

� add a new XOR state;

� add a new AND state;

� add a new transition;

� add an attribute to the Entity class;

� add an action to the Entity class.

The button for adding a new transition requires that the user specify the source and destination

states. When this is done, a popup window opens which asks them to enter details of the event,

constraint and action. The Attribute and Action buttons open pop up windows which allow details

of Attributes and Actions to be added to the Entity class.

2.4.6.4 Transition Popup Window

Event

Constraint

Direct Action

CancelNamed Actions... Okay

Inc (int x)

Dec (int x)

Named Actions

Tick

t < 100

c++; Inc(5);

Figure 2.35: Transition Popup Window.

To specify a transition from one state to another, the user �rst clicks on the transition button of

the Entity Window, then clicks on the source and destination state. Once this has been done, the

transition popup window is opened (see Figure 2.35). Here the user selects the event that is to

trigger the transition from a drop-down list. If required, a constraint can be entered. This must

be an expression which evaluates to zero (false) or non-zero (true), written in the syntax of the

target language. In this case C++/ECO. Finally, an Action can be associated with the transition.

The general term Action refers to the code executed as a result of a transition from one state

to another. There are two types of Actions, direct and named. Direct Actions are nameless

fragments of code which are associated with a single transition. When the transition is taken,

29

the code fragment is executed. There is no way to associate the same code fragment with a

di�erent transition (other than using cut and paste), as it is implemented as in-line code in the

state machine.

However, there may be sets of instructions that the user wishes to invoke from many di�erent

transitions. In this case, named Actions can be de�ned (see below), which contain the frequently

used code. Many transitions can then invoke the one named Action by calling it from within their

direct actions. A named Action is implemented as a single method. The invocation of a named

Action is actually a method invocation.

The popup initially opens without displaying the current list of named Actions. If the Named

Actions button is clicked on, the window expands to show the list. This can be a useful reminder

list for the user when they are invoking a named Action from the direct Action.

2.4.6.5 Attributes Popup Window

AddRemove

int t;

char c;

<New>

int t;

Figure 2.36: Attributes Popup Window.

The attributes popup window (see Figure 2.36) is opened by clicking on the Attrs button in the

Entity window. From here, new attributes can be declared and existing ones edited or deleted.

The declaration must be in the syntax of the target language, so in this case attributes are declared

in the same way as variables in C++/ECO.

2.4.6.6 Named Actions Popup Window

The actions popup window (see Figure 2.37) is opened by clicking on the Actions button in the

Entity window. From here, new named Actions can be declared and existing ones edited or deleted.

As discussed previously, the actions must written in the syntax of the target language. In this case,

C++/ECO.

2.4.7 Summary

The Graphical User Interface presented by the Entity Editor must strive for simplicity and elegance.

It must present the statechart clearly, and make it easy for the user to alter it. As the user is

required to enter small fragments of code, aids should be provided to make this as simple as

possible. It must also be possible to manage several Entity classes in the one project, and allow

common de�nitions of events to pass between them.

2.5 Entity De�nition File Format

From a logistic point of view, the most fundamental operations that the Entity Editor must perform

are those of storing and retrieving Entity classes. Without these abilities, you can not save Entity

30

AddRemove

<New>

Inc (int x)

{

 t = t + x;

}

Inc (int x)

dec (int x)

Figure 2.37: Actions Popup Window.

classes just created, nor can you load Entity classes created yesterday. So the requirement is two

fold: To store the complete de�nition of an Entity class as it currently stands in the Entity Editor;

and to allow the retrieval of a previously stored Entity class in such a way that the Editor window

looks exactly as it did just before the storage operation.

This means that all the information about the Entity class must be written to a �le in a speci�c

format, ready for reading back in. Obviously within the Entity Editor there will be an internal

representation of the Entity class in the form of the data structures used by the program. However

a simplistic memory dump of memory is a very poor �le format structure. An applications internal

data structures should be suited to what it does best and how it does it. What is `best' changes as

an application evolves new features. But a �le format should be suited to long term storage and

interchange between application versions.

There is no requirement that this �le format be executable in any way. While de�nitions of

entities in this format may be used as input to the code generator, the de�nitions themselves can

not be executed.

2.5.1 Storage requirements

For each entity class, there are a number of details which must be recorded.

� The events it generates and responds to;

� the attributes;

� the actions;

� the statechart.

The events must be detailed to help ensure that two di�erent Entity classes use the save event

in the same way. The details about each event must include its name together with the name and

type of each of its parameters. The attribute names must be stored, along with their types. The

action names must be stored with their code fragments, as well as the name and type of each of

each of their parameters.

31

Finally, the hierarchical statechart must stored, together with the current graphical location

and size of each state. This graphical information is superuous in the context of the execution

of the state machine. However, it is essential from the point of view of the user who wishes to

arrange their statecharts in a visually convenient way.

2.5.2 File Format Philosophy

Before designing a �le format to hold the details identi�ed above, we must consider that in future

versions some of these details may change, or new ones might emerge. So the storage format must

be versatile enough to allow for future expansion.

For this reason a grammar based structure is proposed for the storage format, using standard

ASCII characters to encode the tokens. This provides two major bene�ts. Firstly, the resulting

Entity de�nitions are ASCII readable, allowing easy human examination. Secondly, a grammar

can be expanded to include new language constructs by ensuring that the language the grammar

describes is a superset of the old language. New versions of the Entity Editor should always be

able to read old Entity �les, as they will always be in a language that is just a subset of the later

versions of the language.

This approach is not uncommon. Consider Adobe's PostScript or Microsofts RTF (Rich Text

Format). Both are grammar based, ASCII encoded interchange formats.

2.5.3 Format Syntax

The general syntax is not unlike a typical programming language, such as C or Pascal. The overall

order of declarations is: events; attributes; actions; and �nally a single state de�nition which

contains all the states of the Entity as sub-states.

The declaration of an event includes the events name (a standard alphanumeric identi�er) and

its parameters. For example

event Time (msecs : int);

declares an event called `Time'which has one integer parameter, the current system time in millisec-

onds. This event might be raised by a clock entity every few milliseonds, and might be subscribed

to by entities interested in knowing the current time.

A typical Entity class would have many event declarations. No distinction is drawn between

those events that are generated and those that are received. These declarations simply allowing

the Entity Editor to perform basic type checking on the use of the events.

The attributes are declared as small code fragments which declare the appropriate variable.

Consider

attribute [[int xposition;]]

attribute [[int yposition;]]

which declares two attributes of type integer.

Named Actions are de�ned by providing the action name; its parameters; and the associated

code fragment. For the moment, this code fragment must be in the target language, C++/ECO.

Ideally this would be a generic language, which could be converted into the particular syntax of

the underlying language. This would have to be the case if the Entity Editor were to be completely

language independent. In the following example everything between the [[and]] will be pasted

into the resulting Entity code.

action [[

IncEnergy (int stamina, int food) {

energy = energy + stamina;

stomach = stomach + food;

32

}

]]

Within the code fragment the user can do anything that can be done from within a typical

C++/ECO program. However, it would be wise to limit individual actions to perform only simple

modi�cations to the attributes, or invocations of inherited methods.

The state of the Entity must be contained in a single enclosing state, typically an XOR or

AND state. Within a state there can be several sub-states. The current syntax supports XOR

states, AND states and elementary states. The hierarchical nature of statecharts is conveniently

represented by the nesting of state statements. Consider the following example (see Figure 2.38).

Example

YX

D

Tick

H

A

q[n>0] p/Increase

B C

E

Figure 2.38: Example Statechart for encoding.

xorstate ``Example'' (left=0,right=300,top=0,bottom=200)

{

andstate ``X'' (left=0,right=150,top=10,bottom=190)

{

shallowhistory;

state ``A'' (left=60,right=80,top=10,bottom=30);

state ``B'' (left=60,right=80,top=90,bottom=110);

trans ``A'' to ``B'' (curve=1) on p do Increase;

trans ``B'' to ``A'' (curve=1) on q when (num>0);

default ``A'' (x=55,y=15);

}

andstate ``Y'' (left=150,right=300,top=10,bottom=190)

{

state ``C'' (left=30,right=50,top=80,bottom=100);

xorstate ``D'' (left=....)

{

state ``E'' (left=...);

}

trans ``C'' to ``D''.''E'' (curve=1) on Tick;

default ``C'' (x=...);

}

}

The bracketed expressions after the state names are properties of the state, and are used to

store the graphical information about the state. This information would be used by the Entitor to

recreate the same looking statechart. Similar properties are included for the transitions. In this

33

example curve dictates what type of curve should be used to draw the transition line. (curve=1

signi�es a straight line).

2.5.4 Grammar

The following represents a basic grammar for the Entity File Format. The syntax used de�nes

multiple productions from the one non-terminal symbol. If the modi�er `opt' is placed after a

non-terminal it means that it is optional. De�nitions for elementary non-terminals are not given.

<DECLARS>

-> <DECLAR>

-> <DECLAR> <DECLARS>

->

<DECLAR>

-> event <IDENT> <PARAMDECLS>opt ;

-> attribute <IDENT> : <TYPE> ;

-> action <IDENT> <PARAMDECLS>opt <FRAGMENT>

-> <STATEDECL>

<STATEDECL>

-> xorstate <STNAME> <PROPTYS>opt { <SUBS> }

-> andstate <STNAME> <PROPTYS>opt { <SUBS> }

-> state <STNAME> <PROPTYS>opt ;

<SUBS>

-> <SUB>

-> <SUBS> <SUB>

<SUB>

-> <STATEDECL>

-> deephistory;

-> shallowhistory;

-> default <STNAME> <PROPTYS>opt ;

-> trans <DEEPSTNAME> to <DEEPSTNAME> <PROPTYS>opt <TRANSDECL> ;

<TRANSDECL>

-> <TREVENT>opt <TRCONST>opt <TRACTION>opt

<TREVENT>

-> on <IDENT>

<TRCONST>

-> when <FRAGMENT>

<TRACTION>

-> do <FRAGMENT>

<PASSPARAMS>

-> (<PASSPLIST>)

<PASSPLIST>

34

-> <IDENT>

-> <VALUE>

-> <IDENT> , <PASSPLIST>

-> <VALUE> , <PASSPLIST>

<PARAMDECLS>

-> (<PARAMDLIST>)

<PARAMDLIST>

-> <IDENT> : <TYPE>

-> <IDENT> : <TYPE> , <PARAMLIST>

<PROPTYS>

-> (<PROPTYLIST>)

<PROPTYLIST>

-> <IDENT> = <VALUE>

-> <IDENT> = <VALUE> , <PROPTYLIST>

<FRAGMENT>

-> [[<FRAGMENTCODE>]]

<EXPRESSION>

-> [[<FRAGMENTCODE>]]

<DEEPSTNAME>

-> <STNAME>

-> <STNAME> . <DEEPSTNAME>

<STNAME>

-> `` <TEXT> ''

2.5.5 Example

The following is a short example of a typical Entity De�nition File. See Figure 2.39 for graphical

representation.

event Hit (e : int);

event GotEnergy (e : int);

attribute [[int shield;]]

action [[

MaxShield ()

{

shield = 100;

}

]]

action [[

IncShield (int x)

{

35

Tank

Full Shield

Partial Shield

Hit(e)/DecShield(e)

GotEnergy(e)[shield+e<100]
/IncShield(e)

/MaxShield

Hit(e)/DecShield(e)

Alive

Dead

/Explode
Hit(e)[shield-e<0]

Actions

DecShield (e : int) shield = shield - e;

IncShield (e : int) shield = shield + e;

MaxShield shield = 100;

Explode (Change graphics)

Attributes

shield : int

GotEnergy(e)[shield+e>=100]

Figure 2.39: Example of a simple Tank statechart.

shield = shield + x;

}

]]

action [[

DecShield (int x)

{

shield = shield - x;

}

]]

action [[

Explode

{

//perform some graphical changes

}

]]

xorstate ``Tank'' (left=0,right=300,top=0,bottom=200)

{

xorstate ``Alive'' (left=...)

{

state ``Full Shield'' (left=...);

state ``Partial Shield'' (left=...);

trans ``Full Shield'' to ``Partial Shield'' (curve=1)

on Hit do [[DecShield(e);]]

trans ``Partial Shield'' to ``Full Shield'' (curve=1)

36

on GotEnergy when [[(shield+e>=100)]] do [[MaxShield();]]

trans ``Partial Shield'' to ``Partial Shield'' (curve=2)

on Hit do [[DecShield(e);]]

trans ``Partial Shield'' to ``Partial Shield'' (curve=2)

on GotEnergy when [[(shield+e<100)]] do [[IncShield(e);]]

default ``Full Shield'';

}

state ``Dead'' (left...);

trans ``Alive'' to ``Dead'' (curve=1)

on Hit when [[(shield-e<0)]] do [[Explode ();]]

}

2.6 Entity Editor Code Generator

This section considers how Entity classes should be represented in C++/ECO. The Entity Editor

should be able to output source code in C++/ECO which can be compiled, linked and executed

within the VOID execution environment. This source code is a C++/ECO representation of the

statechart, actions and attributes of the Entity

The general problem is two-fold. Firstly, code which executes as a state machine modelling the

Entity statechart must be generated. Secondly, any code fragments (actions, constraints etc) must

be translated into the target source language.

While it would be ideal to make the Entity Editor language independent, the immediate solution

is to produce code only for C++/ECO. If the user is required to enter all code fragments in the

chosen target language, then no code translation need occur. However, the problem of generating

the state machine still remains.

2.6.1 Starting Point

GUI
Front-end

Definition
Entity

File

Code
Generator C++/ECO

Entity Definition
Generator

Figure 2.40: General structure of the Entity Editor.

From Figure 2.40 it can be seen that the Code Generator is considered to be a separate program.

The fundamental point is that the Code Generator takes as input the Entity De�nition File, and

outputs a representation of the Entity in the target language. The other alternative to code

generation would be to allow the generator have access to the internal structures of the Entity

Editor, and produce the target language code from there. This would probably mean making the

code generator part of the Entity Editor program.

37

Based on the philosophy that a programs internal data structures should be designed around

the requirements of that program, it would appear that two separate data representations are

required. One for the graphical manipulation of the statechart in the Entity Editor; and one

for translation purposes in the Code Generator. While it may be possible to resolve these two

structures into one, keeping them separate simpli�es their design. In addition it may simplify the

design and implementation of the two programs; the Entity Editor and the Code Generator.

Given that we have a standard Entity File Format, we need to build a single interchange layer to

convert from the �le format to the Code Generator's internal representation. This is the principle

cost involved in having a separate Code Generator. Considering the clean division of problem

provided by this design approach, it is an acceptable cost. So the decision is to have the Code

Generator as a separate program from the main of the Entity Editor.

2.6.2 No Reverse Engineering

One noticeable omission from the design is that it is not possible to convert C++/ECO code to

the Entity De�nition File format. The general problem of converting an arbitrary C++/ECO

program to statechart form is simply too complex. Even the simpli�ed problem of taking code

initially produced by the code generator, but subsequently altered slightly, and mapping it back

to a statechart is very complex.

If small changes need to be made to the code produced by the Entity Editor, they should be

made at the level of the Entity Editor instead. This is quite easy if the change is to an action. If

the change is to the state machine then the correct approach would be to identify the changes at a

statechart level, and not by making almost arbitrary changes to relatively complex code generated

automatically.

2.6.3 Basic Statechart to Code Mapping

The problem to solve is the automatic generation of a state machine that simulates the Entity's

statechart. This section outline a C++/ECO speci�c solution, which deals with simple statecharts.

Complexities, such as orthogonality, are dealt with in more detail later.

2.6.3.1 Direct Mappings

Assumptions made about the target language (C++/ECO) mean that many concepts present at

the Entity level can be mapped directly to the target language level.

� An Entity class maps to a single C++/ECO class.

� An Attribute of an Entity classes maps to a single data member of a C++/ECO class.

� The Events exchanged between Entities are mapped directly to the events supported by

C++/ECO.

� The ability of an Entity to raise an event is directly mapped to the raising of an event in

C++/ECO.

� The FIFO queueing of events is provided by C++/ECO.

� Named Actions are mapped to methods of the C++/ECO class.

� Direct Actions are mapped to code fragments of C++/ECO.

� The constraints on transitions in the Entity statechart are mapped directly to conditional

expressions of C++/ECO.

38

2.6.3.2 Event Handling

The processing of event noti�cations at the Entity level is quite di�erent than at the C++/ECO

level. In the former case, an event potentially triggers constraint evaluations and state transitions,

each possibly executing an action. In the latter, an event triggers the evaluation of a number of

pre-conditions, each of which may trigger a method - no state is maintained.

To achieve a mapping between the two, the C++/ECO methods must perform the Entity

constraint evaluation, update the state variables and execute the appropriate actions.

Event subscription and unsubscription are considered heavy-weight operations, so they cannot

be done on every state transition. So to avoid the overhead of unsubscribing and resubscribing

to events as the state of an Entity changes, an Entity simply subscribes to all the events it will

every require when it is created, and unsubscribes from them when it is destroyed. This means

that while an Entity may be in a particular state waiting for one particular event, the underlying

C++/ECO object may remain subscribed to many more events. 1

The facilities provided by C++/ECO allow an event to invoke a number of preconditions, each

of which can invoke a �xed method. The precondition facility is used as a �lter to determine if the

event that arrived is currently accepted by the state machine. If it's in a state that has a transition

that depends on the arrival of that event, then the precondition succeeds and triggers the method.

The method in question is written speci�cally to handle that particular event. It is referred to

as an event-handler method. There is one such method for each event of interest to the Entity.

Conceptually, it is responsible for determining what state the entity is in, and as a result, what

needs to be done. The apparent concurrency provided by the AND states is simulated here. If the

event-handler �nds that the state machine is in an AND state, then it must cater for the two

active states.

The event-handler method actually delegates the work to one or more depart-on methods.

These are methods which responsible for departing from a particular state on the arrival of a

particular event. For each set of transitions in a statechart that leave the same state and are

triggered by the same event there is a unique depart-on method. When these methods are

executed, they assume the state machine is in a particular state and that a certain event has

occurred. They are responsible for determining which of the transitions is to be taken, executing

the chosen transitions action, and putting the state machine in a new state.

In most cases the depart-on method will only have to deal with one transition. However, if

a state has many transitions leaving it by the same event, then the depart-on method will have

to evaluate the constraints of each transition until it �nds one that can be taken. Note that the

�rst transition evaluated with a valid constraint will be taken. (This is in keeping with comments

made about non-determinism in statecharts.)

2.6.3.3 State Maintenance

As mentioned above, conceptually, the event-handler methods are responsible for determining

what state the state machine is currently in. However, as the last transition will have placed the

state machine in some known state, it would be wasteful for the event-handler to perform any

kind of switch operation. Instead, when a transition places the state machine in some new state,

what actually occurs is that changes are made to a table of depart-on method references.

At any given time, this table determines the current state, as it de�nes what depart-on

methods must be invoked by each of the event-handlers. The table is actually a number of lists.

For each event-handler there is a list of depart-on method references that must be invoked

when the event-handler runs.

When an event arrives, it �rst triggers a particular precondition. This examines the list of

depart-on references for that event, and only triggers the associated event-handler if it is not

1User level support may be provided by the Entity Editor to allow the user to suggest to the Code Generator
that dynamic subscription and unsubscription would be more optimal in particular situations.

39

empty. If it is empty, then the state machine is simply not in a state that requires that event, and

it is discarded. (This is consistent with the view that a statechart only accepts sequences of events

that match it's `event language'.)

When invoked, the event-handler invokes each of methods speci�ed in the appropriatedepart-

on method list. Precautions are taken to ensure that the �rst depart-on method does not over-

write the list before it is fully used. The list of depart-on methods is sorted by their depth order.

Those entries departing from outermost states are dealt with �rst. This is to ensure that apparent

non-determinism is solved by only taking the outermost transition. If the outermost is not taken

because it's constraint fails, then the inner ones have a chance to execute.

2.6.3.4 Scope in Actions and Constraints

The fragments of code that the user enters as the Actions or Constraints is used verbatim in the

mapping from statecharts to C++/ECO. While the user may potentially enter anything at all,

some consideration should be given to what is sensible for them to access. 2

For a constraint the user should enter a typical C++/ECO expression which will evaluate to

either true (non-zero) or false (zero). The variables that should be considered in-scope are the

event parameters and the attributes of the Entity. Access to the state of the Entity is provided

through special functions.

Direct Actions are simply a number of C++/ECO statements that the user associates with a

particular transition. They have no identifying name, so cannot be accessed by other transitions.

As with constraints, the variables that should be considered in scope are the Attributes and event

parameters. Queries about the current state can be made through special functions.

Named actions are ordinary C++/ECO methods. They can have local variables, and can access

the attributes of the Entity as well as the values of their own parameters. However, in contrast

to constraints and direct actions they cannot access the parameters of the event that ultimately

triggered their invocation. Note that in practise every transition that performs some action has

a direct Action associated with it. Transitions that appear to invoke a named Action do so via a

single statement direct action which invokes the named Action.

2.6.4 Simple Example

CB

A

p/Inc() p/Inc()

p/Inc()

Example

q[x>3]/x--

Figure 2.41: A Simple Statechart.

To demonstrate the general format of the code produced by applying the mechanisms described

above, consider the following example. A typical graphical representation of the Entity class is

given in �gure 2.41. The statechart has three elementary states, each of which responds to event

p by invoking the named Action Inc and moving along the cycle. State A also responds to event q

2Obviously the potential for user error is signi�cant, and in subsequentversions of the tool, code-creating facilities
may need to be provided to help the user write correct code.

40

when the constraint [x>3] is true, invoking the direct Action x--. The Entity has one attribute,

x and one named Action Inc.

2.6.4.1 Depart-on Lists

Many of the details are hidden in the depList class. This is primarily for clarity. A depList

class contains a list of pointers to methods. Each of these methods is a depart-on method in the

Example class. The declaration of the depList class might be as follows:

class depList {

// The depart-on method pointers, classified by depth

void *methodPointers[MAXDEPTH][MAXENTRIES];

// Temporary storage area for Adds while executing.

void *tempPointers[MAXTEMPS];

int tempDepths[MAXTEMPS];

void Clear () {

// Clear all methodPointers

// totalEntries = 0

}

int TotalEntries ()

{

return (totalEntries);

}

void Execute (event e, void *pointerSelf)

{

// Invoke each method pointed to by methodPointers,

// starting from the outermost depth and working in.

// Add the tempPointers to the methodPointers.

}

void Add (void *pointerToMethod, int depth)

{

// If this depList is currently executing Then

// Add this pointer to the tempPointers

// Else Add this pointer at the specified depth

// totalEntries ++

}

void Remove (void *pointerToMethod, int depth)

{

// Remove pointer at a given depth

// totalEntries --

}

}

The use of this class may be changed in the actual implementation. For the purposes of design,

it provides a useful abstraction, as it removes many of the complexities of dealing with pointers to

methods. The issues related to the depth of a transition are dealt with later.

2.6.4.2 C++/ECO Code

While the syntax for the Entity class attempts to remain faithful to that proposed in [56], the

purpose of this example is to demonstrate the overall mechanism, rather than the speci�c syntax.

41

class Example {

int x; // Attributes

Inc () { x++ } // Actions

depList pDepList; // Depart-on lists

depList qDepList;

inevents pEevent, qEvent; // Declare events.

// Preconditions

constraint pPrecond {

if (pDepList.totalEntries() == 0) discard;

else process-passive;

}

constraint qPrecond {

if (pDepList.Empty ()) discard;

else process-passive;

}

// Event handlers

pHandler (event e) { pDepList.Execute (e, self); }

qHandler (event e) { qDepList.Execute (e, self); }

// Register for events

pHandler handles (pEvent, NULL, pPrecond, NULL);

qHandler handles (qEvent, NULL, qPrecond, NULL);

// Constructor

Example () {

pDepList.Clear ();

qDepList.Clear ();

// Setup initial state

pDepList.Add (&dep_A_On_p, 1);

qDepList.Add (&dep_A_on_q, 1);

}

// Methods for Departing from <state> on event <event>

dep_A_on_p (event e) {

Inc (); // The action

qDepList.Remove (&dep_A_on_p, 1);

pDepList.Remove (&dep_A_on_q, 1);

pDepList.Add (&dep_B_on_p, 1);

return (1);

}

dep_B_on_p (event e) {

Inc (); // The action

pDepList.Remove (&dep_B_on_p, 1);

pDepList.Add (&dep_C_on_p, 1);

return (1);

}

42

dep_C_on_p (event e) {

Inc (); // The action

pDepList.Remove (&dep_C_on_p, 1);

pDepList.Add (&dep_A_on_p, 1);

qDepList.Add (&dep_A_on_q, 1);

return (1);

}

dep_A_on_q (event e) {

if (x > 3) { // constraint

x--; // The action

pDepList.Remove (&dep_A_on_q, 1);

qDepList.Remove (&dep_A_on_p, 1);

pDepList.Add (&dep_C_on_p,1);

return (1);

}

return (0);

}

}

Note that each depart-on method returns one or zero, depending on whether the transition

was actually taken or not. This is so that depList.Execute() can determine whether transitions

that are deeper should be given a change to execute. 3

2.6.5 Depth

A

X

Y

q

p
r

q

rB
C

Figure 2.42: Statechart illustrating depth.

Consider the statechart in �gure 2.42. Transitions which originate from a compound state (such

as the transition from Y to Z) introduce the complication of recursively exiting from that state.

Examine the depart-on methods in the last example. A general form for such a method might

be:

If (constraint is true) Then

Perform some action.

Exit from the source state of the transition

(ie Remove depart-on methods of source state.)

Enter the destination state of the transition.

(ie Add depart-on methods of destination state.)

3This means there is actually a dependency between the action code and the state machine code. The state ma-

chine code has, in e�ect, read access requirements on the attributes. If the actions are considered as sequential code
and the state machine as synchronisation code, then it is impossible to separate the sequential and synchronisation
code. In such a situation it is not desirable to have internal concurrency within an object, as deadlock may occur
(readers/writers problem). See [44].

43

Return (1)

EndIf

Return (0)

In the case of an elementary state, the exiting is achieved by simply removing the depart-on

methods of the current state from the various DepLists. However, in Figure 2.42 the transition from

Y to Z must exit from an XOR state. The dep Y on r method must actually call a special method

exit Y. This identi�es which sub-state is active (A or B) and removes the appropriate depart-on

methods. As the sub-states could be compound states (XOR or AND) the exitmethods may need

to call other exit methods.

For each AND and XOR state there is a single exit method, which is responsible for removing

the depart-onmethods from the DepLists of itself, and all it's sub-states. To achieve this, special

state-variablesmust be maintained. In the example, there would be a Ystatevar variable which

could hold the value A STATE or B STATE. Before an exit function terminates, it either resets these

variables to default values, or leaves them as they are. This provides the defaulting and history

abilities of the statechart. 4

Similarly, for each compound state there is a single enter function, with responsibility for

recursively adding the appropriate depart-onmethods to the DepLists. This is done on the basis

of the current values of the state-variables. In the case of the transition from Z to Y, theDepart-

on method simply calls enter Y. In the case of the transition from Z to B, the Depart-onmethod

must �rst set the value of Y's state-variable to B, and then call enter Y.

With reference again to Figure 2.42, the enclosing state, X, is considered to be at a depth of 0.

The sub-states of this state (Y and Z) are at depth 1. Similarly, the sub-states of Y are at depth

2, and so on. The depart-on methods would be as follows.

dep_Y_on_r (event e)

{

exit_Y (); // Remove all X depart-ons

Xstatevar = Z_STATE;

rDepList.Add (&dep_Z_on_r, 1);

rDepList.Add (&dep_Z_on_q, 1);

return (1);

}

dep_Z_on_r (event e)

{

rDepList.Remove (&dep_Z_on_r, 1);

rDepList.Remove (&dep_Z_on_q, 1);

XStatevar = Y_STATE;

enter_Y ();

return (1);

}

dep_Z_on_q (event e)

{

rDepList.Remove (&dep_Z_on_r, 1);

rDepList.Remove (&dep_Z_on_q, 1);

XStatevar = Y_STATE;

YStatevar = B_STATE;

enter_Y ();

return (1);

}

4The di�erence between shallow and deep histories does not arise at this level. Each XOR or AND state either
has history, or uses defaults. Deep history simply means that all sub-states have histories.

44

dep_A_on_p (event e)

{

pDepList.Remove (&dep_A_on_p, 2); // state A is at depth 2

Ystatevar = B_STATE;

pDepList.Add (&dep_B_on_p, 2);

return (1);

}

dep_B_on_p (event e)

{

pDepList.Remove (&dep_B_on_p, 2);

Ystatevar = A_STATE;

pDepList.Add (&dep_A_on_p, 2);

return (1);

}

exit_Y ()

{

switch (Ystatevar) {

case A_STATE :

pDepList.Remove (&dep_A_on_q, 2);

break;

case B_STATE :

pDepList.Remove (&dep_B_on_p, 2);

break;

}

Ystatevar = A_STATE; // reset to default

}

enter_Y ()

{

switch (Ystatevar) {

case A_STATE :

pDepList.Add (&dep_A_on_q, 2);

break;

case B_STATE :

pDepList.Add (&dep_B_on_p, 2);

break;

}

}

Any transition which e�ectively crosses the bounds of an XOR or AND state must invoke the

appropriate enter or exit method. Elementary states do not have these function, so the depart-

on methods must perform the Adds and Removes directly. The enter and exit methods of a state

do not a�ect the state-variable of their containing state. In the example, the exit Y method

does not a�ect the Xstatevar. The depart-on method must update it.

The exit and entermethods add some overhead to the transition mechanism. However, as the

frequency of transitions between complex states is almost certainly going to be lower than between

elementary states, this is acceptable. 5

2.6.6 Orthogonality

5As is so common in implementation, the objective is to optimise the most frequent cases.

45

A

B

C

D

X

p
p

p
p

Y Z

Figure 2.43: Example of an AND State.

Consider the statechart in Figure 2.43. If it were in states A and C, there would be two entries in

the DepList for event p, at depth 1: dep A on p and dep C on p. When the p event is detected, the

depList.Executemethod executes both of the methods listed at depth 1. This execution is done

in a serial fashion. Orthogonal states do not mean concurrency, they only imply independence.

2.6.7 Unstable states

A B

C

X

p/x++

D

[x==3]/y++

/y--

Figure 2.44: Example of an unstable state.

Unstable states are not implemented as true states. They are considered links in a chain of actions

that must be executed in response to a single event. The chain must always end at a stable state.

For this reason, every unstable state must have an unbound transition leaving it. This is taken if

all other transitions are inactive.

The code produced for a chain must determine what actions are to be executed and what �nal

state to enter. Consider the following depart-on method which implements the statechart in

Figure 2.44:

dep_A_on_p (event e)

{

x ++; // Action

exit_A ();

if (x == 3) {

y ++

Xstatevar = C_STATE;

enter_C ();

} else {

y --;

Xstatevar = D_STATE;

enter_D ();

46

}

return (1);

}

2.6.8 Non-determinism

Pure non-determinism, where more than one transition is active from a state at one time, is

removed by simply ignoring all but one of the transitions at code generation. The resulting code

represents a statechart with only one transition, which is deterministic.

B

C

A

X

p[x==1]/y++

p[y==3]/y--

Figure 2.45: Example of Potential Non-determinism.

Potential non-determinism, where many transitions from a state may be active at the same

time depending on their constraints, is dealt with by the depart-on method. The �rst active

transition found is taken, and all the others are ignored. Consider the following example, which

implements the depart-on method for Figure 2.45.

dep_A_on_p (event e)

{

if (x == 1) {

y ++; // Action

exit_A ();

Xstatevar = C_STATE;

enter_A ();

return (1);

} else if (y == 3) {

y --; // Action

exit_A ();

Xstatevar = B_STATE;

enter_A ();

return (1);

}

return (0);

}

Apparent non-determinism is dealt with by the DepList.Execute()method. The non-determinism

is removed by applying outermost priority. Consider the statechart in Figure 2.46. If in states A

and C, pDepList contains references to methods:

� At depth 1: dep Y on p

� At depth 2: dep C on p and dep Z on p

� At depth 3: dep A on p

47

Y

Y1 Y2

p

C

D

p

Z

F

A B

p[x==2]

p[x==1]
E

X

Figure 2.46: Example of Apparent Non-determinism.

Consider the case where x=1. When pDepList.Execute() is called the outermost depart-on

method is evaluated �rst, dep Y on p. As the constraint is satis�ed, the transition will be taken.

However, one of the things that dep Y on p does is to call exit Y, which removes all the other

depart-on methods from the pDepList. This means that no further transitions will be evaluted,

and the desired a�ect is achieved.

However, if x=2 then the outermost transition will fail (return zero), so pDepList.Execute()

must execute both dep C on p and dep Z on p. The execution of one will not a�ect the execution

of the other, as they are orthogonal. As dep Z on p succeeds, exit Z will remove dep A on p, so

it will never be processed.

The �nal case is if x=3. The dep Z on p method will fail, so it will not remove dep A on p,

which is then executed. The transition from C to D will be taken regardless of whether x=2 or

x=3.

While it is desirable to have the pDepList.Remove() calls register within the pDepList imme-

diately, it is not desirable to have the pDepList.Add() calls register, as it could mean that the

Execute may perform more calls that is required. So the �rst thing the Execute() method must

do is ensure that Add() calls delay the registration of new depart-onmethods until the Execute()

cycle is complete. So the Add() method simply notes the details, and leaves the work of adding

them to Execute() when it is complete.

2.6.9 Summary

The generation of C++/ECO code that e�ectively models an Entity de�nition is a complex process.

This section has presented an approach that may be taken to the mapping from the higher level

concept of an Entity (with statecharts, actions and events) down to the lower level concept of a

C++/ECO class (with events, pre-conditions and methods).

48

Chapter 3

ECOlib: Support For Events,

Constraints, and Objects

3.1 Introduction

This chapter describes the interface to the ECO library (ECOlib) and contains some details about

its implementation. The library provides low-level runtime support for inter-object communication

based on events and constraints, and as such it is a part of the Moonlight VOID shell.

This introductory section briey and informally describes the ECO programming model. It

also gives the assumptions about the underlying system and assumptions about the ECOlib user.

The following section speci�es the ECOlib primitives and prede�ned events. The ECOlib is being

implemented, and in several places in this chapter we list the possible implementations of some

part of the interface. The last section summarises the preceding text and mentions some future

work.

3.1.1 Programming with events, constraints, and objects

In the ECO model objects communicate among themselves using events and constraints. An event

represents something that can happen, and it has name and zero or more parameters. The name

of an event allows the objects to refer to a speci�c event among all the events. The parameters of

an event have type (e.g., an integer or a character string). For the speci�c occurrence of an event

the parameters are instantiated with values. These values, together with the event name, describe

to the objects what happened, i.e., describe the speci�c occurrence of an event1.

An object encapsulates some data and some processing. An object can tell other objects about

something that happened, and it can react if it is told by other objects that something happened.

The former is accomplished by announcing an event, and the latter by binding a method of the

object to the required event. This binding can be dynamic, i.e., it is allowed to unbind a method

from an event. The same method can be bound to several events, and the same event can have

several methods (of the same or of di�erent objects) bound to it. A binding can be established

only if the signatures of the event and of the method match (if they have the same number of

parameters, and the types of the corresponding parameters are the same).

Constraints enable more exible event-method bindings and more exible processing of event

noti�cations. An object may conditionally be interested in some event: it is interested only if the

speci�c event parameter has a speci�c value or any value from a range of values when the event

is announced. This can be expressed using the so called Notify constraints. In addition to this,

1In the following text we use \event" for both an event and an event occurrence. The context will indicate the
correct interpretation.

49

an object may decide, based on the object's local state when it is told about an event, that the

processing of the event should be postponed or even cancelled.

If the local state is such that the processing should go ahead, it may be the case that multiple

ows of control are allowed within the object. In general the object may require that there should

be a maximum n concurrent ows of control within the object, where n = 1; : : : ; N (where N is

object dependent). An example of multiple ows of control within an object is when the object uses

a multiple-readers single-writer policy, and the object knows which of its methods are \readers"

and which of them are \writers".

All these options (postponing and cancelling processing of an event, controlling the level of

concurrency within an object) are available from the so called Pre constraints. Both Pre and Post
constraints are associated with an event-method binding. The two kinds of constraints act as a

method wrapper. Constraints have no parameters and return a result which is true or false (i.e.,
a constraint is either satis�ed or not satis�ed). Constraints which depend only on the constraint

internal data (and do not depend on any global data or object local data) can be reused by di�erent

objects.

The ECOlib library implements a low-level runtime support for the events constraints and

objects. It maintains information about classes, objects, events and their occurrences, and infor-

mation about various bindings. It knows about a number of prede�ned events. The library itself

uses events. More about the ECO model, and a programming language syntax for this model, can

be found in [53], reproduced in appendix C. The separation of functionality between the ECOlib

and its client is shown in �gure 3.1.

ECOlib

ECOlib client

- announces events: user-defined & pre-defined

- (un)subscribes from/to events

- processes events using: enqueue, dequeue,
 process_active, process_passive,
 discard_single, discard_all

- stores information about:

 * classes, objects, methods

 * events

 * bindings (method - event)

- implements the primitives,
- knows about pre-defined events,
- implements event deliveries

Figure 3.1: Separation of functionality between the ECOlib and ECOlib client code.

3.1.2 Assumptions about the ECOlib environment

First, the assumptions about the underlying system. It is assumed that there is support for

lightweight threads. The ECOlib requirements are basically to be able to start a thread and to

50

ensure mutual exclusion of threads. It is also assumed that there is preemptive scheduling of

threads, and that this is required by applications.

Next, assumptions about ECOlib`s users. The intended client of ECOlib (i.e., the user of the

interface described in this chapter), is the code which will be generated by a language processor

or by one of the Moonlight tools. The following is assumed:

� When an object is created, the client will allocate the space for object data and assign a unique

identi�er to the object. The ECOlib will be informed about the creation of each object, if

this object is to use events and constraints. This is done using the announce primitive, and

the name of the event announced is object created (one of the prede�ned events).

� In a class-based language a class can play several roles. It is assumed here that a class allows

method sharing and interface sharing for the objects or instances of a class. When a class is

created the ECOlib is informed about this, and is passed some information about that class

(the client announces the class created prede�ned event).

� When a class, or an object, is deleted the ECOLib is informed about this (the client announces

the appropriate prede�ned event).

� Binding between methods of an object and events is dynamic and based on the use of sub-

scribe and unsubscribe. The user of ECOlib is responsible for creating these bindings, and

later for modifying them. Speci�cally, there is prede�ned event called error, which is an-

nounced internally by the ECOlib when some error conditions are detected. This event is

delivered only to those objects which established a binding for the event.

� When an event is announced and the event has parameters then it is up to the user of ECOlib

to marshal the parameters into a single block of memory. A pointer to this block is passed

to ECOlib when the event is announced. When an event is being delivered to a method, a

pointer to a block of memory which contains the event parameters is passed to the method.

It is up to the method to unmarshal these parameters and invoke the application level code

which implements the method.

Di�erent programming language constructs (from the same language or from di�erent lan-

guages) may be translated into the code which will use the ECOlib interface. There is an obvious

mapping from the language constructs described in [53] and the primitives and prede�ned events

described in this chapter.

3.2 The ECOlib interface

This section speci�es the ECOlib entry points or primitives, and a collection of the prede�ned

events.

3.2.1 The ECOLib internals

This subsection describes some internal ECOlib data (the event noti�cation packet, current object,
current method, and current event). They are given only in order to simplify the interface desciption

which follows. The implementation of the ECOlib is not constrained in any way by the given

speci�cation of its internal data.

The ECOlib maintains information about the current object, current method, and current

event. This internal information is used by some of the primitives. The event noti�cation packet

(ENP) is also internal to the ECOlib, i.e., it is not visible at the ECOlib interface. Whenever an

event is announced the ECOlib creates an event noti�cation packet which is outlined below.

51

struct enp { /* event notification packet */

char* name_enp; /* name */

enpbody data_enp; /* parameter values */

}

An ENP can be shared by a number of destinations, i.e., it can belong to a number of paths (a
path links ENPs which belong to a single destination). Thus, the ENPs form a graph structure. An

ENP has, for each of the paths to which it belongs to, information about the priority of the ENP

relative to other ENPs on the same path. These priorities, if they are used, order the noti�cations

before they are delivered to their destination. The ENPs on a single path are called the ready
ENPs. Each binding between a method and an event can have its list of waiting ENPs | those

which are managed by the object itself using the enqueue and dequeue primitives (these primitives

are described below).

3.2.2 The primitives of the interface

A list of the primitives is given below. More information about each of them can be found in the

following text.

� announce event name(param value, param value, : : :) priority

� subscribe method name(event name, notify name, pre name, post name)

� unsubscribe method name event name

� process passive

� process active priority

� enqueue

� dequeue method name, event name

� discard single

� discard all

announce is the main primitive of this interface, it can be called from methods and from Pre and

Post constraints. The implementation of some of the other primitives use event announcement,

speci�cally subscribe and unsubscribe are syntactic sugar | they are implemented as announce-

ments of the corresponding internal events (this is done in order to simplify concurrent handling

of \ordinary", i.e., application-speci�c, events and handling of subscribe and unsubscribe). The re-
mainder of the primitives from the list are expected to be called fromPre and fromPost constraints.

The primitives which can be called from Pre constraints are: process passive, process active, en-
queue, dequeue, discard single, and discard all. The primitives which can be called from Post

constraints are: enqueue, dequeue, discard single, and discard all (note that there is an implicit

discard single after a Post constraint). The users a�ect the order in which the events happen

(i.e., the order in which the events are announced and handled) by using priorities. More about

priorities is given in 3.2.2.1. A speci�cation of the above primitives in the form of a C++ class2 is

given below.

2The use of C++ for the speci�cation of this interface does not indicate that the C++ object model lies under
the Moonlight object model.

52

class ECOlib {

public:

announce(event_name, par_values, priority);

subscribe(method_name, event_name, notify_name, pre_name, post_name);

unsubscribe(method_name, event_name);

process_passive();

process_active(priority);

enqueue();

dequeue(method_name, event_name);

discard_single();

discard_all();

}

The following text describes the above primitives.

announce primitive

This primitive is used to announce the occurrence of the named event. The input to this

primitive is: the name of the event which is being announced, the values of the parameters for this

event occurrence, and (optionally) the priority of this event occurrence.

The named event must be known to ECOlib (i.e., the prede�ned event called create event with
this event as parameter was previously announced). Before announce is called, the values of the

parameters which are passed to ECOlib have to be marshalled in a block of memory of the size

speci�c for this event. The priority indicates the required ordering of this event occurrence with

respect to occurrences of other events.

The ECOlib stores the input information into an ENP for further processing: for �nding the

bindings for this event, for evaluating the Notify constraints, and for delivering the noti�cation

to the destinations. However, this processing is done internally by the ECOlib. After announce
the announcer object continues with its processing, i.e., announce is an asynchronous operation:

it transfers information, it does not transfer control.

subscribe primitive

This primitive is used to request a binding between the named method and the named event.

The method has to be a method of the current object, and its signature has to match the event

signature. The event has to be one of the events which the class of the current object can handle

(one of the events declared as such when the class creation was announced). The named constraints

are optional, and if they are given have to be local to the object class.

This primitive creates a binding between the method and event. The same primitive can also

be used to change a binding (give di�erent constraints to an existing binding). It is implemented as

an announcement of the subscribe internal event, which means that the primitive is asynchronous

| the announcer does not wait for the binding to be fully established.

unsubscribe primitive

53

This primitive is used to break the binding between the named method of the current object

and the named event. It is implemented as an announcement of the unsubscribe internal event.
There are several options for an implementation of this primitive: (1) all the noti�cations which

may be enqueued on the given binding are discarded, (2) unsubscribe only if there are no out-

standing noti�cations, and (3) if there are outstanding noti�cations wait until they are processed

and discarded and then unsubscribe.

process passive, process active primitives

These two primitives are intended to be called from a Pre constraint and to terminate the Pre

constraint in which they occur. The primitives call the method of the current object passing to it

a pointer to the block of parameters, and the address of the Post constraint. The called method

unmarshalls the parameters, executes the application code, and after that calls the Post constraint.

In the case of process active a new thread is created to execute the method.

The \passive" attribute means that the object allows an external thread of control to \enter"

into the object and execute the given method (i.e., the object appears to be passive). In the case of

process active, the object allows a new thread of control to be created to execute the given method

(optionally, a priority can be speci�ed for this thread). Note that for an object to be \passive" it

is not su�cient that it uses process passive in its Pre constraints. In addition to this the object's

environment must never attempt concurrent deliveries, i.e., the ECOlib must not o�er in parallel

two event noti�cations to the same object. In other words, being passive is not a local property of

an object, it is a property of an object plus its environment. The ECOlib satis�es this requirement,

i.e., it never attempts two deliveries to the same object in parallel. This allows an object to have

a full control over the level of concurrency within the object.

enqueue, dequeue primitives

The enqueue primitive is intended to be called from a Pre constraint to enqueue the current

ENP on the queue of waiting ENPs of the current method. A call to enqueue s intended to

terminate the processing of the Pre constraint in which it occurs. The enqueued ENP will be

processed later, after it is dequeued by calling the dequeue primitive.

The dequeue primitive is intended to be called from a Pre or from a Post constraint. It dequeues

the �rst ENP from the queue of waiting ENPs of the named method of the current object. This

ENP is enqueued (according to its priority) into the queue of ready ENPs for this method.

discard single, discard all primitives

These two primitives are intended to be called from a Pre constraint to explicitly discard the

current ENP. They will both terminate the processing of a Pre constraint. The discard single
primitive discards the current ENP for the current method of the current object. The same ENP

remains remembered by the ECOLib to be delivered to other destinations. The discard all primitive

removes the current ENP for all the destinations which have not already been delivered the same

ENP. If some destination has already been delivered this ENP (and possibly enqueued the ENP

for later processing), the ENP of this destination is not discarded.

An example which illustrates this is: an event happens and a number of objects are interested

to be informed about this. Some object is told about the event, it does some processing, and the

event noti�cation for this object is discarded. Some other object is told about the same event and

it decides to enqueue the noti�cation for later processing (conceptually this noti�cation is now in

the object's \private space"). Finally some other object is told about the same event and it calls

discard all from a Pre constraint. This has the e�ect that the noti�cation of this event for this

object and for all the other objects which have not already seen this noti�cation are discarded.

Note that there is an implicit discard single after an event noti�cation is delivered, and after

the corresponding Post constraint is run.

54

3.2.2.1 Priorities

The users can indicate to the ECOlib the priority of an event and priority of an event announcement.

A priority is an integer from the [0; : : : ;MAXPRI] range, where 0 denotes the smallest and

MAXPRI denotes the highest priority (a priority may be \not used", which is denoted by a special

value NOPRI). The next paragraphs summarise when a priority may be speci�ed, the meaning

of these priorities, and the default priority in each case (i.e., the priority value chosen if the user

speci�es NOPRI).

� An event can be given priority when create event is announced. If not given, the event is

given the lowest priority by default. This priority is inherited by the event announcements

(if it is not overridden).

� An event announcement can be given priority when the announcement is made. If not given,

the announcement is given the priority of the event by default. This priority indicates to

ECOlib how to order all the event noti�cations, and as a special case, all the noti�cations of

the same event bound to the same destination.

� process active can specify a priority for the thread which is to execute the method. If not

given, the thread inherits the priority of the event by default. This priority can be used by

the thread scheduler3 to determine the order in which the threads are executed.

3.2.3 The prede�ned events

There is a small number of prede�ned events, their names and their intended usage are given below.

� create class, announced when a new class is created to inform the ECOlib about this new

class,

� destroy class, announced when an existing class is deleted,

� create object, announced when a new object is created to inform the ECOlib about this new

object,

� destroy object, announced when an existing object is deleted,

� create event, announced when a new event is created to inform the ECOlib about the name

and parameters of this new event,

� destroy event, announced when an existing event is deleted (it is not possible to delete a

prede�ned event),

� error, announced when an error condition has been detected.

There are also some prede�ned events internal to the ECOlib. Most of the above prede�ned events

are announced by the ECOlib client to inform the ECOlib that a class or object instance or event

is created or destroyed. The error event is announced by the ECOlib when some error has been

detected.

The ECOlib creates neither objects nor classes | it is up to the user to do the necessary work

(for example, to allocate the space for an object and initialise some data and control information,

like class/object identi�er), and to inform the ECOlib about this. The ECOlib handles these

prede�ned events and initialises its internal state based on the information passed to it.

The following text describes the above prede�ned events and two of the ECOlib internal events

(announced by the ECOlib). For each of the prede�ned events we give the event name and

parameters. Users can create their own events, di�erent from the prede�ned events, and use

3Assuming the underlying thread manager supports prioritised threads.

55

the ECOlib to announce them, subscribe to them, etc. The ECOlib has internal data structures

similar to the structures given below (it adds some extra �elds to these structures, for example

the links between the structures, and the locks used to protect the structures from the concurrent

accesses).

create class event

This prede�ned event is announced when a new class is created. The event parameter is the

class descriptor (CD) shown below.

struct cd { /* class descriptor */

char* name_cd; /* class name */

int id_cd; /* class ID */

md md_cd[M1]; /* method descriptors */

cond notify_cd[M2]; /* notify constraint descriptors */

cond pre_cd[M2]; /* pre constraint descriptors */

cond post_cd[M2]; /* post constraint descriptors */

char* ine_cd[M3]; /* names of inevents */

char* oute_cd[M3]; /* names of outevents */

}

The inevents and outevents are the events which the class is prepared to handle and to announce
(i.e., the names of events which the class may announce, and to which it may bind its methods).

These events have to be known to ECOlib when create class is announced. A class descriptor

contains a method descriptor (MD) for each of the class methods, and a constraint descriptor
(COND) for each of the class constraints (Notify, Pre, and Post constraints). M1, M2, and M3

are the ECOlib con�guration parameters. M1 is the maximum number of methods per class, M2

is the maximumnumber of each of Notify/Pre/Post constraints per class, andM3 is the maximum

number of each of inevents/outevents per class.

struct md { /* method descriptor */

char* name_md; /* method name */

void* add_md; /* method code memory address */

pd pd_md[M4]; /* parameter descriptors */

}

A method descriptor contains a parameter descriptor (PD) for each of the method parameters.

M4 is the maximum number of parameters per method.

struct pd { /* parameter descriptor */

char* name_pd; /* name */

int size_pd; /* size */

int type_pd; /* type ID */

}

struct cond { /* constraint descriptor */

char* name_cond; /* name */

void* add_cond; /* code memory address */

}

56

The type of a method parameter is an identi�er passed to the ECOlib. It is used when a method-

event binding is esatblished to check if the method and event signatures match (the ECOlib does

not assign any meaning to these type identi�ers and is only interested in the total size of the

method/event parameters, in addition to testing if two type identi�ers are equal).

destroy class event

This prede�ned event is announced when an existing class is destroyed. The event paramater

is the name of the class which is destroyed. An implementation of the event handler for this event

may: (1) destroy any record of this class only if currently there are no instances of the class, or (2)

destroy any record of the class in any case. If the second option is used and there are some instances

of the deleted class, this may cause an error condition to be detected when the information from

the deleted class is required by these instances.

create object event

This prede�ned event is announced when an object is created. The event parameter is the

object descriptor (OD) shown below plus the name of the object's class.

struct od { /* object descriptor */

int objid_od; /* ID */

mid mid_od[M1]; /* method descriptors */

}

struct mid { /* object method descriptor */

void* add_mid; /* code memory address */

ebd ebd_mid[M5]; /* bindings to events */

}

struct ebd { /* method-event binding descriptor */

void* notify_ebd; /* notify address memory address */

void* pre_ebd; /* pre constraint memory address */

void* post_ebd; /* post constraint memory address */

}

The ECOlib maintains for each object and for each method of the object the bindings between

the method and events. This information is held in the event binding descriptor (EBD) for each of

the events to which the method is subscribed. An EBD contains information about the constraints

associated with the binding. The con�guration parameter M5 is the maximum number of events

to which a single method may be simultaneously bound.

destroy object event

This prede�ned event is announced when an existing object is destroyed. The event parameter

is the ID of the object which is destroyed. Similar to destroy class, an implementation of the

handler for this prede�ned event may: (1) destroy the record of this object only if currently there

are no bindings of the object's methods to any events, or (2) destroy the record of this object

only if there are no outstanding event noti�cations for this object, or (3) destroy the record of this

object in any case, discarding any possible outstanding event noti�cations.

57

create event event

This prede�ned event is announced when an event is created, i.e., when a description of a new

event which may be announced, subscribed to etc., is created. The event parameter is the event
descriptor (ED) shown below.

struct ed { /* event descriptor */

char* name_ed; /* event name */

int size_ed; /* size of event params */

int pri_ed; /* event priority */

pd pd_ed[M4]; /* parameter descriptors */

}

An event descriptor contains a parameter descriptor (PD) for each of the event parameters.

The ECOlib maintains for each event the bindings between the event and objects (their methods).

The event priority �eld of the event descriptor indicates the importance of the event relative to all

the other events. If this �eld has value \not used" the lowest priority is used by default. All the

occurrences of an event, which are to be delivered to a single destination, can be ordered among

themselves by giving them appropriate priorities.

destroy event event

This prede�ned event is announced when the description of an existing event is to be destroyed.

The event paramater is the name of the event which is destroyed. Similar to destroy class and
destroy object, an implementation of the handler for this prede�ned event may: (1) destroy the

record of this event only if currently there are no bindings to this event, or (2) destroy the record

of this event only if there are no outstanding noti�cations of this event, or (3) destroy the record

of this event in any case, discarding any possible outstanding event noti�cations. In the last two

cases the possible bindings to the deleted event should also be discarded.

error event

This event is announced by ECOlib whenever some error condition is detected. The users

subscribe to this event if they wish to be told about a speci�c error. The event parameters are: an

error code and one or two messages which give more details about the error condition. Presently,

the error code can be:

� no such event,

� no such method,

� no such binding.

In the �rst case the additional parameter is the event name, in the second case it is the method

name, and in the last case the additional parameters are event name and method name.

subscribe internal event

This is an internal ECOlib event announced when the previously described subscribe primitive

is used. The event parameters are:

� object ID and method name. The object ID is always of the current object (the object which

invoked subscribe); the method name does not have to be of the current method, but it does

have to be of the current object.

58

� event name. The name of the event to which the method subscribes.

� Notify constraint name, Pre constraint name, and Post constraint name. These names are

optional, and if given have to be local to the class of the current object.

unsubscribe internal event

Similar to subscribe internal this is an internal ECOlib event, announced when the unsubscribe
primitive is invoked. The event parameters are: object ID and method name (the same restrictions

are valid here as in the case of subscribe internal), and event name.

3.3 Summary

This chapter describes the ECOlib interface and the assumptions about the environment in which

this library is used. It is obvious that in some cases there may be tighter coupling between the

ECOlib code and the rest of the VOID shell. For example, in some cases a method address or an

event identi�er may be passed to a primitive instead of a character string being passed a for method

name or event name. In other cases, it may be known that no object will ever use process active,
and that ECOlib can relax some of its assumptions about the possible concurrent accesses to some

data structures. This would allow ECOlib to be implemented more e�ciently.

The ECOlib described in this chapter is being implemented for a single address space, multi-

threaded environment. In future it will be extended to support multiple address spaces and multiple

nodes connected over a network.

59

Chapter 4

The VOID Libraries

4.1 Introduction

The VOID libraries are a a key part of the MOONLIGHT strategy for improving productivity in

the development of video-game and virtual world programs. The libraries provide a uni�ed and

consistent interface to the various kinds of functionality that are required, such as two and three

dimensional graphics, input control, detection of collision between entities in the virtual world and

so on.

The libraries are one of three parts to the uni�ed solution that TCD is proposing, the other

parts being:

� an Entity Editor tool capable of automatic generation of application code from a graphical

notation (statecharts);

� run-time support, called ECO, for event-based programming.

In the text below we describe the relationship between the VOID libraries and these other

components.

Relationship to Entity Editor One of the key points in our approach to rapid prototyping

of video games and virtual worlds is the use of a graphical notation to specify the behaviour of

the entities. The VOID libraries are the key to allowing these speci�cations to become prototypes:

they provide the code that is used to provide functionality for entities. By framing the various

underlying software packages (such as GUL, SUL, etc) in a consistent, object-oriented C++ library

the Entity Editor tool will be able produce working programs automatically.

Relationship to ECO The VOID libraries are basically independent of (but compatible with)

the ECO library, at least in this initial release. In e�ect the VOID libraries and the ECOlib form

twin supports for the Entity Editor. This is because programs written using statecharts need the

event support provided by the ECOlib. If these event-based programs are video-games then they

will also require the functionality provided by the VOID libraries.

Relationship to ECOsim In this release of the libraries we include a library called ECOsim,

which contains some simple class-based support for event-based programming. The purpose of

this library is to allow development of programs using the libraries in advance of completion of the

ECO model.

The class support is neither particularly e�cient nor fully-featured, but it does o�er a signi�cant

advantage over programming in straight C++: namely that it is not straight C++. Programs

written using the standard models of invocation and named addressing of C++ will have a very

60

di�erent structure to those developed using events. Therefore, if code developed using the early

versions of the libraries is to be of any use subsequently it should be developed using an event-based

approach.

4.2 Contents

This chapter provides a description of the structure and functionality of the libraries as well as a

snapshot of the interfaces of the current release (the libraries themselves are undergoing constant

extension). Included in Appendix B is a description of the ECOsim library and some examples of

its use.

4.3 Structure of the libraries

There are both quite a number of individual libraries and (potentially) several instances of each

library, arising from two motivations:

� MOONLIGHT has several target platforms;

� the functionality required for videogames and virtual worlds has several distinct parts (sound,

graphics, video, entity interaction etc.)

4.3.1 Rami�cations of multiple target platforms

The desire to support multiple hardware platforms may make it necessary to have several versions

of any given library. This is more than a matter of using di�erent compilers. If all the code

is platform independent then the di�erent versions would indeed di�er only in the compiler. In

practice, however, some of the the code will be platform speci�c to take advantage of the hardware.
So for example, if the target platform for a given application is a PC which contains the MOONLIGHT

board then the program should be linked with a library which drives this board. If, on the other

hand the target platform is a PC without any graphics hardware then the same program could be

linked with a library which provides software emulation for the graphics functions.

4.3.2 Rami�cations of functional divisions

The second partitioning inuence on the libraries is the desire to pick and mix functionality on a

per application basis. For example, in an application in which the sound is relatively uncomplicated

then one would wish to avoid using a heavyweight sound library.

It would of course be possible to create a single, monolithic library with all the functionality

that could ever be used in a video game or virtual world, but it would not be very good software

engineering, due to the increased size and, inevitably symbol name clashes. Especially in a video

game where the cost of the unit is strongly related to the size of the memory and where speed is

also extremely important. Of course, even in a monolithic library only the necessary object �les are

linked, but then programmer must rely on the library's author and, more importantly maintainers,

to maintain the internal divisions.

4.4 Platform and products

Naturally, not all of the libraries will exist on every platform because some are intrinsically platform

speci�c. To complicate matters further the same library may have di�erent names on di�erent

platforms due to the restrictions of the OS or the compiler.

61

De�nition The concept of a \product" is borrowed from [35] and describes a particular output

of a compilation or link process. Every library in the VOID system is a product, some libraries

represent more than one product because they are present on several platforms.

The relationship between platforms and products for some representative libraries in the VOID

system is illustrated by Table 4.1 below. The table shows the �ve directories associated with the

production of eight graphics library products on (currently) three platforms. To these will later be

added platforms for the MOONLIGHT arcade board and possibly other MS-DOS or Unix compilers.

Product dir product(s) platforms description

graphics/gl.lib libvoidgl.a irix4cc C++ wrappers for gl

graphics/gulsoft.lib libvoidguls.a irix4cc C++ wrapper for gul

libvguls.lib watcom software-only versions

libvoidguls.a (TWS)

graphics/gulhard.lib libvgulh.lib watcom C++ wrapper for gul

libvoidgulh.a (TWS) with hardware assist

graphics/ABCs.ini (headers) (shared) C++ header �les

for all versions of

library voidg

graphics/ABCs.lib libvoidg.a irix4cc base class code for

libvoidg.lib watcom void graphics

input/ABCs.ini (headers) (shared) C++ header �les for

input control

Figure 4.1: VOID libraries and platform: the current status

Managing this source is a complex business which requires strict demarcation between platform

dependent and platfrom independent source. This separation is integrated with our OO approach

through the use of a library of Abstract Base Classes (ABCs) which enforce interfaces and which

represent an abstract framework which the platform speci�c code implements.

4.5 Functionality

As mentioned elsewhere (x4.1) an important intended client of the VOID libraries is the (code

generated by the) Entity Editor tool. The libraries should ideally provide everything that the user

of the Entity Editor does not. There are two aspects to the functionality required by this machine

generated code. Firstly the entities will require a basic set of functions which will provide the

\vocabulary" that is usable for the speci�cation of event handlers in the Entity Editor. Secondly,

the application will obviously require much functionality beside that which is held in the game

entities: such things as graphics libraries and sound drivers.

A distinction can therefore be drawn between the means in which the libraries functionality

is brought to the application, either by inheritance or in a client-server fashion. This amounts to

the same distinction as described in previous documents[17][57]) between Standard Objects and

Generic Classes.

Standard Objects include all those classes which are necessary to provide the ancilliary

functionality which is used in the application but which is not part of any Entity. This includes

functionality that is outside of all Entities (eg. I/O, 3D rendering) and functionality that exists

between Entity instances (eg. perception, collision etc).

Generic Objects allow access to library functionality through invocations of Base Class meth-

ods. This allows the actions of these Game Entities to be written using these Base Class methods.

62

Generic classes thus provide small, comprehensible interfaces to the Standard Objects. Compre-

hensibity is bought at the price of restricting the expressive power of the Standard Objects in

certain ways. These restrictions do not, however, impede the application programmer because the

Generic Classes are tailored to provide the most useful functionality for writing video games and

virtual worlds.

This division is (only) conceptual: it is useful for categorisation and description. It also marks

an important division of learning: the application programmer need only know about the Generic

Classes. However it should be noted that at the source code level the two groups are quite tightly
bound together. This is because the Generic Objects act as interfaces to the more complicated

Generic Objects, and the implementation of the Generic Classes is therefore strongly related to

the implementation of the Standard Objects.

Where the classes provided prove insu�cient the solution is to add a new Generic Class to

the library rather than to \work around" the existing Generic Classes to get at the Standard

Objects directly. This method promotes re-use and program correctness, without impeding a

rapid development because it is basically a stuctural change not a procedural one. The code must

be written in any case, but by writing it into the library it is available for re-use.

4.6 Design diagrams

4.6.1 Using inheritance for multi-platform support

Figure 4.2 shows the pattern of inheritance in this library: each Abstract Base Class (ABC) has

(at least one) concrete child class. There is one concrete class for each platform that must be

supported, in this diagram we show the child classes which support the GUL version of the VOID

graphics library, and two unnamed alternative implementations.

All of these child-classes must, of course, conform to the interface speci�ed in the ABCs

(although they are free to extend it). This means that applications written to use the ABCs

may be ported to other platforms without change to their code, and that cross-platform develop-

ment/prototyping is possible.

4.6.2 Generic types and simpli�ed interfaces

Figure 4.3 shows some of the complex inter-relations between the classes that make up one of the

VOID libraries, the GUL implementation of the graphics library. It is important to emphasise that

the complexity of this diagram is hidden from VOID clients, through the divsion between Standard

Objects and Generic Classes.

In this library the Generic Class is GraphicObject, and its concrete class is GUL GraphicObject.

It is only this class that VOID library users and client code should have to deal with, as it hides the

complexity of the Standard Objects. This can be seen in Figure 4.4, in which the Abstract Base

Class GraphicObject and its GUL speci�c child-class GUL GraphicObject have been pulled down

below the other classes to show the separation between Generic Classes and Standard Objects.

4.7 Development Strategy

Our approach to developing these libraries has been a synthesis of three approaches:

� object-oriented design and programming;

� encapsulation of existing libraries;

� parallel development of applications.

63

Abstract Classes and their (Multi−Platform) Children

GUL_Perspe
ctive

(from s)

View

(from s)

Projection

(from s)

GUL_Graphi
cObject

(from s)

ActiveList

(from s)

GraphicObje
ct

(from s)
Scene

(from s)

Window

(from s) GUL_Camera

(from s)

GUL_Scene

(from s)

Camera

(from s)

GUL_Windo
w

(from s)

GUL_Active
List

(from s)

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

alternate
child

Figure 4.2: Inheritance in the graphics libraries

4.7.1 Object oriented design and programming

In addition to doing the design work using OOD, the implementation of the libraries makes exten-

sive use of Object-Oriented techniques:

� Abstract Base Classes have been used to hold the platform-independent interface, with

platform-speci�c incarnations of these classes providing the actual code. This ensures a

consistent interface and functionality for the libraries across platforms

� Class data is entirely encapsulated in all the classes in the libraries and can only be accessed

through the functions of the class interface.

� There are no global variables.

� Functionality that is required for applications is accessed through inheritance of the appro-

priate base Generic Class from the library. The interface to the Generic class in question

then insulates the programmer from both the internals of the library and from some of the

complexity of its structure.

4.7.2 Encapsulating existing libraries

One very important role of the VOID libraries is in hiding the complexities of other software

components of the project and giving a consistent interface to these other components. At present

the only external library that has been available to be included is the Graphic Ultra Light (GUL)

library for 3D graphics (written by Caption). We anticipate adding the Sound Ultra Light interface

as soon as it is available.

Example The GUL library is written in the C language, with a traditional non-OO API. We

have written C++ code (conforming to the VOID graphics library OO design) which wraps1 this

1this involves a lot more than just call-forwarding, see code for details

64

Graphics Library Framework (inheritance,
instantiates and has relationships)

GUL_Perspe
ctive

(from s)

View

(from s)

AA

Projection

(from s)

AA

GUL_Graphi
cObject

(from s)

GUL_Matrix

(from s)

ActiveList

(from s)

AA

void_Colour

(from s)

GraphicObject

(from s)

AA

f_Position

(from s) Vector

(from s)

Scene

(from s)

AA

Set<class
GraphicObje

(from s)

Window

(from s)

AA

SetItem<clas
s

(from s)

Set

(from s)

SetItem

(from s)

GUL_Camera

(from s)

GUL_Scene

(from s)

Camera

(from s)

AA

Set<class
Camera*>

(from s)

SetItem<clas
s Camera*>

(from s)

GUL_Windo
w

(from s)

GUL_Active
List

(from s)

Rotation

(from s)

Gul_ObjectI
D

(from <unspecified>)

Screencoord

(from <unspecified>)

InputControll
er

(from <unspecified>)

void_Materi
al

(from <unspecified>)

void_Geome
try

(from <unspecified>)

m

1

1

myActiveList

1

1

position
1

1

rotation

1
1

colour

1

1

material
1

1

geometry

1

1

entityList

1

1

currentItem1

0..1

front1

0..1

back1

0..1

top

1

1

bottom

1

1

left

1

1

right

1

1

background

1

1

cams

1

1

input1
0..1

next

1

0..1

previous

1

0..1

currentItem
1 0..1

front
1 0..1

back
1 0..1

next

1

0..1

previous

1

0..1

mount

1

1

projection

1

1

scene 1
1

offset

1

1

top

1

1

bottom

1

1

left

1

1

right

1

1

currentItem

1

0..1

front

1

0..1

back

1

0..1

next

1

0..1

previous

1

0..1

F
ig
u
re

4
.3
:
C
la
ss
rela

tio
n
sh
ip
s
in

th
e
g
ra
p
h
ics

fra
m
ew

o
rk

6
5

Generic Object (GraphicObject) as interface to
Standard Objects (all other classes)

GUL_Perspe
ctive

(from s)

View

(from s)

AA

GUL_Graphi
cObject

(from s)

ActiveList

(from s)

AA

void_Colour

(from s)

GraphicObject

(from s)

AA

Scene

(from s)

AA

Set<class
GraphicObje

(from s)

Window

(from s)

AA

GUL_Camera

(from s)

GUL_Scene

(from s)

Camera

(from s)

AA

Set<class
Camera*>

(from s)

GUL_Windo
w

(from s)

Screencoord

(from <unspecified>)

FF

FF

Type

FF

Type

FF

FF

Figure 4.4: Standard objects/Generic Classes

C API and allows its functionality to be accessed through the Generic Class GUL GraphicObject.

This class is a sub-type of GraphicObjectwhich is an Abstract Base Class from the VOID graphics

library.

4.7.3 Applications

In tandem with the development of the libraries we have been developing an application which is a

version of the arcade game \BattleZone", itself reincarnated recently by NamCo as \CyberSled".

Developing this application serves two purposes. Firstly it greatly facilitates validation of the

functionality of the library. Secondly, where functionality used in the application is not present in
the library (or the library design) we are able to consider whether this functionality is not in the

libraries through omission or because it is application speci�c.

Example Consider a situation that might arise in writing a virtual world simulation. The

application programmer wishes to do collision detection with some three-dimensional shapes, which

are complex in terms of numbers of primitives. It might turn out that the libraries' collision support

was infeasibly slow with such complex shapes, but that a faster algorithm could be found, which

made use of some domain-speci�c simpli�cation (perhaps these complex pieces are being moved in

simple axial-parallel ways).

Once the application programmer had developed this code it could be moved to the collision

66

library as another policy type, embodied in another Generic Base Class. Subsequent programmers

would then have access to this functionality.

4.8 Summary

This chapter has described the development approach, the design and the software architecture of

the VOID libraries.

67

Appendix A

Interfaces to the libraries

A.1 Graphics classes

A.1.1 Abstract Base Classes for graphics

//-�-c++-�-

#ifndef ACTIVELIST HH

#define ACTIVELIST HH

#include "Geometry.hh"

#include "code std.hh"

// de�nes generic interface for active lists (of objects to be rendered),
// initially used to support the GUL active list, later this functionality
// is to be added to GL version of VOID also
ABSTRACT CLASS ActiveList f
public:

ActiveList() fg // no ctor as yet
virtual void addToList(void Geometry new obj) = PURE VIRTUAL;

virtual void removeFromList(void Geometry dead obj) = PURE VIRTUAL;

g;

#endif

Figure A.1: ActiveList.hh

A.1.2 Graphics class instantiations for GUL

These de�nitions serve for both both software and hardware versions of GUL on all platforms.

68

//-�-c++-�-

#ifndef GEOMETRY HH

#define GEOMETRY HH

typedef short int void Material;

#ifdef USING GUL

typedef short int void Geometry;

#endif

#ifdef USING GL

typedef Object void Geometry;

#endif

#endif

Figure A.2: Geometry.hh

//-�-c++-�-

#ifndef POSITION HH

#define POSITION HH

#include <math.h>

#include "Vector.hh"

typedef Vector<oat> f Position;

#endif

Figure A.3: Position.hh

69

//-�-c++-�-

#ifndef PROJECTION HH

#define PROJECTION HH

#include "code std.hh"

// The projection virtual base class.
/��/
ABSTRACT CLASS Projection f
/��/
public:

virtual void apply() = PURE VIRTUAL;

virtual void remove() = PURE VIRTUAL;

g;

#endif

Figure A.4: Projection.hh

//-�-c++-�-

#ifndef ROTATION HH

#define ROTATION HH

#include <math.h>

#include "Vector.hh"

#include "gl.h"

typedef Vector<Angle> Rotation;

#endif

Figure A.5: Rotation.hh

70

//-�-c++-�-

#ifndef VIEW HH

#define VIEW HH

#include "code std.hh"

/��/
ABSTRACT CLASS View f
/��/
friend class Window;

public:

virtual void snapshot() = PURE VIRTUAL;

g;

#endif

Figure A.6: View.hh

71

//-�-c++-�-

#ifndef CAMERA HH

#define CAMERA HH

#include "GraphicObject.hh"

#include "Projection.hh"

#include "Scene.hh"

#include "View.hh"

/��/
class Camera : public View f
/��/
protected:

Screencoord top, bottom, left, right;

public:

Camera(Screencoord, Screencoord, Screencoord, Screencoord);

// �Camera();

virtual void add(GraphicObject �go) = PURE VIRTUAL;

// has to be virtual cos scene is not a component of the base class,
// and it currently isn't because it takes di�erent params in
// the two variants. This may be �xable later.

virtual void set() = PURE VIRTUAL;

virtual void snapshot() = PURE VIRTUAL;

virtual void setMount(GraphicObject �m) = PURE VIRTUAL;

virtual void O�set(f Position &new o�set) = PURE VIRTUAL;

g;

#ifndef MOONLIGHT OUTLINE

#define INLINE inline

#include "Camera.icc"

#endif

#endif

Figure A.7: Camera.hh

72

//-�-c++-�-

#ifndef SCENE HH

#define SCENE HH

#include "code std.hh"

#include "Set.hh"

#include "GraphicObject.hh"

/��/
ABSTRACT CLASS Scene f
/��/
friend class Window;

friend class View;

protected:

Set<GraphicObject �> entityList;

public:

Scene();

�Scene();

virtual void add(GraphicObject �) = PURE VIRTUAL;

virtual void remove(GraphicObject �) = PURE VIRTUAL;

g;

// no inline functions so far for Abstract class Scene
#ifndef MOONLIGHT OUTLINE

#define INLINE inline

//#include "Scene.icc"
#endif

#endif

Figure A.8: Scene.hh

73

//-�-c++-�-

#ifndef WINDOW HH

#define WINDOW HH

#include "code std.hh"

#include "InputController.hh"

#include "Camera.hh"

/��/
ABSTRACT CLASS Window f
/��/
friend class GraphicDevice;

protected:

Screencoord top, bottom, left, right;

long windowHandle;

char �windowName;

void Colour background;

Set<Camera �> cams;

InputController � input; // shouldn't be part of the window

virtual void draw() = PURE VIRTUAL;

public:

Window(char � n, void Colour c, Screencoord t,

Screencoord b,Screencoord l,Screencoord r);

�Window();

void setInputControl(InputController �);
void add(Camera � v);
void remove(Camera � v);

g;

#ifndef MOONLIGHT OUTLINE

#include "Window.icc"

#endif

#endif

Figure A.9: Window.hh

74

//-�-c++-�-

#ifndef GRAPHICOBJECT HH

#define GRAPHICOBJECT HH

#include "code std.hh"

#include "ActiveList.hh"

#include "Geometry.hh"

#include "rgbColour.hh"

#include "Position.hh"

#include "Rotation.hh"

/��/
ABSTRACT CLASS GraphicObject f
/��/
friend class Camera;

protected: // data
f Position position;

Rotation rotation;

void Colour colour;

void Material material;

void Geometry geometry;

protected: // methods
void setGeometry(void Geometry obj);

void setColour(void Colour c);

void setMaterial(void Material m);

void setPosition(f Position p);

void setRotation(Rotation r);

Angle xRot();

Angle yRot();

Angle zRot();

oat xPos();

oat yPos();

oat zPos();

public: // methods
GraphicObject(f Position &, Rotation &, ActiveList &, void Geometry &, void Colour,

void Material);

virtual void makeActive() = PURE VIRTUAL; // will be implemented here RSN(TM)
virtual void makeInactive() = PURE VIRTUAL; // will be implemented here RSN(TM)
virtual void render() = PURE VIRTUAL;

void Geometry getGeometry();

g;

#ifndef MOONLIGHT OUTLINE

#define INLINE inline

#include "GraphicObject.icc"

#endif

#endif

Figure A.10: GraphicObject.hh

75

//-�-c++-�-

#ifndef GUL ACTIVELIST HH

#define GUL ACTIVELIST HH

#include "ActiveList.hh"

#include "GUL Proto.hh"

#define GUL MAXOBJ 100

class GUL ActiveList : public ActiveList f
// abstraction for the GUL active list of objects to be rendered
protected:

int count; // number of active objects
short list[GUL MAXOBJ]; // our list
short copy[GUL MAXOBJ]; // GUL's list

protected: // member functions
void updateGUL();

public:

GUL ActiveList();

virtual void addToList(void Geometry new obj);

virtual void removeFromList(void Geometry dead obj);

g;

#endif

Figure A.11: GULActiveList.hh

76

//-�-c++-�-

#ifndef GUL CAMERA HH

#define GUL CAMERA HH

#include "Camera.hh"

#include "GUL Projection.hh"

#include "GUL Scene.hh"

#include "gl.h"

/��/
class GUL Camera : public Camera f
/��/
protected:

Gul ObjectID mount; // identi�er not object or pointer
GUL Perspective projection;

GUL Scene scene;

GUL Matrix o�set;

public:

GUL Camera(Screencoord, Screencoord, Screencoord, Screencoord,

Angle, oat, oat, oat, // for projection
oat , oat, f Direction, void Colour, // for scene
f Position &); // o�set

�GUL Camera();

void setMount(GraphicObject �m);

void set();

void O�set(f Position &new o�set);

void snapshot();

virtual void add(GraphicObject �go); //f scene.add(go); g
g;

#ifndef MOONLIGHT OUTLINE

#define INLINE inline

//#include "GUL Camera.icc"
#endif

#endif

Figure A.12: GULCamera.hh

77

//-�-c++-�-

#ifndef GUL GRAPHICOBJECT HH

#define GUL GRAPHICOBJECT HH

#include "GUL Matrix.hh"

#include "GraphicObject.hh"

typedef short int Material;

/��/
class GUL GraphicObject : public GraphicObject f
/��/
friend class Camera;

protected: // data
GUL Matrix m;

ActiveList &myActiveList;

public: // methods
GUL GraphicObject(f Position &, Rotation &, ActiveList &, void Geometry &, void Colour,

Material);

virtual void makeActive(); // will migrate to the base class in next pass
virtual void makeInactive(); // will migrate to the base class in next pass
virtual void render();

g;

#ifndef MOONLIGHT OUTLINE

#include "GUL GraphicObject.icc"

#define INLINE inline

#endif

#endif

Figure A.13: GULGraphicObject.hh

78

//-�-c++-�-

#ifndef GUL MATRIX HH

#define GUL MATRIX HH

#include "Position.hh"

#include "Rotation.hh"

#include <iostream.h>

extern "C" void exit(int);

class GUL Matrix f
protected:

oat m[12];

static oat error;

public:

GUL Matrix();

GUL Matrix(oat f1,oat f2,oat f3,oat f4,

oat f5,oat f6,oat f7,oat f8,

oat f9,oat f10,oat f11,oat f12);

GUL Matrix(const GUL Matrix &v);

GUL Matrix &operator=(const GUL Matrix &v);

oat &operator[](unsigned int i);

GUL Matrix invert();

GUL Matrix operator�(const GUL Matrix &v);

GUL Matrix rotateX(Angle a);

GUL Matrix rotateY(Angle a);

GUL Matrix rotateZ(Angle a);

GUL Matrix translate(f Position &p);

friend ostream& operator�(ostream&, GUL Matrix &);

g;

#ifndef MOONLIGHT OUTLINE

#include "GUL Matrix.icc"

#define INLINE inline

#endif

#endif

Figure A.14: GULMatrix.hh

79

//-�-c++-�-

#ifndef GUL PROJECTION HH

#define GUL PROJECTION HH

#include "Projection.hh"

#include "gl.h"

/��/
class GUL Perspective : public Projection f
/��/
friend class View;

protected:

public:

GUL Perspective(Angle fy, oat a, oat n, oat f);

void apply();

void remove();

g;

#ifndef MOONLIGHT OUTLINE

#include "GUL Projection.icc"

#define INLINE inline

#endif

#endif

Figure A.15: GULProjection.hh

80

#include "GUL Matrix.hh"

typedef Vector<oat> f Direction;

typedef short int Gul ObjectID;

extern "C" f
#include "Gul.h"

void Gul SetActiveList(short �, short);
void Gul SetCameraAngle(double);

void Gul GetCameraAngle(double�);
void Gul SetCameraZClip(double);

void Gul SetCameraDepth(double);

void Gul SetAmbientPower(double);

void Gul SetLightPower(double);

void Gul CreateObject(short �,OBJ �);
void Gul ModifyActiveList(CMD �, short);
void Gul SetLightDirection(f Direction �);
void Gul GetObjectMatrix(short, GUL Matrix �);
void Gul SetObjectMatrix(short, GUL Matrix �);
void Gul SetViewportColor(COLOR);

void Gul SetCameraMatrix(GUL Matrix �);
void Gul GetCameraMatrix(GUL Matrix �);
void Gul Render();

void Gul SyncRender();

void Gul SwapFrameBu�er();

void Gul Open(short, short);

void Gul InitObject(short);

g

Figure A.16: GULProto.hh

81

//-�-c++-�-

#ifndef GUL SCENE HH

#define GUL SCENE HH

#include "Scene.hh"

#include "GUL Proto.hh"

#include "gl.h"

#include "rgbColour.hh"

/��/
class GUL Scene : public Scene f
/��/
friend class Window;

friend class View;

public:

GUL Scene(oat l, oat al, f Direction d, void Colour bg);

void setLight(oat l, oat al, f Direction d, void Colour bg);

�GUL Scene();

virtual void add(GraphicObject � go);
virtual void remove(GraphicObject � go);

g;

#ifndef MOONLIGHT OUTLINE

#include "GUL Scene.icc"

#define INLINE inline

#endif

#endif

Figure A.17: GULScene.hh

82

//-�-c++-�-

#ifndef GUL WINDOW HH

#define GUL WINDOW HH

#include "Window.hh"

/��/
class GUL Window : publicWindow f
/��/
friend class GraphicDevice;

protected:

virtual void draw();

public:

GUL Window(char � n, void Colour c, Screencoord t,

Screencoord b,Screencoord l,Screencoord r);

�GUL Window();

g;

// no inline functions => no GUL Window.icc
#ifndef MOONLIGHT OUTLINE

//#include "GUL Window.icc"
#define INLINE inline

#endif

#endif

Figure A.18: GULWindow.hh

83

Appendix B

ECOsim: class support for

event-based programming

B.1 Introduction

This section describes the ECOsim class library and its usage. The structure of the section is as

follows. Firstly, there is some background to the library and the motivation for writing it, then

there is a high-level description of the libraries contents, behaviour and its interface, followed by

a description of how to write Events and Entities, and lastly an illustration of the use of these,

user-de�ned, Events and Entities in a simple application program.

The ECOsim library is being used in MOONLIGHT to provide interim support for event-based

programming, during the development of the fully edged ECOlib and system. In particular it is

being used in the the development of the \BattleZone" application which accompanies the VOID

libraries (see 4.7.3).

B.1.1 Motivation

The principle motivation for the development of the ECOsim class library has been to provide a

minimal system to support the fundamental precepts of ECO, thus making it possible to develop

programs in this paradigm in advance of the delivery of a full ECO implementation. It is designed

to provide what is necessary rather than what we consider su�cient.
The main advantage to the system is that it encapsulates (a subset of) the functionality and

interface of ECO and allows clients to use it without any knowledge of the underlying implemen-

tation. This is important because it will enable applications developed with ECOsim to be ported

to the eventual ECO implementation with less work. The basic premise is that the e�ort involved

in writing ECOsim and porting an application to ECO is less than the e�ort of re-structuring an

application written in C++ to use ECO.

The system is minimal in several ways.

� it works only at the language level;

� it has minimal functionality;

� it is not optimised for performance.

The functionality will be covered in depth later in this document, for now it is enough to note

that the ECOsim allows Entities to communicate with one another in a one-to-many manner using

parameterised events with run-time type-checking.

84

The reason for working at the language level only is obvious: rapid development. Rapid

development of the ECOsim was only feasible without the overhead of producing a run-time system

and preprocessor (or compiler).

The system is unoptimised for performance �rstly because it is only a prototype and secondly

because, being implemented at the language level, it is precluded from performing some optimisa-

tions which would mandate preprocessing.

B.2 ECOsim: the user interfaces

Users of ECOsim can exist at two levels of expertise. Programmers can ignore the implementation

details and simply use the ECO-style primitives of subscribe and announce, but they can only do

this if they have Entities and Events de�ned for them to use. This gives rise to a second category

of programmer, one who will de�ne new, customised, Event and Entity types which can be used

in applications. This latter type of programmer will naturally need to know a little more about

the ECOsim implementation.

As a result, the ECOsim library really has two interfaces: that seen by the application pro-

grammer and that seen by the supporting programmer who designs the application speci�c Events

and Entities. Note that neither of these programmers is required to understand all the internals

of the implementation, but without preprocessing support it is a impossible to shield the support

programmer from all the implementation details.

This relationship is illustrated in Figure B.1

ECOsim classes

Application
Support
Programmer

Application
Programmer

Application Support
Code

Application Code

ECOsim
Programmer

EventManager

Entity BasicEvent

Application EventApplication Entity

Figure B.1: Layers of encapsulation in ECOsim

B.2.1 Writing a program using events

The interface seen by the application programmer interface is very simple: some of the classes that

they use will have been written by a support programmer1, and these classes will have been derived

from the library base class Entity. The use of this base-class gives the application programmer the

interface shown in B.2.

Essentially, what the programmer is getting here is the cleanest possible language-based event

communication primitives, subscribe and announce. Instead of these being primitives of a run-

1of course, the \two programmers" could be one and the same person

85

// ���
class Entity f
// ���
public:

void subscribe(EventTypeID, void �);
void subscribe(EventTypeName);

void unsubscribe(EventTypeID);

void unsubscribe(EventTypeName);

void announce(BasicEvent &);

g;

// ���
// This macro is intended to take some of the hard-pointer arithmetic
// out of the subscription process
#define SUBSCRIBE(myclass,hname,event) n
fvoid (myclass::�hptr)(BasicEvent &) = myclass::hname; n
subscribe(event, (void �) &hptr);g
// ���

Figure B.2: Application programmer's view of Entity and derived classes

time, however they are part of the interface to all Entities. Additionally, the SUBSCRIBE macro

hides the complexity of the subscription, which would otherwise reveal rather too much of the

internal structure.

The application programmer client does not need to know anything about the mechanisms that

allow an announce in one Entity instance to lead to event-handler's being called in zero or more

other Entity instances. Also, the application programmer does not need to know anything about

the BasicEvent class.

The application programmer will need to know how to construct the derived classes of Entity

and BasicEvent that they intend to use. This can be best seen when we have examined the support

programmer's role and the events and entities that they create.

B.2.2 Creating events and entities using ECOsim

The support programmer must derive (at least one) child class from the library Entity class. The

author of the derived class should provide the functionality that is expected by the application

programmer, as well as any initialising information for the constructor of the Entity class, which

is deliberately inaccessible to non-derived classes.

This programmer should also derive at least one child class of the library class BasicEvent.

This base class provides functions (only accessible by child classes) to manage an arbitrary number

of parameters. It is part of the support programmers task to write a useful interface to these event

parameters, the base class takes care of type checking and storage of these parameters2.

The interface that the BasicEvent class presents to the support programmer is shown in Fig-

ure B.3 below.

Some requirements are placed upon the support programmer by the run-time typing system. All

event classes must contain information about their type, which the will need in order to initialise the

base class. The base class, in turn, needs this information for its dealings with the EventManager

2at present the parameters are limited to integer, oating point and string values, but this seems to be su�cient

86

// ���
class BasicEvent f
// ���
protected:

// get this value from the Event(Type)Manager i� this is the �rst
// instance of this event type in the program using the typeName
// else set it using the class static

EventTypeID myType;

protected:

BasicEvent(EventTypeName,EventTypeID &);

// NB ctor only available to derived classes

void dieWithError(EvError);

void addvStringParam(const vString &);

void addFloatParam(oat);

void addIntParam(int);

void setCurrent(int); // set the current element to the indexed val

void getvStringParam(vString �&, int); // will exit if type is incorrect
void getFloatParam(oat �&, int); // will exit if type is incorrect
void getIntParam(int �&, int); // will exit if type is incorrect

void setvStringParam(const vString &, int);

void setFloatParam(const oat, int);

void setIntParam(const int, int);

public:

// note: public interface does NOT provide access to params stu�
// any such access MUST be provided by the derived event class
EventTypeID getType();

char �className();

Boolean typeCheck(EventTypeID); // this will change to EventTypeName
g;

Figure B.3: BasicEvent: the interface provided to derived classes

87

class3. Incorporating these restrictions the simplest possible decalaration and implementation of a

new event type is shown in Figure B.4:

#include "BasicEvent.hh"

class Example : public BasicEvent f
static EventTypeName classTypeName;

static EventTypeID classTypeID;

public:

Example();

g;

Example::Example()

: BasicEvent(classTypeName, classTypeID)

f
cout � "This is a new Example eventnn";

g

EventTypeName Example::classTypeName = "Example";

EventTypeID Example::classTypeID = EVENT TYPE NOT SET;

Figure B.4: A very simple derived class of BasicEvent

An equally simple Entity can then be derived to use this new type of Event, as shown in

Figure B.5. This new Entity only has two methods: its constructor simply subscribes it to the

Example event, naming its only other method (handleExampleEvent) as the handler for such

events.

The Receiver Entity shown in Figure B.5 is, as its name suggests only receiving Events. We

can write a complimentary class Sender which will announce events, as shown in Figure B.6. It

should be noted that this division is quite arti�cial, and that there is nothing to prevent ECOsim

entities from both announcing and handling (multiple) events.

B.2.3 Writing programs which use entities and events

With the creation of such simple derived classes the application programmer can write a very

simple program to use these classes, as shown in Figure B.7.

NB: the event that is sent and received in this example goes to only one entity instance, but if

we add several instances of Receiver, then the event is delivered to each one.

More complicated examples are provided in the distribution, in particular examples showing

the use of the parameter manipulation facilities and examples showing the use of run-time typing

to distinguish which of several possible events has been delivered to an event handler.

B.3 Design and Software Architecture of ECOsim

The public interfaces that have been shown in the preceding section are of course greatly sim-

pler than the actual implementation of ECOsim. The internal structure of the library classes

incorporates the following classes:

3the EventManager class is completely hidden from both sorts of client programmer

88

#include "Entity.hh"

class Receiver : public Entity f
public:

Receiver();

void handleExampleEvent(BasicEvent &);

g;

Receiver::Receiver()

f
SUBSCRIBE(Receiver,handleExampleEvent,"Example");

g

void Receiver::handleExampleEvent(BasicEvent &ev)

f
cout � "Receiving an event of type " � ev.className() � "nn";

g

Figure B.5: Derived type of Entity, with one event-handler

class Conductor : public Entity f
public:

Conductor();

void method();

g;

Conductor::Conductor()

f

g

void Conductor::method()

f
Example myExample;

announce(myExample);

g

Figure B.6: Second derived type of Entity, which announces events

89

int main()

f
Receiver myR;

Sender myS;

myS.method();

g

Figure B.7: The "Hello World" of event programs

� EventManager

� BasicEvent

� Entity

� EventDataItem

� EventNameIDMapping

� EventSubscriberList

The relationship of these classes is captured in Figure B.8, which uses Booch notation to show

the inheritance and usage relationships of these classes.

B.3.1 ECOsim Implementation

In the following text we describe the basic function of each of these classes:

EventManager The EventManager class is entirely hidden from the user, through the use of

C++ static functions which enable calls to be made to the EventManager class without requiring

that any EventManager instance has already been created. This programming hook allows an

EventManager to be created when it is needed at run-time without involving the client code.

The EventManager contains two important data-structures: the Event Type Register, which

maps event names to IDs; and the list of SubscriberLists. This latter is central to the system, there

is one EventSubscriberList for each registered event in the system. Each instance holds a list of

pointers to Entities, and each of these Entities is subscribed to that event.

BasicEvent The BasicEvent provides typed parameter management for its sub-types, and also

interacts with the EventManager to maintain the run-time typing system. When an instance of

a BasicEvent is created it checks its class static member classTypeID and if this has not been

initialized then this instance is the �rst instance of that event type to have been created in the

program. It therefore proceeds to call the EventManager class static method registerEventType4,

to inform the EventManager that there is a new type of event in the system, passing it the (text)

name of the class and receiving in return a unique type-identi�er.

4as described above this is also a hook to trigger the creation of an EventManager if none already exists

90

ECOsim and associated classes

BasicEvent

(from s)

AA

EventDataIt
em

(from s)

List<class
EventDataIt

(from s)

Entity

(from s)

AA

EventTypeID

(from <unspecified>)
EventTypeN

ame

(from <unspecified>)

Example

(from s.1)

Receiver

(from s.1)

Sender

(from s.1)

EventManag
er

(from s.1)

List<class
EventNameI

(from s.1)

List<class
EventSubscr

(from s.1)

current
1 1

params

1

1

myType
11

currentID

1

1

mapping

1

1

subscribeRegister

1

1

SS

classTypeName

1

1

SS

classTypeID

1

1

F
ig
u
re

B
.8
:
B
o
o
ch

n
o
ta
tio

n
fo
r
th
e
E
C
O
sim

lib
a
n
d
sim

p
le
ex
a
m
p
le

9
1

Entity The Entity base class provides two important functions: �rstly, it provides the API for

subscription and announcement of events, and secondly it encapsulates all interaction between the

application and the EventManager.

As with BasicEvent, the �rst instance of an Entity must register with the EventManager5, but

in this case it is not for typing reasons, but simply to establish to which EventManager it is talking.

The subscription process has two parts. (telling the EventManager, storing the upcall pointer)

(handler invocation), (changing the subscribed method.

EventDataItem This simple class is used to maintain a mapping between a BasicEvent param-

eter and its type.

EventNameIDMapping This is a simple class to maintain a mapping between an event type

name and its ID.

EventSubscriberList As mentioned above there is one EventSubscriberList for each registered

event in the system. Each instance holds a list of pointers to Entities, and each of these Entities

is subscribed to that event. When an event of a given type is announced all the entities on the

appropriate list are given the event.

B.4 Future work

Despite its intended role as a short-term solution ECOsim has been written to be distributable

(for example, the parameter list management of BasicEvent is directly applicable to marshalling

for remote RPC communications), and is open to multi-threaded extension.

Any distributed version of ECOsim would probably use a derived class of EventManager, which

communicates with other EventManagers in other applications and on other machines. It would

also be feasible to derive sub-classes of BasicEvent, LocalEvent and GlobalEvent and to provide

explicit support in the EventManager for scoping using these classes.

To make ECOsim multi-threaded would involve insertion of some synchronisation code into the

base classes (in this case EventManager and Entity. Again, inheritance could be used here to

allow choice among several synchronisation policies for any given application speci�c Entities.

5As before, it must cause the creation of one if none has been created yet.

92

Appendix C

The ECO model: events +

constraints + objects

G. Starovic, V. Cahill, B. Tangney

Department of Computer Science, Trinity College Dublin

Abstract

This document describes the rationale and design of a programming model based on events,

constraints, and objects and the use of this model in the Moonlight1 project. It describes the

inter-object communication or invocation mechanism, and the way in which concurrency, synchro-

nisation, and timing properties are expressed and controlled. The invocation mechanism is unusual

in that it is event-based. It encourages loose coupling among the objects and this supports a high

degree of encapsulation for each object. Concurrency, synchronisation, and timing properties are

expressed in a uniform way using constraints which may be associated with objects and events. We

describe the way in which the abstractions of the ECO model are expressed at the language level,

and the support for them which is required from the runtime code and the underlying system.

C.1 Introduction

Large parallel and distributed applications are hard to program. Communication, synchronisation,

and timing contribute to the complexity of this task. Object-orientation is advertised as a good

paradigm for the modelling of entities in the application domain and a programming model which

allows more structured and less complex program development. The Moonlight project is building

an object-oriented environment for developing and executing games and virtual world applications.

Some of the requirements coming from such an environment are:

� support di�erent patterns of communication. As an example, a single object may collect

information from a number of sources or disseminate information to a number of destinations.

In general, there may be exchange of information between groups of objects, and the group

membership may change dynamically.

� support soft real-time applications. It must be possible to express timing constraints on

object behaviour. Such constraints arise out of the application domain and the way in which

audio and video data are handled. When the constraints are occasionally not satis�ed there

are no catastrophic consequences for the system or for its environment.

1This work is partially funded by the CEC under ESPRIT contract No. 8636

93

� support distributed and persistent applications. An application may span a number of nodes

in which case its objects communicate over a network. In some cases the objects will have

to be persistent, i.e., retain their state across separate executions.

� support large applications with thousands of objects, where new objects may be created and

the existing ones may disappear dynamically. This brings out the importance of issues like

scalability and scoping rules.

This document describes the rationale and design of the ECO programmingmodel and its use in

the Moonlight project2. It includes the inter-object communication or invocation mechanism, and

the way in which concurrency, synchronisation, and timing properties are expressed and controlled.

A number of other important issues, like persistence, grouping, and mobility of objects are not

considered in this document. The invocation mechanism is unusual in that it is event-based. It

encourages loose coupling among the objects which supports a high degree of encapsulation for

each object. Concurrency, synchronisation, and timing properties are expressed in a uniform way

using constraints which may be associated with objects and events. We describe the way in which

the abstractions of the ECO model are expressed at the language level, and the support for them

which is required from the runtime code and the underlying system.

The next section gives more details about objects with events and constraints and their possible

implementation. Section 3 gives several examples and section 4 surveys some related work and

compares it with the work reported in this document. The last section summarizes the main ideas,

describes the state of the present implementation and sets out future work.

C.2 Objects, events, and constraints

The basic abstractions of the ECO model are objects, classes, events, and constraints. In this

section we �rst briey describe those properties of objects and classes which are relevant for the

description of events and constraints.

Objects communicate by announcing events and by processing those events which have been

announced. Each object is an instance of a class, it has instance variables and a number of methods

which operate on these variables. A class speci�es the interface to its instances (signatures of the

methods which may be invoked on the instances), together with the events and constraints used

by the instances. A method can be bound to one or more events in which case it behaves as an

event handler. It is invoked when the event is announced, and it can itself announce one or more

events. Several methods of an object can be bound to the same event. The type of an event

determines the number and types of its parameters. In order to bind a method to an event the

method signature has to match the event signature. The objects which announce an event are the

sources of the event. Each occurrence of an event can a�ect zero or more objects (can be delivered

to them causing invocations of their methods) | they are the destinations of the event. A source

announces events without having to worry about the identities or locations of the destinations.

Similarly, a destination object registers its interest in an event without having to worry about the

objects which may announce the event. If necessary, both naming and location information can

be expressed using event parameters.

Binding between a method and an event is dynamic. The method can stay bound to the event

from the moment its object is created until the object is deleted. Alternatively, the method is

bound at some arbitrary moment during the object lifetime and the binding can be changed after

that. In our present design events have global scope, and sources and destinations may be located

at di�erent nodes of the distributed system. We intend to introduce some form of scoping at a

2An earlier description of the same can be found in [13], which also describes other work on the Moonlight project
done by the Distributed Systems Group at Trinity College Dublin. For more information on this project and work
of all the partners involved contact moonlight@dsg.cs.tcd.ie.

94

later stage (possibly using the idea of spatial and temporal localities and area of interest managers

described in [40]).

A constraint speci�es a condition that should be either monitored-only or maintained and

monitored. It is de�ned over some domain, in our case the domain includes event parameters,

object instance variables, and possibly some constraint speci�c data. Constraints are evaluated

at the observable points (the start and end of an event handler). The scope of a constraint is

its enclosing class. There are di�erent kinds of constraints, categorized by the data which they

can access, by their evaluation points, and by the actions which they are allowed to perform.

The information used by the constraints depends on the application. There may be a library of

pre-de�ned constraints (e.g., those which implement typical synchronisation or timing constraints).

A program is a collection of cooperating objects, possibly placed on multiple nodes. When it

is started, one of its objects must subscribe to the special start event announced by the system

(a number of objects may subscribe to this event, i.e., there is not necessarily a single entry point

per program). An ECO implementation3 may automatically, or when instructed by the user, add

a handler for this event to one or more objects and allow the user to override this default handler.

The same can be done in some other cases, e.g., default handlers for special debugging events may

optionally be added to objects. Once the program is started the objects communicate with each

other by announcing events and by being noti�ed of event occurrences. They can also express their

interest, or lack of interest in speci�c events. The program may decide to end when it learns about

an occurrence of some event.

The ECO programmingmodel can be made available in di�erent existing languages. Two ways

in which this can be done are ([7]):

� extend an existing language by making the new abstractions visible or explicit, or

� add support for the new abstractions using the existing language mechanisms (e.g., by in-

heriting from library classes which support the new abstractions).

Which approach is chosen depends on a speci�c language and the required extensions. The

second approach may be easier to implement and easier to use (the original language remains

unchanged). However, if the extensions are of a fundamental nature (e.g., a new inter-object

communication mechanism, or a new form of inheritance), it may be di�cult or impossible to

integrate them seamlessly into an existing language. The �rst approach changes the language,

with all the consequences which this brings (lack of compatibility with the old language, the

extensions may not agree with the style of the original language). However, a language processor

used by the �rst approach provides more exibility, especially in the mentioned cases for which the

second approach is less suited. In this section we show a way in which C++ [54] is extended with

events and constraints.

C.2.1 Declaring events

Events have global scope and constraints have class scope. An event is de�ned with:

event EventName(parameters);

EventName is globally unique, and parameters is a list of event parameters (their names and types).

A class declares its in-events and out-events with:
outevents list of EventNames;

inevents list of EventNames;

The former are those events which the instances of the class may announce, and the latter are

those which they may handle. In a way, they are similar to the import and export statements

in Modula-2 [61]. However, in-events and out-events di�er from these statements. in-events lists
those events in which the instances of the class may express interest at some moment during their

lifetime. out-events lists those events which the instances may announce to their environment.

3A compiler or language preprocessor.

95

C.2.2 Notify constraints

Constraints are named conditions which use some data and which control the propagation and

handling of events. A Notify constraint is optionally provided by a destination object when it

subscribes to an event. The only data which can be used by this constraint are the values of event

parameters, and the identity of the source4 (plus optionally some constants). The destination

object uses a Notify constraint to express: I want to be informed about those occurrences of the
event which satisfy this condition. Since a Notify constraint does not depend on the local state of

the destination object it can be evaluated in the context of a source object, or some event manager
object. An example of a Notify constraint is given next.

constraint CountLevel f (count = 1); (count+ level < 2) g

CountLevel is the constraint's name, count and level are the names of two parameters5.

of the event which is associated with this Notify constraint. The constraint requires

that the value of the event parameter count is equal to 1, and that the sum of values

of the event parameters count and level is less than 2.

A Notify constraint is associated with an event at subscribe time (when the destination object

subscribes to the event). A group of objects may have mutual agreement that for example the

�rst parameter of an event is the address of the intended destination object, or that it is the latest

time when handling of a particular event occurrence should start, or that it is the priority of an

event occurrence. Each of the destinations can use a di�erent Notify constraint to specify when

an occurrence of this event type quali�es to be delivered. This can be used to specify for example:

deliver to me those occurrences which are sent to me directly, deliver to me those occurrences which
are sent with a su�cient maximum delivery delay, or deliver to me those occurrences which are
sent with su�ciently high priority. In a video game for example, a collision manager object may be

used to detect collisions among game objects. It announces the collision event with the identities

of the colliding objects passed as the event parameters. The interested objects may use Notify

constraints as �lters; only those collision noti�cations which are of interest to a speci�c object will

be delivered to the object.

C.2.3 Pre and Post constraints

The Pre and Post constraints are used by a destination object as method wrappers. They use the

object instance variables plus optionally constraint internal data, and may be used to implement:

� synchronisation within the object (e.g., Pre and Post constraints may be used to implement

synchronisation variables from [20], these variables would be constraint internal data),

� control of the concurrency level within a method or within the object,

� timing control (e.g., earliest and latest method start-time and end-time, method duration

from [3], and [36]),

� method pre- and post-conditions, method and object invariants | used for the runtime

veri�cation of object consistency and application correctness.

In addition to accessing and possibly modifying the instance variables and constraint data, Pre

and Post constraints can announce an event, and Pre constraints can request that the current

noti�cation is: discarded, enqueued, or processed. This allows constraints to have wait or failure
semantics [36]. In the case of failure semantics a constraint is used only to monitor a certain

4It is assumed that each object has a unique identi�er.
5
source is used in a Notify constraint for the identity of the source object

96

condition (e.g., the values of some instance variables). When a noti�cation arrives and the pre-

condition is not satis�ed the constraint requests that the noti�cation be discarded, optionally

some event may be announced which will inform others about this failure. In the case of wait
semantics when a noti�cation arrives and it is found that the condition is not satis�ed the Pre

constraint may enqueue the noti�cation for later processing6. Conceptually, each Pre constraint

may have associated with it a queue of noti�cations. In order to allow the queued noti�cation to be

processed, a Pre or Post constraint may request dequeuing of a noti�cation from one of the queues

associated with the object's Pre constraints. When a noti�cation is dequeued its Pre constraint

will re-evaluate it, which may result in the noti�cation being discarded, processed, or enqueued

again. An example which shows how this works is given next.

A ResourceManager object manages some number of resources, and has one of its meth-

ods bound to the GetResource event and one of its methods bound to the FreeResource

event (these events are announced by other objects). A Pre constraint for the method

bound to GetResource can check if there are any available resources. If are none it

requests that the current event noti�cation is enqueued. A Post constraint for the

method bound to FreeResource requests that a noti�cation is dequeued from the queue

associated with the Pre constraint of the GetResource (if the queue is empty dequeue
does nothing).

A Pre constraint may also request that a noti�cation is processed. This is done when it is found

that the condition is satis�ed and that the object can proceed with handling the noti�cation.

There are two options: process-active and process-passive which can be used to control the level

of concurrency within an object. If process-passive is requested there is a procedure call to the

event handler (the event parameters are passed to the handler, which may require that they are

unmarhsalled �rst if the noti�cation is received from a remote source). If process-active is requested
a new thread is created to execute the event handler (the event parameters are again passed to

the handler). Each of the discard, enqueue, process-passive and process-active) statements ends the

processing of the corresponding Pre constraint. Announcing an event and dequeuing noti�cations

does not end the current constraint.

The discard/enqueue/dequeue/process options available to the constraints place the responsibil-
ity for implementing the synchronisation, timing, and other policies on the user. This mechanism

has some potential disadvantages:

� it may be regarded as too low-level. However, this may not be a problem since we expect that

there will be sets of frequently used constraints available to applications (e.g., constraints

which implement one-writer/multiple-readers access policy, or which implement some typical

timing constraints).

� The queueing of noti�cations may be too restrictive in some cases. There is a single queue

per method, and the enqueue and dequeue allow appending to the end of the queue and

removing from the front of the queue. Other possibilities (e.g., priority queues, various kinds

of searching through the queue) may be required by some constraints. However, the described

constraint options are intentionally left simple as it is expected that they will be su�cient

for a number of applications7. In other cases, constraints may be implemented by specialised

objects.

C.2.4 Announcing events and subscribing to events

An event is announced with:

6This will be done when it is believed that the same noti�cation may satisfy the condition at some later time,
which may be the case for instance with synchronisation and timing constraints.

7If required, it would be easy to increase the expressive power of constraints with extensions like: allow speci�-
cation of priority with enqueue and process-active; or allow ushing of a queue.

97

announce EventName(parameters)

The EventName must be on the out-event list of the object's class. The announcement is asyn-

chronous, the announcer does not wait for some \reply event" or for some object to handle the

event. A method can be bound to an event initially (when the object is created), and can change

its binding dynamically. The former is done in the class de�nition with:

MethodName(parameters) handles (EventName, NotifyName, PreName, PostName);

and the latter is done within the code with the subscribe and unsubscribe statements:

subscribeMethodName (EventName, NotifyName, PreName, PostName);

unsubscribeMethodName EventName;

in both cases the names of the constraints are optional. MethodName is local to the object which in-
vokes subscribe/unsubscribe, and unsubscribe ushes the queue of the method/event Pre constraint.

It is expected that subscribe and unsubscribe will be used to express object's current interest in

certain events, while a Notify constraint will re�ne the speci�cation of an object's interest in a

speci�c event. It is possible to subscribe to or unsubscribe from a number of events. The following

shows an example of a class with events and constraints:

event E1(� � �);

event E2(� � �);

event E3(� � �);

class myclass f

inevents E1, E2;

outevents E3;

notify constraints

N f � � � g; // Notify constraint

pre constraints

C1 f � � � g; // Pre constraint

post constraints

C2 f � � � g; // Post constraint

methods

mymethod(� � �) handles (E1,N,C1,C2);

g

myclass::mymethod(� � �) f

announce E3(� � �);

unsubscribe mymethod E1;

subscribe mymethod (E2,,,);

g

In this example, the method �rst subscribes to E1 with some constraints, and then

(after announcing E3) it unsubscribes from E1, and subscribes to E2 without any

constraints.

98

C.2.5 Implementation

This subsection describes a way in which some of the above concepts may be implemented, other

implementations are possible.

Whenever an event de�nition is found in the code the event descriptor is registered in the

Event Register (event descriptors are persistent and shared by the applications). Each of the

events which appears on the in-events and out-events lists of a class must exist in the Event

Register. In addition to this, for each event the code for marshalling and unmarshalling of its

parameters has to be generated. At runtime, whenever an event is announced the information

related to this event occurrence is used to evaluate the Notify constraints associated with the

event. Event noti�cations are passed to the destinations of the satis�ed Notify constraints. At the

destination side, Pre and Post constraints are associated with methods, and support for discard,
enqueue, dequeue, process-active, and process-passive is provided.

For the Notify constraints, there is code which will encode them and forward each of these

constraints to all the sources of a speci�c event. At the source side, there is code which maintains

the Notify constraints. The constraints are evaluated whenever their events are announced. An

event manager object (EM) may be implemented per object/per event, per object (for all its

events), per group of objects, or per node of the distributed system. One of the EM tasks can be

maintaining and evaluating all the Notify constraints of the object's out-events. All the objects

which can announce the same event can be registered as a group. If the underlying system supports

group communication it can be used to inform all the sources about changes in the bindings (a new

Notify constraint added, or an existing Notify constraint removed). When an object is created, or

when an existing object is brought into memory, it joins all the groups of its out-events. When an

object is deleted, or moved out of memory, it leaves all the groups of its out-events.
Groups of event sources allow easier distribution of information about Notify constraints. In

a distributed system it may be desirable to evaluate the Notify constraints as near the sources

as possible, since this will stop the network tra�c of unwanted noti�cations. An alternative to

the groups of sources would be to use groups of destinations. This would make the distribution

of noti�cations easier, but the possible price is distributing a lot of unwanted noti�cations if

the Notify constraints are evaluated at the destination side. A third scenario which would have

both: (a) groups of sources and Notify constraints evaluated at the source side and (b) groups of

destinations, leaves open the question: \what criterion should be used to group the destinations".

The conditions under which a noti�cation is discarded by a Pre constraint application speci�c

and with multiple such constraints it seems less likely that they can be used to form groups of

destinations.

The use of the group communication mechanism described here is new. The usual way is to

have groups of processes or threads, in our case there are groups of objects (it may be groups

of EM objects). The only other reference that has groups of objects we know of is [31]. Also,

groups are usually used for fault-tolerance, but as stated in [31] they can be used \as an addressing

construct to accurately track a set of processes that share some characteristic". In our case we

track sets of objects and the shared characteristic of the objects in a group is their ability to

announce the same event. The group mechanism should be lightweight in order to cope with

a large number of potentially overlapping groups [60]. The underlying system has to support

lightweight threads and asynchronous communication (messages are used to communicate event

occurrences to remote nodes). The basic requirement, with respect to the reliability and ordering

properties of the underlying communication is: no guaranteed delivery and no guaranteed order.

Some applications may require more, e.g., a causal or total order of the event announcements,

subscribes, and unsubscribes.

99

C.3 Examples

It was already stated that events allow loose coupling between objects. An object may announce

events for di�erent reasons, some examples are:

� announce \x happened locally" (where x means a speci�c local action was performed or a

speci�c local state was reached),

� announce \x happened locally, this will interest X", where X may be the name of some object

or a group of objects. In this case the announcer knows the names of destinations,

� announce \I need y done by someone" (by anyone who can do it),

� announce \I need y done by Y" (where Y is the name of some object or a group of objects).

The �rst and third cases are anonymous communications, and second and fourth cases are

named communications. With the event-based communication mechanism the names of desti-

nations may be passed as event parameters, i.e., events support both anonymous and named

communication.

The rest of this section shows di�erent ways in which constraints can be used. The �rst example

is of the previously described ResourceManager (slightly extended, the pool of managed resources

may be empty or full). If a request for resource was announced and the pool is empty the request

is queued; if a resource return was announced and the pool is full the return request is queued. In

this example we assume that there is no need to control the level of concurrency within the object.

The next example will show how this can be done. Also, the examples are su�ciently simple so

that there is no need to use Notify constraints. Only the code related to constraints is shown.

class ResourceManager f

pre constraints

PreGive f if (isempty) enqueue else process-passive; g

PreRet f if (isfull) enqueue else process-passive; g

post constraints

PostGive f if (wasfull) dequeue(PreRet); g

PostRet f if (wasempty) dequeue(PreGive); g

methods

GiveResource(� � �) handles (GetResource,,PreGive,PostGive);

ResourceReturned(� � �) handles (FreeResource,,PreRet,PostRet);

g

isfull, isempty, wasfull, and wasempty are boolean expressions which depend on the local state of

the pool. The second example is of a consistent bu�er. It manages some data and allows either

multiple active reads or a single active write within the object:

class ConsistentBu�er f

pre constraints

PreRead f

if (current write == 0) f

current read++;

100

process-active g

else enqueue; g

PreWrite f

if ((current read == 0) && (current write == 0)) f

current write++;

process-active g

else enqueue; g

post constraints

PostRead f

current read- -;

if (current read == 0) dequeue(PreWrite); g

PostWrite f

current write- -;

dequeue(PreWrite);

dequeue(PreRead); g

methods

Read(� � �) handles (ReadReq,,PreRead,PostRead);

Write(� � �) handles (WriteReq,,PreWrite,PostWrite);

g

Dequeuing of a noti�cation can be seen as causing an \internal object event". The code which

evaluates the object's constraints is sequential, and such \internal events" are processed before

processing of any external events is done. The level of concurrency is controlled at the observation

points, it is not possible for a constraint or method to suspend or abort a method of the same

object. Next, we describe the way in which some typical timing constraints can be implemented.

1. start after time and start before time requirements are implemented as Pre constraint. The

time may be received as an event parameter or speci�ed by the destination object. It may

be required to enqueue a noti�cation for later evaluation. In this case a timer event can be

used to trigger dequeuing of such noti�cations and re-evaluation of the Pre constraints.

2. �nish after time and �nish before time requirements are implemented as either Pre or Post

constraints. The time may again be received from the event announcer or speci�ed locally.

If the constraint is found to be unsatis�ed an event may be announced which will cause error

processing and possibly some recovery.

3. maximum duration time and minimum duration time are implemented with both Pre and

Post constraints. Otherwise, they are similar to the above timing constraints.

In addition to synchronisation, concurrency, and timing, constraints can be used to express method

pre-conditions, post-conditions, and invariants. Some of the ways in which they appear in other

languages are given next (p is a boolean expression over the object state):

� always p or invariant p,

� required p or when p,

� ensures p.

101

The �rst case is a method invariant and it is implemented with both Pre and Post constraints.

A method pre-condition (the second case) is implemented as a Pre constraint, and method post-

condition (the last case) as a Post constraint. In these examples, if a Pre constraint is not satis�ed

the event noti�cation is usually discarded (optionally some event may be announced). If a Post

constraint is not satis�ed it is usually accompanied by announcing some event.

C.4 Related work

A possibility of an event-based general-purpose communication mechanism has been suggested in

[45]. This ought to be seen in the context of other proposals for language and system support for

communication (where the communicating entities can be processes, threads, modules, or objects).

An early comparison of message passing and shared memory (or procedure-based) mechanisms

is reported in [38] and [50]. Some of the more recent related work can be found in [1], [9], [22], and

[60]. The remote procedure call (RPC) was introduced as a convenient extension of the procedure

call [47]. Its basic form is synchronous, two-way, and one-to-one exchange of messages ([11], [18]).

It encourages the client-server view of the world and inuences the way in which programs are

designed and implemented. The need for one-to-many, many-to-one, asynchronous, one-way, and

other forms of communication has led to the extensions of the basic RPC ([8], [24], [59], [62]), and

to completely di�erent approaches (e.g., [12], [14], [16], [21]).

An event based language for parallel programming called EBL is described by Reuveni [49]. In

this language events are the only control mechanism and cause the activation of event handlers.

Event occurrences can be permanent or temporary and events can be recurrent or non-recurrent.

Recurrent events can have multiple active occurrences, independently of whether they a�ect one

or more destinations, and non-recurrent events can have only one active occurrence at any time

(occurrences overwrite each other and only the last one survives).

The basic computational step is the announcement of an internal event (an event caused by the

program, external events are caused by hardware). EBL is not object-oriented, instead a program

consists of a collection of modules and each module consists of a number of event handlers. Events

are typed; each event type has a name. All the occurrences of the same type of event have the same

number and type of parameters (a parameter can be of an event type, in addition to simple types).

The only action possible in an event handler is the announcement of one or more events. Several

events can be announced sequentially or in parallel. A handler can be augmented with a condition

which has to be satis�ed before the handler is invoked. Reuveni also discusses the importance

of scoping of events, the ways of achieving synchronisation with events, and the expressiveness of

event based languages. Our work has been inuenced by [49] and can be seen as an attempt to

use some of these ideas in an environment which has objects and constraints.

The generative communication promoted by Linda [14] allows processes to communicate via the

tuple space. A sender inserts a tuple (a list of typed data �elds) into the space without having to

worry about the identity and locality of the receivers. Receivers can inspect or remove tuples from

this space by specifying a template tuple. The reception occurs when a match for the template

tuple is found. Communication through tuple space is used in [42] in the context of distributed

object-oriented languages. Oki et al. [48] use a variant of the Linda approach, called anonymous
communication, where one �eld of each tuple is the subject �eld, and reception is based on the

matching of the subject �elds. Similar to the original approach, communication is independent of

the identities and locations of senders and receivers. Agha and Callsen [2] describe Actorspace, a

programming paradigm which integrates Actors [1] and Linda style communication. Actor-names

can be expressions, they are evaluated in order to �nd the actors whose names satisfy the given

expression. Actorspaces provide a scoping mechanism, are named and can form a hierarchy. The

control of the names visibility, as well as control of the scope lifetime, is explicit and dynamic. Our

approach has similar goals, but it is based on parameterized events and Notify constraints.

It is often stated that distributed systems require group communication, where the group mem-

102

bership changes and is determined by the global state of the computation (e.g., [2], [9]). Our work

is in line with the attempts to support multiple and changing communication patterns. The loose

coupling of objects avoids \the tendency of distributed naming systems to resolve names before

communication occurs" (Bayerdor�er [9]), and our constraint mechanism allows communications

to be speci�ed in terms of local object states. The associative broadcast primitive of [9] allows the

sender to provide an expression over attributes with each outgoing message. These expressions

are evaluated locally where the potential receivers reside and depending on the outcome of this

evaluation the messages are or are not delivered. Bayerdor�er considers events associated with

naming and communication. Our events can be associated with naming and communication, but

they can also be external events, timer events, and scheduling events [52].

Menon et al. [45] have thread-based and object-based event handlers. In ECO there are only

object-based handlers. They also mention several applications for which events are especially

suitable: distributed monitoring, debugging, and exception handling. The idea of loose coupling

among communicating entities (this time to ease the integration of software components) is also

used in [27] and [55]. There is insu�cient space here to compare various other ways in which events

are used (e.g., [23], [30], [37], [41], [51]).

Communication and control ow are often closely related | for instance communication primi-

tives can be blocking or non-blocking. Depending on where and under what conditions this blocking

is done it is possible to classify various primitives and languages with respect to their support for

concurrency and synchronisation control [6]. There has been much work on language support for

controlling the level of concurrency within objects and the order in which events occur. Arjomandi

et al. [7] overview various approaches to adding concurrency support to a programming language.

We use constraints to specify the level of concurrency within an object and do not make threads

visible (except through process-active and process-passive). Some of the work on synchronisation

constraints is reported in [10], [26], [43], and [58]. Frolund [26] have constraints speci�ed as part

of a class de�nition and each constraint restricts the set of methods which may be invoked when

an incoming request is received. A constraint may depend on the parameters of the received in-

vocation and the state of the target object8. Both [26] and [58] allow composition of constraints.

The former is concerned more with the permissive and the latter with the restrictive aspect of

constraints. In [26] each object has a controller which evaluates the constraints and may delay

invocations (event deliveries) if there is a chance that this will make them acceptable in future.

The Archie language [10] allows speci�cation of synchronisation states (or method pre-states),

and method post-states, and integrates these states with type information. It also addresses the

problem of multi-party synchronisation by introducing multioperations and coordinated calls based

on [8]. In our case, the constraint mechanism can be used to express the required order of event an-

nouncements and deliveries at the level of a single object. Multiparty synchronisation may require

complex expressions involving multiple events which we do not support at present. Our constraints

allow the implementation of activation conditions [20], which are based on synchronisation counters
[5]. An activation condition is attached to a method, and can depend on the instance variables,

names of the methods, invocation parameters, and synchronisation counters. The counters are the

object instance data maintained by the system and showing for instance the number of times each

method was started, �nished, or started and not �nished.

The timing behaviour of a system is naturally described with constraints on event occurrences

([4], [19], [34]). Language support for expressing these constraints helps the development of pro-

grams which meet their timing speci�cation [29]. Kenny and Lin [36] state that for a real-time

system \there must be a way to de�ne the constraints on time and resources to the computations.

Some notion of a constraintmust therefore be part of the system". Their language (Flex) has a con-

straint mechanism as a basic programming primitive. Flex constraints are associated with blocks

of code. Exception handlers may be provided and will be executed when some of the constraints

fail. An important concept used by various real-time languages is that of observable points [29].

8Frolund mentions the possibility of using \history instance variables" in the constraints.

103

They can be seen as markers, relevant for evaluating constraints, for making scheduling decisions

and for tuning the code. Di�erent languages have di�erent notions of observable points. In our

case, the observable points are at the object level (start and end of an event handler); in Flex they

are at the level of a block of code.

The authors of [3] and [33] describe di�erent ways of expressing timing constraints and inte-

grating them into an object-oriented language. Timing behaviour can be described by specifying

the minimum and maximum time when a certain observation point in the code is reached, or by

specifying the time interval between two observation points. RTC++ [33] allows timing constraints

both at the operation and statement level. It also allows a non-timing constraint to be speci�ed

for an operation, which can depend on the instance variables and message parameters. A func-

tion may be provided which is invoked when a constraint is not satis�ed, and which will decide

whether or not the invocation should be queued. The approach described in [3] relies on real-time

composition �lters for expressing timing constraints. There are input and output �lters, speci�ed

at the class level. When an invocation message is received it is matched against the input �lters

for the class. The matching consists of evaluating a named expression which can depend on both

instance and external variables. The method names can also be used for matching | a �lter can

be shared by several methods of an object. When a match is found the timing constraint from the

corresponding �lter is used. Our approach is similar but simpler (it has fewer basic abstractions)

and more general.

Events and constraints have been used for constructing active databases with their Event-

Condition-Action programming model (e.g., [15], [28]). Gehani et al. [28] support events and

triggers in a database programming language. The events are of interest to one object or of

interest to a group of objects and can be:

� basic events There is a number of prede�ned basic events, e.g., creation or deletion of an

object, invocation of a member function, time-related and transaction-related events. A

member function (its signature) can be used as a part of an event declaration.

� logical events They are the basic events optionally associated with masks. A mask is a pred-

icate which speci�es which occurrences of an event are of interest. It can use the parameters

of the event being masked, or it can use the state of an object.

� composite events, logical composite events A composite event combines several logical events

using the logical operators (and, or, not) and special event operators. The latter allow among

other things speci�cation of event order and periodic events.

The work reported in [28] is similar to our work in some ways. One important di�erence is that in

our case events are used as a general communication mechanism. Also, we do not have composite

events, but they can be supported at a higher level. A mask is similar to our constraint, but

the latter cannot depend on the state of arbitrary objects. In [28] events are local to an object,

and triggers are associated with a class de�nition. A trigger links an event with an action, and

is active either perpetually or until the associated event is observed and the action is �red. The

trigger corresponds to our facility to subscribe/unsubscribe to an event (both serve to link an

event, constraint, and action). In [28] an action can be an arbitrary statement block while in our

case an action is an event handler which is a method of some object.

In addition to being used for concurrency, synchronisation, and timing, constraints are used for

specifying object invariants ([46]), and as a general construct in declarative languages (e.g., [25]).

C.5 Conclusions, present state and future work

This document describes the ECO programming model and its use in the Moonlight project. The

event-based mechanism is used for communication among objects, it allows a higher degree of en-

capsulation and simpli�es development of large and complex applications. A generalised constraint

104

mechanism allows speci�cation of a number of di�erent requirements (synchronisation and concur-

rency within an object, timing behaviour of an object, and object's invariants). Although events

and constraints have been used elsewhere, this combination of events, constraints, and objects

allows a new and often more natural style of programming. Since events diminish the importance

of object references they may allow new approaches to persistence and garbage collection.

At present, we are implementing the support for the ECO model in a single address space,

which is the �rst requirement in the Moonlight project. In addition, the project aims at providing

a set of tools which will help the user to create new games and virtual world applications. In such

an environment, as already mentioned, there are a number of additional issues which will have to

be resolved. One of them is scoping of events. Another is the required kind of inheritance. It

is known that inheritance may interfere with synchronisation and timing constraints ([43], [26],

[3]). In our case, constraints allow separation of the synchronisation and timing code from the

\ordinary" application code. A library of typical constraints may be provided. It remains to be

determined whether, in such an environment, there is a need for inheriting constraints and if there

is then how it should be done. More important than this is to provide some support for expressing

complex constraints which involve multiple events and multiple objects9. It may be possible to do

this at a higher level using the basic building blocks described here.

Acknowledgements

The following people contributed with their comments and in other ways to the work reported

here: A. Condon, A. Donnelly, N. Harris, S. McGerty, C. McHale, K. O'Connell, P. Taylor (Trinity

College Dublin), D. Belsnes, B. Hauksson, A. Lie (Norsk Regnesentral Oslo), P. Caselles, L. del

Pino (APD S.A. Madrid).

9A simple example of this is synchronous communication which involves ordered request and reply events, and

may involve two or more objects.

105

Bibliography

[1] G. Agha. Actors: A model of concurrent computation in distributed systems. MIT Press, 1986.

[2] G. Agha and C.J. Callsen. Actorspaces: A model for scalable heterogenous computing. Techni-

cal Report UIUCDCS-R-92-1766 and UILU-ENG-92-1746, Department of Computer Science,

University of Illinois at Urbana-Champaign, November 1992.

[3] M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans. Real-time speci�cation inheritance

anomalies and real-time �lters. In ECOOP, pages 386{407, July 1994.

[4] T. Amon. Speci�cation, simulation, and veri�cation of timing behaviour. PhD thesis, 1993.

[5] F. Andre, D. Herman, and J.P. Verjus. Synchronisation of Parallel Programs. North Oxford

Academic, Oxford, 1985.

[6] G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent programming.ACM
Computing Surveys, 115(1):3{43, March 1983.

[7] E. Arjomandi, W. O'Farrell, and I. Kalas. Concurrency support for C++: an overview.

Technical Report CS-93-03, York University, Canada, August 1993.

[8] J-P. Banatre, M. Banatre, and F. Ployette. The concept of Multi-function: a general struc-

turing tool for distributed operating system. In Proc. of the 6th IEEE Distributed Computing
Conference, pages 478{485, 1986.

[9] B.C. Bayerdor�er. Associative Broadcast and the Communication Semantics of Naming in
Concurrent Systems. PhD thesis, The University of Texas at Austin, December 1993.

[10] M. Benveniste and V. Issarny. Concurrent programming notations in the object-oriented

language Archie. Technical Report 1882, INRIA-Rennes, December 1992.

[11] A.D. Birell and B.J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2(1):39{59, February 1984.

[12] K. Birman and R. Van Renesse. Reliable Distributed Computing using the ISIS toolkit. IEEE
Press, 1993.

[13] V. Cahill, A. Condon, G. Starovic, and B. Tangney. Moonlight: VOID shell and execution

environment de�nition. Deliverable 1.2.1. and 1.3.1, September 1994.

[14] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444{458,

April 1989.

[15] S. Chakravarthy and D. Mishra. Snoop: an expressive event speci�cation language for ac-

tive databases. Technical Report UF-CIS-TR-93-007, University of Florida, Computer and

Information Sciences, March 1993.

106

[16] A.T. Chandramohan, H.M. Levy, and E.D. Lazowska. Separating data and control transfer in

distributed operating systems. Technical Report 94-07-04, Department of Computer Science

and Engineering, University of Washington, July 1994.

[17] Andrew Condon. Video game development using void. Technical Report DSG-MOONLIGHT-

15, Distributed Systems Group, Trinity College Dublin, 1994.

[18] J.R. Corbin. The art of distributed applications. Programming techniques for remote procedure
calls. 1991.

[19] B. Dascarathy. Timing constraints of real-time systems: constructs for expressing them,

methods of validating them. SE-11(1):80{86, January 1985.

[20] D. Decouchant, S. Krakowiak, M. Meysembourg, M. Riveill, and X.R. de Pina. A synchro-

nisation mechanism for typed objects in a distributed system. In OOPSLA, pages 105{107,
1988.

[21] C.A. DellaFera, M.W. Eichin, R.S. French, D.C. Jedlinsky, J.T. Kohl, and W.E. Sommerfeld.

The Zephyr noti�cation service. In USENIX, Dallas, Texas, February 1988.

[22] M. Diaz, C. Chassot, A. Lozes, and K. Drira. On the space of multimedia connections. In

Cabernet Workshop, Trinity College Dublin, January 1994.

[23] M. Donner, D. Jameson, and W. Moran. Events: a structuring mechanism for a real-time

runtime system. In Proc. of the Real-Time Systems Symposium, pages 22{30, December 1989.

[24] N. Francez. Cooperating proofs for distributed programs with multiparty interactions. Infor-
mation Processing Letters, 32:235{242, September 1989.

[25] B.N. Freeman-Benson and A. Borning. Integrating constraints with an object oriented lan-

guage. In ECOOP, pages 268{286, June 1992.

[26] S. Frolund. Inheritance of synchronisation constraints in concurrent object oriented program-

ming. In ECOOP, pages 185{196, June 1992.

[27] D. Garlan and D. Notkin. Formalising design spaces: implicit invocation mechanism. In

Lecture Notes in Computer Science 551: VDM Formal Software Development Methods, pages
31{44, 1991.

[28] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Event speci�cation in an active object-oriented

database. In Proc. of the ACM SIGMOD International Conference on Management of Data,
pages 81{90, San Diego, California, June 1992.

[29] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedulabil-

ity. In Proceedings of IEEE Real-Time Systems Symposium, pages 232{242. IEEE Computer

Society Press, December 1993.

[30] Object Management Group. Object services architecture, August 1992.

[31] O. Hagsand, H. Herzog, K. Birman, and R. Cooper. Object-oriented reliable distributed

computing. In I-WOOS, 1992.

[32] David Harel. Statecharts: a visual formalism for complex systems.

[33] Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-oriented real-time language design: con-

structs for timing constraints. In ECOOP/OOPSLA, pages 289{298, October 1990.

107

[34] F. Jahanian, R. Rajkumar, and S. Raju. Runtime monitoring of timing constraints in dis-

tributed real-time systems. Technical Report CSE-TR 212-94, University of Michigan, April

1994.

[35] Kevin Jameson. Multi-Platform Code Management. O'Reilly & Associates, 94.

[36] K.B. Kenny and K. Lin. Building exible real-time systems using the Flex language. IEEE
Computer, 24(5):70{78, May 1991.

[37] T. Larrabee and C.L. Mitchell. Gambit: a prototyping approach to video game design. IEEE
Software, 1(4):28{36, October 1984.

[38] H.C. Lauer and R.M. Needham. On the duality of operating systems structures. ACM
Operating Systems Review, 13(2):3{19, April 1979.

[39] Paul Jay Lucas. An object-oriented language system for implementing concurrent, hierarchical,

�nite state machines. Technical report, University of Illinois at Urbana-Champaign, 93.

[40] M.R. Macedonia, M.J. Zyda, D.R. Pratt, P.T. Barham, and S. Zeswitz. Npsnet: A network

software architecture for large scale virtual environments. Presence, 3(4), 1994.

[41] N. Mans�eld. X Window System. A user's guide. 1991.

[42] S. Matsuoka and S. Kawai. Using tuple space communication in distributed object-oriented

languages. SIGPLAN Notices, 23(11):276{284, 1988.

[43] S. Matsuoka and K. Wakita. Synchronisation constraints with inheritance: what is not possible

| so what is? Technical Report 90-010, Department of Information Science, The University

of Tokyo, 1990.

[44] Ciaran McHale. Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance. PhD thesis, Department of Computer Science, Trinity

College, Dublin 2, Ireland, October 1994.

[45] S. Menon, P. Dasgupta, and R.J. LeBlanc. Asynchronous event handling in distributed object-

based systems. In Proc. the 13th Conference on Distributed Computing Systems, pages 383{
390, Pittsburgh, Pennsylvania, May 1993.

[46] B. Meyer. Ei�el: The Language. Prentice Hall, Englewood Cli�s, New Jersey, 1992.

[47] B.J. Nelson. Remote Procedure Call. PhD thesis, 1981.

[48] B. Oki, M. Puegl, A. Siegel, and D. Skeen. The Information Bus - an architecture for

extensible distributed systems. In ACM Symposium on Principles of Operating Systems,
pages 58{68, 1993.

[49] A. Reuveni. The Event Based Language and its Multiple Processor Implementations. PhD

thesis, 1980.

[50] M.L. Scott. Messages vs. remote procedures is a false dichotomy. SIGPLAN Noticies, 18(3):57{
62, May 1983.

[51] Y-P. Shan. An event driven Model-View-Controller framework for Smalltalk. In OOPSLA,
pages 347{352, October 1989.

[52] G. Starovic. Scheduling and communication with events (unpublished internal document),

June 1994.

108

[53] G. Starovic, V. Cahill, and B. Tangney. The ECO model: events + constraints + objects,

February 1995. Submitted to the Usenix Conference on Object-Oriented Technologies 95.

[54] B. Stroustrup. The C++ Programming Language. 2nd edition. Addison-Wesley, 1991.

[55] K.J. Sullivan and D. Notkin. Reconciling environment integration and software evolution.

1(3):229{268, July 1992.

[56] Gradimir Starovic & Vinny Cahill & Andrew Condon & Stephen McGerty & Karl O'Connell

& Gradimir Starovic & Brendan Tangney. The eco model: Events + constraints + objects.

Technical report, Distributed Systems Group, Trinity College Dublin, 95.

[57] Vinny Cahill & Andrew Condon & Gradimir Starovic & Brendan Tangney. Void shell and

execution environment de�nition. Technical report, TCD, 94.

[58] C. Tomlinson and V. Singh. Inheritance and synchronisation with enabled-sets. In OOPSLA,
pages 103{111, October 1989.

[59] USL. Tuxedo system, release 4.2 manual, 1992.

[60] R. van Renesse, T.M. Hickey, and K.P. Birman. Design and performance of Horus: a

lightweight group communication system. Technical Report 94-1442, Department of Com-

puter Science, Cornell University, August 1994.

[61] N. Wirth. Programming in Modula-2. Springer-Verlag, 1982.

[62] M.D. Wood. Replicated RPC using Amoeba closed group communication. In Proc. of the
13th Conf. on Distributed Computing Systems, pages 499{507, May 1993.

109

