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Abstract

This document describes a log-keeping mechanism designed to support Global

Garbage Detection on Amadeus. This log-keeping mechanism maintains, on a per

site basis, a conservative approximation of the actual root set for that site. Ex-

changes of object references across site boundaries are logged on a per cluster basis

to cope with the dynamic nature of the overall object graph. Clustering also de-

termines the granularity of the information logged. Furthermore, this mechanism

proceeds lazily, that is, it does not require either any additional messages to be

exchanged (and thus does not cause any race condition), nor trigger any object

fault which would not otherwise have occurred. This mechanism makes it possible

to implement at a reasonable cost, a higher level comprehensive, although scalable,

Global Garbage Detection algorithm.

1 Introduction

Log-keeping makes it possible to maintain a conservative approximation of the root set for

each individual site locally, thereby allowing local Garbage Collection (GC) to proceed

independently on each site. Log-keeping is performed by the mutator and essentially

entails keeping track of objects to which references have crossed site boundaries. These

objects are locally considered as \alleged roots" (also referred to as global roots).

Global Garbage Detection (GGD) entails eventually ridding the alleged root set of

objects which are not actually referenced remotely. It is up to the local GC to proceed

with the actual collection of garbage objects. This approach has often been employed in

decentralized GC [Pla94b, Sch89] and can be traced back to Bishop [Bis77].

We distinguish two strategies for log-keeping: eager and lazy. The former attempts

to update the log-keeping information as soon as possible, at the cost of additional back-

ground messages sent by the mutator. When an object reference crosses a site boundary,

�E-mail: Sylvain.Louboutin@dsg.cs.tcd.ie
yE-mail: Vinny.Cahill@dsg.cs.tcd.ie
zURL: http://www.dsg.cs.tcd.ie/

1



an eager log-keeping mechanism attempts to update the log-keeping information main-

tained for the target object on the site where this object is located immediately. The

latter attempts to postpone these updates as long as possible. Lazy log-keeping also

avoids additional messages, without prejudice to the safety of the GGD.

The need for log-keeping is orthogonal to the choice of GGD strategy. Moreover

log-keeping does not dictate the nature of the GGD algorithm per se. The choice of log-

keeping strategy does not guarantee scalability, nor does it preclude comprehensiveness.

However, the choice of strategy used by the GGD to determine which of the global roots

are not actually referenced remotely, a�ects the way the log-keeping is performed, as the

nature and amount of information which must be logged may be di�erent.

The information maintained by the log-keeping mechanism constitutes a consistent,

although not necessarily accurate, snapshot of the actual object graph, built incrementally

as the overall object graph evolves. In Amadeus [CBSH93] this snapshot is maintained

as a set of logs, one log per cluster, and contains enough information for the GGD to be

comprehensive.

To guarantee the consistency of the logs, race conditions between messages containing

references and background messages used for the log-keeping itself must be avoided. Oth-

erwise live objects could erroneously be identi�ed as garbage. This consistency constraint

can therefore potentially be both costly (in terms of additional messages for instance) and

complex when eager log-keeping is chosen. GGD approaches based on weighted reference

counting [Bev87, WW87, Dic91] or reference listing [Pla94b] makes it possible to avoid

this form of eager log-keeping but are not intrinsically comprehensive.

This document describes a lazy log-keeping facility aimed at supporting comprehensive

GGD on Amadeus [CBSH93].

2 System Model

This section presents an abstract view of the underlying system. This is a conceptual

description which attempts not to be too speci�c about actual implementation details al-

though re
ecting the Amadeus [CBSH93] model. It focuses on the essential characteristics

which are the basis of the design of the log-keeping mechanism.

2.1 Root Sets

A site is a contiguous address space. Per-site GC is performed locally and independently

of any other site. The root set for local GC consists of some local roots { the local root set

{ i.e., objects arbitrarily designated as roots, plus some global roots { the global root set {

i.e., objects alleged to be referenced from other (possibly remote) sites including objects

which are no longer referenced from other sites, and may have consequently become

garbage, but have not yet been identi�ed by the GGD.

The actual root set is made of objects, which although not necessarily reachable from

a local root, are nevertheless alive; the union of the local root set and global root set is a

superset of the actual root set as shown on Figure 1.

To make it possible a loose synchronisation between mutator processes and GGD,

the actual root set cannot be e�ciently known accurately at all times, a conservative
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Figure 1: Object set, local root set, global root set and actual root set

approximation is used instead. This conservative approximation is the union of the local

root set and the global root set, and is maintained jointly by mutators and the GGD

algorithm. A mutator conservatively adds (write only) objects to the global root set as

references to them cross site boundaries. It is then up to the GGD to purge the global

root set in order to narrow it down to objects actually referenced from other sites. GGD is

therefore decoupled from local garbage collection so that each site may actually implement

its own garbage collection strategy.

The necessary counterpart of GGD is therefore a mechanism which makes it possible

for the mutators to keep track of the exchange of references between sites. As the burden

of this log-keeping task belongs to the mutators, overhead must be kept to a minimum. For

instance this mechanism should not trigger object faults, nor require remote invocations

which would not otherwise have occurred. This must remain true even when a reference is

exchanged between third party remote objects. This is why lazy log-keeping is preferable

to any eager log-keeping approach.

The invariant which this mechanism must maintain can be expressed as follows: the

union of the local and global root sets is a superset of the actual root set of the local object

graph.

2.2 Objects

An object is a contiguous portion of address space, whether on primary or secondary

storage, potentially containing references to other objects.

An object can be designated as being global, i.e., potentially known and invoked from

a remote location, and/or persistent, i.e., may potentially outlive the thread of control

that created it, as well as the context in which it was created. Conversely, an object can

be local and/or volatile.

A persistent object should not hold references to any volatile object, so as to prevent

the eventual occurrence of dangling references. All objects transitively referenced by a

persistent object should eventually be made persistent.
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It would not incur much additional cost to conservatively consider any global object to

be persistent, and leave it to the GGD to identify those global objects which are actually

not reachable from any persistent (non-garbage) objects.

2.3 Clusters, Contexts and Containers

A context is a transient address space. A cluster is a collection of one or more objects.

Clusters of objects are the unit of mapping into contexts. Each context contains a set of

clusters which may vary dynamically as clusters are created, mapped into or un-mapped

from it. A cluster is mapped into at most one context at a time.

A cluster of persistent objects is stored in some container. A container is a logically

or physically contiguous area of secondary storage. There may be zero, one or more

containers per node, i.e., physical host. Each container stores a subset of the clusters in

the system.

The log-keeping mechanismconsiders that a cluster is local to a context if its out table

(see Section 3.2) is accessible in that context. Clusters represented by proxies (see Sec-

tion 2.5) are not considered to be local. It should be noted that a deactivated but not yet

unmapped (see Section 2.4 and Section 2.5) cluster is still considered local.

At context termination, all co-located clusters must be deactivated before any one

of them may actually be unmapped. This is necessary to ensure that their respective

out tables can be updated appropriately before their contents are committed to sec-

ondary storage1.

Only those clusters which are not mapped in some context, i.e., only dormant clusters,

are considered to be local to a container.

2.4 References

Objects are the vertices and references the edges of the global object graph. Two forms of

references are considered: canonical references and language-speci�c references. Canonical

references are used in objects stored on secondary storage and are sent to other contexts.

Language-speci�c references are used between objects co-located within the same context.

The process of converting a canonical reference into a language-speci�c reference is

called swizzling; the reverse is called unswizzling.

The log-keeping mechanism relies on the fact that when an object is activated (some-

time after its cluster has been mapped into a context), every reference that it contains

is swizzled; conversely, when this object is eventually deactivated (before its context is

unmapped from a context), every (swizzled) references that it contains is unswizzled.

Similarly, references are marshalled and unmarshalled when exchanged between con-

texts. The former involves unswizzling the reference to its canonical form, so that it can

be sent across context boundaries, while the latter involves swizzling the reference back

to its language-speci�c form.

The canonical and language speci�c forms of a reference may in fact be identical.

Swizzling and unswizzling may then be null operations, but it is required that every

1This constraint could however be lifted if the local GC could participate in appropriately updating

the logs, making it possible to preemptively un-map deactivated clusters.
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reference crossing a site boundary be examined in turn2. However, references exchanged

within a context are not required to be trapped by the log-keeping mechanism. This

makes it possible to keep the overhead due to the log-keeping mechanism to a minimum.

The details of the implementations of canonical references, e.g., stubs and o�sets to

stubs [CBSH93], and of language-speci�c references, e.g., memory addresses as in C++,

are not relevant to our log-keeping mechanism.

2.5 Proxies

When swizzling a reference to an absent object, a proxy for the object is created. If

the absent object is already mapped into some other context, a G-proxy is created; such

a proxy has the same interface as the remote object that it represents and acts as its

surrogate. The G-proxy handles the marshalling and un-marshalling of the parameters to

be sent to or received from the remote object that it represents3.

If on the other hand the absent object is dormant, i.e., a persistent object stored in

some container, a P-proxy for its whole cluster is created4. When such an absent object

is eventually invoked by some thread of control the entire cluster containing this object

is mapped into the current context, overlaying its P-proxy5, and the invoked object is

activated.

2.6 Cross Context Invocations

The system (and therefore the log-keeping mechanism) can only be aware of object in-

vocations made across context boundaries since only these invocations require down-calls

to the system, for instance to marshal and unmarshal parameters.

When an object reference is exchanged between a proxy and the server object that it

represents, the system is able to identify both the server object and the object to which

the reference is being exchanged. The system is however not able to identify the client

object since interactions between co-located objects, in this case between the client object

and the proxy of the server object, are performed independently from the system.

2.7 Mature Objects

When an object is created it is said to be immature. A global object is promoted to

being mature when a reference to it is marshalled. A persistent object is promoted when

a reference to it is unswizzled or when it is �rst deactivated. The allocation of a global

name, or canonical reference, to an object is postponed until it is promoted. Note that

promotion is irreversible as shown in Figure 2. When promoted, an object is assigned to

a cluster (which may have to be created).

2Except for the special case of the references contained in clusters migrated between containers.
3The absent object might eventually be made to overlay its proxy if it is later mapped into the same

context. The proxy is thus made to occupy the same amount of space as the object that it represents.
4We assume the existence of a mechanism which makes it possible to locate an object for which a

reference is known anywhere in the system.
5Actually load balancing or security considerations may require that a cluster be mapped in some

other context.
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Figure 2: Maturity transitions

3 Log-Keeping

This section describes the design of the log-keeping mechanism including both the data

structures and the actual algorithm used for log-keeping. The di�erent situations which

this mechanism may have to take into consideration are discussed giving informal indica-

tions about its correctness (see Section 3.4).

3.1 Notation and De�nitions

This section introduces the notation used in the reminder of this document. This notation

is only meant to facilitate the description of the mechanism. For instance no assumptions

about the actual naming mechanism used by the underlying system should be drawn from

the way in which an object is denoted.

X denotes a cluster (i.e., a name in upper case).

blue denotes an object (i.e., a colour name in lower case).

X:blue denotes object blue belonging to cluster X .

@A denotes a site which may be either a context or a container (i.e., an upper case letter

preceded by an \@").

X:blue@A denotes object blue (which belongs to cluster X ) at site @A; @A being either

a container or a context. Note that any of blue or X.blue or X.blue@A can be used

interchangeably to refer to the same object.

" blue or " X:blue or " X:blue@A denotes a reference to the object blue.

fblue; � � � ; Y; � � �gX denotes an entry in the out table of cluster X (see Section 3.2)

associating object blue with cluster Y . The ellipsis � � � is used to show that the

object may also be associated with other clusters by the same entry as there is at

most one entry for a given object.

fblue; Y g@A denotes an entry in the in table of context @A (see Section 3.5) in this

case, @A can only refer to a context since there are no per container in tables.

< cluster > or < object > is a generic token which denotes any cluster or any object in

some set of clusters or objects, e.g., any cluster associated with some entry in a

given table.
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Figure 3: Dual representation of persistent clusters

3.2 Clusters As Log-Keeping Unit

The overall system-wide object graph potentially spans both primary and secondary

storage6 as shown in Figure 3. The information related to the exchange of references

between sites should be maintained at the cluster level since the cluster constitutes the

\largest common denominator" between both kinds of sites.

Keeping information about exchanges of references among objects at the per context

or per container level would be di�cult not only because contexts are transient entities,

but also because of the very dynamic nature of the global object graph. Objects stored

in the same container can be dynamically mapped into di�erent contexts, and objects

which were at one time co-located in the same context, can eventually be unmapped into

di�erent containers or migrated to di�erent contexts. This information should therefore

be more closely associated with individual objects.

Using clusters as the log-keeping unit makes it possible to reduce the overhead of

managing the log itself by sharing its space overhead among several objects. It also

6A cluster which has already been unmapped once but is currently active in some context technically

has two representations co-existing simultaneously (see Figure 3). However, only its primary storage,

i.e., active, representation is signi�cant. The local GC of the container where the secondary storage

representation remains can safely ignore it.
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potentially takes advantage of the locality of reference within clusters as objects are more

likely to keep references to other objects belonging to the same cluster (which are not

logged), hence minimizing the amount of information the log has to keep. Additionally,

as will be explained in Section 3.4, this information can be maintained using a coarser

granularity than if it were maintained on a per object basis, which should contribute to

drastically reducing the amount of information to be maintained.

Each cluster maintains a table known as its out table. Logically, each entry in this

table is indexed by the identi�er (ID) of some object and contains a list of cluster IDs

(and possibly a timestamp). Such an entry means that this object is \known" by each of

these associated clusters. A cluster \knows" an object if it either contains a reference to

this object, or has an entry in its out table indexed by the ID of this object. The index

objects may or may not belong to the cluster where the table resides as will be explained

later in Section 3.4.

3.3 Lazy Log-Keeping

Figure 4 shows an \ideal" situation; this situation is ideal because every cluster's out table

shows the complete list of clusters containing references to each of its objects and nothing

else.

In this Figure, @A and @B are contexts while @C is a container, although, concep-

tually the distinction does not matter. For instance, object pink in cluster Z mapped

in context @B, i.e., Z.pink@B, is known by Y.red@B and W.green@C. Therefore, the

out table of cluster Z contains the entry fpink; Y;WgZ.

It should be noted that the global root set of context @B consists of the objects Pink

and Yellow. Object White which is only associated with a local cluster in the entry

fWhite; Y gZ does not belong to the global root set.

Since the logs are updated as late as possible, i.e., lazily, this mechanismdoes not cause

any object fault or any message transmission which would not have otherwise occurred

(so as to not interfere with the execution and behaviour of the application), the situation

depicted in Figure 4 is unlikely to occur.

However the log-keeping mechanism maintains the invariant that every object in the

global root set of some site, has an entry in at least one out table located at this site.

Exchanges of references are only trapped when such references cross site boundaries as

explained in Section 2.6. Only inter-context exchanges of references can be accounted for

and logged directly, i.e., in the out table of the cluster to which the object referenced

belongs, as soon as they occur. Moreover only exchanges which do not involve references

to third party remote objects, i.e., references to objects located in the site of neither the

sender nor the recipient, can be logged directly.

Intra-context but cross-cluster exchanges of references can only be logged later when

the clusters involved in these exchanges are eventually deactivated and the references

they contain unswizzled (see Section 3.5). Furthermore, as previously noted, exchanges

of third party references, cannot be logged directly either, but are nevertheless logged

indirectly via the creation of partial back pointer paths as explained in Section 3.4. This

will nevertheless not a�ect the correctness of the local garbage collectors, i.e., its safety

property.
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Figure 4: Ideal situation

3.4 Partial Back Pointer Path

The aforementioned invariant can be maintained without necessarily keeping a strictly

accurate per cluster log as in Figure 4. It is not necessary for such a log to maintain an

exact list of all the clusters holding a reference to some object.

The only requirement is that any dormant object to which a reference is held by some

object in a di�erent cluster, has any entry in its cluster's out table, and that any active

object, to which reference is held by some object which is not co-located in the same

context, has any entry in its cluster's out table.

However, enough information should be kept to make it possible for the GGD to decide

whether or not a particular entry is obsolete and can safely be discarded (see Section 4).

To do so, it should be possible to eventually gather, for every object, the complete list of

clusters which \know" this object. However the list of clusters which know a particular

object is not necessarily kept entirely in the out table of the cluster to which the object

belongs.

The idea of this log-keeping mechanism is that, rather than trying to eagerly maintain a

situation as shown in Figure 4 whereby each per-cluster out table contains the complete
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list of clusters which know a given object, a trail of partial back pointers is lazily left

behind, along the paths its references have followed during successive exchanges between

sites.

In the example shown in Figure 8, an entry in the out table of cluster Z, associates

an object red with a list of clusters, in this case fred; Y gZ . This means that cluster Y

contains either a reference "red, or that its out table contains an entry fred; � � �gY . In

other words, an out table entry associates an object with a list of clusters which know

this object, where \knowing" may only mean containing an entry indexed by this object

in their own out table.

An entry in some out table can be described as a partial back pointer. It is a back

pointer because it leads to whatever cluster or clusters know the given object. It is a

partial back pointer because it does not point to each individual object which holds such

a reference but to their clusters.

The complete list of clusters which know a given object can be gathered by tracing

these partial back pointer paths. This list does not necessarily include some remote active

clusters which may contain a reference to the object. However, since such clusters would be

co-located into the same context as some other cluster already logged in some out table

along these partial back pointer path, the invariant is not broken and an appropriate entry

will eventually be logged when their context terminates as explained in Section 3.5.

Locality of reference within clusters should therefore contribute to reducing the number

of such paths for a given object and hence the complexity of the resulting tree or graph

made of the partial back pointer paths rooted at this object.

3.5 Growth of a Tree of Partial Back Pointer Paths

This sections describes the algorithm used by the log-keeping mechanism, that is, how

a graph of partial back pointer paths grows from the initial entry logged when a newly

created object is promoted, up to entries pointing to all the clusters which actually contain

a reference to this object. It shows how a root entry can always be logged when a newly

created object is promoted and how a reference in transit through a site does not fail to

leave behind a partial back pointer path.

Missing Link Cluster

The ID of some cluster, chosen at random among the clusters mapped with a client object

is piggy-backed with the parameter list of any remote invocation to a server object in case

this invocation may return a reference. This cluster7 will be referred to as the missing

link cluster.

Per-context IN TABLE

The per-context in table is a structure logically maintained at the context level which

is not persistent, i.e., it persists only for as long as the context. This table logically

associates each proxy in the context with the local cluster having �rst imported (either

7For instance the cluster associated with the ID of the server in the per context in table.
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Figure 5: Reference sent as a parameter of a remote invocation

unmarshalled or swizzled) a reference to this remote object into this context, as explained

below.

Exporting a Reference

A reference to an object can be exported from some context @A to another context @B

in either of the following two ways:

1. As shown in Figure 5, where a client red@A sends a reference "Z.green to the server

Y.blue@B
8.

(a) If Z.green is promoted as the result of its reference being marshalled for the

�rst time (see Section 2.7), green has just been allocated to its cluster Z@A.

The identity of the remote server Y.blue@B being known (see Section 2.6), the

entry fgreen; Y gZ must be logged9.

(b) The entry fgreen; � � � ; Y; � � �gZ must also be logged if Z.green was already ma-

ture and mapped into context @A.

(c) If Z.green is not mapped in context @A, an entry indexed by green necessarily

exists in the per context in table. For instance if this entry is fgreen;Wg@A,

the entry fgreen; � � � ; Y; � � �gW must be logged.

In any case a link to Y is added to the partial back pointer path (if required).

2. Figure 6 shows a server X.red@A returning a reference "Z.green to client blue@B as

the result of some invocation. In this case, the identity of the remote client is not

known (see Section 2.6). The ID of the missing link cluster, for instance V@B, must

be used instead.

8The proxy of the server is represented as a small grey square.
9An entry is only logged into some table if it is not already present.
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Figure 6: Reference returned as a result of a remote invocation

(a) If Z.green is promoted as the result of its reference being marshalled for the

�rst time (see Section 2.7), green has just been allocated to its cluster Z@A.

The root entry fgreen; V gZ must be logged.

(b) Similarly, if Z.green was already mature and mapped into context @A, the

entry fgreen; � � � ; V; � � �gZ must logged.

(c) If Z.green is not mapped in context @A, an entry indexed by green necessarily

exists in the per context in table. For instance if this entry is fgreen;Wg@A,

the entry fgreen; � � � ; V; � � �gW must be logged.

In any case a link to the missing link cluster V is added to the partial back pointer

path (if required).

Note: When a global object (as seen in Section 3.5) is promoted, that is, when its

reference crosses a site boundary for the �rst time (marshalled), an entry for this object can

always be logged immediately into the out table of its cluster. This entry constitutes

the �rst link, or root entry, in a partial back pointer path rooted at this object. From this

point, and until the GGD eventually removes this entry, if ever (see Section 4), and as

long as this entry is associated to some non-local clusters, local per site GCs will consider

this object as a global root.

Furthermore, when a reference to either a local mature object, or a reference to some

remote object is exported, the out table of respectively the cluster to which this object

belongs, or the cluster known to have initially imported the reference into the context can

be updated with an entry pointing to the next link in the partial back point path.

Importing a Reference

A reference to an object can be imported into some context @B from another context

@A in either of the two ways previously described. The object to which the reference is

imported is already mature.
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1. As shown in Figure 5, where the server Y.blue@B receives a reference "Z.green from

the client red@A.

If Z.green is not mapped in @B and there is no entry indexed by green in the

in table of context @B, the entry fgreen; Y g@B must be logged.

Cluster Y is now known to have initially imported "Z.green into @B.

2. As shown in Figure 6, where the client blue@B receives a reference "Z.green from

a server X.red@A as the result of some invocation. The identity of the client, i.e.,

of the object who �rst imports the reference into context @B, is not known (see

Section 2.6). The ID of the missing link cluster, for instance V@B, must be used

instead.

If Z.green is not mapped in @B, and there is no entry indexed by green in the

in table of context @B, the entry fgreen; V g@B must be logged.

Cluster V is now known to have initially imported "Z.green into @B.

Note: When a remote reference is imported for the �rst time, i.e., as soon as a proxy

is created for the global object to which the reference is imported, an entry is logged in

the in table. The cluster associated with this entry is identical to the cluster associated

with the corresponding entry in the out table of the object to which the reference is

being imported.

Activating a Cluster

When some cluster X is activated into context @A, for each reference to some non-local

object which is swizzled but not yet indexed in the in table of @A, e.g., "Z.green, the

entry fgreen;Xg@A must be logged.

Additionally, if activating a cluster results in overlapping a proxy, i.e., if an object

which was indexed in the in table is mapped, the corresponding entry in the in table

must be removed.

Note: Activating a cluster is equivalent to importing all the references that it contains.

De-activating a Cluster

When some cluster X is deactivated from context @A, for each remote reference being

unswizzled, the cluster indexed by the referenced object in the in tablemust be updated.

For instance, when "Z.green is unswizzled, if the entry indexed by green in the

in table is fgreen;Wg@A, the entry fgreen; � � � ;X; � � �gW must be logged.

If unswizzling "Z.green actually results in promoting object Z.green, which would then

necessarily be local, the root entry fgreen;XgZ must be logged.

Note: When a reference to a persistent object is �rst unswizzled, i.e., when a persistent

object is promoted because its reference is held by a cluster being deactivated, the root

entry for this object can be logged directly in the out table of its cluster10. Similarly

10When a persistent object is promoted by crossing a site boundary, that is, when this object is itself

deactivated, no out table needs to be updated.
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an entry associating the cluster being deactivated with a local mature object to which a

reference is unswizzled can also be logged directly. Entries associating some remote object

with the cluster being deactivated are however logged into the out table of the cluster

known to have �rst imported it.

Even though inter-cluster but intra-context exchanges of references cannot be trapped

by the log-keeping mechanism, they are eventually logged when clusters are deactivated.

Deactivating a cluster is equivalent to exporting all the references that it contains.

References in transit

Whenever a reference to some object transits through a context, it is �rst logged into the

in table of this context, associated with the cluster known to have �rst imported this

reference. This cluster can either be the cluster having actually imported it, or a missing

link cluster arbitrarily chosen. What matters is that both parties involved in exchanging

a reference agree upon which cluster is known to have imported it. In this way, the

previous link in the partial back pointer path points to this cluster. And the out table

of this cluster may eventually become the next link in the path, should this reference be

re-exported to another site. The path of partial back pointers therefore remains unbroken.

This is illustrated in the following example:

Figure 7 shows an object pink@B which invokes object Y.blue@A. Y.blue@A returns

the reference "Y.green@A as the result of this invocation. The identity of the cluster of

the client object (in this case pink) is not known11, the missing link cluster V@B is used

instead so that the entries fgreen; V gY and fgreen; V g@B can be logged.

Object pink@B12 later re-exports this reference by invoking object X.amber@C and

passes the reference "Y.green@A as one parameter of this invocation. The cluster of the

remote server, i.e., X, being known, the entries fgreen;XgV and fgreen;Xg@C are logged.

3.6 Inaccuracies in the Logs

Figure 8 represents a set of clusters and the contents of their respective out tables as

could be observed after a few exchanges of references have taken place within the system.

Sites boundaries are not represented.

Unlike the \ideal" situation represented in Figure 4, their out tables are not neces-

sarily accurate, although they contain enough information for any local garbage collector

to be safe, no matter how these clusters eventually end up being distributed across dif-

ferent sites.

These tables may contain three kind of inaccuracies:

� Obsolete entries such as fblue;WgZ and fmaroon; Y gZ . The former is obsolete

because the reference to object blue previously held by some object of cluster W

does not exist anymore; the latter because object maroon does not exist anymore.

Both entries would eventually be removed by the GGD.

� Incomplete entries, i.e., which give an incomplete list of the clusters actually con-

taining a reference to some object. This list can nevertheless be reconstructed using

11Furthermore, pink may not be mature.
12It could be any other object mapped in context @B.
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Figure 7: A reference in transit

available information held by other out tables which form the partial back pointer

path.

For instance, the entry like fred;W;XgZ would be more accurate than the entry

fred; Y gZ that the out table for Z actually contains.

However the partial back pointer path can be traced as follow: entry fred; Y gZ,

means that object red is known to cluster Y. However, no object in cluster Y holds

any reference to object red, but there is an entry fred;XgY . In turn object X.grey

actually holds a reference "Z.red and there is an entry fred;WgX in the same

cluster. In cluster W, object W.pink is the only place where a reference "Z.red can

be found.

� Entries belonging to some partial back pointer path such as fred; Y gZ . Although

no objects in cluster Y per se holds any reference to object Z.red, this entry is not

obsolete since the out table of cluster Y contains an entry indexed by object red.

Y may either have been used as a missing link cluster, or an object in Y may have

once held the reference "Z.red and forgotten it after having forwarded it to X.grey,

or else, Y may have been the �rst cluster to have imported "Z.red in a context where

it was mapped although it was another cluster which re-exported it to X.grey. It is

not possible at this stage to know which of these possibilities applies, which shows,

as stated in Section 3.5, that any cluster is equally valid to serve as the missing link

cluster.
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Similarly, the entry fred;XgY is not obsolete either even though this cluster does

not contain any object red.

In other words, although these logs may contain inaccuracies, they are nevertheless com-

plete, since the invariant stated in Section 3.3 is not broken.

4 Pruning the Partial Back Pointer Path Trees

The relationship between the lazy log-keeping mechanism described in this document

and a GGD utility, can be described by stating the conditions under which the entries

in the di�erent tables maintained by this mechanism, i.e., per-cluster out tables and

per-context in tables, can safely be discarded. This does not impose the use of any

particular comprehensive GGD policy, any graph-tracing based approach can be used.

See Louboutin and Cahill [LC95] for further details about an adaptation of an algorithm

for GGD inspired by that of Schelvis [Sch89, SB88] using this lazy per-cluster log-keeping

mechanism.

Garbage Objects

An object becomes garbage when:
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� it is not reachable from any local root,

� there is no entry in the log of any local cluster associating the object's ID with the

ID of some non-local cluster.

Garbage Clusters

A cluster becomes garbage when:

� it contains only garbage objects,

� and there is no entry in its out table associating some object's ID with the ID of

some non-local cluster.

Garbage OUT TABLE entry

An entry in some per cluster out table indexed by some object red can be collected when

red is no longer known by any of the associated clusters in this entry. An object is known

by a cluster if this cluster contains either a reference to this object, or a corresponding

entry in its out table. An entry can also be collected whenever the object indexing it

has been collected by the GC.

Garbage IN TABLE entry

An entry in some per context in table indexed by some object blue can be collected by

the local per-context GC13 if no local object contains any reference to object blue.

In other words, the entry in the in table indexed by object blue can be collected

by the local GC as soon as the proxy for blue is itself collected by the local GC. The

in table does not have to actually be implemented as an independent data structure.

An additional �eld in the header of an object proxy (see Section 2.5) containing the ID

of the associated cluster would be su�cient. In that way, both proxy and corresponding

in table entry would therefore be collected simultaneously by the local GC if it becomes

locally unreachable, or, if the actual object blue eventually overlays its own proxy, the

corresponding entry would also be removed appropriately.

5 Related Work

Ferreira and Shapiro [FS94b, FS94a] describe a system based on a Distributed Shared

Memory (DSM) model rather than the Remote Procedure Call (RPC)/object-swapping

model adopted by Amadeus; it features �ne-grain, i.e., smaller than a page, objects,

clustered into �xed-size, i.e., made of a �xed number of contiguous pages, and disjoint,

\segments." These segments are themselves logically grouped into \bunches." Bunches

can be replicated and shared via the underlying weakly consistent DSM system. Objects

are identi�ed by their address within a 64 bit system-wide address space encompassing

both primary and secondary storage14. GC is performed at two levels; a per bunch

13Unlike entries in per cluster out table which can only be collected by the GGD mechanism.
14Object addressing is a combination of OID and SSP approaches [Pla94a].
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comprehensive GC and a \scion cleaner" which is not comprehensive. A heuristic is used

to group bunches at one site so that a comprehensive GC can tackle cycles locally.

This approach relates to ours in the sense that both systems use some form of ob-

ject clustering, and that log-keeping is done on a per cluster basis. However, when an

inter-bunch reference is created15 and the bunch of the target object is not local, a \scion-

message" must be sent to the target; this creates an additional overhead (additional

message) for mutator processes. Race conditions that these additional log-keeping mes-

sages would create are avoided by piggy-packing these messages on the messages used by

the underlying consistency protocol. Our system avoids such additional log-keeping mes-

sages altogether. It should also be noted that unlike the Ferreira and Shapiro approach,

the logs and their contents are not part of the object addressing scheme.

6 Conclusion

Laziness

Our log-keeping mechanism does not attempt to update remote third party logs even in

the case of exchanges of third party references, it does not require additional \control"

messages, and hence avoids race conditions common to eager log-keeping approaches.

This mechanism is also said to be lazy because it postpones the update of the log as

late as possible (e.g., until context termination for inter-cluster, intra-context exchanges

of references), and does not trigger object-faults which would have not otherwise occurred.

Log-keeping for comprehensive GGD

The �rst time a reference to some target object crosses a site boundary, an appropriate en-

try can always be logged in the target's cluster. This initial partial back-pointer identi�es

the target as a global root. Our mechanism ensures that when this reference subsequently

crosses another site boundary, that there is a co-located cluster, already belonging to the

partial back-pointer path, where an appropriate entry can be logged.

Thus it can be seen that the complete list of the clusters which hold a reference to a

given object can be gathered by transitively tracing these partial back-pointer paths. It

therefore maintains enough information for a comprehensive GGD which would proceed

by tracing the graphs of partial back-pointer paths rather than the actual object graph.

Locality of reference within clusters should contribute to reducing the number of such

paths for a given object and hence the complexity of the resulting graph of partial back-

pointer paths rooted at this object.

Robustness

This mechanism is robust. Logs are updated when a reference is marshalled, unmarshalled,

unswizzled or swizzled, and before such action is actually performed. If the actual ex-

change of reference or the mapping or unmapping of some cluster which triggered these

log-keeping operations fails, it would result in some unnecessary log entries which would

15Such creation is trapped via a \write-barrier" unlike our RPC based system which uses (un)swizzling

operations.
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have to be later collected whose only consequence would be potential additional detection

latency.

Overhead

The overhead of this mechanism is mostly space overhead, i.e., size of the out tables and

possibly clusters containing only garbage objects but which cannot be collected (see Sec-

tion 4). Since log-keeping operations are performed by trapping (un)swizzling operations

it should only add a negligible computing overhead.

However, as a consequence of this approach, a GGD using this log-keeping mechanism

generates potentially more inter-site messages than a GGD which traces the actual object

graph or uses an eager log-keeping approach. These messages are due to the inaccuracies

in the logs explained in Section 3.6. Additional messages would be required when tracing

entries belonging to some partial back pointer path, and logged in the out table of some

cluster where no objects actually hold any reference to the object indexing this entry. We

contend that shifting the overhead from the log-keeping mechanism, i.e., from the mutator

processes, to the GGD is in itself bene�cial to overall system performance even if it does

not decrease the number of messages exchanged globally.

Worst case scenario

If k is the total number of objects in the system, and n the total number of clusters in

the system, a worst case scenario may generate an out table of size k(n � 1), i.e., a

monstrous out table with k entries, each of them associated with n� 1 cluster IDs. If

every out tables in the system grow to this proportion, a potential space overhead of

kn(n � 1)sizeof(ID) would have to be considered.

However, it is expected that such a scenario is highly unlikely to occur, and that typical

cases would be more reasonable due to object clustering (and dynamic re-clustering) and

locality of reference within clusters, and among clusters. An e�ective GGD algorithm

would also contribute to continuously keeping the growth of the logs under control. The

log-keeping mechanism could also be optimized so as not to log entries corresponding to

exchanges of references between clusters which remain co-located after being (un-)mapped.

Residual side e�ects

The mechanism requires that some information (of the size of a cluster ID) be piggy-

backed on the parameter lists of all inter-context object invocations. This overhead is

deemed acceptable.

The mechanism as described in this document also prevents the preemptive unmap-

ping of clusters, since all co-located clusters must be deactivated before any one of them

may actually be unmapped, as explained in Section 2.3. This constraint can be lifted

by involving the local GC in the log-keeping operations. When a cluster is deactivated,

the log-keeping mechanism described in this document is able to update accordingly the

out tables of all other co-located clusters. If a cluster is pre-emptively un-mapped,

i.e., while some other co-located clusters are still active, the log-keeping mechanism as

described, cannot update this cluster own out table appropriately, However, a local
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graph-tracing GC could update this out table, making it possible to un-map this clus-

ter before the context termination, but not before the completion of the next local GC

iteration.
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