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Abstract

In this paper we analyze the requirements that will be placed on future operating system architectures and

conclude that most application areas will need di�erent support from the operating system. What is needed

for these applications is an operating system environment which can easily be adapted to application-speci�c

needs. To address this problem we propose structuring the operating system as a collection of objects which

allows the customization of the behaviour of application-level objects at run-time. This is achieved by using

a metalevel architecture which allows the adaption of objects to application-speci�c needs dynamically. We

illustrate our proposal using real-time environments as an example.

1 Introduction

Taking a close look at the requirements of emerging distributed application areas like distributed multimedia

systems, the full range of the services that conventional, general purpose operating systems like Unix [1] o�er, is
not needed and as Mullender observes can even be an obstacle for this kind of application1 [15]. What is needed
is an operating system environment which can be adapted to application-speci�c needs easily. To motivate this,
the following summarizes some of the the major requirements on future operating systems imposed by application
demands:

� Distribution: With the advent of Information Highways on our desks [7], support for distribution will not be
an add-on in future operating system architectures, but will be a prerequisite. Distribution cannot be taken
on its own, but rather is a basis for other functionalities such as multimedia and transaction processing.

� Object-oriented design and implementation: Object-orientation in the design and implementation of appli-
cation software is the de-facto standard in both industrial and academic environments nowadays. Due to
this fact, the next generation of operating systems should provide support for objects as the units of com-

putation. Furthermore, as the advantages of object-orientation in operating system design become obvious
[12], operating system themselves will tend to be crafted using objects.

� Adaptability: Di�erent applications have di�erent demands on each functionality supported by the operating
system. As an example consider persistence. Some applications for example do not need persistence, so the
underlying operating system needs to support only volatile objects, whereas at the other end of the scale,
other applications may demand a high degree of persistence where objects must survive system crashes.
Thus the operating system has to support more than one option in order to satisfy these various demands2.

1In the case of multimedia consider, for example, the lack of support for continuous media found in these operating system kernels.
2In terms of persistence the range could be: volatile (no support for persistence), persistent (an object's lifetime is not limited to

the run-time of an application) and durable (the object is guaranteed to survive even system failures such as crashes).
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In the remainder of this position paper we introduce our approach to supporting these demands. We o�er an
adaptable object model allowing applications to customize the behaviour of objects at run-time. This is achieved
by employing a collection of distributed kernel objects providing minimal operating system functionality which
can be tailored to application needs.

The rest of the paper is structured as follows: after an introduction to our distributed kernel framework named
Tigger, we discuss an object execution model o�ering support for adaptable software. A section on related work
and an outlook conclude this paper.

2 Tigger Overview

The Tigger project is developing a framework for the construction of a family|the Tigger Pride{of distributed
object-support platforms suitable for use in distributed applications ranging from embedded soft-real time systems
(actually 3-D arcade and console video games) to concurrent engineering frameworks [4]. Thus customizability,
extensibility and portability are major design goals of Tigger in addition to distributed object support.

The baseline for the Tigger project is a set of minimal object-support platforms supporting at least four primitive
abstractions: distributed objects; persistent objects; activities (i.e. distributed threads of control) and extents
(i.e. protected collections of objects). A given object may be both distributed and persistent.

Members of the Tigger Pride may provide additional abstractions supporting, for example, security and transac-
tion services. In addition, members of the Pride may be specialised to support di�erent policies. For example,
distributed objects will be supported using both RPC (function shipping) and/or DSM (data shipping) tech-
niques. The result is that a Tigger which provides the necessary services for the target application domain can
be constructed.

Each instantiation of the Tigger framework is intended to provide the necessary support for the use of some
object-oriented language(s) for the development of distributed and persistent applications. Thus the fundamental
interface provided by a Tigger is that provided for the language implementer. The interface used by an application
developer is that provided by a supported language.

3 The Object Execution Model

An integral part of our strategy for supporting an adaptable and 
exible operating system environment is the
supported object execution model. This object execution model, which is layered above Tigger instantiations,
allows the customization of object behaviour at run-time. Since di�erent applications have di�erent demands,
for example, in terms of parallelism, synchronization and access control, the software-layer above Tigger o�ers an
interface by which the execution of an object's code can be in
uenced.

By an object we mean the unit of computation consisting of slots [10] which denote either portions of executable
code3 or data4 [3]. A functionality is a building block supported by individual instantiations of Tigger. Examples
include support for transactions, security and real-time. The behaviour of an object is de�ned as the way that
the code of the object, provided by the application programmer or language implementor, is executed. Applying
di�erent functionalities to an object changes its behaviour at run-time.

The following section motivates our approach by taking an MPEG-decoder object as an example.

3.1 Motivation

Imagine an object which is part of a distributed multimedia application and handling MPEG data [5]. This object
fetches the compressed video stream from a network connection or a storage device like a hard disk, decompresses

3Called member functions in C++ [17] or methods in Smalltalk [6].
4Called member variables in C++ or instance variables in Smalltalk.
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it and displays it in a window on the screen controlled by the local window manager. By doing so, this object
has to cope with a range of constraints.

On one hand, if the individual frames of the video stream are large and the window in which they are displayed is
fully exposed, it makes sense to distribute the work load onto multiple threads concurrently working on decom-
pressing the frame in order to speed up the computational process. These threads then have to be synchronized
accordingly when accessing shared data slots.

If, on the other hand, the individual frames are rather small and the output window is partially covered by another
window, the decompression of the video stream may be handled by fewer threads and the synchronization may
become less important so that di�erent scheduling and synchronization protocols can be employed.

In conclusion depending on the parameters of the video stream, this object has di�erent requirements in terms
of parallelism, scheduling and synchronization. Unfortunately, the parameters are normally not known when the
class5 is coded during the application design process, but become obvious at run-time when the �nal parameters
of the MPEG stream can be determined. This motivates the need for a means to in
uence and control certain
aspects of the real-time behaviour of the object at run-time.

Continuing the example of the MPEG-decoding object, we can identify the three major building blocks which are
used to achieve the distributed real-time behaviour:

� Parallelism: When dealing with real-time, concurrency inside an object is often desirable which leads to
the notion of active objects [24]. A variety of object models regarding the number of threads concurrently
active inside an object are possible depending on the point in time at which a thread is created.

� Scheduling: Since real-time requires di�erent scheduling compared to systems not dealing with real-time
aspects, the real-time functionality supports typical real-time scheduling algorithms like Earliest Deadline
First (edf) and Rate Monotonic (rm) [13]. The individual threads active inside an object are scheduled
according to these policies.

� Synchronization: As Sha observes [16], applying ordinary synchronization mechanisms like mutexes without
proper scheduling leads to a variety of problems in the realm of real-time. The third building block therefore
o�ers di�erent real-time synchronization mechanisms such as priority inheritance, priority ceiling [16] and
stack reservation protocols [2] in order to overcome these problems.

Together with the speci�cation of an object in terms of code and data slots, an application programmer coding
the MPEG-object includes a set of rules stating how the behaviour should be adapted according to the �nal
parameters of the MPEG video stream. This can be done on a per-object basis (by default) or for individual
slots.

3.2 Discussion

The discussion above motivates the notion of an open implementation [12, 11]: certain details of the implemen-
tation are revealed and the application programmer is allowed to change these. The potential bene�ts of doing
so are countered by two obstacles: one has to be careful about what to expose and the details must still be
abstract enough in order to be manageable. If the wrong aspects of an implementation are exposed, the danger of
crashing the system by altering the wrong parameters is obvious. If too much detail is o�ered to the application
programmer (i.e. the open implementation is not su�ciently abstract), it is possible that the programmer is
overloaded with unimportant details making the open implementation too complex to be really useful.

From a conceptual point of view, controlling the behaviour of an object's implementation in this way is done by
a metaobject hierarchy [10]. A metaobject, allowing the control of various aspects of a baselevel or application
object, resides on the �rst metalevel (M1). Since this metaobject is an object in its own right, itself is controlled by
a metametaobject residing on the metametalevel (M2). Theoretically, this allows an in�nite tower of metaobjects

5From which the object is instantiated at run-time.
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[23]. For practical purposes the number of metalevels is limited to two or three at most [21] in order to cope with
the growing complexity of such hierarchies.

This metalevel approach represents a means of structuring a system; it does not say much about the actual control
of a system during run-time. In order to allow this, a system must be able to reason about its behaviour [14].
This involves dynamically changing certain aspects of the system in order to cope with di�erent demands.

To conclude this discussion, our approach to allowing the customization of objects at run-time is a re
ective
metalevel architecture of an open implementation. The programmer speci�es the behaviour of a baselevel object
by using an Object Meta Interface (omi). For each functionality provided by the Tigger, the metalevel o�ers its
own omi. Taking the example from above, the omi allowing the control of real-time aspects is structured further
into interfaces dealing with parallelism, scheduling and synchronization.

4 Implementation

This section sketches some of the details of the implementation. Due to space constrains, we will discuss these
issues only brie
y, a more detailed review can be found in another paper [25].

Since real-time is not the only functionality provided by the underlying Tigger, a layer named genCore below
the individual omis allows a mapping of functionality onto objects and slots by o�ering a generic interface. This
genCore is also responsible for managing dependencies between the individual functionalities. In this sense, the
di�erent omis provide a form of syntactic sugar, because strictly speaking the genCore interface could be o�ered
to the application programmer directly. But doing so would be error-prone and tedious: instead of using the
functionality-related omi, the programmer would use an interface like map(object#12, slot#3, function#14).

The following metaobject hierarchy can be identi�ed (see Fig. 1)6:

OMI OMI0 . . .

Real-Time OMI

setType()
setScheduler()
setSync()Application Layer

Tigger

M
1

M
2

M
3

Roo

Real-Time

genCore
LM DM

To Other Nodes

Figure 1: Implementation as a Hierarchy of Metalevels

� M1: The real-time omi which is used by the baselevel object programmer resides on this level. This
omi allows the speci�cation of di�erent active object models in regard to parallelism (setType() in Fig.

6For clarity we continue our real-time example.
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1), di�erent real-time scheduling policies (setSchedule()) and synchronization mechanisms (setSync()).
These routines in turn use the genCore interface to map the speci�c functionality onto slots and objects.

� M2: As discussed above, the genCore which controls the individual omis resides on M2. In the case of
distributed real-time, the genCore deploys the real-time functionality which consists of a Local Manager
(LM) and a Distribution Manager (DM). The LM in turn controls a small local real-time kernel. Since we
are dealing with the notion of distributed real-time, it must be guaranteed that real-time constrains are not
only met in the local case but also in the distributed case. The DM, which interacts with DMs on other

nodes to make sure that real-time constrains in the distributed case are met, employs mechanisms like time
fences [20].

� M3: On the metametametalevel, a small real-time executive named Roo, which is part of the underlying real-
time instantiation of the Tigger, essentially provides real-time threads. These real-time threads contribute
to the di�erent active object models as discussed above [26].

5 Related Work

The use of metalevel architectures to design and implement operating systems or part thereof has been discussed
in approaches like Apertos [22] and DROL [18]. In contrast to our work, these approaches typically o�er only
one mechanism7, whereas our approach o�ers the programmer a variety of choices to select from.

Also, the capability of altering behaviour dynamically (i.e. during run-time) is normally not found in object-
oriented operating systems. For example, Choices [9, 8] o�ers a means to change the scheduling characteristics
of an operating system but this cannot be done on the 
y, i.e. at run-time.

6 Conclusion and Outlook

As Kiczales shows, there can be signi�cant advantages in exposing certain details of operating systems to applica-
tion programs using these operating systems [12]. By providing applications with a means to alter these details,
they are able to adapt themselves to changing requirements.

We presented a minimal operating system architecture allowing the customization of object behaviour as one
the the major features o�ered by the object execution model supported by this kernel framework. Besides the
discussed real-time example this architecture supports the alteration of every functionality the underlying Tigger
o�ers.

Since the omi allows easy changing of an object's behaviour, the full set of parameters of the target environment
need not to be known in advance. Taking the MPEG example from above, it means that the �nal con�guration

in terms of throughput of the MPEG data stream can be determined at run-time and the single aspects of the
behaviour such as parallelism and scheduling can be set accordingly on the 
y.

Taking this idea one step further leads to a software system that can adapt itself to the changing needs of the
application environment. A software layer residing above the omi measures the behaviour of application objects
resulting from the executed code and identi�es hot spots where a customization of object behaviour would lead
to an optimization. Retaining the real-time example from above, this software would scan the number of active
threads inside an object and compare it to the overall CPU utilization and missed deadlines of this object. If this
rate reaches a certain threshold8 it increases the number of threads allowing a �ner granularity of concurrency
and hence a better overall throughput. Again, this strongly relates to the notion of re
ection as discussed above.

The status of this work in progress is that we are currently designing and integrating this metalevel architecure
within the existing Tigger framework. Roo is implemented and stable on multiple platforms like standard Intel
PC Hardware. The genCore and omis are still in the design phase while we investigate the requirements for the

7For example, Apertos just allows the programmer either to make an object volatile or persistent [19].
8I.e. there are too many missed deadlines and not enough threads to spread the workload on.
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RT-omi which will be our �rst omi to implement, taking distributed multimedia application environments as our
main source of input. From this target environment we expect su�cient contribution in order to derive the �nal
shape of the RT-omi.
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