
Roo: A Framework for Real-Time Threads

Chris Zimmermann Vinny Cahill

Distributed Systems Group,

Department of Computer Science,

Trinity College, Dublin 2, Ireland

fczimmerm, vjcahillg@dsg.cs.tcd.ie

http://www.dsg.cs.tcd.ie/dsg people/fczimmerm/czimmerm.html, vjcahill/vjcahill.htmlg

Abstract

Traditional object-oriented real-time systems are of-

ten limited in that they provide only one approach to

real-time object support. Taking the increasing de-

mand for
exible and extensible object support envi-

ronments into account, we discuss the design and im-

plementation of a small object-oriented real-time exec-

utive based on a sub-framework which we call Roo. Roo

is a component of the Tigger framework (our proposal

for an extensible object support operating system) and

is intended to support di�erent object models provid-

ing soft real-time behaviour. Roo provides support for

di�erent mechanisms and policies for real-time thread

management, scheduling and synchronization. In this

it serves as a basis for other components of the Tigger

framework.

1 Introduction

Traditional object-oriented real-time systems like [16,

11] are often limited in that they provide only one ap-

proach to real-time object support. As [21] points out,

for programmers using these systems this sometimes

presents a severe limitation: they are constrained by

the mechanisms and policies provided by these sys-

tems and are unable to adapt them to their speci�c

needs. To support such cases, an approach based

on an extensible, object-oriented framework providing

di�erent mechanisms and policies for real-time sup-

port, from which the programmer is free to choose the

most appropriate mechanisms, is required.

This paper discusses the design and implementa-

tion of a small sub-framework named Roo forming an

executive for the support of soft real-time applications

such as multimedia and interactive simulations. De-

veloped as part of the Tigger project [7], this sub-

framework will be used as a basis for the support of

di�erent active object models.

The remainder of the paper is structured as fol-

lows: after a brief discussion of the Tigger architec-

ture including the ways in which active objects can be

supported, Roo itself is described. First, the internal

structure of Roo is described followed by the the build-

ing blocks from which Roo is composed. The following

section outlines the bene�ts of this approach for the

programmer using and extending Roo. A status re-

port including some preliminary performance �gures

and an outlook conclude the paper.

2 Tigger Overview

This section gives a brief overview of the Tigger

project and discusses our approach to supporting

active objects and distributed real-time behaviour

within Tigger.

2.1 Tigger

The Tigger project is developing a framework for the

construction of a family|the Tigger Pride{of dis-

tributed object-support operating systems [7]. Mem-

bers of the Tigger Pride will be hosted on top of bare

hardware, (real-time) micro-kernels and conventional

operating systems.

Each instantiation of the Tigger framework is in-

tended to provide the necessary support for the use

of some object-oriented language for the development

of distributed and persistent applications thereby pro-

viding the basis for supporting di�erent object models.

Thus the fundamental interface provided by a Tigger

is that provided for the language implementer and is

a re�nement of that of the Amadeus generic run-time

library [6]. The interface used by an application de-

veloper is that provided by a supported language.

The framework describes the fundamental abstrac-

tions supported by each instantiation and allows tai-

lored implementations to be provided. Unusually, the

Tigger framework is self-hosting thereby allowing in-

stantiations to be built using distributed and persis-

tent objects.

The baseline for the Tigger project is a set of min-

imal object-support operating systems supporting at

least four primitive abstractions: distributed objects;

persistent objects; activities (i.e. distributed threads

of control) and extents (i.e. protected collections of

objects). Members of the Tigger Pride may provide

additional abstractions supporting, for example, se-

curity and transaction services. The result is that a

Tigger which provides the necessary services for the

target application domain can be constructed.

2.2 Concurrent Object Models

In order to provide maximum
exibility to the lan-

guage designer, Tigger has to cater for di�erent con-

current object models like asynchronous method invo-

cation and object-bodies [26]. Therefore, Tigger sup-

ports a number of possible ways of associating threads

and objects, allowing very �ne-grained concurrency.

In general, the way in which thread creation is associ-

ated with the creation of an object and the invocation

of a method characterizes the object model. Fig. 1

summarizes the most important options. It should be

realized that, in each case, whether or not a thread is

actually created, may depend on factors such as the

allowable degree of concurrency within a given object

or other synchronization constraints.

Method
Invocation

Object
Creation

Create
Thread

Do not
Create
Thread

Create
Thread

Do not
Create
Thread

Passive
Objects

Reactive
Objects

Object
Bodies

Autonomous
 Objects

Figure 1: Degrees of Concurrency Inside an Object

� Passive Objects: This is the traditional object

model supported by object-oriented programming

languages and support systems. During a method

invocation, the thread of control active within the

caller travels to the callee to carry out the invo-

cation. New threads are created independently of

object creation and method invocation.

� Reactive Objects: Each time a method invoca-

tion arrives at the callee, a new thread dedicated

to this invocation is created. This models asyn-

chronous invocation as discussed in [17]. A ma-

jor advantage of this mechanism is that if the

caller does not care about the return value of

the method invocation, it can continue processing

without having to wait for the callee to execute

the method.

� Object Bodies: When an object is created, a dedi-

cated thread of control is also created which is ac-

tive inside the object during its lifetime [1]. This

thread of control can be used for tasks not re-

lated to any particular method invocation such as

checkpointing the state of an object while method

invocations are carried out by the calling thread.

� Autonomous Objects: This variant combines fea-

tures of the two previous models. Each time an

object is instantiated, a thread is created to ex-

ecute its body. In addition, each time a method

invocation arrives, a new thread is created1 for

this invocation.

2.3 Supporting Distributed Real-Time

Applications in Tigger

Based on the Tigger framework described above, Fig.

2 depicts our architecture for supporting application

objects (AOs)2 which require a distributed real-time

environment.

This architecture is structured into several layers

which are introduced brie
y below. A more detailed

description of this architecture can be found in [27].

The topmost layer o�ers a Toolbox Interface, from

which higher, more application-oriented layers can

choose certain object characteristics associated with

1Note that the creation of per-invocation threads can be done
by the thread executing the object's body.

2In this case the term application stresses the fact that these
objects are provided by higher layers and not by the Tigger

framework itself. AOs can be anything from a true application-
de�ned object such as an object handling multimedia data to

an object implemented by a language implementor as discussed
above.

LM DM
to other nodes

Roo

AO
1 AO

2

Toolbox Layer Offering Different SRT
Mechanisms and Parallel Object Models

Figure 2: Overall System Architecture

real-time support like scheduling policies, synchroniza-

tion mechanisms and the degree of concurrency inside

an object speci�ed by the number of active threads

that can be attached to that object.

This interface allows very precise customization of

the real-time behaviour of object execution, providing

the programmer with a variety of mechanisms instead

of constraining him or her to only one. This o�ers a

exible way of tailoring objects to speci�c needs.

The intermediate layer deals mainly with the man-

agement of the mechanisms o�ered by the Toolbox

layer. It is subdivided into a distribution manager

(DM), which interacts with DMs on other nodes of

the distributed system in order to maintain real-time

guarantees in the distributed case, and a local man-

ager (LM) which controls the real-time behaviour

of threads managed by the local real-time executive

whose main responsibility is the provision of appro-

priate support for real-time threads, scheduling and

synchronization as discussed in the remainder of this

paper.

All layers including and below the Toolbox Inter-

face de�ne the soft real-time part (SRT) of the Tigger

framework.

Machine-dependent C++

ca. 1 kLOC

Machine-
Independent
Framework

Thread
Management

Synchronization

Scheduling

Assembler
ca. 0.3 kLOC

Figure 3: Software Architecture of Roo

3 Roo

Given the description of the overall architecture

above, this section describes the real-time executive

of Tigger|Roo.

3.1 Internal Structure of Roo

Since a major concern of Tigger is portability, Roo

is divided into a machine-dependent part, which has

to be kept to a minimum since it will have to be

mostly rewritten whenever Roo is ported to a di�erent

hardware platform, and a machine-independent part,

which forms the actual real-time support framework

and resides on top of the machine-dependent part as

depicted in Fig. 3.

This machine-dependent part is further subdivided

into a small assembly language module, which con-

tains functionality that cannot be expressed in ordi-

nary C++3 code such as context-switching and stack-

manipulation, and a set of C++modules o�ering a well-

de�ned interface to the machine-independent part.

One could argue that the machine-dependent part

as a whole could be implemented in assembly language

in order to maximize e�ciency and to gain additional

speed-up. We decided to sacri�ce these possible ben-

e�ts in the hope that we could even reuse parts of

this machine-dependent part when porting Roo to a

di�erent hardware platform. For this reason the func-

tionality of the assembly language module is kept to

a minimum and wherever possible we decided to use

C++ instead of assembly language. Currently, this

3Our implementation language for Roo.

machine-dependent part of the i486 port of our archi-

tecture consists of approximately 1000 lines of well-

documented source-code of which 300 lines are actu-

ally assembly language.

The real-time support framework is layered above

this machine-dependent part and consists of three

major building blocks providing thread management,

scheduling and synchronization primitives. Each of

these blocks is discussed in the following sections.

3.2 Thread Management

This building block provides an interface for the cre-

ation and destruction of threads as well as other ser-

vices such as the ability to wait for a thread to ter-

minate. As discussed above, Tigger supports di�erent

notions of active objects. By using this thread man-

agement interface, other components of Tigger can at-

tach threads to an object at creation time as well as

to individual invocations of object methods as appro-

priate.

From a conceptual point of view, the attachment

of threads to individual objects resembles aggregation

[5]. This is motivated by the fact that threads them-

selves are represented by objects and, apart from the

passive object model, every object has at least one

thread attached to it during its lifetime as discussed

above.

Therefore, the functionality of the thread manage-

ment building block is vital for the Toolbox layer as

depicted in Fig. 2, since a major function of the Tool-

box layer is the support of multiple object models.

3.3 Scheduling

Real-time scheduling is provided by the second major

building block of the Roo framework as a class hier-

archy. To achieve di�erent real-time scheduling poli-

cies like Earliest Deadline First (edf) or Rate Mono-

tonic (rm) scheduling [18] within the framework a

method called scheduler stacking4 is employed which

also enjoys the bene�ts of applying object-oriented

techniques such as inheritance to achieve code-reuse.

Fig. 4 shows the overall structure of the scheduling

class hierarchy. Here, an arrow denotes inheritance [4]

and points to the derived class. Apart from simple

inheritance of code, an arrow further stresses the fact

a derived class like edf makes strong use of methods

supplied by its base classes.

The scheduler class hierarchy depicted works as

4The meaning of this term is motivated below.

RR

PRIO FIFO

EDF RM

LSTF

Figure 4: Inheritance Graph for Schedulers

follows5. The basis of the class hierarchy is a simple

round robin scheduler (rr) which manages a circular

list of runnable threads. This scheduler o�ers methods

to place a thread at a certain position on the queue

and to remove a thread from the queue. Preempting

the currently running thread and selecting the next

thread to be executed is not expensive; since the list

of runnable threads is organized as a circular list, a

simple pointer switch is all that is required.

A �rst-in-�rst-out scheduler (fifo) is implemented

on top of this rr scheduler: the only additional func-

tionality that is required is removing the thread from

the list when it releases the processor so that it is not

scheduled again6.

Entering the realm of priority-based scheduling, a

scheduler capable of handling priorities (labeled prio

in Fig. 4) uses the functionality provided by the rr

scheduler to divide the circular list into N priority

queues as depicted in Fig. 5 (smaller numbers repre-

sent higher priorities). In doing so, it overrides the

methods for placing threads on and removing threads

from the list provided by the rr scheduler. In addition

to the thread itself, a priority must now be speci�ed

via the interface of the prio scheduler when placing a

thread on the list.

The prio scheduler places the head of the �rst

priority queue at the (logical) head of the circular

5In contrast to Fig. 4, which depicts the base/derived class
relationship, it proves useful for the following discussion to

imagine the drawing upside down with the box labelled rr at
the bottom.

6This assumes that threads which are scheduled according
to fifo do not require to be executed periodically.

Head of List

Queue
2

Queue
1

Queue
3

Queue
N

.

.

.

Figure 5: Mapping of prio onto rr

list managed by the rr scheduler. This ensures that

threads with higher priorities are scheduled in favour

of those with lower priorities.

Having laid these foundations, the remaining ele-

ments of the scheduler framework can now be dis-

cussed. A scheduler realizing Rate Monotonic schedul-

ing (rm) is implemented easily using prio as a basis:

each thread is assigned a static priority depending on

its period [18] and then placed on the appropriate pri-

ority queue.

Head of List

Queue
2

Queue
1

Queue
3

Queue
N

.

.

.

Deadlines: [1..5)

Deadlines: [5..10)

Deadlines: [10..20)

Figure 6: Mapping of edf Scheduling onto prio

A scheduler handling the edf policy is realized in

the following way (see Fig. 6): possible deadlines are

grouped into intervals and each interval is assigned a

suitable priority according to its timeliness7. Threads

on these priority queues are then ordered according

to their deadlines, so that the thread with the earliest

deadline in this interval is placed of its priority queue.

Since Least Slack Time First (lstf) is a re�nement of

the edf algorithm [8], it is done is a similar way: each

slack time interval is assigned a priority and threads

are placed on the corresponding priority queue.

Since each of the classes makes strong use of its

base classes, one can think of this structure as a stack:

functionality is added by placing a scheduler realizing

a di�erent policy on top of an existing one. The sched-

uler implementing rr knows nothing about deadlines

or priorities, and prio cannot handle slack time or

deadlines, only the combination of classes achieves the

functionality desired. Since complex scheduling algo-

rithms are structured this way in Roo, the overhead

added by each layer of this stack is comparably small.

The basic interface of the scheduler classes is de-

picted in Tab. 1. All scheduler classes derived from

the baseclass rrmust support this interface in order to

be stackable. An exception is the method move, which

assigns a new priority to a thread thereby moving it

from one priority queue to di�erent one and is de�ned

in the prio class and below. Supporting this method

in the baseclasses of prio does not make sense, since

these scheduler classes do not know about priorities.

3.4 Synchronization Aspects

As depicted in Fig. 3, synchronization mechanisms re-

present the third major building bock of Roo which is

also implemented as a class hierarchy. Similar to the

scheduling class hierarchy described above, this hier-

archy consists of a set of classes, implementing only

basic functionality, from which higher-level abstrac-

tions with richer functionality can easily be built.

Take the realization of a monitor structure as an

example of a general mutual exclusion (mutex) mech-

anism. According to [3], a monitor is a resource which

can only be used exclusively. Before entering a mon-

itor, a thread issues a wait()8 call indicating that it

is about to enter the monitor. If another thread is

already using the monitor, the requesting thread will

block until the other thread issues a signal() call in-

dicating that it has left the monitor. This awakens

7An alternative would be to assign each deadline a di�erent
priority, but this would result in a possibly large number of

sparsely populated priority queues, which makes the handling
of these queues ine�cient.

8A detaileddiscussion of the interfacesprovided by the di�er-
ent synchronization classes is omitted due to spaces constrains.

Method Name Meaning

add(Thread) Add a thread to the scheduler realm

remove(Thread) Remove a thread from the scheduler realm

move(Thread, newPrio) Move a thread to new priority queue (newPrio)

Table 1: Basic Interface of the Scheduler Classes

the �rst thread which enters the monitor in turn.

Block

Semaphore

Monitor

PIP PCP SRP Real-Time Realm

Figure 7: Inheritance Graph for Synchronization

Mechanisms

The class structure involved in achieving this func-

tionality is depicted in Fig. 7. The base class named

block implements a basic blocking algorithm and of-

fers only limited functionality: namely methods to

block and release threads9. Using this restricted in-

terface a semaphore class implements the usual func-

tionality associated with semaphores [3]: managing a

counter it blocks the calling thread when the counter

reaches a negative value and releases the thread when

the value is positive. The monitor class uses a bi-

nary semaphore to guard access to the monitor, di-

rectly using the interface and the code provided by

the semaphore class.

As [20] points out, using this mutex mechanism

on its own (i.e. without proper scheduling) can lead

to the problem of priority inversion: a high-priority

thread is blocked when trying to access a mutex which

is currently held by a thread having a lower priority. A

9Since this base class is not intended to be used by other
than sub-classes, its whole interface is protected in C++ terms
meaning that no other classes than the ones inheriting from this
base class can use its interface.

variety of protocols have been proposed to circumvent

this problem [20, 2]. Since each of them has its advan-

tages and disadvantages, Roo initially o�ers not only

one but three protocols dealing with real-time con-

straints imposed on mutexes. These three protocols|

namely the basic priority inheritance (pip), priority

ceiling (pcp) and stack reservation (srp)|are imple-

mented using the monitor class. Since the additional

functionality compared to the original mutex class is

restricted to scheduling issues, the overhead in terms

of run-time performance imposed by using these de-

rived classes is again comparably low.

3.5 Discussion

The bene�ts of our approach are two-fold: the pro-

grammer using Roo10 is o�ered maximum
exibility

while the system programmer concerned with extend-

ing the functionality of Roo does so by extending ex-

isting class hierarchies.

3.5.1 Flexibility

As the above description of the features of Roo shows

that it does not tie the programmer to a speci�c model

but rather o�ers a variety of mechanisms, from which

the programmer is free to select the most appropri-

ate one. This approach o�ers maximum
exibility:

whichever synchronization protocol or scheduling pol-

icy suits best can be selected. Therefore, Roo resem-

bles a toolbox from which a programmer or even an

object is free to choose the policy of its choice.

This approach is even more important when the de-

sired real-time characteristics are not precisely known.

An example from the area of distributed multimedia

systems clari�es this point: consider an object display-

ing an MPEG video data stream [10]. Typically this

object retrieves the data from a network connection

or storage device, decompresses it and displays it in a

window controlled by the windowing system. Various

parameters like the frame rate in frames per second

10This would include the language implementor as discussed
above.

or the resolution of the decompressed MPEG image

directly in
uence the scheduling period, deadline and

policy. Unfortunately, these parameters are normally

not known in advance i.e. during the development.

Using the toolbox provided by Roo, the MPEG ob-

ject can in
uence its scheduling parameters and pol-

icy at run-time. For example, when decompressing a

large picture, this object may choose to employ mul-

tiple threads concurrently to ful�ll its task in order to

speed up the decompression process by a �ner granu-

larity of parallelism.

3.5.2 Extensibility

From the viewpoint of the system programmer con-

cerned with adding further functionality to Roo, this

approach o�ers an easy way to extend the system.

Since the basic mechanisms are already in place, they

can be used without modi�cation.

Take the scheduler stacking mechanism as an ex-

ample. If the programmer wants to add another real-

time scheduling algorithm, which we have not catered

for in our original framework, he or she identi�es the

position in the scheduler stack at which to put the

new scheduler class and inserts the new policy into

the stack reusing code and functionality from the im-

mediate baseclasses.

As an example, imagine the new scheduler uses pri-

orities in order to implement a more advanced schedul-

ing scheme where threads are moved between dif-

ferent priority queues depending on their run-time

behaviour11. Since the basic prio class o�ers the

method move taking a thread and its new priority as

parameters and moving the thread from the priority

queue it is currently on to the priority queue denoted

by the new priority, all the programmer has to do is

design the new class to decide, based on the given

policy, when to call the move method of its baseclass

prio.

3.5.3 Metalevel Issues

The
exibility is, from a conceptual point of view,

achieved by the use of a metalevel architecture [15],

where the characteristics of baselevel objects (the

threads) are controlled12 by so-called metaobjects [19],

which in this case are the scheduler objects controlling

the threads. When discussing metalevel architectures,

the following issues arise [9]:

11A thread could be penalized by assigning it a lower priority
if it uses up its whole time quantum for example.

12Or re
ected upon, to use the conventional terminology.

� Upon what is re
ected? As the discussion above

shows, the framework deals with control of the

run-time behaviour of real-time threads. There-

fore, the objects representing scheduling policies

are the metaobjects of this model. Using the in-

terface provided by the di�erent scheduling ob-

jects (which is in turn the meta-interface for ap-

plication objects), a programmer exerts control

over the run-time behaviour of application objects

indirectly by controlling the threads attached to

the application objects.

� What is the causal connection between the base-

and the metalevel? Recalling the description of

the scheduler stacking mechanism from above, the

foundation of the whole scheduler stack is the

circular list managed by the lowest member of

the stack: the rr scheduler class. By using the

functionality supplied by this scheduler all other

schedulers stacked above achieve their goal.

� When does a level-shift between base- and meta-

level happen? Every time a new scheduling deci-

sion has to be made a level-shift takes place, and

control is transferred from the baselevel to the

metalevel. This is the case both when preemption

occurs (during blocking, when a higher prioritized

thread enters the scheduler framework) and when

a thread exits.

3.6 Performance

This section gives some preliminary performance �g-

ures from our �rst prototype implementation. Table

2 gives the times for a context-switch and for making

the scheduling decision using two di�erent scheduling

policies, namely round robin and priority-based. All

�gures were obtained using standard Intel-based PC

hardware, in this case a 486DX2 running at 66 MHz.

Note that context switching and the actual time the

decision about which thread to dispatch next are sepa-

rated; the former consists of a register-�le switch only,

whereas the latter includes up-calls to the various C++

routines which form the scheduler stack.

As shown in Tab. 2, the additional overhead of

introducing priority-based scheduling is small com-

pared to the overall-time it takes to make a scheduling

decision13 since the basic functionality is already pro-

vided by the round robin scheduler.

The poorer performance of Roo compared to other

commercial real-time kernels such as QNX [12] can be

13I.e. making the up-calls from the context-switching routine
to the scheduler hierarchy.

Action Time in �sec

Context Switch 3

Round Robin 105

Priority-Based 125

Table 2: Preliminary Performance Figures

accounted for by two factors: First, the current the

implementation of Roo is merely a prototype and has

not yet undergone the usual optimization process.

The second reason stems from our decision to em-

phasize portability as one of our design goals: for

example instead of coding interrupt service routines

which are responsible for scheduling decisions in as-

sembly language and thereby hampering portability,

we decided to implement the machine-dependent parts

in C++, which impacts performance. Since it could

be possible to implement the mechanisms discussed

above in pure assembly language14, the performance

of highly-tuned, hand-crafted machine code could be

achieved (sacri�cing portability of course).

Considering our main target area15, we think that

a certain amount of performance can be sacri�ced be-

cause we are not dealing with hard real-time systems

where nearly every CPU cycle is crucial and failure to

meet deadlines is disastrous.

4 Related work

Traditional object-oriented real-time systems like [16,

24] merely use the object-oriented paradigm as a

means of structuring functionality and code, thereby

providing the application with a more or less closed

system. In contrast to this, our approach o�ers the

programmer a variety of mechanisms and policies from

which he or she is free to choose the most appropriate

one.

The idea of using frameworks for operating sys-

tem design is not new. Work such as [14, 13] makes

heavy use of the object-oriented paradigm to struc-

ture, design and implement operating systems. Here,

base classes provide architecture-independent control

mechanisms such as virtual memory management,

whereas concrete implementations use derived classes

14With much e�ort only, because inheritance and other mech-

anisms o�ered by an object-oriented implementation language
help much during the design and coding process.

15Soft real-time (mainly multimedia and interactive
simulations).

to take care of the platform-speci�c aspects like details

of a speci�c memory management unit.

Also the use of metalevel architectures to design

and implement operating systems or part thereof has

been discussed in approaches like [25, 22]. In contrast

to our work, these approaches provide only one mech-

anism thereby constraining the programmer to one

policy, whereas our approach permits the use of con-

�gurable mechanisms yielding in application-speci�c

policies.

5 Status and Outlook

A �rst prototype of Roo on a platform based on stan-

dard Intel-based PC hardware has been designed and

implemented. Extending the Roo sub-framework with

new schedulers and synchronization mechanisms is our

next goal. We expect major input from the appli-

cation areas where soft real-time is required: dis-

tributed multimedia systems and highly interactive,

three-dimensional simulations. For example, decom-

pressing and displaying a high-resolution MPEG video

data stream may require a di�erent scheduling policy

compared to transmitting and processing a low-quality

audio data stream.

After this, the next step will be the design and im-

plementation of the Distribution Manager and the Lo-

cal Manager. Since most of the functionality for im-

plementing the LM is already provided by Roo, we do

not expect major problems here. For the DM, work

that has been done in the areas of distributed, object-

oriented (hard) real-time systems such as [24, 11]

serves as a starting point for future research. Again

our framework approach should prove to be useful

here.

6 Acknowledgements

We would like to thank Paul Taylor whose comments

helped us to improve the quality of this paper and the

anonymous referees for their suggestions.

References

[1] P. America. POOL-T: A Parallel Object-

Oriented Language. In A. Yonezawa and

M. Tokoro, editors, Object-Oriented Concurrent

Programming, pages 199{220. MIT Press, 1987.

[2] T. P. Baker. Stack-Based Scheduling of Realtime

Processes. Real-Time Systems, 3(1):67{99, 1991.

[3] M. Ben-Ari. Principles of Concurrent Program-

ming. Prentice Hall International, 1982.

[4] G. Blair et al., editors. Object-oriented Lan-

guages, Systems and Applications. Pitman, 1991.

[5] G. Booch. Object-Oriented Design with Appli-

cations. Benjamin/Cummings, second edition,

1993.

[6] V. Cahill, S. Baker, G. Starovic, and C. Horn.

Generic Runtime Support for Distributed Per-

sistent Programming. SIGPLAN Notices,

28(10):144{161, 1993. Also technical report TCD-

CS-93-37, Dept. of Computer Science, Trinity

College Dublin.

[7] V. Cahill, C. Hogan, A. Judge, D. O'Grady,

B. Tangney, and P. Taylor. Extensible Systems|

The Tigger Approach. In Proceedings of the

SIGOPS European Workshop, pages 151{153.

ACM SIGOPS, Sept. 1994. Also technical report

TCD-CS-94-45, Dept. of Computer Science, Trin-

ity College Dublin.

[8] M. L. Dertouzos and A. K.-L. Mok. Multipro-

cessor On-Line Scheduling of Hard Real-Time

Tasks. IEEE Transactions on Software Engineer-

ing, 15(12):1497{1506, 12 1989.

[9] J. Ferber. Computational Re
ection in Class-

Based Object-Oriented Languages. In Proceed-

ings of the 4th Conference on Object-Oriented

Programming Systems, Languages and Applica-

tions, pages 147{155, 1989.

[10] D. L. Gall. MPEG: A Video Compression Stan-

dard for Multimedia Applications. Communica-

tions of the ACM, 34(4):46{58, 1991.

[11] A. Gheith and K. Schwan. CHAOSarc: Ker-

nel Support for Multiweight Objects, Invocations,

and Atomicity in Real-Time Multiprocessor Ap-

plications. ACM Trans. Comput. Syst., 11(1):31{

71, 2 1993.

[12] D. Hildebrand. An Architectural Overview of

QNX. In Proceedings of the 1st Usenix Work-

shop on Micro-Kernels and Other Kernel Archi-

tectures, 1992.

[13] N. Islam and R. Campbell. Uniform Co-

Scheduling Using Object-Oriented Design Tech-

niques. In International Conference on Decentral-

ized and Distributed Systems, Palma de Mallorca,

Spain, 1993.

[14] R. E. Johnson and V. E. Russo. Reusing Object-

Oriented Design. Technical Report UIUCDCS 91-

1696, Department of Computer Science, Univer-

sity of Illinois, 1991.

[15] G. Kiczales et al. The Art of the Metaobject Pro-

tocol. MIT Press, 1991.

[16] S.-T. Levi et al. The Maruti Hard Real-Time Op-

erating System. ACM Operating System Review,

23(3):90{105, 1989.

[17] H. Lieberman. Concurrent Object-Oriented Pro-

gramming in Act 1. In A. Yonezawa and

M. Tokoro, editors, Object-Oriented Concurrent

Programming, pages 9{36. MIT Press, 1987.

[18] C. L. Liu and J. W. Layland. Scheduling

Algorithms for Multiprogramming in a Hard

Real-Time Environment. Journal of the ACM,

20(1):46{61, 1973.

[19] P. Maes. Concepts and Experiments in Com-

putational Re
ection. In Proceedings of the

2nd Conference on Object-Oriented Programming

Systems, Languages and Applications, pages 147{

155, 1987.

[20] L. Sha et al. Priority Inheritance Protocols: An

Approach to Real-Time Synchronization. IEEE

Transactions on Computers, 39(9):1175{1185, 9

1990.

[21] M. Staude. Planning Methods: Process Schedul-

ing in Solaris 2.x (in German). iX, pages 130{136,

8 1994.

[22] K. Takashio and M. Tokoro. DROL: An Object-

Oriented Programming Language for Distributed

Real-Time Systems. In Proceedings of the

7th Conference on Object-Oriented Programming

Systems, Languages and Applications, pages 276{

294, 1992.

[23] H. Tokuda et al. Real-Time Mach: Towards Pre-

dictable Real-Time Systems. In Proceedings of

the Usenix Mach Workshop, 1990.

[24] H. Tokuda and C. W. Mercer. ARTS: A Dis-

tributed Real-Time Kernel. ACM Operating Sys-

tem Review, 23(3):29{52, 1989.

[25] Y. Yokote. Kernel Structuring for Object-

Oriented Operating Systems: The Apertos Ap-

proach. In Proceedings of the 1st International

Symposium on Object Technologies for Advanced

Software, pages 145{162. Springer Verlag, 1993.

[26] A. Yonezawa and M. Tokoro, editors. Object-

Oriented Concurrent Programming. MIT Press,

1989.

[27] C. Zimmermann and V. Cahill. Raising the Cub.

In Proceedings of the Annual German Unix Users

Group Conference, pages 79{86, 1994.

