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Abstract

This document describes the rationale and design of a programming model based on events,
constraints, and objects and the use of this model in the Moonlight1 project. It describes the
inter-object communication or invocation mechanism, and the way in which concurrency, synchro-
nisation, and timing properties are expressed and controlled. The invocation mechanism is unusual
in that it is event-based. It encourages loose coupling among the objects and this supports a high
degree of encapsulation for each object. Concurrency, synchronisation, and timing properties are
expressed in a uniform way using constraints which may be associated with objects and events. We
describe the way in which the abstractions of the ECO model are expressed at the language level,
and the support for them which is required from the runtime code and the underlying system.

1 Introduction

Large parallel and distributed applications are hard to program. Communication, synchronisation,

and timing contribute to the complexity of this task. Object-orientation is advertised as a good
paradigm for the modelling of entities in the application domain and a programming model which
allows more structured and less complex program development. The Moonlight project is building
an object-oriented environment for developing and executing games and virtual world applications.
Some of the requirements coming from such an environment are:

� support di�erent patterns of communication. As an example, a single object may collect
information from a number of sources or disseminate information to a number of destinations.
In general, there may be exchange of information between groups of objects, and the group
membership may change dynamically.

� support soft real-time applications. It must be possible to express timing constraints on
object behaviour. Such constraints arise out of the application domain and the way in which
audio and video data are handled. When the constraints are occasionally not satis�ed there
are no catastrophic consequences for the system or for its environment.

� support distributed and persistent applications. An application may span a number of nodes
in which case its objects communicate over a network. In some cases the objects will have
to be persistent, i.e., retain their state across separate executions.

� support large applications with thousands of objects, where new objects may be created and
the existing ones may disappear dynamically. This brings out the importance of issues like

scalability and scoping rules.

This document describes the rationale and design of the ECO programmingmodel and its use in
the Moonlight project2. It includes the inter-object communication or invocation mechanism, and
the way in which concurrency, synchronisation, and timing properties are expressed and controlled.
A number of other important issues, like persistence, grouping, and mobility of objects are not
considered in this document. The invocation mechanism is unusual in that it is event-based. It
encourages loose coupling among the objects which supports a high degree of encapsulation for

1This work is partially funded by the CEC under ESPRIT contract No. 8636
2An earlier description of the same can be found in [13], which also describes other work on the Moonlight project

done by the Distributed Systems Group at Trinity College Dublin. For more information on this project and work

of all the partners involved contact moonlight@dsg.cs.tcd.ie.
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each object. Concurrency, synchronisation, and timing properties are expressed in a uniform way
using constraints which may be associated with objects and events. We describe the way in which
the abstractions of the ECO model are expressed at the language level, and the support for them
which is required from the runtime code and the underlying system.

The next section gives more details about objects with events and constraints and their possible
implementation. Section 3 gives several examples and section 4 surveys some related work and
compares it with the work reported in this document. The last section summarizes the main ideas,
describes the state of the present implementation and sets out future work.

2 Objects, events, and constraints

The basic abstractions of the ECO model are objects, classes, events, and constraints. In this
section we �rst brie
y describe those properties of objects and classes which are relevant for the
description of events and constraints.

Objects communicate by announcing events and by processing those events which have been
announced. Each object is an instance of a class, it has instance variables and a number of methods
which operate on these variables. A class speci�es the interface to its instances (signatures of the
methods which may be invoked on the instances), together with the events and constraints used
by the instances. A method can be bound to one or more events in which case it behaves as an
event handler. It is invoked when the event is announced, and it can itself announce one or more
events. Several methods of an object can be bound to the same event. The type of an event
determines the number and types of its parameters. In order to bind a method to an event the
method signature has to match the event signature. The objects which announce an event are the
sources of the event. Each occurrence of an event can a�ect zero or more objects (can be delivered
to them causing invocations of their methods) | they are the destinations of the event. A source
announces events without having to worry about the identities or locations of the destinations.
Similarly, a destination object registers its interest in an event without having to worry about the
objects which may announce the event. If necessary, both naming and location information can
be expressed using event parameters.

Binding between a method and an event is dynamic. The method can stay bound to the event
from the moment its object is created until the object is deleted. Alternatively, the method is
bound at some arbitrary moment during the object lifetime and the binding can be changed after
that. In our present design events have global scope, and sources and destinations may be located
at di�erent nodes of the distributed system. We intend to introduce some form of scoping at a
later stage (possibly using the idea of spatial and temporal localities and area of interest managers
described in [36]).

A constraint speci�es a condition that should be either monitored-only or maintained and
monitored. It is de�ned over some domain, in our case the domain includes event parameters,
object instance variables, and possibly some constraint speci�c data. Constraints are evaluated

at the observable points (the start and end of an event handler). The scope of a constraint is
its enclosing class. There are di�erent kinds of constraints, categorized by the data which they
can access, by their evaluation points, and by the actions which they are allowed to perform.
The information used by the constraints depends on the application. There may be a library of
pre-de�ned constraints (e.g., those which implement typical synchronisation or timing constraints).

A program is a collection of cooperating objects, possibly placed on multiple nodes. When it
is started, one of its objects must subscribe to the special start event announced by the system
(a number of objects may subscribe to this event, i.e., there is not necessarily a single entry point
per program). An ECO implementation3 may automatically, or when instructed by the user, add
a handler for this event to one or more objects and allow the user to override this default handler.
The same can be done in some other cases, e.g., default handlers for special debugging events may

3A compiler or language preprocessor.
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optionally be added to objects. Once the program is started the objects communicate with each
other by announcing events and by being noti�ed of event occurrences. They can also express their
interest, or lack of interest in speci�c events. The program may decide to end when it learns about
an occurrence of some event.

The ECO programmingmodel can be made available in di�erent existing languages. Two ways
in which this can be done are ([7]):

� extend an existing language by making the new abstractions visible or explicit, or

� add support for the new abstractions using the existing language mechanisms (e.g., by in-
heriting from library classes which support the new abstractions).

Which approach is chosen depends on a speci�c language and the required extensions. The
second approach may be easier to implement and easier to use (the original language remains
unchanged). However, if the extensions are of a fundamental nature (e.g., a new inter-object
communication mechanism, or a new form of inheritance), it may be di�cult or impossible to
integrate them seamlessly into an existing language. The �rst approach changes the language,
with all the consequences which this brings (lack of compatibility with the old language, the
extensions may not agree with the style of the original language). However, a language processor
used by the �rst approach provides more 
exibility, especially in the mentioned cases for which the
second approach is less suited. In this section we show a way in which C++ [48] is extended with
events and constraints.

2.1 Declaring events

Events have global scope and constraints have class scope. An event is de�ned with:
event EventName(parameters);

EventName is globally unique, and parameters is a list of event parameters (their names and types).
A class declares its in-events and out-events with:

outevents list of EventNames;
inevents list of EventNames;

The former are those events which the instances of the class may announce, and the latter are
those which they may handle. In a way, they are similar to the import and export statements
in Modula-2 [53]. However, in-events and out-events di�er from these statements. in-events lists
those events in which the instances of the class may express interest at some moment during their
lifetime. out-events lists those events which the instances may announce to their environment.

2.2 Notify constraints

Constraints are named conditions which use some data and which control the propagation and
handling of events. A Notify constraint is optionally provided by a destination object when it

subscribes to an event. The only data which can be used by this constraint are the values of event
parameters, and the identity of the source4 (plus optionally some constants). The destination
object uses a Notify constraint to express: I want to be informed about those occurrences of the

event which satisfy this condition. Since a Notify constraint does not depend on the local state of
the destination object it can be evaluated in the context of a source object, or some event manager
object. An example of a Notify constraint is given next.

constraint CountLevel f (count = 1); (count+ level < 2) g

CountLevel is the constraint's name, count and level are the names of two parameters5.
of the event which is associated with this Notify constraint. The constraint requires

4It is assumed that each object has a unique identi�er.
5
source is used in a Notify constraint for the identity of the source object
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that the value of the event parameter count is equal to 1, and that the sum of values
of the event parameters count and level is less than 2.

A Notify constraint is associated with an event at subscribe time (when the destination object
subscribes to the event). A group of objects may have mutual agreement that for example the
�rst parameter of an event is the address of the intended destination object, or that it is the latest
time when handling of a particular event occurrence should start, or that it is the priority of an
event occurrence. Each of the destinations can use a di�erent Notify constraint to specify when
an occurrence of this event type quali�es to be delivered. This can be used to specify for example:
deliver to me those occurrences which are sent to me directly, deliver to me those occurrences which
are sent with a su�cient maximum delivery delay, or deliver to me those occurrences which are

sent with su�ciently high priority. In a video game for example, a collision manager object may be
used to detect collisions among game objects. It announces the collision event with the identities
of the colliding objects passed as the event parameters. The interested objects may use Notify
constraints as �lters; only those collision noti�cations which are of interest to a speci�c object will
be delivered to the object.

2.3 Pre and Post constraints

The Pre and Post constraints are used by a destination object as method wrappers. They use the
object instance variables plus optionally constraint internal data, and may be used to implement:

� synchronisation within the object (e.g., Pre and Post constraints may be used to implement
synchronisation variables from [19], these variables would be constraint internal data),

� control of the concurrency level within a method or within the object,

� timing control (e.g., earliest and latest method start-time and end-time, method duration
from [3], and [33]),

� method pre- and post-conditions, method and object invariants | used for the runtime
veri�cation of object consistency and application correctness.

In addition to accessing and possibly modifying the instance variables and constraint data, Pre
and Post constraints can announce an event, and Pre constraints can request that the current
noti�cation is: discarded, enqueued, or processed. This allows constraints to have wait or failure
semantics [33]. In the case of failure semantics a constraint is used only to monitor a certain
condition (e.g., the values of some instance variables). When a noti�cation arrives and the pre-
condition is not satis�ed the constraint requests that the noti�cation be discarded, optionally
some event may be announced which will inform others about this failure. In the case of wait
semantics when a noti�cation arrives and it is found that the condition is not satis�ed the Pre
constraint may enqueue the noti�cation for later processing6. Conceptually, each Pre constraint

may have associated with it a queue of noti�cations. In order to allow the queued noti�cation to be
processed, a Pre or Post constraint may request dequeuing of a noti�cation from one of the queues
associated with the object's Pre constraints. When a noti�cation is dequeued its Pre constraint
will re-evaluate it, which may result in the noti�cation being discarded, processed, or enqueued
again. An example which shows how this works is given next.

A ResourceManager object manages some number of resources, and has one of its meth-
ods bound to the GetResource event and one of its methods bound to the FreeResource
event (these events are announced by other objects). A Pre constraint for the method
bound to GetResource can check if there are any available resources. If are none it

6This will be done when it is believed that the same noti�cation may satisfy the condition at some later time,

which may be the case for instance with synchronisation and timing constraints.
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requests that the current event noti�cation is enqueued. A Post constraint for the
method bound to FreeResource requests that a noti�cation is dequeued from the queue
associated with the Pre constraint of the GetResource (if the queue is empty dequeue

does nothing).

A Pre constraint may also request that a noti�cation is processed. This is done when it is found
that the condition is satis�ed and that the object can proceed with handling the noti�cation.

There are two options: process-active and process-passive which can be used to control the level
of concurrency within an object. If process-passive is requested there is a procedure call to the
event handler (the event parameters are passed to the handler, which may require that they are
unmarhsalled �rst if the noti�cation is received from a remote source). If process-active is requested
a new thread is created to execute the event handler (the event parameters are again passed to
the handler). Each of the discard, enqueue, process-passive and process-active) statements ends the
processing of the corresponding Pre constraint. Announcing an event and dequeuing noti�cations
does not end the current constraint.

The discard/enqueue/dequeue/process options available to the constraints place the responsibil-
ity for implementing the synchronisation, timing, and other policies on the user. This mechanism
has some potential disadvantages:

� it may be regarded as too low-level. However, this may not be a problem since we expect that
there will be sets of frequently used constraints available to applications (e.g., constraints
which implement one-writer/multiple-readers access policy, or which implement some typical
timing constraints).

� The queueing of noti�cations may be too restrictive in some cases. There is a single queue
per method, and the enqueue and dequeue allow appending to the end of the queue and
removing from the front of the queue. Other possibilities (e.g., priority queues, various kinds
of searching through the queue) may be required by some constraints. However, the described
constraint options are intentionally left simple as it is expected that they will be su�cient
for a number of applications7. In other cases, constraints may be implemented by specialised
objects.

2.4 Announcing events and subscribing to events

An event is announced with:
announce EventName(parameters)

The EventName must be on the out-event list of the object's class. The announcement is asyn-
chronous, the announcer does not wait for some \reply event" or for some object to handle the
event. A method can be bound to an event initially (when the object is created), and can change
its binding dynamically. The former is done in the class de�nition with:

MethodName(parameters) handles (EventName, NotifyName, PreName, PostName);
and the latter is done within the code with the subscribe and unsubscribe statements:

subscribeMethodName (EventName, NotifyName, PreName, PostName);

unsubscribeMethodName EventName;

in both cases the names of the constraints are optional. MethodName is local to the object which in-
vokes subscribe/unsubscribe, and unsubscribe 
ushes the queue of the method/event Pre constraint.
It is expected that subscribe and unsubscribe will be used to express object's current interest in
certain events, while a Notify constraint will re�ne the speci�cation of an object's interest in a
speci�c event. It is possible to subscribe to or unsubscribe from a number of events. The following
shows an example of a class with events and constraints:

7If required, it would be easy to increase the expressive power of constraints with extensions like: allow speci�-

cation of priority with enqueue and process-active; or allow 
ushing of a queue.
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event E1(� � �);

event E2(� � �);

event E3(� � �);

class myclass f

inevents E1, E2;

outevents E3;

notify constraints

N f � � � g; // Notify constraint

pre constraints

C1 f � � � g; // Pre constraint

post constraints

C2 f � � � g; // Post constraint

methods

mymethod(� � �) handles (E1,N,C1,C2);

g

myclass::mymethod(� � �) f

announce E3(� � �);

unsubscribe mymethod E1;

subscribe mymethod (E2,,,);

g

In this example, the method �rst subscribes to E1 with some constraints, and then
(after announcing E3) it unsubscribes from E1, and subscribes to E2 without any
constraints.

2.5 Implementation

This subsection describes a way in which some of the above concepts may be implemented, other
implementations are possible.

Whenever an event de�nition is found in the code the event descriptor is registered in the

Event Register (event descriptors are persistent and shared by the applications). Each of the
events which appears on the in-events and out-events lists of a class must exist in the Event
Register. In addition to this, for each event the code for marshalling and unmarshalling of its
parameters has to be generated. At runtime, whenever an event is announced the information

related to this event occurrence is used to evaluate the Notify constraints associated with the
event. Event noti�cations are passed to the destinations of the satis�ed Notify constraints. At the
destination side, Pre and Post constraints are associated with methods, and support for discard,
enqueue, dequeue, process-active, and process-passive is provided.

For the Notify constraints, there is code which will encode them and forward each of these
constraints to all the sources of a speci�c event. At the source side, there is code which maintains
the Notify constraints. The constraints are evaluated whenever their events are announced. An
event manager object (EM) may be implemented per object/per event, per object (for all its
events), per group of objects, or per node of the distributed system. One of the EM tasks can be
maintaining and evaluating all the Notify constraints of the object's out-events. All the objects
which can announce the same event can be registered as a group. If the underlying system supports
group communication it can be used to inform all the sources about changes in the bindings (a new
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Notify constraint added, or an existing Notify constraint removed). When an object is created, or
when an existing object is brought into memory, it joins all the groups of its out-events. When an
object is deleted, or moved out of memory, it leaves all the groups of its out-events.

Groups of event sources allow easier distribution of information about Notify constraints. In
a distributed system it may be desirable to evaluate the Notify constraints as near the sources
as possible, since this will stop the network tra�c of unwanted noti�cations. An alternative to
the groups of sources would be to use groups of destinations. This would make the distribution
of noti�cations easier, but the possible price is distributing a lot of unwanted noti�cations if
the Notify constraints are evaluated at the destination side. A third scenario which would have
both: (a) groups of sources and Notify constraints evaluated at the source side and (b) groups of
destinations, leaves open the question: \what criterion should be used to group the destinations".
The conditions under which a noti�cation is discarded by a Pre constraint application speci�c
and with multiple such constraints it seems less likely that they can be used to form groups of
destinations.

The use of the group communication mechanism described here is new. The usual way is to
have groups of processes or threads, in our case there are groups of objects (it may be groups
of EM objects). The only other reference that has groups of objects we know of is [30]. Also,
groups are usually used for fault-tolerance, but as stated in [30] they can be used \as an addressing
construct to accurately track a set of processes that share some characteristic". In our case we
track sets of objects and the shared characteristic of the objects in a group is their ability to
announce the same event. The group mechanism should be lightweight in order to cope with
a large number of potentially overlapping groups [52]. The underlying system has to support
lightweight threads and asynchronous communication (messages are used to communicate event
occurrences to remote nodes). The basic requirement, with respect to the reliability and ordering
properties of the underlying communication is: no guaranteed delivery and no guaranteed order.
Some applications may require more, e.g., a causal or total order of the event announcements,
subscribes, and unsubscribes.

3 Examples

It was already stated that events allow loose coupling between objects. An object may announce
events for di�erent reasons, some examples are:

� announce \x happened locally" (where x means a speci�c local action was performed or a
speci�c local state was reached),

� announce \x happened locally, this will interest X", where X may be the name of some object
or a group of objects. In this case the announcer knows the names of destinations,

� announce \I need y done by someone" (by anyone who can do it),

� announce \I need y done by Y" (where Y is the name of some object or a group of objects).

The �rst and third cases are anonymous communications, and second and fourth cases are
named communications. With the event-based communication mechanism the names of desti-
nations may be passed as event parameters, i.e., events support both anonymous and named
communication.

The rest of this section shows di�erent ways in which constraints can be used. The �rst example
is of the previously described ResourceManager (slightly extended, the pool of managed resources
may be empty or full). If a request for resource was announced and the pool is empty the request
is queued; if a resource return was announced and the pool is full the return request is queued. In
this example we assume that there is no need to control the level of concurrency within the object.
The next example will show how this can be done. Also, the examples are su�ciently simple so
that there is no need to use Notify constraints. Only the code related to constraints is shown.
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class ResourceManager f

pre constraints

PreGive f if (isempty) enqueue else process-passive; g

PreRet f if (isfull) enqueue else process-passive; g

post constraints

PostGive f if (wasfull) dequeue(PreRet); g

PostRet f if (wasempty) dequeue(PreGive); g

methods

GiveResource(� � �) handles (GetResource,,PreGive,PostGive);

ResourceReturned(� � �) handles (FreeResource,,PreRet,PostRet);

g

isfull, isempty, wasfull, and wasempty are boolean expressions which depend on the local state of
the pool. The second example is of a consistent bu�er. It manages some data and allows either
multiple active reads or a single active write within the object:

class ConsistentBu�er f

pre constraints

PreRead f

if (current write == 0) f

current read++;

process-active g

else enqueue; g

PreWrite f

if ((current read == 0) && (current write == 0)) f

current write++;

process-active g

else enqueue; g

post constraints

PostRead f

current read- -;

if (current read == 0) dequeue(PreWrite); g

PostWrite f

current write- -;

dequeue(PreWrite);

dequeue(PreRead); g

methods

Read(� � �) handles (ReadReq,,PreRead,PostRead);

Write(� � �) handles (WriteReq,,PreWrite,PostWrite);

g
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Dequeuing of a noti�cation can be seen as causing an \internal object event". The code which
evaluates the object's constraints is sequential, and such \internal events" are processed before
processing of any external events is done. The level of concurrency is controlled at the observation
points, it is not possible for a constraint or method to suspend or abort a method of the same
object. Next, we describe the way in which some typical timing constraints can be implemented.

1. start after time and start before time requirements are implemented as Pre constraint. The
time may be received as an event parameter or speci�ed by the destination object. It may
be required to enqueue a noti�cation for later evaluation. In this case a timer event can be
used to trigger dequeuing of such noti�cations and re-evaluation of the Pre constraints.

2. �nish after time and �nish before time requirements are implemented as either Pre or Post
constraints. The time may again be received from the event announcer or speci�ed locally.
If the constraint is found to be unsatis�ed an event may be announced which will cause error
processing and possibly some recovery.

3. maximum duration time and minimum duration time are implemented with both Pre and
Post constraints. Otherwise, they are similar to the above timing constraints.

In addition to synchronisation, concurrency, and timing, constraints can be used to express method
pre-conditions, post-conditions, and invariants. Some of the ways in which they appear in other

languages are given next (p is a boolean expression over the object state):

� always p or invariant p,

� required p or when p,

� ensures p.

The �rst case is a method invariant and it is implemented with both Pre and Post constraints.
A method pre-condition (the second case) is implemented as a Pre constraint, and method post-
condition (the last case) as a Post constraint. In these examples, if a Pre constraint is not satis�ed
the event noti�cation is usually discarded (optionally some event may be announced). If a Post
constraint is not satis�ed it is usually accompanied by announcing some event.

4 Related work

A possibility of an event-based general-purpose communication mechanism has been suggested in

[40]. This ought to be seen in the context of other proposals for language and system support for
communication (where the communicating entities can be processes, threads, modules, or objects).

An early comparison of message passing and shared memory (or procedure-based) mechanisms
is reported in [35] and [45]. Some of the more recent related work can be found in [1], [9], [21], and

[52]. The remote procedure call (RPC) was introduced as a convenient extension of the procedure
call [42]. Its basic form is synchronous, two-way, and one-to-one exchange of messages ([11], [17]).
It encourages the client-server view of the world and in
uences the way in which programs are
designed and implemented. The need for one-to-many, many-to-one, asynchronous, one-way, and
other forms of communication has led to the extensions of the basic RPC ([8], [23], [51], [54]), and
to completely di�erent approaches (e.g., [12], [14], [16], [20]).

An event based language for parallel programming called EBL is described by Reuveni [44]. In
this language events are the only control mechanism and cause the activation of event handlers.
Event occurrences can be permanent or temporary and events can be recurrent or non-recurrent.
Recurrent events can have multiple active occurrences, independently of whether they a�ect one
or more destinations, and non-recurrent events can have only one active occurrence at any time
(occurrences overwrite each other and only the last one survives).
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The basic computational step is the announcement of an internal event (an event caused by the
program, external events are caused by hardware). EBL is not object-oriented, instead a program
consists of a collection of modules and each module consists of a number of event handlers. Events
are typed; each event type has a name. All the occurrences of the same type of event have the same
number and type of parameters (a parameter can be of an event type, in addition to simple types).
The only action possible in an event handler is the announcement of one or more events. Several
events can be announced sequentially or in parallel. A handler can be augmented with a condition
which has to be satis�ed before the handler is invoked. Reuveni also discusses the importance
of scoping of events, the ways of achieving synchronisation with events, and the expressiveness of
event based languages. Our work has been in
uenced by [44] and can be seen as an attempt to
use some of these ideas in an environment which has objects and constraints.

The generative communication promoted by Linda [14] allows processes to communicate via the
tuple space. A sender inserts a tuple (a list of typed data �elds) into the space without having to
worry about the identity and locality of the receivers. Receivers can inspect or remove tuples from
this space by specifying a template tuple. The reception occurs when a match for the template
tuple is found. Communication through tuple space is used in [38] in the context of distributed
object-oriented languages. Oki et al. [43] use a variant of the Linda approach, called anonymous

communication, where one �eld of each tuple is the subject �eld, and reception is based on the
matching of the subject �elds. Similar to the original approach, communication is independent of
the identities and locations of senders and receivers. Agha and Callsen [2] describe Actorspace, a
programming paradigm which integrates Actors [1] and Linda style communication. Actor-names
can be expressions, they are evaluated in order to �nd the actors whose names satisfy the given
expression. Actorspaces provide a scoping mechanism, are named and can form a hierarchy. The
control of the names visibility, as well as control of the scope lifetime, is explicit and dynamic. Our
approach has similar goals, but it is based on parameterized events and Notify constraints.

It is often stated that distributed systems require group communication, where the group mem-
bership changes and is determined by the global state of the computation (e.g., [2], [9]). Our work
is in line with the attempts to support multiple and changing communication patterns. The loose
coupling of objects avoids \the tendency of distributed naming systems to resolve names before
communication occurs" (Bayerdor�er [9]), and our constraint mechanism allows communications
to be speci�ed in terms of local object states. The associative broadcast primitive of [9] allows the
sender to provide an expression over attributes with each outgoing message. These expressions
are evaluated locally where the potential receivers reside and depending on the outcome of this
evaluation the messages are or are not delivered. Bayerdor�er considers events associated with
naming and communication. Our events can be associated with naming and communication, but
they can also be external events, timer events, and scheduling events [47].

Menon et al. [40] have thread-based and object-based event handlers. In ECO there are only
object-based handlers. They also mention several applications for which events are especially
suitable: distributed monitoring, debugging, and exception handling. The idea of loose coupling
among communicating entities (this time to ease the integration of software components) is also
used in [26] and [49]. There is insu�cient space here to compare various other ways in which events
are used (e.g., [22], [29], [34], [37], [46]).

Communication and control 
ow are often closely related | for instance communication primi-

tives can be blocking or non-blocking. Depending on where and under what conditions this blocking
is done it is possible to classify various primitives and languages with respect to their support for
concurrency and synchronisation control [6]. There has been much work on language support for
controlling the level of concurrency within objects and the order in which events occur. Arjomandi
et al. [7] overview various approaches to adding concurrency support to a programming language.
We use constraints to specify the level of concurrency within an object and do not make threads

visible (except through process-active and process-passive). Some of the work on synchronisation
constraints is reported in [10], [25], [39], and [50]. Frolund [25] have constraints speci�ed as part
of a class de�nition and each constraint restricts the set of methods which may be invoked when
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an incoming request is received. A constraint may depend on the parameters of the received in-
vocation and the state of the target object8. Both [25] and [50] allow composition of constraints.
The former is concerned more with the permissive and the latter with the restrictive aspect of
constraints. In [25] each object has a controller which evaluates the constraints and may delay
invocations (event deliveries) if there is a chance that this will make them acceptable in future.

The Archie language [10] allows speci�cation of synchronisation states (or method pre-states),
and method post-states, and integrates these states with type information. It also addresses the
problem of multi-party synchronisation by introducing multioperations and coordinated calls based
on [8]. In our case, the constraint mechanism can be used to express the required order of event an-
nouncements and deliveries at the level of a single object. Multiparty synchronisation may require
complex expressions involving multiple events which we do not support at present. Our constraints
allow the implementation of activation conditions [19], which are based on synchronisation counters

[5]. An activation condition is attached to a method, and can depend on the instance variables,
names of the methods, invocation parameters, and synchronisation counters. The counters are the
object instance data maintained by the system and showing for instance the number of times each
method was started, �nished, or started and not �nished.

The timing behaviour of a system is naturally described with constraints on event occurrences
([4], [18], [32]). Language support for expressing these constraints helps the development of pro-
grams which meet their timing speci�cation [28]. Kenny and Lin [33] state that for a real-time
system \there must be a way to de�ne the constraints on time and resources to the computations.
Some notion of a constraintmust therefore be part of the system". Their language (Flex) has a con-
straint mechanism as a basic programming primitive. Flex constraints are associated with blocks
of code. Exception handlers may be provided and will be executed when some of the constraints
fail. An important concept used by various real-time languages is that of observable points [28].
They can be seen as markers, relevant for evaluating constraints, for making scheduling decisions
and for tuning the code. Di�erent languages have di�erent notions of observable points. In our
case, the observable points are at the object level (start and end of an event handler); in Flex they
are at the level of a block of code.

The authors of [3] and [31] describe di�erent ways of expressing timing constraints and inte-
grating them into an object-oriented language. Timing behaviour can be described by specifying
the minimum and maximum time when a certain observation point in the code is reached, or by
specifying the time interval between two observation points. RTC++ [31] allows timing constraints
both at the operation and statement level. It also allows a non-timing constraint to be speci�ed
for an operation, which can depend on the instance variables and message parameters. A func-
tion may be provided which is invoked when a constraint is not satis�ed, and which will decide
whether or not the invocation should be queued. The approach described in [3] relies on real-time
composition �lters for expressing timing constraints. There are input and output �lters, speci�ed
at the class level. When an invocation message is received it is matched against the input �lters
for the class. The matching consists of evaluating a named expression which can depend on both
instance and external variables. The method names can also be used for matching | a �lter can
be shared by several methods of an object. When a match is found the timing constraint from the
corresponding �lter is used. Our approach is similar but simpler (it has fewer basic abstractions)
and more general.

Events and constraints have been used for constructing active databases with their Event-
Condition-Action programming model (e.g., [15], [27]). Gehani et al. [27] support events and
triggers in a database programming language. The events are of interest to one object or of
interest to a group of objects and can be:

� basic events There is a number of prede�ned basic events, e.g., creation or deletion of an
object, invocation of a member function, time-related and transaction-related events. A
member function (its signature) can be used as a part of an event declaration.

8Frolund mentions the possibility of using \history instance variables" in the constraints.
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� logical events They are the basic events optionally associated with masks. A mask is a pred-
icate which speci�es which occurrences of an event are of interest. It can use the parameters
of the event being masked, or it can use the state of an object.

� composite events, logical composite events A composite event combines several logical events
using the logical operators (and, or, not) and special event operators. The latter allow among
other things speci�cation of event order and periodic events.

The work reported in [27] is similar to our work in some ways. One important di�erence is that in
our case events are used as a general communication mechanism. Also, we do not have composite
events, but they can be supported at a higher level. A mask is similar to our constraint, but
the latter cannot depend on the state of arbitrary objects. In [27] events are local to an object,
and triggers are associated with a class de�nition. A trigger links an event with an action, and
is active either perpetually or until the associated event is observed and the action is �red. The
trigger corresponds to our facility to subscribe/unsubscribe to an event (both serve to link an
event, constraint, and action). In [27] an action can be an arbitrary statement block while in our
case an action is an event handler which is a method of some object.

In addition to being used for concurrency, synchronisation, and timing, constraints are used for
specifying object invariants ([41]), and as a general construct in declarative languages (e.g., [24]).

5 Conclusions, present state and future work

This document describes the ECO programming model and its use in the Moonlight project. The
event-based mechanism is used for communication among objects, it allows a higher degree of en-
capsulation and simpli�es development of large and complex applications. A generalised constraint
mechanism allows speci�cation of a number of di�erent requirements (synchronisation and concur-
rency within an object, timing behaviour of an object, and object's invariants). Although events
and constraints have been used elsewhere, this combination of events, constraints, and objects
allows a new and often more natural style of programming. Since events diminish the importance
of object references they may allow new approaches to persistence and garbage collection.

At present, we are implementing the support for the ECO model in a single address space,
which is the �rst requirement in the Moonlight project. In addition, the project aims at providing
a set of tools which will help the user to create new games and virtual world applications. In such
an environment, as already mentioned, there are a number of additional issues which will have to
be resolved. One of them is scoping of events. Another is the required kind of inheritance. It
is known that inheritance may interfere with synchronisation and timing constraints ([39], [25],
[3]). In our case, constraints allow separation of the synchronisation and timing code from the

\ordinary" application code. A library of typical constraints may be provided. It remains to be
determined whether, in such an environment, there is a need for inheriting constraints and if there

is then how it should be done. More important than this is to provide some support for expressing
complex constraints which involve multiple events and multiple objects9. It may be possible to do
this at a higher level using the basic building blocks described here.
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