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Physical Model Generation in PDE Analysis
using Model-based Case-based Reasoning
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Abstract  Model generation has emerged as a key task in
engineering design and analysis. AI research in this area has
focused on model based reasoning emphasising qualitative models
in attempting to automate this process. In this paper, we propose
that this work on the use of model based reasoning in model
generation would benefit from the inclusion of case-based
reasoning (CBR) techniques. We argue that the use of cases
constrains the reasoning process as cases reflect known good routes
in the solution space. Cases also have the advantage of facilitating
the integration of heat transfer exemplars, approximations,
formulae and correlations. In addition, much of human competence
in this area is based on reusing solutions to previously solved
problems and CBR emulates this. In the paper, we advance these
arguments based on our experience with CoBRA, a CBR system for
physical model generation for the domain of heat transfer described
by partial differential equations.

1 INTRODUCTION

Model generation has been recognised to be one of the significant
research challenges of the qualitative reasoning community [22,
23, 24] In recent years, research work has focused on different
aspects of model generation including; modelling of engineering
systems using compositional modelling [7,12], behavioural
modelling of engineering phenomena using model abstraction
switching [1], modelling across multiple ontologies using meta-
modelling techniques [13], simplification of design analysis
models using first principles reasoning [14], differential equation
modelling using order of magnitude reasoning [25]. Although
these projects have been motivated by different goals and adopt
different artificial intelligence approaches, a number of general
points can be made. Firstly, most work has interpreted model
generation as a ‘model switching’ task between an initial complex
model and some simpler but unspecified model. Consequently, this
perspective has lead to the development of model generation
systems that have been based on traversing a vast solution space of
engineering knowledge using model-based reasoning techniques.
Secondly, few of the research efforts appear to have been
explicitly grounded on a cognitive understanding of how engineers
in practise actually carry out modelling. This, we believe, has
resulted in the overlooking of a large body of experiential
engineering know-how and techniques. Thirdly, most of the
research efforts have aspired towards automated modelling
environments which aim to replicate the skills and expertise of
engineers. This, we argue has resulted in the focusing on
modelling tasks that are often simplistic and therefore unrelated to
modelling of real world engineering problems. Finally, it is noted
that for some work, there appears to have been little effort in
understanding the real needs of engineers from model generation
tools and to apply these findings to the research efforts; this has
resulted in the development of applications that are often of little
practical use to the engineering profession. It is worth noting that
these comments are not unique to this paper, in so far that they
have been noted by other researchers commenting on the direction
of research in the qualitative reasoning community  [22,23,24].

In this work, we focus on the task of physical model generation
associated with the analysis of engineering problems described by
partial differential equations (PDEs). PDEs are nowadays analysed
using numerical simulation techniques such as the finite element
method. Prior to simulation engineers must create simplified
spatial, phenomenological and temporal models of real world
engineering problems to facilitate efficient computation. Thus, in
this context, physical model generation can be regarded as one of
the preliminary stages of numerical PDE analysis [9]. It has been
acknowledged by both engineering [2, 8] and numerical analysis
researchers [3, 18] that these preliminary modelling tasks form a
crucial part of the overall simulation process and they call for
increased research efforts in the development of knowledge based
model generation tools. Although, there has been considerable
work from the qualitative reasoning community in model
generation, there has been little effort explicitly directed towards
physical model generation in numerical simulation of PDEs.

In this paper, we present a novel approach to physical
modelling in heat transfer analysis which aims to address many of
the issues raised in the first paragraph including: What is the
nature of modelling in PDE analysis? How do engineers carry out
modelling and how does this influence our approach? What do
engineers require from modelling systems?  What type of tools
assist engineers best with the model generation task? Our
examination of these questions has led us to view model
generation as an iterative design task that uses both experiential
and model-based knowledge.  Consequently we have developed a
physical modelling system called CoBRA which exploits both
model-based and case-based reasoning techniques within a
derivational analogy framework. We argue that this approach has a
number of advantages over other work including; cognitive
plausibility, computational tractability, ease of knowledge
acquisition and a more pragmatic engineering approach to model
generation.  Finally, we believe that it addresses some of concerns
raised by researchers from the qualitative reasoning community
about the need to firstly, focus more clearly on significant
engineering problems, and secondly, to tackle these problems in a
manner that is beneficial to the engineering community [22].

The paper is laid out as follows: Section 2 discusses, firstly the
issues associated with the physical modelling of heat transfer
problems described by PDEs, and secondly our understanding of
how engineers carry out physical model generation. Section 3
describes our approach and introduces CoBRA, a system for
carrying out physical modelling in heat transfer analysis. Section 4
examines other related work and deals with some of the wider
implications of our approach.  Section 5 concludes the paper.

2 MODEL GENERATION

In this section we discuss the issues associated with the physical
modelling of the heat transfer PDEs and outline our understanding
and approach to model generation for this problem domain.



2.1   Physical modelling in PDE analysis

Convection heat transfer problems can be defined as physical
systems where heat transfer occurs between a solid body and a
surrounding fluid medium, each at a different temperature.
Numerical analysis of convection problems is usually carried out
in  a number of stages (see Figure 1) which have been identified as
follows [3, 18]:

• Behavioural Analysis This is the first task in most numerical
engineering problems and it involves reasoning about the
physical system with the objective of obtaining a behavioural
understanding of the underlying phenomena. In this work, we
assume that the engineer has already obtained a behavioural
understanding of the physical system.

• Physical Modelling  This phase involves applying
idealisations and simplifications to spatial, phenomenological
and temporal aspects of the physical system with  the
objective of abstracting a mathematical model. This is the
focus of the current work.

• Numerical Simulation This phase involves creating a
numerical model and simulating using numerical techniques
such as the finite element method.

• Visualisation This stage involves post processing and
visualising of the numerical data produced by the simulation
process.
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Except for simple problems, it is neither feasible nor desirable
to analyse all aspects of a physical system. This is because most
real world problems contain complexities that render numerical
simulation difficult and redundancies that are unnecessary to
analyse. In practise, engineers simplify complexities thereby
facilitating more efficient computation and ignore redundancies
without loss to the integrity of the physical system. In physical
model generation the major challenges to the engineer are:
identifying the various complexities and redundancies in a physical
system, applying appropriate modelling strategies to simplify or
reduce these features and assessing the suitability of the resulting
model. We consider physical modelling to consist of a number of
subtasks including, spatial, phenomenological and temporal
modelling.

Spatial modelling focuses on geometric features of the problem
domain and involves applying modelling strategies such as: taking
a two dimensional idealisation of a three dimensional physical
system, finding geometric symmetries or carrying out feature
modelling. Figure 2 illustrates feature modelling, and strategies
can involve either replacing an existing complex feature with a
simpler feature, removing the feature and substituting it with an
equivalent boundary condition or removing the feature completely
without any compensatory measures.

Phenomenological modelling deals with the construction of a
PDE model that describes the thermal heat transfer process.
Considering the full thermal PDE, it consists of three equations
based on the physical laws of conservation of mass, momentum
and energy. Each equation is in turn composed of terms, where
each term describes a particular sub-phenomenon. In many heat
transfer problems it is not necessary to model all these sub-
phenomenon and therefore terms can be either simplified or even
be ignored completely.

Temporal modelling involves choosing an appropriate transient
or steady state model.
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2.2 Our approach to physical modelling in PDE
analysis

The central argument presented in this paper is that for physical
modelling in finite element analysis the existing approach of using
model-based reasoning should be augmented with case-based
reasoning techniques. This argument is based on two assertions:

• This modelling task is based on a weak domain  theory.
• When modelling engineers refer to exemplars and previously

solved problems
This first assertion requires some elaboration because, at first

glance, heat transfer analysis is not normally considered to be a
weak theory domain. This apparent contradiction exists because
there is a strong theory for much of the interaction in heat transfer.
The behavioural description that is the input to this modelling
process is well understood as is the numerical simulation process
(see Figure 1). However, the actual physical modelling process is
not. The task of generating a physical model from a behavioural
model is an abductive process and competence is based on
experience rather than on any comprehensive theory that might be
found in an engineering text. Instead, modelling skills and
strategies are experiential in nature and are acquired by engineers
through experience and practise. In conclusion, the models



themselves are based on a strong domain theory but the process of
producing and simplifying these models is not.

Our second assertion is less contentious; our experience with
engineering modelling is that human experts refer extensively to
heat transfer exemplars and previously modelled problems.
Exemplars occur extensively in the form of fundamental scenarios
that include heat transfer to plates, cylinders, fins, etc. Associated
with these exemplars are a rich body of approximations and
correlations which facilitate analysis and evaluation. Exemplars in
the form of modelling episodes provide the basis for model
generation as practised by engineers. These modelling episodes are
used as building blocks for designing models for use in simulation.
Engineers reason by remembering these scenarios and then
modifying them to fit the current context. These modifications
usually involve 'first-principles' reasoning based around
approximations and correlations associated with the exemplar.
This anecdotal evidence is backed up by research in the related
area of engineering design. While there has little work on the
integration of CBR in engineering modelling there has been much
work on using CBR in design. Arguments that human designers
refer to past problem solving episodes are presented in [11, 20,
21].

Summarising then, we argue that the QR research on
modelling would benefit from the integration of CBR techniques
because that is the way engineers do it. In addition, we argue that
the fact that modelling is based on a weak domain theory signals
that a CBR approach will be fruitful.

3.0 PHYSICAL MODEL GENERATION IN
      CoBRA
 CBR is an AI methodology that serves the basic intuition that
humans reuse solutions to previously solved problems during
problem solving. The most obvious advantage of this approach is
that competent systems can be developed based on shallow domain
models, thus requiring little knowledge engineering. However, it is
generally accepted that CBR systems for design require reasonably
deep domain models and much work has been done in this area [4,
11, 15, 16]. CBR systems incorporating deep domain models still
have advantages over systems based on first-principles reasoning.
The case organisation helps focus the knowledge acquisition
process and the cases encode known good routes through the
solution space and thus constrain the solution search process [6].

One of the key issues in CBR is the manner in which the cases
are adapted. The standard approach is to transform the solution of
the old case to meet the specification for the new case. In some
circumstances the interdependencies in the solution components
are too complex for this to be practicable. In this case generative
adaptation (derivational analogy) can be used. This involves
reworking the steps in the solution generation process in the
context of the new problem specification. This is the strategy
adopted in CoBRA.

Considering now how this approach is incorporated with the
CoBRA modelling system, we summarise our conceptual approach
by the following points:

• Modelling is carried out in distinct stages which include
phenomenological, spatial and temporal modelling.

• Within any modelling stage, modelling decisions are taken in
a piecewise fashion by examining each modelling issue in

turn. In this way a physical model is designed in a step by step
manner.

• Case based reasoning with model-based generative adaptation
forms the core  AI approach.

• A case consists of a description of the modelling problem, a
modelling solution and a derivational trace.

• Derivational traces consist of a model based reasoning trace
by which a modelling solution was reached. They also act as a
validation mechanism and explanation facility of the case
solution.

3.1 Case Descriptions in CoBRA
In CoBRA, a target case consists of a frame based representation
of the physical system. Frames are generated by means of a
graphical input using AutoCAD. Within a target frame,
representation is organised according to the different modelling
stages, spatial, phenomenological and temporal. A physical entity
is classified by the user in terms of qualitative indices. Problem
parameters such as geometric data are also included in the target
case but are not used as indices, however this information is used
in the derivational traces.

A base case consists of a representation of the real world
physical system, the solution in the form of a simplified model and
a reasoning trace of the justifications for the transformations in
going from the real world problem to the simplified model. Figure
3 illustrates a portion of such a case. The diagram on the left shows
a cross section of a finned heat exchanger cooler, and the task
addressed by CoBRA is to produce a simplified model of this
physical system. The frame definition on the right illustrates the
problem description, the problem solution and the derivational
trace that provided this solution. A target case contains only the
problem description; this is the specification of the physical
system. Cases are retrieved using an activation network based on
feature similarities and a case solution is created by using
generative adaptation involving a re-run of the reasoning trace
using the derivational trace (see [10] for more details).

3.2 Generative Adaptation using Model based
Reasoning
In CoBRA, the derivational trace links the start and goal state of a
case. Each  reasoning trace has two main components; a decision
part and a resulting action part  (after [5]). The decision part
contains:

• Alternative modelling strategies considered and rejected
• Assumptions and justifications for the decisions taken.
• Heat transfer approximations and correlations to allow

evaluation of a particular modelling strategy.
• Heat transfer domain knowledge describing dependencies of

later decisions on earlier ones.
The action part holds the steps taken as a result of the reasoning
trace of the decision part. A typical action is, "Remove the feature
which faces into the flow”. A typical reasoning trace is shown in
Figure 4. Each node in the reasoning trace represents a decision
point in the model simplification process. Goal_1 and Goal_2
illustrate how a reasoning trace in derivational analogy represents
a known good route through a vast search space. Goal_3 shows the
various fin modelling strategies that are considered and the actions
associated with each strategy. In this situation the modelling
strategies depend on the amount of heat transfer associated with



the feature under consideration. By estimating this heat loss
parameter a suitable strategy can be chosen and the appropriate
modelling actions can be applied to the target case.
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Figure 3  A case in the Cobra system

4.0  Comparison with Related Work
In this section we briefly review related work and in this context,
compare our approach  to model generation.

Addanki [1] describes an automated modelling approach using
a methodology called the “graph of models”. The basic idea is that
system behaviour can be represented by a series of interlinked
models which exist at different levels of abstraction. Modelling
progresses by automatic selection and changing of analysis models
on the basis of assumption satisfaction and model accuracy.

Iwasaki [12] describes a system called Device Modelling
Environment that formulates a behavioural model of a device,
simulates its behaviour and interprets the results. An input
description of the device topological structure is given and a
compositional modelling approach formulates the appropriate
mathematical model.

Yip [25] describes a system for simplifying the Navier Stokes
fluid equations using order of magnitude reasoning within a
qualitative reasoning framework. The conceptual approach
adopted is rather similar to the way an engineering academic
would engage in deriving simplified models. PDE models
produced by the system are mathematically complete, but may in
some cases have no physical meaning. This modelling task in
similar to the phenomenological  modelling stage described in
Section 2.1

Ling [14] discusses a system for generating sets of PDEs for
designing thermal systems described by either algebraic equations,
ordinary differential equations and PDEs. Order of magnitude and
dimensional analysis techniques are used to heuristically derive a
mathematical model. Currently they have implemented their
approach for conduction heat transfer problems.
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Shephard et al. [17] discuss the various modelling decisions
that must be considered when specifying a mathematical model for
numerical analysis. They describe an approach based on a rule
based expert system for the domain of stress analysis in aircraft
structures. Attention is focused on the use of different idealised
behavioural models at different levels of abstraction.

Falkenhainer and Forbus [7] describe  an approach based on
compositional modelling. By using explicit modelling assumptions,
domain knowledge can be to be decomposed into semi-
independent fragments, each describing various components of the
physical system.

In our work, we deal with physical model generation associated
with engineering problems described by PDEs; to date only the
work of Yip [25] and Ling [14] have dealt with this class of
problem. Our approach however has some significant differences.

Firstly, rather than deriving models from first principles, we
use cases which are based on tried and tested episodes. One
advantage is that, in practise for finite element analysis, engineers
do not normally derive physical models from first principles (as
described by Yip [25]). Instead, our obervations have been, that
they choose between known good models and then ‘tweak’ these
models to satisfy the problem at hand [9]. Cases with model-based
generative adaptation support this approach to modelling more
readily. Another advantage is that, cases encode known good
routes through weak domain solution spaces thereby avoiding
extensive backtracking often associated with model-based
approaches [6].

Secondly, we argue that by using case based reasoning
techniques, we can capture a body of experiential engineering
skills and know-how, that is otherwise difficult to represent by
model-based techniques. Our studies of modelling have indicated
that engineers make extensive recourse to this type of knowledge
when carrying out physical modelling in numerical analysis [9].



 Thirdly, from a knowledge engineering perspective, the use of
derivational traces means that the knowledge acquisition process is
carried out in the context of episodes. This we found provided no
special difficulties for our domain expert, which is in contrast to
experiences for elicitation of generalised knowledge associated
with model based approaches [26].

Fourthly, we argue that this approach meets more closely the
needs of engineering practitioners in a number of ways. For
instance, compared to the work of Iwasaki [12] which aims to
develop a complete modelling and simulation environment, we
believe that the emergence of modelling tools that can be
integrated between existing CAD and numerical packages will
serve engineering needs most usefully  [2,3,8,18]. In addition, we
believe that such tools should aim to empower engineering
analysts, and therefore, it is likely that interactive modelling
support systems as advocated in this paper will achieve this aim
more readily [9].

5.0 Conclusions
In this paper we presented an approach to physical model
generation that adopts both case based and model based reasoning.
This approach has been based on the assertion that physical
modelling generation is a poorly understood process and is often
carried out using a combination of episodic and first principles
reasoning. This argument is backed up by our belief, not only that
physical modelling is based on a weak domain theory but also that
engineers make extensive use of previous modelling episodes and
experiential knowledge when modelling. Furthermore we argue
that for physical modelling in PDE analysis, interactive modelling
tools that operate between CAD and numerical analysis systems
are most likely to most useFul for engineers in physical modelling
tasks.
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