

A VDM♣ Study of Fault-Tolerant Stable Storage
– Towards a Computer Engineering Mathematics

Andrew Butterfield

Department of Computer Science, Trinity College, Dublin 2, Ireland

Abstract. This paper presents early results of research work being car-
ried out on applying formal methods to the analysis of Stable Storage
(Lampson 1981), which is a particular form of Fault Tolerance (Johnson
1989) adopted for data storage systems A prime concern is the devel-
opment of the methods of the Irish School of VDM (VDM♣) (Mac an
Airchinnigh 1990) as applied to this application as an effective engineer-
ing mathematics discipline. Early results of the modelling are reported
involving both the use of the formalism and understanding of the appli-
cation area gained from the modelling. Also emerging from the research
are suggestions of possible new operators that might be added to the cal-
culus to make it a more effective modelling tool, as well as new extensions
to the formal method itself.

1 Introduction

This paper presents early results of research work being carried out on applying
formal methods to the analysis of fault-tolerance (Johnson 1989) in general, and
Stable Storage (Lampson 1981) in particular. The goals of the research are to
produce adequate models of such fault tolerance to assist the FASST research
project1 and to improve and develop the formal method employed, which is the
VDM (Bjørner and Jones 1978, Bjørner et al. 1987) as modified by the Irish
School (Mac an Airchinnigh 1990, 1991). The Irish School of VDM (VDM♣)
places VDM in a framework of Applied Constructive Mathematics, basing its
reasoning on proving the equality of expressions by substitution of equals, as used
in conventional engineering mathematics. This should be contrasted with the
approach of Jones (1990) which uses the Logic of Partial Functions (LPF) as its
underlying mathematical base. It is the main contention of the Irish School that
the constructive mathematics approach, having many similarities to conventional
engineering mathematics, is easier to use and henceforth more effective than
those formal methods which rely on some form of logic.

Both goals are seen as synergistic — the development of the stable stor-
age sub-system is hard industrial research and development that requires very
rigourous reasoning if it is to succeed — while the goal of developing a truly
industrial strength set of models and methods will be assisted considerably by
the fact that they are being developed in tandem with such a project.

1 ESPRIT P 5212 Fault Tolerant Architectures using Stable Storage

Before proceeding with the details of concern in this paper, it is worthwhile
mentioning various aspects of the VDM that are not mentioned here. This paper
has no examples of reification (Andrews, 1987, Jones 1990, Ch. 8., p179) as it
has been discussed elsewhere and is not the present focus of this work which
involves the construction of high level abstractions. Nor do pre-conditions play
a major rôle here as the intention of modelling fault tolerant systems is to come
up with models valid under all circumstances. The absence of reification or pre-
conditions must not be interpreted as meaning that they are absent from VDM♣.
They exist and are used in the same fashion as those found in other “Schools”.

The notation used is largely that of VDM, except where it clashes with
established mathematical notations. The VDM♣ tends to adopt conventional
notation where a clash arises, in keeping with its philosophy which eschews the
use of automated tools and favours much use of hand-written analysis. A guide
to the notation used here is given in Appendix A at the end of this paper.

2 Ideal Memory

We start with a brief description of an abstract model of ideal memory, complete
with read and write operations. A more detailed discussion can be found in
(Butterfield 1992b). The precise nature of addresses and the stored values is not
important at this level of detail, so they will be treated simply as being drawn
from appropriate sets, which are considered to be finite. In particular, values
could be bytes or pages, in solid-state memory or on magnetic media. Memory
is modelled as a mapping from addresses to values, with Read (R) and Write
(W) operations modelled as map application and override respectively:

a ∈ ADDR , v ∈ VAL

μ ∈ MEM = ADDR
m→ VAL

R : ADDR → MEM → VAL

R(a)μ � μ(a) (1)

W : ADDR × VAL → MEM → MEM

W (a, v)μ � μ + {a �→ v} (2)

Note 1. As we are considering general memory systems, that we hope will run
correctly all the time, all of the the memory accessing operators defined in this
paper are considered to have a true pre-condition. Any erroneous events leading
to some form of failure will be explicitly modelled as will be seen later, and will
always be defined, regardless of the state of the memory.

Note 2. The operators are defined using constructive post-conditions which spec-
ify the results as expressions. This should be contrasted with post-conditions
expressed in the form of predicates which must be satisfied by the outputs.

This latter approach gives rise to a proof obligation (Jones 1987, 1990) to show
that outputs meeting post-condition do in fact exist. The former approach, as
adopted by the VDM♣ incorporates just such a proof, as the post-condition has
been constructed.

Note 3. value The address (a) and data (v) arguments of these operators have
been been separated from the memory arguments (μ) by the technique of cur-
rying (Schonfinkel 1924, Curry 1958). This allows use to interpret R(a) as an
operation that reads from address a of any memory, and W (a, v) as an operator
that writes v into address a of any memory.

Given this model it is easy to show some key properties regarding the effects
of multiple Writes to the same or different addresses and the effect of Writes on
subsequent Reads:

(R(a) ◦ W (a′, v))μ = if a′ = a then v elseR(a)μ (3)
(W (a, v) ◦ W (a′, v′))μ = (4)

if a′ = a thenW (a, v)μ else (W (a′, v′) ◦ W (a, v))μ

These properties are fairly obvious, but are presented here so that they can be
contrasted and compared with later results.

2.1 Error Detecting Memory

2.2 The Model

The key feature of error-detecting memories is some form of encoding that builds
in redundant error detection data, with an associated decoder that extracts
the original data along with some indication of possible errors. Our first model
of error-detecting memory (EDM) avoids any explicit mention of an encoding
scheme—it presumes that the VAL component of perfect memory is replaced
by a B × VAL pair, where the boolean flag is set to true if no error has been
detected in the data. In all that follows it is important to note that the flag
models the knowledge the memory has of the condition of its data. A true flag
does not necessarily signify that no error has occurred, and indeed won’t do so
if an undetected error has taken place.

μ ∈ EDM = ADDR
m→ (B × VAL)

The relationship between MEM and EDM is not one of reification involving
abstraction and representation. Error Detecting Memory is viewed within the
VDM♣ as an Elaboration of the MEM model (Mac an Airchinnigh 1990). The
“perfect” Read and Write operators are replaced by Lampson (1981) with “im-
perfect” analogues called Get (G) and Put (P). These take additional event
parameters which model the possible changes that might occur to data during
memory operations. These events are modelled as total functions which express
how the data actually stored or retrieved is related to the original specified data.

εr ∈ R EVT = (B × VAL) → (B × VAL)
εw ∈ W EVT = VAL → R EVT

Note 4. An instance of εw has the form εw[[v]](b, w) � (b′, v′) where the single
value v represents the new value being written to the memory, while the B×VAL
pair (b, w) denotes the previous contents. The result (b′, v′) of the event function
is the (boolean,value) pair that is actually written. The brackets used ([[]]) are
simply intended to highlight the curried arguments.

The reason for choosing functions, rather than erroneous values, to represent
events is that functions can capture context-dependent errors (such as bit-
toggling) which cause the erroneous value to depend on the previous value.

G : R EVT → ADDR → EDM → B × VAL

G[[εr]](a)μ � εr(μ(a)) (5)

P : W EVT → ADDR × VAL → EDM → EDM

P[[εw]](a, v)μ � μ + {a �→ εw[[v]](μ(a))} (6)

Note 5. The choice of the signatures of the Put and Get operator is dictated by
a desire to separate the events from the specifics of the data and addresses being
used as much as possible, as one aim of the model is to be able to consider events
in isolation. However there some key areas where this is not straightforward or
possible as will be discussed shortly.

Comparison with MEM . In practice, we hope that errors are few and far
between! We need to be able to model situations when no errors are taking place
within the same framework. This is very straightforward—Error-free Puts and
Gets will use Identity Event functions (εI

w and εI
r respectively).

εI
w : W EVT

εI
w[[v]](b, w) � (true, v) (7)

εI
r : R EVT

εI
r

� I (8)

The first thing that should be shown is that error-free Gets and Puts in EDM
behave just like the Reads and Writes of MEM . The full detail of this is to be
found in (Butterfield 1992b) and presents no great difficulties, as long as we
restrict EDM to those cases where only true occurs in the stored tuples, thus
denoting memories where no errors have been detected. We just sketch the details
here. Essentially we introduce the notion of a Restricting Invariant (inv−Dr)
which limits a domain D to some subset (Dr) that has desirable properties. We
also introduce a Partial Retrieve function (retrp−E) from Dr to another domain
(E) with which the intended comparison is being made. In effect, the restricting

invariant acts as a pre-condition for the partial retrieve function.

inv−EDMr : EDM → B

inv−EDMr (μ) � (∧/ ◦ P(π1) ◦ rng)μ (9)

retrp−MEM : EDMr → MEM

retrp−MEM(μr) � (I m→ π2)μr (10)

The problem then reduces to proving the following identities (Butterfield 1992b):

W (a, v) ◦ retrp−MEM = retrp−MEM ◦ P[[εI
w]](a, v) (11)

R(a) ◦ retrp−MEM = π2 ◦ G[[εI
r]](a) (12)

What is of interest here is the notion that an elaboration of a model can be
mapped back onto the original model if a suitable Restricting Invariant is found.
However, it must also be stressed that the relationship here is not of reification. In
particular, there is no requirement to show how elements of EDM that contain
false flags are related to elements of MEM as there is no correspondence in
MEM to such erroneous values.

Properties of the Model. We now proceed to examine the EDM model in
more detail. First note that the model does not include scope for addressing
errors—other than by explicitly using an address that is declared to be ‘wrong’.
This is not a serious omission at present because address errors, are a disaster,
as far as the fault tolerant stable storage systems in this paper are concerned.

Event Examples. Two important examples of Write Events are the Null Write
(εφw), where no data is changed at all, and the set of Decay Events (εδw) which
indicate the corruption of data while sitting in memory. Decay can be modelled
by a Put operation with a Write Event that ignores the Put’s VAL parameter

εφw[[v]](b, w) � (b, w) (13)
εδw[[v]](b, w) � δ(b, w)where δ ∈ R EVT (14)

The Null Write event during a Put operation illustrates an important point
regarding the interpretation of the EDM model. Such an event will normally
be considered an error by any observer, even though the resulting contents of
memory may be flagged with true and actually be the previously correct data
that was stored before the Put occurred. This data is incorrect as the correct
outcome of the Put operation should have been a true flag with the new data.
To re-iterate: the value of the flag only models the error detecting memory’s own
perception of the state of the data.

Note that both examples above show that some classes of Write Event func-
tions make use of existing values in memory, rather than overriding them the
fashion an ideal Write operation. We have here a first classification of Write

Events which distinguishes between History-Preserving and History-Breaking
Write Events. A History Breaking event is one where the resulting data is in-
dependent of the previous contents of memory, and can always be expressed in
the form εw[[v]](b, w) � εr(true, v) where εr is the equivalent Read Event. The
Identity Write function (εI

w) is the most obvious (and hopefully most frequent)
example of a History Breaking Event.

Operator Composition. As with the ideal memory model, it is now necessary
to investigate the effects of composing Puts and Gets, with the expectation that
the presence of Write Event functions that are history-preserving will complicate
matters. We find that the effect of Get after Put is much the same as observed
for Reads and Writes (3):

(G[[εr]](a) ◦ P[[εw]](a′, v))μ
= if a′ �= a thenG[[εr]](a)μ else (εr ◦ εw[[v]])μ(a) (15)

However, the relationship between successive Puts to the same address is more
complex. Using the definition of Put twice with events εw and ε′w gives the
following identity:

(P[[εw]](a, v) ◦ P[[ε′w]](a, v′))μ = P[[εw]](a, v)(P[[ε′w]](a, v′)μ) (16)

However, the desired result is of the form

(P[[εw]](a, v) ◦ P[[ε′w]](a, v′))μ = P[[ε′′w]](a, v)μ (17)

where ε′′w is the single event that is equivalent to the afore-mentioned two. To
achieve this we introduce a version of function composition that is generalised to
handle the presence of curried arguments. The General Function Composition
operator (�) is ternary, taking the two functions to be composed as well as the
curried argument of the first function to be applied (Butterfield, 1992a). The
following equations give a definition of this operator and illustrates one of its
key properties (a form of Associativity):

(f �x′ g)[[x]]y � (f [[x]] ◦ g[[x′]])y (18)
f �x (g �x′ h) = (f �x g) �x′ h (19)

This operator enables us to produce a combination of event functions and some
context values in such a way as to produce an expression that is itself an event
function (i.e. has the same signature). This allows us to maintain the desired
separation of events from the data being inserted into memory. Given this oper-
ator we can then describe the effect of two successive Puts to the same address
as follows:

P[[εw]](a, v) ◦ P[[ε′w]](a, v′) = P[[εw �v′ ε′w]](a, v) (20)

where we can say now, that ε′′w = εw �v′ ε′w. This should be compared to (5).
The key result of all of this is that the effect of a sequence of Puts to one address
is given by a single Put with the appropriate composition of event functions:

P[[εnw]](a, vn) ◦ P[[εn−1
w]](a, vn−1) ◦ · · · ◦ P[[ε2

w]](a, v2) ◦ P[[ε1
w]](a, v1)

=
P[[εnw �vn−1 ε

n−1
w �vn−2 · · · �v2 ε

2
w �v1 ε

1
w]](a, vn) (21)

Note that the composition depends on both the events ε1
w . . . εnw and the context

(v1 . . . vn−1) in which they occur. This context dependence is important, and
the use of the � operator highlights precisely what this dependence is. Despite
an desire, expressed earlier, to separate the events from the data and addresses
involved with Put operators, we see that cannot be achieved for successive Puts
to one address. The outcome of a sequence of general events depends intimately
on the values present in memory before the events occur. This is most clearly
seen in the expression εnw �vn−1 εn−1

w �vn−2 · · · �v2 ε2
w �v1 ε1

w which suggests
visually the interleaving of the composition of the write events with the values
that the Puts are attempting to write to the memory Adding a new operator
should always be approached with care, lest it be too specialised to be of any
use outside the problem domain for which it was devised. An indication of other
possible uses for � is given in Appendix C.

2.3 Careful Memory

In (Lampson 1981), the next step was to define “Careful” versions of Put and
Get. There, they are viewed as more fault-tolerant versions implemented using
Get and Put as building blocks, but we will treat them as additional operators
over the same EDM model.

CarefulGet. The following quote describing CarefulGet is from Lampson (1981).

“CarefulGet repeatedly does Get until it gets a good status, or until it
has tried n times”

Note that this implementation makes no explicit mention of errors. To model
the fault tolerant aspects of CarefulGet (CG) we need to introduce the notion
of a sequence of Read Events which will be an extra argument to the Careful-
Get operation. It is then straightforward to give a recursive definition of the
CarefulGet operator in terms of Get, that matches the above implementation
description, except that the premature exhaustion of the read events is inter-
preted as meaning that a crash occurred before the CarefulGet operation could
return any results. This is indicated by ⊥, which is used in the VDM♣to denote
a “do not care” situation, as well as “undefined” (Mac an Airchinnigh 1990).
The use of a pre-condition to exclude ⊥ results is not appropriate, as this would
exclude crash conditions from those deemed as ”valid inputs” to CG. As the
data returned is not defined should the flag be false, this situation is denoted

here by the form (false,). This is the equivalent to the non-deterministic post-
condition of more conventional VDM (Jones, 1990, p104 for example) as the ‘ ’
marker indicates a slot where any value (of the appropriate type) will suffice.

ςr ∈ R EVTS = R EVT� (22)

CG : R EVTS → ADDR → EDM → B × VAL

CG[[ςr]](a) � CG′[[n, ςr]](a) (23)

CG′[[0, ςr]](a)μ � (false,) (24)
CG′[[k, Λ]](a)μ � ⊥ (25)

CG′[[k, εr:ςr]](a)μ � (26)
let (b, v) = G[[εr]](a)μ in

if b then (b, v) elseCG′[[k − 1, ςr]](a)μ

A key property (whose proof is straightforward) can be immediately stated:

CG[[ςr]](a) = CG[[ςr[1 . . .n]]](a) (27)

where [1. . .n] selects the first n elements of a sequence.
A more important property, that is discussed in more detail here, is that

the result of a CarefulGet operation with a given Read Event Sequence can be
reduced to that of a Get operation with an single equivalent Read Event. This
equivalent Read Event is called the Get-Equivalent Form (GEq) of the sequence
and is derived from the given sequence, as well as a consideration of the actual
contents of memory. The only difference is the treatment of crashes, which will
be discussed later.

We already have one result regarding the fact that only the first n elements
of the sequence matter. The next result is obtained by noting that the address
being read during a CG operation is always the same as is the (b, v) value being
handled by the read events. So each event in the sequence has the same context.
We also note that the following occasions when CG will terminate:

– at the first occurrence of an event that results in (true,).
– if the first n events result in (false,).

A case that needs to be examined is one where all the events result in (false,),
but the number of those events is less than n. In other words what has occurred
is a crash, after (so-far) persistent read errors. It can be shown that, in the
event of a crash, there is no single read event equivalent to the sequence. We can
define a predicate Crsh that indicates if a sequence will result in a crash, given
the existing contents of memory:

Crsh : B × VAL → R EVTS → B

Crsh[[b, v]]ςr � lenςr < n (28)
∧
elems((DoneG[[b, v]])�ςr) ⊆ {false}
whereDoneG[[b, v]]εr = π1εr(b, v)

Note 6. When applied to a read event, DoneG[[b, v]] returns true if CarefulGet
would terminate after that event.

The Crsh predicate serves to act as a pre-condition for GEq. The Get-Equivalent
Form is defined as follows:

GEq : B × VAL → R EVTS → R EVT

pre−GEq[[b, v]]ςr � ¬Crsh[[b, v]]ςr (29)
GEq[[b, v]]ςr � ςr[min{n, fT }] (30)

where fT = fstloc[[{true}]]β
whereβ = (DoneG[[b, v]])�ς ′r
where ς ′r = ςr[1 . . .n]

Note 7. When applied to a sequence, fstloc[[S]] returns the index of the first
occurrence of a member of S in the sequence. If none are found it returns the
sequence length plus one.

Note 8. The sequence β consists of booleans indicating whether each event would
cause CarefulGet to halt. It is produced by mapping DoneG[[b, v]] onto every
element of ς ′r.

The result is the single error which, if it occurred when a G was attempted,
would have the same result as the CG attempted with the sequence of errors

The key property of Get-Equivalent Forms is as follows:

¬Crsh[[μ(a)]]ςr ⇒ CG[[ςr]](a)μ = G[[GEq[[μ(a)]]ςr]](a)μ (31)

The proof of this is quite extensive, by induction on n and ςr, and can be found
in (Butterfield 1993b).

CarefulPut. The following quote describing CarefulPut is from Lampson (1981).

“CarefulPut repeatedly does Put followed by Get until the Get returns
good with the data being written”

The most important thing to note here is the complete absence of the parameter
n. CarefulPut keeps trying until it succeeds or crashes.

Question 9. How should errors and events be modelled here ? We have alternat-
ing Puts and Gets with the possibility of a crash inbetween at any point!

Various alternatives are discussed in (Butterfield 1993b), with the method
of choice being to use sequences of Write Events. When the Write Events are
being fed into the Get operator (every second event in the sequence), they are
first applied to the value (v) that the CarefulPut (CP) is trying to write. This
results in a Read Event which is context sensitive and can depend on both the
existing memory contents and the value v. Given sequences of Write and Read
Events, it is possible to produce such a single Write Event Sequence denoting
their combined effect during a CarefulPut operation by:

1. “Lifting” every Read Event to produce an equivalent Write Event. Such
lifted Read Events will be denoted by εwr or εpr : ε

w
r [[v]](b, w) � εr(b, w)

2. Zipping together the lists, but alternating elements from each, starting with
the original Write Events.

For the Get operator in general there is no “context” (what VAL entity would
act as the first argument ?). However, in the case of CarefulPut, a natural choice
for such an argument is present.

ςw ∈ W EVTS = W EVT�

CP : W EVTS → ADDR × VAL → EDM → EDM

CP[[Λ]](a, v)μ � μ (32)
CP[[<εw>]](a, v)μ � P[[εw]](a, v)μ (33)

CP[[<εw, ε
w
r > �ςw]](a, v)μ � letμ′ = P[[εw]](a, v)μ in (34)

if G[[εwr [[v]]]](a)μ′ = (true, v)
thenμ′

elseCP[[ςw]](a, v)μ′

It might appear that CarefulPut is non-terminating, as a reading of the Lampson
quote above would seem to imply. This is not the case however, as the specifica-
tion presented above encodes explicitly what Lampson assumes implicitly, that
CarefulPut, when faced with persistent errors, will run until a crash occurs and
that such a crash will always eventually happen. The specification of CP above
shows this simply because the parameter ςw is a finite sequence of events, and
two of them are consumed for each recursive iteration.

The goal here is to find a Put-Equivalent Form (PEq) for W EVTS, that
determines the single Put which has the same effect as CarefulPut, as already
shown for CarefulGet. We introduce a binary version of the �x operator intro-
duced earlier, that can be used when the curried arguments are the same (the
subscript decoration denoting a curried argument is dropped). This is called
the Same Argument Composition operator and is also discussed in (Butterfield
1992a) It has the following definition:

(f � g)[[x]]y � (f [[x]] ◦ g[[x]])y (35)

We proceed by noting the condition under which CP terminates, in the absence
of crashes. This can be shown to be the following:

if (εwr � εw)[[v]]μ(a) = (true, v) (36)

The CP algorithm will iterate until this condition is met, where μ denotes the
state of the memory at the start of each iteration. The state of memory at the
end of each iteration is given by:

μ′ = μ + {a �→ εw[[v]](μ(a))} (37)

Assume a call of CP that iterates many times, due to some persistent com-
bination of erroneous events (< ε1

w, ε
1
r, . . . >). The successive contents of μ(a),

originally u (say), will appear as follows:

μ0(a) = u (38)
μ1(a) = ε1

w[[v]](u) (39)
μ2(a) = (ε2

w � ε1
w)[[v]]u (40)

...
...

μk(a) = (εkw � . . . � ε2
w � ε1

w)[[v]]u (41)

The derivation of a Put-Equivalent Form involves the recognition of the fact
that, unlike CarefulGet, CarefulPut does return a meaningful result in the event
of a crash—namely the state in which the memory is left by that crash. We
therefore anticipate that an equivalent form will be found for any instance of
W EVTS, even if it denotes a crash situation. In particular, we discover that
appending any arbitrary “lifted” Read Error (εwr) to the end of a sequence that
denotes a crash between a Put and a Get (odd number of errors), will have no
net effect on the resulting contents of memory:

odd(lenςw) ⇒ CP[[ςw]](a, v) = CP[[ςw� <εwr >]](a, v) (42)

The proof is presented as Appendix B of this paper. In effect, we have converted
the situation to one in which the crash occurs just after the Get, which of course
has no effect on the resulting contents of memory.

Note 10. We have assumed here that Gets cannot side-effect memory, regardless
of what fault occurs. This assumption would not hold valid for memory technol-
ogy like Integrated Circuit dynamic memories that perform destructive read and
the restore on a whole row of memory as well as the periodic read and refresh of
every row2. In the presence of faults this could lead to memory changes on read
as well as changes to bits at other addresses.

However, introducing this issue at the level of abstraction presented in this paper
will introduce implementation features that are inappropriate at this point. The
proper way to handle such issues is as they arise during the data reification
process, which is where such details start to emerge.

An even more important response to the above note arises when we observe
that the effect of such erroneous writes to data other than at the addressed
location is likely to produce faults that cannot be tolerated by the stable storage
system. In many ways these events are analogous to addressing errors. A key
feature of the stable storage algorithms seems to be that the error-detection
mechanism must cover all the data that could be affected during a Get or Put
operation.

2 Thanks must be given to an anonymous referee for pointing this out

We can now proceed to illustrate the Put-Equivalent Form:

PEq : VAL × (B × VAL) → W EVTS → W EVT

pre−PEq[[v, (b, w)]]ςw � even(lenςw) (43)
PEq[[v, (b, w)]]Λ � εφw (44)
PEq[[v, (b, w)]]ςw � π1(ς ′w[i]) (45)

where i = min{lenςw, fT }
where fT = (fstloc[[{true}]] ◦ DoneP [[v, b, w]]�)ς ′w
where ς ′w = (
� ◦ 〈,〉)ςw

Note 11. We are excluding sequences of odd length, as they can be extended by
appending any lifted Read Event.

Note 12. The equivalent of a null event sequence is the Null Write event, as
nothing changes.

This description is best understood by observing how it was constructed. Assume
that ςw =<w1, r1, w2, r2, . . . , wm, rm>.

The 〈,〉 operator simply converts an list of even length (2m) into one of half
the length containing pairs thus:

〈,〉 <w1, r1, w2, r2, . . . , wm, rm>=<(w1, r1), (w2, r2), . . . , (wm, rm)> (46)

Note that this step indicates that we could have chosen this form of pair-sequence
to represent the events during CarefulPut, as was discussed earlier, without any
radical difference in the underlying operator properties.

We want to replace every wi by the composition of itself with every write
event that occurs earlier. This reflects the fact that the effect of that event may
depend on previous ones. We wish to convert

<(w1, r1), (w2, r2), . . . , (wm, rm)> (47)

to
<(w1, r1), (w2 � w1, r2), . . . , (wm � · · · � w2 � w1, rm))> (48)

To do this we introduce a binary operator � defined as follows:

(w1, r1) � (w2, r2) � (w2 � w1, r2) (49)

Another operator we introduce is
 which is a combination of mapping and
reduction. Given a binary operator ⊕ then
⊕ converts a list of the form:

<x1, x2, x3, . . . , xn> (50)

to the following list:

<x1, x1 ⊕ x2, x1 ⊕ (x2 ⊕ x3), . . . , x1 ⊕ (x2 ⊕ · · · ⊕ xn)> (51)

This operator and its properties are discussed in more detail in (Butterfield
1993a) Applying
� has the desired effect.

We finally need a predicate to check to see if a Put-Get sequence was suc-
cessful:

DoneP [[v, b, w]](εw, εwr) � (εwr � εw)[[v]](b, w) = (true, v) (52)

Applying this to every element of the sequence produced in the last step results
in a sequence of booleans which indicates which event pairs would have resulted
in termination

fstloc is used to obtain an index in a similar manner to GEq.
The key property that we required for the Put-Equivalent Form is now stated:

CP[[ςw]](a, v)μ = P[[PEq[[v, μ(a)]]ςw]](a, v)μ (53)

The proof is trivial for null sequences (Λ), while that for non-null sequences
proceeds by a variant of structural induction with a somewhat counter-intuitive
inductive step:

1. Base Case: ςw =<εw, ε
w
r >

2. Inductive Step: We assume that if it holds for an instance of ςw of the form:
<εw � ε′w, ε

w
r > �ςw

that from this it is possible to deduce that it holds for the following instance:
<ε′w, ε

p
r , εw, ε

w
r > �ςw

We will justify the induction step here by pointing out that it is possible, given
any error list (of even length), to construct a chain of lists of decreasing length,
matching the induction step, until the base case is reached. The proof details
are omitted here but can be found in (Butterfield 1993b).

2.4 Degree of Coverage

As we have seen, the equivalence operators reduce the sequences of events used
by CarefulGet and CarefulPut to the single event that would produce the same
result if used by Get or Put. The natural question to ask here is:

Question 13. Is the set of events that can result from finding the equivalents all
possible sequences a proper subset of the set of all possible events ? In other
words, has the introduction of the Careful operators eliminated some events
(hopefully the erroneous ones) ?

The answer is NO, as can be seen by the following identities — Let εr be such
that it produces (false,) when its context is some instance of B×VAL, denoted
by (b, w). Then the following always holds: GEq[[b, w]] <εr, εr, . . . , εr>= εrwhere
there are n occurrences of εr. For a given value v, let εwr [[v]](b, w) = (true, v)
be the lifted read event that always returns that value flagged as OK. The the
following always holds for any εw: PEq[[v, (,)]] <εw, λv · λ(b, w) · (true, v)>=
εw.

The Careful operators provide quantitative fault tolerance, in that they re-
duce the probability of some errors occurring. They do not provide qualitative
fault tolerance, which requires the probability of some errors to be reduced to

zero, thus indicating that they have been eliminated. It must be stressed that
the model as presented here does not itself handle the quantitative aspects of
Stable Storage. Work has been done on introducing probability into the model,
but as this raises considerable foundational issues, there is no room here to give
it the coverage required. Details of this modelling will be published separately.

2.5 Stable Memory

There is no room here to present a detailed discussion of the work done in
applying the VDM♣ to the Stable operations from (Lampson 1981). A salient
point of the material presented in this paper is that it justifies a radical set of
simplifications to the StableGet and StablePut models. This is a much desired
outcome as the complexity of the model, if continued in the same vein, undergoes
a considerable increase when the Stable operators are examined.

The radical simplifications are summarised below with a brief justification
for each:

• Our studies examine the effect of sequences of Writes and Reads on inde-
pendent memory locations. The independence was demonstrated earlier, and
allows us to ignore the aspect of memory modelling that views memory as a
mapping from addresses to values. We can concentrate instead on the con-
tents of a single memory location, and examine what happens to it as a result
of varying combinations of Puts and Gets (Careful, Stable or otherwise).

• The Careful operators only provide quantitative fault tolerance and so can
be replaced by the conventional Put and Get, for the purposes of qualitative
analysis.

• The aspects of the Careful operators that matter for quantitative analysis
(such as assessing the likelihood of certain errors occurring) are encapsulated
in the Equivalent Form operators, and can be considered separately.

• The definitions of the Put and Get operators are extended to return the
list of remaining errors, as well as what is presently returned. This is to
allow the use of a single error sequence to describe the events occurring
during sequences of operations, and is the main motivation for using a single
uniform sequence to represent both Read and Write Events.

The notion of separating out various parts of a complex model into several
simpler but interrelated models is considered one of the key requirements for
any tractable industrial strength formal method. The examples here are the
separation of addressing and quantitative issues out of the original model to
leave a simpler core which can be used to assess the qualitative (correctness)
properties of Stable Storage.

3 Summary

3.1 Results to Date

The results produced by this research to the present date centre on the demon-
stration of memory models incorporating conventional (error-prone) operations

as well as Careful and Stable analogues. These models have been developed and
analysed using the constructive equational reasoning that is characteristic of the
VDM♣ (Mac an Airchinnigh 1991).

The emphasis here has been on elaborating existing models (Mac an Airchin-
nigh 1990) at a given level of abstraction rather than following the conventional
VDM style of reification which involves examining successively more concrete
versions of a starting model. A key achievement here is the extension of the VDM
concepts of invariant and retrieval into areas where elaboration, not reification,
is taking place.

The rigourous examination of the equivalence between single errors and se-
quences of errors has highlighted a key distinction between between qualitative
and quantitative fault tolerance. This distinction was not apparent to the author
before the research work had begun. It is important as it stresses the fact that
the usefulness of the Stable Storage concepts hinges on the (hoped for) rarity
of certain patterns of errors which would cause it to fail. It does not work by
eliminating the possibility of certain errors. The discovery of this distinction also
contributes to the issue of reducing complexity, because it allows the qualitative
and quantitative aspects of the various operators to be considered separately.

From the point of view of developing the mathematical ideas needed for
studying fault tolerance, the research has led to the “discovery” of two operators,
�x and
 which play an important rôle in the models.

3.2 Future Work

Much work remains to be done. The elaboration process has to be continued
until all the key features described in (Lampson 1981) have been modelled at
the abstract level presented in this paper.

A phase of conventional VDM reification is also required, to examine how the
concepts carry over to more concrete models of fault tolerance, with particular
emphasis on looking at real-world coding schemes used to implement the boolean
flag in the abstract model, as well as complications such as pattern faults in
memory that affect distinct but related words.

In the longer term, there is a need to collate and rationalise the resulting
collection of “discovered” operators. The danger here is that every stage of the
modelling process will throw up more convenient operators, or shorthand nota-
tions, until the users are swamped by the sheer variety available. A regrouping
phase will be required to prune the set of discovered operators down to those
that are really fundamental and worth studying in their own right.

4 Acknowledgements

Particular thanks must be given to Dr. Mı́cheál Mac an Airchinnigh of the Uni-
versity of Dublin, Trinity College for his continual support and assistance with
the VDM♣. Thanks is also especially due to the the anonymous referees whose
comments helped improve the clarity and focus of this paper.

5 Appendix A - Notation

5.1 VDM♣Notation

Symbol Meaning

X
m→ Y Map from X to Y
f [[x]]y Function f applied to (curried) x, applied to y

+ Map Override operator
μ(x) Map Lookup, returning the element in the range mapped to by x

I The Identity Function
⊕/ Reduction w.r.t. binary operation ⊕
∧ Logical And
◦ Function Composition

P(f) Mapping function f
πn nth Projection Function

rng Map Range
(f m→ g) Maps f and g to Domain and Range resp. of a Map

X� Finite Sequences over X
Λ The Null Sequence
: The Sequence ‘Cons’ Operator

[l . . .h] Sequence Subrange operator
f� Maps f into a Sequence (Kleene Star functor)
len The Sequence Length operator
⊆ The Subset relation
¬ Logical Negation
⇒ Logical Implication

<x> Singleton sequence containing x.
<x, . . . , y> Sequence notation

� Sequence Concatenation operator

5.2 Possible extensions to VDM♣Notation

Symbol Meaning

�x Context-Dependent Curried-Function Composition, with context x
fstloc[[S]] Returns index of first occurrence of a member of S in a sequence

� Context-Free (Same Argument) Curried-Function Composition operator
〈,〉 Adjacent Sequence Element Pairing operator

 Map/Accumulate operator (hybrid of Mapping and Reduction)

5.3 Stable Storage Model Notation

Symbol Meaning

ADDR, a Domain of Addresses, typical member
VAL, v Domain of Stored Values, typical member

MEM , μ Domain of Ideal Memory, typical member
W Write operation on Ideal Memory
R Read operation on Ideal Memory

EDM , μ Domain of Error Detecting Memory, typical member
R EVT, εr Domain of Read Events, typical member

W EVT, εw Domain of Write Events, typical member
P Put operation on Error Detecting Memory
G Get operation on Error Detecting Memory
εI
r Identity Read Event, εI

r = I
εI
w Identity Write Event, εI

w[[v]](b, w) = (true, v)
εφw Null Write Event, εφw[[v]](b, w) = (b, w)
εδw Decay Write Event, εδw[[v]](b, w) = δ(b, w)

R EVTS, ςr Domain of Read Event sequences, typical member
CG CarefulGet operation on Error Detecting Memory

DoneG Successful Get predicate DoneG[[b, v]]εr = π1εr(b, v)
GEq Get-Equivalent Form function
Crsh Read Crash predicate

W EVTS, ςw Domain of Write Event sequences, typical member
CP CarefulPut operation on Error Detecting Memory

εwr , ε
p
r ‘Lifted’ Read Events (converted to Write Events)
� Write Event Accumulation operator

DoneP Successful Put-Get predicate
PEq Put-Equivalent Form function

6 Appendix B - Proof

The following is the proof that:

odd(lenςw) ⇒ CP[[ςw]](a, v) = CP[[ςw� <εwr >]](a, v) (54)

Proofs in VDM♣ are similar to conventional mathematics in that it involves
proving em identities of the form lhs-expr = rhs-expr, by the process of substi-
tution of equals (Mac an Airchinnigh 1990, 1991). Either one of the lhs-expr or
the rhs-expr are transformed until they equal the other, or both are transformed
into an identical third expression.

The proof is by structural induction with a base case of < εw > and an
induction step from ςw to < εw, ε

w
r > �ςw This enables us to ignore the cases

when ¬odd(lenςw), and remove the implication. The identity being proved here
is in fact:

CP[[ςw]](a, v) = CP[[ςw� <ε?
r>]](a, v) (55)

First we restate the recursive case of the definition of CP (34), by replacing
calls to Put and Get by their expansions, and simplifying where possible:

CP[[<εw, ε
w
r > �ςw]](a, v)μ (56)

=
if (εwr � εw)[[v]](μ(a)) = (true, v)
thenμ + {a �→ εw[[v]](μ(a))}
elseCP[[ςw]](a, v)(μ + {a �→ εw[[v]](μ(a))})

Case <εw>:

CP[[<εw>]](a, v)μ = CP[[<εw, ε
w
r >]](a, v)μ (57)

= . . . expand CP in lhs:
if (εwr � εw)[[v]](μ(a)) = (true, v) (58)
thenμ + {a �→ εw[[v]](μ(a))}
elseCP[[Λ]](a, v)(μ + {a �→ εw[[v]](μ(a))})

= . . . expand CP[[Λ]] in lhs:
if (εwr � εw)[[v]](μ(a)) = (true, v) (59)
thenμ + {a �→ εw[[v]](μ(a))}
elseμ + {a �→ εw[[v]](μ(a))}

= . . . collapse if -expression as both arms are identical:
μ + {a �→ εw[[v]](μ(a))} (60)

The lhs is equal to the rhs above, by the definition of CP (33), thus completing
this case.

Case ςw to <εw, ε
p
r>

�ςw: We assume that

CP[[ςw]](a, v) = CP[[ςw� <εwr >]](a, v)

and then show that

CP[[<εw, ε
p
r>

�ςw]](a, v)μ = CP[[<εw, ε
p
r>

�ςw
� <εwr >]](a, v)μ (61)

where εpr is another lifted Read Event. We first reduce the lhs:

CP[[<εw, ε
p
r>

�ςw]](a, v)μ (62)
= . . . expand CP:
if (εpr � εw)[[v]](μ(a)) = (true, v) (63)
thenμ + {a �→ εw[[v]](μ(a))}
elseCP[[ςw]](a, v)(μ + {a �→ εw[[v]](μ(a))})

We then reduce the rhs:

CP[[<εw, ε
p
r>

�ςw
� <εwr >]](a, v)μ (64)

= . . . expand CP:
if (εpr � εw)[[v]](μ(a)) = (true, v) (65)
thenμ + {a �→ εw[[v]](μ(a))}
elseCP[[ςw� <εwr >]](a, v)(μ + {a �→ εw[[v]](μ(a))})
= . . . use induction hypothesis on else -clause:
if (εpr � εw)[[v]](μ(a)) = (true, v) (66)
thenμ + {a �→ εw[[v]](μ(a))}
elseCP[[ςw]](a, v)(μ + {a �→ εw[[v]](μ(a))})

We see that the condition, then-clauses and the else-clauses in the lhs and rhs
are the same. This completes the proof.

7 Appendix C - The � Operator

There are some reasons for considering this operator in more depth. The first is
the observation already made, that it generalises function composition from the
standard case:

◦ : (A → B) × (B → C) → A → C (67)
to one where some curried arguments are carried through:

� : (XAB × X × YBC) → Y AC

where XAB = X → A → B

and YBC = Y → B → C

and YAC = Y → A → C

This operator and related ones are discussed at length in (Butterfield 1992a)
The second reason for considering the operator concerns describing the be-

haviour of Mealy finite-state machines (Holcombe, 1982 §2.5) in the following
way: Let Q denotes the set of states, Σ the set of inputs and Θ the set of out-
puts. We denote the next-state function as N : Σ → Q → Q and the output
function as Y : Σ → Q → Θ. Given the current state q and input σ, then the
next state and output are given by

(q′, θ) = (N [[σ]]q,Y [[σ]]q) (68)

The � operator can be used to describe the next output (θ) of the machine
resulting from inputting σ after a sequence of inputs <σ1, . . . , σn > applied to
some starting state q0, as follows:

θ = (Y �σn
N �σn−1 · · · �σ1 N)[[σ]]q0 (69)

What is interesting here is that the expression in parentheses has the signature
of, and behaves like the output function Y , except that it refers to a earlier state
and takes account of the intervening input sequence.

References

Andrews, D.: Data Reification and Program Decomposition, in VDM ’87 VDM — A
Formal Method at Work, Volume 252 of Lecture Notes in Computer Science, pp
389–422, Springer Verlag, 1987.

Bjørner, D., Jones, C. B. Eds: The Vienna Development Method: The Meta-Language,
Volume 61 of Lecture Notes in Computer Science, Springer Verlag, 1978.

Bjørner, D., et al. Eds: VDM ’87 VDM — A Formal Method at Work, Volume 252 of
Lecture Notes in Computer Science, Springer Verlag, 1987.

Butterfield, A.: on Curried Function Composition. Technical Report TCD-CS-92-15,
Dept. of Comp. Science, Trinity College, Dublin, May 1992.

Butterfield, A.: Formal memory models — a formal analysis using VDM♣. Technical
Report TCD-CS-92-27, Dept. of Comp. Science, Trinity College, Dublin, April 1992.

Butterfield, A.: on Mapped Reduction. Technical Report, Dept. of Comp. Science,
Trinity College, Dublin, to appear 1993.

Butterfield, A.: The Careful Memory abstraction in Stable Storage. Technical Report,
Dept. of Comp. Science, Trinity College, Dublin, to appear 1993.

Curry, H. B., Feys, R. Combinatory Logic, Volume 1. North Holland, Amsterdam, 1958.
Holcombe, W., M., L.: Algebraic automata theory, Cambridge University Press, 1982.
Johnson, B. W.: Design and Analysis of Fault Tolerant Digital Systems. Series in Elec-

trical and Computer Engineering. Addison Wesley, 1989.
Jones, C. B.: VDM Proof Obligations and their Justification, in VDM ’87 VDM —

A Formal Method at Work, Volume 252 of Lecture Notes in Computer Science, pp
260–286, Springer Verlag, 1987.

Jones, C. B.: Systematic Software Development using VDM, 2nd Ed.. Series in Com-
puter Science. Prentice Hall, 1990.

Lampson, B. W.: Atomic transactions. In Distributed Systems, Architecture and Imple-
mentation: an Advanced Course, Volume 105 of Lecture Notes in Computer Science,
Chapter 11, pages 246–265. Springer Verlag, 1981.

Mac an Airchinnigh, M.: Mathematical Structures and their Morphisms in META-IV,
in VDM ’87 VDM — A Formal Method at Work, Volume 252 of Lecture Notes in
Computer Science, pp 287–320, Springer Verlag, 1987.

Mac an Airchinnigh, M.: Conceptual Models and Computing. PhD thesis, Dept. of
Comp. Sci,, Trinity College Dublin, Ireland, 1990.

Mac an Airchinnigh, M.: The Irish School of VDM. In VDM ’91, Volume 552 of Lecture
Notes in Computer Science. Springer Verlag, 1991.

Schonfinkel, M.: Über die bausteine der mathematischen logik. Mathematische Annalen,
92:305–16, 1924.

This article was processed using the LaTEX macro package with LLNCS style

