
Amadeus Project

Ei�el��� An Implementation of Ei�el on

Amadeus� a Persistent� Distributed

Applications Support Environment

Colm McHugh and Vinny Cahill

mail�fdcmchugh�vjcahillg�cs�tcd�ie

Distributed Systems Group
Department of Computer Science

University of Dublin
Trinity College� Dublin �� Ireland�

Fax� ����	
	�����
�

Document Status Published

Distribution Public

Document � TCD�CS������

Publication TOOLS Europe ��� Conference Proceedings� pages �	��

c� ���� University of Dublin

Permission to copy without fee all or part of this material is granted provided that the copyright notice� and the title

and authors of the document appear� To otherwise copy or republish requires explicit permission in writing from the

University of Dublin�

Ei�el��� An Implementation of Ei�el on Amadeus� a Persistent�

Distributed Applications Support Environment

Colm McHugh and Vinny Cahill

mail�fdcmchugh�vjcahillg�cs�tcd�ie

Abstract

Ei�el�� is an implementation of Ei�el which
provides support for distribution� persistence�
concurrency and transactions� All objects in an
Ei�el�� system are global �i�e� accessible from
nodes other than that at which they are currently
located� and persistent �i�e� their lifetimes are
not bounded by the duration of the program that
created them�� Some objects may also be atomic
�i�e� accesses to these objects within atomic
transactions provide the well�known transac�
tional properties of atomicity� consistency� iso�
lation and durability in the face of concurrent
execution and partial failures�� Ei�el�� is sup�
ported by the Amadeus distributed application
support platform� In this paper we describe
the Ei�el�� language and its implementation on
Amadeus� We believe that the combination of
the Ei�el programming model and the support
provided by the Amadeus platform provide a use�
ful environment for the construction of sophisti�
cated distributed applications�

� Introduction

Ei�el�� is an implementation of Ei�el which pro	
vides support for distribution� persistence� con	
currency and transactions� Ei�el�� is supported
by the Amadeus distributed application sup	
port platform �Horn �
� �Cahill �
�� Amadeus
is intended to support the use of existing
�object	oriented� languages for the construc	
tion of persistent� distributed applications� To
date� Amadeus supports an extended version of
C�� �DSG ��� �which we call C��� and Ei�el���
Work is underway to support the E program	
ming language �Richardson ��� for data inten	
sive applications� A prototype of the Guide
�Decouchant ��� language for distributed pro	
gramming is also supported�

Amadeus consists of two main components�
the Generic Runtime �GRT�� which provides
common� generic support for the manage	
ment of distributed and persistent objects� and
the kernel which provides the underlying sup	
port for the GRT including persistent storage�
distributed processes� remote invocation� and
nested transactions� Rather than forcing each
supported language to adopt a common object
model and execution structures in order to ex	
ploit the platform� the GRT provides the sup	
port required in common by a range of lan	
guage implementations and uses upcalls to re	
quest language	speci�c information or actions
where these are necessary� Language�Speci�c
Runtimes �LRTs� can then be built above the
GRT for each language to be supported�

All objects in an Ei�el�� system are global
�i�e� accessible from nodes other than that at
which they are currently located� and persistent
�i�e� their lifetimes are not bounded by the du	
ration of the program that created them�� Some
objects may also be atomic �i�e� accesses to these
objects within atomic transactions �Berstein ���
support the well	known transactional properties
of atomicity� consistency� isolation and durabil	
ity in the face of concurrent execution and par	
tial failures�� The control of concurrency and
transactions is supported through the use of li	
brary classes� Overall our approach was moti	
vated by the desire to support reuse of existing
software�

The implementation of Ei�el�� involved ex	
tending the Ei�el runtime �ERT� and providing
a preprocessor for Ei�el�� programs� The ex	
tensions to the ERT were necessary to adapt
the support provided by Amadeus to the Ei�el
language and object model and to make avail	
able the language	speci�c information required
by the Amadeus GRT� The preprocessor is used
to generate supplementary code used by the

GRT to trap accesses to remote and atomic ob	
jects� The implementation of Ei�el�� has been
possible without making changes to the Ei�el
language� enabling persistence and distribution
to be transparent to the programmer� Moreover
only minimal changes and extensions to the ERT
were necessary� No changes have been made to
the Ei�el compiler� This has been made possible
by the extent of the run time type information
provided by Ei�el� which enables all objects to
be treated in a uniform manner�

��� Outline

The remainder of the paper is organised as fol	
lows� Section �� describes the GRT and gives
an overview of its interface� Section �� provides
some background concerning the ERT which
is necessary to appreciate the requirements for
supporting the ERT on top of the GRT� Section
�� presents the Ei�el�� language� describing the
programmer�s view of distribution� persistence�
concurrency and transactions and giving some
simple examples� Section � discusses the imple	
mentation of Ei�el��� Finally� Section �� pro	
vides a summary and some conclusions�

� The Amadeus Generic Run�

time

The GRT is the part of Amadeus concerned
with the management of global� persistent and
atomic objects� The GRT supports object cre	
ation and naming� mapping �loading� and un	
mapping �storing� of objects� marshalling and
dispatching of invocation requests and garbage
collection� It performs these actions in a lan	
guage independent manner� Whenever language
speci�c information or actions are required� the
GRT makes an upcall to code supplied by the
language� The following sections give a brief
overview of the GRT� The interested reader is
referred to �Cahill ��� for further details�

��� GRT Objects

A GRT object consists of a GRT header and a
block of memory� GRT objects can be global�
persistent and�or atomic as required� A lan	
guage may use GRT objects to enclose language

level objects� As far as the GRT is concerned�
an object is a block of memory which can be
uniquely identi�ed� The GRT knows nothing
about the internal structure or semantics of an
object� Where language objects are enclosed in
GRT objects� the layout of the object is gov	
erned by the language�s runtime system and
compiler� The format of object references used
to access language objects is dictated by the lan	
guage and need not be changed from the for	
mat usually used by the language to reference
objects� This is particularly important since
it means that the language�s native invocation
mechanism can be used to invoke such an object
from another object located in the same context
�address space��

In Amadeus a global object mapped on a
given node may have a reference to it in a con	
text on another node� In this case the reference
will actually refer to a G proxy for the object�
Invoking on this proxy will usually result in a
Remote Procedure Call �RPC� to the real ob	
ject being carried out� The code bound to the
G proxy is responsible for initiating such RPCs
and must be provided by the language� This
proxy class should provide the same public in	
terface as the real class code�

Persistent GRT objects are grouped together
in clusters when on secondary storage� A ref	
erence to a persistent object which is not cur	
rently mapped refers to a P proxy �i�e� essen	
tially an area of access	protected memory� for
the object�s cluster� All attempts to access such
an object will then result in its cluster being
mapped and overlaying its P proxy before the
access proceeds�

Accesses to atomic objects must also be re	
ported to the GRT so that concurrency and
recovery control operations can be carried out
before the access proceeds� For example� the
necessary locks must be acquired� This can be
achieved by using an alternate version of the
class code for atomic instances 	 the so	called
atomic class code 	 which reports the access be	
fore carrying out the operation as normal�

Each GRT header contains a stub for the ob	
ject which contains a system	wide unique name
for the object� its cluster identi�er and infor	

�Accesses to objects which are both global and per�

sistent are trapped using G proxies whenever the object

is not located in the current context�

mation to allow the creation of a proxy for the
object� Also contained in the GRT header is an
upcall structure which points to the code imple	
menting each of the upcalls for that object�

The GRT maintains a class descriptor for ev	
ery class in an application which contains a copy
of the upcall structure to use for instances of the
class� as well as the class name� the size of in	
stances of the class and a class identi�er� The
creation of a class descriptor for each class used
in an application takes place in regclasses� a
language	speci�c function that is called by the
GRT as part of its initialisation� The class de	
scriptor is used when creating new GRT objects�

��� The GRT�LRT Interface

The GRT supplies the routine to allocate a new
global or persistent object which should be used
in place of a language�s object allocation mech	
anism� The GRT also provides a routine to
promote a global or persistent object from non	
atomic to atomic� Other downcalls are provided
to control concurrency and transactions as well
as to manage transparency and control the stor	
age and clustering of objects�

In addition to this interface� the LRT must
supply a set of upcalls for each object which the
GRT calls through the object�s upcall structure�
The full set of upcalls which may be required
includes�

� create�� � Invoked when an object is cre	
ated� Initialises language	speci�c bindings
for the object �e�g� setting up of the func	
tion table��

� activate�� � Invoked when an object is
being made active� i�e� going from being
a proxy object to being the real object� It
performs this transformation by binding the
real class code to the object� Usually in	
voked when an object is being mapped into
a context�

� deactivate�� � Invoked when an object is
being made inactive� It binds the proxy
class code to the object� Will be invoked
when an object is being unmapped�

� nextptr�� � Returns a pointer to the nth

reference in the object� Invoked when the

object is being mapped or unmapped so the
GRT can swizzle any pointers contained in
the object�

� norefs�� � Returns the number of pointers
in the object� Invoked when the GRT is
allocating space for the object in its cluster�

� onuse�� � Same function as the create up	
call� Invoked as the �nal step in making an
object active�

� dispatch�� � Invoked when an incoming
RPC for the object is received� This up	
call invokes the object speci�c dispatch

function �which must be provided by the
language� which unbundles the parameters
and invokes the target operation�

� make atomic�� � Binds the atomic code
�responsible for trapping access to atomic
objects whether local or remote� to the ob	
ject� Upcalled by the GRT as part of the
process of making an object atomic�

As can be seen a language supporting global
objects must provide a G proxy class for each
class with global instances and add a dispatch
routine to every such class� A language support	
ing atomic objects must also provide the atomic
class code� Depending on whether global� persis	
tent or atomic objects are to be supported some
subset of the upcalls create� onuse� nextptr�
norefs� dispatch and make atomic are re	
quired for each object� activate and onuse are
also required for G proxies�

� The Ei�el Runtime

Ei�el is a strongly typed language� Every entity
is declared to be of a certain type� An entity can
be an instance of a class type or an instance of
an expanded type� The run time value of an en	
tity of a class type is a reference to an object of
that class� The run time value of an entity of an
expanded type is an actual object� rather than a
reference to an object� An entity of an expanded
type can be of one of the Ei�el simple types� or
it can be an expanded �i�e� inline� instance of
a class type� All objects� except those declared
to be of simple types� contain information in the
form of an object header which is used by the

ERT to manage the object and which is trans	
parent to the Ei�el programmer� Contained in
this information is a number� known as the Dy�
namic Type �DT� of the object� which is the
same in all objects of a given class�

��� Object Layout

ERT
header

NULL

234

info field

link field

of class type

of expanded
class type

void of class
type

of type
integer

Inline
object

Figure
� An Ei�el object

Figure
 shows a snap	shot of an Ei�el object
during system execution� Note that there are
two �elds in the header� The info �eld� con	
tains the DT of the object and� amongst other
things� indicates if the object is expanded or is a
so	called special object �discussed below�� The
link �eld points to the last object allocated by
the ERT and is used by the Ei�el garbage col	
lector� In Ei�el� an object reference always gives
the virtual address to the info �eld of the object
being referenced� or is void�

The instance data consists of a number of
�elds which in turn are made up of one or more
units called datums� A single datum can be
a reference to another object� in which case it
will contain a virtual address� or can contain
an INTEGER� REAL� BOOLEAN or CHARACTER� A
number of datums can go to make up an ex	
panded object or value of type DOUBLE or BITS�
If the expanded object is an instance of a class
type� its ERT header will appear in the instance
data of the enclosing object� If a class B inherits
data from a class A� then instances of class B will
be structured so that the ERT header will come

�rst� then the data inherited from A� followed by
the data for B�

1

3

ARRAY[INTEGER] object
with bounds 1..3

1234

1

SPECIAL object for
the array’s data. DT = 3.

info

link

info

link

100

Figure �� Special object in an Ei�el array

The ERT provides special objects� which are
used to implement variable sized or generic ob	
jects� Figure � shows a snap	shot of an object
of type ARRAY�INTEGER�� The array object has
�elds for the upper and lower bounds� as well
as a pointer to the array elements� contained in
a special object� The special object consists of
�elds for each of the elements in the array� This
example shows how Ei�el implements genericity
through the use of special objects� as special ob	
jects can contain objects of any type� Special
objects are transparent to the programmer and
are always associated with another object such
as a STRING or an ARRAY�

��� ERT Data Structures for A Class

The following list details the data structures
that are set up for each class in the system on
ERT initialisation� Given the DT of the object
to which a reference points� the following infor	
mation about the object can be obtained�

� Class names�DT� � The name of the ob	
ject�s class�

� Object size�DT� � The number of �elds in
the object�

� Num routines�DT� � The number of rou	
tines in the object�s class�

� Routines�DT� � Gives a pointer to a func	
tion table for the object�s routines� Invok	
ing on an object always results in an indi	
rection through this table�

� Routine names�DT� � The names of the ob	
ject�s routines�

� Attributes�DT� � The types of the object�s
attributes� Attributes�DT��i� gives the
type of the ith �eld of the object using pos	
itive numbers for attributes of class types�
giving the DT of the class� and negative
numbers for inline objects� Note that in the
case of attributes of generic and expanded
types� it is necessary to look in the info

�eld of the actual object to determine that
attribute�s DT�

� Attr names�DT� � The names of the ob	
ject�s attributes�

� Create Array�DT� � A pointer to the
Create function for the object�s class�

All classes in the system have entries in
these tables� The range of DT goes from

to num classes 	
� where num classes is the
number of classes in the system� The Ei�el code
that the programmer writes for a class compiles
into C code with functions for all the routines
of the class� plus initialisation functions for the
classes entries into the ERT structures described
here� Ei�el compilation also generates a C main	
line which invokes these initialisation functions
before invoking the Create routine of the sys	
tem�s root class�

��� Object Creation� Access and In�
vocation

This section describes how object creation� data
access and invocation take place at run time�

����� Object Creation�

At the language level� an Ei�el object is created
and initialised as follows �where x is an attribute
of the current object��

x�Create �args� �

At the ERT level the DT of x is obtained by
looking up the Attributes table for the cur	
rent object�s class� The space for the object is
then created by passing the DT to Allocate�
Allocate is an ERT function which� given a
DT� will return a pointer to an initialised ERT
header for the object� as well as the required
memory space for the data� The invocation of
the object�s Create function is carried out by
indirecting through the Create array using the
DT for x� The Create function will initialise
the data space appropriately� If x is declared to
be of an expanded class type� there is no need to
call Allocate� as the space has already been al	
located when the enclosing object was created�
Special objects are allocated using a function
called spAllocate which is given the number
of datums required for the special object rather
than the DT�

����� Object Access�

At the language level� the data members of an
Ei�el object are accessed like so �

x�y �

The data member y in x is located at some o�set
os from the start of the instance data for x where
os is determined at compile time� At runtime�
this o�set is added to the address of the instance
data to give the address of the required �eld
which can then be accessed�

����� Object Invocation�

At the language level� an Ei�el routine is invoked
as follows �

x�y�args� �

At the ERT level the invocation involves indi	
recting through the routines table for the target
object�s class using the DT obtained from its
header� to locate the appropriate routines table�
and an o�set in this table for the required func	
tion which is determined at compile time� The
routine is passed a reference to the target object
as well as the actual arguments�

� The Ei�el��Language

��� Persistence

Ei�el already provides support for persistence
through its class library� In particular� object
persistence can be obtained in one of two ways�
in the current implementation of Ei�el�

Class STORABLE o�ers a simple explicit facil	
ity to store an object �and its dependents� to a
named �le� Any class can make use of this fa	
cility simply by inheriting from class STORABLE�
An instance x of such a class is explicitly stored
via the call�

x�store	by	name�
some	file
� �

and can subsequently be retrieved via

x�retrieve	by	name�
some	file
� �

where these routines are inherited from
STORABLE�

Alternatively persistence may be obtained by
use of an Ei�el environment� An Ei�el envi	
ronment is a set of objects� Individual objects
may be identi�ed by a key with respect to the
environment� Such objects� and all their direct
and indirect dependents� are the persistent ob�
jects of the environment� An environment may
be opened� All objects created thereafter will
belong to the environment �until it is closed��
Hence� class ENVIRONMENT provides an implicit
facility to store a collection of arbitrary objects�
The environment as a whole is made to persist
between Ei�el sessions� by storing an external
representation of all the objects in a named �le�

Note that� in both cases� when an object be	
comes persistent� all of its dependents are also
stored or otherwise object references would� on
retrieval� be meaningless� Both shared refer	
ences and cyclic dependencies are handled prop	
erly� Object dependency highlights the orthogo	
nality that exists between type and persistence�
All classes have potentially persistent instances�

In Amadeus� all persistent GRT objects tran	
sitively reachable from a root object� an ob	
ject that has been explicitly registered with the
Amadeus environment� will automatically per	
sist across successive program executions�

Three di�erent approaches to exploiting the
persistence facilities o�ered by the Amadeus
platform in Ei�el�� programs are immediately
apparent�

� All Ei�el�� objects are created as GRT ob	
jects and thus all objects reachable from a
root �e�g� the Amadeus name service� auto	
matically persist between di�erent sessions�
The support provided by an Amadeus sys	
tem could allow the explicit object storing
provided by Ei�el to become redundant�
Any Ei�el�� object which remains reach	
able from a root would then survive across
program runs� The Ei�el�� programmer
would then no longer have to worry about
explicitly ensuring that particular instances
persist� Coupled with the generic garbage
collection facilities provided by Amadeus
this o�ers an elegant approach to long term
safe object management�

� Incorporate into the Ei�el�� �language	
speci�c� runtime� routines to emulate the
per	
formance of STORABLE and ENVIRONMENT�
Consequently� from the Ei�el�� program	
mer�s viewpoint� there would be no di�er	
ence between Ei�el�� and Ei�el with re	
spect to persistence� This has the advan	
tage that normal language semantics are
preserved� but the added functionality in	
herent to Amadeus is not fully exploited�

� A mixture of the above� i�e� provide modi	
�ed Amadeus implementations of STORABLE
and ENVIRONMENT which essentially mimic
the simple naming service that these pro	
vide while using the standard Amadeus fa	
cilities to provide persistence of individual
instances� This would provide the Ei�el��
programmer with conventional Ei�el persis	
tence support and permit Ei�el�� applica	
tions to directly use Amadeus transparent
persistence�

In fact the third method outlined above was cho	
sen since it combines the advantages of both of
the other alternatives� In Ei�el�� all objects are
created as persistent GRT objects� This means
that an Ei�el�� object is potentially persistent
and will persist if reachable from some root ob	
ject�

As an example� the following code shows how
to create a �potentially� persistent integer in
Ei�el���

class EXAMPLE	INT export inc� val

feature

v � INTEGER �

Create �i � INTEGER� is

do v �� i end �

inc is

do v �� v
 � end �

val � INTEGER is

do Result �� v end �

end � ��Class EXAMPLE	INT

class ROOT

inherit

AMADEUS

feature

p � EXAMPLE	INT �

Create is

do

if reset � �

then

p�Create ��� �

record �
p�ns
� p�

end �

p �� lookup �
p�ns
� �

io�putstring�
p is
� �

io�putint �p�val� �

io�newline �

p�inc

end �

end � ��Class ROOT

Note the use of standard routine reset� inher	
ited from AMADEUS� which tests if the �reset

option has been passed to the program� By con	
vention �reset is used to indicate the �rst ex	
ecution of an application which expects to use
persistent objects which may not have already
been created� record and lookup are used to
register and lookup an object in the Amadeus
name service provided by the platform� record
also designates the speci�ed object as a persis	
tent root�

When this is run several times �with an in	
stance of ROOT as the Ei�el system root object�
the following output is produced�

�root �reset

p is �

�root

p is �

�root

p is �

�root �reset

p is �

No additional code is generated to support
persistence� Once a persistent object has been
mapped in from secondary storage� there is no
additional overhead attached to manipulating
the object beyond that of Ei�el� An Ei�el�� pro	
gram that does not make use of any Amadeus
facilities incurs no additional overhead beyond
the equivalent Ei�el program� except for some
extra space taken up by the headers attached to
each GRT object in the system�

��� Distribution

The approach to distribution adopted allows all
objects in an Ei�el�� system to be remotely ac	
cessible� Thus� distribution� like persistence� is
transparent to the Ei�el�� programmer� All
Ei�el�� objects are created as persistent and
global GRT objects�

Hence� the class EXAMPLE INT in the previous
section not only describes objects which are po	
tentially persistent but which are also remotely
accessible� Many users could run the integer
program at the same time� possibly on di�erent
nodes� and it is completely transparent where
the integer object is actually mapped� In this
way� the integer object acts as a server capable of
handling multiple client requests� Note however�
that the Amadeus approach to supporting dis	
tribution through the use of RPCs means that it
is not possible to access the exported data items
of an object remotely� Access to a remote object
can only be through the exported routines of its
interface�

While distribution is normally transparent�
the programmer can also exercise some control
over the placement of objects and clusters at run
time by specifying a preferred node at which ob	
jects and clusters are to be placed using routines
exported by the class AMADEUS�

��� Concurrency

In Amadeus a job is a distributed process con	
sisting of a set of activities� A job may be
thought of as a distributed heavyweight process
and an activity as a distributed lightweight pro	
cess� A job may be executing in several contexts
at the same time� on the same or di�erent nodes�
An activity may be active in only one context at
any point in time�

During the execution of an operation by an ac	
tivity� an asynchronous invocation may be per	
formed by creating a new activity to carry out
the invocation� in parallel with the current ac	
tivity� The new activity will terminate when
the invocation which it was created to carry out
completes� A job is created for each application
run by a user and terminates when all of the ac	
tivities created within the job have completed�

The Ei�el�� programmer�s interface to con	
currency is through a set of classes� The user
can invoke an operation on an object asyn	
chronously� and at some later stage test for the
termination of the invocation� recover the results
of the invocation and suspend and resume the
call� The following example shows how an ac	
tivity can be created in Ei�el��� Consider�

class EXMPL export calc

feature

calc�a�b�INTEGER�c�SOME	CLASS��INTEGER is

��Do some calculations

end � ��Class EXMPL

The following is a class that includes an in	
stance of an EXMPL and invokes its calc routine
both synchronously� and asynchronously as an
activity�

class USE	EXMPL

feature

act � ACTIVITY �

e � EXMPL �

call	calc�A	ref�SOME	CLASS� is

local

i � INTEGER �

do

e�Create � �� Create EXMPL object

i �� e�calc��� �� A	ref� �

�� Normal synchronous invocation

act�Create �e�
calc
� �� �� A	ref� �

�� Create activity to do invocation

i �� act�wait	int �

�� and wait for the result

end �

end � ��Class USE	EXMPL

The activity is created by calling the Create
routine for the ACTIVITY class passing it the
object on which the routine is to be executed�
the name of the routine to be invoked� and �	
nally the argument list for the routine� which is
a variable	sized list of arguments� any of which
can be a reference to an object�

The full interface of the ACTIVITY class in	
cludes routines to kill� suspend and resume an
activity as well as to wait for results of various
types�

The JOB class interface is similar� suspending
or killing a job suspends or kills all of its activ	
ities� while the wait routines wait for all of the
job�s activities to complete before returning the
result of the initial activity�

��� Atomicity and Transactions

Transactional systems guarantee atomicity� con	
sistency and permanence of e�ect for opera	
tions carried out within the scope of a trans	
action� Applications which have strong require	
ments for consistency can use atomic transac	
tions to ensure consistency of data in the pres	
ence of concurrency and node or context failures
�Berstein ����

Amadeus provides support for transactions
through the use of the RelaX �Kroger �
�
�Schumann ��� transaction manager and li	
braries� In Amadeus a distinction is drawn be	
tween atomic and non�atomic objects� Transac	
tional properties only apply to operations car	
ried out on atomic objects carried out within
a transaction� This distinction between atomic
and non	atomic instances of a class is moti	
vated by the desire to avoid the additional over	
heads associated with access to atomic objects
for instances of a class for which strong consis	
tency guarantees are not required� The model
of atomic objects and transactions supported by
Amadeus and RelaX� and its implementation is
described in detail in �Mock ����

Since all Ei�el�� objects are global and per	
sistent� any object can be promoted to being
atomic at any time using�

make	atomic �i� �

�� inherited from AMADEUS

Atomic code is generated by the preprocessor
for every class in the system� which is used to
trap access to atomic objects� Because access to
atomic objects are trapped through functions�
a similar restriction to distribution applies in
that access to an atomic object should only be
through its exported routines�

The Ei�el�� programmer�s interface for trans	
action management is provided through the
TRANSACTION class� The transaction interface is
synchronous� but in other respects it is similar
to the job and activity interfaces� especially with
regards to creating a transaction to perform an
invocation on an object�

T � TRANSACTION �

e � EXMPL �

e�Create���

�� Create EXMPL object

make	atomic�e� �

�� Make instance of EXMPL atomic

T�Create�e�
calc
� ����� ��� some	ref� �

�� Create transaction to invoke calc

�� routine from class EXMPL�

� Implementation of Ei�el��

The following sections describe the implementa	
tion of Ei�el�� on Amadeus�

	�� Persistence

Two matters must be addressed in implementing
persistence� supporting object creation so that
Ei�el�� objects are created as GRT objects� and
providing the necessary upcall code for Ei�el��
objects�

����� Object Creation

2. ALLOCATE initialises
the ERT header, explicitly
zeroes the data area and
returns a pointer to the
info field of the object.

INFO field
Dynamic Type = DT

LINK field ; pointer to
previously allocated
object.

GRT
Header

GRT_HEADER
cid = DT
size = ert_size (DT) +
size_of_ERT_header

UPCALL
OBJECT

ERT
Header

Eiffel object
data area
(uninitialised)

Eiffel object
data area
(explicitly zeroed)

1. GRT_create is invoked.
This allocates space for the
object and its GRT header
and returns a pointer to the
object.

Figure �� Persistent object creation

To ensure that Ei�el�� objects are created
with a GRT header� a call to the GRT object
creation routine replaces the call to the existing
ERT memory allocation function� This function
allocates memory for the object and its GRT
header� initializes the GRT header and returns
a pointer to the uninitialized object space to the
ERT� The ERT then initializes the objects ERT
header and explicitly zeroes the objects data
area before returning a pointer to the object to
the calling object� Figure � shows the steps in	
volved in persistent Ei�el�� object creation�

����� Implementing the Upcalls

With the support provided by the ERT it has
been possible to write generic� class independent
version of the upcalls required which are com	
mon to all Ei�el�� applications� all objects in the
system use the same generic upcall code� This
contrasts with our C�� implementation which
required that the upcalls be generated individu	
ally for each class� To support persistence� only
the nextptr and norefs upcalls are required�
These functions make calls to the ERT� All the
other upcall functions take default actions�

A generic regclasses can also be used for
all Ei�el�� applications which registers class
descriptors with the GRT for each class in
the application� For every DT in the system�
���num classes � �� it makes calls to the ERT

to determine the corresponding class name and
object size� the information necessary to register
a class descriptor with the GRT� The class iden	
ti�er in the class descriptor is set to the DT of
the class� Each class descriptor contains a copy
of the generic upcall object�

Ei�el�� special objects also have a class de	
scriptor and are allocated as GRT objects�

The following functions have been added to
the ERT to provide information from its various
data structures which is used to implement the
necessary upcalls�

� int sp nfields �o� � Get the number of
�elds in a special object�

� char� ert class name �o� � Get the
name of an object�s class�

� int ert DT by name�class name� � Get
the DT assigned to a given class�

� void ert set DT�o� DT� � Set the DT of
an object�

� char� ert name by DT�DT� � Get name of
class with given DT

� int ert size by DT�DT� � Determine the
physical size of objects with the given DT
when they are created�

� int ert rout index

�o� func name� � Return the index of the
given named function in the given objects
class�s routines table�

� int ert spnorefs�o� � Determine num	
ber of references in a special object�

� void� ert spnextptr�pc� o� � Returns a
pointer to the pcth reference of special ob	
ject�

� int ert norefs�o� � Returns the number
of references in an Ei�el object�

� void� ert nextptr�pc� o� � Return a
reference to the pcth object pointer in an
object�

Given these functions� it is possible to de	
�ne generic upcall functions and a generic
regclasses function�

� void �nextptr�int pc� �
Invoke ert next ptr on the encapsulated
Ei�el object to return a reference to the
pcth reference within the Ei�el object�

� int norefs�� Return number of references
in the encapsulated Ei�el objects instance
data using ert norefs�

All other upcalls take default actions�

����� Supporting STORABLE

In Ei�el�� STORABLE has been altered to use the
functionality of Amadeus to implement name
storage� An Ei�el�� object stored by name be	
comes an Amadeus persistent root ensuring that
it and its dependents will persist� It is impor	
tant also to note that this has been done only
for name storage� STORABLE in Ei�el�� still
permits persistence through �le descriptor and
FILE storage� but this is unchanged from Ei�el�

����� Problems in Implementation of

Persistence

The problems outlined in this section were en	
countered during the implementation of persis	
tence� but are common to the implementation
of Ei�el�� in general�

GRT and ERT initialization� An Amadeus
application can be thought of as having two
stages� Amadeus initialization and application
mainline� The former is invisible to the applica	
tion programmer� who would view their program
as having only the latter stage� The register	
ing of class descriptors with the GRT is called
as part of Amadeus initialization� This causes
a problem with an Ei�el�� application� where
ERT initialization� the setting up of all the
structures described in Sect� ��� for each class�
is called in the application mainline stage� The
generic regclasses function cannot be called
until all the ERT information on the classes is
available� so regclasses is called after ERT ini	
tialization� This is an interleaving of the two
stages� Amadeus initialization and application
mainline�

Special Objects and heterogeneity� A po	
tential problem with special objects is that one
can determine whether they contain embedded
objects or references� but if they contain em	
bedded objects and these are instances of ob	
jects that carry no run	time information �e�g�
INTEGER� it is not possible to determine the type
of the object� This would have serious implica	
tions for heterogeneity� one of the goals of the
Amadeus project� For transferring and storing
an object such as an array of integers on a het	
erogeneous network� it is necessary to convert it
to a machine	independent form� To do so� one
must be able to determine the types of its con	
stituent parts� This is not currently supported
in Ei�el���

Garbage Collection� An Ei�el�� application
must be compiled with Ei�el garbage collection
turned o� �which is the Ei�el default� so as to
avoid interference with GRT garbage collection�
Thus the link �eld in an Ei�el�� object�s ERT
header is ignored�

Compilation To make use of all Amadeus fa	
cilities� the Ei�el�� programmer must use the
AMADEUS class� an Ei�el class which is basically
an interface to the GRT downcalls� An Ei�el��
program must �rst generate a C package� This
can be done by editing the Ei�el system descrip	
tion �le� The C package consists of C code for
all the classes in the system and C code for the
ERT� This is necessary because ERT �les must
be altered in order to interface to Amadeus� The
make�le produced is also edited to compile and
link with Amadeus�

	�� Distribution

The implementation of distribution requires
that a proxy routine is generated for each
exported routine in each class� as well as a
dispatch routine for each class to handle in	
coming operations that have been initiated re	
motely� In addition invocations on proxy objects
must be directed to the correct code�

A draw	back of this distribution mechanism
is that remote access to an Ei�el�� objects ex	
ported data items is not supported� The data	
space of a proxy object remains uninitialized
and therefore unde�ned� Remote access to an

Ei�el�� object should be through its exported
routines� This makes the type	model of Ei�el��
weaker than the Ei�el type model�

����� Trapping Invocations on Proxy

Objects

For each class a routines table for its proxy rou	
tines is set up that mirrors the true routines ta	
ble of the class� The routines array described
in Sect� ��� is expanded to include entries for
the proxy code of all the classes in the system�
The DT of the proxy code for a class C can be
obtained by the simple rule�

DTproxy � DTC � num classes

giving the position of the proxy code for class C
in the routines array�

When an object is already in use in another
context� attempting to map the object into an	
other context will result in a proxy object being
created in that context� The proxy object is the
same size as the real object� Its data area is
uninitialised� resulting in some memory wastage
but making it very easy to overlay the proxy
without invalidating existing pointers to the ob	
ject in that context should the real object be	
come available to be mapped� The DT of the
proxy object is set to ensure that invocations on
the proxy object will indirect through the cor	
rect proxy function table� as shown in �g� ��

During routine calls between objects in dif	
ferent contexts� parameters are passed by ref	
erence� except for instances of the basic types
which are passed by value� When passing an
object� a stub �which contains the global name
for the object and information to allow creation
of a proxy for the object� for the object is pushed
on the transmission block� The passing of arbi	
trarily large objects between contexts is possible
by simply passing the stub for the object�

����� Proxy Code generation

As already stated� the code for each exported
routine of a class C must have a proxy routine
which is positioned in the proxy routines table at
the same o�set as the routine it remotely invokes
is positioned in the real routines table� All proxy
routines are generated from the following proxy
routine template�

* => this routine
 is exported.

 −−−

dispatch()

Routines table

0

Proxy Routines Table

ROUTINES ARRAY

R1*

R2*

R3

R4*

P_R1

P_R2

P_R4

Routines[DT] Routines[DT+num_classes]

Figure �� Routines array

DATUM �name��void� curr �arg	list�� �

�return	decl�

int opid � ert	rout	index�curr�FUNCNAME��

aon	oo �t � ��aon	oo ��curr���hdr���

if ��amadeus�resolve �t�� �

marshal aon	m �t�opid��args���stubs���

�push�

if �aon	m�rpc��� �

�pop�

return �return	id��

�

�

return

��Routines��DT���opid���curr �names���

�

�name� �� CLASSNAME	FUNCNAME	pr

�arg	list� �� nil

�� �datum IDENT �arg	list�

�return	decl� �� nil

�� datum RETURN	NAME�

�args� �� size of items in �arg	list�

 size of return item�

�stubs� �� No� objects in arg	list
 �

�push� �� nil

�� aon	m�push�IDENT�� �push�

�pop� �� nil

�� aon	m�nargs	reset�� �

RETURN	NAME � aon	m�pop�� �

�DT� �� ert	dynamic	type �curr�

�return	id� �� nil

�� RETURN	NAME

�names� �� nil

�� �id	list�

�id	list� �� IDENT

�� �id	list��IDENT

For each exported routine F in class de�nition
C there will be a proxy function F C pr� The
basic mechanism is that if the object cannot be
mapped� the parameters plus the stub for the
proxy �which will be identical to the stub for
the real object� and which enables the GRT at
the remote side to locate the object� and the
operation identi�er are all packaged and an RPC
is performed to the remote context where the
real object is located� On completion of the call�
return data �if any� is popped and returned to
the caller�

Parameters are treated in a uniform fashion�
A check is made to see if the parameter be	
ing pushed is a reference to an object� and if
so a stub for the object is pushed and a �ag
is set to indicate that this parameter is an ob	
ject reference� When popping parameters at the
dispatch side is taking place� the dispatch will
be able to distinguish between parameters that
are object references and parameters that are
instances of basic types�

����� Dispatch code generation

Each class�s routines table must be augmented
with a dispatch routine which is responsible for
performing incoming remote invocations�

pblock� �disp��pblock �b� void� curr� �

marshal aon	m���aon	oo��curr���hdr���b��

int DT � ert	dynamic	type �curr� �

switch�aon	m�which��� �

�cases�

default��

� return b �

�

�disp� �� CLASSNAME	dispatch

�cases� �� �case	i�

�more	cases�

�more	cases� �� �cases�

�� nil

�case	i� �� case �i�� �

�return	decl�

�param	decl� �pop�

�func	invoke� �push�

� break �

�i� �� ���ert	routine	count�curr���

�return	decl� �� nil

�� datum RETURN	NAME �

�param	decl� �� nil

�� datum �id	list�

�pop� �� nil

�� IDENT � aon	m�pop�� �

�pop�

�func	invoke� �� �func	assign��func�

�func	assign� �� nil

�� RETURN	NAME �

�func� �� ��Routines�DT��i���curr��names��

�push� �� nil

�� aon	m�reset���

aon	m�nargs	reset�� �

aon	m�push�RETURN	NAME��

����� Upcalls for Proxy Management

This section outlines the upcalls the GRT in	
vokes to ensure the correct code binding for an
object� All objects in the system use the same
upcall code� while all proxy objects use the same
proxy upcall code�

The following upcall functions �in addition to
those outlined in Sect� ��
�
� are required to sup	

port distribution�

� void deactivate �� Switch class identi	
�er in GRT header to that of the proxy
code�

� void onuse �� Set the DT of the object
to be equal to the class identi�er from the
GRT header� i�e� the real DT�

� pblock �dispatch �pblock �t� Upcall
the object�s dispatch routine�

Proxies must provide the following upcalls�

� void activate �� Switch the class identi	
�er in the GRT to that of the true code�

� void onuse �� Set the DT of the object to
be the class identi�er from the GRT header�
i�e� the proxy DT�

All proxy objects will have a copy of this up	
call structure in their GRT headers� activate

is called when the object is being mapped in�
while onuse is called after an attempt to access
the object has resulted in a proxy being created�
so the DT in the ERT header must be set to that
of the proxy code� ensuring that subsequent in	
vocations on this object will result in an indirec	
tion through the proxy routines table�

����� Problems in Distribution

The following section outlines some problems
that have arisen in relation to implementing dis	
tribution�

Heterogeneity The treatment of parameters
at the ERT level means it is impossible to distin	
guish between basic type instances� i�e� if a given
datum is an INTEGER or a FLOAT or a CHARACTER
at the proxy code level� This has serious impli	
cations for heterogeneity� whereby it is neces	
sary to determine the type of the given datum
in order to package it for transferring between
heterogeneous nodes� An upcall mechanism to
determine the type of a given datum if it is not
an object reference would be necessary in order
to support heterogeneity�

Dynamic Linking The current scheme for
the dynamic typing of proxy code depends on
there being a �xed number of classes in the ap	
plication at compile time� This scheme would be
inconsistent if dynamic linking was introduced�
whereby classes are linked in during execution
of the program� rather than all being linked to	
gether at compile time which is currently what
happens with Ei�el and Ei�el���

	�� Concurrency

The implementation of concurrency in Ei�el�� is
straightforward� the classes JOB and ACTIVITY

simply make calls to the appropriate routines
implemented by the Amadeus kernel�

One complication in Ei�el�� is the lack of vari	
able sized parameter lists� The Create functions
of the concurrent classes should be able to take
a variable number of parameters� The Ei�el��
preprocessor captures all occurrences of JOB and
ACTIVITY creation in an Ei�el�� �le and replaces
the variable parameter list in the Create call
with an argument object reference� The argu	
ment object is declared immediately after the
JOB or ACTIVITY declaration� and code produced
to push each of the parameters onto the argu	
ment object� For example� after preprocessing�
the code�

act � ACTIVITY �

�� Somewhere in the code of some class

�� a reference to an ACTIVITY object

act�Create �e�
calc
� �� �� A	ref� �

�� Create activity to do invocation�

�� invoking routine calc of object e�

becomes�

act � ACTIVITY �

a � ARG	OBJ �

�� An argument object for storing

�� the parameters to an asynchronous

�� object invocation

a�PushINTEGER ��� �

a�PushINTEGER ��� �

a�PushOBJECT �A	ref� �

�� Insert each of the parameters

�� into the argument object�

act�Create �e� calc� a� �

�� Variable sized argument

�� list stored in a

This is basically a translation from incorrect
Ei�el code to Ei�el code that will be acceptable
to the Ei�el compiler�

	�� Atomicity and Transactions

At the language level supporting transactions
involves generating atomic code for each class�
and at execution time� when an object is made
atomic� switching the binding in the object so
that subsequent invocations on the object will
use the atomic code�

Atomic code is generated by the preprocessor
for every class in the system� As in the case of
distribution� the Ei�el�� preprocessor generates
an atomic routine for every exported routine in
a class�s de�nition� and sets up a routine table
for these atomic routines� This table will be ac	
cessed at run time by a DT for the atomic code�
Making an object atomic involves switching its
DT to the DT for the atomic code� so subsequent
invocations will indirect through the atomic rou	
tines table�

When an invocation is made on an atomic ob	
ject� the atomic routine locates the actual rou	
tine �by calculating the true DT�� invokes it and
returns results to the caller�

Distribution and transactions imply that a
class will have three dynamic types� one for ac	
cessing the class methods �i�e� the real dynamic
type as assigned by by the Ei�el runtime�� one
for the proxy code and one for the atomic code�
The dynamic type of the Atomic code can be
obtained by the following simple rule�

DTatomic code � DT � � � num classes

The consequence of this is that in the Ei�el��
run time� the Routines table is three times as
big as the equivalent one in Ei�el� due to the
fact that each class in Ei�el�� has proxy code to
support distribution and atomic code to support
transactions�

One addition upcall is required from atomic
objects�

� void make atomic � Set the DT of the en	
capsulated Ei�el object to the DT for the
atomic code�

which is upcalled by the GRT as part of the
make atomic downcall� It sets the DT of the
object to the DT for the atomic code to ensure
that further invocations on the object will indi	
rect through the atomic routines table�

The means of starting a transaction on an ob	
ject is similar to that in starting an activity on
the object� and the same complication exists as
with the JOB and ACTIVITY classes with the need
to be able to pass variable sized parameter lists
to the transaction�s Create feature� Transac	
tion creations are caught by the preprocessor
and edited the same way ACTIVITY and JOB cre	
ations are�

	 Conclusion

Our goals in undertaking this work were to pro	
vide a programming environment for the con	
struction of sophisticated distributed applica	
tions using the Ei�el language as well as to eval	
uate the ease with which a new language could
be supported above Amadeus while maintain	
ing that language�s syntax and object model�
We intended that existing Ei�el programs and
software components could be reused in our en	
vironment without any alteration� a feature that
is consistent with Ei�el�s philosophy of software
reusability and modularity� We believe that our
goals have been largely achieved�

Ei�el�� provides an Ei�el programming envi	
ronment enhanced with support for distributed
and persistent programming including concur	
rency and transactions� This environment pro	
vides a high degree of transparency for the pro	
grammer and� in particular� its implementation
required no changes to the syntax of the Ei�el
language� Moreover� since the usual Ei�el run
time mechanisms are maintained for access to
objects located in the current context� there is
no time overhead incurred for accesses to ob	
jects which are not remote� stored or being ac	
cessed within a transaction� Additional over	
head is incurred at compilation time 	 to gener	
ate proxy and atomic class code 	 and in terms
of the space used by the headers of GRT objects�
The main restriction imposed is the requirement

that global and atomic objects only be accessed
via exported routines� In the future� Amadeus
may support use of distributed shared memory
allowing this restriction to be relaxed�

The implementation of Ei�el�� on Amadeus
was facilitated by the structure of the ERT and�
in particular� the amount of run time type infor	
mation available� The main e�ort was devoted
to the implementation of the generic 	 class in	
dependent 	 upcalls and the implementation of
the preprocessor� A number of library classes
were also provided to allow the programmer to
interact with the underlying Amadeus environ	
ment�

Our current work is concerned with the im	
plementation of a number of distributed appli	
cations using Ei�el�� in order to more fully eval	
uate the environment� In future we expect to
work on interworking between the C�� and
Ei�el�� environments supported by Amadeus in
order to allow invocations between objects pro	
grammed using these di�erent languages�

References

�Berstein ��� P�A� Berstein� V� Hadzilacos and
N� Goodman� Concurrency Control
and Recovery in Database Systems�
Addison	Wesley�
����

�Cahill �
� V� Cahill� C� Horn and G� Starovic�
Towards Generic Support for Dis�
tributed Information Systems� In
Proceedings of the International
Workshop on Object�Orientation in
Operating Systems� Palo Alto� Octo	
ber
��
�

�Cahill ��� V� Cahill� S� Baker� C� Horn and
G� Starovic� The Amadeus GRT �
Generic Support for Distributed per�
sistent Programming Submitted for
publication� January
����

�Chase� J� Chase� F� Aamdor� E� Lazowaka�
H� Levy and R� Little�eld � The
Amber System	 Parallel Program�
ming on a network of multiproces�
sors� Proceedings of the
�th ACM
Symposium on Operating Systems
Principles� pp�

	����

�Decouchant ��� D� Decouchant et al� Guide	
an Implementation of the Comandos
Object�Oriented System� In Proceed�
ings of the EUUG Autumn Confer�
ence� October
���

�DSG ��� Distributed Systems Group� Dept� of
Computer Science� Trinity College
Dublin� C

 Programmers Guide

����

�Horn �
� C� Horn and V� Cahill� Support�
ing Distributed Applications in the
Amadeus Environment� Computer
Communications� July	August
��
�

�ISE ��� Interactive Soft	
ware Engineering Inc� Ei�el 	 The
Language� Interactive Software En	
gineering Inc�

�Kroger �
� R� Kroger et al� The RelaX Trans�
actional Object Management Sys�
tem� In Proceedings of the Inter�
national Workshop on Computer
Architecture to support Security
and Persistence of Information�
Springer	Valeg� May
��
�

�Liskov ��� B�
Liskov and R� Schei�er� Guardians
and Actions	 Linguistic support for
robust� Distributed Programs� ACM
Transactions on Programming Lan	
guages and Systems� July
���� vol�
�� No �� pp��
	�
��

�Meyer ��� B� Meyer� Object�oriented Software
Construction� Prentice Hall�
����

�Mock ��� M� Mock� R� Kroeger and V� Cahill�
Implementing Atomic Objects with
the RelaX Transactional Facility�
Computing Systems vol �� no� ��
USENIX�
����

�Richardson ��� J�E�
Richardson and M�J� Carey� Persis�
tence in the E Language	 Issues and
Implementation� SWPE� vol�
� no�

�� December
����

�Schumann ��� R� Schumann et al� Recov�
ery management in the RelaX Dis�
tributed Transaction layer� In Pro�

ceedings� �th Symposium on Reli�
able Distributed Systems� pages �
	
��� IEEE� October
����

