
The Careful Memory abstraction

in Stable Storage

Andrew Butter�eld

Department of Computer Science

Trinity College� Dublin

Ireland

April ��� ����

Keywords� Memory Systems� Stable Storage� Fault Tolerance� Formal Mod�
els

Abstract

This article presents models of the Careful operators in Stable Memory

�Lam���� using VDM�as the modelling tool�

Stable Storage is obtained by using error correcting memory �But��a� to con�
struct a system that performs atomic transactions �Lam�	�
 This paper exam�
ines a useful abstraction� that of Careful Memory operations� which is used as
a stepping stone towards fully Stable memory
 The material in here is based
strongly on the contents of �But��b� But��a� But���

A guide to the notation used is to be found in Appendix A at the rear of this
paper

We
rst investigate the �Careful� versions of Put and Get� and derive a new
criterion for classifying errors based on whether or not they are handled properly

	

The domain being considered is EDM from �But��a�

��� Careful�Get

We now specify what the desired e�ect of a CarefulGet operation should be�

De�nition � A CarefulGet operation �CGs� should behave like a Read� or Get
with the identity event function�

CGs � ADDR� EDM � B�VAL�	�

CGs ��a���
�
� ��a����

Note that we use an approximate de
nition operator �
�
�� to indicate that this

is an aspiration
 The following shows how CGs is implemented in �Lam�	�

�CarefulGet repeatedly does Get until it gets a good status� or until
it has tried n times�

imp�CG��a�� � imp�CGn��a��
where imp�CGk��a��� �

if k � �
then �false���
else let �b� v� � imp�G��a��� in

if b
then �b� v�
else imp�CGk����a���

Note that this implementation makes no explicit mention of errors
 To model
the fault tolerant aspects of CGs we need to introduce them somehow
 We shall
introduce the notion of a sequence of events which will be an extra argument
to the CarefulGet operation

Domain � The events a�ecting a CarefulGet are modelled as a sequence of
Read Event functions�

�r � R EVTS � R EVT����

Invariant � There is no invariant concerning R EVTS

inv�R EVTS � R EVTS � B���

inv�R EVTS��r� �
true���

�

An obvious �invariant� might be to limit the length of such sequences to n� the
number of tries made by imp�CG� but we may wish to use a single sequence to
denote all the events associated with several uses of CarefulGet at a later stage

For this reason we leave things as they are

Operator � A CarefulGet operation in EDM is modelled as a function �CG�
taking a Read Error Sequence as its
rst curried argument� and an address as its
second
 Its behaviour closely matches that of imp�CG described above� except
that the premature exhaustion of the read errors is interpreted as a form of
crash�

CG � R EVTS � ADDR� EDM � B �VAL

CG���r���a� � CG���n� �r���a�
where

CG����� �r���a�� � �false����
CG���k�����a�� � ��
CG���k� �r � �r���a�� �

let �b� v� � G���r���a�� in
if b then �b� v� elseCG���k� 	� �r���a��

A few obvious properties �whose proofs are left as exercises� can be immediately
stated�

Property � The result returned by applying CG to any sequence is the same
if all but the
rst n elements are removed

CG���r���a� � CG���r�	

n����a����

Interestingly enough� this is proved by induction on n

Property � If the event sequence has length less than n� then the only possible
results are success �true� v� or crash ���

Property � If the event sequence has length greater than or equal to n� then
the only possible results are success �true� v� or fail �false���

The key condition that successfully terminates the recursion of CG� is that the

rst component of the result of G���r���a� is returned as true
 This seems to
supply a means of classifying event functions but great care must be taken at
this point
 Consider the following functions�

�

� ��Ir � � The occurence of a perfect Read does not guarantee successful
termination at that point � the memory may contain the data �false� v��
due to some previous Write Error

� ���b� v� � �true� v�� � This function will always terminate with apparent
success� even if the stored data was in error and marked as such

� ���b� v� ��fb�v�� v�� � One cannot predict the e�ect of this function without
knowing the value of v stored in memory� and how the boolean result of
fb depends on it

We can use the event classi
cation scheme introduced previously in �But��a� to
help us talk about what happens
 First we classify the result of any given CG�

as follows�

� ok � memory location a contains �true� v� and CG���k� �r���a� returns
�true� v�

� err � if CG���k� �r���a� returns �false���
� bad � memory location a contains �b� v� or � and CG���k� �r���a� returns
�true� v��� where v� �� v if b � true

� crsh � If CG���k� �r���a� returns �

We now want to be able to come up with a classi
cation of any sequence of read
events with respect to the attempt to �Carefully�Get� a given value from a
given address
 We expect this classi
cation to depend on �G� the classi
cation
of single read event during an attempt to get a value
 Just as the e�ect of a read
event �r while attempting to perform a Get from a memory location containing
�b� v�� is given by �G��b� v���r� so the e�ect of a sequence of read events �r while
attempting a CarefulGet of the same value is given by �CG��b� v���r

�CG � B�VAL� R EVTS � ECLASS���

�CG��b� v���r �

���

To
ll in the dots �

� in this classi
cation scheme we need some way to show
which event sequences are equivalent
 We anticipate some Equivalent Form to
which any event sequence can be reduced� which would then make classi
cation
easier
 We already have one result regarding the fact that only the
rst n
elements of the sequence matter
 The next result is obtained by noting that
the address being read during a CG operation is always the same as is the
�b� v� value being a�ected by the read event
 So each event in the sequence is
classi
ed in the same way
 We also note that the following occasions when CG
will terminate�

�

� at the
rst occurence of an event that results in ok

� at the
rst occurence of an event that results in bad

� if the
rst n events result in err

This leads to the notion of a Get�Equivalent Form of a Read�Error Sequence
w�r�t� current memory contents� which is obtained as follows� First de
ne fstloc
as returning the index of the
rst occurence in a sequence of an element belong to
a speci
ed set� with the length of the set plus one returned if no such occurence
exists�

fstloc � P�� �� �N����

fstloc��S����� � 	�	��

fstloc��S���e � �� � 	��e��S � �	� 	 � fstloc��S�����		�

Then� follow these steps to the equivalent form�

	
 First limit the sequence ��r� to the
rst n elements�

�r �	

n�

�
 Then determine the classi
cation of each read event in that sequence w
r
t
the actual contents �b� v� of the addressed location�

��G��b� v���
�
�r�	

n�

�
 Then pick out the
rst location that contains either ok or bad

fstloc��fok�badg�����G��b� v�����r�	

n��

�
 And
nally pick out the relevant read event� which is the
rst resulting in
ok or bad� or else the last �nth� event� if they are all classi
ed as err

�r �minfn� fstloc��fok�badg�����G��b� v�����r �	

n��g�

The result is the single event which� if it occured when a G was attempted�
would have the same result as the CG attempted with the sequence of events�

Lets package this up�

Operator � The Get�Equivalence operator �GEq� determines� for given mem�
ory contents� the e�ect of a sequence of Read Events occuring during the use

�

of the CG operator� expressed as the single Read Event that would lead G to
have the same e�ect�

GEq � B� VAL� R EVTS � R EVT�	��

GEq��b� v���r � �r �minfn� fstloc��fok�badg�����G��b� v�����r �	

n��g��	��

Note that this operator is e�ectively a property based lookup mechanism � i
e

it returns the
rst element that satis
es certain properties

A case that needs to be examined is one where all the events result in err�
but the number of events is less than n
 In other words what has occurred
is a crash� after �so�far� persistent read errors
 We introduce a shorthand �
fT � fstloc��fok�badg��� and let n
 �� �G��b� v���

�
r � �G��b� v���

�
r � err and

�r ����r � �
�
r
 in the following�

GEq��b� v���r � GEq��b� v�����r � �
�
r
�	��

� ���r � �
�
r
 �minfn� fT ���G��b� v���� ���r � �

�
r
 �	

n��g��	��

� ���r � �
�
r
 �minfn� fT ���G��b� v���� ���r � �

�
r
�g��	��

� ���r � �
�
r
 �minfn� fT ���G��b� v����

�
r�� �G��b� v����

�
r�
�g��	��

� ���r � �
�
r
 �minfn� fT ��err� err
�g��	��

� ���r � �
�
r
 �minfn� �g��	��

� ���r � �
�
r
 �������

� ���	�

As expected� in the case of a crash� there is no single read event equivalent to
the sequence

De�nition � The sequences that lead to crashes are those of length less than
n which contain only events that result in err when trying to Get the data

Crsh � B� VAL� R EVTS � B����

Crsh��b� v���r � len�r � n 	 elems���G��b� v�����r�
 ferrg����

Note that Crsh��b� v��� � true

Proof �

Crsh��b� v��� � len� � n 	 elems���G��b� v������
 ferrg����

� � � n 	 elems���
 ferrg����

� true 	 �
 ferrg����

� true 	 true����

� true����

�

�

Property � The result of a CarefulGet with a given read event sequence that
does not crash� is equal to the result of a Get with the Read Event that is the
Get�Equivalent of the sequence�

Crsh����a����r � CG���r���a�� � G��GEq����a����r���a������

First assume that the actual value in memory ���a�� is equal to �B�v�
 Introduce
some shorthands and expand the de
nitions to some extent as indicated below�

�B�v� � ��a�����

�bv � �G��B�v����	�

fT � fstloc��fok�badg������

f� � fT � ��bv������

CG���r���a�� � CG���n� �r���a������

GEq��B�v���r � �r�minfn� fT ���bv���r�	

n��g�����

� �r�minfn� f���r�	

n��g�����

G���r���a�� � �r���a�� � �r�B�v�����

What are actually going to prove is the following�

CG���n� �r���a�� � ��r �minfn� f���r �	

n��g���B�v�

subject to the conditions that n � 	 and Crsh��B�v���r � false
 We can write
this in shorthand as follows�

P �n� �r� � true� if n � 	 	
Crsh��B�v���r�

The proof is by induction on n and �r
 We show the following�

� P �	� �r�

�
Crsh��B�v�� ��r
� P �n���r
�

� P �n� �r�� P �n� 	� �r � �r�

Lemma � P �	� �r�
 First reduce the rhs using the fact that fT� � 	 for any
list ��

CG���	� �r���a�� � ��r �minf	� f���r �	

	��g���B�v�����

� ��r �minf	� fT �� � ��g���B�v�����

� ��r �	���B�v�����

Now consider the lhs�

�

CG���	� �r���a�� �
� let �b� v� � G���r�	����a�� in
if b then �b� v� elseCG����� �r��

 len�r����a��

� let �b� v� � �r�	��B�v� in
if b then �b� v� elseCG����� �r��

 len�r����a��

When �bv��r�	�� � fok�badg� we note that this means that
���r �	��B�v�� �
true
 The value of b in the above example is true and the result returned is
�b� v� � �r�	��B�v�

When �bv��r �	�� � ferrg� we note that this means that
���r �	��B�v�� �
false
 The value of b in the above example is false and the result returned is
CG����� �r��

 len�r ����a�� � �false���
 Interpreting � as �do not care� gives
us the desired result
 �

Lemma �
Crsh��B�v�� � �r
� P �n�� �r
�
 We start by clarifying which

sorts of sequences are being considered here
 The condition Crsh��B�v���r �
false arises when either of the following conditions hold�

� len�r � n

or

� elems���G��B�v�����r� � fok�badg �� �

It should be noted that S� �
 S� is not the same as S� � S�
 A simple counter
example will su ce�

fok�badg �
 ferrg��	�

fok�badg �� ferrg����

In this case� len ��r
� 	
 As the case of n � 	 has already been covered� we
will assume that n
 	� which then means that

elems���G��B�v���
�
��r
� � fok�badg �� ��

as len ��r
� n
 The implication of this is that �bv���r
 �	�� � fok�badg as
��r
 only has one element� This leads to the results that
���r�B�v�� � true

and f����r
� � 	

First reduce the rhs�

CG���n���r
���a�� � ���r
 �minfn� f����r
 �	

n��g���B�v�����

�

� ���r
 �minfn� f����r
�g���B�v�����

� ���r
 �minfn� f����r
�g���B�v�����

� ���r
 �minfn� 	g���B�v�����

� ���r
 �	���B�v�����

� �r�B�v�����

� �true�

�����

Then reduce the lhs�

CG���n���r
���a�� �
� let �b� v� � G���r���a�� in
if b then �b� v� elseCG���������a��

� let �b� v� � �r�B�v� in
if b then �b� v� elseCG���������a��

In this case b must be true so we get �b� v� � �r�B�v� as a result

�

Lemma � P �n� �r�� P �n�	� �r � �r�
 We start with P �n�	� �r � �r� and show
that the equality holds if P �n� �r� holds
 First we reduce the rhs of P �n�	� �r �
�r� a bit�

CG���n� 	� �r � �r���a��

� ��r � �r �minfn� 	� f���r � �r �	

n� 	��g���B�v�����

� ��r � �r �minfn� 	� f���r � �r �	

n��g���B�v���	�

� ��r � �r �minfn� 	� fT ��bv����r � �r�	

n��g���B�v�����

� ��r � �r �minfn� 	� fT ��bv��r� � ��bv���r�	

n��g���B�v�����

And do the same to the lhs�

CG���n� 	� �r � �r���a�� �
� let �b� v� � G���r���a�� in
if b then �b� v� elseCG���n� �r���a��

� let �b� v� � �r�B�v� in
if b then �b� v� elseCG���n� �r���a��

Now we consider cases
 First we assume that �r produces err
 The rhs reduces
as follows�

CG���n� 	� �r � �r���a��

�

� ��r � �r �minfn� 	� fT ��bv��r� � ��bv���r�	

n��g���B�v�����

� ��r � �r �minfn� 	� fT �err � ��bv���r �	

n��g���B�v�����

� ��r � �r �minfn� 	� 	 � fT ���bv�
�
�r�	

n��g���B�v�����

� ��r � �r �	 � minfn� fT ���bv���r�	

n��g���B�v�����

� ��r�	 �minfn� fT ���bv���r �	

n��g���B�v�����

����

The lhs reduces as follows� given that b � false�

CG���n� 	� �r � �r���a�� �
� let �b� v� � �r�B�v� in
if b then �b� v� elseCG���n� �r���a��

� CG���n� �r���a��

Comparing the lhs and rhs we see that we have P �n� �r�
 Secondly� we assume
that �r produces ok or bad
 The rhs reduces as follows�

CG���n� 	� �r � �r���a��

� ��r � �r �minfn� 	� fT ��bv��r� � ��bv���r�	

n��g���B�v�����

� ��r � �r �minfn� 	� fT �d

 � ��bv���r �	

n��g���B�v���	�

� ��r � �r �minfn� 	� 	g���B�v�����

� ��r � �r �	���B�v�����

� �r�B�v�����

����

The lhs reduces as follows� given that b � true�

CG���n� 	� �r � �r���a�� �
� let �b� v� � �r�B�v� in
if b then �b� v� elseCG���n� �r���a��

� �b� v� � �r�B�v�

Comparing the lhs and rhs we have equality

�

Proof � results from the three previous Lemmas and induction on n and �r
 �

All of this can be summarised as follows� CarefulGet has the e�ect of skipping
past upto n� 	 events resulting in err� and either returning the nth err result
�persistent read error� or an apparently successful result� which may or may not
be a bad� It is an implementation of Get using repeated Gets� that eliminates
every err except persistent ones�

	�

��� Careful�Put

We now specify what the desired e�ect of a CarefulPut operation should be�

De�nition � A CarefulPut operation �CPs � should behave like a Write� or Put
with the identity event function�

CPs � ADDR�VAL� EDM � EDM����

CPs ��a� v���
�
� �� �a �� �true� v������

The following shows how CPs is implemented in �Lam�	�

�CarefulPut repeatedly does Put followed by Get until the Get re�
turns good with the data being written�

imp�CP��a� v��� �

let�� � imp�P��a� v��� in
if imp�G��a�� � �true� v�
then��

else imp�CP��a� v����

The most important thing to note here is the complete absence of the parameter
n
 CarefulPut keeps trying until it succeeds or crashes

Question � How should errors and events be modelled here ! We have alter�
nating Puts and Gets with the possibility of a crash inbetween at any point�

First note that the e�ect of a CarefulPut is to modify the contents of memory

This is in contrast to CarefulGet which simply returns the contents of a given
location� and returns � in the event of a crash
 We want CarefulPut to return
the state of memory always� even after a crash
 The value returned in the event
of a crash is the state in which the memory was left

One obvious modelling approach is to use a sequence of write and read event
pairs�

�rw � WRERRS � �W EVT �R EVT������

�rw � � ���w� �
�
r�� ��

�
w� �

�
r��

 � ��

n
w� �

n
r �
����

but this leaves open the question of how to model a crash during or just before
a Get
 We could try using a read event that always returned �true� v� for any
attempt to Put v

		

Another approach is to use a sequence consisting only of write events� but where
every second such event is in fact a read event in disguise
 This is achieved by
lifting read events to the form �rw � �v � ��b� w� � �r�b� w� � �v � �r � K�r
that ignore their
rst �VAL� argument
 A crash before or during a Get is
then modelled by any sequence whose length is odd
 The problem with this
approach is that a complex and undecidable invariant is required
 Alternatively�
the �read event� could be context sensitive in that it would not in general ignore
the
rst argument
 This would eliminate the need for an invariant
 For the Get
operator in general there is no �context� �what VAL entity would act as the
rst
argument !�
 However� in the case of CarefulPut� such an argument is present
� the current value that it is attempting to write to memory
 This is more
general� and permits the same event sequence to serve for both the Put and the
Get operations
 For this reason the second alternative is chosen

Domain � The events a�ecting a CarefulPut are modelled as a sequence of
write events�

�w �W EVTS �W EVT�����

A Methodological Aside Another approach to using a write event sequence
would be to introduce a "zip# function which takes two lists and merges them
into one by alternating elements from each
 In this case it would be specialised
a bit as follows�

Operator � The Zip�Event binary operator �z� combines two sequences� one
of write events� the other of read events� to produce a write event list that
consists alternately of members from each list� starting with the
rst write
event
 with read events being "lifted# as write events

A question that needs to be answered is what should happen if the lists are of
di�erent lengths
 The following approach is simplest as it requires no invariant�
and provides maximum $exibility
 We specify the outcome of zipping write
events ��w� and read events ��r� as a set of cases depending on how their lengths
are related�

� len�r � len�w� the result list is twice as long as the write event list� with
alternating write and read events ending on the read event corresponding
to the last write event

���w

�
n
w
 z ���r

�

n
r

����w �K�

�
r

�

n
w �K�

n
r

	�

� len�r � len�w� the result list is twice as long as the write event list� with
alternating write and read events ending on the last write event
 If the
read events expire prematurely� then the Identity Read Event� is assumed

���w

�
i
w

�

n
w
 z ���r

 �

i
r
����w �K��r

 �

i
w�K�

i
r

�

i��
w �K�Ir

K�

I

r � �
n
w

In other words� the length of the write event list is the main determining factor
of the length of the
nal result

z � W EVTS � R EVTS �W EVTS��	�

� z �r � �����

��w
 z � � ��w
����

�w � �w z � � ��w�K�
I

r

���w z ������

�w � �w z �r � �r � �w � �w zz �r � �r����

where we use an auxillary operator � zz � for the case when both read and write
events are present�

zz � W EVTS � R EVTS �W EVTS����

� zz � � �����

� zz �r � �r � �K�r
����

��w
 zz � � ��w
����

�w � �w zz � � ��w�K�
I

r

���w zz ������

�w � �w zz �r � �r � ��w�K�r

���w zz �r���	�

Any use of write events with CarefulPut would then always use �w z �r to con�
struct a list that did meet the required invariant
 This function is su ciently
useful that it will often be used when we want context free read events
 We
shall also refer to K�r as �

w
r

Operator � A CarefulPut operation in EDM is modelled as a function �CP�
which takes a Write Event sequence as its
rst argument� and an address� value
pair as its second
 Its behaviour closely matches that of imp�CP described
above� except that the premature exhaustion of read events is interpreted as a
form of crash which returns the current state of the memory unchanged
 Note
also that the read event may be context sensitive� in which case the context is
that of the value being written

�Note that lifting the Identity Read Event does not give the Identity Write Event � �
I

r
��

�
I

w
��

	�

CP �W EVTS � ADDR�VAL� EDM � EDM����

CP������a� v� � I����

CP����w
���a� v� � P���w���a� v�����

CP����w� �
w
r

��w���a� v�� � let�� � P���w���a� v�� in����

if G���wr ��v�����a��
� � �true� v�����

then������

elseCP���w���a� v��
�����

The goal here is to
nd a equivalent form for W EVTS� that determines the
single Put which has the same e�ect as CarefulPut� as already shown for Care�
fulGet
 We proceed by noting the condition under which CP terminates� in the
absence of crashes�

if G���wr ��v�����a��
� � �true� v�����

Which expands� given the de
nition of G to�

if �wr ��v����
��a�� � �true� v�����

Replacing �� by the expansion of the call to P that produces it gives�

if �wr ��v������ �a �� �w��v�����a�����a�� � �true� v���	�

Finally we reduce this using map properties to�

if �wr ��v����w��v�����a��� � �true� v�����

The CP algorithm will iterate until this condition is met� where � denotes the
state of the memory at the start of each iteration
 The state of memory at the
end of each iteration is given by�

�� � � � �a �� �w��v�����a�������

Assume a call of CP that iterates many times� due to some persistent combi�
nation of errors �� ��w� �

�
r�

�
 The successive contents of ��a�� originally u

�say�� will appear as follows�

	�

���a� � u����

���a� � ��w��v���u�����

���a� � ��w��v����
�
w��v���u������

����

�k�a� � ��kw ��v�� �

 � ��w ��v�� � ��w��v����u�����

� ��kw �

� ��w � ��w���v���u�����

where � is the Same Argument Composition operator introduced in �But��b�

The termination conditions appear as follows�

���r � ��w���v���u� � �true� v��	���

���r � ��w � ��w���v���u� � �true� v��	�	�

�	���

��kr � �kw �

� ��w � ��w���v���u� � �true� v��	���

It is easy enough to see from this that an equivalent form does exist� and is
generated by a recursive function very similar in structure to CP itself
 To see
how this is derived we shall illustrate the step by step reasoning that leads to
the equivalence
 The
rst step involves the recognition of the fact that� unlike
CarefulGet� CarefulPut does return a meaningful result in the event of a crash
� namely the state in which the memory is left by that crash
 We therefore
anticipate that an equivalent form will be found for any instance of W EVTS�
even if it denotes a crash situation
 In particular� we expect that�

Property � Appending any arbitrary lifted Read Event ���r� to the end of a
sequence that denotes a crash after a Put and before a Get �odd number of
events�� will have no net e�ect on the resulting contents of memory

odd�len�w�� CP���w���a� v� � CP���w
� ���r
���a� v��	���

In e�ect� we have converted the situation to one in which the crash occurs just
after the Get� which of course has no e�ect on the resulting contents of memory

� In other words� crashes that occur inbetween the Put and Get of CarefulPut

�Note that we have assumed here that Gets cannot side�e�ect memory� regardless of what
fault occurs� This assumption would not hold valid for memory read technology that erases
memorycontentswhich must then be refreshed� like old core memories or some bubblememory
technologies

	�

can be treated as if they occurred just after the Get �as far as memory contents
are concerned�

Proof � The proof is by structural induction with a base case of P �� �w
�
and an induction step P ��w� � P �� �w � �

w
r
 ��w� This enables us to ignore

the even cases� and remove the implication�

P ��w� � CP���w���a� v� � CP���w
� ���r
���a� v��	���

First we restate the recursive case of the de
nition of CP� by replacing calls to
Put and Get by their expansions� and simplifying where possible�

CP����w� �
w
r

��w���a� v���	���

��	���

if ��wr � �w���v�����a�� � �true� v��	���

then�� �a �� �w ��v�����a����	���

elseCP���w���a� v���� �a �� �w��v�����a�����		��

Case P ����w
��

CP����w
���a� v�� � CP����w� �
�
r
���a� v���			�

��		��

if ���r � �w���v�����a�� � �true� v��		��

then�� �a �� �w��v�����a����		��

elseCP������a� v���� �a �� �w ��v�����a�����		��

��		��

if ���r � �w���v�����a�� � �true� v��		��

then�� �a �� �w��v�����a����		��

else�� �a �� �w ��v�����a����		��

��	���

�� �a �� �w��v�����a����	�	�

The lhs is easily shown equal to the rhs above� thus completing this case

Case P ��w�� P ���w� �
w
r

��w��

	�

We assume CP���w���a� v� � CP���w� ���r
���a� v� and try to show that

CP����w� �
w
r

��w���a� v�� � CP����w� �
w
r

��w
� ���r
���a� v���	���

We
rst reduce the lhs�

CP����w� �
w
r

��w���a� v���	���

��	���

if ��wr � �w���v�����a�� � �true� v��	���

then�� �a �� �w ��v�����a����	���

elseCP���w���a� v���� �a �� �w��v�����a�����	���

We then reduce the rhs�

CP����w� �
w
r

��w
� ���r
���a� v���	���

��	���

if ��wr � �w���v�����a�� � �true� v��	���

then�� �a �� �w ��v�����a����	�	�

elseCP���w
� ���r
���a� v���� �a �� �w ��v�����a�����	���

We see that the condition and then�clauses are the same
 We also note that the
else clauses are the same by the hypothesis P ��w�
 This completes the proof
 �

We can now proceed to illustrate how the equivalent form is derived
 We need
to de
ne some auxillary operators beforehand
 The h�i operator takes a list of
the form�

�x�� x��

 � x�n��� x�n

and returns a list formed by pairing adjacent elements thus�

� �x�� x���

 � �x�n��� x�n�

h�i � �� � � ����	���

h�i� � ��	���

h�i �x� y
 �� � �x� y� � �h�i���	���

	�

with precondition�

pre�h�i � �� � B�	���

pre�h�i� � even�len���	���

Another operator we introduce is q which is a combination of mapping and
reduction
 Given an associative binary operator � then q� converts a list of
the form�

�x�� x�� x��

 � xn

to the following list�

�x�� x� � x�� x� � x� � x��

 � x� � x� � � � � � xn

q � X �X � X � X� � X��	���

q�� � ��	���

q� �x
 � �x
�	���

q��x � y � �� � x � �q���x� y� � ����	�	�

This operator and its properties are discussed in more detail in �But���

Next we bring in a shorthand for an accumulating binary operator�

� � �W EVT��� �W EVT�� � W EVT��	���

�w�� r�� � �w�� r�� � �w� �w�� r���	���

and
nally� a predicate used to check to see if a Put � Get sequence was
successful�

DoneP � VAL�B� VAL � W EVT �W EVT � B�	���

DoneP ��v� b� w����w� �
w
r �

� ��wr � �w���v���b� w� � �true� v��	���

Using these auxillary functions� the following steps are now taken to obtain the
equivalent form of a write event sequence�

	�

	
 First append an arbitrary read event to the end of any sequence whose
length is odd�

��w
� odd�len�w�� ��w

���r� �w�

to give us a sequence ���w� which will look something like this�

��w ����w� �
�
r� �

�
w� �

�
r�

 � �

n
w� �

n
r

�
 As we now have a list whose length is even� we shall pair up elements to
produce a list of half the length� each pair consisting of a write event and
its subsequent read event�

h�i � �w �� ���w� ��r�� ���w� ��r��

 � ��nw� �nr �

�
 We use the q operator with � to enable us to replace any given Write
Event by the accumulated e�ect of itself after all the Write Events that
preceded it�

�q� � h�i���w �
� ���w� �

�
r�� ��

�
w � ��w � �

�
r��

 � ��

n
w � � � � � ��w� �

n
r �

�
 We can now use a conventional sequence mapping operator to evaluate
whether or not each entry denotes the termination of the computation

This is the
rst time that we see the context �v� �b� w�� in which the equiv�
alence occurs�

�DoneP ��v� b� w��
� � q� � h�i���w ��

n booleans

�
 The fstloc operator is then used to identify the
rst occurence of true� if
any
 The result obtained is the index of that occurence� or the length of
the sequence if all are false�

i � minflen��w� �fstloc��ftrueg�� �DoneP ��v� b� w��� � q� � h�i�� �wg
�we use i to denote that index�

�
 The equivalent form is simply obtained by indexing the accumulated se�
quence by i and taking the
rst element of the resulting pair�

��w �
���q� � h�i���w��i�

Lets package this up as an operator
 Note� however� that one boundary condition
must be taken care of � the case when �w � �� i
e
 an immediate crash
 The
result of CarefulPut in this case is that no change occurs to memory
 The
corresponding equivalence form of the empty sequence is therefore the Null
Write Event

	�

Operator � The Put Equivalence operator �PEq� determines� for a given value
to be written and given pre�existing memory contents� the e�ect of a sequence
of Write Events occuring during the use of the CP operator expressed as the
single Write Event that would have the same e�ect�

PEq � VAL � �B�VAL��W EVTS �W EVT�	���

PEq��v� �b� w����
� ��w�	���

PEq��v� �b� w����w
��	���

let ��w � odd�len�w�� ��w
���r� �w� in�	���

let ���w � �q� � h�i���w in�	���

let i � minflen��w� �fstloc��ftrueg�� �DoneP ��v� b� w�������wg�	�	�

in
���
��
w�i���	���

Property 	 The e�ect of a CarefulPut operation with value v and Write Event
sequence �w on a memory location ��a� containing �b� w� is the same as obtained
by a Put operation whose Write Event is equal to the Put Equivalent Form of
�w� w
r
t
 �v� �b� w��

CP���w���a� v�� � P��PEq��v� ��a����w���a� v��

As we have already demonstrated the equivalence of odd�length sequences with
those having one extra element� we will restrict our proof to even�length se�
quences only
 This eliminates the need for the
rst conditional in the de
nition
of PEq
 The proof proceeds by a variant of structural induction with a some�
what counter�intuitive inductive step�

	
 P ����

�
 P ���w� �
w
r
�

�
 P ���w � ��w� �
w
r

��w�� P ����w� �
�
r� �w� �

w
r

��w�

We will justify it here by pointing out that it is possible� given any event list �of
even length�� to construct a chain of lists of decreasing length until the base case
is reached
 This e�ectively shows how to construct the proof for that instance�

P ����w� �
�
r� �

�
w� �

�
r� �

�
w� �

�
r�

 � �

n��
w � �n��r � �nw� �

n
r
��	���

� P ����w � ��w� �
�
r � �

�
w� �

�
r�

 � �

n��
w � �n��r � �nw� �

n
r
��	���

� P ����w � ��w � ��w� �
�
r �

 � �

n��
w � �n��r � �nw� �

n
r
��	���

��

�	���

� P ���n��w �

� ��w � ��w � ��w� �
n��
r � �nw� �

n
r
��	���

� P ���nw � �n��w �

� ��w � ��w � ��w � �nr
��	���

� true�	���

We also introduce the following shorthand�

ft � fstloc��ftrueg���	���

The proofs for the base cases �����w� �
w
r
� are trivial and are left as exercises

The proof of the induction step has two cases� corresponding to whether or not
the
rst Put attempt by CarefulPut is successful
 However� the proof is quite
long and complicated and will only be sketched out here
 It is based on a series
of Lemmas� the proofs of which are left as exercises
 The
nal proof is presented
in terms of these Lemmas

Lemma �

CP�����w� �
�
r� �w� �r

��w���a� v���	�	�

� if DoneP ��v� ��a�����
�
w� �

�
r��	���

then�� �a �� ��w��v�����a����	���

elseCP����w � ��w� �r

��w���a� v���	���

The proof is obtained by using the de
nitions ofCP� DoneP and map properties

The details are left as an exercise �

Lemma �

�ft �DoneP ��v� ��a�������w� �wr � � �w��	���

� if DoneP ��v� ��a�����w� �
w
r ��	���

then	�	���

else	 � �ft �DoneP ��v� ��a�����w�	���

The proof is obtained by using the de
nitions of fstloc and DoneP
 The details
are left as an exercise �

Lemma 	

�q� � h�i�����w� �
�
r� �w� �r�

��w��	���

� ���w� �
�
r� � �q� � h�i����w � ��w � �r

��w��	���

�	

The proof is obtained by using the de
nitions of q� � and h�i
 Also required is
the following q property�

q� �x � y � �� � x � q� ��x� y� � ��

where follows directly from the de
nition of q
 The remaining details of this
Lemma are left as an exercise �

Now� a reminder � we are trying to prove that�

CP�����w� �
�
r� �w� �r

��w���a� v��

� P��PEq��v� ��a��� ���w� �
�
r� �w� �r

��w���a� v��

holds if the following is true�

CP����w � ��w� �r

��w���a� v��

� P��PEq��v� ��a��� ��w � ��w� �r

��w���a� v��

The proof now proceeds by considering the case�

DoneP ��v� ��a�����
�
w� �

�
r� � true

Proof � The lhs reduces� by Lemma �� to�

� � �a �� ��w��v�����a����	�	�

The value of PEq��v� ��a��� ���w� �
�
r� �w� �r
 is evaluated as shown below� where

the lhs are labels corresponding to the lhs in the de
nition of PEq�

���w � �q� � h�i�����w � �
�
r� �w� �r

��w��	���

� ���w� �
�
r� � �q� � h�i����w � ��w� �r

��w��	���

�Lemma ���	���

i � minflen����w� �
�
r� �w� �r

��w���	���

�ft �DoneP ��v� ��a��������w� �
�
r� �w� �r

��w�g�	���

� minflen����w� �
�
r� �w� �r

��w�� 	g�	���

�Lemma ���	���

� 	�	���

���
��
w�i�� �
�����

�
w � �

�
r� � �q� � h�i����w � ��w� �r

��w���	���	���

�
���
�
w� �

�
r��	�	�

� ��w�	���

��

The result is used with P to give the value of the rhs�

P����w���a� v���	���

Examining the de
nitions of P and CP show that the lhs and rhs are equal
 �

The rest of the proof considers the other case�

DoneP ��v� ��a������w� ��r�

Proof � The lhs reduces� by Lemma �� to�

CP����w � ��w� �r

��w���a� v���	���

The value of PEq��v� ��a�������w� �
�
r� �w� �r

��w� is evaluated as shown below�
where the lhs are labels corresponding to the lhs in the de
nition of PEq�

���w � �q� � h�i�����w � �
�
r� �w� �r

��w��	���

� ���w� �
�
r� � �q� � h�i����w � ��w� �r

��w��	���

�Lemma ���	���

� ���w� �
�
r� � �

���	���

� where��� �� �q� � h�i����w � ��w� �r

��w��	���

i � minflen����w� ��r� � ���� �ft �DoneP ��v� ��a��������w� ��r� � ���g�	���

� minf	 � len������ 	 � �ft �DoneP ��v� ��a�������g�	�	�

�Lemma ���	���

� 	 �minflen������ �ft �DoneP ��v� ��a�������g�	���

� 	 � j�	���

where j � minflen������ �ft �DoneP ��v� ��a�������g�	���

���
��
w�i�� �
�����

�
w � �

�
r� � �

����	 � j���	���

�
���
���j���	���

Let us expand PEq��v� ��a������w � ��w� �r

��w�� �ignoring the conditional for

odd length lists� and compare�

PEq��v� ��a������w � ��w� �r

��w��	���

� let���w � �q� � h�i����w � ��w� �r

��w� in�	���

let i � minflen���w� �ft �DoneP ��v� ��a�������w � ��w� �r

��w�g in�����

���
��
w�i�����	�

��

If we compare this with the previous expansion� we see that they are the same�
noting the correspondence between ���w and ���� and between i and j

We have shown that we can get from ���w � �
�
r� �w� �r

��w to ��w � ��w� �r

��w� as far as PEq is concerned
 It is a trivial matter to insert this into P�
thus obtaining the rhs
 Comparison of the lhs and rhs now shows that we have
completed the inductive step
 This completes the proof
 �

As we have seen� the equivalence operators reduce the sequences of events used
by CarefulGet and CarefulPut to the single event that have the same e�ect if
used by Get or Put
 The natural question to ask here is�

Question � Is the set of events that can result from determining the equiva�
lences of all possible sequences a proper subset of the set of all possible events !
In other words� has the introduction of the Careful operators eliminated some
events !

The answer is NO
 Presented here are the counter�examples that form the proof

In e�ect we demonstrate how to construct� for any event� an event sequence the
given event as its equivalent

� CarefulGet� The following Read Event sequence will always be equiv�
alent to �r� regardless of the nature of that event�

��r � �r�

 � �r

� �z �

n times

� CarefulPut� The following Write Event sequence will always be equiv�
alent to �w� regardless of the nature of that event�

��w� �v � ��b� w� � �true� v�

� CarefulPut of given value V � If we restrict the �read events� in the
sequence to be of the form K�r� representing lifted �real� Read Events�
then a single counter�example is no longer possible
 However� if we restrict
our question to be concerned with particular instances of v being written�
then it is possible to produce a family of counter�examples� one for each
possible value of v
 The following Write Event sequence will always be

��

equivalent to �w� regardless of the nature of that event� given that the
value V is being written�

��w�K���b� w� � true� V �
 ��w

The Careful operators provide quantitative fault tolerance� in that they reduce
the propability of some events occuring
 They do not provide qualitative fault
tolerance� which requires the probability of some events to be reduced to zero

Question � Lampson asserts� in �Lam�	� on page ��� that�

�CarefulPut

 eliminates soft read errors
 CarefulPut

 eliminates
null writes� it also eliminates bad writes� provided there is no crash
during the CarefulPut�

Does the negative answer to the previous question contradict this !

Once more the answer is No
 What Lampson refers to as a soft read error �page
���� is in fact a �sub��sequence of persistently erroneous Read Events whose
length is less than n� the number of tries made by CarefulGet
 Any single null
or bad write will be masked by CarefulPut if it is the only such error present
 We
have seen that any such event can be made manifest� but only by the occurrence
of the pathological Read Event ��v ���b� w� � �true� v�� immediately afterwards

The confusion arises simply because Lampson calls some events �errors�� whereas
we would refer to an equivalent �event sequence�

Another classic case considered in fault tolerant systems concerns single failures

Question � Is the set of events that can result from determining the equiv�
elants of all sequences that contain at most ONE real error� a proper subset
of the set of all possible errors ! In other words� has the introduction of the
Careful operators eliminated some SINGLE errors !

Note that we are discussing sequences where every event� bar one� is either
�Iw or K�

I

r � as appropriate
 Also note that a crash counts as an error� strictly
speaking� as does the occurence of a previous event that left an erroneous value
in memory
 These two cases are important� as will be seen

The answer to the question is YES� with some caveats
 Here� we simply show
the appropriate examples� and discuss the caveats

��

� CarefulGet� If a crash occurs� then the Get�Equivalent Form of a Read
Event Sequence is not de
ned� as no value is returned
 Therefore� no single
event function can be said to be equivalent to a sequence which denotes a
crash
 In the absence of crashes� we must consider if an erroneous value
in memory prior to the CarefulGet is to be counted as the single event
 A
reasonable answer is to exclude such situations� because they concern the
result of some previous CarefulPut� and considering them in conjunction
with a speci
c CarefulGet only serves to muddle the issue
 In e�ect� we
have re
ned the question to consider the case when memory#s current
contents are correct and no crash occurs
 The following identities show
that� under these circumstances� CarefulGet eliminates all single events
that would be classi
ed as err�!�� but will fail to convert bad��� to
ok�

p
��

GEq��true� w���
p
r � �r � �

p
r�����

GEq��true� w����r � �
p
r � �r � �

p
r�����

GEq��true� w����r � �r � ��r�����

Note that the case GEq��true� w�� ���r
 is not allowed as this denotes a
crash� while the case GEq��false� w���r denotes the case when a prior event
has left memory corrupted
 We can conclude� given the above conditions�
that CarefulGet eliminates single errors� as long as they do not constitute
a bad event

� CarefulPut� In this case we get a much stronger result than was ob�
tained for CarefulGet
 The result is characterised by the following identi�
ties� which are independent of the context� or the fact that an event might
be err or bad in that context�

PEq��v� �b� w�����Iw�K�
I

r

��w � �Iw�����

PEq��v� �b� w��� ��w�K�
I

r � �
I

w�K�
I

r

��w � �Iw�����

PEq��v� �b� w�����Iw� �
w
r � �

I

w�K�
I

r

��w � �Iw�����

Note that �w denotes an arbitrary� possibly empty event list
 Remember
that only one error can occur� all the other events being �Iw or K�

I

r as
appropriate
 The only cases not covered above� containing only one real
error� are those that denote a crash
 The following identities show the
results in the event of an immediate crash or a single Write or Read event
followed by a crash�

PEq��v� �b� w���� � ��w�����

PEq��v� �b� w��� ��w�K�
I

r
 � �w�����

PEq��v� �b� w�����Iw� �
w
r
 � �Iw��	��

We can see that CarefulPut does eliminate all single errors� with the excep�
tion of a crash
 We also note that single events which would be classi
ed

��

as a bad if they occured during a Put operation are harmless when it
comes to CarefulPut � This is because the value written to memory is
checked using a Get operation which obtains both the boolean $ag and
the value for cross�checking
 This holds as long as no crash occurs before
that particular Get

In the previous discussion� the e�ects of prior operations on memory were ig�
nored
 We look brie$y at the e�ect that a prior event has on the ability of
Careful operations to cope
 For CarefulPut with single error we see that pre�
vious erroneous values have no e�ect� but the situation is not so simple for
CarefulGet
 We know it cannot distinguish between ok and bad when memory
contains �true� v�� but what about the case when memory is $agged as erro�
neous ! Consider the following identities� where �r is an arbitrary read event
list� ��r is a list of length less than n consisting solely of errs and noting that
no ok event is possible ��G��false� v���Ir � err ���

GEq��false� w����r � �r � ��r��		�

GEq��false� w����r
� ���r

��r � ��r��	��

GEq��false� w����r
� ���r

��r � ��r��	��

��	��

We see that the result is bad if any such event occurs before the n tries expire

If the single event is err given the context� then the e�ect of CarefulPut is that
of the event ��Ir or otherwise� which occurs in the nth position

We conclude by noting that the equivalence operators give us an easy way to
classify event sequences given a context � we simply reduce them down to the
equivalent single event �in that context� and classify the event�

�CG � B� VAL � R EVTS � ECLASS��	��

�CG��b� w���r � �G��b� w���GEq��b� w���r���	��

�CP � VAL �B� VAL � W EVTS � ECLASS��	��

�CP ��v� �b� w����r � �P ��v� �b� w����PEq��v� �b� w����r���	��

Note that both these de
nitions can be expressed more concisely using the �
operator�

�CG � �G � GEq

��

and

�CP � �P � PEq

A Careful Storage abstraction has been presented that improves the reliability of
error�prone memory Put and Get operations by means of repetition
 It has been
demonstrated how the e�ect of such �Careful� operators� given the sequence of
events occurring during any use of the same� can be reduced down to an single
equivalent event
 It has also been shown that the Careful Storage abstraction
does not eliminate the possibility of any events
 However� it has been seen
that certain events� namely those classi
ed as erroneous �err�� will only occur
if they are persistent
 In this case� persistence means that the error occurs
n times in a row� when n is an implementation de
ned constant used by the
CarefulGet algorithm
 Is must be stressed that a probabilistic analysis has not
been performed at this juncture to produce a more fault tolerant implementation

��

VDM
�
Notation

This notation is derived from �Mac��� Mac�	�

Symbol Meaning

X
m� Y Map from X to Y
f ��x��y Function f applied to �curried� x� applied to y

� Map Override operator
��x� Map Lookup� returning the element in the range mapped to by x
I The Identity Function
�� Reduction w
r
t
 binary operation �
	 Logical And
� Function Composition

P�f� Mapping function f

n nth Projection Function
rng Map Range

�f
m� g� Maps f and g to Domain and Range resp
 of a Map
X� Finite Sequences over X
� The Null Sequence
� The Sequence "Cons# Operator �a la haskell�Com���

�l

h� Sequence Subrange operator
f� Maps f into a Sequence �Kleene Star functor�
len The Sequence Length operator

 The Subset relation

 Logical Negation
� Logical Implication

�x
 Singleton sequence containing x

�x�

 � y
 Sequence notation

� Sequence Concatenation operator

Possible extensions to VDM
�
Notation

Symbol Meaning

�x Curried�Function Composition� with context x �But��b�
� Curried�Function Composition �Context�Free� �But��b�
h�i Adjacent Element Pairing operator
q Mapped Reduction �hybrid of Mapping and Reduction� �But���

��

�But��a� Andrew Butter
eld
 Memory models � a formal analysis using
VDM�
 Technical Report TCD�CS������� Dept
 of Comp
 Science�
Trinity College� Dublin� April 	���

�But��b� Andrew Butter
eld
 On curried function composition
 Technical Re�
port TCD�CS����	�� Dept
 of Comp
 Science� Trinity College� Dublin�
May 	���

�But��� Andrew Butter
eld
 On map reduction
 Technical Report to appear�
Dept
 of Comp
 Science� Trinity College� Dublin� 	���

�Com��� Haskell Committee
 Report on the programming language haskell

Technical Report Version 	
�� Haskell Committee� March 	���

�Lam�	� B
 W
 Lampson
 Atomic transactions
 In Distributed Systems� Archi�
tecture and Implementation� an Advanced Course� volume 	�� of Lec�
ture Notes in Computer Science� chapter 		� pages �������
 Springer
Verlag� 	��	

�Mac��� M%&che%al Mac an Airchinnigh
 Conceptual Models and Computing
 PhD
thesis� Dept
 of Comp
 Sci�� Trinity College Dublin� Ireland� 	���

�Mac�	� M%&che%al Mac an Airchinnigh
 The irish school of vdm
 In VDM 	
��
volume ��� of Lecture Notes in Computer Science
 Springer Verlag�
	��	

��

