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Abstract

This paper addresses the application of neural network
research to a theory of autonomous systems. Neural net-
works, while enjoying considerable success in autonomous
systems applications, have failed to provide a firm the-
oretical underpinning to neural systems embedded in
their natural ecological context. This paper proposes a
stochastic formulation of such an embedding. A neural
system derived from the cell membrane equation is shown
to exhibit a stochastic dynamic which tracks an environ-
mental process. The activity of a node is interpreted
in the context of this external stochastic process, in the
light of its interdependence, which is now of statistical
formulation, on the nodes to which it projects.

1 Introduction

This paper addresses a theoretical formulation of em-
bedded autonomous systems. The principal concern
is to extend the utility of neural models to a theo-
retical science of autonomous systems. The central
problem that this paper addresses is the difficulty
in making impartial empirical observations of artifi-
cial systems. Without a theoretical formulation of
the empirical context, any observations are subject
to empirical bias, a projection of the observer’s epis-
temology on to the network activation or system be-
haviour.

This research describes a model admitting of the
observation of autonomous systems in an empirical
context, and the assessment of the significance of the
observations with respect to the underlying logic of
the physical system constituting the autonomous sys-
tem and its environment.

This paper proposes a stochastic formulation of
such an embedding. Statistical methods have been
applied to the study of the dynamics of Bidirectional
Associative Memory networks [Fiqueroa 1990], but
not to the modelling of network activation embedded
in the environmental context. The neural system in
an environment exhibits a stochastic dynamic which
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tracks an environmental process. The network activ-
ity is interpreted as a random vector in this external
stochastic process.

2 Neural Models and Systems
Science

A metric of a mature theory is that it can make
‘counter-intuitive’ predictions that are empirically
verifiable. Neural networks have failed to provide a
firm theoretical underpinning to a neural system em-
bedded in an ecological context, necessary for ma-
ture predictive success. Significant research (e.g.
[Brooks 1990]) has been done in neural applications
to autonomous systems, which provide practical en-
gineering solutions to the problems encountered by
mobile robotic systems. However, these systems are
still open to intuitive bias, as the network behaviour
is observed from the observer’s reference frame.

System theoretic approaches (e.g [Rosen 1985])
have yet to reach the maturity for successful im-
plementations of robotic systems. Neurobiological
models have the greatest empirical success as a con-
sequence of the strength of their mathematical for-
mulation, and the closeness of their application area
to physical systems. In Section 2.1 an example of a
neurobiological model that explains an optical illu-
sion is presented.

2.1 Neurobiological Models of Neural
Systems

Neurobiological or electrophysiological systems pro-
vide very complex mathematical models of electrical
and chemical activation levels in the nervous systems
of mammals. These models are theoretically robust,
as well as being empirically well founded. With the
aid of complex measuring equipment, the theoreti-
cal predictions required of any scientific theory are
empirically verifiable.

The ‘barber pole’ illusion (see Figure 1), is a
classic example of a counter-intuitive empirical phe-



denoted by the white arrows, while the local stimuli
to the retina are all oriented laterally, denoted by the
black arrows.

The physiological model of this phenomenon, the
Boundary Contour System (BCS) of [Mingolla 1985],
presents a theory of structure within the human vi-
sual cortex whose internal logic supports the counter-
intuitive perception the natural system exhibits. The
network dynamics exhibit the global behaviour as a
result of local interactions, and the BCS describes
mathematically the interconnections that support
this dynamics.
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Figure 1: The Barber Pole Illusion.

The theoretical formulation allows empirical state-
ments to be made that are consistent with the inter-
nal logic of the nervous system, and thus the ‘illu-
sion’ is explained. The maturity of the neurobiolog-
ical model is exemplified by this level of empirical
success.

The internal logic that autonomous systems obey
is the necessary backdrop for any empirical the-
ses about such systems. However practical appli-
cations of robotics control systems to the problem
of autonomy have yet to reach this level of matu-
rity. The work of [Braitenberg 1984] presents sys-
tems that have the appearance of autonomous be-
haviours, but no theoretical formulation that pre-
cludes intuitive bias. The work exemplifies precisely
how easy it is to intuit too much onto an autonomous
behaviour.

Subsumption architectures (e.g. [Brooks 1990])
have proved possibly the most successful autonomous
systems solutions to date. They do not however pro-
vide a great degree of insight into the operation of
the human nervous system, as they address systemic
behaviour, rather that neurophysiological activation.
The object of this research is to provide a mathemat-
ical relationship between the neural activation, and
the environment within which the activation takes
place, to help narrow the gap between biological and
artificial autonomous systems.

3 The Stochastic Network

A generic network architecture based on the ‘cell
membrane’ equation is considered in this paper. The

of Plonsey and Fleming [Plonsey 1969|, amongst
others, is a simple model of the electrical activa-
tion of a neuron under stimulation. It has been
used as the fundamental building block in many
network architectures notably those in the series
of Adaptive Resonance Theory (ART) architectures
[Grossberg 1976, Carpenter 1990].

3.1 The Cell Membrane Equation

A mathematical formulation of the cell membrane
equation is given in Equation 1. Nodal activation as
a function of time is represented by z;(t). Letting
NE, denote the net excitatory inputs, and N7, the
net inhibitory inputs, we have
PO~ aw(t) + (B - (W,
— (@i(t) + C)NT, (1)
If z;(t) is greater than B, all three terms in dzd%gt) are
negative, and so x; decreases. Thus it is bounded
above by B. Similarly, if z;(¢) is less than —C, then
all three terms are positive, and x; increases. This
implies that the nodal activity is bounded in a dis-
crete range [—C, BJ.

Typical excitatory and inhibitory inputs are given
in Equations 2 and 3. J; denotes the set of nodes
to which x; is connected, with z;(t), j € J;, de-
noting the excitatory synaptic inter-connectivity. K;
denotes inhibitory projections, and zy;, k € IC;, the
inhibitory synaptic connections.

N, (t) = Y Byzu(t) + 1, (2)
ied

NLt) = = Cezilt) (3)
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Numerous network architectures can be con-
structed from these equations. The different choices
of the net excitatory and inhibitory inputs, together
with the overall connectivity, govern the network be-
haviour.

3.2 Network Architecture

The construction of a simply network, with expo-
nential decay, zero inhibition and simple excitation,
following from this equation is trivial. We consider
the following architecture, where J denotes the set
of nodes in the network, and z;, i« € J, denote the
nodal activations.

dxl(t)
dt

= —Azi(t) + (B — 2i(t))Ng,, (4)
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Let the synaptic connections be governed by the
following equation, where the time index ¢ is not nec-
essarily the same as in Equation 4.

dz;i(t)
b = (Cmit 8 Y s fe®) ()
ied
_ 1 ifi=y
Where &5 = { 0 otherwise
This describes a simple dynamics for the synaptic
connections, with exponential decay for each node,
and gated excitation on z;;(t). The function f(xz;(t))
that describes the gating is arbitrary, providing it is
constant with respect to the time scale of the synap-
tic dynamics.

3.3 Probability Measure

Synaptic activity will be interpreted as a probability
measure on the measurable space composed of the
network nodes J, and its power set, J = 27, rep-
resenting all possible projections. The measurable
space (J,J), will be presented as the state space of
the stochastic process in the environment, allowing
unbiased interpretations of network activation.

The definition of a probability measure is given in
Definition 3.1.

Definition 3.1 Given a measure z : J — [0,1] on
a measurable space (J,T), and a disjoint partition
Ag={si|i €I} of J, then z is a probability mea-
sure if and only if

[ sotay = 1 (6)

for all partitions A.

The partition A represents the set of subsets J;
of J that describes the projections of the network
nodes z;, and so the possible network architectures.

3.4 Theorem Statement

The following theorem proves that this network ar-
chitecture supports the interpretation of synaptic in-
terconnectivity as a probability measure on the space
defined by the connectivity, and hence of network ac-
tivity as a stochastic kernel.

bility measure on J for all t < ty, k > 0, and

d )

Ezt(Ji) . Kzt ((74)"), (7)
d

azt(J]’) . = —kz,(75), (8)

where 7; is an event in (J,J) and {7; | j € I'} form
a partition Wz, of the complement of 7., then z
remains a probability measure for all t > ty.

We require to show that

/Iztl(Ji)dAj =1
given

/IztO(Ji)dAj -1

Proof: We begin by solving Equation 7 and Equa-
tion 8 for z; as a function of time. By simple inte-
gration, noting that z,((7;)") = 1 — z¢(74), we get

1= (1= 25 (3))e™ "1 710) - (9)
zt()(jj)e_ﬂ(tl_t())' (10)

2ty (.71)
2ty (jj)

Now,

/I wn(70) dAg
=zmm+é%wm&m (1)

= ( zto(j‘b)) —r(t1—to)

/ 2t J]

(( zto(jl))

/Ii Zt()(jj)d.A(Ji),> ef’“(tlfto)

/Izto(JJ)dAI> w(t1—to) (13)

—Hh=0) g A g (12)

Equation 11 follows from a separation of J into the
two sections ¢ and j. Equation 12 follows from direct
substitution of Equation 9 and 10 into Equation 11.
Equation 13 follows as Equation 6 is independent of
the index t, Equation 6 states that the integral in
Equation 13 is unity, and

/z 2 (T0)dA g = 1 (14)

which simply states Definition 3.1. <&



Theorem 3.1 is expressed in a stochastic notation,
while the network equations are couched in more con-
ventional algebraic notation. Ignoring the functional
and indexed expressions of temporal dependence in
Equations 5, 8 and 7, the notational equivalence is
between

Z(ji)tjiﬂ[o,l]EZji ] €T,

where J; = {z;}. Thus we can interpret z(7) as the
synaptic connectivity to the nodes x; € J C J.

Thus we have concluded that Equation 5 is com-
patible with a probabilistic interpretation of synaptic
activity. We have that

zi=z({x:}) : T — [0,1]

is a measure on the set J; of nodes for each z; to
which z; projects. This permits interpretation of z;;
as a stochastic kernel, such that

zji 2 I x T 2 (i,7) — @

Due to the one to one correspondence between
stochastic processes and kernels, this kernel can be
interpreted as a model of a stochastic process. Let-
ting the environmental source of the inputs I; to the
network be denoted by a probability space (E, &),
the process may be represented

Z.E—>J;:1; — x;.

The synaptic activity can thus be interpreted as a
model for the process Z, where z;; is the conditional
probability of I; given z;.

4 Conclusion

Theorem 3.1 proves that the network dynamics aris-
ing in a network based on the cell membrane equation
is compatible with an interpretation of network ac-
tivity that views the synaptic connectivity as prob-
ability measures. The nodal activation z; is inter-
preted as a random vector on the probability space
(E,€). The random variables Z; : I; — x; define the
semantics of the network activation.

4.1 Conversations about Neural

States

Any empirical observations of z; or z;; may be re-
lated to the environmental model (E, £). The benefit
of having a theoretical model of the environment is
that empirical observations of an autonomous system
take place in the environment, and so verification can

of reference of the empirical phenomenon. Thus it is
possible to talk about neural activation, without in-
troducing observational bias that cannot be analysed
within the theoretical framework.

References

[Braitenberg 1984] V. Braitenberg. Vehicles: Ez-
periments in Synthetic Psychology. MIT Press,
London 1984.

[Brooks 1990] R. A. Brooks. Artificial Life and Real
Robots. in Towards a Practice of Autonomous
Systems. Proceedings of the First European
Conference on Artificial Life. P. 3, MIT Press,
Boston, USA 1991.

[Carpenter 1990] G. Carpenter and S. Grossberg.
ART 3 Hierarchical Search: Chemical Trans-

mitters in Self-Organising Pattern Recognition.
IJCNN-90-Wash-dc I1-30

[Fiqueroa 1990] J. G. Figueroa, M. Romero, E. Var-
gas and C. Flores. Langevin Equations and
the Formal Foundations of Neural Networks.
IJCNN-90-Wash-dc I-385

[Grossberg 1976] S. Grossberg. Adaptive pattern
classification and universal recoding: Ii. feed-
back, expectation, olfaction, and illusions. Bio-
logical Cybernetics, 23:187-202, 1976b.

[Mingolla 1985]  Neural Dynamics of Perceptual
Grouping: Textures, Boundaries and Emergent
Segmentations. S. Grossberg and E. Mingolla.
Perception and Psychophysics, Vol. 38, 141-171,
(1985)

[Plonsey 1969] R. Plonsey and D. Fleming. Bioelec-
trical Phenomena. McGrath-Hill, New York,
1969.

[Rosen 1985] R. Rosen. Anticipatory Systems:
Philosophical, Mathematical and Methodological
Foundations. Pergamon Press, Canada, 1985.



