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Abstract

Processing speeds have increased dramatically, bitmapped displays allow graph-
ics to be rendered and updated at increasing rates, and in general computers
have advanced to the point where they can assist humans in complex tasks.
Yet input technologies seem to cause the major bottleneck in performing these
tasks: under-utilising the available resources, and restricting the expressiveness
of application use.

We use our hands constantly to interact with things: pick them up, move
them, transform their shape, or activate them in some way. In the same uncon-
scious way, we gesticulate in communicating fundamental ideas: ‘stop’, ‘come
closer’; ‘over there’, ‘no’, ‘agreed’; and so on. Gestures are thus a natural and
intuitive form of both interaction and communication.

This report develops the motivations for gestural input and surveys current
gesture recognition techniques. A recognition technique under development at

TCD, as part of the GLAD-IN-ART (EP5363) project, is also introduced.
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Chapter 1

Introduction

1.1 Motivation

Processing speeds have increased dramatically, bitmapped displays allow graph-
ics to be rendered and updated at alarming rates, and in general computers have
advanced to the point where they can assist humans in complex tasks. Yet in-
put technologies seem to cause the major bottleneck in performing these tasks:
under-utilising the available resources. This 1s regrettable, since according to
Paul McAvinney, “most of the useful information in the world resides in hu-
mans, not computers”. Users spend the majority of the time they interact with
computers inputting information. Thus, the total time to perform any task
would hardly improve if processing was to become infinitely fast.

We use our hands constantly to interact with things: pick them up, move
them, transform their shape, or activate them in some way. In the same uncon-
scious way, we gesticulate in communicating fundamental ideas: ‘stop’, ‘come
closer’; ‘over there’, ‘no’, ‘agreed’; and so on. Gestures are thus a natural and
intuitive form of both interaction and communication.

Recognising this, researchers are developing devices that allow gestures to
be used as a form of input. As discussed below, some of these devices are
commercially available, most popularly in the form of gloves worn on the hand.

One of the most important concepts in Human Computer Interaction is
that of direct manipulation. This refers to the user’s experience of interaction
being directly with the objects of interest rather than through an intermediary
system. The Apple Macintosh Desktop uses direct manipulation for most of its
operations. To move files from one folder to another, the user clicks the mouse
on the files to be moved and drags them to the target folder. In a traditional
shell, the command to move files is typed and the corresponding operation is
performed, from the user’s perspective by something else, the OS in this case.

Hutchins [16] refers to directness as an impression or feeling about an inter-
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face resulting from the commitment of fewer cognitive resources. In less abstract
words, the more a user has to think about an interface, the more removed he 1s
from the task. This distance is referred to as “the gulf between the user’s goals
and the way they must be specified”.

There are two modes of interaction that are often not clearly delineated in
the literature: gestures as a symbolic language and gesturing to provide multi-
dimensional control. As interface paradigms, both move towards more natural'
direct manipulation, aiming to render the computer transparent in using an
application. In the survey of gesture-based applications below, the two types
of approach are made explicit, where possible. Often, however, the two modes
are mixed as in the VIEW system [37]—where objects are directly manipulated
by the hands in 3-dimensions and system commands are issued using different
gestures. The two types of interaction, “physically-based manipulation” and
“linguistic gestures” are similarly viewed by Weimer and Gannapathy [43] as
being at opposite ends of the direct manipulation spectrum.

1.2 Enabling Technologies

1.2.1 Instrumented Gloves

The ‘Sayre’ Glove was the first instrumented glove to be invented, c¢. 1977,
based on an idea from Rich Sayre, it used flexible tubes with a light source at
one end and a photocell at the other. Finger flexion was thus measured by the
amount of light incident on the photocell.

In 1983, Gary Grimes received a patent [14] covering the use of a special
electronic glove solely to interpret a manual alphabet for data entry, for his
Digital Data Entry Glove. The glove has specifically positioned flex sensors
capable of recognising an 80 character superset of the Single Hand Manual
Alphabet for the Deaf.

By far the most successful glove is the VPL DataGlove, developed by
Zimmerman [45]. The DataGlove is based on patented optical fibre sensors
along the backs of the fingers, two for each finger. Like the Sayre glove, finger
flexion bends the fibres, attenuating the light they transmit. This analog signal
is sent to a processor which determines the joint angles based on calibrations
for each user. Posture recognition software is included with the DataGlove
so that users can map configurations of joints to commands, as described in
section 2.2.1.

Position and orientation of the hand is calculated using a Polhemus 3SPACE
sensor, which tracks the 6 degrees of freedom using the principle of electro-

T Actions that are natural also tend to be ingrained or intuitive behaviour. Interface de-
signers must be mindful of not conflicting with natural or trained responses, like the lesson
learnt from the early USAF F-111 swing-wing aircraft in which the faster wing configuration
was initiated by pulling the stick backwards—a motion that means “slower” to pilots—leading
to several landing accidents before the controls were reversed.
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magnetic induction. The tracker consists of a fixed transmitter and a small
lightweight cubic receiver which is mounted on the glove, both contain three
mutually perpendicular coils. The relationship between current flow in the
transmitter’s coils and the induced current in the receiver’s coils is the basis
for computing the position and orientation.

While the DataGlove emphasised user comfort with reasonable precision?,
the Dextrous HandMaster developed by Exos is a far more accurate, but
less comfortable, glove device [27]. Tt consists of an intricate exoskeleton of
aluminium that is fitted to the back of the hand. All twenty of the hand joints
have Hall-effect sensors to measure the bending angle.

Inspired by the success of the VPL DataGlove, the toy manufacturers Mattel,
released the PowerGlove in 1989, as a low cost and hard-wearing controller
for Nintendo games consoles [9]. The PowerGlove uses resistive ink sensors
embedded into flexible molded plastic on the back of the hand and fingers. The
total flexion of each finger is measured by one resistive ink sensor—making the
PowerGlove the least accurate of the three competing gloves.

The PowerGlove also provides 6D pose (position and orientation) informa-
tion, based on ultrasonic waves. Two ultrasonic transmitters attached to oppo-
site sides of the glove transmit ultrasonic clicks. Three receivers placed at the
corners of a video monitor receive the click and based on a priori knowledge of
the relative locations of the transmitters can calculate the triangulation.

Researchers and hobbyists in this field often opt for Mattel’s PowerGlove
over the other two because of the enormous gulf in price: Exos DHM,$15,000;
VPL DataGlove, $8,000; Mattel PowerGlove, $20 !

2

1.2.2 Vision-based Tracking

Poizner and other researchers at the Salk Institute used a camera-based LED
system to analyse sign language [18]. Analysis was off-line, avoiding compu-
tational problems. Various analytical techniques were proposed from which to
qualify the linguistically significant features of signed language. Although it was
not mentioned in the paper, the system could be used to track hand motion for
gestures.

In his responsive environments, Krueger tracks participants using a single
video camera [24]. Image analysis is simplified by using the silhouette image
of body motion. Rheingold [15] describes Krueger’s work in detail, and of the
image processing in particular he gives the rationale for a simplification, “in the
context of a human body, the highest line of a silhouette means the top of the
head, the rightmost endpoint of a skinny edge means a fingertip”.

O’Neill [30] reports on the development of a passive pose tracking system
based on tracking icons with a stereo camera system. The application of com-

20Official finger flex accuracy is given at 1°, but formal and informal third-party analysis
have shown actual accuracy to be nearer 5°
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puter vision techniques removes the need for intrusive cabling and makes track-
ing multiple objects feasible.

1.3 Gesture Based Applications

1.3.1 Physically-based Manipulation

3D Design Applications such as CAD and telerobotics form the platform of
applications that require 3D input to be powerfully used. As McAvinney says,
while 1t is possible to specify and manipulate representations of 3D objects with
a mouse, decomposing a six degree of freedom task into at least 3 sequential 2D
tasks is time-consuming, error-prone and above all unnatural [28]. Sculpting or
curve specification encounters the same decomposition problem.

A natural way of expressing curves and object edges is to use the fingertip
or a pen in 3D space. The 3Draw system, developed at MIT [38] uses a pen
with an embedded Polhemus sensor to track the pen’s position and orientation
in 3D. Another 3SPACE sensor is embedded in a flat palette, representing the
plane on which the object rests. The CAD model is thus moved synchronously
with the designer’s movements. Objects can thus be rotated and translated in
order to view them from all sides as they are being created and altered.

Weimer and Gannapathy [43] describe a method of tracing curves in 3D
using a VPL DataGlove—shape gesturing as they term it. The fingertip is used
to specify the position of a series of control points for a b-spline curve. When
a control point is to be selected, isolated speech commands are issued and once
recognised, the control point is fixed. Postures could not be used to specify these
commands because of the possible ambiguity between commands and curve
paths. Also, thumb abduction is used in a clutch and throttle metaphor to
transform existing curves.

Telepresence The manual manipulation of robot end-effectors is another
physically-based manipulation task that requires concurrent control of multiple
degrees of freedom. Conventional robot control devices, levers, dials, joysticks,
etc. are inadequate for the simultaneous manipulation of more than three de-
grees of freedom. In any remote or hostile environment, manually controlled
end-effectors may be required to perform complex manipulation. Telepresence
is the name given to the area of research that deals with providing the robot‘s
teleoperator with as much support as possible for the following problems: visu-
alisation of tasks, the absence of physical feedback and the cognitive problem
of mapping hand motion to end-effector motion.

The VIEW system [37] consists of a headmounted stereoscopic display with
built-in microphone for speech commands and stereo sound system for audio
feedback, a DataGlove to track hand posture for gestured commands, and posi-
tion and orientation for direct manipulation of objects. Fisher and his colleagues
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at NASA Ames [11] are developing the VIEW environment to be effective in
visualising telepresence applications. Tackling the mapping problem, Pao and
Speeter at AT&T [31] have constructed algebraic transformation matrices to
map human hand poses to robot hand poses. This transformation matrix is

necessary to overcome the kinematic differences between the hand (as repre-
sented by a DataGlove) and the Utah/MIT Dextrous Hand.

Interaction & Visualisation 3D visualisation of and interaction with scien-
tific models has been one of the driving problems in this field. Most significant
of the scientific visualisation research is project GROPE [4] at University of
North Carolina. Since 1967, Brooks and Ooh-Young have been working on a
project to develop a tactile and visually interactive display for the 6D force
fields of interacting protein molecules. The tactile simulation is explored using
a handgrip connected to the Argonne Remote Manipulator which provides force
feedback due to the chemical bonding modelled by the computer system. The
user, inevitably a chemist, hopes to improve his perception and understanding
of the complex force fields caused by molecular bonding. The molecules are ma-
nipulated and by minimising the reflected force, the chemist finds a stable bond.
Their findings indicate that perception of this cognitively difficult problem does
increase and that extremely good bonds can be discovered using the GROPE
system.

Medical Studies A glove-like device is a natural tool for a clinical study of
the hand’s ability to perform physical tasks. In the original VPL DataGlove
paper, [45], Zimmerman presents the glove as a hand impairment measuring
tool, for patients recovering from strokes, for example. A therapist undertakes
the painstaking process using a mechanical goniometer to obtain the range of
motion for each individual joint. This process often takes hours to complete.
Compare this to the capability of the DataGlove to measure a patient’s range of
motion for each represented degree of freedom, concurrently, in a fraction of the
time and with less qualified supervision necessary. Known tests such as stacking
objects or turning over cards and others [17] take a considerable amount of time
to perform and equally time-consuming is the analysis of video data captured.

The DataGlove has been used in trials [44] to speed up this process, although
given the 5° level of sensor accuracy its usefulness for fine grain measurement
is suspect. The Exos DHM, with its sensor accuracy well under 1°, would
better facilitate any clinical study than the VPL product. The same process
used for rehab studies could easily be applied to degeneracy trials for sufferers
of physically debilitating diseases like Parkinson’s disease. A quick and often
useful metric in these cases is the patient’s dexterity in writing their signature.
The DataGlove offers another convenient and more powerful metric.
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1.3.2 Linguistic Gestures

Sign Language Understanding Understanding a formal signed language,
such as the American Sign Language is naturally one of the driving tasks for
a project of this kind. The recognition of full, dynamic gestures representing
words and concepts as they do in the ASL is undoubtedly the most difficult
problem of those mentioned here. There has not, to-date, been any system
with these capabilities reported in the literature. There are, however, rumours
that companies such as Hitachi and Fujitsu have developed propriortary systems
with recognition of several hundred words from a common sign language. Sign
language understanding systems have useful syntactic and semantic information
available in the context of the sentence being signed. There remains, however,
a 604 degree of freedom?® problem, incorporating all the problems of gestures
performed at different spatial and temporal scales.

The benefits of sign language understanding systems are often debated and
not made clear. A functioning system would provide an opportunity for the deaf
to communicate with non-signing people without the need for an interpreter—
essentially more independence. Although it is argued that a keyboard connected
to the speech synthesiser could be used for this purpose, this is not a natural
interface for the signer and places an intermediary into the dialogue. Another
possible problem with a keyboard is that deafness may only be one symptom of
physical disability, the user may not have the dexterity to use a keyboard?.

Another benefit to people who rely solely on sign language would be the
ability to converse remotely with others—use a telephone. Videophones may be
several years to commercial release, and certainly it will be some time before they
are priced within the reach of disability grants. A sign language understanding
system could be used to (inexpensively) generate speech or text remotely, or
to control a tactile display for the deaf-blind. One inappropriate idea that has
been mentioned was to use a SL recognition system to remotely control a multi-
jointed artificial arm!

Published research in this area has thus concentrated on finger spelling de-
vices, which are tedious to use for all except proper nouns. Grimes [14] and
Kramer [23] developed such systems. Fels [10] went one step further, map-
ping postures to a vocabulary of root words with the direction and velocity of
hand motion providing word modifiers, such as endings and stresses. Tamura

36 dimensions of wrist pose, 4 joints for each finger and thumb, 2 joints in the wrist, 2 at
the elbow and 3 in the shoulder, all doubled for two hand signing.

*Randy Pausch’s CANDY project [32] aims to develop a speech synthesis controller for
Cerebal Palsy sufferers. This is a disease that impairs motor control and although this happens
through brain damage, the sufferer is not necessarily mentally disabled, most however, do not
have the dexterity to use a keyboard or conventional input device like a joystick. Pausch’s
system uses the Polhemus 6-dimensional position and orientation tracker on a DataGlove to
passively track the movements of some body part which in turn controls an artificial vocal
tract. This system should really be mentioned above, since continuous physical movements of
the body map onto continuous movements of simulated vocal apparatus.
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and Kawasaki [42] report moderate success in recognising a limited high-level
gestural language from sequences of video pictures.

Direct Manipulation & Linguistic Interfaces Coleman‘s [8] was the first
interface of this type, which allowed a user to edit text interactively using hand-
drawn proofreaders symbols to specify commands. Figure 1.1 shows a familiar
sight in a proofread text, from Buxton [6]. Giving commands in this way was
possible using Coleman’s system, returning the word-processor user to a more
intuitive and quicker way of editing text. Buxton [7] built a musical score editor

Ideally, we want a one-to—one mapping between\)
concepts and gestures interfaces should
be designed with a clear objective\of the mental

model we are trying to establish. rasing can
reinforce the chunks or structure of the model.

Figure 1.1: Proofreader’s Gesture

with gestural input using a mouse. His system used simple gestures to indicate
note durations and scoping operations as well as their position on a displayed
scale to infer their identity. Rubine [35] developed an application, GSCORE, to
do the same thing, while Buxton’s technique was incorporated into Notewriter
I, a commercial music scoring program.

Minsky [29] developed a visual programming system called Button Box,
which uses gestures for object selection, movement and paths of motion. She
used a tactile sensing plate mounted on a display as the input device for her
system. This plate could sense the position of a finger on the plate and the tac-
tile force. The force sensor was used to distinguish between tapping an object,
to activate it, and touching the object, to select it for dragging. Zimmerman
[45] describes another ‘visual programming environment’, GRASP. Rather than
being a programming environment, was really the first VPL attempt at building
a simulated world populated with objects that could be directly manipulated,
by pushing them around, or indirectly manipulated, by pulling postures corre-
sponding to shorthand for pick, move, and so on.

A group at IBM researching human-computer interaction, produced a gesture-
based spreadsheet, shown in figure 1.2 from Rhyne and Wolf [34]. The user
manipulates cells or groups of cells by gesturing onto a touch tablet, drawing
an X to delete, arrows to move and text can be input using hand-writing.

An important development in direct manipulation interfaces was Bolt’s “Put-
that-There” system published in 1980 [3]. Bolt was the first to combine gesture
and speech to tackle the so-called modality problem. This refers to the difficulty
of specifying several simultaneous parameters unambiguously. The concept of a
mode in an application is common, MacDraw, for example, may be in one of a
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A B C D E
1
g Proj Actual
3 -
5 Noreast $1,200 $1,152 96.00%
6 Midwest $600 $541 90.17%
7 South $850 $925 108.82%
8 SouthEast $800 $781 97.63%
9 West $1,000 $876 87.80%
10 Americas $300 $221 73.67%
11
12 TOTALS $4,750 $4,300 92.48%

G5

Figure 1.2: A Gesture-based spreadsheet

number of modes, including line, circle and text. The next operation performed
produces the corresponding object. Mistakes occur in this sort of application
when the user believes he is in one mode but is actually in another. Allowing the
specification of several parameters simultaneously eliminates the need for modes.
This would be the case if, in MacDraw, the user could specify simultaneously
that a line should be drawn and the start and end coordinates. Rubine‘s [35]
GDP (gesture drawing program) is similar to MacDraw but instead of a palette
of tools, and different modes, the shape and position of a gesture performed
using a mouse, determines that of the object.

In “Put-That-There”, [3], Bolt ordered data around a large projected graph-
ical display in several ways. Pointing, the position and direction of which is
tracked by a Polhemus 3SPACE, was used to disambiguate objects chosen with
spoken pronouns. “Put that ...”, the object would dissolve to let the user know
it had acknowledged the reference, “...there”, pointing at another position on
the screen. Pure speech commands were also possible, “Put the green triangle
to the left of the yellow square”.

Many subsequent systems [37, 43, 1] have used speech to validate objects
chosen by direct manipulation, or to eliminate the ambiguity of gesturing in both
‘modes’ that were isolated in the opening section, 1.1, physical and linguistic.

1.4 Gesture Recognition at TCD.

The Computer Vision Group of Trinity College is developing a gesture recogni-
tion system as part of its work in the ESPRIT II Research Project (GLAD-IN-
ART).

After a thorough survey of existing gesture recognition systems, it was de-
cided that if the system developed here was to meet its goals, a novel approach
was necessary. No existing system recognises full, dynamic gestures. The system
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developed here promises, by its method of representation to recognise dynamic
gestures by modelling the change of degrees of freedom over time.

The currently used methods in gesture-based systems are neural network
matching, matching templates to input data and statistical classification. The
first two methods, at least in the way they are conventionally presented, do not
handle time-variance well. They are more suited to static patterns, postures,
for example. The features extracted from the input to be used by statistical
classifiers may include time, but as section 2.4 will show, picking the relevant
features to extract is often dependent on the actual gesture pattern. The aim of
this project was to remove this specifity and develop a method that will work for
simple or complex gestures. Other methods which are used for matching time-
space curves, spline models, for instance, are too expensive computationally.
The recognition of gestures must be performed in real tzme and a standard
spline approach would not be possible on the available hardware.

Practically, the main motivating factor for this system was its involvement
in the GLAD-IN-ART® consortium. This is an ESPRIT II funded project inves-
tigating the problem of implementing the direct manipulation of simulated or
virtual entities. Central to this project are the development of new posture and
pose tracking systems, with which the interaction between the user’s hand and
graphical objects can be accurately modelled. Although this direct interaction
is the main focus of the project, it is acknowledged that indirect manipulation
of objects and the environment is a powerful method on human-machine in-
teraction. Thus the gesture recognition system described in this report is an
important part of the overall system. Figure 1.3 shows the main components of
the GLAD-IN-ART architecture.

The recognition system, however, is not dedicated to the GLAD-IN-ART
project alone. It provides a clean interface to applications which may wish
to use gestural input. The system receives a list of gesture identifiers and their
corresponding templates on initialisation and places no semantic meaning on the
recognised gestures. This allows applications to use gestures where appropriate.
This emphasis on a clean interface to a client program is precisely what is
needed for X Windows applications. Thus this system is ideal for integrating
into X-based applications.

Another motivation for this project was as an investigation into Human-
Computer Interaction, Pattern Recognition and their intersection. This chapter
has provided an overview of the history and state-of-the-art of gesture-based
HCI. The next chapter looks at alternative techniques for recognising patterns,
particularly how researchers have recognised gestures as patterns.

5Qlove-like Advanced Interface for the Control of Manipulatory and Exploratory Proce-
dures in Artificial Realities
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Figure 1.3: The main modules of the GLAD-IN-ART consortium. Trinity Col-
lege is responsible for the Pose tracking and Gesture Recognition modules.



Chapter 2

Approaches to the Problem

Fu [13] states that

The problem of pattern recognition usually denotes a discrimi-
nation or classification of events.

Clearly, gesture recognition may be viewed as a problem of pattern recog-
nition, in which the events to be classified are instances of input from posture
and pose sensors.

In general, pattern recognition (PR) consists of two subproblems: pattern
representation and decision making. Thus, formally, the architecture of any
approach to PR consists of two subsystems. The representer takes the raw
pattern, which might be an image, a string, or in this case a timestamped
stream of sensor data, and outputs its internal representation of the pattern.
This internal representation, often a set of features extracted from the data, 1s
in the most convenient form for the decider, to take as input and hence output
a classification for the pattern, (if one exists).

This chapter concentrates on possible PR techniques that could be used
to solve the problem of gesture recognition. It focusses particularly on tech-
niques used by researchers in the past, their relative successes and scope for
flexibly recognising full gestures. Gesture recognition is distinct from posture
recognition in that it requires the recognition of hand shape in time and space
domains, rather than only the space domain. The techniques will be examined
for their ability to deal with spatial and temporal scaling and for their training
procedures.

2.1 First Steps

Probably the earliest posture recognition was by Grimes [14] whose Digital
Data Entry Glove was designed specifically for recognising the signed alphabet.

11
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Carefully placed sensors registered fingertip contact, flexion of specific joints,
and hand attitude. Posture recognition was hard-coded into the electronics of
the glove; a particular combination of sensor readings produced an ’A’, another
a 'B’ and so on. The advantage of this technique is rapid and robust posture
recognition. The disadvantage is inflexibility, in that only those postures it
was designed for can be recognised. Neither Grimes nor Sturman [41] men-
tion whether calibration was used to adjust for each user before postures were
recognised.

In 1980, Bolt used a prototype Polhemus 6D pose tracking system for sens-
ing the direction of a point in his ‘Put-that-there’ system [3], described in sec-
tion 1.3.2. The sensor was attached to the user’s wrist and pose information
enabled the system to (at least) estimate where he/she was pointing at.

2.2 Template Matching

Template matching is probably the simplest method of recognising gestures to
be employed. Essentially there is no representation stage, the ‘raw’ sensor data
is used as input to the decider which is based on a function which measures the
similarity between templates of values and the input. The input is classified as
being a member of the same class as the template to which it is most similar,
or nearest, looking at the classification stage as a map from the input to joint
space in which the templates occupy points or subspaces. In general, there is a
similarity threshold, below which the input is rejected as belonging to none of
the possible classes (or too far from the nearest template in joint space). In fact
the similarity function is most often the Euclidean distance between the set of
observed sensor values and a template.

2.2.1 VPL’s Posture Recognition

VPL’s ground breaking work in 1987 [45] used a method for recognising postures
which followed very closely to that outlined above. For each posture each sensor
had a range of values that were valid. At each sample time', the sensor readings
were compared with the values of the posture templates. The absolute value of
the difference for each sensor is summed for each template. The gesture with
the minimum sum, below a global threshold, was the one chosen.

VPL’s software also provided hysteresis values for each sensor value to widen
the range of the match once a posture has been recognised, helping the user to
hold a posture after recognition. [45] also describes a simple calibration tech-
nique to allow the ranges to be altered to suit different users of the DataGlove,
since the sensors would be in slightly different positions for each users hand.

The advantages of the VPL approach is that it is simple enough to generate
and recognise postures efficiently, the representation of postures is easily under-

1 Approximately % second for the VPL DataGlove
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stood and modifiable by the user using a gesture editor provided. However, in
practice, the range of each template entry must be quite wide, estimated at up
to 30% of the total flexion range of each sensor. This is due partly to inaccu-
racies in sensing and partly to misperformed postures. Hence with more than
about ten to fifteen postures, the templates begin to overlap in joint space.

Lipscomb [26] also used a template matching based method for recognising
used for recognising stroke, i.e. 2D, gestures. This was a variant of the usual
technique where multiple templates were maintained for each gesture, corre-
sponding to increasingly coarse resolutions of sensor values?. The templates
were examined first at the lowest resolution and only if successful at this stage,
would the template proceed to matching at a higher resolution.

2.2.2 Extending Posture templates to Gestures

To approach gesture recognition using a template matching scheme, gestures
would have to be recognised as sequences of postures. In this technique, trajec-
tories of the degrees of freedom are not modelled, hence spatial scaling would
be impossible, and temporal scaling although possible, would be somewhat in-

flexible.

2.2.3 Syntactic Classification

In an approach similar to that taken by Fu [12] for several applications, Jones
and Doyle [19] suggest an alternative to sequentially calculating the similarity
measures for each template, given a set of observed values.

The method is based on constructing and traversing a feature tree, like the
one partially shown in figure 2.1. Key features are represented by sub-branches,
and as the observed values are examined, a tree traversal takes place where, for
example, if the user’s index finger is extended the traversal first takes the left
sub-branch. All of the gestures with this feature would be represented in this
sub-branch. The features are not mutually exclusive, so that, the same gesture
could be represented in more than one place in the tree. The organisation of
the tree, that is the features encoded as the lexemes, and the order of traversal
would present a problem, as would addition or removal of gestures, since the
tree would have to be regenerated for efficient traversal.

In the last paragraph, the features of a posture were represented as lexemes
grouped to make a word (or posture), an extension of this method could be used
to recognise sequences of postures as sentences. Figure 2.2 shows an example of
this extension.

Linguistic techniques, apart from those used by Fu, are relatively common,
particularly so in visual pattern recognition. Two examples are described in

Rubine [35]:

2Used in a similar manner to the way in which a Laplacian of Gaussian filter is used in
Image processing.
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e Shaw’s picture description language (PDL) has been successfully used to
describe and classify line drawings, [39].

e Stallings uses the composition of operators left-of, above and surrounds
to describe the relationships between strokes of Chinese characters, [40].

Critique Finally, a critique of the template matching technique is given.

These techniques are easy to develop and computationally non-complex.
There are theoretical problems with the use of templates, however. How, for
example, should the templates be constructed, given examples of gestures or
postures, and how should they be adaptive: altered to suit the needs of individ-
ual users, independent of sensor calibration schemes. Template matching, then,
does not have the formal approach to training that the two following methods,
neural networks and statistical classifiers have.

2.3 Neural Networks

Neural networks have received much attention for their successes in pattern
recognition. Gesture recognition is no exception to this and several systems
have been reported in the literature.

Informally, the reason for their popularity is that once the network has been
configured, it forms appropriate internal representer and decider systems based
on training examples. Also, because the representation is distributed across the
network as a series of interdependent weights instead of a conventional local data
structure, the decider has certain advantageous properties: recognition in the
presence of noise or incompleteness and pattern generalisation. Generalisation
plays a crucial role in the system’s performance, since most gestures will not be
reproduced even by the same user with perfect accuracy, and when a range of
users are allowed to use the system, the variation becomes even greater. Other
useful properties of this approach include performing calibration automatically
and the ability to classify ‘raw’ sensor data, as with template matching.

However, neural networks have very serious drawbacks:

e Often thousands of labelled examples are needed to train the network for
accurate recognition.

e This training phase must be repeated from the start if a new gesture is
added or one is removed.

e Neural networks can over learn, if given too many examples, and discard
originally learnt patterns. It may also happen that one bad example may
send the patterns learnt in the wrong direction, and this, or other factors,
such as orthogonality of the training vectors, may prevent the network
from converging at all.
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e They tend to consume large amounts of processing power, especially in
the training phase.

e The biggest problem is to understand what the network had actually
learnt, given the ad-hoc manner in which it would have been configured.
There is no formal basis for constructing neural networks and the topol-
ogy, unit activation functions, learning strategy and learning rate all must
be determined by trial and error.

Despite these drawbacks, somewhat successful gesture recognition has been
performed with neural networks, notably by Fels [10].

2.3.1 Fels’ GloveTalk

His work concentrated on building a gesture-to-speech interface, using a VPL
DataGlove connected to a DECtalk speech synthesiser via a series of neural
networks. The neural networks that adapt the mappings for a user from train-
ing examples of gestures must be small to render the system computationally
feasible. By dividing the task functionally into 5 independent networks this has
been achieved:

1. hand-trajectory—strobe time network, determines when a gesture has
been made

2. hand-shape—root word network, determines which root word has been
made from posture

3. hand-direction—word ending network, determines word ending from di-
rection of hand motion

4. hand-displacement—word stress network, determines word stress from dis-
placement from initial position

5. hand-speed—word rate, calculates rate of required speech from the speed
of hand motion

As can be seen from above, posture and pose are considered separately,
and posture provides the ’stem’ from the vocabulary and position, provides the
parameters, word ending, stress and speech rate. Thus, the system is essentially
a posture recognition system, since finger motion is not modelled, and hand
motion consists only of variable speeds back and forth.

The neural networks were implemented using the Xerion Simulator devel-
oped by Hinton at the University of Toronto. The back-propagation of errors
method [36] of supervised learning was used, and typically for this type of learn-
ing the training data required was input vectors paired with target output vec-
tors. Fels admits that 30356, hand-labelled, input/output pairs were needed to
train the network adequately. Once trained, the network recognised robustly,
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Fels’ reported a 92% success rate on the recognition of 203 signs based on 66
hand-shapes combined with 6 movement stages.

One interesting feature of Fels’ work was an analysis of hand-to-language
mapping at various levels of granularity, from using hand motions for the control
of parameters of an artificial vocal tract, to interpreting whole hand motions
as words and concepts. The trade-offs, as Fels put it, are between extent of
vocabulary—unlimited at the thickest granularity—versus ease of learning and
speed of communication—highest at the word and concept level.

2.3.2 Brooks’ Kohohen Net approach

Brooks [5] also reports use of a neural net to control a mobile robot by in-
terpreting DataGlove motion. In ways, this surpasses Fels’ work, particularly
by incorporating dynamic gestures into the system’s vocabulary. The Kohonen
net model [21] is employed to recognise paths traced by degrees of freedom in
n-dimensional space. Each Kohonen net, typically as small as 20 units, was
trained to recognise a single gesture. Concurrent operation of the networks
could classify the input paths into known classes with moderate success.

The system reported on was certainly an early prototype since very simple
trials had been conducted such as closing all fingers, leading with index; opening
the thumb and first two fingers simultaneously; and moving from a neutral
posture to a ‘pen’ grasp posture. Brooks concluded that he has yet to show

that his methods are sufficient for practical dynamic gesture recognition 3.

2.3.3 Beale and Edwards’ Postures

In [2], Beale and Edwards use a multilayer perceptron model [36] to classify
input into one of five postures, taken from the American Sign Language. The
network had ten input units, one for each angular degree of freedom sensed
in a VPL DataGlove, and five output units, one for each of, a, e, 7, 0 and
%. The number of units in a single hidden layer, originally tested at eight was
empirically pared down to three.

The required output for positive recognition was strong output from one
of the units, and practically zero response from the others. Interestingly, the
learning rate, i, and the network momentum term, «, had a negligible effect
on the final effectiveness of the network. This would seem to indicate that
the energy landscape* for the data set is relatively simple and unconvoluted,
which in turns would suggest that the learning task is straightforward. The

3Kohonen nets are more formally based on linear algebra than, for example, the PDP
models, and this implies strict algebraic relationships between the patterns being learned.
Much analysis would have to be carried out to ensure the gestural patterns were algebraically
suitable for training.

4Stated simply, this is the pattern of network weights, pictured as a 3D terrain map.
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researchers statistics show that learning time, (for just five postures), is of the
order of minutes.

As with the present project, a glove-like device was not available so Data-
Glove data was simulated. The simulation was performed not using a package,
but simply by preparing the input vectors numerically. Beale and Edwards re-
port successful matching up to noise levels of 20%, and quote Quam et. al. [33],
in which they report a 10% error rate covers most users of sign language, to
show that the recognition is sufficiently robust.

A serious criticism of this work must be the number of postures covered.
With five, unsimilar postures, problems of overlapping classes will not occur, an
issue that needs to be addressed.

A method for using neural networks to recognise gestures is also mentioned.
The approach uses recurrent networks, by Jordan [20], whose architectures en-
code the temporal information about prior network states.

2.4 Statistical Classification

In statistical matching, the statistics of example feature vectors are used to
derive deciders, usually called classifiers. Functionally, statistical classifiers op-
erate in the same way as either of the previous methods—mapping an n-feature
vector to a point in n-space, where it belongs to one of a number of classes. The
mapping function, however, uses statistical decision theory, Bayesian maximum
likelihood theory, for example, to decide on the class membership given a point
in feature space. The features extracted in the representation phase, are most
often hand-picked for their particular relevance to the application.

2.4.1 Rubine’s stroke recognition

The most important work on gesture recognition using statistical classification
is that by Rubine [35]. For his PhD thesis, Rubine created not only a gesture
recognition system, but GRANDMAS® an object-oriented toolkit for building
gesture-based applications. The gestures considered in his work consist of the
two dimensional path of a single point over time. These are gestures that may
be input with a single pointer, such as a mouse, stylus or touch pad. The term
gesture is used in the following in Rubine’s sense. Certain limiting constraints
are assumed, notably that the start and end of a gesture are clearly delineated.
The start of a gesture might be, for example, indicated by the depression of
a mouse button and the end by its release. Each gesture is an array g of P
timestamped sample points:

9p = (Tp, Yp,tp) 0<p<P

5Gesture Recognisers Automated in a Novel Direct Manipulation Architecture
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Let C' be the number of gesture classes, each specified by example gestures.
Given an input gesture, g, the recognition problem is stated as follows: to
determine the class, ¢, to which g belongs.

2.4.2 The features

Rubine labels his vector of features, £ = [fi,..., fr], geometrically based on
the path of the gesture, and carefully computed incrementally. With reference
to figure 2.3, the following are examples of some of the 13 features chosen by
Rubine : f; and f;, the cosine and sine of the initial angle of the gesture, the
length, f3, and the angle, fa, of the bounding box diagonal and f5, the distance
between the first and last points.

(Xmax ’ymax)

()g—l ’yP—l)

(XY o)

o,

(Xmin ’ymin )

Figure 2.3: A gesture and example feature points extracted by Rubine’s classifier

_ _ (l‘z - l‘o)
N S S (=T .
fo = sina = (y2 — o)

\/(l‘z —x0)? 4 (y2 — ¥o)?
f3 = \/(xmax - xmin)z + (ymax - ymin)2

Ymaz — Ymin

fa = arctan
Tmazr — Tmin
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f5=/(xp_1 —x0)2 + (yp—1 — w0)?

Rubine himself says

The aforementioned feature set was empirically determined by
the author to work well on a number of different gesture sets.

2.4.3 Classification

Once the feature vector, f is computed for an input gesture, g, a linear eval-
uation function, one for each of the classes, 1s computed over the features, f.
Gesture class ¢ has weights wg; for 0 < ¢ < F, where F' 1s the number of fea-
tures. This set of weights is derived by a training a linear classifier with the
example gestures. Rubine reports that typically 15 examples are sufficient to
train the classifier. The evaluations, somewhat equivalent to computing Fu-
clidean distance in template matching, or measuring output unit response in a
neural network, are made:

F
vi=wau+ oy wafi 0<e<C

The classification of ¢ is simply the ¢ which maximises v:. Rubine reports
the classification rates for different types of gestures as: Simple Shapes, 100%;
Digits, 98.5% and Letters, 97.1%.

2.4.4 Extending the System

Rubine also explains how his system would cope with multi-path data, such as
that produced by a glove-like device. By treating the multiple degree of freedom
input as paths, e.g. the paths of the fingertips, the single stroke recognition
algorithm may be applied to each of the paths individually and the results
combined to classify the gesture. This combination of results is implemented
using a syntactic technique based on a tree of possible classifications from the
individual paths. However, the start and end of the paths still have to be made
explicit—a somewhat artificial constraint.

Sturman [41] extended Rubine’s systems to deal with multi-path gestures us-
ing a VPL DataGlove. Significantly, the feature analysis was extended to three-
dimensions and modified to permit continual analysis and recognition without
explicit start and end points. As in Rubine’s work, the feature set was chosen
empirically to be useful for recognition of specific gestures.

However, the interpretation of features was performed using an explicit for-
mulation for each gesture, rather than by means of a generic pattern recognition
algorithm as used by Rubine. Sturman says

Advantages of explicit formulation are that gesture recognition
routines need no training or samples from individual users. If prop-
erly formulated, the routines will work for all users and efficiently
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use only relevant features. Disadvantages include that the user may
need minor training to produce some of the gestures, and new ges-
tures require new formulations.

Apart from the slight contradiction concerning the need for training, Stur-
man’s approach seems most inflexible: he chooses the features to analyse in each
gesture and how to analyse them, individually.

For example, his formulation of a ‘waving’ gesture depends on the following
conditions:

1. confirm that the hand is not closed by using the simple posture recognition
of making sure the MCP® joints of the four fingers are less than 0.8 flexed.

2. look at a feature that counts the number of direction switches in a single
valued variable over the last N updates. If this value is less than b for any
of the MCP joints over the last N updates, then waving is not detected.

3. check that the waving motion is large enough to avoid catching small
random motions of the hand. This is accomplished by accumulating the
path segment lengths through a linear filter:

Yir1 = kx; + (]C — 1)3/2' k<05b

This removes input samples more than N frames old from the accumulated
value. If the value is not within a chosen range for any one of the four
MCP joints, waving is not detected.

The conditions for Sturman’s other gestures are similarly specific.

This approach means that new gestures could not be added by users as they
would require new formulations. However, this is not necessarily a negative
criticism, since Sturman’s system was more a feasibility study of the area of
whole-hand input, than a ‘product’.

2.5 Discontinuity Matching

The approach taken in the GLAD-IN-ART project is a novel one. The classifier
is a classic template matcher, thus the novelty occurs in the feature extraction.
Consider the movement of a finger joint over time; figure 2.4 shows how, for
example, an MCP joint changes as the posture changes from an open hand to
a clenched hand. The features that are represented are the critical points of
the time-space pattern. This first derivative representation is reminiscent of a
spline approximation to a curve, but without the intermediate knots, (control
points).

6Metacarpophlangeal Joints, the ones at the knuckles.
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Figure 2.4: Time-space pattern of an MCP joint in performing a clench gesture

The advantage this approach has over the classic template matching ap-
proach is that the relevant features are motion oriented, this i1s necessary for a
system that performs gesture recognition. Also, since the discontinuities need
not be matched at precisely the same points in time or space, the system 1is
robust to scaling. The other advantage of representing merely critical points is
that the system is less susceptible to input noise. Using a simple filter, jitter can
be subtracted from the sensor input. What remains are gross discontinuities,
which are unlikely to be mis-classified by the representer.

2.6 The related problems of handwriting and
speech recognition

The problems of handwriting and speech recognition are closely related to that
of recognising gestures, all three may be viewed from a signal processing point
of view as analysis of a time-value curve. Gesture recognition, however, must
be considered the more difficult problem since many more degrees of freedom
are involved.

In terms of techniques used, there is about the same mix of statistical, con-
nectionist and template based classifiers as described above, but the where the
methods are differentiated 1s in their feature extraction. All of the methods for
solving these problems use special purpose feature extraction modules based on
the type of filters and preprocessors used on the raw data. These preprocessors
extract features relevant to the task, features which have been researched for
many years. This is the real difference between Speech and Handwriting on one
side and gesture recognition on the other: there does not exist, for gestures, a
significant body of research that points the feature extraction techniques towards
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relevant features. As described above, the features used are chosen empirically
for their usefulness.

The most important problem in handwriten character recognition
theory is that of extraction of features which are hardly affected by
handwriting distortions.

Shozo Kondo” [22].

In the recognition of speech, the same is true: as Lea reports in [25], that
many of the features of the speech waveform that are worth considering are at
higher levels where they are less suceptable to noise. The technique of Dynamic
Programming is used liberally in speech recognition to warp the time scale of
observed data to the templates of stored sounds. These stored sounds are most
commonly based at sub-syllable or phoneme level.

Another very serious issue that an examination of the techniques of speech
and script recognition uncovers, is that of context. The use of contextual infor-
mation in these two problems greatly simplifies the task of continuous recogni-
tion.

To illustrate this point, Lea presents four possible viewpoints to a speech
recogniser:

1. Signal Processing—approach the speech signal without any context.

2. Speech Production—understand the ’source’ of the signal, model essential
aspects of the way in which the human vocal system produces speech:
vocal chord resonances, for instance.

3. Sensory Perception—duplicate the human auditory response process.

4. Speech Perception—make categorical distinctions that are experimentally
important, high level feature extraction.

This list of approaches ranges from the ’ignorance model’ to the ’knowledge-
source-driven model’.®

It seems that gesture recognition is being approached at the ’ignorance’
level. The reason for this i1s that in relation to the other two problems, gesture
recognition is a very young problem—the knowledge has not been accumulated.
Zimmerman in his seminal paper [45] acknowledges

As in speech recognition, dynamic gesture recognition is able to
take advantage of context in order to limit the number of gestures
to be distinguished at a given time.

It is no coincidence that the vast majority of work in the area of recognition of handwriting
has been conducted by oriental researchers. While arabic scripts are more efficiently typed
than written, the Kanji scripts used in Chinese and Japanese langauges are very cumbersome
for keyboards.

8Newell’s terms.
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It remains to be discovered what exactly is the context of gestures, undoubt-
edly this will depend on the application. The context of sign langauge, for
example, would be syntactic and semantic information in the signed sentence,
along with facial expression and body movement.
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