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Abstract

Human fingerprints comprise a series of whorls or ridges. In some
special cases, these whorls are broken by so-called ‘secondary creases’:
co-linear breaks across a sequence of adjacent ridges. A technique to au-
tomatically detect such creases in fingerprints is described. This technique
utilizes a combination of spatial filtering and region-growing to identify
the morphology of the locally fragmented fingerprint image. Regions are
then thinned to form a skeletal model of the ridge structure. Creases
are characterised by co-linear terminations on ridges and are isolated by
analysing the Hough transform space derived from the ridge end points.
Empirical results using both synthetic and real data are presented and
discussed.
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1 Secondary Creases

Human fingerprints comprise a series of whorls or ridges. The imprint of these
ridges forms a quasi-contiguous locally-linear series of ink prints where the sur-
face of the skin has come into contact with the paper on which the fingerprint
is formed (see figure 1). For most people, these ridges are well-formed and un-
broken. However, in some people, these ridges are broken by a crease where
no skin has been inked and come into contact with the paper. These co-linear
breaks in the whorls of the fingerprint are called secondary creases (see fig-
ure 2). It is a working hypothesis that the presence of such secondary creases
form a physical marker for certain human disorders. This paper discusses the
research and development of an automated technique to detect and isolate sec-
ondary creases so that this working hypothesis can be verified without relying
on human interpretation of the morphology of the fingerprint.



Figure 1: A normal human fingerprint

Figure 2: A human fingerprint with secondary creases




2 Segmentation

Before any automatic analysis of the morphology of the fingerprint can be ac-
complished, it if first necessary to identify and label those parts of the image of
the fingerprint which correspond to the ridges or whorls, i.e. the inked part of
the paper.

In normal circumstances where the object of interest, i.e. the ridges, are of
a distinctly different grey-level to the background, i.e. the paper on which the
fingerprint is imprinted, this process of segmentation could effected by ‘thresh-
olding’. In this process, the grey-level of each pixel is compared with an appro-
priate reference level — the threshold — and the pixel is then assigned a value or
255 depending on whether it is greater or less than the threshold. The resultant
binary image comprises pixels of grey-level 0, signifying that a pixel represents
a ridge, or 255, signifying that a pixel represents the paper. Unfortunately, this
straightforward approach is not practicable for two reasons.

Firstly, the level of inking of the finger can vary considerably and conse-
quently the ‘blackness’ of the print varies from fingerprint to fingerprint and
from region to region in a given fingerprint. Secondly, a segmented image of a
fingerprint which has been generated by thresholding is extremely fragmented
in the sense that a single ridge is broken up into many (in the order of tens
or hundreds) isolated, non-adjacent, blobs or regions. This is a natural conse-
quence of the textured nature of the surface of the skin which forms the whorls.
While the problem of inhomogeneous inking can be solved through the use of
dynamic thresholding [1] wherein the threshold is a function of the image co-
ordinates, the second difficulty of ridge fragmentation is more problematic. An
informal investigation of the feasibility of identifying the global structure of each
whorl through accepted techniques, such as morphological opening [2], yielded
no useful solution.

In the work described here, a robust, if computationally-expensive, solution
is employed which addresses simultaneously the problems of fragmentation and
segmentation. This technique utilizes a combination of spatial filtering and
region-growing to identify the morphology of the fingerprint image.

Ridges, as entities in themselves, in the fingerprint are substantially larger
than the fragments which make up the ridge; that is, they are well-represented
by the lower spatial frequencies comprising the image. By attenuating the higher
spatial frequencies, the fragmented image detail is removed and the global struc-
ture of the ridge morphology is retained. This can be best accomplished [3] by
convolving the fingerprint image with a two-dimensional Gaussian function:

I(z,y) * G(z,y) (1)
where I(x,y) represents the image intensity at a point (z,y) and G(z,y) is the
2-D Gaussian function, of a given standard deviation o, defined by:

1 _ (2249%)
exp 202
2702

G(r,y) =




The value of ¢ governs the spatial scales which are retained: the larger
the value of o, the larger the scale of the objects which are represented in the
filtered image. In all of the results cited in this paper, ¢ = 7.0 pixels. This
value was determined empirically through calibration procedure, based on the
normal distance between the ridges.

The ridges are isolated through the use of a Laplacian second-derivative edge
detection filter 5 5
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i.e. the sum of second-order, unmixed, partial derivatives.

The evaluation of the Laplacian and the convolution with the Gaussian com-
mute so that the segmentation and selection of spatial scale can be effected with
a single filter: the Laplacian of Gaussian[4]:

V2 (I(x,y) * G(x,y)) = V2G(x,y) * [(x,y) (3)

Furthermore, this 2-D convolution is separable into four 1-D convolutions:
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which facilitates computational savings in the application of the filter from on
the order of n? operations to 4n operations, where n is the size of the filter ker-
nel. Since n can be quite large (n = 49 in the implementation described in this
paper) such savings can be quite significant. The Laplacian of Gaussian opera-
tor yields thin continuous closed contours of zero-crossing points which bound
regions in the filtered image. These regions are recursively nested, with each re-
gion having, alternately, an opposite sign (positive or negative) as one descends
through the nesting (see [5]). In this work on the detection of secondary creases,
segmentation is achieved by identifying each region by its sign, computing the
area of each region, and isolating the region with the largest area. This is the
background region and all other regions are deemed to be ‘ridge regions’. This
segmentation then is represented as a binary image; for example, see figure 3

(b) through 8 (b).

3 Morphological processing: thinning and isola-
tion of ridge termination points

Once the elongated ridge regions have been isolated, it is necessary to iden-
tify locations of their ends. This is accomplished by morphological processing,
thinning the region to form skeletons which are one pixel wide, and then by iden-
tifying the end-points of these skeletons. The procedure can be summarized as
follows (see [6] for further details.) Let X denote the set of points (pixels) which



Figure 3: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

comprise the ridge regions. The thinning of this set X is accomplished by the
morphological filtering of the set X with a sequence of structuring elements L,
as follows.

XO{L} (5)
that is
((..(xOLHOr*)Or?...0L) (6)

where X (O L is defined:
XOL=X\X®L (7)

The operator ® denotes the hit or miss transformation. This transformation is
defined
XolL={z|L{cX;L cXx} (8)

where LI is that subset of L, translated to point x, whose elements belong to
the ‘foreground’ (ridge) and L? is the subset of L, translated to point z, whose
elements belong to the ‘background’ (i.e. L/ N LY = ). X denotes the set
complement of X. A point z belongs to the hit or miss transformtion if and
only if LY is included in X and L? is included in the complement of X. Thus,
X ® L defines the points where the structuring element L exactly matches (hits)
the set X, i.e. the ridge pixels in the image. The set X () L, then, is the set X



Figure 4: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions (note: §2 = 0.2; see section 4.4 and compare also with

figure 3).



Figure 5: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

less the set of points in X which hit L. Thus, if X ® L identifies border points,
and L is appropriately structured to maintain the connectivity of a set, then
repeated application of the thinning process successively removes border points
from a set until the skeleton is achieved. At this point, further application of the
thinning transform yields no change in the skeletal set. The sequence {L} which
is used for thinning is based on a single structuring element and is generated
by rotating the structuring element (through 360° in increments of 45°). This
sequence {L} is shown in figure 9. The thinning algorithm then amounts to the
repeated transformation of a set X; — X;11 defined:

Xipi= (.. (X OLYOL)OL?)...OL® (9)

The skeleton is achieved when X; = X;;1. Initially, Xo = X i.e., the original
(unthinned) segmented binary image. Examples of thinned ridges can be seen
in figures 3 (d) through 8 (d).

Given a skeleton X, we then identify the end-points, i.e. points which are
connected to just one other point, using the hit or miss transform and an appro-
priate set of structuring elements { £}, shown in figure 10. Thus, the endpoints



Figure 6: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

of the skeleton are given by:

Y:OX@EZ’ (10)

i=0

That is, the set of end-points 1s the union of all those points which hit with
one of these endpoint structuring elements.

4 Hough Transform

4.1 Computing the Hough Transform

The technique for the detection of secondary creases described in this paper is
based on the assumption that such creases are characterized by co-linear ridge
ends. Having extracted the morphology of the ridges and having identified the
locations of the end-points of the segmented ridges, it now remains to group
these end-points according to a co-linearity criteria: in effect, to find the virtual
line formed by the ridge ends. The Hough transform [7] is used to accomplish
this. The computation of the Hough transform for the detection of lines is quite
straight-forward although, as we shall see in the next section, post-processing



Figure 7: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

in the Hough transform space is required to effect reliable and robust extraction
of lines.
The equation of a straight line is given in parametric form by the equation:

zcosl + ysinf =r (11)

where r is the length of a normal to the line from the origin and 8 is the angle
this normal makes with the X-axis. For a given line, » and # are known. In
this case, however, r» and # are unknown since we do not yet know which are
the crease lines but we have several specific samples of x and y — x; and
Y;, say — which are given by the coordinates of the ridge end-points. In the
Hough transform, the solution to equation 11 is computed for each (#;,y;) pair,
yielding a set of values for » and #. These values are recorded by incrementing
an element of a 2-D array, known as the Hough accumulator, for each (r, ).
From a computational point of view, this is done quite simply by computing
the value of 8 from equation 11 for all values of r, knowing z; and y;. This
solution-set is, in effect, a sinusoidal curve in the r- space, i.e., in the Hough
transform space. The transform is computed for all ridge end-points (z;, y;) and
end-points which are co-linear will all have a single value of  and # in common;
that is, the solution-set sinusoidal curves will intersect in a single point in the
Hough transform space. Such points of intersection are characterized by local



Figure 8: (a) Top left: grey-level image of a section for a fingerprint. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

Figure 9: Sequence of structuring elements L! through L® used in the thinning
operation.

Figure 10: Structuring elements E' through E®used to identify end-points.

10



maxima in the Hough accumulator; see, for example, figures 11 (¢) and 12 (¢).

4.2 Detection of local maxima in the Hough accumulator

Unfortunately, ridge end-points are almost never co-linear, even in the most
ideal circumstances such as in the synthetic test patterns which have been used
to test the technique (see section 5.1). In the case of real fingerprint patterns,
this co-linearity is, at best, approximate (see figures 3 through 8). Consequently,
the solution-set curves in r-6 space do not intersect in a single point and the
effective local maxima cannot be detected simply by comparing the value of a
single accumulator element with a given threshold. Before this comparison can
be effected, it is essential to process the accumulator, 1.e. the Hough transform
space, so that accumulator values in a local region are collected and assigned to
a single specific accumulator cell. This is accomplished in the research described
in this paper by iteratively re-assigning the value of each accumulator element to
one of 1ts neighbours, given that this element is not already the local maximum
in the 3x3 pixel neighbourhood centred on that element. The neighbour to
which the value is assigned is required to be the local maximum in that 3x3
region. This iterative process 1s continued until no more reassignment can be
effected at which point the accumulator comprises a set of isolated points, each
of which represents a local maximum.

4.3 Selection of threshold for isolation of candidate crease
lines

Not all of these local maxima correspond to valid lines in the original image and
it is necessary to identify a threshold value which accumulator elements must
exceed in order to be considered as candidate crease lines. Since the content of
the fingerprint images varies considerably, and hence so too does the resultant
form of the Hough accumulator, it is desirable to have this threshold chosen
adaptively. This can be accomlished by computing some simple statistics on
the distribution of the values in the post-processed Hough accumulator and by
basing the threshold on these statistics. In this implementation, the threshold,
T, is given by:

T=p+3c (12)

where p and o are the mean and standard deviation of the values in the post-
processed accumulator, respectively. This threshold is low enough to ensure
all crease lines are included but high enough to remove the majority of the
accumulator elements.

4.4 Constraints for the isolation of crease lines

After application of the threshold on the Hough accumulator, a set of candidate
crease lines exists. Not all of these lines do, in fact, join the end-points of several
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distinct ridges.

For example, it is common that a single ridge can be fragmented into a
number of sections. FEach of these sections give rise to an equal number of
roughly co-linear skeletal line segments with two end-points. Since these end-
points are co-linear, they too will give rise to valid local maxima in the Hough
accumulator which cannot be identified simply by analysis in the Hough space.
However, they can be removed from the set of candidate crease lines by analysing
the structure of the original segmented and thinned images.

Other pathological cases also exist. It is possible that lines are formed from
several end-points of ridges which are not adjacent in the original image and
which do not exhibit the spatial relationship required of ridges forming a sec-
ondary crease. Again, since all spatial information is lost in the Hough trans-
form, these lines cannot be detected by analysis of the Hough accumulator. And
again, they can be isolated by analysing the structure of the original segmented
and thinned images.

Both of these cases can be effectively dealt with by the imposition of two
constraints on the lines formed by the ridge end-points.

The first constraint is that the orientation of a crease line should be signifi-
cantly different to the average orientation of the ridges in the region surrounding
the crease line. Specifically, candidate crease lines are removed from considera-
tion if they satisfy the following inequality:

0, — 6! <0, <0, +6! (13)

where 6, is the average ridge orientation, 8} is a tolerance, defined to be 20°
in the implementation described in this paper, and 6. is the orientation of the
crease line. The average ridge orientation is computed as the mean orientation
of all adjacent skeleton points in the region defined by two lines, one either side
of the crease line, which are parallel to the crease line and equidistant from the
crease line by a distance equal to twice the calibrated ridge width.

The second constraint concerns the intersection of ridges by the crease line.
In a similar vein to the first constraint, candidate crease lines are removed from
consideration if they satisfy the following inequality:

L > (14)

where n, is the number of ridge pixels lying on the crease line, I, is the length of

the crease line, and 62 is the tolerance. 62 is defined to be 0.1 for all examples

in the implementation described in this paper, unless otherwise stated.
Examples of isolated secondary crease lines are shown in figures 3 (d) through

8 (d) and in figures 11 (d) and 12 (d).
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Figure 11: (a) Top left: grey-level image of a synthetic test pattern. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

5 Verification of Results

In order to validate the technique, two forms of test have been run. The first uses
synthetic test patterns which have been constructed to assess, in a quantitative
manner, how the technique performs as the data degrades in a well-understood
manner. The second form of test deals with actual fingerprint data.

5.1 Tests on synthetic data

A series of test patterns, each comprising ten ridges, were devised and printed
on plain white paper using a laser printer (see, for example, figures 11 and 12).
These patterns were printed at an actual size of 8mm x 6mm to ensure that the
tests on synthetic data operated at the same magnification and field of view as
those on the actual fingerprint data. Consequently, there is a natural variation
(or noise) in the image of the test pattern due to the limited resolution of the
laser printer, the fibrous texture of the paper, as well as imaging noise. This
helps ensure that the tests which are carried out on the synthetic data are as
realistic, and representative, as possible.

There are 26 test patterns in total. In the first, each of the ridges has a
gap of the same distance as the inter-ridge interval (i.e. the normal distance
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Figure 12: (a) Top left: grey-level image of a synthetic test pattern. (b) Top
right: Ridge regions derived from Laplacian of Gaussian V2@ of image; o = 7.0
pixels. (c¢) Bottom left: Hough transform space derived from end-points of
skeleton of ridge regions. (d) Bottom right: Crease line superimposed on the
skeleton of ridge regions.

between the ridges) and this gap is at exactly the same position in each ridge:
the ridge end-points are all co-linear. The remaining 25 patterns are organized
in groups of five, with groups 1, 2, 3, 4, and 5 having 10%, 20%, 30%, 40%,
and 50% of the ridges displaced from the original position, respectively. Within
each group, this displacement is varied, with patterns 1, 2, 3, 4, and 5 having
the ridge(s) displaced by 50%, 100%, 150%, 200%, and 250% of the ridge gap
distance.

The technique described in this paper was applied ten times to each pattern
and the number of correct crease detections were recorded. Table 1 summarizes
the results of this series of tests and details, for each pattern, the rate of correct
isolation of the crease. No incorrect crease detections were recorded. These
results demonstrate that the technique is consistent and robust. It fails when
40% or more of the ridges are displaced by 150% or more of the ridge gap. It
should be noted that this failure is due, in every case, to the constraint that
the detected ridge line cannot contain more than 10% of a ridge points along
its length (this is the tolerance specified by 62 ) and it has been verified that
the ridge line would have been detected if this tolerance was altered.
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Number of Displacement of Ridge (% of ridge gap)
Displaced Ridges

(% of total) 0 50 100 150 200 250
0 100 - - - - -
10 - 100 100 100 100 100
20 - 100 100 100 100 100
30 - 100 100 100 100 100
40 - 100 100 O 0 0
50 - 100 100 O 0 0

Table 1: Results of application of technique on synthetic test patterns: rate of
correct isolation of crease(all figures are expressed as percentiles).

5.2 Tests on real data

The technique descibed in this paper has also been extensively tested on a some-
what limited data set of fingerprints (in excess of 160 fingerprint regions) and it
has proved to be reliable and robust in isolating secondary creases. Represen-
tative examples of the results which have been achieved are shown in figures 3

through 8.

6 Discussion

The technique described in this paper works well. Nonetheless, a number of
issues should be noted.

First, it has been necessary to use a high imaging magnification, with an
attendantly small field of view, in all of the work described. The primary rea-
son for this is to ensure that the features of interest, i.e. the fingerprint ridges,
are not under-sampled and that they are well-represented by the digital images
which are the object of the analysis. The current field of view 1s approximately
8mm x 6mm with an image resolution of 256 x 256 pixels (and an effective reso-
lution of 32 pixels per millimetre!). This means that it would require 4 x 4=16
images to scan, and analyse, a single fingerprintof dimensions no greater than
32mm x 24mm. There is, however, a second reason why so small a field of view
is employed. It has been assumed in all of the foregoing that secondary creases
are locally linear and that they extend across the greater part of the field of
view. If a larger field of view were to be used, these assumptions would no
longer be valid.

1For the sake of comparison, note that the image resolution of finger print database at the
National Institute of Standards and Technology in the U.S.A. is 19.7 pixels per millimetre
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Second, the spatial filtering of the image in order to emphasise the morphol-
ogy of the whorls is a key step in the process. The parameter which governs this
spatial scale is o, the standard deviation in the Laplacian of Gaussian operator.
In all of the results cited in this paper, ¢ = 7.0 pixels. As we noted at the
beginning of the paper, this value is determined empirically through calibration
procedure, based on the normal distance between the ridges. It should also be
noted that the technique is not particularly sensitive to the value of this param-
eter and, for example, a value of ¢ = 9.0 pixels has been used successfully in
many informal tests.

Third, the extracted ridge end-points are almost never exactly co-linear and,
consequently, the Hough transform space is not as well-structured as is often
suggested it is in the literature. Thresholding an unprocessed Hough accumula-
tor gave rise to very unstable results. It is essential to post-process the Hough
accumulator, in the manner described above, prior to the application of a thresh-
old. This threshold should be, and is, adaptively chosen and, importantly, it
should be a lower rather than a higher threshold so that candidate lines are
not removed from consideration as secondary creases. Invalid lines can then be
ignored after subsequent analysis in the original spatial domain of the semented
and skeletonized image, rather than in the Hough transform space.

Two parameters govern the constraints which are used to validate the sec-
ondary crease lines: & and §2.

61 is a tolerance on the average orientation of the ridges in the vicinity of
the crease line. If the crease line is equal to the the average orientation, plus
or minus this tolerance, then the line is deemed not to be a crease line and 1is
ignored. In all of the examples shown in this paper, 6} defined to be 20°, unless
otherwise stated.

62 is a tolerance on the proportion of a crease line which is allowed to cross
ridges. If the proportion of a crease line which contains, or crosses, ridge pixels
is greater than this tolerance, then the line is deemed not to be a crease line
and is ignored. In all of the examples shown in this paper, 62 defined to be 0.1

7 Conclusions

The technique for the detection of secondary creases in fingerprints which is
described in this paper is robust and works well on all of the data on which it
has been tested. This is confirmed by its performance on the synthetic patterns
described in the previous section. The clinical usefulness of the technique re-
mains to be assessed by exposing it to a larger data-set and by assessing the
correlation between the presence of (automatically) detected secondary creases
and the incidence of the disease of which secondary creases may be a physical
marker.
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