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Abstract

Qualitative physics has achieved considerable success in small and moderate scale
problems but methods for managing the scope and depth of knowledge used by human
problem solvers remain elusive. We argue that generality in a modelling approach is
essential for extending qualitative physics to complex systems. A novel new model
architecture is proposed which combines qualitative and quantitative knowledge in an
ontology which draws from existing component and process based approaches. The
significance of causal order in knowledge representation and inference is discussed
and we introduce a new technique called dynamic binding which assigns causal order
at run-time. We show how the context of a component is used to construct local
perspectives of a complicated system and how this locality provides a unique
demarcation in both knowledge representation and inference in the system
architecture. Our mixed-model approach provides for physical modelling of
engineering problems as a precursor to mathematical modelling or for interactive
high-level querying by a non-expert user.



1. INTRODUCTION

Research in qualitative physics began with an ambitious agenda - to construct
systems capable of reasoning about real-world problems in a manner which
engineers and scientists seem to do so successfully [de Kleer and Weld ‘90a].
Qualitative physics has achieved considerable success in small and moderate scale
problems [Kuipers ‘90] but methods for managing the scope and depth of knowledge
used by human problem solvers remain elusive.

Extending qualitative physics to model real-world complex systems is closely bound
to the idea of maximising generality in a modelling approach. This seems an intuitive
observation: a model which is based as much as possible on commonalities will
embrace a wider domain. Equally intuitive is the observation that generality and
utility are often opposing characteristics. A model which is widely applicable will
typically lack sufficient depth to support the level of detailed investigation required
in most engineering applications.

1.1 Domain
Modelling of engineering problems can be divided into a number of stages; geometric
modelling, physical modelling, mathematical modelling, numerical modelling and
graphical modelling. The general application area of this research is in behavioural
analysis of complex physical systems (such as in figure 1) or physical modelling.
The position of this work in the overall modelling process is discussed in detail in
[Mc Gann et al ‘91,'91a]. Physical modelling involves identifying and characterising
any physical phenomena which are occurring in the system such as heat transfer,
fluid flow or stress. Subsequent simplification and abstraction will begin with the
physical model. When we speak of complexity in this domain we refer to the range of
sub-domains that may interact and the number of physical components that may be
included in the system.

1.2 Model Requirements
Any attempt to construct a model must begin with some ‘performance requirements’.
The first requirement of our model is that it must support a level of detail suitable
for engineering applications. For physical modelling this constraint means we must
be able to approximate the relative significance of phenomena distributed over a
physical system. Secondly, we must be able to support qualitative system
specification. This constraint is derived from the observation that engineers perform
much initial analysis with symbolic specifications. A temperature may be
represented as atmospheric or a pressure may be specified moderate. They require
an approximate prediction of behaviour based on input such as this. The resulting
physical model should be as accurate as possible. A completed behavioural analysis of
the flat plate solar collector shown in figure 1 will identify heat exchange processes
through radiation, conduction and convection throughout the system and stresses
arising in the water pipes due to the expansion of the absorber plate. The answers to
queries should be presented at the same level of abstraction as they are received. For
example, if a user enquires if stress is significant in the water pipes, the system
should respond with ‘yes’ or ‘no’ with some explanation of why rather than giving
the results of a numerical simulation of stress occurring. A more detailed query
about the thermal efficiency of the absorber plate will require a response indicating
heat absorption from solar radiation and heat transfer to the water pipes.

1.3 Overview
This paper seeks to identify the criteria for maximising generality in a modelling
approach which must satisfy the requirements outlined above. In section 2 we take a
closer look at what generalisation means in terms of benefits accrued and design
constraints imposed. Section 3 examines the ontological issues arising from these
design constraints. We consider consider the work of others in the qualitative
reasoning community  in section 4 and draw on many ideas arising from this work in



section 5 where we outline a causal network architecture based on a combination of
implicit inference and quantitative knowledge at one level and explicit modelling at
another. The central argument of this paper is that generality can be enhanced
through close alignment of abstracted knowledge and traditional mathematical
equations and through a dynamic, modular ontology. These and other conclusions are
discussed in section 6.
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Figure 1: Flat Plate Solar Collector
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A Typical solar collector configuration is shown above. This is an example of a complex physical system
including many sub-domains and (i.e. fluids, thermodynamics, stress) and many components. It consists
of an absorbing surface that is thermally insulated on the edges and on the back side. Solar radiation is 
transmitted through the two glass cover plates before reaching the absorber. The collected energy is removed 
by circulating water through tubes that are in good thermal contact with the absorber.

2 OBJECTIVES AND IMPLICATIONS OF GENERALISATION

Generalising a modelling approach is seen as an important step towards extending
qualitative physics to model complex physical systems. But what are the benefits of
generalisation which will facilitate this extension? To answer this question and
position this research we must first look at current obstructions to capturing the
scale and complexity of real engineering problems in a qualitative model.

2.1 Domain extensibility
Typically a complex physical system involves knowledge from a wide range of
domains. Engineers and scientist can analyse such models because they can draw on
sufficiently  detailed information from a broad base of knowledge. The larger domain
of qualitative physics is composed of many sub-domains e.g. thermodynamics, stress
and fluid dynamics. In order to migrate to large-scale systems it becomes necessary
to integrate such sub-domains which have, to date, been considered in isolation
[Skorstad and Forbus ‘89], [Williams ‘84], [de Kleer ‘90], [Murthy and Addanki
‘87]. Composing an integrated knowledge base which aspires to represent a complete
qualitative physics is an enormous task. However, it is an impossible task unless we
establish criteria for common representation of knowledge. In this way, individual
efforts in a particular sub-domain may contribute to the larger knowledge base as
has been the pattern in traditional physics. This issue of domain extensibility rests
on identifying a general format for knowledge representation to enable sub-domains
to interact freely. Traditional physics achieves this through sharing common
parameters. Closely coupled with this common representation is the need for an
inference mechanism which supports the chosen knowledge representation and can
cope with extensions to its knowledge base.  So what are the implications of
supporting domain extensibility?



We require a generalised knowledge representation scheme and an inference
mechanism which spans many sub-domains. These criteria suggest the relevance of
an abstracted quantitative rather than qualitative representation for knowledge.
There are a number of reasons for this.

Qualitative values are problem-specific: Qualitative reasoning defines
symbolic intervals to represent a continuous real-valued parameter value space.
This delineation is typically related to the specific problem at hand. An example of
this might be a symbolic value space for temperature. In a central heating system,
corrective action may be based on temperature being too low or too high. In another
application the temperature of a liquid may be used in reasoning about phase changes
so we might base our value space on two thresholds: freezing and boiling. The
objective of a symbolic representation is to link value and meaning in a single
representation. The cost of this representation is to introduce explicit problem-
specific information to a knowledge base.

Meaningful qualitative values require explicit interpretation: In a
qualitative reasoning system where each parameter has its own quantity space the
inference mechanism must reconcile different symbolic values. A fluid whose flow
can be described as laminar, turbulent or transitional may be related to cross-
sectional area which may be small, medium or large. Resolving the different
representations to perform inference requires explicit interpretation of symbolic
values. This explicit transformation conflicts with our objective of a general
inference mechanism.

Quantitative Abstraction leads to consistent, objective knowledge
acquisition: Traditional physics provides us with an objective,  consistent
representation for physical behaviour through the vehicle of mathematical equations
and, in particular, differential equations. Current qualitative reasoning systems
derive the abstract behaviour of a system by simulating hand crafted qualitative
versions of the differential equations that characterise it [Sacks ‘90]. This
abstraction process is, to a large extent, driven by the inability of symbolic calculus
to adequately represent the structure of such equations while supporting qualitative
values for parameters. Knowledge acquisition should attempt to parallel the
structure of the equation as far as possible sacrificing only the required detail with
which we represent values. Using quantitative abstractions should enable the
knowledge acquisition process to rely very closely on existing, widely available
knowledge found in the equations of traditional physics.

2.2 Modularity
Real engineering problems are often synonymous with large-scale complexity in
terms of the number of components in a model. Consider the number of components in
an aircraft frame or a PCB circuit board. Frequently  there are interactions among
many elements of a model. Behaviour is distributed. Qualitative reasoning systems
have achieved considerable success in modelling small and even medium scale
systems but the application of this technique to more complex problems has been
impeded by the exponential relationship between the number of components in a
system and its complexity. Any modelling approach which hopes to represent
complex physical systems must break this exponential link. The complexity of a
system should not be reflected in the architecture which models it. The value of a
modular ontology is widely acknowledged [Forbus ‘90],[Davis ‘90] and is
fundamental to achieving the composability which is required to cope with complex
models. Generality in modelling physical systems relies on modularity in the
modelling approach.



3. ONTOLOGICAL ISSUES

The ontology we choose to represent the entities in a physical system and the
relationships between them reflect the fundamental abstractions of a real-world
system  As such, any aspirations of generality in modelling complex systems must
begin with a framework suitable for multi-component, wide-domain engineering
problems.  Furthermore, the abstract model of a physical system provides a
framework for subsequent analysis. It is critical that this abstraction provides
sufficient utility to meet the requirements of the user. In devising an ontology
appropriate to complex systems we must bear in mind the constraints imposed by
model requirements (as outlined in section 1) and reconcile them with the need for
domain extensibility and modularity. This section examines how generality can be
enhanced through ontology and looks at how our model requirements constrain the
level of generality we can achieve.

3.1 Implicit vs. Explicit Mechanisms
Traditional Physics does not embody the idea of mechanism. Instead it relies on our
commonsense and understanding to invoke appropriate equations or models of
behaviour [Forbus and Gentner ‘90]. Qualitative reasoning systems seek to merge
the essential behaviour of traditional physics with a more formal idea of
commonsense knowledge. Qualitative physics formalises the idea of mechanism
implicitly or explicitly.

Explicit mechanism theories add mechanism as an explicitly defined agent of
causation. All changes in the system are stipulated to occur directly or indirectly
through this special agent. A process-based ontology is an example of an explicit
mechanism theory common in qualitative reasoning systems - [Forbus ‘84], [Woods
‘91], [Hendrix ‘90] - where continuous or discrete processes act as the vehicles of
change in the system. Examples of processes include heat conduction and fluid flow.
Explicit mechanisms such as processes make explicit the causal direction of
behaviour in the model.

Implicit mechanisms do not rely on a separate agent to cause change. Mechanism for
change is implied in the relationships among parameters without any reference to
external agents. An implicit mechanism for causality is typically synonymous with a
non-directed organisational structure. Device-based ontologies [de Kleer and Brown
‘84] employ implicit mechanisms where the components in the system are described
in terms of an external interface and a real-world system is modelled by connecting
together collections of device models into a network. Changes arise as a consequence
of components interacting with other parts of the network.

The contrasting method for representing mechanism in process-based and device
based ontologies provides an important organisational distinction but how can we
relate the expression of mechanism to the issues of generality?

Implicit mechanisms promote composability: Device-based ontologies focus
on specifying local behaviour patterns and derive global behaviour through
observing the interactions of the parts. A multi-component system is constructed
through the introduction of self-contained elements to a network. An implicit
representation of mechanisms enables this locality of behaviour to be integrated to a
more complex system.

Explicit mechanisms make modelling assumptions explicit: The need to
select different models based on certain operating and simplifying assumptions being
valid is important for reasoning about complex models [Nayak et al. ‘90], [Forbus
and Falkenheimer ‘91], [Davis ‘90]. Explicit mechanisms allow multiple models to
be organised and invoked dynamically depending on the operating context of the model.



Explicit  representation of causality is domain-specific: T h e
‘directedness’ of explicit representations clarifies causal order by making a clear
distinction between dependent and independent variables. There are situations in
modelling where such clarification is important e.g. justifying conclusions.
However, the imposed selection of dependent and independent variables might not be
appropriate in all domains. Consider ohm’s law relating current, voltage and
resistance: V = R * I. [Forbus and Gentner ‘90] make the point that  this equation,
which implicitly describes the relationship among three parameters in a non-
directed interpretation, may be formalised to explicitly capture the intuitive use of
the equation which typically holds R constant. If this directedness were explicitly
encoded in the knowledge base it would render the equation inappropriate in a domain
where temperature dependencies of materials lead to changes in resistivity. To make
this intuition explicit in a knowledge base detracts from the essential physics of the
equation.

From this discussion it is clear that both implicit and explicit mechanism theories
have some contribution to make. Implicit mechanisms support the modularity
required to migrate to multi-component systems. The non-directed nature of
implicit mechanisms is an appealing representation for a generalised domain which
seeks to parallel the representations of traditional physics. Explicit models are
necessary to apply the sort of commonsense reasoning which engineers and scientist
employ to abstract and simplify complex models. However, they tend to be more
domain-specific than implicit representations and acquiring knowledge for explicit
models is a task that is harder to generalise. Expertise in modelling is more
subjective than the first principles equations common in traditional physics. The
performance requirements of our model outlined in section 1 require some
compromise to be made. We recognise the need for explicit mechanisms in a model
capable of tackling complex systems but emphasise the need to minimise explicit
representations and maximise the use of implicit mechanisms. The ontology we
propose will incorporate this idea.

3.2 Dynamic Binding - an implicit mechanism for causal direction
 The example of Ohm’s law illustrates the loss of generality as a result of making
causal direction explicit but we must accept the need for explicit mechanisms to
determine causal order. A critical step in creating a complete qualitative physics
relies on domain extensibility (section 2) which is compromised by the use of
explicit knowledge.  How can we reconcile these conflicting issues? The answer
seems to be through Dynamic binding of explicit information. The relationship
between dynamic binding and generality extends to many areas of computer science.
In the context of modelling physical systems, it means specifying a causal order at
run-time within implicit non-directed equations. The mechanism for inference is
based on successive substitution to solve for unknown variables. The assertion of
known and unknown variables becomes the principle mechanism for assigning causal
order.  Such assertions are interpreted based on scope and precedence of variables.
For example, if we model heat transfer through a block,  independent variables are
asserted in the boundary conditions of the block. In one instance we may specify a
temperature difference, the next time we may specify an input heat flux. The domain
equations remain the same and the behavioural analysis can cope with both situations
because the causal order is bound dynamically through the vehicle of scope (i.e.
global scope has greater precedence than local scope). [Iwasaki and Simon ‘90] use
exogeneous variables to resolve ambiguities in causal order. [de Kleer and Brown
‘90] point out the limitations of this approach when extended to multi-component
systems where the system is an assembly of sub-systems and thus confusion arises
about what is an exogeneous variable. We suggest that scoping of variables provides a
mechanism to overcome this deficiency, dynamically binding causal order to
parameters whose relationships are fundamentally non-directed.



3.3 Representation
Model Requirements outlined in section 1 stipulate the inclusion of qualitative
knowledge both in terms of physical system specification and analysis. The further
requirement that the model must support a level of detail suitable for engineering
applications, coupled with the objective of domain extensibility (section 2), suggest
a role for quantitative knowledge. The result is a hybrid of qualitative and
quantitative knowledge. Users may specify initial structural behaviour qualitatively
or quantitatively. A preprocessing of the structural description maps qualitative
values into appropriate quantitative intervals. Subsequent simulation is based on
approximate quantitative, rather than symbolic values. The results of simulation
may be presented qualitatively or quantitatively. The clear demarcation between
qualitative and quantitative knowledge confines domain-specific symbolic
representations to higher levels of the model architecture.

4. RELATED WORK

Issues pertinent to modelling complex systems have received much attention in
recent years in the qualitative reasoning community. Many ideas resulting from this
effort are reflected in this research. The modularity we spoke about in section 2 is
captured in the device-based ontology of [de Kleer and Brown ‘84] but the primitive
components of such a network (i.e. a device) require a pre-defined functional
specification inappropriate for modelling at the level of physical phenomena. Instead,
network elements correspond to containers in which physical behaviour may be
simulated. Modelling physical systems where behaviour is phenomenological calls
for a network of contained spaces to represent geometrically distinct components
which act as sites for phenomena to occur. Geometric and material properties of a
component, together with the phenomena it contains, characterise the behaviour of
this contained space. Hayes’ contained-stuff ontology [Hayes ‘90] offers a suitable
analogy to our ‘spatially contained’ phenomena. By adapting the device-based
ontology to a network of ‘contained-spaces’ we get the benefits of a modular
architecture but avoid commitment to functional specification of each node in model
construction.

A process is an appealing metaphor for transport of physical phenomena from one
contained space to another. In section 3 we point out the need for explicit mechanisms
to enable the management and selection of an appropriate model based on the
operating context of the model. A process-based ontology [Forbus ‘86] enables
different process models to be invoked dynamically based on certain operating
conditions being valid. [Forbus and Falkenheimer ‘91] build on the explicit
mechanisms of QP theory to organise multiple models of varying levels of
approximation and abstraction based on explicit simplifying and operating
assumptions. Context dependent behaviours [Nayak et al ‘90] offer an interesting
perspective on management of multiple models based on the structural context,
behavioural context and expected behaviour. Both these approaches are geared
towards the device being the principal unit of composition. In the ‘contained-space’
network described earlier, these approaches for organising multiple models can be
adapted to select appropriate models for physical phenomena ‘in-transit’ through the
network.

Knowledge representation provides a foundation for modelling. In section 2 we
identified the relevance of abstracted quantitative knowledge to underpin an
extensible knowledge base and support analysis of real-world engineering problems.
[Sacks ‘90] describes the use of piecewise-linear approximations to abstract the
differential equations at the core of traditional physics and couples this with
qualitative knowledge to interpret simulation results. This approach is a step
towards the generalised knowledge representation we describe. Piecewise -linear



approximation is felt to be an appropriate knowledge acquisition technique for a
generalised domain model.

[Davis ‘90] derives global behaviour through localised propagations. Layered paths
of interaction are the media for propagating local changes. This ontology provides
modularity and corresponds closely to context dependent transfer models which are
the explicit agents of causality in the model. The reliance of this approach on the
functional organisation of the model makes it an inappropriate ontology for modelling
physical phenomena but the focus on locality and the idea of paths of interaction
contribute to the evolution of our hybrid ontology which is described in the next
section.

5. AN ARCHITECTURE FOR MODELLING COMPLEX PHYSICAL SYSTEMS

In this section we present an architecture for modelling complex physical systems.
The complexity of the system is reflected in both the number of components and the
range of phenomena that may interact. It is useful to consider the main elements of
the discussion so far as they are the formative ideas of this architecture. First,
locality is the relevant organising principle deriving global behaviour through the
interactions of the parts.Second, we must maximise the use of implicit knowledge on
the basis that it promotes composability. Third, non-directed, abstracted
quantitative equations are the basis for a generalised knowledge base.  Finally,
explicit process models provide the medium for local propagations.

 5.1 A Causal Network Ontology
A physical system comprising many physically distinct components (figure 1) may
be conceptualised as a network of contained spaces . Figure 2 shows a partial view of
this network. We use the term ‘component’ to represent a contained space. Network
level inference must orchestrate the interactions of components. Network
management is performed by a Boundary Engine. The behaviour of each component is
context dependent. The context of a component is a local perspective of the system
behaviour and is constructed by referring to the interactions between the component
and its neighbours in the network. Local inference establishes the behaviour of the
particular component in the current context. The context is presented to the
component in terms of boundary conditions and asserted parameter values. Behaviour
is derived through a straight forward method of iteratively solving equations with
one unknown until no new information is derived. The simplification of the local
reasoning process is based on the assumption that the boundary conditions represent
the components perspective on the integrated physical system. This emphasises the
importance of the network management mechanisms which must dynamically
construct locally appropriate perspectives for each component in the network.
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Figure 2: Partial Network - Absorber Context
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A partial view of the network representation of the collector configuration of figure 1 is shown above. The
links indicate incoming transfer parameters to the context of the absorber. A radiation effect is transmitted
through the vacuum to the absorbing plate. No other phenomena are currently under consideration.

Links - a transport medium for local interactions. The boundary between
two physically connected components is represented in a causal network through a
link. Causality proceeds locally through these links. If a components local behaviour
produces side-effects then these may be registered in each of its links as output
parameters. At the receiving end, the information coming into a component through
its links is a raw account of the interactions between that component and its
neighbours. This information must be collated and interpreted before presenting it to
the local component.

Transfer Models - constructing side effect scenarios. The modularity of
this network representation relies on self-containment. Local contexts must be
formed without reference to other components. Interactions must be fully captured
in link transfer parameters. Such containment requires careful selection of transfer
parameters when propagating side-effects. If you derive a local temperature
increase should it be propagated as a surface temperature at the neighbour or as an
input flux? Thermal expansion of a constrained component leads to stress. How can
we represent this interaction? This problem is handled by the use of transfer model
which introduce and initialise specially selected transfer parameters based on
explicit model conditions. Heat transfer from one component to many can be
represented by an equivalent electric circuit transfer model. Based on certain
material and geometric properties the net flux to be transferred may be distributed
over to all neighbouring components. The receiving component need refer only to its
context which presents a heat influx at a boundary. This information is easily
incorporated into the equation based inference performed locally.

The Boundary Engine - a context manager. Information contained in a
number of links must be aggregated and interpreted to present the side-effect
phenomena to the local component in a relevant format. A simple example of this
might be summing a number of heat fluxes. The context of the component is
determined by geometry, material properties and external interactions. The
boundary engine must formulate a context for a component on this basis and present
its conclusions to the component in terms of parameters which can be implicitly
incorporated into local equations.  The management of transfer models also falls to
the boundary engine using context to select an appropriate model.

5.2 Dynamic Binding
A causal network ontology as outlined in section 5.1 is a dynamic modelling approach.
Transfer models represent the interactions of the components of the system. Such
models are created based on run-time contexts and may be modified or removed as



model conditions change. Figure 3 hows the transfer model for heat transfer between
the absorber plate and pipes from figure 1. This model assumes a perfect vacuum,
that the boundary wall is a perfect insulator and steady state conditions. This
approach enables the global model to evolve incrementally and iteratively.
Assumptions and conditions may alter based on feedback from other components. In
contrast to a device-based ontology, interactions between components are bound
dynamically rather than predefined in the functional specification of a component.

Qin.A

Qout
Qin.B

Qin.C

Qin.D

R.a

R.c

R.b

R.d

Figure 3: Transfer Model - Equivalent Circuit

This diagram shows the equivalent electric circuit for the heat transfer model between the absorber and
the water tubes. Heat transfer is by conduction. A surface pressure may also be derived due to possible
expansion of the absorber as it heats up, thus exerting force on the water pipe. Transfer of heat from the 
pipe wall to the fluid will be via conduction and convection, depending on the spped of the water.

R.a = L/kA........L:pipe wall thickness; A: pipe surface area; k: thermal conductivity; h: convection coefficient.
Qin.A = Q.out * R.total/R.a 
R.total = R.a * R.b * R.c * R.d/ (R.a + R.b + R.c + R.d)

Causal order in the network is also determined dynamically rather than predirected.
This is achieved through the use of scope to give precedence to parameters. There are
four levels of scope which are given in descending order of precedence:
global,network,context and local.  Global scope applies where the parameter is
exogeneous to the whole system. This is determined when the initial structural
description is specified. Network scope applies to all transfer parameters in the
links. Context scope is for parameters asserted as boundary conditions for a
component. Material properties have a context scope. This reflects the fact that they
may change based on context. Finally, local scope is the lowest in precedence and
refers to parameters which are only valid locally. When the component goes out of
scope, the local parameters revert to their unknown status. A greater permanence
for a local parameter may be achieved by elevating it to a network parameter (i.e.
output parameter) or a context parameter (e.g. a derived surface temperature).
Such decisions are handled by the boundary engine before moving on to the next
component in the  network. This use of scope to implicitly establish a precedence
hierarchy for parameters binds causal order at run-time and allows it to be changed
as simulation proceeds. We confine making causal direction explicit to the
manipulation of transfer model which are inherently directed seeking to determine
output parameters based on certain explicit input conditions.

5.3 Knowledge Representation
There are two forms of knowledge representation incorporated into this architecture.
Local knowledge is based on implicit, non-directed constraint equations. These
equations are derived through quantitative abstraction of traditional equations of
physics. A parameter may have an exact real numbered value or it may be



represented approximately by a closed interval. No precedence is given to
parameters in terms of knowledge representation so there are no explicit directional
dependencies.

Knowledge at the network level is concerned with context management. Context
management requires explicit representation of mechanism. Transfer models use
explicit model conditions to produce values for identified transfer parameters.
Compositional modelling [Forbus and Falkenheimer ‘91] offers an organisational
structure which we can utilise to control the invocation of appropriate transfer
models.

6. CONCLUSIONS

In this paper we have looked at the issues involved in modelling complex physical
systems. In particular, we argue that generalisation in a model architecture is a
critical step towards extending the application of qualitative physics to larger, more
integrated problems. In complex systems, where the behaviour of many components
integrates to give a global behaviour, composability of sub-domains and physical
structure (i.e. number of components) is a necessary model attribute. Generalisation
enables such composability. With this in mind we propose a new model architecture.
Support for generality is provided through ontology in the form of a modular
network representation and through a knowledge representation which closely
reflects the physics of traditional mathematical domain equations. We point out that
symbolic values and explicit mechanisms are problem specific characteristics of a
model architecture. However, the suitability of explicit mechanisms in representing
multiple models of interaction and the need for qualitative interpretation of
behaviour dictate their inclusion in our model. By confining qualitative
representations to higher levels of the model and making a clear distinction between
implicit knowledge (within component) and explicit knowledge (context
management) we achieve an adequate compromise.

The approach taken in this research is more of a ‘first principles’ method of
deriving behaviour. There is a minimum of predefined function or structure. The
concentration on phenomena rather than device implies a finer granularity than is
appropriate in current qualitative reasoning systems. Applications of device-based
ontologies assume that the external interface of the component can be predefined. We
derive such interactions dynamically. Aggregating low-level behaviour to generate
higher level interpretations will be an important area for future work. We advocate
provision of an approximate quantitative model of complex systems at the level of
physical phenomena as a basis for subsequent abstraction and approximation.

Initial implementation focusses on the sub-domains of stress, thermodynamics and
fluid dynamics.
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