
Ei�el k

Inheritance of operations and inheritance of synchronisation constraints in Ei�el k ��� are in�
dependent of each other� In other words� a change in synchronisation constraints does not
necessitate a rewrite of the operations� and visa�versa� Unfortunately� the monolithic approach
of specifying all synchronisation constraints in a single routine� Live� means that there is no
independence of constraints	 changing one synchronisation constraint requires rewriting them
all� The net result is that Ei�el k cannot handle the column 
 of the inheritance matrix� When�
ever any synchronisation constraints change� the programmer has to rewrite the Live routine
completely� This is quite unfortunate since the Live routine is often long and it is tedious not
being able to reuse it�

Summary

Enabled�Sets was shown to have very poor inheritability� We feel that this is because Enabled�
Sets mixes synchronisation code in with the sequential code of operations� All the other mecha�
nisms we evaluated have a clean separation between synchronisation constraints and operations
and consequently have better inheritability� Of these� the best inheritability was found in Guide
and Scheduling Predicates� both of which allow individual constraints to be inherited�rewritten
independently of each other�

� Conclusions

The con�ict between synchronisation and inheritance has too many forms for it to be compre�
hensively presented in a single example� This paper has de
ned an inheritance matrix which
allows us to view the con�ict in all of its many forms� We then discussed how the inheritance
matrix can be used to evaluate the inheritability of synchronisation mechanisms� Finally� we
presented some preliminary results from evaluating several synchronisation mechanisms in this
manner�

What we have learned suggests two important requirements for a synchronisation mechanism	

�� Synchronisation constraints should be separated from the sequential code of operations�
This facilitates their independent inheritance�rede
nition�

�� It should be possible to inherit�rede
ne individual synchronisation constraints indepen�
dently of one another�

References

��� Colin Atkinson� An Object�Oriented Language for Software Reuse and Distribution� PhD thesis�
Department of Computing� Imperial College of Science� Technology and Medicine� University of
London� London SW� �BZ� England� February ���	�

��� Denis Caromel� Concurrency
 An Object�Oriented Approach� In Jean B�ezivin� Bertrand Meyer� and
Jean�Marc Nerson� editors� TOOLS �� pages �
������ Angkor� ���	�

��� D� Decouchant� P� Le Dot� M� Riveill� C� Roisin� and X� Rousset de Pina� A Synchronisation Mecha�
nism for an Object Oriented Distributed System� In Proceedings of the ��th International Conference

on Distributed Computer Systems� Arlington� Texas� February ���	�

��� Ciaran McHale� Bridget Walsh� Se�an Baker� and Alexis Donnelly� Scheduling Predicates� Technical
Report TCD�CS������� Department of Computer Science� Trinity College� Dublin �� Ireland� October
����� Presented at the workshop on Object�Based Concurrent Programming at ECOOP ���� Geneva�
Switzerland� Proceedings to appear in a volume of Lecture Notes in Computer Science� Springer
Verlag�

��� Chris Tomlinson and Vineet Singh� Inheritance and Synchronisation with Enabled�Sets� In OOPSLA

��� Proceedings� pages �	������ October ��
��

�



� The impression that retyping is better than reuse arises because synchronisation counters
are a compact way of expressing constraints� There would be more incentive to reuse code
in a more verbose synchronisation mechanism�

� A Ei�el�like ��at� utility could be used to allow programmers to easily see the e�ective
synchronisation constraints on a class� even when some of the constraints are inherited
from ancestor classes�

DRAGOON

The behavioural classes of DRAGOON ��� are� in e�ect� generic classes� �As far as we know�
DRAGOON is the 
rst language to support the concept of generic synchronisation policies��
One potential advantage of having generic synchronisation classes is that a core of such classes
can form part of the standard library for a language� In this way� the synchronisation code of
a class can be self�documenting� Unfortunately� the syntax used in DRAGOON to instantiate
a synchronisation policy is too verbose�there are as many lines of code used to instantiate
behavioural class as there are in the behavioural class itself�

DRAGOON handles all the cells in the inheritance matrix in an oblique manner	 it maps
the entire matrix into a single column�� This can prove tiresome for the programmer and lead
to DRAGOON programs being verbose but� other than that� there are no severe di�culties�

An interesting result of not being able to inherit from a synchronised class is that� al�
though student may be a subclass of person� synchronised student is not a subclass of
synchronised person� according to the class hierarchy� We do not know if this irregularity
has any rami
cations for program development�

Of a more practical nature� having to write a sequential class and then inherit from it simply
to apply synchronisation constraints leads to name�space pollution� We overcame this by giving
all classes a standard pre
x to indicate if they were a sequential or synchronised class�

Enabled�Sets

Synchronisation constraints are embedded in the sequential code of operations and this results
in several con�icting interactions between the inheritance of synchronisation constraints and
inheritance of operations	

Column � Inheriting from an unsynchronised class and applying synchronisation constraints
requires an incremental re�implementation of each operation to allow the constraints to be
added�

Column � Changing the synchronisation policy on a class results in having to rewrite all the
operations� even if the functionality of the operations remains unchanged�

Row � Similarly� a total re�implementation of an operation requires rewriting the synchronisa�
tion constraint for that operation�

Row � Incremental change in the code of an operation is sometimes possible� But it is just as
likely that the embedded synchronisation constraint will interfere with this� resulting in
the operation having to be totally re�implemented�

In fact� the only cells in the inheritance matrix which Enabled�Sets provides support for are
��� ��� which represents the trivial case where nothing changes� and the combination of cells ��� 
�
and ��� �� which is represented by the ExtendedBoundedBu�er example�

�Depending on your point of view� DRAGOON either maps everything into column � �synchronisation con�
straints must be re�implemented from parent to child class� or column � �synchronisation constraints are never
re�implemented on top of an existing synchronised class� rather they are �re�applied to the unsynchronised equiv�
alent�	

�



� Results

We have used the inheritance matrix to evaluate the inheritability of several synchronisation
mechanisms� by attempting to solve a set of examples in each mechanism� This section sum�
maries the initial results we have obtained from these evaluations�

Guide

Guide �
� has no con�icting interaction between inheritance of operations and inheritance of
synchronisation constraints� In other words� a change in synchronisation constraints does not
necessitate a rewrite of the operations� and visa�versa� Also� the synchronisation constraints are
independent of each other� Thus� changing one constraint does not necessitate rewriting the
other constraints�

The only limitation of Guide is that while synchronisation constraints can be inherited
without modi
cation or changed totally� they cannot be incrementally changed� Thus� Guide
cannot handle column 
 of the inheritance matrix directly� Instead� the programmer must e�ect
incremental changes in a synchronisation constraints by rewriting the a�ected constraints totally�
Thus� column 
 of the matrix is handled by shifting it onto column ��

Scheduling Predicates

Scheduling Predicates ��� can be thought of as an extension of Guide�s synchronisation mech�
anism� In particular� Scheduling Predicates provides support for incremental changes to syn�
chronisation constraints� This is achieved by use of the keyword inherit in constraints� For
example	

Foo	 inherit and exec�Bar� � ��

Frequently� synchronisation constraints on existing operations are incrementally modi
ed to take
into account a new operation� In such cases� the constraint on the new operation will frequently
be similar to a constraint on one of the existing operations� In such cases� it is useful for the
new operation to inherit a constraint from an existing operation� The following example will
show how Scheduling Predicates allows this�

Consider a class which has two operations� X and Y� which execute in mutual exclusion�
The synchronisation constraints would therefore be	

X� Y	 exec�X� Y�� � ��

Now consider a subclass which introduces a new operation� Z� A 
rst attempt at writing the
synchronisation constraints for this subclass would be	

X� Y	 inherit and exec�Z� � ��
Z	 inherit X and exec�Z� � ��

This can be more compactly expressed as	

X� Y� Z	 inherit X and exec�Z� � ��

This support for incremental change of synchronisation constraints means that� unlike Guide�
Scheduling Predicates can easily handle column 
 of the inheritance matrix�

A problem we found with both Guide and Scheduling Predicates is that if some constraints
are expressed in a class but others are expressed in an ancestor class then it can be di�cult to
understand the overall synchronisation policy� We sometimes found it easier to restate all the
constraints explicitly in a class� rather than inherit some of them� In other words� sometimes it
is better to retype than to reuse� This leads us to then wonder if inheritance of synchronisation
constraints is of much importance� Some points to note about this are	

�Note that the form exec�A�B� � � � � Z� is a shorthand for exec�A� 
 exec�B� 
 � � �
 exec�Z�	

�



From Figure 
 we see that the ExtendedBoundedBu�er example illustrates only a small
subset of the interactions between synchronisation and inheritance� Hence we see the limitation
of using a single example to explain the problem�

� The Inheritance Matrix as an Evaluation Tool

The preceding sections have introduced the inheritance matrix as a graphical way to de
ne
the� potentially con�icting� interaction between inheritance of operations and inheritance of
synchronisation constraints� However� the matrix can be used for more than just de
ning the
problem	 it can also be used as a tool to evaluate how complete a particular synchronisation
mechanism�s solution to the problem is�

Leaving aside the three impossible cases� the matrix has thirteen cells� The ExtendedBound�
edBu�er �discussed in section 
� occupies just two of these� If we can 
ll the remaining eleven
cells with other examples then we will have a set of examples which illustrate all the possible
interactions between inheritance of operations and inheritance of synchronisation constraints�

Attempting to implement such a set of examples with a particular synchronisation mechanism
will show up the strength and weaknesses of that mechanism�s ability to interact with inheritance�
Repeating this exercise for several di�erent synchronisation mechanisms allows us to compare
them on an uniform basis�

Filling the Matrix

Initially we had hopes of 
lling the matrix with a single set of examples which could be used to
evaluate the inheritability of all synchronisation mechanisms� However� the expressive power of
synchronisation mechanisms varies widely� Also� some mechanisms support intra�object concur�
rency while others only work with single�threaded active objects� Because of these two factors�
we have not yet been able to 
nd a universal set of examples which can be used to evaluate all
mechanisms�

Instead� we have chosen examples on an as�needed basis for the di�erent synchronisation
mechanisms we have evaluated� We had some reservations about taking this approach� reasoning
that evaluating� say� Guide with one set of examples and Enabled�Sets ��� with another might
not provide a common basis to compare the two mechanisms� However� this reservation proved
to be without foundation� In practice� evaluating a mechanism with one set of examples will
yield the same results as evaluating it with a di�erent set��

Unfortunately we have space to present just one of the examples which we used to evaluate
the inheritability of synchronisation mechanisms� �We will be happy to discuss the other exam�
ples at the workshop�� Figure � shows a base class� Foo� whose operations execute in mutual

class Foo is
Write�� is � � �
Read�� is � � �

synchronisation

Write	 exec�Read� Write� � ��
Read	 exec�Read� Write� � ��

end Foo�

class Bar is inherit Foo�
�� no change to operations

synchronisation

�� total change in constraints
Write	 start�write� � term�Read��
Read	 term�write� � start�Read��

end Bar�

Figure �	 Example for cell ��� �� of the inheritance matrix

exclusion� Class Bar inherits Foo and applies di�erent synchronisation constraints �to imple�
ment an alternation policy� while retaining the original code of the operations� This example

lls in cell ��� �� of the inheritance matrix�

�This is assuming that the synchronisation mechanism has enough expressive power to implement all the
examples in either set	

�



New Operations

Incremental
Reimplementation
Of Operation

Total
Reimplementation
Of Operation

No Change in
Operation

No Change
In Constraint

Total Change
In Constraint

Incremental
Change of
Constraint

New Constraint

Operations

Synchronisation
Constraints

(4, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(1, 1) (1, 2) (1, 3) (1, 4)

Figure �	 The Inheritance Matrix

The introduction mentioned that attempts to use synchronisation and inheritance together
often leads to problems� These problems can be said to be con�icting interactions between
inheritance of operations and inheritance of synchronisation constraints� The inheritance matrix
is an ideal tool for visualising the di�erent types of interaction�

An Example� The Extended Bounded Bu�er

Consider a class which inherits from a BoundedBu�er class and introduces a new operation�
GetRear ���� There is no change in the code of the two inherited operations� Put and Get �
but their synchronisation constraints must be modi
ed to take into account the new operation�
Thus� Put and Get belong in cell ��� 
� in the inheritance matrix �Figure 
�� The new operator�
GetRear � is given a new constraint and so it belongs in cell ��� ���

New Operations

Incremental
Reimplementation
Of Operation

Total
Reimplementation
Of Operation

No Change in
Operation

No Change
In Constraint

Total Change
In Constraint

Incremental
Change of
Constraint

New Constraint

Operations

Synchronisation
Constraints

Put, Get

GetRear

Figure 
	 The Inheritance Matrix for the ExtendedBoundedBu�er example






Inheritance of Synchronisation Constraints

The previous section examined the sequential operations of a class without regard to synchro�
nisation� In this section� we will do the opposite� i�e�� examine synchronisation in isolation
from sequential code� �We will discuss the interaction of sequential code and synchronisation
constraints in Section 
��

Just as a class is a collection of related operations �and data�� so one can consider a synchro�
nisation policy to be a collection of related synchronisation constraints� The following example
shows a mutual exclusion policy de
ned over two operations	

sync policy Mutex f
W	 �no executing R�s or W�s��
R	 �no executing R�s or W�s��

g

Just as we can inherit from sequential classes and� optionally� re�implement operations� so too
can we inherit from a synchronisation policy and re�implement individual constraints at will� For
example� the following ReadersWriter policy is obtained by inheriting fromMutex and changing
the constraint on R	

sync policy ReadersWriter inherit Mutex f
�� no change to the constraint on W ���
R	 �no executing W�s�� ���

g

We could again inherit from this to make the synchronisation policy take account of a second
read operation	

sync policy ExtendedRW inherit ReadersWriter f
�� no change to the constraint on R ���
W	 inherit and �no executing R��s�� �
�
R�	 �no executing W�s�� ���

g

In brief� inheritance of synchronisation constraints results in the following possibilities	

��� No change in a constraint

��� A total change in a constraint

�
� Incremental change in a constraint

��� Introduction of a new constraint

We note that the possibilities for inheritance of constraints in a hierarchy of synchronisation
policies mirror those for the inheritance of operations in a class hierarchy�

� Problem De�nition

Since the previous sections have listed the di�erent possibilities for these two types of inheritance�
we can easily express their interaction in the form of an inheritance matrix as shown in Figure ��
�The cells in the matrix are numbered for ease of reference�� For example� cell ��� �� represents
the case where the functionality of inherited operation does not change but it is given a new
synchronisation constraint� The three shaded cells in the matrix represent impossible cases��

�If a subclass introduces a new operation� Foo� then it must be given a synchronisation constraint �if not
explicitly given a constraint then it will implicitly adopt the default constraint of the synchronisation mechanism�
whatever that may be�	 It is impossible for Foo to have it�s constraint changed since Foo did not exist in the
super class	

�



Evaluating Synchronisation Mechanisms�

The Inheritance Matrix

Ciaran McHale�� Bridget Walsh�

Se�an Baker� Alexis Donnelly

� Introduction

It is recognised that attempts to use synchronisation and inheritance together often leads to
problems� In most systems reported in the literature� the problem is illustrated by the Extended
Bounded Bu�er example ����

Naturally� a single example cannot illustrate the con�ict in all its varied forms� and thus
it gives us with only a partial understanding of the problem� and if one has only a partial
understanding of a problem then one can only hope to 
nd a partial solution�

We accomplish several tasks in this paper� First� we will de
ne the con�ict between syn�
chronisation and inheritance� We then show how this de
nition can be used to derive a set of
examples which can be used to test the inheritability of a synchronisation mechanism� Finally�
we present some preliminary results obtained from using these examples to evaluate several
synchronisation mechanisms�

� Inheritance

Inheritance of Operations

In a sequential object�oriented language� operations may be inherited and� optionally� reimple�
mented� The classes in Figure � illustrate the various ways in which this might happen� In brief�
inheritance of operations results in the following possibilities	

� No change in an operation

� A total re�implementation of an operation

� Incremental re�implementation of an operation �i�e�� Foo invokes super�Foo�

� Introduction of a new operation

class C� f
A�� f� � �g�
B�� f� � �g�
C�� f� � �g�

g

class C� inherit C� f
�� no change to A��
B�� f� � �g� �� total change
C�� f �� incremental change

� � �

super�C���
g
D�� f� � �g� �� new operation

g

Figure �	 Possibilities for inheritance of operations

�Authors� address� Department of Computer Science� Trinity College� Dublin �� Ireland	
Tel� 

�
��������
� Email� fcjmchale�bwalsh�baker�donnellyg�cs	tcd	ie

�


