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1 Introduction

The distributed systems group in Trinity have been concerned with fault tolerance for a number of
years and are now turning our attention to the topic with renewed interest (and urgency). Specifi-
cally we are concerned to provide mechanisms for fault tolerance in the Oisin kernel [5] - the local
implementation of the COMANDOS object oriented distributed system [12]. This short position
paper outlines our experience gained to date, some of the lessons we have learned and the avenues
which we are currently investigating in order to make Oisin reliable.?

2 Early Experiences and Motivation

One of our earliest attempts to provide fault tolerance is described in [16]. The approach followed
was to modify the source code of an application program, running on a fault intolerant distributed
system, in order to make it resilient in the face of multiple node failures. The application chosen
was the board game Scrabble and the distributed system was an early release of V [6] running on
a number of 68k processors. The algorithm for the game consists of players (which may be human
or computer) and a process to manage a large lexicon structure. The players code was extended so
that it:

e could detect the failure of other players,
e initiate, and see through to completion, the recovery of missing players.

The game could re-generate itself in the face of simultaneous failure of up to 3 of the 4 players!?
Further details (and there are many) can be found in [16].
A number of points are however worth noting.

1This document is too short to allow space to fully describe our failure model but the main assumptions are fail-stop
processors, non-deterministic execution of processes and the possibility of network partition.

2As such it behaved like the Worm described in [19], more recently given a bad name by certain activity on the
internet.



e The code to handle continuity took up 50% of all the application code and debugging it was
very very very difficult!

e The mechanisms to detect and recover from failure are not specifically tied to the chosen
application but have general applicability.

e While it 1s possible to build continuity into an application, it places a very substantial burden
on the programmer. Accordingly it makes much more sense to tackle the problem of fault
tolerance at the system level making it transparently available to applications! This is not to
say that if applications decide to violate transparency, either to dispense with it completely or
to optimize tunable parameters, that they should be prevented from so doing.

3 Operating System Support for Fault Tolerance

Oisin [5], is a kernel for distributed systems which follows the object oriented paradigm. Oisin
consists of four main functional components. The Activity Manger (AM) implements the active
entities (activities) in Oisin. Activities can be viewed as distributed threads of control visiting
objects mapped at different nodes. Groups of related activities (Jobs) are also managed by the
AM. Oisin supports the concept of (distributed) virtual object memory (VOM). When an object is
being used by some activity it is mapped into VOM at some node determined by load balancing and
other considerations. The distributed Storage System (SS) provides long term storage for objects.
Underlying all of these components is the Communications System (CS) which provides reliable
inter-node communication. Finally a full implementation of the COMANDOS kernel would include
a Transaction Manger (TM) providing distributed nested transactions®.

The plan we are following at the moment is to examine each of these components in turn and
identify the minimum functionality that should be added to each so that the overall system is an
integrated fault tolerant one with respect to our assumed failure model. The motivation for this
overall approach is that there are a myriad of published algorithms on how to provide reliability at
various levels in a system, so the challenge facing us 1s to implement an integrated fault tolerant
environment.

Before continuing any further an obvious question must be answered. If transactions are going
to be be provided why are they not used as the main building block for making the whole system
reliable? The main reasons for not following this approach is that transactions on their own do
not provide continuity, a recovery/restart mechanism is also needed. Furthermore the concurrency
control required by the TM may be unnecessarily restrictive for non-transactional applications.

In the following sections we will describe what we believe to be the minimal support necessary
from each of the functional components in order to provide an integrated fault tolerant system

conforming to the COMANDOS model.

3.1 The Communications System

This is a well understood area [3]. Basically the role of the CS is to mask communications failures
and to detect site failures. Currently the CS provides reliable ’point-to-point’ communication with
the user (sender) being notified if any fatal errors occur. The extra facilities that could be provided
by the CS to help provide reliability include:

o Notification of node failure.
e Management of a site view as in [3].

e A broadcast service (c.f. [3]) providing ordered, reliable broadcast for use by the TM, SS,
VOM, or AM.

3Qur current implementation does not include a TM but providing one is one of our current tasks.



3.2 The Storage System

Our main requirement on the SS is that it should ensure availability of the stored data in the face of
site failures and network partitions. Numerous algorithms have been published on how this can be
achieved: most are based on using some form of replication (primary copy [1, 17], available copies
[2], or voting [14, 20]). An interesting extra dimension to extending the functionality of the SS, could
be the utilization of new storage devices, e.g. WORM disks etc., to implement both fault tolerance
and the COMANDOS ageing* mechanism [7].

The following sections outline our current thinking on how availability may be provided in the

SS.

3.3 Replication

It is well known that redundancy in the form of replication can be used to increase the reliability
of a distributed storage system. Different applications may however have different requirements as
regards the consistency and availability of the replicated information. For example in some cases
one-copy consistency may be unnecessary® and availability may be more important.

One avenue being investigated is to design of an adaptive replication control method (RCM).
The RCM can operate in one of two possible modes at a given time for a given object. Consistent
mode guarantees one-copy consistency of the replicas while weak mode provides high availability and
increased efficiency. The RCM supports controlled transition between the 2 modes. A client selects
the proper level of consistency for an object by invoking the appropriate forms of the Read and
Write operations.

The client is notified if the RCM cannot perform a consistent Read or Write (e.g. due to a
network partitioning). If a weak Write is performed on a consistent object the RCM marks the
object as potentially inconsistent. The client who invokes a consistent Read or Write on the object
is informed about it’s state. The client can choose the way in which the inconsistency 1s to be
resolved. The options are:

e use the most up-to-date replica,
e use the most important replica,
e apply a given function on the value of each replica to obtain a new value,

e leave it to the client to resolve the inconsistency.

We are working on the algorithms which are to be used for the two modes of operation (candidates
are: a form of voting (e.g. [15]), or a form of primary-copy algorithm (e.g. [17]).

3.3.1 Replicated Append Only Storage

In addition to the more traditional approach to replication outlined in the previous section we are
also looking at the impact of changes in storage system technology on performance in general and
reliability in particular.

While large, write once, storage devices have drawn some attention from the academic community
for several years [18, 13, 8] they have only appeared commercially for specialized applications, rather
than as a foundation for general purpose data storage. We are investigating a two tier storage model
consisting of an append only server® augmented with conventional disk (and ram) client caches. This
gives rise to an infinite capacity, append only, model of the storage system. The caches are not an
integral part of the system and are only required to improve the performance of read operations.

4In an alternative to distributed garbage collection objects are not deleted but rather aged out to long term storage
devices.

5This is the case when the knowledge of the semantics of the replicated information, or of the reference patterns, is
available to clients to minimise the probability of the conflicting operations. In some other cases a limited inconsistency
is acceptable.

6Based on DAT or optical disk.



A storage system build on this model is made reliable by replicating the append only storage
device. In a realistic system, storage system cost will be dominated by the client caches, so this
replication of the append only devices 1s proportionately inexpensive.

3.4 The Activity Manager and Virtual Object Memory

From the point of view of fault tolerance 1t is hard to separate these two components because they
are so closely related. Two scenarios are outlined below, one in which reliability is provided within
the AM only and the other in which VOM and AM combine to provide reliable execution.

These components taken together are responsible for masking site failure and ensuring reliable
execution of jobs and activities. This by far the most difficult area, primarily because of problems
with determinism. We must ensure that if failed activities are restarted they produce equivalent
results as when initially run. This is particularly difficult when activities interact frequently through
shared objects or make use of time or host dependent information such as the local load, time of day
or some such transient value. Moreover, the picture is further complicated by the fact that activities
are distributed entities which potentially span multiple nodes.

3.4.1 Reliability in the AM Only

In this scheme the burden for reliability lies with the AM. It would ensure reliability by replicating
activities - one of the replicas within the feam being designated as the captain and being the only
one visible (in terms of its effects) to the ’outside world’. While currently there is only a single copy
of an object mapped in VOM (which is shared by all activities using it) this scheme would require
replicated objects in VOM. Replication, of objects and activities, has obvious disadvantages not
least of which is the overhead in terms of processing resources consumed by the replicas. Ordering
of invocations is difficult and there are also problems with node dependent information. Finally
the system has to cope with updates to an object that is shared by two separate teams. It seems
logical to put the onus on the captains who could use an ordered reliable broadcast protocol to
transmit invocations on shared objects to other members of their team in a mechanism similar to
that described in [11].

3.4.2 Reliability in VOM/AM

The alternative to the previous scheme is some form of of invocation logging/checkpoint scheme
along the lines outlined in [4]. The state of local VOM (both memory, i.e. objects, and activities,
i.e. stacks etc.) is periodically checkpointed, and a log is kept of all remote invocations. Recovery
is carried out by recreating the state of VOM at some other site (possibly by reading objects from
the reliable storage system) restarting the activities and replaying the invocations in some correct
order (as pointed out above, maintaining the correct order is not necessarily easy). This mechanism
suffers from determinism problems like the previous one (Section 3.4.1) but at least from our current
perspective it appears somewhat simpler.

We have already (partially) implemented such a mechanism to ensure continuity within VOM.
Tt is described in detail in [9] and is similar in spirit to the logging techniques described in [10] but
differs in certain design issues which are not directly relevant to this discussion.

Failure detection, is achieved by sending alive messages between nodes while Recovery is

handled by;
e maintaining a list of the objects currently mapped on each node,

e a logging mechanism that ensures all invocations on objects, in VOM, are eventually carried
out.

The list of mapped objects must be maintained on nodes whose failure modes are sufficiently decou-
pled from the nodes they are describing.

The details of the logging and recovery algorithm are complicated but essentially involve keeping
two logs per object.



e An outgoing invocations log of all the invocations an object makes on other objects.

e An outgoing returns log containing the results of all remote invocations made on the object. A
reference count is maintained for each object so the most recent invocation can be identified.
The logs are saved to the storage system whenever an object is written out.

On detecting the failure of a node the objects that were mapped there, along with the last saved
logs, must be re-mapped into VOM?. The kernel broadcasts to other nodes looking for invocations
with a higher reference count than that in the restored log. Once all outstanding invocations have
been carried out, in the correct order, new ones can be accepted. Some further points are worth
mentioning:

e In Oisin objects are grouped together into clusters so logs can be maintained on a per cluster
rather than per object basis.

e The logs need not grow indefinitely but can be expunged when it is certain that an invocation
will not need to be redone.

e Checkpoints can be taken to minimise the possibility of having to redo too much work. Check-
points also allow the logs to be expunged.

e An activity’s initial invocation must be stored reliably to ensure it is restarted in the event of
failure.

The basic problem is to ensure that, on recovery, all invocations happen in the same, or an equiv-
alent, order as in the initial run. While the mechanism described relies on the processing of remote
invocations in order of their receive sequence number, it is not sufficient when local invocations
are not handled deterministically. Thus to handle our assumed failure model this mechanism must
be extended either by a form of timestamping of local invocations or by restricting the ordering
of invocations with some form of concurrency control (similar to the serialisability restrictions in
transactions).

3.5 The Transaction Manager

Our intention 1s to provide the transaction mechanism on top the underlying fault-tolerant system.
The TM adds (extra) support for concurrency control (i.e. full serialisability of transactions) and
the ability to abort a transaction on request or as a result of deadlock. Note however that site
failures will be masked out by the VOM/AM and media failures will be masked by the SS. It will
be necessary for the TM to maintain sufficient redundant information - before images or recovery
points - to be able to abort a transaction. This information will be maintained at the VOM level -
the SS only containing committed versions of objects.

The precise transaction system chosen may effect the choice of checkpointing system in the
VOM/AM, e.g., activity based rather than node based checkpointing.

4 Summary

Traditionally, the software support for fault-tolerance has been treated as either: reliable execution
of processes, or reliable storage of data. The object-oriented approach requires integration of these
techniques. These ideas described here must be developed further and merged into a unified system.
In particular work must be done on areas such as handling non-deterministic executions, the rela-
tionship to transactions to the rest of the system, handling network partition and interfacing to the
outside world. If in the course of this effort it is discovered that the concurrency control required
to ensure determinism at the VOM level is as restrictive as a transaction based mechanism then it
would appear to be prudent to then use transactions as the main building block for continuity.

"In this work the failure model assumed that the storage system was reliable.
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