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Abstract

The original Internet architecture was conceived to es-
tablish a connection between two participants. However,
Internet usage today is dominated by content distribu-
tion and retrieval that comes in contrast to the host-based
communication model of the network infrastructure.

Information-Centric Networking (ICN) provides an al-
ternative to the traditional Internet architecture by focus-
ing on content. ICN networking is based on the publish-
subscribe paradigm and the features of naming and in-
network caching. In-network caching can be categorized
into off-path caching and on-path caching with regard to
the location of caches and the delivery path.

The contribution of this paper lies on the placement of
copies in on-path in-network caching. Our aim is to ex-
amine the suitability of a probabilistic algorithm, Prob-
PD, based on two variables, the contents popularity rates
P and the distance ratio of each node from the source D,
using the performance metrics of cache hit rates, cache
eviction rates, hop counts and content delivery times.

To this end, we present a thorough evaluation of the
proposed caching mechanism and published alternatives
based on Rocketfuel traces and YouTube traffic with re-
gard to a number of parameters such as the catalog size
|O| and the chunk size Ch. Our results suggest that the
performance of the algorithms may be considerably af-
fected by both these factors. In particular, our approach
may provide significant gains if certain conditions are
met, such as |O] < 10.000 or Ch < 10KB.

1 Introduction

The original design of protocols for the Internet was
provided for information exchange between two partic-
ipants. However, usage patterns and technologies have
changed since these protocols were developed and to-
days Internet usage is dominated by the distribution and
retrieval of content. According to a recent technical pa-

per by CISCO [12], the annual traffic of the Internet is
expected to exceed the size of 1.4 zettabytes by the end
of 2017 with almost 80% of the traffic being video. This
mismatch between the original design and the current use
of the network infrastructure results in a number of disad-
vantages and difficulties with regards to availability, mo-
bility, multihoming, scalability and performance [3, 14].

Content Delivery Networks (CDNs) and Peer-to-Peer
(P2P) networks are the first steps towards a content-
oriented Internet architecture. However, both technolo-
gies operate at the application layer and depend on the
underlying traditional network infrastructure of the trans-
fer of information between two endpoints [22, 25, 34].
This mismatch of higher-layer and lower-layer compo-
nents may result in reduced performance [9, 24].

Information-Centric Networking (ICN), an alternative
to the traditional Internet architecture, focuses on in-
formation dissemination and information retrieval. ICN
networking is based on the publish-subscribe paradigm
where content sources make their content available by
publishing it to a content notification service, i.e. a name
resolution service or a name-based routing service, while
consumers request content from a content notification
service by subscribing to it.

Content publication and retrieval are accomplished via
content identifiers. ICN architectures identify content re-
sources such as services, web pages, songs etc. or parts
of a content resource, chunks or packets, using a content
identifier. Content identifiers should involve no informa-
tion that would bind the content to a specific location.
If this constraint is met, content can be freely replicated
and cached in the network infrastructure. Approaches to
caching can be categorized into off-path caching and on-
path caching with regard to the location of caches.

Off-path caching, also referred as content replication,
aims to replicate content within a network regardless of
the forwarding path. Off-path caching is usually central-
ized. Its operation is based on the selection of content
to be replicated and the selection of nodes to be hosting



Table 1: Evaluation metrics used in the literature review.

Evaluation Metric Metric Relation Definition

Network-based
Network-based
Network-based

Hop count
Hop count rate
Delivery time

No. of nodes a content request has travelled before been satisfied.
Hop count to the no. of hops towards a content source.
Total time experienced to retrieve content.

Server hit rate Cache-based

Cache hit rate Cache-based

Cache-based
Cache-based

Cache eviction rate

Absorption time

No. of content requests satisfied by a server to the no. of content requests
expressed in a network.

No. of content requests satisfied by a node to the no. of content requests ex-
pressed in a network.

No. of replacements occur on a node’s cache memory when is full.

The time for which content remains cached in a node’s cache memory.

the replicas, concluded via network monitoring and load
balancing mechanisms. Content replicas are finally ad-
vertised to a content notification service. The off-path
caching problem is equivalent to the CDN content repli-
cation and the web cache placement problems [31, 35].

On-path caching is based on the storage capacity of the
infrastructure; routers in ICN are equipped with cache
memory and enabled with a caching capability. Thus, on-
path caching is accomplished at the network layer of the
infrastructure, along the delivery path(s), which in turn
impedes a number of advantages and challenges, e.g.
caching is independent of the application, caching deci-
sion is limited to the content propagated along the deliv-
ery path(s) and to the nodes lying on the delivery path(s),
caching mechanisms are bounded by the on-line speed
requirements of the delivery process where the overhead
of monitoring, collection of statistical information or ad-
vertisement of the cached content into a content notifica-
tion service may not be acceptable or feasible. In addi-
tion to this, on-path caching does not follow any struc-
tural model; the topology is considered arbitrary.

The focus of this paper lies on the efficiency of on-
path caching mechanisms. Towards this goal, we pro-
pose a probabilistic algorithm, Prob-PD, based on two
variables, the contents popularity ratio P, and the distance
ratio of each node from the source D, which we compare
against the alternatives via simulations.

The remainder of the paper is structured as fol-
lows. Section 2 summarizes the related work of on-path
caching. Section 3 introduces the Prob-PD algorithm.
Section 4 describes the evaluation system model. Section
5 presents the evaluation results of the algorithm against
the alternatives. Section 6 is devoted to the conclusions.
This paper constitutes a continuation of our previous ini-
tial work [13] by providing a thorough evaluation.

2 Related Work

Due to the integration of on-path caching with the for-
warding procedure and the challenges deriving from it,

a number of on-path caching algorithms have been pro-
posed in the literature. In this section, a summary of the
algorithms and their evaluation results is provided. A de-
scription of the evaluation metrics is available in Table 1.

A range of existing on-path caching approaches base
the decision to cache a content on a node on a prob-
ability p. This probability can be either a fixed value
or a dynamic value calculated via a mathematical for-
mula. Fixed-value approaches, FIX(p), may base their
decisions on an arbitrary value [2, 14], e.g. CE?of p=1 or
on the number of nodes in a delivery path, e.g. UniCache
[8, 6]. These simplistic approaches neglect the variable
nature of content requests and network topologies, which
in turn results in lower performance compared to the al-
ternatives, with regard to the cache hit rates, hop count
rates and content delivery times [26, 28, 6].

In order to address this, ProbCache [26] uses a dy-
namic probabilistic algorithm that defines the number of
replicas to be cached along the delivery path based on the
cache memory of the nodes lying between the node de-
ciding the caching and the consumer. This approach has
the advantage to be more reactive than fixed approaches,
thus, exhibit lower server hit rates, hop count rates and
cache eviction rates compared to the FIX(p), CE?and
LCD; LCD caches a copy of the requested content one
hop closer to the client each time a content request ar-
rives [31]. LCD has been also shown to be outperformed
by FIX(p) algorithms, in terms of cache hit rates [28].

LeafNode [32] is an other algorithm proposed for the
on-path caching problem that caches content at the last
node of the delivery path. LeafNode targets to keep con-
tent as close to the consumers as possible. An evaluation
of this approach against the CE?has shown that it pro-
vides higher hop count rates and lower absorption times.

Due to the integration of on-path caching to the net-
work layer of the architecture, graph metrics may be
used for deciding the node(s) to perform caching. Graph-
based approaches such as Betweeness Centrality (BC) [6]
and Degree Centrality (DC) [29] react to the topology of
the network by taking into account the nodes on the de-



Table 2: Taxonomy of the proposed on-path caching algorithms.

Proposed Comparison Caching | Evaluation Metrics Comparison Results Topology type
Technique Technique model
BC [6] UniCache, central- | server hit rate, hop count BC > CE2> UniCache CAIDA (6804
CE? ized rate nodes)
CE 2[14] - autono- | - - -
mous
DC, BC, CC, DC, BC, CC, central- | cache hit rate, hop count DC > SC, BC, CC, GC, EC Rocketfuel (up
GC, EC, SC GC, EC, SC ized rate to 68 nodes)
[29]
FIX(p) [2] CE? autono- | cache hit rate, delivery CE?> FIX(0.5) > FIX(0.3) 8-nodes string
mous time > FIX(0.25) > FIX(0.125)
LCD [28] CE?, FIX(p) autono- | cache hit rate FIX(0.9) > FIX(0.75) > Rocketfuel (up
mous CE?*>LCD to 68 nodes)
LeafNode [32] CE? autono- | hop count rate, absorption | CE?>LeafNode up to 4-level
mous time binary tree
ProbCache [26] CE2, LCD, depen- server hit rates, hop count ProbCache >LCD, FIX(0.7) 6-level binary
FIX(p) dent rate, cache eviction rate & FIX(0.3) > CE? tree

livery paths. BC takes into account the number of times
a node is included in the shortest paths between sources
and consumers while DC is based on the number of con-
nections of a node. These approaches may lead to advan-
tages when requests are well distributed but they neglect
the frequency and distribution of their occurrence. In ad-
dition, graph-based approaches are based on the collec-
tion of centralized information that comes in contrast to
the distributed nature of ICN networking. DC constitutes
an exception to this rule. DC has been concluded as the
most effective graph metric in terms of server hit rates
and hop count rates while BC has been concluded to be
the most effective approach compared to UniCache and
CE?, with regard to the same evaluation metrics.

On-path caching approaches may be further catego-
rized based on the information used for the caching de-
cision, i.e. autonomous caching; using local informa-
tion, centralized caching; using centralized information
and dependent caching; using non-centralized informa-
tion regarding other nodes. To ease comparison, Table 2
summarizes the proposed on-path caching approaches,
the approaches against which they have been compared,
the metrics and topologies under which they have been
evaluated and the evaluation results. In this table, sym-
bol “-”’ indicates that no further information has been
provided for this category while symbol “a > b” indi-
cates that approach a outperforms approach b.

Based on Table 2, the approaches FIX(0.9), DC and
ProbCache outperform the rest of the caching mecha-
nisms. Each approach follows a different caching model,
autonomous, centralized and dependent, respectively.
One of the contributions of this paper is the evaluation of
these algorithms against each other. Based on this com-
parison and the previous ones performed by the research

Figure 1: Exodus Topology (AS-3967)

community, we expect to conclude to the caching system
that would be more beneficial for an ICN architecture.

3 Probabilistic-PD Algorithm

Based on on-path caching literature, one can observe the
absence of content popularity to the caching decision.
Content popularity has been concluded to significantly
affect the performance of caching algorithms [4, 28].
The idea behind content popularity is that popular con-
tents will satisfy a higher portion of requests. Therefore,
it should be taken into account. Content popularity has
been used in cache eviction policies and content replica-
tion mechanisms [15, 17, 23].

Measurement studies in web caching have highlighted
the problem of cache pollution due to one-timer ob-
Jjects [23]. One-timer objects are objects requested only
once while cache pollution is the case where one-timer
objects are cached. Cache pollution results in higher
cache miss rates and network traffic. According to the
same studies, one-timer objects correspond to 45-75%



of the content requests. As on-path caching is expected
to serve a much higher number of objects than repli-
cation mechanisms, under more severe restrictions such
as cache availability [2, 19], cache pollution prevention
becomes an important prerequisite. Therefore, caching
popular contents should be preferred. Based on the way
content popularity is calculated, a static-content popular-
ity or a dynamic-content popularity may be defined.

In a static-content popularity approach, contents are
categorized using a threshold /. Contents with a number
of requests higher than % are defined as popular while
contents with a number of requests lower than h are
defined as unpopular [7, 16, 21, 27]. Unpopular con-
tents are excluded from the caching decision. Due to the
volatile nature of ICN architectures, we expect the defi-
nition of a threshold to be challenging, resulting in out of
date calculations and unutilized cache capacity [16].

In a dynamic content-popularity approach, the popu-
larity of a content is determined by comparing its num-
ber of requests against the number of requests of the rest
contents, during a time interval A; [18, 30]. Thus, dy-
namic content-popularity approaches introduce an im-
portant computational overhead to the system. To this
end, we propose a dynamic-content popularity approach
that reduces the number of comparisons to a minimum.

Content popularity defines the content to be cached.
However, similarly to any caching technique, on-path
caching is requested to define where to cache content. As
the primary goal of caching mechanisms is the reduction
of delivery times, distance metrics may be used to satisfy
this question. Hop counts metric has been defined to be a
good estimation of the delivery times [17, 20]. Thus, hop
counts represents one of the factors of our algorithm.

We propose a dynamic probabilistic on-path caching
algorithm, called Prob-PD. The Prob-PD algorithm is
based on two factors, the contents popularity ratio P, ob-
served on a node and the distance ratio between the same
node and the source serving the content D. Both factors
are observed and calculated over time in order to react to
the volatility of the network.

To explain the caching algorithm further, a number of
notations are defined that are summarized in Table 3. For
the rest of the section, let i denote the node performing
the caching decision and j denote the content on which
the caching decision is applied. Let r; ; denote the num-
ber of requests on node i for content j, with Zfilch Tij
being the total number of requests and d(i,i’) denote the
distance between nodes i and i’ in hop counts. We then
define the Prob — PD; ; algorithm as follows:

rij/ A

J<|C
Zj:‘l ‘Vi.j/Az
—_———

" d(i,src)
d(dst,src)
—_———

D

Prob— PD = N

P

where, P is the dynamic popularity of a content j struc-
tured by the number of requests for content j during the
time interval A; to the total number of requests during the
same time interval on node i, thus, Pg[0,1]. In order not
to introduce any overhead to the infrastructure of a node,
we define A; to be the time between the arrival of the first
request for content j and the satisfaction of it. This way,
a content is limited to one comparison against the rest
of the contents, minimizing the complexity and overhead
that dynamic popularity calculations apply. D factor is
structured based on the distance between node i and the
node serving the request src, normalized by the distance
between src and the consumer dst. A content source in
this case is any node that holds the content. d(i,src) and
d(dst,src) calculations are based on the inclusion of two
extra fields in the packet format; d(i,src) value is updated
along the forwarding path, from a consumer to a content
source, while d(dst,src) value is updated along the deliv-
ery path, from a content source towards a consumer. As
forwarding paths and delivery paths in ICN follow the
same set of nodes, Dg[0, 1]. D factor indicates the poten-
tial gain of retrieving the content locally against the cost
of retrieving the content from the source. Our goal is to
examine how beneficial may be the combination of these
two factors regarding the ICN on-path caching problem.

4 System Model

In this section, a thorough analysis of the evaluation sys-
tem model is provided. The evaluation is based on the
ndnSIM simulator, an ns-3 module that adopts the Named
Data Networking (NDN) communication model [1]. A
summary of the model can be found in Table 3.

To ease readers relate the results with those presented
in other publications, a real network topology, Exodus
AS-3967 is used, based on Rocketfuel traces [33]. The
topology, shown in Fig.1, consists of 94 nodes, i.e. 39
backbone nodes (blue) and 58 gateway nodes (green).
Each node is equipped with a NDN stack. Consumer and
producer applications can only be installed on a gateway
node. In particular, one producer is assumed for each
evaluation scenario. The selection of a gateway for the
producer installation is based on the metric of connectiv-
ity degree; a node with connectivity degree equal to 5 is
chosen, where 1 is the minimum and 14 is the maximum.

As an attempt to provide realistic evaluation scenarios,
a simulation scenario based on YouTube traffic is deter-
mined. However, as the exact simulation of such a sce-
nario is computationally expensive [28], the normaliza-
tion of some characteristics is necessary so as to adopt
the model; both the catalog size |O| and the content store
(CS) size cs; are reduced by a magnitude of 10, i.e. from
103 [5, 37] to 10* and from 10GB [2] to IMB, respec-
tively. Object sizes follow a normal distribution of mean



Table 3: Parameters of the system model used for evaluation.

Parameter Symbol Value Definition

No. of nodes |N| 97 Total no. of nodes

No. of backbones |B| 39 Total no. of backbone nodes

No. of gateways |G| 58 Total no. of gateway nodes

Producer connectivity | |D| {2,5,11} No. of connections of producer node
degree

Capacity of links BW 40GB Available bandwidth

Catalog size |O| {1000, 10000} Total no. of objects

Object size 0; Yoj,ie|O| ~ N(10000KB,9800KB) Size of object 0; in KB

Chunk size Ch {1KB, 10KB} Chunk size in KB

Contents size |C] 212'1 0i/Ch Total no. of chunks

Cache size cs; Vesi, ie|N|,csie{1,10,100,1000} Cache capacity of node i in chunks
Consumers Size u; Vu;,ie|G| ~ U(100,300) No. of users on gateway i

Rank parameter q q€{0.5,5} Rank parameter of the Z-M distribution
Zipf exponent o 0e{0.8,1.0,1.5,2.0,2.5} Exponent of the Z-M distribution
Arrival rate A 1.0 Exponential request arrival rate

Control window w oo No. of requests able to sent with no reply

10MB and standard deviation 9.8MB [10]. To study the
effect of popularity on the performance of the algorithms,
a Zipf-Mandelbrot (Z-M) object popularity distribution
of «e{0.8,1.0,1.5,2.0,2.5} and ¢€{0.5,5} [5, 36, 11] is
defined. Contents in CS are replaced using a Least Re-
cently Used (LRU) policy [14, 28].

Finalizing the system model, a mean number of 200
consumers is installed on each gateway, following a uni-
form distribution. A consumer generates object requests.
Each object request corresponds to a sequence of chunk
requests, equal to the size of the object divided by the
chunk size, Ch = 10KB [10, 37]. Request arrivals follow
an exponential distribution of A = 1.0.

The simulation time of the system model equals to
200 seconds. To avoid out of date results, a convergence
time of 100 seconds is set. Hence, evaluation metrics are
recorded after the first 100 seconds and every 1 second.

5 Evaluation

Using the system model described in section 4 and the
evaluation metrics of cache hit rates, cache eviction rates,
content delivery times and hop counts, a report of the
evaluation results of the DC, FIX(0.9), ProbCache and
Prob-PD algorithms is provided. Each evaluation result
corresponds to the mean value of 10 simulation runs un-
der a range of parameters: {c,q,cs;}. Due to space limi-
tations and in order to ease readability, only the mean val-
ues of the evaluation results are displayed. To be able to
compare the caching mechanisms against one another an
average value derived from the evaluation results with re-
spect to each parameter is used. Again, due to space lim-
itations, a modification on the names of the algorithms is

applied, i.e. P(0.9), PC and PD for the FIX(0.9), Prob-
Cache and Prob-PD algorithms, respectively.

Fig.2 illustrates the performance of the caching mech-
anisms with regard to the cache hit rates for a range of pa-
rameters, i.e. 0e{0.8,1.0,1.5,2.0,2.5},4€{0.5,5} and
¢s;€{10,100,1000}. According to Fig.2, cache hit rates
can be significantly affected by parameter «; the number
of cache hits decreases as « increases from 0.8 to 1.0 for
g =0.5 and from 0.8 to 1.5 for ¢ = 5 and increases again
for & > 1.0 and o > 1.5, respectively. DC constitutes an
exception in the case where 0.8 < a < 1.0 and ¢ = 0.5,
for which the cache hit rates increase.

In a Zipf-Mandelbrot distribution, parameters & and ¢
determine the probability of an object to be requested. As
o and ¢q increase, requests get limited to a stricter subset
of objects. The behavior of the algorithms suggests that
when « lies between the aforementioned values, the pat-
tern of requests is neither too scarce nor too concentrated
to cause a cache hit; a scarce pattern of object requests
may as well increase the cache hit rates given the number
of consumers u; on each gateway.

According to Fig.2, PD and PC outperform the rest of
the alternatives, with PD performing slightly better than
PC; approximately 6.81 x 1073 cache hit rates on aver-
age. DC provides the lowest cache hit rates, i.e. about
0.05 less than PD. An important point that needs to be
highlighted is the lack of PD algorithm to provide sim-
ilar cache hit rates compared to the alternatives as the
cache size increases. The reason for this result is that PD
algorithm operates regardless of the cache size, i.e. if no
more contents are defined as popular, no more contents
will be cached. Thus, a higher cache size has no signif-
icant impact on the performance of the algorithm after a
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specific threshold. This threshold with regard to the cor-
responding experiment is estimated at Ch = 100 chunks.

If our assumption about PD algorithm is true, cache
eviction rates should be relatively low. Fig.3 presents
the cache eviction rates of each approach with regard to
the same set of parameters. According to the plot, PD
corresponds to the lowest cache eviction rates while PC
and DC correspond to an approximate increase of 30 and
330 cache evictions of the cache eviction rates recorded
for PD. As expected, P(0.9) produces the highest cache
eviction rates, i.e. about 500 more than PD.

Finalizing the presentation of the evaluation results for
the specific system model we also plot the content deliv-
ery times and hop counts for each approach, presented
in Fig.4 and Fig.5. As hop count metric is considered
to be an estimation of the latency metric, both figures
conclude to a similar outcome. Somewhat surprisingly
to Fig.2, DC corresponds to the lowest evaluation met-
ric compared to the alternatives. The difference between
DC and PC is estimated at 1.9ms for the content delivery
times and at 0.085 for the hop counts while the differ-
ence between DC and PD is estimated at approximately

3.6ms and 0.17 with regard to the same metrics. The
result suggests that caching and network evaluation met-
rics do not strictly align with each other. As the ultimate
goal of caching algorithms is the reduction of latency and
network traffic, the outcome suggests that graph-based
algorithms may as well correspond to high performance.

Based on the aforementioned figures, i.e. Fig.4 and
Fig.5, PD is shown to provide relatively poor perfor-
mance against the alternatives. The reason for this out-
come lies on the calculation of popularity factor P. As
each content competes against the sum of requested con-
tents during the time interval A, a sufficient number of
content requests is necessary so as to differentiate a con-
tent from the rest contents. Fig.2 indicates that the al-
gorithm may successfully identify a content as popular
while Fig.4 indicates that this identification is accom-
plished on nodes that are distant to the consumers, i.e.
closer to the source. Considering that the evaluation sce-
nario is based on a single content producer and that the
content requests pattern is relatively scarce, one can con-
clude that the content request pattern can be clearer as
the content requests aggregate towards the source.
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5.1 Catalog Size Effect

In order to explore whether the performance of PD al-
gorithm is affected by the traffic model, a reduction of
the catalog size |O| from 10.000 to 1.000 and a reduc-
tion of the cache size cs; from 100 to 10 are introduced.
Similar to the system model described in section 4, both
parameters are reduced by the same magnitude.

Fig.6 presents the cache hit rates of the new system
model with respect to the parameters «,q and cs;. Ac-
cording to Fig.6, PD corresponds to the highest cache hit
rates with a difference of approximately 9.2 x 1073 and
24.25 x 1073 against PC and P(0.9), respectively. DC
corresponds to a reduction of 33.16 x 1073 on the cache
hit rates recorded for PD. It is worth noting, that in con-
trast to the previous system model, the cache hit rates
do not decrease as the parameter & increases. The main
reason for this is a clearer pattern of requests.

Fig.7 plots the cache eviction rates of the algorithms.
Comparing the results presented in Fig.7 with these pre-
sented in Fig.3, one can observe that the new system
model has altered the behavior between DC and P(0.9),

with P(0.9) performing the worst on the first system
model and DC performing the worst on the second sys-
tem model. The difference between DC and P(0.9) is
estimated to an increase of 3300 cache evictions while
the difference between PD and PC is estimated to an in-
crease of 3 cache evictions.

In contrast to the cache eviction rates, the plots for
both the content delivery times and hop counts, shown
in Fig.8 and Fig.9, are no similar to the ones recorded in
the previous evaluation. Fig.8 suggests that the variation
of the delivery times of the algorithms is as low as 0.4ms
between PD and PC, with the lowest delivery time be-
ing 54.5ms, for PD and the highest delivery time being
60ms, for P(0.9). The reported variation is lower than
the one recorded in Fig.4. However, the major difference
between the figures is the behavior of PD algorithm. Due
to the reduction of catalog size |O|, content requests get
limited to a more narrow range of contents which results
in a clearer pattern of requests, even for the nodes close
to consumers. The plot of hop counts in Fig.9 follows the
same trend as content delivery times in Fig.8, concluding
to an approximate average value of 3.71 and 3.77 hop
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counts for PD and PC, respectively, and an average value
of 3.95 and 4.15 hop counts for DC and P(0.9).

5.2 Producer Connectivity Effect

Recalling the system model presented in section 4, pro-
ducer installation is based on the metric of connectiv-
ity degree |D|. Based on the minimum |D| = 1 and the
maximum |D| = 14 recorded in the network, a node with
connectivity degree |D| = 5 was chosen. To conclude
whether the selection of a specific gateway would affect
the simulation results, a node with connectivity degree
lower and connectivity degree higher than the one used
are considered, i.e. |D| =2 and |D| = 11, respectively.
Due to space limitations and the fact that latency reduc-
tion is the ultimate goal of caching algorithms, only the
results of content delivery times are displayed, in Fig.8
and Fig.9 for |[D| =2 and |D| = 11, correspondingly.
According to Fig.3 and Fig.8, the alteration of connec-
tivity degree from |D| =5 to |D| = 2 has no significant
impact on the behavior of the algorithms; the plots of
both graphs, as well as their numerical values, are almost

identical, i.e. an increase of about 12ms on the values
recorded in Fig.3 is shown. While the behavior of PC,
P(0.9) and PD remains similar to the aforementioned fig-
ures, Fig.9 suggests that DC exhibits a much different
behavior. DC that was shown to perform the best among
the alternatives, it now performs the worst. P(0.9) in-
dicates similar performance to DC with their difference
being as low as 1.8ms in favor of P(0.9). Finally, PC
and PD outperform the rest of the alternatives, with their
content delivery times estimated to 51.2ms and 52.7ms.
The behavior of DC lies on the fact that it caches con-
tent on the node with the highest connectivity degree.
Considering that the maximum connectivity degree in the
network is |D| = 14 and that the producer installation is
performed on a node with |D| = 11, results on content
delivery times suggest that DC algorithm may have cho-
sen to cache at the node where the producer is installed.

5.3 Chunk Size Effect

Towards analyzing the behavior of the algorithms with
regard to network traffic, two additional system models
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are evaluated by changing the chunk size Ch, from 10KB
to 1KB [4]; a system model of |O| = 10.000 and Ch =
1KB and a system model of |O| = 1.000 and Ch = 1KB.
Chunk size reduction is as an alternative way to provide
a larger number of contents, i.e. (/O] = 10.000 x 0; =
10MB/Ch = 1KB) = 108 chunks, in contrast to the previ-
ous system model, i.e. (|O| =10.000 x 0; = 10MB/Ch =
10KB) = 107 chunks. The content delivery times of the
system models are presented in Fig.12 and Fig.13.

Based on Fig.4 and Fig.12, the behavior of DC and
P(0.9) with regard to the different system models is ex-
actly the opposite. DC that was shown to perform the
best, it now provides the highest content delivery times,
while PD exhibits a comparable performance of approx-
imately 0.9ms difference. Similarly, P(0.9) that was
shown to perform the worst among the alternatives, it
now performs in rates similar to the current best alterna-
tive, i.e. PC with a difference of as low as 0.7ms. Chunk
size reduction affects the behavior of PD as well. Based
on Fig.4, PD performs close to the worst alternative for
g = 0.5, while based on Fig.12, PD performs close to the
best alternative. On the contrary, based on Fig.4, PD per-

forms close to the best alternative for ¢ = 5 while based
on Fig.12, PD performs close to the worst alternative.
The impact of chunk reduction on the results of PC is not
that crucial as the rest of the algorithms.

The examination of the second system model con-
cludes to less significant changes with regard to the be-
havior of the algorithms. The most noticeable change is
the reduction of content delivery times of P(0.9), from
60ms to 54ms while the least noticeable change is the
reduction of content delivery times of DC, from 56ms
to 55ms. PC, on the other hand, is shown to experience
an increase of 1.5ms, which constitutes the worst perfor-
mance recorded in Fig.13 while PD is shown to outper-
form the rest of the approaches by 2ms less than the one
recorded in Fig.8 and by 1.2ms less than the best alterna-
tive, P(0.9). This difference of PD to its best alternative
is higher that the one recorded in Fig.8, i.e. 0.4ms.

5.4 Discussion

Based on the results, one can conclude that the perfor-
mance of on-path caching algorithms can be affected by
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a range of parameters, the most important of which are
the catalog size |O| and the chunk size Ch. Both fac-
tors are able to significantly affect the traffic model of
the system and define a more scarce or a more frequent
pattern of requests. The pattern of requests is even more
critical to the performance of our algorithm due to the
calculation of the popularity factor P, described earlier in
this section. Analyzing the impact of parameter |O|, we
recall the dependence of DC and PC with regard to the
metrics of content delivery times and hop counts. More
precisely, for |0 = 10.000, PC outperforms DC while
for |O] = 1.000, PC outperforms DC. Similar to catalog
size |O|, the chunk size Ch concludes to an important
dependency of the algorithms with regard to content de-
livery times, the most critical of which is experienced by
DC and P(0.9), i.e. the behavior of the algorithms is op-
posite to the system model presented in section 4.

The evaluation presented in this paper has helped us
identify the suitability of the algorithms under different
conditions. According to the results, DC and P(0.9) have
been shown to result in a higher dependency on the pa-
rameters examined than PC and PD. The outcome sug-

10

) ae{0.8,1.0,1.5,2.0,2.5},g = 5,cs; = 10.

gests that dependent algorithms may provide a more ro-
bust performance compared to the alternatives. More
importantly, the aforementioned evaluation has provided
us important information regarding the behavior of PD
and its popularity factor P; PD fails to identify a con-
tent as popular on nodes where no sufficient information
exists, i.e. number of content requests. Based on the cat-
alog size that future Internet architectures are expected to
serve, the identification of popularity on a chunk level is
considered to be quite challenging. Towards this direc-
tion, alternative options for the calculation of popularity
are considered, among which a larger, fixed time inter-
val Az. A larger time interval would probably result in a
better categorization of the contents’ popularity.

6 Conclusions

In this paper, we have proposed a probabilistic caching
algorithm, Prob-PD, to enhance performance which we
evaluated against the alternatives via simulations. Prob-
PD is based on two variables, the content’s popularity
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