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Abstract
An analysis of acoustic features for a ternary cognitive load
classification task and an application of a classification boosting
method to the same task are presented. The analysis is based on
a data set that encompasses a rich array of acoustic features as
well as electroglottographic (EGG) data gathered for the COM-
putational PARalinguistic ChallengE (ComParE 2014). Super-
vised and unsupervised methods for identifying constitutive fea-
tures of the data set are investigated with the ultimate goal of
improving prediction. Our experiments show that the differ-
ent tasks used to elicit the speech for this challenge affect the
acoustic features differently in terms of their predictive power
and that different feature selection methods might be necessary
across these sub-tasks. The sizes of the training sets are also an
important factor, as evidenced by the fact that the use of boost-
ing combined with feature selection was enough to bring the un-
weighted recall scores for the Stroop tasks well above a strong
support vector machine baseline.
Index Terms: Paralinguistic information, cognitive load mod-
elling, feature selection, classification.

1. Introduction
Non-verbal and paralinguistic characteristics of speech have re-
ceived increasing attention from the research community. It is
now commonly accepted that non-verbal sounds form an impor-
tant part of human communication [1], and that non-verbal fea-
tures may help identify important structural aspects of speech
interaction in real-life [2] as well as laboratory settings [3] for
use in, for instance, browsers for multiparty interaction data
[4, 5]. A more recent trend in the use of paralinguistic features
is their analysis for predicting levels of cognitive and physical
workload. Determination of workload levels is relevant in fields
such as ergonomics, where it could help improve human com-
puter interaction [6]. While most research in this field has been
based on neurophysiological measuring, which involves spe-
cialised and intrusive equipment, the use of voice features for
assessment of cognitive and physical load levels seems promis-
ing, for instance, for speech-based human computer interaction.

This year’s COMputational PARalinguistic ChallengE
(ComParE) was set up to provide a focus for research on ap-
proaches to the identification of cognitive and physical load lev-
els through acoustic features [7]. The challenge provides two
separate datasets: one for cognitive load (CLSE) and another for
physical load (MBC). The work reported in this paper focuses
on the former, which contains both speech and electroglotto-
graphic data. This challenge consists of inferring the correct
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cognitive load level out of three possible levels. We investigate
unsupervised and supervised approaches to this challenge.

A brief inspection of the CLSE dataset reveals a ratio of
approximately 3.5 features (instance descriptor attributes) to
instances. The training set, for instance, has 6,376 features
for 1,838 instances. A limited number of samples distribute
sparsely in the high dimensional space, which makes it hard to
separate the three levels of cognitive load. Therefore, our first
concern was to reduce the high dimensionality of the feature set.
Principle Component Analysis (PCA, [8]) is a popular approach
to dimensionality reduction by feature extraction through re-
construction of the original feature space. The first principle
component represents the most prominent axis of variance in
the feature space, while the other principle components indicate
high variance in orthogonal directions with the first component.
Thus, the principal components encompass the majority of fea-
ture variance within a much smaller space of orthogonal dimen-
sions onto which both training and test data can be mapped. In
addition to feature extraction by PCA, we also tested a super-
vised feature selection method which selected features accord-
ing to their individual correlation with the cognitive load label
and inter-correlation with other attributes.

For classification, we investigated classifier ensembles
throght the boosting technique, which can be regarded as an-
other way of dealing with the imbalance between data repre-
sentation in a high dimensional space and scarcity of train-
ing data. Ensemble classification [8] is a supervised learning
scheme which combines the predictions of multiple classifiers.
Boosting is a typical ensemble classifier. Boosting was intro-
duced by [9] to produce one accurate prediction by combining
moderately inaccurate predictions from a group of weak learn-
ers. The most popular Boosting algorithm is AdaBoost. Boost-
ing effects guided changes of the training data to direct further
classifiers toward more “difficult cases” [10]. AdaBoost im-
plements this idea in two steps. The first step is to run a base
learner repeatedly for a number of times and to maintain a dis-
tribution (a set of weights) over the training set. The second step
is to update the weights in each round. Initially, all weights are
set equally, but on each round, the weights of incorrectly clas-
sified examples are increased so that the weak learner is forced
to focus on the hard examples in the training set [11]. The final
prediction is the categorised weighted sum of the predictions
from base learners.

Experiments showed that the cognitive load prediction task
is better handled with supervised feature selection and differ-
ent classification schemes. Contrary to our expectations, PCA
feature extraction proved quite ineffective. However, with su-
pervised feature selection a boosting global model achieved un-
weighted average recall (UAR) scores 20.5% and 18% higher
than a published baseline based on a tuned support vector ma-



chine (SVM) classifier [7], in the Stroop time pressure and
dual task, respectively. Similar per-task models were not quite
as successful, but still yielded an improvement of 12% in the
Stroop dual task data.

2. The Dataset
The “Cognitive Load with Speech and EGG (CLSE)” dataset
[12, 7] was designed to support the investigation of acoustic
features and evaluation of algorithms for the determination of a
speaker’s cognitive load and working memory during speech.
THe CLSE database comprises recordings of 20 male and 6
female native Australian English speakers. These recordings
encompass four types of experimental tasks, namely: reading
span Sentence, reading span Letter, Stroop time pressure and
Stroop dual task. These tasks define four partitions of the CLSE
dataset. In each case, the data instances are classified objec-
tively (“objective load level”) into three distinct cognitive load
levels: low (L1), medium (L2) and high (L3) levels.

The “span” tasks are used to measure the working memory
capacity of a subject [12], in which participants are required
to remember concepts or objects in the presence of distractors
[13, 7]. The reading span task is based on the protocol described
by Unsworth et Al. [12, 14]. It required the participants to read
a series of (between two to five) possibly illogical short sen-
tences, indicate whether the sentence read was true or false, and
then remember a single letter presented briefly between sen-
tences. This setup allowed the gatherer of the dataset to la-
bel memory load levels objectively as: L1, for data from the
first sentence, L2, for data from the second sentence, and L3,
for data from the third, fourth, and fifth sentences (for which
no further distinctions were made). Data instances from letter
reading (readingspanLetter), which contain single letter utter-
ances, were considered insufficient for reliable categorisation
and therefore did not form part of the ComParE 2014 challenge
[7].

The Stroop tasks (Stroop time pressure and Stroop dual
task), named after JR Stroop’s seminal experiments [15], aim
to induce increased cognitive load through presentation of con-
flicting stimuli to the participant. In this case, the stimuli are
word and colour. The participant is asked to name the font
colour of words corresponding to different colour names. Data
instances produced in conditions where both the colour and the
word that named the colour were the same were labelled as L1
(low cognitive load). Where the font colours and the colour
names differed, data were labelled L2 or L3 (medium or high
level of cognitive load). The high level was defined in terms
of the time pressure on the subject (i.e. the colour had to be
named in a short period of time, namely .8s) or in terms of task
complexity (i.e. participants were required to perform a tone-
counting task in addition to naming the font colour). These dis-
tinctions characterise the Stroop time pressure and Stroop dual
task subsets of the CLSE dataset, respectively. These subsets
each contain three utterances for each of three cognitive load
levels per speaker.

For a more comprehensive description of the CLSE dataset
and other details on the ComParE 2014 challenge the reader is
referred to the paper Schuller et Al. [7].

3. Exploratory Analysis
In this section we take initial steps in analysing the CLSE
dataset and illustrate the statistics of key factors. Table 1 shows
that the validation and the test set contain roughly same num-

ber of instances, while the training set contains about 50% more
data. Among the four types of tasks employed in data collec-
tion, the two span tasks occupy the majority of the dataset while
the two Stroop tasks comprise only about 10% of each dataset.
Considering that the dataset has 6,374 attributes in total, one
can readily see that the Stroop sets are affected more severely
by the curse of dimensionality.

Table 1: Summary of instance quantities in each type of task

Training Validation Test
reading span letter 815 499 576
reading span sentence 825 525 600
stroop time pressure 99 63 72
stroop dual task 99 63 72
Total 1838 1150 1320

3.1. Data Cleansing

A fair portion of features in the training set have very low vari-
ance. This includes, for instance, all quadratic regression co-
efficients of level 1, and a number of other prosodic features.
Some low level descriptors of spectral features also suffer from
this problem. The root mean square signal frame energy feature
(pcm RMSenergy sma lpgain) is a case in point, with mean
1.98e-05 and variance 9.55e-10 in the training set. Such fea-
tures are nearly constant and bring little discriminatory power
to the classification model. We therefore removed all features
with standard deviation less than 0.01. In Total 252 features
(3.95% of all features) were removed from the training set, as a
preprocessing step for all modelling experiments in this report.
This yielded the extra benefit of reducing the training time.

4. Predicting Objective Load Labels
In this section we propose supervised learning models to predict
the objective load level class. A training containing with 1,838
instances described by 6374 features challenges most classifiers
since the data points are sparse with respect to dimensionality.
The sparsity is more severe for models trained on subsets that
contain only instances of a particular task (per task models).
Two dimensionality reduction methods are tested in this section,
along with an ensemble classifier AdaBoost.M1 and different
base learners.

4.1. PCA experiments

PCA, as an unsupervised learning method, is assumed to reduce
feature dimensions and keep the majority of data variation at the
same time. We use scaled and centered all features so that they
had unit variance before analysis. In the training set with four
types of objective load tasks, the first 8 principal components
(PC) explain over 95% of cumulative variance. We took 20 PCs
and reencoded training and validation set into this new space.
The cleaned features are projected onto the 20 PCs, and used for
training (the transformed training set has 1838 instances with 20
features). When testing with the validation set, features need to
be projected to the 20 PCs before the prediction step.

Here a global model is trained with 1838 instances alto-
gether, and used to predict on each instance in the validation
set. UAR scores were collected for each task. Contrary to our
expectation, both a the naive Bayes classifier and the AdaBoost
classifier failed to produce satisfactory results. We found that



the UAR scores were far below baseline with the SVM global
model of [7]. We speculate that the reason of this low per-
formance on the PCA-reduced sets is the lack of an effective
method for normalising the data per speaker on the training and
test set. In the absence of such normalisation, PCA may be
dominated by a few predominant features which can easily lead
this method to overfit.

4.2. Feature Selection and Global Model

Faced with the failuse of an unsupervised method of dimen-
sionality reduction, we attempted a spervised approach. The
CfsSubsetEval feature filter provided by the Weka package
[16] was employed. It selects attributes by individual corre-
lation with the class variable and inter-correlation with other at-
tributes. Subsets of features that are highly correlated with the
class while having low intercorrelation are preferred [17]. We
compare global model prediction UAR with and without Cfs-
SubsetEval pre-filtering in Table 2.

About classifier, we prefer Boosting with decision tree base
learner instead of decision stump. The latter is a single node tree
and classifies an instance by one feature. Although the feature
is chosen by entropy, decision stump is too simple as a base
learner in load level corpus. On the other hand, a decision tree
with branching factor M=2 (minimum number of instances per
leaf) by default naturally incorporates more attributes in base
learner and helps the ensemble classifier.

Table 2: The effect of feature selection with AdaBoost classi-
fier on validation set. UAR scores are from the global model,
and AdaBoost is trained 30 iterations with decision tree base
classifier. FS indicates feature selection with the CfsSubsetEval
filter

FS = No FS = Yes baseline
reading span sentence 48.50% 55.39% 61.3%
stroop time pressure 57.14% 65.08% 54.0%
stroop dual task 49.21% 52.38% 44.4%

Table 2 shows the efficacy of feature selection combined
with an AdaBoost.M1 with Decision Tree base learner. With-
out feature selection, AdaBoostM1 beats SVM baseline slightly
with Stroop tasks, but is 13% lower than baseline with reading
task. This observation shows the power of ensemble classifica-
tion in this dataset when there is a proper base learner. When
feature selection is in use, the global model achieves higher ac-
curacy for each task. In Stroop time pressure task, the best UAR
is 65.08%, an improvement of 11 points over the baseline. In
the Stroop dual task, the best UAR is 52.38%, an 8-point im-
provement over the baseline. However, reading span sentence
task is still 6% lower than baseline. In the next section we inves-
tigate per task models, where classifiers are trained on relatively
more uniform training sets.

4.3. Per Task Model

In the preceding section, we predicted objective load level with
a global model which trains a single model on all available in-
stances and predicts on a validation set of each task. In this
section we apply an alternative approach, training one model
with data from one task and predicting on a validation set of the
corresponding task. This is called a per task model [7]. A com-
prehensive training set contains objective load level instances
from four tasks, part of which could be redundant for predicting

on one task. Since the SVM baseline shows significantly better
UAR scores with Stroop tasks, Per Task models are expected to
outperform the global model in our experiments.

The split training sets are filtered in the same way as pre-
vious experiments. Features with standard deviation less than
0.01 are dropped off. The CfsSubsetEval filter selects 93, 74
and 51 features by sequence for each task, although there are
6374 features in total. Then AdaBoost.M1 is employed as a
classifier for the corresponding per task models. The number
of training iterations is set to 20 for each base learner. Since
the Decision Tree (DT) base learner works well for the Global
model, it is used again. Moreover, we also use a Decision Stump
(DS) base learner for comparison.

We expect AdaBoost.M1 with a DT base learner to predict
better than with DS, since the former has a more complex tree
structure and could learn more subtle rules. However, but the
outcome is the opposite of what we expected. DS beats DT in
both stroop tasks (Table 3). We discuss this result observation
in the following section.

Table 3: The effect of feature selection with AdaBoost classifier
on validation set. UAR scores are from Per Task model, and
AdaBoost is trained 20 iterations with each base learner

Ada+DT Ada+DS baseline
reading span sentence 54.98% 48.86% 61.2%
stroop time pressure 68.25% 73.02% 74.6%
stroop dual task 66.67% 71.43% 63.5%

4.4. Over-fitting and Under-fitting

Decision Stump, as the simplest tree structure, outperforms De-
cision Tree (branching factor 2) in AdaBoost for both Stroop
tasks. This observation comes from per task model prediction
on the validation set and seems quite surprising. In order to test
its validity, we further analyse the Stroop Dual Task model pre-
diction within the training set. Figure 1 shows the performance
of both DS and DT base learners under different numbers of
AdaBoost iterations. It is clear that AdaBoost with the DT base
learner reaches 100% UAR in the training set regardless of the
number of training steps (10 to 100 iterations). At the same
time, its prediction accuracy on the validation set oscillates be-
tween 61.90% and 68.25%. When we run more iterations for
DT, there is no clear trend of increase or decrease in UAR on
the validation set. This suggests over-fitting. In this situation,
accuracy on the validation set depends on randomness of the
decision boundary in the hypothesis space, and the boundary
margin is already too narrow.

On the other hand, DS as a simpler model improves with
more training steps. Its UAR score improves in both training set
and validation set when iteration increases from 10 to 20. The
accuracy on the training set is far below 100%, but cannot be
improved when iteration is over 20. DS reaches its upper bound
of prediction power. We have seen that DS and DT both exhibit
their best results on the Stroop Dual Task model, and there is no
need to explore a more complex model structure. The fact that
DS outperforms DT as an AdaBoost base learner is therefore
to be expected. The sub-tasks with the smallest numbers of
instances (Stroop dual, and Stroop time pressure) tend to favour
simpler models that are less prone to overfitting.

However, DT outperforms DS as a base learner for Ad-
aBoost.M1 in the Reading Span Sentence task (Table 3). DS
training UAR keeps stably below 50% when training iterations
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Figure 2: Per task model of Reading Span Sentence, Ad-
aBoost.M1 with Decision Stump and Decision Tree base learn-
ers

increases from 10 to 100 (Figure 2). This is a sign of under-
fitting. DS as a base learner cannot represent the variances in a
Reading task with 825 instances (Table 1). As in the previous
per task Stroop models, the DT based classifier’s training UAR
is 100% when iteration equals 10, indicating that it does not suf-
fer from the same problem. Unlike the previous case, however,
in the reading task model, the UAR of DT on the validation set
has a roughly increasing trend with more iterations. Prediction
power is increasing with a more complex model, so here there is
no indication of over-fitting. More iterations or more complex
DT base learners could induce better UAR on the validation set.

5. Discussion
In this paper we proposed solutions for classifying three levels
of objective load, with evidence of 6374 acoustic features and
EEG features. In contrast to the rich feature set, there are only
1838 instances spanning four different tasks. Since a moder-
ately tuned SVM classifier only achieves a 44.4% baseline on
a Stroop task, our results serve to emphasise the importance of
data cleansing and dimensionality reduction in this modelling
challenge.

In data cleansing, we dropped 252 features with standard

deviation less than 0.01. These features are nearly constant, of-
fering little value for discriminating among the three class levels
while adding to the computational load. Experiments show that
boosting models work well without these features, and the train-
ing time is reduced significantly. However, the number of fea-
tures remaining after this pre-processing step is still very large,
and dimension reduction is needed.

We found that dimensionality reduction by feature extrac-
tion through principle component analysis harms boostingm as
well as other models such as naive Bayes. The reason of PCA
low performance may be attributed to the huge differences of
mean values among the features and the lack of an effective un-
supervised way of normalising these values on a per speaker
basis. On the other hand, the (supervised) CfsSubsetEval filter
proved to be an effective feature selection method. The fea-
tures with high correlation with class variable and low inter-
correlation with other features were favoured. Multicollinearity
is thus alleviated in this large feature set and finally 52 out of
6374 features are selected for a boosting global model. The re-
duced feature set does improve accuracy and improves on the
SVM baseline for the Stroop data (Table 2).

The outcome of feature selection is encouraging, but we
still need to improve model accuracy by controlling the com-
plexity of a supervised learning model. The boosting model
combines the predictions from multiple classifiers and is gen-
erally more accurate than a single classifier. The training itera-
tions act as a controller of model complexity. In the first round,
a base classifier is built. In the next round, the weight of the
n + 1 base learner is Dn+1, which is higher on instances that
learner n has error on. The final decision is a collective vote by
weighted N base learners. When boosting has no error on the
training set, the generalisation power of base learner is enough
for the current input. When validation accuracy keeps increas-
ing with training accuracy stable at 100%, it is necessary to try
to model with more iterations, thereby increasing the risk of
over-fitting. However, when training accuracy keeps stable at
low values as the number of iterations increases, there is little
point in preceding. Such base learner is not complex enough to
represent feature variances adequately.

Through the trials reported in Section 4, we see that certain
objective load tasks favour certain classifier settings, especially
with per task models. In order to show this clearly, we sum-
marise the best UAR scores in Table 4.

Table 4: Summary of the best UAR scores for the validation set

UAR[%] Per Task model Global model
Task Valida. baseline Valida. baseline
reading span sentence (1) 59.45 61.2 (4) 55.39 61.3
stroop time pressure (2) 73.02 74.6 (4) 65.08 54.0
stroop dual task (3) 71.43 63.5 (4) 52.38 44.4

(1) AdaBoost.M1 with DT base learner (M=2, iterations I=80)
(2) AdaBoost.M1 with Decision Stump base learner, I=10
(3) AdaBoost.M1 with Decision Stump base learner, I=20
(4) AdaBoost.M1 with Decision Tree base learner (M=2, I=30)

6. Conclusion
We presented an initial exploration of feature selection and
modelling trade-offs to be taken into account when approach-
ing the challenge of categorising a speaker’s cognitive load state



based on acoustic features. This task to is relevant to practi-
cal applications, such as “meeting browsing” [18], and success-
ful prediction can help add structure to multiparty communica-
tion [19], possibly in conjunction with other non-verbal features
[20].

This is, however, a complex challenge and as the results
reported here demonstrate, there is ample room for further ex-
ploration. In the near future we plan to investigate unsupervised
ways of normalising the features per speaker as well as explore
models that can take advantage of global data in per task mod-
elling.
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