
Higher Lower Bounds for the Minimal Depth of n-Input Sorting Networks

Martin Marinov1, David Gregg2

Abstract

We present a new mathematical model for representing comparator networks together with a
new algorithm for finding sorting networks of minimum depth. Our algorithm significantly reduces
the search space in comparison to the previous state of the art approach. We also provide a
computer assisted proof that an eleven-input sorting network must consist of at least eight levels,
where previously it was hypothesized to be seven. Since eleven and twelve-input sorting networks
of depth eight have been exhibited we conclude that their minimal depth is equal to eight.

Keywords: sorting network, minimal depth, computer assisted proof, extremal sets, extremal
sets up to permutation

1. Introduction

A sorting network is an abstract mathematical model designed to sort numbers in a predeter-
mined sequence of comparators. A sorting network consists of n wires and comparators between
pairs of wires such that any input of n numbers is sorted by the network, where one wire corre-
sponds to one number. The two most common measures of sorting networks are the total number
of comparators — Bose-Nelson’s sorting problem [1] — and the number of network levels, also
referred to as depth. In this paper we extend the knowledge on the problem of empirically search-
ing for sorting networks of minimal depth. The most recent work on the problem dates back to
1989, where Parberry [2] presented a computer assisted proof that no nine-input sorting network
of depth six exists.

We take a completely novel approach to exhaustively finding minimal depth sorting networks
which significantly reduces the search space when compared to Parberry’s approach. When ex-
perimentally evaluated our algorithm considers more than 74 times fewer eleven-input comparator
networks of depth four than Parberry’s method. Our program concluded that an 11-input sorting
network of depth seven does not exist. Hence, we provide a computer assisted proof that the
minimum depth of an eleven-input sorting networks is eight.

Email addresses: marinovm@tcd.ie (Martin Marinov), dgregg@cs.tcd.ie (David Gregg)
1Corresponding author. Dept. of Computer Science, Trinity College Dublin, Ireland. Work supported by the

Irish Research Council (IRC).
2Lero, Trinity College Dublin.

Preprint submitted to Elsevier June 25, 2014

2. Related Work and Contributions

In Figure 2 we present the current upper and lower bounds for the minimal depth of sorting
networks of up to twenty inputs. We now provide background on how we populated the values of
this table. We also describe common properties of comparator networks that are used throughout
this paper.

van Voorhis [3] provided a mathematical formula for the minimal number of comparators S(n) of
an n-input sorting network. The number S(n) is used to derive the least possible depth (presented
in Figure 2) of an n-input sorting network by dividing it by the maximum number of comparators
per network level.

Knuth [4] showed the optimal depth sorting networks for all n ≤ 8 described in Figure 2. He
also presents the zero-one principle of sorting networks which states that if a comparator network
sorts all 2n binary strings of length n then it is a sorting network.

Baddar [5] worked on heuristic algorithms that are aimed to lowering the upper bound, as per
Figure 2, whereas our work is towards increasing the lower bound. Using his technique he found
an eighteen-input sorting network of depth eleven which is currently the fastest known one for
eighteen inputs.

The most recent relevant work on the problem of finding minimal depth sorting networks dates
to more than twenty years ago, where Parberry [2] presented a computer assisted proof for the
minimal depth of a nine-input sorting network. He significantly reduced network level candidates
for the first two levels, in comparison to the naive approach, by exploiting symmetries of the
networks (referred to as first and second normal form [2]). For the remaining network levels he
proves that we need to only consider ones with maximal number of comparators. Parberry also
found a method, referred to as “The Heuristic”, to significantly reduce the search space for the
second last level of the network. He used a CRAY super computer to test all nine-input comparator
networks of depth six that are in second normal form and pass “The Heuristic” check. He verified
experimentally that none of them are sorting networks. It is an immediate consequence of his
result that there does not exist a ten-input sorting network of depth six.

2.1. Contributions

Our work relates to that of Parberry’s [2], in the sense that, our proof for the minimality of
the depth of an eleven-input sorting network is a computer assisted one. Nonetheless, we approach
the problem from a completely different perspective, namely:

• Novel mathematical representation of comparator networks — by their output sets.

• New algorithm for finding minimal depth n-input sorting networks — our new algorithm
presented in this paper significantly reduces the search space in comparison to Parberry’s
one [2].

• Computer assisted proof that the minimal depth of an eleven-input sorting network is eight
— it was previously thought that an eleven-input sorting network of depth seven could exist
but had not yet been found. The experimental evaluation of an implementation of our new
algorithm proves that no eleven-input sorting network of depth seven exists.

2

3. Formal Definitions and Known Properties

Definition 3.1. A generalized comparator is an ordered pair 〈i, j〉 such that 1 ≤ i 6= j ≤ n.
A generalized comparator is a comparator or min-max comparator if i < j. The values i and
j are referred to as channels. A generalized level L is a set of generalized comparators such
that each channel is involved in at most one generalized comparator, formally if 〈a, b〉, 〈c, d〉 ∈ L
then |{a, b, c, d}|= 4. A generalized level is a level or min-max level if it consists only of (min-
max) comparators. The set of all maximal (min-max) levels is denoted as M(n), as described
by Parberry [2]. A generalized n-input comparator network is a vector 〈L1, L2, . . . , Ld, n〉, where
L1, L2, . . . , Ld are levels, and n is an positive integer. A generalized n-input comparator network
is called an n-input comparator network if it consists only of (min-max) levels.

So far we have formally defined the structure of a (generalized) comparator network. We need
to define the output of applying a comparator network to an input, where an input is an n-bit
binary string [4]. Applying a network to an input permutes the input vector. Hence, for any
fixed input we can define a permutation that models the network behaviour when applied to that
particular input.

Notation 3.2. Denote the set of all permutations of n elements as Πn = {π : {1, 2, . . . , n} 7−→
{1, 2, . . . , n} | π is bijective }. Let v = 〈a1, a2, . . . 〉 be a vector. Denote by vi the i-th coordinate of
v, namely vi = ai.

Definition 3.3. An input is a vector x ∈ {0, 1}n as per Knuth’s [4] zero-one principle. Denote
by In the set of all inputs. The evaluation of an n-input comparator network C = 〈L1, . . . , Ld, n〉
in channel i at level k on input x is the two dimensional vector ex(i, k) where:

ex(i, k) =



〈xi, i〉 k = 0

ex(i, k − 1) 〈i, j〉 ∈ Lk and ex(i, k − 1)1 <= ex(j, k − 1)1

ex(j, k − 1) 〈i, j〉 ∈ Lk and ex(i, k − 1)1 > ex(j, k − 1)1

ex(i, k − 1) 〈j, i〉 ∈ Lk and ex(i, k − 1)1 >= ex(j, k − 1)1

ex(j, k − 1) 〈j, i〉 ∈ Lk and ex(i, k − 1)1 < ex(j, k − 1)1

ex(i, k − 1) otherwise

The output of applying C to x is VC(x) = 〈ex(1, d)1, . . . , ex(n, d)1〉 ∈ In. The permutation of
the coordinates when applying C to x is PC(x) = 〈ex(1, d)2, . . . , ex(n, d)2〉 ∈ Πn.

Intuitively, we say that a vector in In is sorted if its values are non-decreasing left-to-right, and
a sorting network is one which sorts all possible 2n input vectors. More formally:

Definition 3.4. The vector 〈x1, x2, . . . , xn〉 ∈ {0, 1}n is sorted iff xi <= xi+1 for all 1 ≤ i < n.
A generalized sorting network is a generalized n-input comparator network for which there exists
a permutation π ∈ Πn such that π(VC(x)) is sorted for all inputs x ∈ In. A sorting network is an
n-input comparator network such that VC(x) is sorted for all inputs x ∈ In.

Theorem 3.5. For every generalized sorting network there is a sorting network with the same
size and depth. If the former has only min-max comparators in the first k levels, then the latter is
identical in the first k levels.

Proof. See Knuth [4].

3

4. New Theory

We aim to improve the current best known algorithm for finding minimal depth sorting net-
works. That is for any depth d we need to be able to answer the question of whether there exists
a comparator network of depth d that sorts all inputs. Our solution is to perform an exhaustive
search of all comparator networks of depth d with pruning. The only way we can reduce the number
of candidate networks of depth d is to gain deeper understanding of the structure of comparator
networks. All of our newly discovered insights of the structure of comparator networks are based
on relations between the output sets of comparator networks.

Definition 4.1. Let the output set of a comparator network C be SC = {VC(x)|x ∈ In}. Let the
set of all already sorted inputs Tn = {(x1, x2, . . . , xn) | xi<j = 0, xi>=j = 1 for 1 ≤ j ≤ n+ 1}.

Definition 4.1 gives us a map M : C 7→ SC from a comparator network, defined as levels of
comparators, as per Definition 3.1, to an output set. M is not injective, which implies that the
number of output sets of comparator networks of depth d is bounded above by the number of
comparator networks of depth d. As our goal is to find minimal depth n-input sorting networks it
is important to present a method for checking if a comparator network C is a sorting network by
only considering its output set SC .

Theorem 4.2. An n-input comparator network C is a sorting network iff |SC | = n+ 1.

Proof. If C is a sorting network then SC must be equal to Tn because every input is sorted by C,
hence |SC | = n+ 1. It is obvious that Tn ⊆ SC because VC(t) = t for any t ∈ Tn. If |SC | = n+ 1
then we know that SC = Tn because |Tn| = n+ 1 and Tn ⊆ SC , hence C is a sorting network.

Remark 4.3. An n-input comparator network C is a sorting network iff SC = Tn.

In the next section we exploit properties of the output sets of comparator networks which help us to
reduce the number of candidates in the search for the minimal depth of an n-input sorting network.
Intuitively if two comparator networks have equal output sets then we need to only consider one
of them. However there are much stronger properties than equality of output sets.

4.1. Subsets of Output Sets

In this section we present a property of the output sets of comparator networks which links
to the problem of finding minimal depth sorting networks. We show that if we can extend the
comparator network B to a sorting network by appending l levels to it then we can extend any
network A such that SA ⊆ SB by appending l levels to it. Hence, if A and B are of the same depth
we need to consider only the comparator network A.

Definition 4.4. Let A and B be n-input comparator networks, where A = 〈A1, A2, . . . , Ad, n〉,
B = 〈B1, B2, . . . , Bk, n〉, and let L be a level. Define the concatenations A⊕L = 〈A1, . . . , Ad, L, n〉
and A⊕B = A⊕B1 ⊕B2 ⊕ · · · ⊕Bk. Note that ⊕ is associative.

Theorem 4.5. Let A, B and C be n-input comparator networks. Suppose that SA ⊆ SB and B⊕C
is an n-input sorting network. Then there exists a comparator network C ′ with the same depth as
C such that A⊕ C ′ is an n-input sorting network.

Proof. See proof of the more general Theorem 4.8.

Remark 4.6. Note that in Theorem 4.5 there is no restriction on the depth of the comparator
networks A and B. Moreover, the levels of the comparator networks A and B need not be maximal
as per Definition 3.1.

4

4.2. Subsets of Output Sets up to Permutation

Knuth [4] has shown that comparator networks are just as powerful as generalized comparator
networks. He shows that the group of generalized comparator networks is closed under permutation.
Intuitively, we would like to strengthen the result of Theorem 4.5 by considering permutations of
output sets. Before we present our new result, we need the following lemma to prove it.

Lemma 4.7. Let π ∈ Πn, x ∈ In, and C be a comparator network such that VC(π(x)) is sorted.
Then π(Vπ−1(C)(x)) is sorted, where π−1(C) is a generalized comparator network.

Proof. Let x = 〈x1, x2, . . . , xn〉 and PC(π(x)) = 〈p1, p2, . . . , pn〉. Applying π−1 to the equality
yields that Pπ−1(C)(π

−1(π(x))) = Pπ−1(C)(x) = 〈π−1(pπ−1(1)), . . . , π
−1(pπ−1(n))〉. Applying π to the

equality yields π(Pπ−1(C)(x)) = 〈p1, p2, . . . , pn〉 = PC(π(x)). From Definition 3.3 of the functions
VC(x) and PC(x), we now have that π(Vπ−1(C)(x)) = VC(π(x)). From the hypothesis we know that
VC(π(x)) is sorted, hence we conclude that π(Vπ−1(C)(x)) = VC(π(x)) is sorted.

Theorem 4.5 tells us that if we can extend the comparator network B to a sorting network by
appending l levels to it then we can extend any network A such that SA ⊆ SB by appending l
levels to it. We now extend this result by weakening the constraint SA ⊆ SB. We show that it is
enough to find one permutation π ∈ Πn such that π(SA) ⊆ SB to claim that if we can extend the
comparator network B to a sorting network by appending l levels to it then we can extend any
network A by appending l levels to it.

Theorem 4.8. Let A, B and C be n-input comparator networks, and π ∈ Πn such that π(SA) ⊆ SB
and B⊕C is an n-input sorting network. Then there exists a comparator network C ′ with the same
depth as C such that A⊕ C ′ is an n-input sorting network.

Proof. From the hypothesis we know that there exists C such that B ⊕ C is an n-input sorting
network. From π(SA) ⊆ SB we deduce that VC(π(x)) is sorted for all x ∈ SA because π(x) ∈ SB.
Applying Lemma 4.7 to all x ∈ SA and C we deduce that π(Vπ−1(C)(x)) is sorted. Hence A⊕π−1(C)
is a generalized n-input sorting network of depth k. Finally we apply Theorem 3.5 to the generalized
sorting network A⊕π−1(C) to show that there exists a comparator network C ′ with the same depth
as C such that A⊕ C ′ is an n-input sorting network.

5. New Algorithm for Finding Minimal Depth Sorting Networks

Let us consider all output sets of all n-input comparator networks of depth d and denote them
by En,d. Choose only the minimal output sets up to permutation from the family of output sets
En,d and call them Rn,d. Theorem 4.8 tells us that it is enough to consider only the sets Rn,d when
searching for sorting networks of minimal depth. For each output set in Rn,d we can check if its
corresponding comparator network is a sorting network by applying Theorem 4.2. Hence we can
answer the question whether there exists an n-input sorting network of depth d. This is clearly
enough to find the minimum depth of an n-input sorting network. The pseudo code for answering
the question if there exists a n-input sorting network of depth d is presented in Algorithm 1. The
algorithm’s correctness proof is given by the following lemmas in this section.

Definition 5.1. Let X be a set of output sets of n-input comparator networks. Define the set of
all minimal output sets up to permutation of X as MinPi(X) = {SA | SA ∈ X : @ SB ∈ X,π ∈
Πn : B < A, π(SB) ⊆ SA}, where by B < A we denote the lexicographic order of networks, as

5

described by Parberry [2]. Let the set of all output sets of n-input comparator networks of depth d
be defined as En,d. Let the set of all minimal output sets of n-input comparator networks of depth
d up to permutation be defined as Rn,d = MinPi(En,d).

Remark 5.2. ∀ SB ∈ En,d ∃ SA ∈ Rn,d and π ∈ Πn : π(SA) ⊆ SB.

From the above remark and Theorem 4.8 we deduce that for depth d it is enough to consider
only the minimal output sets up to permutation Rn,d within the family of all output sets En,d.
Hence, we provide a method to reduce the number of candidate output sets of comparator networks
of any fixed depth. In order to construct a practically applicable algorithm for finding minimal
depth sorting networks we need to show how to efficiently construct the set Rn,d, which is not
immediately obvious from the definition. The following lemma provides us with a recursive method
of constructing Rn,d by using Rn,d−1.

Lemma 5.3. Rn,d = MinPi(Xd), where Xd = {SC⊕L | SC ∈ Rn,d−1, L ∈ Ln}.

Proof. The set equality of Rn,d and MinPi(Xd) follows immediately from the following statement:
let SA and SB be output sets, L be a level and π ∈ Πn such that π(SA) ⊆ SB then π(SA⊕π−1(L)) ⊆
SB⊕L, recall proof of Lemma 4.7.

Given the set Rn,d we need to be able to answer the question of whether there exists an n-input
sorting network of depth d. As discussed, we can apply Theorem 4.2 to every element in the set of
output sets Rn,d but the following lemma gives us a more practically useful result.

Lemma 5.4. Suppose that there exists an n-input sorting network of depth d then |Rn,d|= 1.

Proof. Let C be an n-input sorting network of depth d and let B be an n-input comparator network.
From Remark 4.3 we have SC = Tn. Since Tn ⊆ SB, then SC ⊆ SB. ThereforeRn,d = {SC} = {Tn},
hence |Rn,d|= 1.

5.1. Complexity Analysis

In Figure 1 we present the worst case time and space complexity of every function described
by our new Algorithm 1. We now provide details to how we calculate these complexities.

The boolean function Sortable-In-Two-Levels is described by Parberry [2] together with its
complexity analysis. It is important to note that if the function Sortable-In-Two-Levels(C) returns
false then the network C is not sortable by the addition of two levels, and if it returns true then
C may or may not be sortable in two levels. The comparator networks we consider are not in first
normal form, hence we use the time and space complexity of O

(
2nd
)
, instead of O

(
3n/2d

)
[2].

The maximum number of output sets returned by the function Generate-Next-Depth is equal
to rm, where r = |R|,m = |M(n)|. Since the maximum size of an output set is |In| = 2n we can
deduce that the space required by the generate function is O

(
2ndrm

)
. For the runtime, the worst

case is when d + 2 = t. Then for each of the rm output sets we need to test if the corresponding
network is sortable in two levels. Hence the worst case runtime is O

(
2ndrm

)
.

The space required by Min-Sets-Up-To-Perm is proportional (up to a constant) to the size
of the input O

(
2ndr

)
. As per Definition 5.1 of the function MinPi(X) for every pair of sets

SA, SB ∈ X we need to check if there exists π ∈ Πn such that π(SA) ⊆ SB. Hence we need to
perform r2n! tests of whether SA is contained in or equal to SB, which can be done in O

(
2nd
)
.

Since 2n <= n! for all n ≥ 4 we deduce that the worst case runtime for finding all the minimal up
to permutation output sets is O

(
n!dr2

)
.

6

For the worst case scenario of the function Exists-Sorting-Network we assume that Sortable-In-
Two-Levels returns true for every input, and that Min-Sets-Up-To-Perm(X) returns X for every
possible set of output sets X. Hence |R[d]| = md. We obtain the worst case space and runtime
bounds by simply substituting r for md in the complexities of Generate-Next-Depth and Min-Sets-
Up-To-Perm and taking the maximum.

6. Experimental Evaluation

In this section we describe in detail the evaluation of the function Exists-Sorting-Network for
n = 11 and d = 7. Summary of the intermediate steps of the execution of our C++ implementation
variations of Algorithm 1 is presented in Figure 3. The program concluded that there does not exist
an eleven-input sorting network of depth seven. As an immediate consequence, we deduce that the
minimal depth of an eleven-input sorting network is eight. Hence we show that the minimal depth
lower bounds of sorting networks with eleven to eighteen inputs must be higher then seven, which
is reflected in Figure 2.

Experimental Setup. We performed our experiments on a cluster machine with 128 nodes. Every
node of the cluster has 2 sockets of Opteron CPUs clocked at 2.30GHz each and 16GB of main
memory. In addition to the cluster we also used a machine with 128GB of main memory for
calculations that benefit from large amounts of data fitting into main memory.

Algorithm Variations. We implemented two variations of Algorithm 1. The first one - Marinov
- Subsets Up to Π - is exactly as described in Section 5 and as presented in Algorithm 1
which reduces the output set candidates at each depth by identifying the minimal subsets up to a
permutation within this family. The second variation - Marinov - Subsets - identifies only the
minimal subsets within the set of candidates, hence eliminating fewer candidates at each depth.
The second variation is implemented by changing line 6 in function Exists-Sorting-Network of
Algorithm 1 to call the function Min-Sets instead of Min-Sets-Up-To-Perm.

Implementation Verification. For all n < 11 we have tested our implementation of Algorithm 1 by
comparing the result of function Exists-Sorting-Network correspond with the Figure 2. We also
modified our implementation of Exists-Sorting-Network to return a sorting network if one exists
(by simple backtracking) and made sure that all the sorting networks produced are valid for all
n < 11. The function Sortable-In-Two-Levels was verified by making sure that it returns true for
all maximal output sets that are sortable in two levels, for all n <= 11. Note that, Sortable-In-
Two-Levels is an implementation of “The Heuristic” [2], as described by Parberry it must return
true for all sortable networks and either true or false for any other network. The functions Min-Sets
and Min-Sets-Up-To-Perm are unit tested.

Comparison to Parberry’s Algorithm. The main advantage of our new approach to finding minimal
depth sorting networks in comparison to Parberry’s [2] is that we consider fewer candidate networks
at every level with the exception of the first level. This is clearly seen in Figure 3a at column P,
S and M representing the number of networks grouped by depth for Parberry’s and our new
approaches. In the same table we can also see the ratio between identifying the minimal subsets
and the minimal subsets up to permutation at every depth by looking at column S / M. For
example, if we look at depth four, we see that Parberry considers 1.4× 1010 comparator networks
and Marinov Up to Permutation considers a factor of more than 74 times fewer candidates.

7

Even at depth two, our algorithm manages to reduce the number of candidate networks of depth
two compared to the ones of second normal as described by Parberry [2].

Execution Time. The runtime of our C++ implementation of function Exists-Sorting-Network
evaluated at n = 11 and d = 6 took less than 48 hours of wall clock time which is approximately
10000 CPU hours on a large parallel cluster. Approximately a fifth of the time is spent on identifying
the 1.98× 108 minimal output sets up to permutation at depth four. The rest of the computation
time is spent on generating the candidates of depth five for which Sortable-In-Two-Levels returns
true. The rest of the execution times are insignificantly small in comparison.

7. Conclusion

This paper has extended the knowledge of the structure of comparator networks when con-
strained to the problem of finding minimal depth sorting networks. Prior to our work, the last
published work on the subject was Parberry [2] over twenty years ago. We have invented a new
representation of comparator networks and found new properties of them which led to the de-
velopment of a new algorithm for finding n-input sorting networks of minimal depth. Using an
implementation of our new approach we produced a computer assisted proof that the minimal
depth of an eleven-input sorting network is eight.

8. Acknowledgements

Almost all calculations were performed on the Lonsdale cluster maintained by the Trinity
Centre for High Performance Computing. This cluster was funded through grants from Science
Foundation Ireland.

Work supported by the Irish Research Council (IRC).
We would like to thank Andrew Anderson for his help on improving the quality of this paper.

References

[1] R. C. Bose, R. J. Nelson, A sorting problem, J. ACM 9 (2) (1962) 282–296. doi:10.1145/321119.321126.
URL http://doi.acm.org/10.1145/321119.321126

[2] I. Parberry, A computer assisted optimal depth lower bound for sorting networks with nine inputs, in: F. R.
Bailey (Ed.), SC, IEEE Computer Society / ACM, 1989, pp. 152–161.

[3] D. C. van Voorhis, An improved lower bound for sorting networks, in: IEEE Transactions on Computers, Vol.
C-21, June 1972, pp. 612–613.

[4] D. E. Knuth, The Art of Computer Programming, Volume III: Sorting and Searching, Addison-Wesley, 1973.
[5] S. W. A.-H. Baddar, K. E. Batcher, An 11-step sorting network for 18 elements, Parallel Processing Letters 19 (1)

(2009) 97–103.
[6] I. Parberry, Parallel complexity theory, Research notes in theoretical computer science, Pitman, 1987.

8

Algorithm 1 Pseudo code for our new algorithm for finding minimal depth n-input sorting net-
works. The minimal depth of an n-input sorting network is the smallest d for which Exists-Sorting-
Network(n, d) returns true. Proof of correctness of the presented functions is given by comments.

1: function Exists-Sorting-Network(int n, int d)
2: C0 ← n-input comparator network of depth 0
3: R[0].insert(SC0) . R[i] is a set of output sets
4: for depth = 1, 2, . . . , d do
5: R[depth]← Generate-Next-Depth(R[depth− 1], depth, d) . Lemma 5.3
6: R[depth]← Min-Sets-Up-To-Perm(R[depth]) . Definition 5.1 of MinPi(X)
7: end for
8: if |R[t]|= 1 then . Lemma 5.4
9: if |SR[t][0]|= n+ 1 then

10: return true . Theorem 4.2
11: end if
12: end if
13: return false
14: end function
15:

16: function Generate-Next-Depth(set of output sets R, int n, int d, int t)
17: result← ∅
18: for all SC ∈ R do
19: for all L ∈ M(n) do . Definition 3.1
20: if d+ 2 = t then
21: if Sortable-In-Two-Levels(C ∪ L) then . “The Heuristic” [2]
22: result.insert(SC∪L) . Lemma 5.3
23: end if
24: else
25: result.insert(SC∪L) . Lemma 5.3
26: end if
27: end for
28: end for
29: return result . result does not contain duplicates
30: end function

Function Memory Worst Case Runtime Worst Case

Sortable-In-Two-Levels(C) O
(
nd
)

O
(
2nd
)

Generate-Next-Depth(R, d, t) O
(
2ndrm

)
O
(
2ndrm

)
Min-Sets-Up-To-Perm(R) O

(
2ndr

)
O
(
n!dr2

)
Exists-Sorting-Network(n, d) O

(
2ndmd+1

)
O
(
n!dm2d

)
Figure 1: The worst case time and space complexities of all the function used by our new Algorithm 1 for finding
minimal depth n-input sorting networks. We use r = |R| and m = |M(n)| for shorthand writing the complexities.
Given that the sorting network verification problem is co-NP complete [6], it is expected that the runtime complexity
be exponential.

9

‘

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Upper 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 11 11 12 12

Lower 1 3 3 5 5 6 6 7 7 8* 8* 8* 8* 8* 8* 8* 8* 8 8

Figure 2: Current upper and lower bounds for the depth of an n-input sorting network. Upper represents depth of
existing known sorting networks, while lower represents the lower bound on depth of an n-input sorting network.
The values marked with star are demonstrated in this paper and were previously equal to seven.

n = 11
Algorithms

Parberry Marinov - Subsets Marinov - Subsets Up to Π
P networks S itemsets P / S M itemsets S / M P / M

Depth

1 1 1 1 1 1 1
2 136 113 1.20 78 1.45 1.74
3 1,413,720 570,758 2.48 104,667 5.45 13.51
4 14,695,619,400 737,773,277 19.92 197,175,455 3.74 74.53

(a) Experimental results comparing Parberry’s and our new algorithm variations for checking if an eleven-
input sorting network of depth seven exists. This table shows for levels one to four the size of the search
space considered by every algorithm, for columns P, S and M. We also present the factor of search space
size reduction achieved by our new approaches compared to that of Parberry’s in columns P / S and P /
M, and comparing our new approaches to each other in column S / M.

1 2 3 4 5

(b) The only eleven-input comparator network of depth five for which the function Sortable-In-Two-Levels
returns true out of all 2.0 × 1012 candidates. Recall that Sortable-In-Two-Levels (our implementation of
“The Heuristic” [2]) function can return false positives, but never false negatives. This comparator network
turns out to be a false positive, meaning that it can not be extended to a sorting network with the addition
of two levels.

Figure 3: Experimental evaluation summary of the function Exists-Sorting-Network-Of-Depth(n = 11, d = 7) which
concluded that there does not exist an eleven-input sorting network of depth seven. We present summary of the
search space comparison of our approach to Parberry’s [2]. Note that we have not implemented Parberry’s algorithm
since for any depth less than five it is trivial to calculate the number of eleven-input comparator networks that his
method would consider [2].

10

