
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

 ́

 ́ ́

 I

Implementing the NetInf Protocol
with HTTP and DTN Convergence Layers

and Using NetInf over DTN
as the Primary Communication Protocol for a Device

Elwyn Davies

School of Computer Science and Statistics Technical Report TCD-CS-2013-2
Distributed Systems Group June 14, 2013

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Implementing the NetInf Protocol with
HTTP and DTN Convergence Layers and
Using NetInf over DTN as the Primary
Communication Protocol for a Device

Executive Summary

During the SAIL project the NetInf (Network of Information) ICN architecture was developed and the
NetInf Protocol was designed as a way to publish, retrieve and search for information content identified by
the ni URI naming scheme that was also developed during the project. Such pieces of information and the ni
name that provides an infrastructure-less means for verifying that the name is correctly associated with the
information are known as Named Data Objects (NDOs). The connection between the ni name and the
content is achieved by incorporating a strong cryptographic hash digest and the identifier of the digest
algorithm used into the ni name.

It was decided to prototype the NetInf Protocol in parallel with ongoing refinement of the protocol
specification. This is in line with the principles of the Internet Engineering Task Force (IETF); this is
appropriate because the NetInf Protocol specification has been published as an Internet Draft and the ni URI
naming scheme has already been accepted for publication as an RFC.

The NetInf architecture provides for the NetInf requests and responses to be transmitted along paths that
span multiple different types of network domain. The architecture proposes to achieve this by using a
convergence layer architecture where transport protocols are used that are appropriate to the domain across
which the NDO is being carried. It was decided that the NetInf Device would most realistically be in a
situation where ICN was its sole communication option if it was operating in a Delay- and Disruption-
Tolerant Networking (DTN) network. This offered an opportunity to demonstrate the NetInf Protocol
operating across domain boundaries. This required that the NetInf Protocol be implemented to operate over
suitable transports in Internet domains, where HTTP running over TCP was selected and DTN domains
where the DTN Bundle Protocol (BP) was selected.

The work described here covers the implementation of the NetInf Protocol HTTP and BP convergence
layers and a gateway node where NetInf messages could be transferred from one CL to the other at the
boundary between DTN and Internet domains. The NetInf protocol was then used as the ICN
communication medium for the implementation of the NetInf Device, demonstrating how NDOs could be
accessed by existing applications and files written on the device can be automatically published using the
NetInf Protocol. The DTN CL was implemented using the DTN2 reference implementation to provide the
BP infrastructure and transport.

The resulting code base has been made available as Open Source Software and used in other parts of the
SAIL project and for testing work in TCD.

This report ends with an analysis of the work that has been done and records a number of observations on the
effectiveness and behaviour of the NetInf architecture and protocol together with a number of suggestions for
the future direction of work around the NetInf version of ICN.

Table of Contents

14/06/13 Page 2 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

1.Introduction...4
2.The NetInf Architecture...5

2.1High-level View of the Architecture...5
2.2Name Resolution & Routing...5
2.3Support for Challenged Networks..5
2.4Forwarding..6
2.5Mobility and Multihoming..6
2.6Transport...6
2.7API..6

3.NetInf Protocol Overview...6
3.1 NetInf Protocol Summary..6

3.1.1HTTP Convergence L ayer..7
3.1.2DTN Convergence Layer..10

4.NetInf Device Overview..18
4.1NetInf Device Operations...20

5.Additions and Modifications to DTN2 Code..21
5.1ODBC-based SQL Persistent Storage...21
5.2Support for Auxiliary Data Table for Bundles in MySQL Database..21
5.3BPQ Extension Block Processing and BPQ Cache..22

5.3.1BPQ Extension Block and BPQ Cache Changeset 3550..23
5.3.2Changes to BPQ Extension Block and BPQ Cache..25

5.4Introduction of 'Publication' Status Reports...26
5.5Metadata Block Processing...27

5.5.1Problems Detected..28
5.5.2Improvements and Fixes for Metadata Block Code..29

5.6Introduction of JSON Ontology Type for Metadata Blocks...30
5.7Completion of SWIG Generated Scripting Interfaces..30
5.8Preallocation of BlockInfo Lists and Creation of BP_Local Data..34

6.Development of NIlib Python Code..35
6.1A Little History...35
6.2Licensing ..36
6.3Documentation..36
6.4Code Volume and Installation...36
6.5Design Considerations..37

6.5.1NDO Content Size and Digest Generation Efficiency..37
6.5.2Multithreaded and/or Multiprocess Clients and Servers...38

6.6Overview of Python NIlib Modules..39
6.6.1Installation and Installed Scripts...39
6.6.2Logging...40
6.6.3Core ni URI Support...40
6.6.4NetInf Command Line Client Utilities..40
6.6.5Server Common Code...42
6.6.6Servers Handling the HTTP Convergence Layer..44
6.6.7HTTP Server Support Files...46
6.6.8Server and Gateway Handling the DTN Convergence Layer...48
6.6.9DTN Support and DTN2 BPA Interface...50
6.6.10Modified 'Poster' Software..50
6.6.11Modified Standard Python Modules...51

14/06/13 Page 3 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6.12NIlib Setup Support and Documentation..52
7.Development of NetInfFS FUSE-based File System..52

7.1Introduction to FUSE Filing Systems ..53
7.1.1FUSE Installation Notes..54

7.2Implementation of NetInfFS using Fuse-Python..54
7.2.1Starting and Stopping NetInfFS..55
7.2.2Handling Bundle Fragments...56
7.2.3Future Optimisation..56

8.Analysis and Conclusions..56
8.1Demonstrating the NetInf Architecture...56
8.2The Rôle of Affiliated Data and Transmitting Alternative Forks...58
8.3Multiple Results and Merging Affiliated Data..59
8.4Granularity of NDOs..59
8.5The NetInf Device..60
8.6Practical Utility of the Development..60

9.Suggested Further Developments..61
9.1Netinffs Further Work...61
9.2NetInf API...61
9.3DTN Specification..61
9.4NetInf DTN...61

Bibliography...62
Revision History...63

14/06/13 Page 4 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

1. Introduction
This document describes work1 to implement the NetInf (Network of Information) Information Centric
Networking (ICN) protocol together with associated application software and demonstrate the software in a
device that aims to use the NetInf protocol as its primary external connection. This work has been carried
out by Elwyn Davies of Trinity College Dublin (TCD) with input from Stephen Farrell and Aidan Lynch also
working at TCD.

TCD has been a partner in the Scalable and Adaptable Internet Solutions (SAIL) EU Framework Programme
7 project during the period 2010-13. The SAIL project was focussed on research into ICN and as part of
Work Package B, TCD and other partners have designed the NetInf architecture for the transmission, caching
and retrieval of data content items identified by a self-verifying name based on a secure hash digest of the
content of the object. The two key specifications that have resulted from this work are

• “Naming Things with Hashes” [FARRELL2012] This specification defines the 'ni' URI (Uniform
Resource Identifier) scheme that is used to name the data content items. The combination of the ni name
and the content is then called a Named Data Object (NDO). The specification has been published as an
Internet Engineering Task Force (IETF) Internet Draft and has been accepted for publication as an RFC
(Request For Comments). Publication will be completed once all the documents referenced by the draft
have also been published.

• “The NetInf Protocol” [KUTSCHER2012] This specification, which has also been published as an IETF
Internet Draft, defines the NetInf protocol which has been developed for publishing, retrieving and
searching for NDOs, especially those identified by ni URIs. The protocol uses a 'convergence layer'
architecture to allow in to function inter-domain across multiple different domain types.

Part of the work that TCD committed to carry out in the SAIL project was the development of a
'NetInf Device'. The intention here was to determine the extent to which a user device such as a netbook or
tablet computer could operate with ICN as its sole external communication mechanism. To make this
situation somewhat more realistic and also to motivate the development of a convergence layer for NetInf
that will operate in a DTN (Delay- and Disruption-Tolerant Networking) scenario, the NetInf Device is
limited to communication though DTN.

The work described here provides the infrastructure that gives a NetInf capability on the NetInf Device and
allows NDOs to be transmitted across both Internet-like well-connected domains using HTTP as the
convergence layer protocol and across communication challenged domains using the Bundle Protocol
[RFC5050]. The TCD implementation of the NetInf protocol was carried out primarily in the Python
scripting language, but early work was also done both in C and, as a PHP plug-in for the Apache web server.
Other SAIL partners have developed interoperable implementations of the HTTP CL using other languages
and also a UDP CL.

Sections 2. and 3. give an overview of the architecture of the NetInf approach to ICN and details of the
NetInf protocol developed to support it, including a first description of the NetInf CL using the DTN BP.
Section 4 describes the NetInf device architecture. Section 5. covers the modifications made to DTN2 to
support the NetInf CL and Section 6. describes the components that make up the Python part of the NIlib
which provides an implementation of the NetInf protocol with HTTP and BP Cls. Section7. describes the
NetInfFS developed for the NetInf Device. Finally Section 8. analyses the outcome of the work and
describes some areas of further research and development that seem to be indicated as a result of the work
described here. Section 9. gives an outline of some immediate refinements that could be carried out and
records some issues either DTN2 that have come to light during the work bit have not been resolved.

1 This work was partially supported by the Scalable and Adaptable Internet Solutions (SAIL) EU Framework
Programme 7 project (Grant # 257448) and by Folly Consulting Ltd.

14/06/13 Page 5 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

2. The NetInf Architecture

2.1 High-level View of the Architecture
 The following statements describe the NetInf architecture at an abstract level.

• NetInf enables access of named objects, and defines a naming scheme for these objects. The NetInf
naming scheme is designed to make objects accessible not only via NetInf protocols, but also via other
ICN protocols.

• The NetInf layer performs routing and forwarding between NetInf nodes based on NDO names.

• NDO names are independent of the location of the object in the network topology.

• Caching of NDOs may be provided at any node in a NetInf enable network.

• A multi-domain NetInf network may include domains with challenged networks, such as Delay- and
Disruption-Tolerant Networking (DTN) networks.

An overall view of the construction of a NetInf enabled network is shown in Figure1.

2.2 Name Resolution & Routing
NetInf may perform routing based on the names of NDOs. However, routing based on flat names from NDOs
may not scale in a global NetInf network. Therefore, the global NetInf network may use an NRS to map
these names to locators that will identify physical entities of an underlying network, in order to take
advantage of global routing and forwarding in this underlying network. An example of such an underlying
network is the current Internet. This allows for scalability, because the routing and forwarding plane has only
to cope with the network topology, and not with the location of single NDOs. The underlying network can be
any interconnection of heterogeneous L2 or L3 subnetworks. There is (at least) one NRS for the global
NetInf network (interdomain name resolution). There may be name resolution systems which are local to a
domain or a host (intradomain name resolution).

2.3 Support for Challenged Networks
In some cases (e.g., in a challenged network domain) it is not possible to resolve NDO names to locators of
an underlying network at the source. However, the resolution may be performed by an intermediate NetInf
node along the path to the destination (late binding). In this way, challenged network domains may act as
NetInf domains with their own routing and forwarding strategies.

14/06/13 Page 6 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

2.4 Forwarding
In order both to improve scalability and to cope with situations where a NetInf layer message has to be
forwarded across network domain boundaries, NetInf messages will often be forwarded incrementally’
through several NetInf hops, where a NetInf hop might be made up of several hops in the underlying
network. By using identifiers or locators that refer to network structures at various scales, aggregation can be
used to control the amount of state needed for NetInf forwarding. Messages are initially directed to gateways
in large scale structures which can incrementally refine the direction of the message.

2.5 Mobility and Multihoming
In a global NetInf network, mobility and multihoming are based on dynamic updates of the bindings in the
Name Resolution System (NRS) between the NDO names and the identifiers or locators used for forwarding.
Alternatively, mobility and multi-homing may be based on dynamic updates of the NetInf layer routing
information, so that the NetInf routing system announces the current location of NDOs.

2.6 Transport
NetInf interconnects a variety of networks with different address spaces, different network technologies, and
different owners. There is a Convergence Layer (CL) which adapts the NetInf layer to different types of
underlying networks on a per hop basis. Examples of such underlying networks are TCP/IP networks,
Ethernet, DTN networks using the Bundle Protocol, etc.

2.7 API
 The NetInf Application Programming Interface (API) is NDO-oriented as opposed to a classical
channel-oriented and host-oriented API such as the socket API for TCP/IP. This means that in the NetInf API,
NDOs are addressed directly by their names.

3. NetInf Protocol Overview
NetInf employs one conceptual protocol providing accessing named data objects as a first-order principle.
Thus there is one simple protocol that all nodes implement. The NetInf protocol is message-based; it
provides requests and responses for PUBLISHing, GETting, and SEARCHing for NDOs. These requests and
responses employ the common naming format and the common object model.

3.1 NetInf Protocol Summary
The specification of the NetInf protocol that is intended to be used to realize the NetInf architecture
described in Section 2. has been published as an Internet Draft [KUTSCHER2012]. This section contains a
brief summary of the protocol as described in the Internet Draft and has been implemented as part of the
work described in this document.

The CL concept on which the protocol is based has been realized in a number of ways using the Hypertext
Transfer Protocol (HTTP) over the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP)
and the DTN Bundle Protocol (BP) as transports for NetInf messages. The abstract protocol and the CLs that
have been developed are all based on the use of three pairs of messages and responses:

GET/GET-RESP
The GET message is used to request an NDO from the NetInf network. A node responds to the
GET message if it has an instance of the requested NDO; it sends a GET- RESP that uses the
GET message’s msg-id as its own identifier to link those two messages with each other.

PUBLISH/PUBLISH-RESP
The PUBLISH message allows a node to push the name and, optionally, a copy of the object

14/06/13 Page 7 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

octets and/or object meta-data. Whether and when to push the object octets vs. meta-data is a
topic for future work. Ignoring extensions, only a status code is expected in return.

SEARCH/SEARCH-RESP
The SEARCH message allows the requester to send a message containing search keywords. The
response is either a status code or a multipart Multipurpose Internet Mail Extension (MIME)
object containing a set of meta-data body parts, each of which MUST include a name for an
NDO that is considered to match the query keywords.

The combination of the NetInf protocol layer with choices of appropriate CLs offer a number of advantages
over existing Content Delivery Network (CDN) approaches:

• transport of the content can be controlled from the receiver;

• applications can receive additional information (metadata) about the content;

• content can accessed across domain boundaries where different network technologies are in use (e.g.,
DTN and IP); and

• transport can be optimized for the network type and conditions that prevail (e.g., coping with intermittent
connectivity and mobility).

Routing and selection of the next-hop destination for request messages is effectively shared between the
NetInf layer and the convergence layer. The NetInf layer can, depending on local policy and knowledge of
the local network environment, choose to select a specific next-hop node, a set of next-hop nodes or use a
multi-cast or broadcast technique to have the request sent to, for example, all the nodes on the local
subnetwork. Routing and forwarding of the request to the specified next-hop(s) is subcontracted to the
convergence layer which uses whatever means is appropriate to the CL to direct the request to the next-
hop(s) specified where the NetInf layer attempts to action the request locally and/or select further routes and
next-hop(s) for the request.

Responses to requests are reverse path routed. This means that NetInf nodes have to keep state to allow them
to match responses with requests previously forwarded (using the msg-id in the corresponding messages)
and direct the responses towards the source of the request. A request may result in multiple response that
may be merged if they are received at a common node on the path.

The published specification [KUTSCHER2012] contains outline specifications for both the HTTP and the
UDP based CLs. The object model for the CLs makes extensive use of MIME and JavaScript Object
Notation (JSON) has been used to encapsulate any affiliated data that is carried in CL messages.

I have also developed a specification for the DTN BP-based CL which also makes use of the JSON scheme
to encapsulate affiliated data carried by the NetInf messages.

The following Sections 3.1.1 and 3.1.2 give an outline of the HTTP and DTN CLs.

3.1.1 HTTP Convergence L ayer

The HTTP CL implements the NetInf protocol layered over the HTTP protocol running over a TCP
connection. HTTP is designed for use in a client-server paradigm so the CL implementation provides a
unidirectional transport for NetInf messages from a client node that originates messages (GET, PUBLISH or
SEARCH) that are sent to a server node that manages a cache of NDOs. The server processes the received
message and sends appropriate responses back to the client over the same connection. If the node running the
client also wishes to maintain a cache of NDOs that can be accessed via the NetInf protocol, it will also have
to run an HTTP server that can accept NetInf messages from other client nodes. The situation for a
symmetric arrangement of two nodes is shown in Figure 2. If appropriately implemented the server
component can handle connections from an arbitrary number of other nodes in parallel, subject to system
constraints.

14/06/13 Page 8 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The server can also contain a routing component which can forward requests to other nodes if policy is
appropriately setup and the node has access to appropriate NRS capabilities. The forwarding can use either
HTTP or any other CL for which the node has capabilities depending on the next hop to which the request is
to be forwarded. Reverse routing just requires responses to be sent in the reverse direction along the TCP
connection where the request was received.

The combination of HTTP over TCP used for the connections provides all the capabilities for a NetInf CL
specified in Section 3 of the NetInf protocol specification [KUTSCHER2012] without the CL having to
implement any additional facilities, since TCP provides reliable in-order delivery of messages and HTTP
provides the necessary message boundaries. The rest of this section provides an outline of the HTTP CL;
for more details please refer to the full specification given in Section 6.1 of the protocol specification [10].

NetInf requests are encoded in HTTP forms and Multipart MIME HTTP response bodies are used for the
corresponding NetInf responses where there is more than one piece of information to return. The requests are
sent using an HTTP POST operation so that the parameters, including the content in the case of the
PUBLISH operation, can be sent with the request. HTTP offers two choices for encoding form data to go
with POST operations. Either application/x-www-form-urlencoded or multipart/form-data can be used and
the server should be capable or accepting either type for all operations. However in the case of a PUBLISH
request carrying the content octets, the use of multipart/form-encoded is mandatory because of the potential
large size of the content.

These choices have been made because they allow web browsers to interact easily with NetInf and because
there are many tools available that make implementation relatively easy. However, the HTTP CL is also
intended for use between NetInf ’infrastructure’ nodes without human users as well as for conventional web
servers and browser clients. Implementations have therefore been constructed that use web browsers and
forms as the front-end, integrated with a web server (Apache), and also as stand-alone components for use in
non-interactive applications.

NetInf also expects that HTTP CL servers will support accessing the NetInf cache directly using an HTTP
URL (rather than an ni URI) using a mapping of the ni name to a URL where the path component starts with
'.well-known/ni'. This is equivalent to a NetInf GET request. Due to the advisory constraints on
'.well-known' URLs, the server should not send back the content directly if it has it, but should send a
redirect to a locally understood HTTP URL that will retrieve the content but does not include '.well-known'
in the path of the URL.

Extensive use of JSON objects is made to provide relatively compact encoding of ’affiliated data’ that is
carried by the NetInf protocol messages. The term ’affiliated data’ is used in the protocol specification to
cover both ’metadata’ that describes attributes of the NDOs being transmitted and metadata of the protocol.
Any JSON objects carried consist of sets of unordered name/value pairs at the top level. As is normal with
JSON, the values themselves may be arbitrarily complex nestings of objects or arrays of objects.

14/06/13 Page 9 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

If the server is unable to successfully process a message for any reason, it returns an HTTP error response
with a suitable error code. An HTTP 200 response is sent when processing is successful together with a
response body that is described in the following sections., with more details contained in the full
specification [KUTSCHER2012].

3.1.1.1 GET operation
The form for the GET message has two mandatory fields:

URI the name for the NDO to be retrieved, typically an ni: scheme URI [FARRELL2012].

msgid the message IDentifier (ID) (must be unique per CL hop and request/response pair).

and one optional field:

ext Provided for future extensions and not currently used in our implementations.

The form parameters are relatively compact so

The format for a GET-RESP message depends on whether the server is returning both the content octets of
the NDO and its affiliated data, or just the affiliated data if the server’s cache does not contain the content
octets and the request has not been propagated further. In the second case the response body consists of a
single MIME component of type application/json encoding the affiliated data. If both parts are returned, the
response body is a two part multipart/mixed MIME type, consisting of the affiliated data as before and the
NDO content using the appropriate MIME type for the content.

The affiliated data JSON object can contain the fields described below. Note that this remains a work-in-
progress and is liable to change as the implementations mature and are further developed so the reader
should expect a few minor inconsistencies between this description and the Internet-Draft and the code. As
one might expect, the code is at the bleeding edge.

NetInf String describing the version of NetInf protocol in use (e.g., "V0.2").

ni The ni: scheme URI for the NDO retrieved.

msgid Copy of the msgid from the GET message that resulted in the response.

ts A timestamp. There are no fixed semantics for this as it is mainly for debugging, currently this
contains the time at which the response was generated in most cases.

loc A list of locator names from where the NDO might potentially be retrieved.

metadata A JSON object containing content metadata recorded with the NDO when it was published plus
information about how it was published.

Some implementations (including this one) also return additional JSON elements as listed below.

status A code, taken from the HTTP 2xx success response codes indicating what has been returned.

ct The MIME content type of the NDO content, if known.

searches An array of JSON objects describing searches that have flagged up this NDO as matching the
search criteria.

3.1.1.2 PUBLISH operation
The form for the PUBLISH message has the same mandatory fields (URI and msgid) as the GET message
(see Section 3.1.1.1) with some additional optional fields:

loc1/loc2 Locators where the NDO might potentially be retrieved.

fullPut Boolean value indicating if the publication operation includes the content of the file or just
metadata.

14/06/13 Page 10 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

octets If fullPut is true, this form field provides the content of the NDO and information about the type
of the content.

rform Allows the user to choose a browser friendly Hypertext Markup Language (HTML)-encoded
report on the publication or a JSON encoded report suitable for automated processing and/or
sending through additional CL hops.

ext A JSON encoded object that can contain a meta field. The meta field is expected to contain a
JSON object that is stored as metadata for the NDO content on the server whether or not the
content itself is stored. In future, additional fields can be added to the ext object.

If the server receiving the PUBLISH message does not have this NDO stored already, and both policy and
resources allow, the server will add the metadata and the content (if supplied) to its cache. Subsequent
PUBLISH messages for the same NDO can be used to add the content if the first publication did not supply
it or just to add additional or updated information to the affiliated data.

The affiliated data stored for an NDO records information about the NDO needed to fill in the JSON
response object described in Section 3.1.1.1. This object is sent back as the response body if the user selects
the JSON response format. Otherwise a web browser (and human) friendly report is sent back encoded as
HTML.

3.1.1.3 SEARCH operation
The form for a SEARCH has two mandatory fields, a msgid field as used in the GET message plus the
tokens field described here:

tokens A search query string appropriate for the search mechanism used,

 and optional fields rform and ext as used in the PUBLISH form (see Section 3.1.1.2).

On receiving a SEARCH message, the server carries out the search using the selected mechanism and
returns a response body, in the format selected by the user using the rform parameter, enumerating the ni:
scheme names for the NDOs flagged by the search mechanism and additional information as appropriate.
The search may be carried just among locally cached NDOs or extended to other nodes according to local
policy at the server.

3.1.2 DTN Convergence Layer

The DTN Convergence Layer implements the NetInf protocol layered over the DTN Bundle Protocol (BP)
[RFC5050]. The BP may in turn be layered over any of its convergence layers depending on the type of
underlying network (e.g., the TCP convergence layer or the LTP convergence layer). To avoid any possible
confusion the acronym DTNCL will be used if there is any occasion to refer to the underlying DTN
convergence layers in this document, whereas the unqualified CL will refer to a NetInf convergence layer.

Applications using the DTN CL obviously need to be aware that responses to NetInf messages are unlikely to
be delivered with the same sort of alacrity that might be expected from the HTTP CL running on the well-
connected Internet. Programs and users should not 'block' waiting for near-immediate responses but should
be prepared for such responses to return maybe hours or even days after the request is injected into the DTN
network. Accordingly applications may need to provide persistent storage for the message identifiers used
for request messages in order to match them with responses received effectively asynchronously ar a much
later time.

The NetInf CL layered over the BP uses a specialized extension block known as the Bundle Protocol Query
(BPQ)extension block. This block has been developed to support the transport of the additional identifying
information for NDOs. An initial version of the specification of the block has been published as an Internet
Draft [BPQ2012]2. In addition to the standard primary, payload and BPQ blocks, the NetInf CL also uses a

2 A number of necessary improvements to the specification have been identified and it is expected that an updated
version will be published shortly.

14/06/13 Page 11 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Metadata extension block to carry any additional affiliated data and may use an additional placeholder
Metadata block to indicate that the content of the NDO is not included in the bundle.

The BPQ extension block is intended for more general application than just in conjunction with NetInf; It
provides a more general mechanism that would allow an application to query the contents of the bundle
cache associated with the Bundle Protocol Agent (BPA) at any node that a (query) bundle passes through
whilst being forwarded in a DTN network. Currently it is intended that only cached bundles containing BPQ
blocks would be examined to determine if they satisfied the query. The BPQ block contains the following
fields to support this operation:

kind A BPQ block can be associated with a query (kind = 0), or a response to a query that may
(kind = 1)or may not (kind = 2) be fragmented during transmission. This has been extended
beyond the specification in version 00 of the draft to allow a BPQ block to be associated with
the publication of an NDO (kind = 3).

matching rule type
The operation that is performed to determine if a bundle in the BPA cache matches the query
represented by a bundle with a BPQ block with a query kind field. The specification allows for
various different matching rules to be defined. Type 0 specifies an exact match between the
query field in the query bundle and the query field; this is the only matching rule defined in the
specification. An additional matching rule (type 1) is used in the NetInf CL to provide a partial
match between search tokens for NetInf SEARCH requests and a further (non-)matching rule
(type 2) is used in PUBLISH response bundles which requests that no matching is done. This
avoids trying to cache PUBLISH responses which are not useful. According to the BPQ
specification, the matching rule field in bundles matched against cached bundles must have the
same matching rule in the query and the cached bundle. The extra matching rule values allow
for separate matches against cached NDO bundles for GET messages and cached search result
bundles for SEARCH messages.

creation timestamp
In responses this field records the creation timestamp and sequence number of the bundle that
matched the query, as opposed to the creation information for the response bundle that refers to
the time when the BPQ query match occurred.

original source endpoint ID (EID)
In responses this field records the source EID of the bundle that matched the query, as opposed
to the source EID for the node that generated the response bundle

query string
In queries the string to be matched with the corresponding field in the BPQ block of cached
bundles according to the selected matching rule in the query.

query ID An application selected random string placed in queries and copied into the BPQ block of any
generated responses (missing from version 00 of the specification).

fragment list
A list of fragment offset/length pairs that can be included in a query to specifically request part
of the bundle payload. A node will only return the whole bundle or fragments that contain some
or all of the segments requested if it has matching fragments. If the node is unable to satisfy the
whole request, it may modify the fragment list in the query to remove any items that it has
'satisfied' by generating a response that contains that fragment.

All bundles involved in the NetInf DTN CL carry a BPQ block. The details of how the BPQ blocks are used
are covered in Sections 3.1.2.1 to 3.1.2.4.

As with the HTTP convergence, the affiliated data is mostly carried in a JSON object encoded as a string.
For all NetInf DTN CL bundles that carry affiliated data, the JSON string is carried in a Metadata extension
block. Initially a Metadata ontology type code from the experimental range has been used to identify the

14/06/13 Page 12 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

JSON carrying Metadata block. It is expected that a formal specification of the ontology will be created and
submitted to IANA to request the allocation of a permanent ontology type in due course.

All bundles matching the BP specification have a payload block even if it has zero length. Since in principle
an NDO can have zero length content, it would be necessary to make components aware of the digest strings
in the various possible ni URLs for zero length content in order to distinguish absence of content from actual
zero length content. To avoid this, NetInf GET response bundles which are carrying only the affiliated data
and not the NDO content will carry a 'placeholder' Metadata extension block which signifies the absence of
the content octets. The ontology type for this will be taken from the experimental range initially. The
content of the block will be an arbitrary string that can be used however the node feels appropriate.
Consideration will be given to submitting a formal specification of this block type but there may be
alternative ways to handle the passing of the required state information (e.g., by embedding it in the JSON
metadata – a different formal specification would be needed for this alternative).

The following subsections describe how the NetInf messages are mapped onto the BP bundles using the BPQ
block and the two types of Metadata block just described. The general structure of the bundles is shown in
Figure 3. As with all BP bundles, the bundle header may specify that status reports of various kinds should
be returned by any BPAs that process the bundle. Although it is not forbidden to request custody transfer for
a NetInf message bundle, using custody transfer is probably inappropriate for NetInf messages; this is
discussed further in Section 3.1.2.4 where the routing of NetInf messages is discussed.

3.1.2.1 GET operation
The GET message is carried in a bundle with BPQ block, a zero length payload and an optional JSON
Metadata block. The BPQ block is a query block (kind = 0) and carries the two mandatory parameters for
the GET message:

URI the name for the NDO to be retrieved, typically an ni: scheme URI [FARRELL2012] is carried
in the query string field..

msg-id the message IDentifier (ID) (must be unique per CL hop and request/response pair) is carried in
the query ID field.

The matching rule in the query block is 0 (exact match required) so that responses will contain the specified
URI exactly.

14/06/13 Page 13 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Because the GET message has a zero length payload it can never be fragmented so there is no need to be
concerned about block replication flags.

If the querying application has any 'hints' that could indicate where the GET message might be forwarded to
locate a response, the relevant locator(s) can be included in an optional JSON Metadata block. The items in
the JSON would be:

http_auth A copy of the netloc field from the URI supplied by the application (if present). This will be
assumed to be a netloc for an HTTP server that could be accessed over the HTTP CL if the
query reaches a DTN<->HTTP gateway without the query finding a suitable response.

loclist An array of additional locators to which the query could be forwarded.

When a bundle with a BPQ query block is received at a DTN node, the query string is matched against the
query string fields of any bundles in the (BPQ) cache in that node. If there is a match (in the case of NetInf
GET requests any matching bundles would contain the same URI as in the query and hence would contain
all or some fragment of the named NDO), a GET-RESP message response bundle is created either from the
complete bundle or, if that is not present, from every matching fragment that coincides with the list of
fragments requested (if specified) or from every fragment if there is no list. If the node is not the destination
of the GET message and the whole NDO content was not sent as a response (whether in one or more
fragments) then the GET message can be further forwarded, possibly with the requested fragment list
modified as explained in Section 3.1.2. At the destination node for the GET message the bundle may be
delivered to an application such as a gateway or router that may use a NRS or the supplied locators in the
JSON Metadata block to forward the GET message to some other node that may be able to provide a
response. The GET query bundle may request status reports (e.g., receipt or delivery reports) as with any BP
bundle.

The format for a GET-RESP message depends on whether the server is returning both the content octets of
the NDO and its affiliated data, or just the affiliated data if the server’s cache does not contain the content
octets and the request has not been propagated further. In all cases the response bundle will contain a
response BPQ block (kind = 1) with the same matching rule, query and query ID fields as the query bundle
that resulted in the response. If the response is only carrying the affiliated data, the affiliated data will be
carried in a JSON Metadata block, the payload length will be zero and the bundle will also carry a payload
placeholder Metadata block to fill in for the missing content. If both affiliated data and content are returned
in the response, the content is carried as the bundle payload and the placeholder Metadata block is omitted.
The BPQ block also carries the creation timestamp and EID of the original source of the bundle that carried
the information included in the response3.

The GET-RESP bundle(s) are sent to the source of the GET query message that provoked the response(s).
When the GET-RESPONSE bundles with BPQ response blocks are forwarded through DTN nodes on their
way back to the query source, each node that has BPQ caching capabilities may decide to cache the response
bundle so that it can service later GET messages requested the same NDO from its local cache.

Both the BPQ block and the JSON Metadata block should be marked for replication in all fragments in case
the response is fragmented. This means that the fragments can be added to the BPQ cache in any nodes they
traverse. Note that a response with a payload placeholder can never be fragmented because it has a zero
length payload.

The affiliated data JSON object can contain the fields described below. These fields are identical to the ones
that would be returned in the HTTP CL GET-RESP. Note that this remains a work-in-progress and is liable
to change as the implementations mature and are further developed so the reader should expect a few minor
inconsistencies between this description and the Internet-Draft and the code. As one might expect, the code is
at the bleeding edge.

3 Note that the original source information only relates to the creation of the cached bundle in the DTN network. It
may be that the actual content was created elsewhere and injected into the DTN node that published it into the DTN
network. More information about the true origin of the NDO may be included in the affiliated data.

14/06/13 Page 14 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

NetInf String describing the version of NetInf protocol in use (e.g., "V0.2").

ni The ni: scheme URI for the NDO retrieved.

msgid Copy of the msg-id (BPQ query ID) from the GET message that resulted in the response.

ts A timestamp. There are no fixed semantics for this as it is mainly for debugging, currently this
contains the time at which the response was generated in most cases.

loc A list of locator names from where the NDO might potentially be retrieved.

metadata A JSON object containing content metadata recorded with the NDO when it was published plus
information about how it was published.

Some implementations (including this one) also return additional JSON elements as listed below:

status A code, taken from the HTTP 2xx success response codes indicating what has been returned.

ct The MIME content type of the NDO content, if known.

searches An array of JSON objects describing searches that have flagged up this NDO as matching the
search criteria.

If the GET message is processed by an application at the destination EID, it may be forwarded to multiple
destinations. Thus the application may receive multiple copies of the NDO from these destinations. If these
are received in a timely fashion, the results can be combined before sending the GET-RESP message back to
the source of the GET message in the DTN network. By definition, the content of the NDO received from
any destination must be identical to that from any other as verified by the digest in the ni URI. Accordingly
the content can be taken from any of these responses provided it can be verified against the ni URI digest.
However, the metadata received from the various destinations may contain additional information.. It is
possible to merge the responses to produce a single set of metadata to send back to the requester. This
operation will generate an extended list of locators from which the NDO can be retrieved and possibly
several sets of search tokens that were satisfied by the NDO during previous searches.

3.1.2.2 PUBLISH operation
The PUBLISH message is carried in a bundle with BPQ block, a JSON Metadata block carrying the
affiliated data and, if the content is being published, the content is carried as the bundle payload. If the
content is not being published, payload 'placeholder' Metadata extension block is added to the bundle and the
payload is of zero length. The BPQ block is a publish block (kind = 3) and carries the two mandatory
parameters for the PUBLISH message (URI and msg-id) which are the same as for the as the GET message
(see Section 3.1.2.1). The following affiliated data is built into

ni The ni: scheme URI for the NDO being published. (this is a duplicate of the BPQ query string
but is useful when forwarding the PUBLISH message).

http_auth A copy of the netloc field from the URI supplied by the application (if present). This will be
assumed to be a netloc for an HTTP server that could be accessed over the HTTP CL if the
query reaches a DTN<->HTTP gateway without the query finding a suitable response.

loclist Locators where the NDO might potentially be retrieved (useful if the content is not being
published here but the publisher knows where the content might be retrieved).

ct The MIME content type of the NDO content (whether carried or not, if known).

fullPut Boolean value indicating if the publication operation includes the content of the file or just
metadata.

octets If fullPut is true, this form field provides the content of the NDO and information about the type
of the content.

14/06/13 Page 15 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

rform Allows the user to choose a browser friendly Hypertext Markup Language (HTML)-encoded
report on the publication or a JSON encoded report suitable for automated processing and/or
sending through additional CL hops.

ext A JSON encoded object that can contain a meta field. The meta field is expected to contain a
JSON object that is stored as metadata for the NDO content on the server whether or not the
content itself is stored. In future, additional fields can be added to the ext object.

The matching rule in the query block is 0 (exact match required) so that when stored in the BPQ cache these
bundles will be matched against GET requests.

The BPQ block and JSON Metatdata blocks should have the block flag requesting replication in all
fragments set so that the BPQ information and metadata would be carried along with all fragments if the
content is fragmented. Note that a PUBLISH message without the content octets cannot be fragmented as it
has a zero length payload.

If a DTN node receiving the PUBLISH message does not have this NDO stored already, and both policy and
resources allow, the server will add the metadata and the content (if supplied) to its cache. Subsequent
PUBLISH messages for the same NDO can be used to add the content if the first publication did not supply
it or just to add additional or updated information to the affiliated data.

If the NDO or its metadata contained in a PUBLISH message is cached at a DTN node at which it is
received, the publishing node can elect to be informed via BP status reports. The implementation of the CL
described later in this document has introduced a new status report that explicitly notifies the publisher that a
bundle has been published by being placed in the node's BPQ cache. This report may be standardized at
some future time.

The affiliated data stored for an NDO records information about the NDO needed to fill in the JSON
response object described in Section 3.1.2.1.

When the PUBLISH message arrives at the destination EID specified in the message, the bundle may be
delivered to a gateway or forwarder application that has registered an appropriate service code with the DTN
BPA on the node. This application may choose to forward the PUBLISH message to other destinations.
Consequently the application may receive notifications that the NDO has been published on other nodes.
The application can then build a PUBLISH-RESP message to send back to the sender of the DTN
PUBLISH message. This message should consist of a bundle with a BPQ publish block copied from the
original PUBLISH message but with the matching rule set to 2 (never match) so that no attempt is made to
cache the bundle or match anything from the cache with it. The bundle should not have any Metadata
blocks. The bundle payload contains a report of the PUBLISH activity carried out by the application.

It is possible that, as with GET messages, the application may receive multiple PUBLISH-RESP messages.
Unlike the GET case, it is not appropriate to merge the body of the response messages. Instead the
application should concatenate the responses, interleaving information about the destination node that
published the NDO and sent the PUBLISH-RESP. If the response format requested is JSON, then the
individual JSON results can be combined into a single JSON object with the individual responses keyed by
the locator of the publishing node that generated the response. For other formats, the responses can be
interspersed with suitable text such as “From <locator>:<newline>”. The concatenated reports are returned
as the payload of the PUBLISH-RESP bundle.

If a JSON format report is requested, the same structure as used to return the metadata with a GET-RESP
should be used.

3.1.2.3 SEARCH operation
The SEARCH message is carried in a bundle with BPQ block, a zero length payload and an optional JSON
Metadata block. The BPQ block is a query block (kind = 0) and carries the two mandatory parameters for
the GET message:

tokens the search string for the search is carried in the query string field..

14/06/13 Page 16 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

msg-id the message IDentifier (ID) (must be unique per CL hop and request/response pair) is carried in
the query ID field.

The matching rule in the query block is 1 (token match required) so that responses will contain a token string
that overlaps with the tokens string in the query..

Because the SEARCH message has a zero length payload it can never be fragmented so there is no need to
be concerned about block replication flags.

If the searching application has any 'hints' that could indicate where the SEARCH message might be
forwarded to locate a response, the relevant locator(s) can be included in an optional JSON Metadata block
as a loclist field. The JSON may also contain optional fields rform and ext as used in the PUBLISH form
(see Section 3.1.2.2).

When a SEARCH message arrives at the destination selected by the searching application, the bundle may
be delivered to an application or gateway that offers search services either by running a local or remote
search application or forwarding the SEARCH request to another node that performs searches. For example
a local search might be carried using some framework such as Lucene4 or a remote search might be carried
out by passing the tokens to the search API of Wikipedia5. Whether the destination node forwards the
SEARCH bundle is determined by local policy – depending on the topological location and capabilities of
the node it may or may not be appropriate to propagate the SEARCH request.

The SEARCH-RESP message is bundle with a BPQ response block (kind = 1) with the matching rule,
query string and query ID fields copied from the BPQ block in the SEARCH message that resulted in the
response and the creation information set to indicate where and when the search response was created. No
Metadata blocks are required. The payload of the bundle describes the results of the search.

The format of the payload depends on the value of the rform parameter supplied in the Metadata of the
SEARCH request. If this is 'json' the search results from each searching node consist of a JSON encoded
string with fields NetInf and ts as described in Section 3.1.2.1 plus search specific fields:

search A JSON object describing the search containing the tokens used plus information about the
location and search mechanism used.

results A JSON array of objects, one for each NDO that matched the search tokens, each containing at
least an ni field with a value of the ni URI of an NDO available at the node that made the
search.

If the response format is other than JSON, the result is a human-readable string that gives the ni URI of each
NDO that matched the search tokens and any other useful information that would allow the user to select
from the list of answers. The result should also contain summary information equivalent to the JSON-
encoded response.

As with the PUBLISH operation (see Section 3.1.2.2), a gateway or forwarder may need to combine
SEARCH responses from several nodes. If the response format requested is JSON, then the individual
JSON results can be combined into a single JSON object with the individual responses keyed by the locator
of the publishing node that generated the response. For other formats, the responses can be interspersed with
suitable text such as “From <locator>:<newline>”. The concatenated reports are returned as the payload of
the SEARCH-RESP bundle.

The SEARCH-RESP destination is set to the the source of the SEARCH request and the bundle is
reinjected into the DTN network. As this bundle has a BPQ response block, any node which receives the
bundle and has a BPQ cache is at liberty to save a copy of the bundle prior to fornwarding

Subsequently, when a SEARCH request bundle is received at a DTN node that has a BPQ cache, the node
examines its cache to determine if there are bundles that have a tokens field that overlaps with the tokens list
in the SEARCH query string (i.e., there is at least one common token in the list). If there are any such

4 Apache Lucene search framework - Lucene web site
5 Wikipedia Open Search API - Mediawiki API

14/06/13 Page 17 of 64 Version 1.3

http://lucene.apache.org/
http://www.mediawiki.org/wiki/API

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

bundles they will be sent as SEARCH-RESP messages. It is a mater of local policy whether the SEARCH
bundle is forwarded after checking the local cache, and this may depend on whether any and how good the
matches found in the local cache are.

3.1.2.4 Selection of Destination EID for NetInf Bundles and DTN Routing
The NetInf protocol is intended to allow for searching and retrieval of NDOs without knowledge of where
the information is located. Thus it is not desirable for an application using NetInf over DTN to have to give
a specific destination for NetInf requests. It would therefore be desirable to able to specify the destination
address using a 'wildcard' EID combined with a service demultiplexer and have the DTN network forward
the bundle to as many nodes as it can find that support BPQ caching.

One simple way of achieving this would be to use epidemic routing but that may be considered overly
resource hungry. An alternative which is not currently implemented would be to implement either the
situation in which a DTN node can support more than one local EID. One of these EIDs could be the
primary EID and would be a singleton EID used as its administrative address; other addresses could be
implemented as multipoint EIDs so that nodes using this EID effectively become a multicast group. A
second alternative would be to extend the DTN discovery mechanisms to allow nodes to advertise which
services are implemented on nodes so that wildcard EIDs can be matched on service discriminator rather
than just netloc component. Both of these options would require work to specify and implement them.

In the meantime it is probably sufficient to send NetInf bundles to a well known 'gateway' node that has
connectivity to the Internet and could either forward the bundle to nodes in the Internet using HTTP or
redirect them to other nodes in the DTN network, at some cost in latency, if it is aware of relevant nodes.
Also if a node is made aware of locators that are expected to have a particular NDO in their cache through a
locator list (e.g., returned with a search result or as part of the metadata from a GET request that doesn't
supply the NDO content), then the request can be sent directly to such a node.

Reverse routing just requires using the source EID of the request as the destination of the response.

14/06/13 Page 18 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

4. NetInf Device Overview

Figure 4 provides an overview of the architecture of the NetInf Device that has been developed as part of
TCD's work in the SAIL project as explained in Section 1.. The aims of the infrastructure components
shown here are to

☑enable 'conventional' application that generally access data via files and filing systems in a Linux
environment to work with NDOs named with ni URIs without having to modify the data access interfaces
in the applications, and

☑demonstrate the use of the NetInf protocol over the DTN Convergence Layer.

In order to integrate the NetInf Device, which is intended to use the DTN CL, with the wider Internet, the
DTN network needs to be linked to the Internet at the NetInf level by providing a gateway component. This
was developed as part of a wider effort to implement a compatible NetInf Open Source Code Library (known
as NIlib which provides support for several convergence layers including HTTP and DTN.

The overall network scenario in which the NetInf Device would be demonstrated is as shown in Figure 5.

Ultimately the Internet portion can be connected to the SAIL NetInf test bed network which has been
established during the latter part of the project.

14/06/13 Page 19 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

It was decided from the outset to base the DTN work on the DTNRG-championed DTN2 Reference
Implementation which has been maintained by TCD for a number of years under the auspices of two major
EU Framework 7 programme projects, initially the Networking for Communication Challenged
Communities (N4C) project and lately the SAIL project. Thanks are due to Alex McMahon who has
managed the maintenance of the software for the last 4 years.

This work required design and development of four major components:

• Addition of BPQ extension block handling and management of the BPQ cache to the DTN2 core daemon
(dtnd) to provide infrastructure for the NetInf message bundles as described in Section 3.1.2, together
with various applications to allow injection of bundles such as NetInf messages with BPQ blocks and to
implement a local searching mechanism using Lucene. This work is described in Section 5.

• Addition of a new persistent storage mechanism to DTN2 using the MySQL SQL database accessed via
the ODBC (Open Data Base Connectivity) interface that allows external exposure of the bundle cache in
DTN2 providing access to selected fields in the cached bundles via auxiliary storage tables and making it
possible to link the bundle information to the payload files from outside the dtnd daemon. This work is
described in a previous report [DTN2SQL]

• Creation of a FUSE-based pseudo-file system called netinffs that allows the BPQ bundle cache to be
viewed as files named by the ni URI names stored in the bundles' BPQ blocks and to write new files which
are automatically published using an appropriate ni URI made by running a digest algorithm over the file
content. This work is described in Section 7..

• Development of the NIlib NetInf code, as described in Section 6. to provide
• the HTTP<->DTN CL gateway,
• HTTP CL components to provide the NetInf protocol infrastructure in the Internet, and
• the interface from the FUSE filing system to the automatic publication system using DTN2

It was decided that the NetInf Device would be implemented on a device running the Ubuntu distribution of
the Linux operating system as DTN2 is well-established on this platform and it provides components that are
needed to implement these components, including the FUSE filing system framework.

14/06/13 Page 20 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The code that has been written is available via the Sourceforge DTN and NetInf repositories as Open Source
under the Apache 2 license and is freely available for experiment and usage.

Sections 5 to 7. give details of the work that has been carried out on the various software components to
implement the functionality needed by the NetInf Device and to develop the NIlib Python code.

4.1 NetInf Device Operations
The DTN2 BPA daemon dtnd is built to support the BPQ extension block and ODBC-based persistent
storage. The daemon is configured to use ODBC/MySQL persistent storage.

The netinffs is set up to access the same database as the DTN2 daemon is using for persistent storage and is
informed of the directory where the DTN2 daemon stores the bundle payload files. When running the
netinffs filing system provides a mount point that provides three directories:

• bundles which allows access to bundles by bundle number (read only)

• ni which allows access to bundles which have a BPQ block by the value of the query string in the BPQ
block which will contain either ni URI name or a token list. (read only)

• publish which allows files to be written with arbitrary name and on closing, to be automatically published.
The associated ni URI is available as an extended attribute once the file has been run through the digester
used to create the ni URI digest. Once the file has been published the corresponding bundle will be visible
in the ni directory and can be tied to the written file in the publish directory. If the file is updated then it
will have to be republished with a new ni name corresponding to the revised content. It is intended that
the sequence of ni names that represent various revisions of the file are maintained as an extended
attribute. This effectively implements a form of version control system for the file and allows different
versions to be retrieved subject to the bundles having a sufficiently long expiry period.

The netinffs periodically access the MySQL database auxiliary bundles table which has a record for each
bundle currently in the daemon's bundle cache (whether or not they have a BPQ block). These are indexed by
their locally unique bundle number. The bundle payload can then be accessed as a file in the bundles
directory with the bundle number as file name.

If the bundle has a BPQ block the value of the query string field is used to allow the file to be accessed in the
ni directory. Bundles with BPQ blocks will unconditionally remain in the BPA cache until they reach their
expiry time (as opposed to others which may be deleted early if they are deemed to have been delivered or
forwarded in such a way that they are not required by the BPA for further forwarding, etc. Of course, the
time they remain in the cache is dependent on the expiry period specified when the bundle was created.

Combining the netinffs access with conventional DTN2 BPQ related applications (dtnquery, dtnresponse,
and dtnpublish) and the NIlib NDO command line routines (including nigetalt and nipubalt) provide a
variety of ways to access NDOs either from scripts or by conventional file access via existing applications.

Adding an NIlib HTTP<->DTN gateway to the device allows web access to NDOs via a conventional
browser. The browser can send NetInf requests from a form provided by the gateway. The generated NetInf
over HTTP requests are converted to NetInf over DTN requests by the gateway and sent out over the DTN
network when a link is available. Depending on the latency of the DTN connectivity, the responses to these
requests may be received before the web browser request times out and can be displayed directly. Otherwise
they should be received some time later and will be placed in the gateway's cache which can be displayed by
the browser at any time.

Search operations can either be carried out using the local Lucene-based search operation designed and
implemented by Aidan Lynch as part of his Master's Thesis work [LYNCH2012] that uses the DTN BPQ
blocks to carry the search request or by invoking a Wikipedia query from a NetInf-enabled HTTP server that
has a connection to the Internet.

14/06/13 Page 21 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

5. Additions and Modifications to DTN2 Code
The work on the DTN2 code base can be subdivided into a number of areas:

1 Introduction of ODBC-based SQL databases for persistent storage

2 The introduction of an auxiliary storage table for items of bundle data accessible by other programs
including some items from BPQ blocks if they are included in bundles..

3 Bug fixes and extensions to the BPQ extension block processing and BPQ cache mechanism to support
NetInf including support for PUBLISH operations and provision of field to carry the msg-id needed to
link requests and responses. Rationalisation and refactoring of the code in BPQ supporting applications.

4 Introduction of 'publication' status reports to support NetInf NDO publication.

5 Bug fixes and improvements to the processing of Metadata blocks, especially across the DTN2 API.

6 Introduction of JSON ontology for Metadata blocks. Addition of ability to add JSON Metadata blocks to
ICN bundles generated and received by ICN related DTN2 applications (dtnpublish, dtnquery and
dtnrespond).

7 Completion of SWIG-generated scripting interfaces. I discovered that the existing interfaces could not
handle the addition of either general extension blocks or metadata blocks both when sending and when
receiving blocks from the network.

8 Bug fixes and validation work to ensure that the behind-the-scenes copy and destroy that results when the
push_back and append methods of the std::list class are used to handle lists of blocks do not result in
problems stemming from dynamically allocated strings in various extension block BP_Local structures.

The work described here, especially item 3, builds on the initial implementation of BPQ blocks and the BPQ
cache within DTN2 carried out by Aidan Lynch as part of his Master's Thesis work during 2011 which was
also partly supported by the SAIL project.

The various segments of work are described in more detail in the following subsections.

5.1 ODBC-based SQL Persistent Storage
This work has been described in a previous report [DTN2SQL] that built on the initial work to add SQL-
based storage to DTN2 as weel as other capabilities [SCOTT2011]. The DTN2 BPA (dtnd) program used by
the NetInf Device is compiled with ODBC support (configure ­­with­odbc) and configured to use a
MySQL database for persistent storage.

5.2 Support for Auxiliary Data Table for Bundles in MySQL Database
The enabling work for this capability has been described in a previous report [DTN2SQL]. The DTN2 BPA
(dtnd) program used by the NetInf Device has BPQ block support compiled in (configure ­­with­bpq)
and is configured to use a MySQL database for persistent storage. This makes certain of the fields in bundles
in the DTN2 cache separately visible to external applications via the bundles_aux table in the database. The
fields are:

DB Column Name Content Type

bundle_id Bundle sequence number in this BPA (also used as key) integer

creation_time Creation time for bundle as seconds since the Epoch big integer

creation_seq Creation sequence number in creating BPA big integer

source_eid Endpoint Identifier of bundle source - string

dest_eid Endpoint Identifier of bundle destination string

payload_file File name for payload file string

bundle_length Overall length of bundle (total across fragments) integer

fragment_offset Offset of fragment payload in complete payload integer

14/06/13 Page 22 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

DB Column Name Content Type

fragment_length Length of payload in this fragment (0 if not a fragment) integer

bpq_kind* Query(0), Response (1), Response – don't fragment (2) or Publish(3) small integer

bpq_matching_rule* Exact match (0), Token match (1) or Never match (2) small integer

bpq_query* Query string in BPQ block (ni URI or set of search tokens) string

bpq_real_source* Endpoint identifier of original source of response bundle string

* These columns are only filled in when the bundle contains a BPQ block.

The DTN2 software is now constructed so that adding additional columns to the bundles_aux table is
relatively simple. The following steps are needed:

• Select the field from the Bundle class to add to be added to the table.

• Determine the format of the database column that will be used to hold the data in bundles_aux. For strings
of indeterminate length using VARCHAR(2000) is the suggested solution which allows for strings up to
2000 octets. The supported column types are defined by the detail_kind_t in oasys/storage/StoreDetail.h
with the mapping to ODBC column data types defined in oasys/storage/ODBCStore.cc.

• Choose a column name for use in the bundles_aux table.

• Determine how to express the required column type in the SQL table declaration. Add the declaration to
the CREATE TABLE bundles_aux in DTN2/sqldefs/create_aux.sql.

• Add a corresponding extra call to the add_detail method in the class constructor of BundleDetail in
DTN2/servlib/bundling/BundleDetail.cc. The ordering of columns in the table and add_detail calls in
the constructor are not related and order is not important for either of the lists. The add_detail method
links the name of the database column and its SQL type to the data and its length in the specified bundle.

• Determine whether this field is in the core data of the Bundle or one of the extension blocks. For fields
from the core data, the data can be transferred directly. Otherwise. It will be necessary to locate the
required block and extract the data from it. The existing code shows examples for both cases.

• Initialize or tidy the database to recreate the bundles_aux table. The table schema can be inspected via the
isql command (enter help bundles_aux) or mysql command (enter describe bundles_aux;)

5.3 BPQ Extension Block Processing and BPQ Cache
The initial implementation of the BPQ Extension Block processing and the BPQ cache in DTN2 was carried
out by Aidan Lynch as work towards his Masters Degress in Computing at Trinity Colleg dublin. This work
is documented in the dissertation that he submitted as part of his degree work [LYNCH2012].

Subsequently, a number of minor issues were discovered when initially testing this work for use with the
NetInf Device. Also, for use with the NetInf protocol, it was found that an additional field named query_id
was needed to carry the msg-id that is used to correlate NetInf responses with the original request. The
addition of the query_id was required because the information placed in a response bundle by DTN2 does
not contain any information that can provide this correlation; furthermore, the msg-id is needed when
forwarding the NetInf request to other nodes whether using the DTN or HTTP CL.

Additionally certain fields from the BPQ extension block were to be placed into the bundles_aux database
table as described in Section 5.2. This required additions to the BundleDetail class constructor and the SQL
table creation script as explained in Section 5.2.

The opportunity was also taken to improve performance by creating the internal representation of the BPQ
block data (as specified in the BPQBlock class – see DTN2/servlib/bundling/BPQBlock.h) once for all
when the enclosing generic Block class instance is initialized. The BPQBlock class is derived from the

14/06/13 Page 23 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

BP_Local class which allows a reference to the resulting BPQBlock class instance to be stored in the
locals_ private data of the Block instance and accessed whenever individual details of the BPQ block
structure are needed rather than decoding the serialized form multiple times. In support of this, a copy
constructor was added to the BPQBlock class declaration. This may be needed when BPQ extension
blocks are inserted into one or other of the block lists used in the Bundle structure. These lists use the
BundleList class which is derived from the C++ standard library template class std::list. If an insertion into
such a list extends the reserved length of the list, the entire list is copied to a new data structur. The elements
in the list have their copy constructors called 'under the covers' to do this and then the old copies are deleted.
Apart from the potential performance penalties of this process, it is vital to ensure that any dynamically
allocated memory is correctly handled by the copy constructor. The code now behaves correctly and in
various places the size of the list being created is precalculated and the requisite number of entries reserved
prior to starting to fill the list so that the list need not be resized during filling. In the case of decoding the
bundle as it is received from the network when it is not possible to know the number of blocks in advance,
the creation of the auxiliary data structures has been postponed until the final validate phase of processing
incoming blocks by which time the lists are complete. This avoids the locals_ structures having to be copied
repeatedly as the list is extended.

The work on the BPQ extension block has been carried out in two phases and is incorporated into the DTN2
code base in several changesets. The work for each of these changesets is described separately.

5.3.1 BPQ Extension Block and BPQ Cache Changeset 3550

This changeset was registered at 2013/07/03. An extra application (apps/dtnpublish) has been written to
allow bundles containing a Query Extension (BPQ) block of the (new) kind KIND_PUBLISH to be sent out
into the network where they will be cached by appropriately configured nodes to which they are forwarded.

 The following changes have been made:

• a new application 'apps/dtnpublish' has been written. It has numerous options - see the dtnpublish manual
page or use 'dtnpublish --help'.

• Bundles that are in the BPQ cache will not be subject to early deletion so they will remain available in the
cache until their lifetime expires or cache space runs out so they have to be deleted as the least recently
used.

• Bundles of KIND_PUBLISH are cached in the node where the application API created the bundle with a
Query Extension Block (as opposed to responses). The KIND_RESPONSE bundles were previously not
cached because of the bug mentioned below which prevented the response bundles being returned
correctly. This problem is now fixed, but at present KIND_RESPONSE blocks are NOT cached in the
node where the bundle is originated. This is partly because there is a logical problem if the response was
externally generated from an existing cached bundle. This situation may be altered in future.

• Responses derived from cached bundles that were cached with KIND_PUBLISH BPQBlocks, will have
their responses mutated to KIND_RESPONSE.

In the process a number of bugs identified with the initial Query Extension block (BPQ) code
(changeset 3528):

• Bundles have to be deleted from the appropriate BPQ cache entry when they expire or are otherwise
deleted. If the cache entry is then empty it has to be deleted also.

• An apparently long standing bug was identified and fixed: bundles containing extension blocks and
metadata blocks that were received from the API and delivered directly to an application on the same node
would not have the extension blocks or metadata blocks attached to the delivered bundle. This was
because APIServer::dtn_recv method did not scan either the api_blocks or generated_metadata vectors
when creating the structure to pass back to the application.

14/06/13 Page 24 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

• The BlockInfo::type method now allows for all the different sorts of extension block that have been
defined.

Some general improvements to the BPQ-related code have been made:

• To avoid repeated recreation of the internal representation of the data in the Query Extension Block, a
BPQBlock instance is created when the BlockInfo instance representing the Query Extension Block is
created . This occurs when:
• The dtn_send API function is called with a BPQ extension block
• A bundle is received from a link containing a BPQ extension block
• A bundle is read back from persistent storage on bundle daemon startup
• A response bundle is created as a result of receiving a BPQ QUERY

Note that it is not necessary to duplicate the BPQBlock into BlockInfo instances placed into xmit_blocks
vectors created during bundle transmission as all the routines processing these blocks treat them as opaque
data.

• To manage this data BPQBlock has been made a derived class of BP_Local. The BlockInfo class
provides for the storage of a pointer to a BP_Local class instance which can be written and accessed by
set_locals() and locals() methods respectively. A BPQBlock instance is created from the opaque data in
the extension block when the BlockInfo is created. Classes that are designed to process BPQ blocks can
then 'downcast' the BP_Local pointer type to the BPQBlock pointer type using dynamic_cast. This
capability existed in DTN2 but was mainly used in the Bundle Security protocol code.

• As part of the above change, the original creation timestamp and source EID have to be written into the
opaque data (and the BPQBlock) when a bundle with a Query Extension Block is received in the
APIServer::dtn_send method. This has been implemented by adding an extra Bundle pointer parameter
to the BlockProcessor::init_block method and making this method virtual so it can be overloaded in
other types of BlockProcessor. The extra paramater is ignored by the generic method in the base class
(BlockProcessor) but, if it is not NULL, it may be used by the overridden method in
BPQBlockProcessor to set the creation timestamp and original source EID. In the other cases where new
BlockInfo structures are created for Query Extension blocks, the opaque data used will already contain the
correct timestamp and source EID so the Bundle pointer parameter is left as NULL which signals the
init_block routine to leave the opaque data unchanged. [Note this mechanism has been further altered in
subsequent changes.]

• In association with this the initialization methods for BPQBlock have been restructured so that a
BPQBlock instance can be created directly from the opaque data in the BlockInfo instance rather than
requiring the data in the bundle each time. It is also nor longer necessary to differentiate between locally
and remotely created BPQBlocks.

• Similarly, a specialized BPQBlockProcessor::reload_post_process method has been added to create the
BPQBlock instance and save it in the BlockInfo instance when pulling bundles in from persistent storage.

• The BPQBlockProcessor::consume method now creates the BPQBlock and records it in the BlockInfo
instance when the block is complete. [Again this change has been modified to postpone the creation of the
BPQBlock to the BPQBlockProcessor::validate method.]

• New setters have been added to update the creation_ts and original_source fields in BPQBlock and a
validated_ flag has been added to record if the block is correctly populated.

• BPQBlockProcessor::generate has been modified to make better use of the 'source' block set up by
BPQBlockProcessor::prepare rather than creating information afresh.

To assist with management and monitoring, some additions and improvements have been made to the BPQ
commands and the bundle info command:

14/06/13 Page 25 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

• added command bpq list which lists the query values for the current BPQ cache entries

• added command bpq lru which lists the query values in the BPQ cache in the order of the least recently
used (LRU) list with the most recently used item first.

• improved bundle info <bundleid> command so that it prints the contents of the BPQ block as well
as its existence and size. This is done by providing an overloaded BPQBlockProcessor::format method
rather than using the base class version.

• Additional locks have been provided to ensure that the whole BPQ cache is locked when manipulating the
list of cache entries as well as the existing locks for each fragment list.

5.3.2 Changes to BPQ Extension Block and BPQ Cache

As of the publication of this report this changeset is in preparation and will be submitted for incorporation
into the main source code very shortly. The main purpose of these changes is to add the query_id field to the
BPQBlock in order to carry the msg-id used by the NetInf protocol to correlate requests and corresponding
responses. Some additional work has been carried out to manage the association between the on-the-wire
binary representation and the internal BPQBlock structure referenced through the locals_ element in the
Block.

• The use of BPQBlocks in both the API and on the generation of responses to queries internally in the BPA
requires elements of the BPQBlock to be initialized from multiple different sources. The
BPQBlockProcessor::init_block method is used to carry out this initialization. This method is a virtual
method that is declared and implemented in the base class BlockProcessor form which the various block-
specific block processing classes, including BPQBlockProcessor are derived. In order to localize the
code that modifies the internal data of the BPQBlock, a generic mechanism has been created that allows a
set of flags to be passed in to the init_block method which can be interpreted by specific specializations of
the init_block method. The two cases where fields of BPQBlock are modified are

• On creation of a bundle with a BPQBlock from the APIServer::handle_send method, the initial
values of the creation timestamp fields have to be copied from the main bundle metadata (as
described in Section 5.3.1). In this case all the remaining fields are initialized from the data supplied
by the application in the API call but the application is not able to correctly set the creation data.

• On creation of a response bundle from a bundle in the BPQ cache, the query_id field has to be
copied from the BPQBlock in the bundle that contained the query instead of the value in the cached
bundle. In this case the creation timestamp fields and all the other fields are copied form the cached
bundle.

To avoid polluting the base class with derived class specific items and to allow elements (such as the
BPQBlock) to be omitted from instantiations of the BPA by appropriate configuration, the concept of
transfer_flags has been introduced. A class variable transfer_flags_ in BlockProcessor holds the next
available flag bit. Derived processors can allocate a new flag bit on first use by calling
BlockProcessor::new_transfer_flag. A parameter has been added to BlockProcessor::init_block and all
the corresponding routines in derived classes to pass in relevant transfer flags. Flags for the two cases
mentioned have been created and are used as appropriate in the calls of init_block in
DTN2/applib/APIServer.cc, DTN2/servlib/bundling/BPQBlockProcessor.cc and
DTN2/servlib/bundling/BPQResponse.cc. Note that the avoidance of pollution was not total – because
of calling init_block for all blocks in APIServer.cc the create_ts flag had to be created in
BlockProcessor rather than BPQBlockProcessor.

• When the BPQBlock was introduced (changeset 3528) the file DTN2/applib/dtn_types.h was manually
modified. This is not supposed to happen because this file is automatically generated by rpcgen from
DTN2/applib/dtn_types.x. The BPQ specific types that were added are not needed by the generated RPC

14/06/13 Page 26 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

code for the API. They have now been moved to a separate header file DTN2/applib/bpq_api.h so that
dtn_types.h can be generated from dtn_types.x again. Note that aome changes have been made to
dtn_types.x (see next bullet and Section 5.4.

• For convenience in examining received bundles, the field payload_len has been added to
dtn_bundle_payload_t in the API specification file dtn_types.x. This field is not checked or used when
sending bundles from applications but is set when a bundle is retrieved using receive or peek bundle.

• The field query_id and the associated query_id_len have been added to the BPQBlock specification.
query_id_len is encoded as an SDNV and represents the length in octets of the string in the query_id field.
The query_id is intended to carry a random string that can be used to correlate requests and responses as in
the NetInf protocol. To assist with generating suitable strings, the function make_random_string has been
provided. The code is in DTN2/applib/mkrandstr.c and a corresponding header file mkrandstr.h is also
available.

• The three applications provided in DTN2 that handle BPQ blocks (dtnquery, dtnresponse and dtnpublish)
have been refactored and some common code transferred to DTN2/applib/bpq_api.c. The interfaces for
these common parts are declared in bpq_api.h along with the structure definitions removed from
dtn_types.h.

• An enumerated type definition for the matching_rule field in the BPQ block has been added to bpq_api.h.
Code that reference the matching rule in BPQBlock has been altered to use the type matching_t in place
of u_int as appropriate.

• Constant definitions for the ontology values of the two metadata block kinds used in NetInf have been
added to bpq_api.h.

• An enumerated type providing values for the type field in different sorts of BP blocks has been added to
DTN2/applib/dtn_api.h mirroring the corresponding BPA table in BundleProtocol.h.

• An enumerated type providing values for the ontology specifier in metadata blocks has been added to
dtn_api.h. This provides values for the one formally defined ontology (ONTOLOGY_URI = 1) and the
lower and upper limits for experimental ontologies (respectively 192 and 255).

• Support for adding JSON encoded metadata to NetInf protocol bundles has been added to the applications
that handle BPQ blocks (dtnquery, dtnresponse and dtnpublish). Applications that send bundles now have
an option for inserting a JSON ontology Metadata block (see Section 5.6). To support this a simple JSON
checking parser and pretty printer has been added to the code; the code is in DTN2/applib/json.c with
associated declarations in json.h. The JSON code does not cater for modifying the generated JSON patse
tree. It is expected that the metadata value will be supplied as a JSON encoded string that can be checked
using the parser and may be displayed with the pretty printer.

• Command line optiosn were added to dtnpublish and dtnquery to allow the user to specify the metadata
string and the query_id (aka the msg-id).

• The makefile for the applications library (DTN2/applib/Makefile) has been modified to compile the
three extra components (bpq_api.c, mkrandstr.c and json.c).

5.4 Introduction of 'Publication' Status Reports
When a bundle with a BPQBlock with a bpq_kind of any of
BPQ_BLOCK_KIND_RESPONSE, ...RESPONSE_DO_NOT_CACHE_FRAG or ...PUBLISH arrives and the
node decides to cache it in the BPQ cache, then it is desirable to inform the publishing node that bundle has
been cached and can therefore be retrieved from the node that cached it. To do this, a new type of status
report has been implemented This is known as a 'publication receipt'.

Adding the status report is simple but seesm to affect an inordinate number of files! These are in
DTN2/servlib/bundling unless otherwise specified.

14/06/13 Page 27 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

• The flag publication_rcpt_ is added to the bundle metadata in Bundle.h.

• Accessor and setter routines for publication_rcpt_ are defined in Bundle.h.

• In BundleStatusReport .h the flag STATUS_UNUSED (value 0x40) has been redefined as
STATUS_PUBLISHED and an extra timestamp publication_tv_ added to the struct data_t.

• The method parse_status_report in BundleStatusReport.cc has an extra sehment added to encode the
publication_tv_ when the report flags indicate a publication report.

• In DTN2/applib/dtn_types.x an extra delivery option flag DOPTS_PUBLICATION_RCPT (value 1024)
is added to dtn_bundle_delivery_opts_t and the field publication_ts is added to
dtn_bundle_status_report_t.

• In DTN2/applib/dtn_api_wrap.cc added the fields publication_ts_seqno and publication_ts_secs to the
dtn_status_report structure. In the functions dtn_recv and dtn_peek copy the values for these two fields
from the corresponding fields in the API dtn_bundle_status_report_t data structure when the bundle
contains a status report.

• In DTN2/apllib/APIServer.cc, the methods handle_recv and handle_peek set the delivery option
DOPTS_PUBLICATION_RCPT bit in the returned bundle specification data structure if selected in the
bundle metadata and transfer the publication time in the status report structure if the bundle is a status
report.

• Similarly, handle_send sets the publication_rcpt flag in the created bundle if the APR delivery option
specify DOPTS_PUBLICATION_RCPT. (Applications can't generate status reports).

• A number of applications report on status blocks received and were extended to provide information for
the publication receipt. In each case this involved duplicating the code for other status report topics:

• DTN2/apps/dtnperf/dtnperf-client.c
• DTN2/apps/dtnping/dtnreporter.c
• DTN2/apps/dtnping/dtntraceroute.c
• DTN2/applib/bpq_api.c

• In the process of inserting code for publication reports it was discovered that some of the code had not
been updated to include some of the other delivery options. This was corrected in parallel with adding the
publication report code:

• In APIServer::handle_send testing if the bundle was asking reports with a source EID of dtn://none
omitted DOPTS_ACKED_BY_APP_RCPT. Also the options flags
DOPTS_ACKED_BY_APP_RCPT and DOPTS_DO_NOT_FRAGMENT were not transferred to the
bundle metadata.

• In APIServer::handle_recv and ::handle_peek the status report request
DOPTS_ACKED_BY_APP_RCPT was not transferred from the bundle to the API data structure

• In DTN2/applib/dtn_types.x, DOPTS_ACKED_BY_APP_RCPT was not defined..

• In DTN2/apps/dtnping displaying status reports for DOPTS_ACKED_BY_APP_RCPT was omitted
in both dtnreporter.c and dtntraceroute.c. In dtntraceroute.c a status report for
DOPTS_ACKED_BY_APP_RCPT was also requested.

5.5 Metadata Block Processing
The NetInf over DTN CL described in Section 3.1.2 uses a Metadata extension block carry the affiliated data
for NDOs being retrieved or published6. Accordingly it was necessary to ensure that DTN2 worked correctly

6 Reminder: the term affiliated data is defined in the NetInf Protocol specification [KUTSCHER2012] and subsumes
metadata that is associated with the nature of the NDO (for example its content type, descriptions of the data and

14/06/13 Page 28 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

with the current definition of Metadata Extension blocks [RFC6258]. It appears that the Metadata block sub-
system in DTN2 has not been much exercised. A brief query to the DTN Users mailing list did not bring any
users out of the shadows, so it seems that the problems noted below are long standing. I have attempted to
remedy them but the solutions implemented in some cases might need further refinement.

5.5.1 Problems Detected

This section provides some more details on the problems detected in the handling of Metadata blocks.

5.5.1.1 Non-conformance with Published Specification
On inspection it became clear that DTN2 had not been synchronized with the public specification of the
Metadata block. The block specific data of the Metadata block contains two fields:

• The Metadata Type (also known as the Ontology) encoded as an SDNV (Self-Defining Numeric Value)

• The Metadata Field that is an array of octets occupying all the remaining space in the block

The specification assumes that the length of the Metadata Field is defined by the overall length of the block
data in the block header field less the (self-defining) length of the Ontology field. The code in DTN2
expected an additional SDNV length field after the Ontology. There were comments to the effect that this
was incorrect but the code had not been adjusted.

5.5.1.2 Possible Inappropriate Use of API Data Structure
The API data structure in which Metadata blocks were exchanged between the BPA and applications was
(arguably) being misused in that the extension block type field in the API structure dtn_extension_block_t
(see DTN2/applib/dtn_api.h) was being used to carry the Metadata Ontology type rather than the extension
block type rather than it being encoded as an SDNV in the data_val field.

5.5.1.3 Differences in Handling Between Generated and Received Blocks
The design of the DTN2 BPA follows the Metadata block specification that allows for Metadata blocks to be
generated internally and added to a bundle before it is forwarded on a particular link. As far as I am aware,
this capability has never been used but the BPA could handle it if required and there is extensive code to
handle these blocks. There was a distinction between such generated blocks and ones read from the network
in the way that the internal pointers to the Metadata Field data were handled. In the case of generated blocks
it was expected that memory would be specially allocated for the Metadata Field content and explicitly
deleted when the MetadataBlock instance was deleted. However for received blocks, the Metadata Field
pointer was pointed into the received data string and memory was not allocated separately. This optimisation
unfortunately failed to take account of the std::list copy/destruct mechanism discussed in Section 5.3. The
consequence of this was that for non-generated bundles the Metadata Field pointer could become corrupt
because it was just copied by the copy constructor but the underlying data got reallocated by the copy
constructor with the result that the Metadata Field was pointing at freed memory.

5.5.1.4 Disposition of Metadata Blocks Received over Network and API
Looking at the code in DTN2/applib/APIServer.cc::handle_send before this work started (i.e., previous to
changeset 3518) , it appears that Metadata blocks attached to a bundle received from the API were to be
treated as generated Metadata blocks (see Section 5.5.1.3) rather than an integral part of the bundle created
by the registered application. This treatment does not seem appropriate as the metadata was created to go
with the bundle and it isn't really different from data received from a network connection.

This also lead to the same problem that was identified with other extension blocks whereby they were not
incorporated into locally delivered bundles. A partial fix of this problem was added at changeset 3518 but
this did not set up the locals_ pointer to the decoded data in the block. It also lead to two copies of the block

search tokens that selected the data) and any data that is related to the operation of the NetInf protocol such as
additional locators where it might be retrieved,

14/06/13 Page 29 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

being added to bundles that were sent over network links rather than locally delivered. The second copy
came from the insertion of the Metadata block into the generated_metadata list for the 'null link'. The
generated_metadata structure potentially holds sets of extra generated metadata to be associated with
particular links. This would be created to be sent across either a specific link or (using the 'null link' fudge)
all links being incorporated into copies of the bundle sent on the specified link(s). This capability has not
been much used. There was a proposal for modifying metadata blocks in transit in the Intentional Naming
proposal [draft-pbasu-dtnrg-naming] (now long expired); the security protocol which was seen as a candidate
for using this capability addresses the problem in its own way and doesn't use standard Metadata blocks.
Any use of the generated Metadata blocks would almost certainly require the BPA to understand the
semantics of the relevant metadata blocks: whether this is desirable is unclear but it might be acceptable if
the metadata was associated with a routing protocol rather than being application-specific.

Turning to Metadata blocks received over network links, currently these blocks are paced on the recv_blocks
list of the bundle and generally treated as opaque data. The Metadata block is also placed on the
recv_metadata list of the bundle by MetadataBlockProcessor::parse_metadata but this list is currently
'write-only' within the BPA although it is made available to external routers and convergence layers. The
recv_metadata list plays no part in generating the outgoing bundle data when the bundle is forwarded.
However there is extensive code to allow received metadata to be modified before being added to outgoing
bundles. As noted previously this capability is essentially unused.

5.5.2 Improvements and Fixes for Metadata Block Code

This section gives an overview of the remedies that have been adopted to remedy the issues noted in
Section 5.5.1.

5.5.2.1 Carrying Metadata Blocks Across Application Programming Interface
On the BPA side, the methods handle_send, handle_recv and handle_peek in DTN2/applib/APIServer.cc
that deal with the dtn_extension_block_t type and Metadata blocks have been modified to use the type in the
same way as for other extension blocks, i.e., the block type is set to METADATA_BLOCK and the ontology
and metadata field are carried in the data area of the dtn_extension_block_t.

Additionally, checks are performed to verify that the block types in the extension blocks and metadata list
have appropriate block types.

On the application side, the following applications in the DTN2/apps directories that handle metadata blocks
have been modified to match with the BPA side:
• dtnpeek
• dtnrecv
• dtnsend
• dtnsource
• dtnpublish
• dtnquery
• dtnrespond

On reflection, this change may be inappropriate as it requires additional work in all the applications to
encode the ontology as an SDNV. Since the problems with the format of the Metadata block on the wire
have not caused issues, it perhaps indicates that the Metadata part of the API is currently little used but it
would reduce the complexity of applications slightly if the 'misuse' of the dtn_extension_block_t was
perpetuated. Reversing this change will be considered before the change is published.

14/06/13 Page 30 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

5.5.2.2 Matching MetadataBlock Coding to Specification
The encoding of the 'on-the-wire' format of the Metadata block has been modified to conform to the
specification in [RFC6258]. This affects the methods handle_send, handle_recv and handle_peek in
DTN2/applib/APIServer.cc and MetadataBlockProcessor::parse_metadata in DTN2/servlib/bundling.

In order to avoid confusion with the overall DTN (extension) block type, the Metadata type is now known
throughout as ontology.

Also checks have been inserted to check that the ontology value is a legitimate known value, currently either
ONTOLOGY_URI (1) or in the agreed experimental range (192-255).

5.5.2.3 Dynamic Memory Allocation in Metadata Blocks
To avoid problems with hidden copying of Metadata blocks referenced through the locals_ data member of
the Block class that holds a MetadataBlock, all MetadataBlocks now allocate dynamic memory to hold the
metadata field rather than pointing into the binary representation held in the Block class instance. A copy
constructor that handles allocating this memory and copying the value from original to copy has been
created. Accordingly there is now no need to distinguish generated and received blocks when creating,
updating, copying or deleting this data.

5.5.2.4 Placement of Metadata Blocks when using API to Send Metadata
In APIServer::handle_send metadata blocks are now only placed in the api_blocks list of the bundle under
construction They are no longer placed in the 'null link' generated_metadata list. For convenience the
method MetadataBlockProcessor::init_block has been created for consistency with other types of block
and is used to construct the Block instance and the MetadataBlock referenced in its locals_ This method
uses MetadataBlockProcessor::parse_metadata to create the MetdataBlock so that all metadata blocks
are now created by a single method.

5.6 Introduction of JSON Ontology Type for Metadata Blocks
To support the NetInf protocol by carrying the affiliated data in various messages, a Metadata block ontology
was defined that carried a JSON encode string as its metadata field. Initially this uses an ontology code from
the experimental range but may be formally specified in future and a ontology code allocated from the main
range.

Support for JSON strings in the API was introduced as descibed in Section 5.3.2.

5.7 Completion of SWIG Generated Scripting Interfaces
The NetInf NIlib components that are used to interface with the DTN2 BPA are primarily written in Python.
It was therefore decided to use Python scripting interface to send and receive bundles via the DTN2 API.
Unfortunately when initial tests with the code were carried out it was discovered that the DTN2 scripting
interface was incomplete. In particular it could not handle either the lists of extension blocks or lists of
metadata blocks that are passed across the API if extension or metadata blocks are to be included in bundles.

Initial investigation seemed to indicate that the reason that this 'hole' had been left in the scripting interface
was that the SWIG tool7 was not able to deal generically with nested structures. The arrays of extension
block structures in the bundle interface appears to be just such a nested structure.

At first it appeared that this my prove to a 'showstopper' since it might just be possible to write scripting
language specific code for the Python interface but this would definitely not be generic and it looked as if it

7 SWIG (Simplified Wrapper and Interface Generator) is an open source software tool that converts an interface
wrapper program, written in either C or C++, and an interface specification file into an interface module in one of a
variety of scripting languages. DTN2 uses SWIG to provide scripting language support for its API in PERL, TCL
and Python (version 2).. More details on SWIG can be found at SWIG web site.

14/06/13 Page 31 of 64 Version 1.3

http://www.swig.org/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

would be very complex. Investigating the problem on the web seemed to confirm that there was no easy
solution, at least in the general case.

I was just about to give up when I noticed that in fact somebody had done all the hard work for me.
Essentially it was a solution for the particular case that we have for DTN2 rather than a fully generic solution
to the nested structure problem, but that is of no consequence. The SWIG library turns out to support vectors
of structures that are derived from the STL/C++ library vector template. Since the arrays of extension and
metadata blocks can be expressed as vectors of extension block objects, this provides all the support that is
needed. This useful library is documented in the SWIG manual at SWIG Library - STL/C++ for vectors
(library section 8.4.2). I was somewhat surprised that this capability had not been mentioned in any of the
many discussions of essentially similar problems on forum postings. Thanks are due to a certain
Luigi "The Amazing" Ballabio who is credited with writing the SWIG vector.i code without which all this
would have not been possible (at least in a finite time).

After some experimentation, I was able to build the requisite dtn_extension_block_list structure and provide
a constructor for a specific length of list and a destructor that are 'attached' to and extend the standard
mechanisms that SWIG constructs for a C structure. This effectively turns what is a C structure into a class.
See section 5.5.6 of the SWIG manual Adding Member Functions to C Structures. This is slightly odd
because the wrapped interface is a C++ interface. However the 'hybrid' appears to work at least in Python.
The relevant slightly magic incantations to provide the vector structure are added to DTN2/applib/dtn_api.i
this is then used in the SWIG interface wrapper DTN2/applib/dtn_api_wrap.cc in a conventional way to
move data from the wrapper data structures to the standard API structures (in dtn_send) and vice versa (in
dtn_recv and dtn_peek.

Two extra parameters have been added to the dtn_send method to carry the extension blocks and metadata
blocks methods. The dtn_extension_block_list structure holding the extension blocks is shown in Figure 6.

14/06/13 Page 32 of 64 Version 1.3

struct dtn_extension_block {
unsigned int type;
unsigned int flags;
string data;

};

typedef struct dtn_extension_block *dtn_ext_block_ptr;
struct dtn_extension_block_list {

vector<dtn_ext_block_ptr> *blocks;
};

Figure 6: Structures used to carry extension block lists in scripting interface

http://www.swig.org/Doc1.3/SWIG.html#SWIG_nn32
http://www.swig.org/Doc1.3/Library.html#Library_nn15

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The dtn_bundle structure returned by dtn_recv and dtn_peek has been extended to carry the lists of
extension blocks and metadata blocks as shown in Figure 7.

For convenience, the lengths of the two lists are carried as separate entries extension_cnt and metadata_cnt.

14/06/13 Page 33 of 64 Version 1.3

struct dtn_bundle {
 string source;
 string dest;
 string replyto;
 unsigned int priority;
 unsigned int dopts;
 unsigned int expiration;
 unsigned int creation_secs;
 unsigned int creation_seqno;
 unsigned int delivery_regid;
 string sequence_id;
 string obsoletes_id;
 string payload;
 unsigned int payload_len;
 bool payload_file;
 unsigned int extension_cnt;
 unsigned int metadata_cnt;
 vector<dtn_ext_block_ptr> *extension_blks;
 vector<dtn_ext_block_ptr> *metadata_blks;
 dtn_status_report* status_report;
};

Figure 7: Structure of a bundle with extension block lists in scripting interface

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The text box (Figure 8) shows an example of how to build a list of metadata blocks to add to a dtn_send call
in Python:

14/06/13 Page 34 of 64 Version 1.3

Build an extension blocks structure to hold the maximum of 2 blocks
meta_blocks = dtnapi.dtn_extension_block_list(2)

Construct the JSON metadata block (if any)
if req.metadata is not None:
 md = Metadata()
 md.set_ontology(Metadata.ONTOLOGY_JSON)
 md.set_ontology_data(json.dumps(req.metadata.summary("http://example.com")))
 json_block = dtnapi.dtn_extension_block()
 json_block.type = METADATA_BLOCK
 json_block.flags = 0
 json_block.data = md.build_for_net()
 meta_blocks.blocks.append(json_block)

Construct a payload placeholder for GET case with no content
This distinguishes an empty payload file from the no content case
if (req.make_response and
 (req.req_type == HTTPRequest.HTTP_GET) and
 (req.content == None)):
 md = Metadata()
 md.set_ontology(Metadata.ONTOLOGY_PAYLOAD_PLACEHOLDER)
 md.set_ontology_data("No content available")
 pp_block = dtnapi.dtn_extension_block()
 pp_block.type = METADATA_BLOCK
 pp_block.flags = 0
 pp_block.data = md.build_for_net()
 meta_blocks.blocks.append(pp_block)

….

Send the bundle
bundle_id = dtnapi.dtn_send(dtn_handle, regid, src_eid, destn_eid,
 report_eid, pri, dopts, exp, pt,
 pv, ext_blocks, meta_blocks, "", "")

Figure 8: Sending a bundle with metadata blocks using Python interface

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The second text box (Figure 9) shows how to examine the metadata blocks in a received bundle:

5.8 Preallocation of BlockInfo Lists and Creation of BP_Local Data
The class BlockInfoVec is extensively used in DTN2 bundles to hold lists of the blocks from which bundles
are constructed. BlockInfoVec has the STL/C++ standard library templated class std::vector as a base class.
As lists are assembled a number of the methods such as append and push_back of the std::vector base class
are invoked to insert blocks into the list. These methods can be rather inefficient in that if they need to
expand the underlying array of items in the vector, this is done by reallocating the vector and copying (rather
than moving) all the existing items into the new vector. The old entries are then deleted. The copying and
deletion are all hidden inside the std::vector implementation.

This means that care has to be taken that there is a copy constructor for any item held either directly in a
vector or indirectly through being a data member of an item held in a list.

In order to avoid repeated copying and deletion, it is possible to preallocate the underlying array to a size that
will hold all the entries expected to be placed in the list using the reserve method. This has now been done in
several places in the DTN2 code. These include:

• DTN2/applib/APIServer.cc method dtn_send.

• DTN2/applib/dtn_api.i in the construction of scripting interface extension block lists.

• DTN2/applib/dtn_api_wrap.cc in the construction of bundle extension and metadata block lists in
dyn_recv and dtn_peek.

• DTN2/servlib/bundling/BPQResponse.cc in create_bpq_response when copying the api_blocks and
recv_blocks vectors.

However, when bundles are being constructed from data received over the network, the BP does not provide
an indication of the number of blocks making up a bundle in the primary block so it is impossible to
effectively preallocate the block vector. To minimize the amount of copying and reallocation in this case, the

14/06/13 Page 35 of 64 Version 1.3

Get the received bundle
bpq_bundle = dtnapi.dtn_recv(dtn_handle, dtnapi.DTN_PAYLOAD_FILE,
 recv_timeout)
…

Does the bundle have a Metadata block of type JSON or
PAYLOAD_PLACEHOLDER
json_data = None
has_payload_placeholder = False
if bpq_bundle.metadata_cnt > 0:
 self.logdebug("Metadata count for bundle is %d" %
 bpq_bundle.metadata_cnt)
 for blk in bpq_bundle.metadata_blks:
 if blk.type == METADATA_BLOCK:
 md = Metadata()
 if not md.init_from_net(blk.data):
 self.loginfo("Bad Metadata block received")
 break
 if md.ontology == Metadata.ONTOLOGY_JSON:
 json_data = md
 elif md.ontology == Metadata.ONTOLOGY_PAYLOAD_PLACEHOLDER:
 has_payload_placeholder = True
 self.logdebug("Have placeholder: %s" %
 md.ontology_data)
 else:
 self.logwarn("Metadata (type %d) block not processed" %
 md.ontology)

Figure 9: Examining the metadata blocks in a bundle using the Python interface

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

construction of the internal format of the block data stored in the locals_ data member should be postponed
until the vector has been completed. This can be handled by gnerating the internal form in the validate
method for the block type which is called once the complete bundle has been received. This has been done
for the BPQBlock class which has an extensive local data structure (see BPQBlockProcessor::validate).8

Similarly, the generation of the internal form can be handled in the reload_post_process method when the
blocks are being read in from persistent storage when the BPA is being restarted.

6. Development of NIlib Python Code
An extensive library of code has been created in the Python scripting language to implement the NetInf
Information Centric Networking protocol running over HTTP/TCP and DTN Bundle Protocol convergence
layers. This library has been developed primarily by Elwyn Davies with contributions from Stephen Farrell.

The two convergence layers interoperate via a gateway that can receive messages over either convergence
layer and forward them over the same or an alternative convergence layer depending on the availability of of
transport protocols on the link to the next hop NetInf node.

6.1 A Little History
During the earlier stages of the SAIL project, a number of participants cooperated in developing an
information centric naming scheme that would use a cryptographic hash digest of the information object to
tie the name to the content in a way that could not be readily forged and could be verified by a user without
requiring any network infrastructure to carry out the verification. This scheme was published as an Internet
Draft entitled 'The Named Information (ni) URI Scheme: Core Syntax' in October 2011 [FARRELL2011].

This draft was promoted in the IETF DECADE (Decoupled Data Enroute) working group that was proposing
to develop an architecture for access to data stored in in-network caches. However this working group was
not very successful and was closed down in September 2012 without achieving its aims.

In parallel with the DECADE work, participants in the SAIL project decided to create an experimental
protocol that would allow information objects named using the ni URI scheme to be published, searched and
retrieved from in-network caches. The specification for this protocol has been published as an Internet Draft
[KUTSCHER2012] and the specification of the ni naming scheme in a later version [FARRELL2012] has
been accepted for publication as an RFC. The resulting NetInf protocol and two convergence layers are
described in Section 3. of this document.

Development of an implementation of the NetInf protocol started at a 'codesprint' during the SAIL meeting
in Lisbon during January 2012. It was decided that a number of different language implementations would
be prototyped to allow potential users maximum flexibility in choosing an implementation to use and to
exploit the skills of the SAIL participants to best effect.

Stephen Farrell created a C language command line tool to generate ni names for Named Data Object
(NDOs) as they came to be known, and provided a PHP plug-in for an Apache web server that provided a
form that allowed the user of a web browser to publish an NDO using its ni name and retrieve NDOs from
the cache created by the Apache server.

I created a modified version of the 'wget' command line web access client that could retrieve NDOs using the
'.well-known' form of the ni name that can be used directly with the HTTP protocol to retrieve NDOs.

I then went on build prototype NetInf command line clients (nicl, niget, nipub and niserach) to implement
the basic message types of NetInf over the HTTP and TCP convergence layer and a standalone (rather than
Apache plugin) HTTP server that was dedicated to serving NetInf protocol requests. The server could be
accessed either from the command line clients or a web form as with the initial PHP server.

8 It would improve performance to do the same for security blocks which currently create the locals in consume rather
than validare..

14/06/13 Page 36 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The initial Python implementations made extensive use of the standard Python HTTP, URLLIB and CGI
libraries to handle the low level aspects of the HTTP protocol.

Subsequently the initial prototype has been improved and refactored to improve performance and allow a
number of variant mechanisms to be incorporated with the core server engine. During Autumn 2012 the
code was further reworked so that the HTTP server could be configured either as a standalone server or as an
Apache plug-in using the Python WSGI (web Server Gateway Interface) framework9 and the Apache
mod_wsgi module10. Also provision was made for the metadata cache for NDOs cached by the servers to be
held in a Redis NoSQL database11 as opposed to the files that were used in the earlier versions. This was
done to examine the relative performance of the two schemes. The actual content is held in the filing system
as individual files mainly because of the constraints on the size of the Redis database which is caxched in
memory during operation. Various performance tests have been carried out using the mod_wsgi server.

The most recent developments have been

• the addition of forwarding mechanisms to allow requests to be sent to other servers if an NDO is not
found in a particular server's cache using location hints and simple name resolution information, and

• the implementation of the DTN convergence layer with the HTTP↔DTN gateway and command line
tools that can use either the HTTP or the DTN convergence layer dependent on the format of the target
locator supplied.

This latest code has been incorporated into the NetInf Device and was demonstrated at the SAIL final
demonstration event in Kista, Sweden in February 2013. Final tidying up of this code will lead to a further
release of the latest code on the Sourceforge repository where the NIlib is available as Open Source
Software.

6.2 Licensing
The NIlib Open Source Software can be downloaded from the Sourceforge NetInf repository at the NetInf
Software Repositiory. The majority of this software is subject to the Apache 2 software license12. Some
small parts are modifications of standard Python software and are therefore subject to the Python Software
Foundation license. Finally, two modules are subject to the MIT licence. All of these licenses are approved
by the Open Source Initiative allowing free redistribution, incorporation in products and creation of
derivative works.

6.3 Documentation
The Python portion of the NIlib is fully documented with extensive comments using Doxygen style markup.
The documentation can be extracted from the source code using Doxygen13 in association with the input filter
doxypy14. The documentation can be viewed on line at http://tcd.netinf.eu/doc.

6.4 Code Volume and Installation
The Python NIlib consists of about 60 original files with more than 10000 code statements. The Python
code is configured as a Python module and can be built and installed using the standard Python setuptools.
There is also a script install-nilib-wsgi.sh to construct an Apache virtual host file which will create a server
that runs the WSGI-bases NetInf server.

9 More information on WSGI can be found at the WSGI web site
10 More information and code download for mod_wsgi can be found

at modwsgi - Python WSGI adapter module for Apache
11 More information on Redis can be found at the Redis web site
12 A copy of the Apache 2 License can be obtained from http://www.apache.org/licenses/LICENSE-2.0
13 More information on Doxygen can be found at Doxygen - documentation from Source Code
14 More information on doxypy can be obtained from Doxypy wrb site

14/06/13 Page 37 of 64 Version 1.3

http://tcd.netinf.eu/doc
http://code.foosel.org/doxypy
http://www.doxygen.org/
http://opensource.org/
http://sourceforge.net/projects/netinf/
http://sourceforge.net/projects/netinf/
http://www.apache.org/licenses/LICENSE-2.0
http://redis.io/
http://code.google.com/p/modwsgi/
http://www.wsgi.org/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.5 Design Considerations
This section outlines a number of design issues that had to be taken into account when creating the NILib
Python code.

6.5.1 NDO Content Size and Digest Generation Efficiency

The design of NetInf assumes that NDOs will be treated as single units rather than broken into chunks or
fragments. The content of NDOs may therefore be very large files. The ni URI naming scheme involves
creating and/or verifying that a cryptographic hash digest of the content. It is desirable that the tools used to
send and receive NDOs are able either to verify that the ni name used to access an NDO matches with the
content received during retrieval or be able to generate or verify the ni name during publication.

Given that very large size content may be involved, it is likely that NDO content can not be handled purely
in memory buffers and hence will have to be written directly to disk files. It would preferable if it was not
necessary to reread these files in order to compute the digest. Accordingly the code incorporates
mechanisms to avoid the use of large memory buffers and, wherever possible, rereading of files.

In the case of the HTTP convergence layers:

• The PUBLISH operation transmits the content from client to server. As explained in Section 3.1.1.2, the
content is encoded as a MIME multipart/form-data structure when the content octets are to be sent with
the request. For convenience the client that performs the publication may wish to construct the ni name
from the content in a 'conventionally' named file rather than having the user supply the ni name as a
parameter. The standard Python modules for handling HTTP clients and form data only deal with
application/x-www-form-urlencoded format and expect that any data to be sent is in memory buffers. I
have therefore created special modules that will create a multipart/form-encoded body for the POST
request, stream the content file directly from the source file to the HTTP socket, digest the content as it is
streamed to the server and send the resulting ni name built from the digest as a trailing parameter once the
file has been sent. This means that the content file only needs to be read once and the digest and network
operations are effectively running in parallel. Unfortunately it is not so easy to handle the reception of the
content at the server so efficiently. In general the publishing server will wish to verify the digest it is
supplied with but it is not generally possible for the CGI module that interprets the incoming form to know
that it should be digesting the content until the whole form has been received and the form processor has
interpreted the result. Thus at present verifying the digest in the server requires that the content is buffered
by the incoming CGI processing and then digested as it is transferred to its permanent file in the NetInf
cache run by the server. However, at least on Linux and similar operating systems, with an appropriate
choice of position for the transferred file, the naming of the file in the cache can be changed to reflect the
verified digest (assuming this is how content files are managed) without needing to copy the data again.

• The GET operation transmits the content from server to client. It is assumed that the server trusts the
information in its cache as it is verified at publication time. Thus on the server efficient sending of content
with GET-RESPONSE messages just requires the file to be streamed directly form the cache file to the
network connection. In the client, a response that contains the content octets will be a three section MIME
multipart/mixed object. The client is aware of this and can plan for the third of the three MIME objects to
be a file which it has to digest. The digest algorithm to use is known from the ni name that is being
retrieved so the digest can be calculated as the MIME data is read from the network. A specialized version
of the Python standard email message parser has been created to read the content directly into a file and
create the digest while transferring the content. As a result, the digest generated from the incoming
content can be checked against the ni name as soon as the content has been received without needing a
large memory buffer or rereading the data.

• The SEARCH operation is less critical since neither request nor response is expected to be very large and
neither has to be subjected to the digesting process.

14/06/13 Page 38 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

For the DTN convergence layer, the sorts of optimisation that have been achieved for the HTTP convergence
layer are more difficult to achieve, and are probably less relevant because synchronous communications will
not generally be taking place. Currently the PUBLISH operation client has to read and digest the content if
it isn't supplied with the full ni name. It then passes the content file to the DTN BPA as a file and the BPA has
to read the file again when sending to the network. It is not clear that this can be optimized because the two
operations may be separated in time if a relevant link is not open when the publication occurs. Also at
present, the BPA is not set up to verify the digest of bundles that it caches. It would be possible to construct
the digest as the bundle is read from the network link but would several kinds of 'layer violations' to inform
the PayloadBlockProcessor that it was expected to do this and would add significant amounts of NetInf
specific code to the general purpose BPA. Similarly the GET operation client receives the content as a file.
Verifying the digest of the content requires reading this file and digesting the content, unless the client is
prepared to trust that the local BPA has checked the digest for it which could be done as the content is
received from the network. Also the client has no control over the location or ownership of the bundle
payload file so that it may be necessary to copy the file to a new file that is owned by the client's user and in
a directory that the owner controls15. So at present the DTN CL dos not attempt any optimisations with the
result that content files may be read and written several times.

6.5.2 Multithreaded and/or Multiprocess Clients and Servers

If the tools provided by this library are to be of significant value in performance testing and any sort of non-
trivial usage, they must be designed to provide parallel processing for requests in many circumstances.

In the case of the HTTP CL, clients and servers communicate over a TCP connection. Accordingly HTTP
CL servers need to be able to handle multiple client connections in parallel. The code that has been written
for the Python NIlib satisfies this requirement:

• There is a standalone multithreaded HTTP CL server that creates a new thread to service each connection
(see Section 6.6.6.3)16

• The Apache 2 WSGI plug-in that is also available can operate both with multiple processes servicing
requests and multiple threads within each of the processes.

• Note that the WSGI test harness does not provide either muktiprocess operation or multithreading.

The DTN CL gateway is rather less sophisticated at the BPA connection level and serialises requests and
respnses over (separarate) single connections. It is not clear that anything much better could be achieved
without modifying the way in which the DTN2 BPA API server works as there is no equivalent at the DTN
EID level of the way that the TCP listener mechanism. However, once inside the gateway, any forwarded
requests are handled in parallel and delays on a particular forwarded request do not impact on other
requests17. Effectively the gateway also implements parallel processing of clients if a request is formwarded
to several locators.

The basic command line clients only expect to contact a single locator to handle a NetInf request and so no
attempt has been made to provide multiprocessing or multithreading. However test clients (see
Sections 6.6.4.3 and 6.6.4.6) that are intended to issue a multiplicity of requests are written to use multiple
processes, creating a new process per request using the Python multiprocessing module.

For the present the level of multiple request parallel processing appears to meet the requirements.

15 This is a deficiency of the DTN2 BPA which it would be useful to correct but could be difficult given that the BPA
is potentially accessed by multiple different client owners.

16 There are limitations to the extent to which a multithreaded server written in Python can exploit a muilti-core or
multi-processor machine due to the way the Python interpreter is written. However it would be fairly trivial to
convert the multithreaded standalone server into a multiprocess standalone server by using the ForkingMixIn in
place of the ThreadingMixIn (just matter of changing the base class of NIHTTTPServer).. However, this would
also necessitate using the cache_multi.py module for the NDO cache manager as inter-process file locking is
needed.

17 Unless, that is, several requests hang up at the same time and clog the available processes.

14/06/13 Page 39 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6 Overview of Python NIlib Modules
This section contains brief notes about each of the modules written for the Python NIlib Repository. Unless
explicitly specified the modules can be found in the python/nilib sub-directory of the repository. The
repository contains a README file which provides a change log and summary of what is available and the
python/setup.py file provides the installation driver for the Python setuptools that will assemble the module
and place it in the installation locations defined.

This document does not contain very many operational details or descriptions of the code: there are
extensive descriptions of the functionality in header comments in each file and these are extracted by the
Doxygen documentation tool as explained in Section 6.3.

Many of the modules contain test code in the standard Python manner whereby the test code can be exercised
by running the module as a standalone program. Note that several of these modules use threading and/or
network access which means that testing them within the IDLE Python development environment does not
work very well.

6.6.1 Installation and Installed Scripts

The Python NIlib is configured as a single Python package that can be installed using the Python setuptools
utility. The code has only been tested on Linux. In principle there should be no problems running on
Mac OSx and at least the HTTP related aspects could be expected to run on Windows machines. However
since the DTN2 BPA does not currently run on Windows, the DTN aspects cannot be used on Windows
machines. Installation in the Python distribution area will probably require root or administrator access.

A number of the modules described in this section are intended to be run as command line utilities. Python
setuptools provides a mechanism that automatically generates a wrapper for such modules, known as a
'console script' and installs it in one of the usual places from which user programs are executed (e.g.,
/usr/bin). The following console scripts are currently installed:
• pynicl - see Section 6.6.3.2
• pyniget - see Section 6.6.4.1
• pynigetalt - see Section 6.6.4.2
• pynigetlist - see Section 6.6.4.3
• pynipub - see Section 6.6.4.4
• pynipubalt - see Section 6.6.4.5
• pynipubdir - see Section 6.6.4.6
• pynisearch - see Section 6.6.4.7
• pyniserver - see Section 6.6.6.3
• pystopniserver - see Section 6.6.6.4
• pyniwgsiserver - see Section 6.6.6.5
• pyredisflush - see Section 6.6.5.7

All these scripts use a number of command line options. They all provide a -h/--help option to print a usage
description and definition of the available options.

HELPFUL HINT: ni scheme URIs contain the semi-colon character (;); this character is a statement
terminator/separator in all the common command shells used by Linux or other species of Unix® and so it is
necessary to enclose ni scheme URIs in single quotes to avoid the semi-colon being inappropriately
interpreted by a command shell when an ni name is supplied as a command line parameter to any of these
console scripts.

14/06/13 Page 40 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6.2 Logging

All modules contain extensive logging statements. In the server code this is all handled using the Python
standard logging module but in some of the simpler command line clients, debug statements are handled via
a single debug function that prints messages and can be disabled if not required in a production environment.
See Sections 6.6.6.3, 6.6.7.3 and 6.6.6.6 for more details.

6.6.3 Core ni URI Support

Central to the NetInf protocol is the use of the ni URI naming scheme [FARRELL2012]. This section
contains the core library that provides classes and functions that implement the ni naming scheme and a
command line utility that will generate or verify the ni name for a piece of content contained in a file.

6.6.3.1 ni.py
This is the core library that is needed by all the other modules that handle ni names. It contains the following
items:

• Niname class: An instance of this class encapsulates a single Ni: scheme URI. An instance can be
constructed either with a single string in the correct form or a tuple of components. It knows the currently
implemented digest algorithms, the truncations that are used with them, and the lengths of the resulting
digests, both before and after truncation. Methods are implemented to allow checking of the syntax of a ni:
scheme URI, both as a template without the digest and in complete form. The URI components can be
accessed, and in most cases manipulated in order to (for example) convert it to a 'canonical form' without
netloc or query string. It has a number of class methods that can be used to access fixed 'constants' withn
the class including the algorithm list.

• NI class: A 'stateless' class with a number of methods that are primarily intended for creating and checking
the digests associated with a file or buffer that are incorporated into ni: scheme URIs referring to an
object. A single globally accessible instance is created and made available as NIproc.

• Nidigester: A helper class intended for use in conjunction with encode::MultipartParam (see
Section 6.6.10.2). The point of the complexity here is to avoid either reading all of a file to be both
digested and sent over an HTTP connection from a client twice or reading it into a buffer before
calculating the digest needed for an ni scheme URI. When used in conjunction with the tricks in
encode::MultipartParam and encode::multipart_encode, the digest can be calculated as the file is
streamed out to the HTTP connection and the result incorporated into a later form parameter. The actual
streaming requires the streaminghttp module (see Section 6.6.10.1).

• The module also exports an enumeration of errors (ni_errs) that can occur when parsing an ni name and a
dictionary mapping these error codes to error text strings (ni_errs_text).

6.6.3.2 nicl.py (run by script pynicl)
Provides a command line utility script to either generate a ni name for a content file using a template for the
scheme and digest algorithm to use or verify a ni name that contains a digest that purports to be for a content
file. The utility supports the ni and nih URI schemes, the binary form of name and the .well-known HTTP
URL scheme.

6.6.4 NetInf Command Line Client Utilities

The modules in this section can all be run as standalone command line programs as explained in
Section 6.6.1. Each one is designed as a NetInf client to send one or more NetInf requests over the HTTP
(and in some cases alternatively the DTN) convergence layer and wait for the corresponding response(s)
which can then be displayed to the user or stored in a file as appropriate.

14/06/13 Page 41 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6.4.1 niget.py (run by script pyniget)
Basic utility to send a single NetInf GET request over the HTTP CL. Needs a complete ni or nih name with
digest and locator (URL netloc) to which the request should be sent (i.e., a fully qualified domain name or IP
address and optional TCP port number). Note that the current version does not use the performance
optimizations introduced in nigetalt.py (see Section 6.6.4.2) that avoid reading the whole content into a
buffer and generating the digest from the buffer. This utility is therefore not appropriate for very large
content files. If successful, the result may be eitehr just the metadata for the NDO or the metadata and the
content octets. If the content is returned it is place in a file. The user can select a name for the file or the
program will use the ni name.

6.6.4.2 nigetalt.py (run by script pynigetalt)
Improved version of niget.py Handles a single GET request but can use either the HTTP CL or the DTN
CL if it is available. Selection of the CL to use is dependent on the scheme name in the locator specified
(either dtn:// or http:// - defaults to HTTP is no scheme name given). For the HTTP scheme uses optimised
version of the Python MIME message parser nifeedparser.py (see Section 6.6.11.2) to allow calculation of
the content digest while reading the HTTP response from the network and directing the content straight to a
file rather than initially reading it into a memory buffer.

6.6.4.3 nigetlist.py (run by script pynigetlist)
Performance testing utility to issue a series of NetInf GET requests specified in a file over the HTTP CL
only. Uses the same performance optimizations as nigetalt.py (see Section 6.6.4.2). Command line options
allow the utility to execute each request in a separate process and collate the responses.

6.6.4.4 nipub.py (run by script pynipub)
Basic utility to run a single NetInf PUBLISH request. Capable of publishing either just metadata or
metadata and content for an NDO over the HTTP CL. The ni name for the NDO can either be specified as a
template (scheme name and digest algorithm) when the program will calculate the digest as it is streamed to
the server or as a complete ni name with the scheme, algorithm and digest. Uses modules encode.py (see
Section 6.6.10.2) to create the specialized form parameter encoding that handles on-the-fly digesting of the
content and feeding the content file in chunks to streaminghttp.py (see Section 6.6.10.1) followed by on-
the-fly generation of the form URI field from the digest of the content file for sending to the server. The user
has to specify a locator to which to send the request (see Section 6.6.4.1 for details). The information
returned with the publish response can be requested in alternative formats including a JSON string or a
human readable report encoded in HTML.

6.6.4.5 nipubalt.py (run by script pynipubalt)
Extended version of nipub.py (see Section 6.6.4.4) that can send a single PUBLISH request over either the
HTTP CL or the DTN CL, if it is available. Use the same optimizations as nipub.py (see Section 6.6.4.4).
See Section 6.6.4.2 for selection of CL to use.

6.6.4.6 nipubdir.py (run by script pynipubdir)
Performance testing utility to execute a series of NetInf PUBLISH requests operating on the files in a
directory tree using the HTTP CL only. Walks the complete directory tree and publishes either all files in the
tree and as many as are specified in a count on the command line. Uses the same performance optimizations
as nipub.py (see Section 6.6.4.2). Command line options allow the utility to execute each request in a
separate process and collate the responses.

6.6.4.7 nisearch.py (run by script pyniserach)
Basic utility to execute a NetInf SEARCH request. The user supplies a set of tokens for the search operation
to use and a locator specifying the server where the search should be sent. The user may also specify the

14/06/13 Page 42 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

format of the response (either a JSON string or human readable report encoded in HTML). The coice of
search mechanism and/or engine is left up to the server that processes the request. Uses the HTTP CL only.

6.6.5 Server Common Code

The modules in this section provide the common core code for all of the various HTTP CL servers that can
be created, and allow the NetInf NDO cache metadata to be stored either as files or in a Redis database by
means of configuration and module selection at run time.

The core of all the HTTP CL server is nihandler.py (Section 6.6.5.8) which has all the NetInf specific HTTP
processing code for server operations. The NetInf cache management provides either for storing the NDO
metadata in individual files in the filing system or in a Redis database (Section 6.6.5.6). Two variants of the
file-based metadata cache cater for single process (Section 6.6.5.4) and multi-process (Section 6.6.5.5)
servers. The cache mechanism used is slected at run time according to the type of server being used and
configuration.

6.6.5.1 metadata.py
Provides the class NetInfMetaData that is used in servers to encapsulate the metadata for a single NDO.
Can be constructed either from components received from clients or from NetInf GET-RESPONSE
metadata components. There is also a method to merge additional metadata receivedif more than one GET-
RESPONSE is received. The data is held as a JSON-structured dictionary and can be loaded from or
dumped to one of the NetInf cache mechanisms described in Sections 6.6.5.4 to 6.6.5.6 as a JSON encoded
string.

6.6.5.2 file_store.py
This is a dummy module that is imported by the server startup code to indicate to the actual server that it
should be using the file-based metadata storage mechanism. The fact of this module being loaded is used to
control the loading of the correct cache management module. This makes it possible in the WSGI Apache
plug-in to instantiate a single instance of the cache manager on first usage in each of the child processes
created by mod_wsgi.

6.6.5.3 redis_store.py
This is a dummy module that is imported by the server startup code to indicate to the actual server that it
should be using the Redis-based metadata storage mechanism. The fact of this module being loaded is used
to control the loading of the correct cache management module. This makes it possible in the WSGI Apache
plug-in to instantiate a single instance of the cache manager on first usage in each of the child processes
created by mod_wsgi.

6.6.5.4 cache_single.py
Implements the class SingleNetInfCache that is imported into HTTP servers as NetInfCache when the
server is using the file metadata storage mechanism and runs as a single process but may be multi-threaded
to handle the NetInf NDO cache. Because it is a single process, the cache module can manage a local in-
memory cache to speed up access to metadata rather than having to access the file system every time. A
single in-memory lock is used to serialize access to the cache since it is a single process.

This cache module is used by the standalone multi-threaded HTTP server (see Sections 6.6.6.3 and 6.6.6.1).

6.6.5.5 cache_multi.py
Implements the class SingleNetInfCache that is imported into HTTP servers as NetInfCache when the
server is using the file metadata storage mechanism and runs as a single process but may be multi-threaded
to handle the NetInf NDO cache. Because the server may be running multiple processes, this cache module
cannot use an in-memory cache as well. Locking is also more complex. An in-memory lock is used to
serialize access between multiple threads in each process and an operating system flock is held on the

14/06/13 Page 43 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

metadata file while reading (shared lock) or writing (exclusive lock) the metadata file. It is not necessary to
hold a file system lock on the content file because it can be created atomically by renaming a suitably
positioned (i.e., on the same disk file system) temporary file and the creation operation (effectively writing
the file) only takes place once. In fact because the ni name guarantees that the file contents are unique it
doesn't matter if there is a race to create this file from two processes – whichever one happens to win will do
just fine.

6.6.5.6 cache_redis.py
Implements the class RedisNetInfCache that is imported into HTTP servers as NetInfCache when the
server is using the Redis database metadata storage mechanism to handle the NetInf NDO cache. The Redis
storage mechanism may be used in multi-process, multi-threaded server operations. An in-memory lock is
used to serialize access to the cache within each process and the discussion regarding the absence of need for
an operating system lock in Section 6.6.5.4 also applies here. However, it is possible that the same Redis
entry for the metadata may be simultaneously written by one process. Redis is a NOSQL database and does
not provide transactional handling in the way that SQL databases (for example) understand it. Instead there
is something called 'pipelining' combined with 'optimistic locking'. The technique is explained in the Redis
manual on the page Transactions.

6.6.5.7 redisflush.py (run by script pyredisflush)
This module is a convenience script for clearing all the data out of a Redis database in order to empty a
server cache. It also deletes any corresponding content files using the location of the content cache which is
stored in the database.

6.6.5.8 nihandler.py
This module is the core of the HTTP CL . It provides a single class NIHTTPRequestHandler with a
considerable number of methods.

It provides the core HTTP request handler for a server managing a cache of NamedData Objects (NDOs)
named with URIs from the ni scheme (ni://.. or nih:/...) allowing clients to access, publish or search these
NDOs using the NetInf protocol over the HTTP CL.

The class implements

• NetInf protocol GET, PUBLISH and SEARCH requests over the HTTP convergence layer including
handling metadata and forwarding of requests to other servers.

• Direct GETs of Named Data Objects via HTTP URL translations of ni: names.

• Various support functions including listing the cache, delivering a form to generate the POST functions
and returning a favicon.ico

• Optionally, provision of Name Resolution Server (NRS) support, controlled by configuration file option.

The handler deals with a limited set of URLs:

• HTTP GET/HEAD on paths:
• /.well-known/ni[h]/<digest algorithm id>/<digest>,
• /ni_cache/<digest algorithm id>;<digest>,
• /ni_meta/<digest algorithm id>;<digest>,
• /ni_qrcode/<digest algorithm id>;<digest>,
• /getputform.html,
• /nrsconfig.html, (when running NRS server)
• /favicon.ico, and<
• /netinfproto/list

14/06/13 Page 44 of 64 Version 1.3

http://redis.io/topics/transactions

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

• /netinfproto/checkcache

• HTTP POST on paths (basic system):
• /netinfproto/get,
• /netinfproto/publish,
• /netinfproto/put, and
• /netinfproto/search

• HTTP POST on paths (when running NRS server):
• /netinfproto/nrsconf,
• /netinfproto/nrslookup,
• /netinfproto/nrsdelete, and
• /netinfproto/nrsvals

The handler is designed so that it can be used from

• an Apache 2 mod_wsgi 'application' function,

• any other WSGI server framework (a simple example using the standard Python wsgiref simple_server
reference implementation can be found in niwsgiserver.py - see Section 6.6.6.5), or

• via a standalone server based on the HTTPServer/BaseHTTPRequestHandler paradigm as implemented
in niserver_main.py (Section 6.6.6.3)and niserver.py (Section 6.6.6.1).

The adaptation is handled by using a HTTPRequestShim from an appropriate shim module as a base class.
The shim is selected at run time depending on which module imports the handler as follows:

When this module is loaded it examines the modules that have already been loaded to determine the context
in which it is running. If the niserver module has been loaded or (for test purposes only) niserver.py is the
'main' module (i.e., the one that was loaded by the Python to provide the main entry point to the program),
then it imports the httpshim.py module (Section 6.6.6.2) so that it can run as a standalone server. Otherwise
it loads the wsgishim.py module (Section 6.6.6.6) so it can run as a WSGI server. Prior to loading this
module either the file_store.py module (Section 6.6.5.2) or the redis_store.py module (Section 6.6.5.3)
should have been loaded. In turn the shim modules examine the set of modules that have already been
loaded to determine which cache manager module to load as explained in the descriptions of these dummy
store control modules.

The shim class provides the constructor which configures the environment for each request and the handle
method that distributes the incoming HTTP request to the correct processing method for the type of request
(e.g., GET requests processed by do_GET, etc.). The shim also provides the methods send_string and
send_file that are used to create the HTTP response.

6.6.5.9 nifwd.py
This module is used to forwatd NetInf requests that cannot be fulfilled by the local server to another server
based on locators either passed in the affiliated data of the request or looked up in a NRS or local routing hint
database. This module is still under development.

6.6.5.10 ni_exception.py
Defines and exports all the exceptions raised by modules in the NIlib modules.

6.6.6 Servers Handling the HTTP Convergence Layer

6.6.6.1 niserver.py
Implements the class NIHTTPServer that provides a threaded HTTP server. It is a derived class of the
standard Python HTTPServer and ThreadingMixIn classes.

14/06/13 Page 45 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The HTTPServer class which is a subclass of TCPServer and in turn a subclass of SocketServer opens a
socket that is bound to the specified port passed in the addr parameter to the constructor. The server then
sets up a listener waiting for connection requests arriving at this socket.

The ThreadingMixIn from the SocketServer module overrides the process_request method in the
HTTP/TCP/SocketServer so that it creates a new thread whenever a new connection is made and accepted.
Each thread creates an instance of the NIHTTPRequestHandler class that processes the requests that come
in on this connection.

This wrapper provides additional management for keeping track of what threads are in use and naming them
for convenience in identifying logging messages, and helping with shutting down the server. It also holds a
number of pieces of information as instance variables derived from the configuration file and command line
arguments that will be needed by all request handler threads.

It also sets up a number of variables which can be accessed via the server attribute of the handler.

6.6.6.2 httpshim.py
This module implements the class directHTTPRequestShim which is derived from the base class
BaseHTTPRequestHandler. This class is used as the base class for NIHTTPRequestHandler when the
handler is used as part of the standalone threaded HTTP CL server. The main putpose of the class is to
provide a wrapper for the handle method of the base class. The NIHTTPRequestHandler class and hence
this class is instantiated by NIHTTPServer (Section 6.6.6.1) whenever the HTTP server receices a new
HTTP connection. With ThreadingMixin in use, these new instances are run in individual threads so that
multiple requests can be processed in parallel.

This module will loaded by nihandler.py as described in Section 6.6.5.8 if a standalone server is being
instantiated and the directHTTPRequestShim aliased to HTTPRequestShim. This class then becomes the
base class for NIHTTPRequestHandler in this context.

The constructor for the derived NIHTTPRequestHandler class remains that of the
BaseHTTPRequestHandler as the constructor is not overloaded by either derived class..

This class isolates all the server relationships (mainly represented by self.server) in the handle method and
provides the send_string and send_file methods for writing parts of the HTTP response body so that the
BaseHTTPRequestHandler wfile attribute is not used directly by NIHTTPRequestHandler. This makes
it possible to build an alternative shim that can link the NIHTTPRequestHandler to the WSGI interface
using the alternative swgiHTTPRequestShim (see Section 6.6.6.6). This is done because there is no way to
emulate the wfile route for sending the response in the WSGI interface.

6.6.6.3 niserver_main.py (run by script pyniserver)
This module is the startup script for the standalone HTTP server (niserver.py – Section 6.6.6.1) and also, if
configured the HTTP↔DTN CL Gateway (see Section 6.6.8.1. Its main purpose is to read the master
configuration file (see Section 6.6.7.2). The master configuration file provides numerous settings which can
also be overridden by command line options. The available command line options can be viewed via the
-h/--help command line option as with other scripts. The function of the configuration options is also
described in the default configuration file.

Once the configuration has been read and verified this program creates an instance of NIHTTPServer
(Section 6.6.6.1) and, if configured an instance of DtnHttpGateway (Section 6.6.8.1). The set of
configuration values are passsed to the instances for future use. Each of these instances creates one or more
threads which are then set as daemons and started running.

The main thread opens a UDP socket on which it listens for datagrams (any datagram, the content is
irrelevant) on the loopback interface. Receipt of a datagram triggers shutdown of the server Shutdown
would also be triggered by a signal, such as a keyboard interrupt, which terminates the blocking read of the
socket. If a shutdown is triggered the main thread sends shutdown requests to the other threads that it started

14/06/13 Page 46 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

and waits for period to allow all the threds to terminate cleanly (this may rake a few seconds if a long request
is in progress) and then exits the server.

Shutdown can be triggered by running the pystopniserver (see Section 6.6.6.4) script.

6.6.6.4 niserver_stop.py (run by script pystopniserver)
Ths script sends a UDP datagram with an arbitrary content to the control port (2114) on the standalone HTTP
server (see Section 6.6.6.4).

6.6.6.5 niwsgiserver.py (run by script pyniwsgiserver)
This script is used to create a HTTP CL server using the WSGI interface and the reference implementation of
the WSGI interface supplied with the Python distribution. The resulting server is single threaded but can
otherwise use all the configuration options of the Apache plug-in that works with mod_wsgi in the Apache
environment. It is intended as a test harness for the WSGI server implementation which can be run without
having to reconfigure and restart Apache after making changes. By default it accepts HTTP requests on TCP
port 8055 of the 'localhost'.

The WSGI interface requires that the plug-in defines a function simply called 'application'. This function is
called for every request that the server receives.

The server can be configured by defining environment variables in the process from which it is invoked

The main function demonstrates how importing either the file_store.py (Section 6.6.5.2) or redis_store.py
(Section 6.6.5.3) module is used to control the cache manager module that is imported when the
nihandler.py module is imported.

6.6.6.6 wsgishim.py
This module implements the class wsgiHTTPRequestShim.

This module will loaded by nihandler.py as described in Section 6.6.5.8 if a WSGI server is being
instantiated and the wsgiHTTPRequestShim aliased to HTTPRequestShim. This class then becomes the
base class for NIHTTPRequestHandler in this context.

The class in this module provides the constructor for the derived class as the constructor is not overloaded.

When the handler is instantiated by the WSGI application function and its handle_request method is called,
the (very large, at least when called via Apache) environment dictionary passed in from the WSGI
framework is processed into the form needed by NIHTTPRequestHandler. In particular a dictionary of
HTTP headers is created.using the HeaderDict class. Other items such as Apache environment variables are
processed to provide the configuration for the handler.

This shim has to implement more methods than httpshim.py (Section 6.6.6.2) as it is not derived from the
BaseHTTPHandler class. The class is designed to act as an iterator that can be passed back to the WSGI
framework via the start_response function. The iterator delivers segments of the HTTP response which were
either strings supplied by send_string or segments of a file supplied by send_file.

6.6.7 HTTP Server Support Files

These files are auxiliary files used by the various HTTP CL servers.

6.6.7.1 netinf_ver.py
This contains a number of version strings indicating the protocol and NIlib versions that are implemented by
the code. They are used to return the version of the HTTP server and to initialize items in NDO metadata.

14/06/13 Page 47 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6.7.2 data/niserver.conf
This file provides the default configuration for the standalone HTTP CLserver. It is read by
niserver_main.py (see Section 6.6.6.3) during server startup. By default this configuration file will be
installed in /var/niserver.

6.6.7.3 data/niserver_log.conf
This is the default logging module configuration used by the standalone HTTP CL server. Its location is
configured in the main configuration file (Section 6.6.7.2) and it s read by niserver_main.py (see
Section 6.6.6.3) during server startup. By default this configuration file will be installed in /var/niserver.

6.6.7.4 scripts/install-nilib-wsgi.sh
A shell script that creates and installs a virtual host file for a NetInf WSGI mod_wsgi server on a machine
that has Apache 2.x and the mod_wsgi installed. It also configures rsyslog to direct the logging output for
the NetInf handler to one of the local rsyslog streams. The script installs the latest version of NIlib Python
in the machine with all necessary non-standard modules.and creates directories under
/var/netinf/virtual host name> to hold all the instance specific files, log files and the NDO cache that wil be
used when the server is running.

The directories are:

cache Holds the NDO cache content files in the ndo_dir subdirectory with a sub-subdirectory per
hash algorithm. If the metadata is being stored in files, the metadata is held in a parallel sub-
directory meta_dir.

doc Holds the Doxygen generated documentation tree for the Python NIlib code.

log Holds the log files from the server.

wsgi-apps Holds the WSGI 'application' scripts used by mod_wsgi. See Sections 6.6.7.5 to 6.6.7.8.

www Static files to be delivered by HTTP CL server. See Sections 6.6.7.9 to 6.6.7.12.

6.6.7.5 scripts/test.wsgi
This is the 'Hello World!' test application script for mod_wsgi installations on Apache servers. It can be used
to verify that the mod_wsgi WSGI plug-in is working. It (as one might expect) writes the string 'Hello
Wordl!' on the browser screen when invoked. The NetInf WSGI installation script installs this application so
that it can be invoked using a path of /testapp on a configured server.

6.6.7.6 scripts/showenv.wsgi
This is another test application for mod_wsgi installations on Apache servers. It outputs the complete
contents of the environment dictionary passed to the WSGI application on the browser screen when invoked.
The NetInf WSGI installation script installs this application so that it can be invoked using a path of /envapp
on a configured server.

6.6.7.7 scripts/netinf_file.wsgi
This is mod_wsgi application script used when an Apache NetInf virtual host is using the filesystem metadata
cache mode. The following paths submitted to this server are then processed by the NetInf WSGI
application:
• /netinfproto
• /.well-known/ni
• /ni_cache
• /ni_meta
• /ni_qrcode

14/06/13 Page 48 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

The application could also processs the various fixed files delivered by the server (see Sections 6.6.7.9 to
6.6.7.12) but it is more efficient to delegate these to the standard Apache static content delivery mechansm.

6.6.7.8 scripts/netinf_redis.wsgi
This is mod_wsgi application script used when an Apache NetInf virtual host is using the Redis metadata
cache mode. The following paths submitted to this server are then processed by the NetInf WSGI
application:
• /netinfproto
• /.well-known/ni
• /ni_cache
• /ni_meta
• /ni_qrcode

The application could also process the various fixed files delivered by the server (see Sections 6.6.7.9 to
6.6.7.12) but it is more efficient to delegate these to the standard Apache static content delivery mechansm.

6.6.7.9 data/help.html
Template help screen installed to assist users accessing the capabilities of a NetInf HTTP CL server.

6.6.7.10 data/getputform.html
Form code that allows browser users to use the NetInf capabilities of an HTTP CL server interactively from a
browser window. Cloned from the equivalent code in the PHP implementation of NIlib. Served as a static
file by the various HTTP CL servers.

6.6.7.11 data/nrsconfig.html
Form code that allows browser users to configure the routing hints for an internal Name resolution Service
(NRS) interactively from a browser window. Cloned from the equivalent code in the PHP implementation of
NIlib. Served as a static file by the various HTTP CL servers. This code is still under development in
association with the forwarding code (see Sections 6.6.5.9 and 6.6.8.2).

6.6.7.12 data/favicon.ico
NetInf mini-icon file displayed in browser address bars and shortcut lists adjacent to links to NetInf HTTP
CL pages. Served as a static file by the various HTTP CL servers.

6.6.8 Server and Gateway Handling the DTN Convergence Layer

The modules in this section are used by the NetInf HTTP↔DTN CL gateway. The gateway can be run as an
adjunct to the standalone HTTP CL server (see Section 6.6.6.3) or, primarily for testing purposes, as a
standalone unit using the test code in nidtnhttpgateway.py.

The gateway core code runs as three threads that deal with the various aspects of communication to the
DTN2 BPA and executing forwarded HTTP CL requests. The threads are

• DTN bundle receiver: Deals with incoming DTN bundles with NetInf requests. Implemented by class
DtnReceive in nidtnproc.py (Section 6.6.8.3)

• DTN bundle sender: Deals with sending DTN bundles with NetInf responses for requests received by the
bundle receiver. Implemented by class DtnSend in nidtnproc.py (Sectio 6.6.8.3)

• HTTP action forwarder: Deals with actioning forwarded NetInf requests initially from DTN but
intended to service forwarded HTTP CL requests from the HTTP CL server as well. Implemented by
classHTTPAction in nihttpaction.py (Section 6.6.8.2).

14/06/13 Page 49 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Incoming requests from DTN (or, in future, HTTP) are placed in a request queue managed by HTTPAction.
Requests are serviced using spawned processes. Potentially, a request may be forwarded to multiple locators.
At the end of a selected time interval or sooner if all locators have replied, the results (if any) are compiled
and a response sent. For DTN responses, a message is queued for servicing by the DTN bundle sender.

6.6.8.1 nidtnhttpgateway.py
This module implements the class DtnHttpGateway. The class constructor creates the three threads that
handle the connections to the DTN2 BPA and other HTTP CL servers as described in Section 6.6.8.The
methods start_gateway and shutdown_gateway are provided to control running and terminating these
threads.

The test code can currently be used to run a one way gateway translating from DTN CL to HTTP CL and
forwarding to other HTTP CL servers.

6.6.8.2 nihttpaction.py
Implements the class HTTPAction and provides a set of routines which are executed in spawned asynchnous
processes to execute NetInf requests that results from forwarding requests queued in the class.

When a forwarding request request is queued using the add_new_req method, the ni name is examined to see
if it has a netloc which is assumed to be accessed using HTTP. This is combined with any locators from the
loclist in the affiliated data and the ni name is looked up in the next hop and forwarding hints Redis database
to determine if there are any suggestions for places to forward the request. At present only locators
accessible using the HTTP CL are considered but the intention is that there might be DTN-accessible locators
as well. A list of places to forward the request is added to the list.

The add_new_req method can be called from other threads than the one that executes the run method in
HTTPAction The run method monitors the request queue and executes requests by dispatching the requests
to the locators selected when the request was queued. The execution can either be done in series within the
same process or asynchronous processes can be spawned to carry out the request. A pool of processes is
maintained using the Python multiporcessing module. The run method tries to keep as many of the
processes active as possible and is informed when a process request complete so there is a process free to
execeute a new request.

The results from multiple locators to which a single request was forwarded are compiled, subject to results
being received within a specified time limit. For GET requests the content octets will be the same whichever
locator has returned them (or something is badly wrong) but the metadata returned can be combined. The
metadata module (Section 6.6.5.1) has a method for doing this. In the case of PUBLISH and SEARCH
requests the results are just concatenated with an indication of where the results came from.

Responses to requests from the DtnReceive thread are queued for sending by the DtnSend thread.

6.6.8.3 nidtnproc.py
Implements the DtnReceive and DtnSend classes. Requires that there is an active DTN2 BPA on the node
and needs the dtnapi.py module generated by DTN2 (see Section 6.6.9.1) and the other modules described
in Section 6.6.9.

DtnReceive expects to receive only NetInf requests (of any sort) and possibly status reports resulting from
responses to these requests. Receiving responses wil be handled by separate BPA application registrations.
Incoming requests are translated into an internal form as an instance of the HTTPRequest class (see
Section 6.6.8.4) and queued for processing by calling the add_new_req method of HTTPAction (see
Section 6.6.8.2).

DtnSend takes messages from the queue fed by responses in the HTTPAction thread. The messages are
instances of class MsgDtnEvt and contain the updated HTTPRequest that was previously received and
forwarded. The HTTPRequest is translated back into a DTN CL bundles and sent back to the source of the
request.

14/06/13 Page 50 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

6.6.8.4 nidtnevtmsg.py
Implements the HTTPRequest and MsgDtnEvt classes.

HTTPRequest is an internal form for request messages and provides fields for registering the response(s)
when the message is forwarded.

MsgDtnEvt is used as the message form for events that are sent to the DtnSend thread for despatching as
responses using the DTN CL.

6.6.9 DTN Support and DTN2 BPA Interface

These components assist with the interface to the DTN2 BPA. They should probably all be part of the DTN2
project. However initially only the main dtnapi.py module is supplied by DTN2.

6.6.9.1 dtnapi.py
DTN2 Python scripting interface module. This module is part of the DTN2 package rather than NIlib.

6.6.9.2 dtn_api_const.py
Various constants needed by the DTN2 interface but not wrapped by SWIG so not in dtnapi.py.

6.6.9.3 nidtnbpq.py
Encapsulation of a BP BPQ block. Provides translation to and from the binary on-the-wire format to an
internal structure that facilitates access to the various fields.

6.6.9.4 nidtnmetadata.py
Encapsulation of a BP JSON Metadata block. Provides translation to and from the binary on-the-wire format
to an internal structure that facilitates access to the various fields.

6.6.9.5 nistruct.py
Wrapper for modified Python struct module that can handle BP SDNV fields. Used in encoding and
decoding BPQ and Metadata blocks.

6.6.9.6 _nistruct.c
Implementation in the C language of modified Python struct module that can handle BP SDNV fields.

6.6.10 Modified 'Poster' Software

The two module is in this section are modified versions of the 'poster' software written by Chris Atlee. The
original code and further documentation is available at

 http://atlee.ca/software/poster/index.html

This software is licensed under the MIT license which is somewhat different from the Apache 2 license but is
also acceptable for Open Source releases.

6.6.10.1 streaminghttp.py
For this module the changes are in the documentation rather than the code.

The module is specifically designed to assist with sending multipart/form-encoded HTTP POST requests.

This module extends the standard httplib and urllib2 objects so that iterable objects can be used in the body
of HTTP requests.

14/06/13 Page 51 of 64 Version 1.3

http://atlee.ca/software/poster/index.html

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

In most cases all one should have to do is call :func:`register_openers()`to register the new streaming http
handlers which will take priority over the default handlers, and then you can use iterable objects in the body
of HTTP requests.

6.6.10.2 encode.py
This module provides functions that facilitate encoding name/value pairs as multipart/form-data suitable for
a HTTP POST or PUT request.

multipart/form-data is the standard way to upload files over HTTP

This version has been modified in two ways from version 0.8.1 on the web site:

• to allow a digest for a file to be uploaded to be generated 'on the fly' as it is sent out to the network for
transmission over HTTP.

• to provide values for form parameters to be generated at the time the parameter is written to the network
rather than when the form is constructed. This allows values to be dependent on things (such as digests)
that are calculated as the form is uploaded.

6.6.11 Modified Standard Python Modules

The modules in this section are modifications of existing standard Python modules taken from the Python 2.6
release. These modules are licensed under the Python Software Foundation license.

6.6.11.1 ni_urlparse.py
Standard Python urlparse.py extended with support for ni and nih URI schemes.

The module parses (absolute and relative) URLs.

Cloned from the Python 2.6 distribution urlparse.py on 20120130.

The module has been updated

• to add ni: scheme: This only required adding 'ni' scheme name to the various tables that represent the
attributes of this scheme:
uses_relative, uses_netloc, uses_params, uses_query, and uses_fragment.

• to add nih: scheme: Requires adding 'nih' scheme name to the tables:
uses_relative, non_hierarchical, and uses_params.
We also add 'nih' to uses_query and uses_fragment although these are not allowed in nih. Verification
weeds them out later. Also had to actually use non_hierarchical (which wasn't done before) to suppress
the /// in front of the path when rebuilding (in urlunsplit).

6.6.11.2 nifeedparser.py
Standard Python module feedparser.py in the email package extended to allow MIME object content to be
sent directly to a file rather than being held in a memory buffer while completing the processing.

The feed parser implements an interface for incrementally parsing an email message, line by line. This has
advantages for certain applications, such as those reading email messages off a socket.

FeedParser.feed is the primary interface for pushing new data into the parser. It returns when there's
nothing more it can do with the available data. When you have no more data to push into the parser, call
close. This completes the parsing and returns the root message object.

The other advantage of this parser is that it will never throw a parsing exception. Instead, when it finds
something unexpected, it adds a 'defect' to the current message. Defects are just instances that live on the
message object's .defects attribute.

14/06/13 Page 52 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

For NIlib the module has been modified to allow dumping of a message direct to a file rather than into a
memory buffer (good for very large files and allows generation of a digest while parsing an incoming
message). An optional _filer parameter is given when creating the parser. This is a callable that is passed the
content-type of the payload and makes a decision as to whether the message should be written to a real disk
file or a StringIO. The result is passed to the set_payload_dest method of the FiledMessage class which is a
wrapper round a standard message that manages writing the payload to a file.

6.6.12 NIlib Setup Support and Documentation

Files used by the setuptools mechanism and the README file that accompanies the distribution.

6.6.12.1 setup.py
This script is located in the python subdirectory of the NIlib distribution. It is the control script for the
setuptools installation mechanism for the Python module.

The installation

• builds the Python package in the selected dist-packages directory of the Python installation in use,

• installs various package data items including configuration files, WSGI application scripts and static files
served by the HTTP CL servers in the directory specified by the environment variable
NILIB_DATA_DIR (defaults to /var/niserver if the environment variable is not defined),

• creates a template directory tree named wsgi in the NILIB_DATA_DIR that is copied when creating the
directory tree for a Apache mod_wsgi plug-in virtual host (see Section 6.6.7.4).,

• creates the set of console scripts described in Section 6.6.1, and

• downloads and installs any external packages needed by the NIlib code.

6.6.12.2 __init__.py
This file is required by the setuptools system and can be used to initialize the module as a whole. Currently
it does not contain any code but lists the modules making up the package.

6.6.12.3 MANIFEST.in
List of files to include in a distribution used by setuputils.

6.6.12.4 scripts/pynilib_test.sh
Shell script for testing nicl.py and ni.py.

6.6.12.5 README and doc/README
'nuff said!

7. Development of NetInfFS FUSE-based File System
The intention of the development of the NetInf Device described in Section 4. was to examine whether a
device could be made usable in a situation where its only access to external data was through ICN using the
NetInf protocol. To make this more realistic (as described in Section 1.) the NetInf device was expected to
operate in a DTN environment using NetInf over the DTN convergence layer using the BP which was
described in Section 3.1.2 and is implemented in the Python component of NIlib (see Sections 6.6.4.2,
6.6.4.5 and 6.6.8).

In order for existing applications to access the content of NDOs when they typically expect to have their data
stored in files, it is necessary to make it easy for applications to access the content of NDOs cached on the
NetInf Device as files identified by their ni name.

14/06/13 Page 53 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Similarly, applications that create data should have the opportunity for this data to be published as an NDO
without needing to run extra applications to organize the publishing. They should also be able to determine
the ni name that is given to the content without needing to do extra work.

7.1 Introduction to FUSE Filing Systems
The method that was adopted to allow NDOs to be read via the Linux filing system and to publish newly
created files automatically was to build a pseudo-filing system using the FUSE framework.

FUSE (Filesystem in Userspace) provides a framework that allows a Linux filing system to be implemented
using a userspace program rather than needing to add functionality to the Linux operating system kernel.
Clearly this is much easier to develop and simpler to deploy for prospective users. The necessary kernel
code is incorporated in Linux kernels from the 2.4 and 2.6 series and later.

Implementing a file system is simple, a hello world file system is less than a 100 lines long. Figure 10, taken
from the FUSE web site, shows the path of a file system call (e.g. stat) in the the hello world example:

There are also wrappers that allow the userspace program to be written in various scripting languages. Since
the component for the NetInf Device was intended to operate with various other component written In
Python, we chose to implement the NetInfFS in Python.

As with many of the file systems that use FUSE, the NetInfFS is used to give a different view onto files in
some other filing system that either already exist or to create files via a different name and/or with some
additional operations. The part of the NetInfFS used to view NDO contents (i.e., DTN2 bundle payloads)
can be seen as a means of automatically creating transient soft links to the bundle payload files. The 'publish'
part adds the additional automatic publication operation to file creation and update. Additionally the system
automatically creates an extended attribute for the file which is updated whenever the file is updated.

14/06/13 Page 54 of 64 Version 1.3

Figure 10: Control Flow in a FUSE-based Filing System

http://fuse.sourceforge.net/helloworld.html
http://fuse.sourceforge.net/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

7.1.1 FUSE Installation Notes

The wrapper for FUSE that was used is Fuse-Python version 0.2.1. This should be downloaded from
Sourceforge (Fuse - Python Version 0.2.1 source archive) rather than the version in the PyPi repository
(PyPi Fuse-Python package page) due to some fixes in the xattr coding. The Canonical repository for
Ubuntu 12.04 has Version 0.2.1 but for Ubuntu 10.04 has Version 0.2.

Most recent Linux distributions provide the FUSE filing system component pre-built in the kernel and have
the FUSE library (libfuse.so) pre-installed; this is certainly the case for Ubuntu 10.04 and 12.04. If FUSE is
not built into the kernel being used it will be necessary to reconfigure, rebuild and reinstall the kernel.

The NetInfFS uses extended attributes from the user namespace. This means that the underlying file system
that is used to hold files viewed via the NetInfFS needs to be configured to allow user namespace attributes.
This is not the default situation. Add the option user_xattr to the mount options for the appropriate file
system in the /etc/fstab. It is not necessary to reboot the system to add user_xattr to the options. The
remount option for mount. The Linux manual page for mount shows how to use this option. Briefly,
user_xattr could be merged with existing options for, say /home by issuing the command

mount ­o remount,user_xattr /home

Note that to merge the options, only specify the directory and not both directory and device.

NetInfFS also requires the pyxattr module to manipulate extended attributes. Version 0.5.2 or higher is
recommended. It can be downloaded from Python pyxattr repository or from PyPi. This version can also be
installed from the Canonical Ubuntu 12.04 repositories but the Ubuntu 10.04 repository provides
Version 0.4.0 wihc is not compatible.

7.2 Implementation of NetInfFS using Fuse-Python
The bundle payload files are made accessible through a FUSE based filing system. The files can either be
accessed as <mountpoint>/bundles/<bundle ID number> for all bundles or, if they have a BPQ block, the
file is also accessible as a file in directory <mountpoint>/ni/ with a name that matches the value of the
bpq_query field in the BPQ block. In the usage with the NetInf Device this field will usually contain a URI
with the format of the ni: URI scheme. This includes a digest of the payload file contents if it it is present and
non-zero in length and represents the whole bundle.

The bundle information is obtained from the MySQL database tables written by DTN2. The information we
need is in the bundles_aux and bundles_del tables. These provide an optimization to allow the NetInfFS to
find out which bundles have been added to and deleted from the list. The bundles_aux file is indexed by the
bundle_id that is assigned to the bundle by DTN2 when the internal structure is created. The bundle_id is
unique to the bundle and monotonically increasing The information we are accessing is written exactly once
for each bundle, so it is just necessary for the NetInfFS to keep track of the highest bundle_id that it has
already read in and update its tables by getting any rows in bundle_aux with higher bundle_id's than it has
previously seen. Similarly the bundles_del table records a record for each bundle deleted with a
'create_index' (maybe a misnomer!) which auto-increments as more bundles are deleted and entered into this
table. Again NetInfFS need only worry about records in bundles_del with higher create_indices than it has
already dealt with. The SQL tables are accessed through an ODBC interface using pyodbc. The same DSN
(Data Source Name) as is used by DTN2 can be used - although it would be possible to apply additional
controls to the database access by using an alternative DSN with a different user that had more restricted
access to the database tables.

Experiment has revealed that there are some oddities with the pyodbc Python DB-API connection/cursor
model. It seems to be extremely difficult to get rid of a set of rows accessed through a SELECT statement
using cursor.execute. If the cursor is left open and another SELECT statement executed, the chances seem
to be that you will either get the same set of rows (even if the database has changed) or an error response of
some kind. Also connections eventually time out (MySQL has some sort of connection idle timeout). Further
experiment and checking documentation indicates that starting a new connection for each update request is

14/06/13 Page 55 of 64 Version 1.3

https://github.com/iustin/pyxattr
https://pypi.python.org/pypi/fuse-python
http://sourceforge.net/projects/fuse/files/fuse-python/0.2.1/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

not as inefficient as it sounds. pyodbc maintains a connection pool and it appears that a 'connection' is an
internal link to a real network connection which may be reused. Further even with SELECT operations, it
seems to be essential to call the commit function for the connection to clean out the cursor and then close
cursor and connection.

Additional information about the bundles from the bundles_aux table is made available through extended
attributes for each file (xattr).

The NetInfFS was initially read-only so that only a small subset of the access functions need to be
implemented. The remainder were left to give their default behavioue (typically returning ENOSYS -
operation not implemented). The bundles and ni directories remain read only.

A further addition in version 1.4 has been to provide a directory 'publish' into which files can be written and
when the file is closed after writing it is automatically published by submitting a NetInf PUBLISH request
to the DTN2 BPA for which bundles are being displayed. In this process the ni name for the file is created
and the name made available via an extended attribute called 'user.ni_url'.

The directory 'publish' is a view onto a conventional filing system directory used to hold the published files.

If the file is updated, a new digest and corresponding ni name will have to be calculated and the file
republished.

The value associated with 'user.ni_url' is a JSON encoded string with an object that contains a single entry
named 'published' with an array of of the ni_url's under which the file has been published.

The metadata supplied to the NetInf publish request ties the object to the actual file name.

The implementation of NetInfFS is a single Python module netinffs.py based on the example xmp.py
supplied with Fuse-Python. It uses a function from the nipubalt.py client (see Section 6.6.4.5) to perform
the automatic publication of

7.2.1 Starting and Stopping NetInfFS

As noted previously, the NetInfFS is a single module of code which can be run as a Python script.

It requires that the NIlib Python code is installed and that the MySQL database used by DTN2 has been
initialized. However it is not essential that the DTN2 BPA is running when the NetInfFS is started.

Before starting netinffs.py:

• Ensure the MySQL database used by dtnd (the DTN2 BPA) is initialized.

• Know the DSN (Data Source Name) used by ODBC with dtnd

• Create or know of an (empty) writeable directory to use as the NetInfFS mount point

• Create or know of a directory which is writeable and searchable by the user(s) who will be using the
NetInfFS for the publish directory.

• Know the directory in which dtnd stores its bundle files.

The command line options used by netinffs.py can be checked by using the -h/--help option.

By default, netinffs.py 'daemonizes' itself on startup. To assist with debugging, it can be run in the
foreground by using the hidden -f option. There is also a –debug option which provides additional logging
output.

For debugging purposes, a log file can be written in the directory where the program is started.

Once running, netinffs.py should run indefinitely.

It is stopped by unmounting the filing system using the command

fusermount ­u <mountpoint>

14/06/13 Page 56 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

7.2.2 Handling Bundle Fragments

*** This functionality is not yet implemented and we currently only deal with complete bundles.

Note that a bundle may be in fragments. Consideration needs to be given to how to 'read' such a bundle file.
When accessing it through the bundles directory, we should treat it as a sparse file (i.e., one that contains
areas that will read as all zeroes - 'holes' – Wikipaedia article on sparse files). For a single bundle this looks
straightforward - we know the offset and size of the fragment as well as the total size of the bundle.

For bundles accessed via their ni name, the situation is more complex. Multiple bundles will carry fragments
with the same bpq_query name but will contain assorted chunks of the payload file. The internal data
structure in the NetInfFS need to manage a list of bundles associated with the name and handle reading the
chunks by accessing the appropriate file. Thought has to be given to optimising the opening and closing of
multiple files if the reading wanders back and forth through the file. It is probably best to cache some file
descriptors, but we can just have one open at a time to see how it works. The file size of the file should be
reported as the payload size rather than the size of a given bundle. Note that checking that the 'fragments' are
part of a single bundle needs the same algorithms that are used in building the BPQ cache inDTN2 - because
response fragments may come from different sources and are generated at different times the basic identifier
of the bundle doesn't help. We need to look at the bundle identifier in the BPQ block (and this has to be in
the data put in the bundles_aux table).

7.2.3 Future Optimisation

Experimentation has revealed that FUSE often makes a several calls into the Fuse-Python program to
execute a single system call. The intial version of netinffs.py is configured to be single threaded and checks
the database for updates on most calls into the Fuse-Python program.to check attributes and directory
contents. This works but is slow and inefficient.

The system can be improved by running a timer thread that checks the database periodically (say, every
second) but not on every call into the program. This would require implementing a lock on netinffs.py's
internal cache of information to avoid corruption when accessed by multiple threads but would make the
program more friendly to netinffs filing systems as it could be run in multithreaded mode.

8. Analysis and Conclusions
Developing the formal specification and implementation of the NetInf protocol followed by deployment in a
device that uses NetInf as its major communication mechanism has achieved a number of goals

• Demonstrating a practical implementation of an ICN architecture protocol that does not rely on a
universally deployed PKI (Public Key Infrastructure)

• Demonstrating the interdomain applicability of the NetInf Protocol.

• Demonstrating the NetInf Device using the NetInf Protocol as its sole communication means and
identifying the limitations of this approach with current applications and API.

• Providing a reasonably robust implementation of the NetInf Protocol with HTTP and DTN BP
convergence layers and making this available as Open Source Software.

• Improving the DTN2 reference implementation of the BPA and BP to fully support scripting languages
and operate correctly with extension and metadata blocks.

8.1 Demonstrating the NetInf Architecture
Building a large scale ICN infrastructure requires a number of engineering trade-offs that have to be
balanced with the requirements that we wish to place upon the system. The fundamental requirements
appear to be:

14/06/13 Page 57 of 64 Version 1.3

http://en.wikipedia.org/wiki/Sparse_file

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

• A user retrieving some content by name wants to be sure that the content received matches the name by
which it was found.

• The user does not need to care from where the content was retrieved.

To satisfy these requirements and still provide a useful system on a large, possibly global, scale it is essential
that

• publication of content, including generation of the names for the content, is simple,

• retrieval of the content is straightforward and efficient,

• the system does not introduce bottlenecks or single points of failure into the network, and preferably
removes some existing ones,

• the system should work across various network technology domain boundaries, and

• the system is incrementally deployable so that it can be added to the existing network and use existing
technology at least as initial infrastructure.

The NetInf architecture using the ni URI naming scheme inherently satisfies the fundamental requirements in
that the name incorporates a secure cryptographic hash digest of the content into the name together with the
name of the hash used. The scheme also has the additional advantage of being security algorithm agile, so
that should the hash algorithm (usually SHA256 in the current work) become compromised in the passage of
time due to improved attack algorithms or faster processors, it can be replaced immediately.

The implementation that has been carried out indicates that both publication and retrieval are
straightforward. Generation and verification of ni names can be carried out with standard, readily available
and well-attested software. Performance measurements that have been carried out on the implementation
indicate that the major time cost penalty as compared with using a standard HTTP server is the calculation of
the digest either for publication or retrieval. The current implementation carries out these operations entirely
in software, using the OpenSSL libraries18. Production deployments of a NetInf-like architecture would be
able to take advantage of hardware acceleration to largely overcome this penalty using either dedicated
security processors such as the VIA Padlock Security Device built into some modern processors or security
algorithms implemented in graphics processors.

Importantly, both generation and validation can be carried out locally without reference to any infrastructure
such as a global PKI system. Verification can be considered as a kind of zero-knowledge operation in which
the name provides all the information needed to verify the content. This means that the system can be
deployed incrementally and does requires additional work to make it useful.

The ni naming scheme provides a novel combination of a flat naming scheme via the digest in the name
which allows any instance of the named content (the NDO) to be identified immediately – identification
requires only comparison of the digest algorithm identifier and the digest value – with a flexible location
scheme that can be used to perform node local searches within just the current node, a local network search
using a multicast mechanism or a wider area using a name resolution system to identify an unstance of the
NDO sought. This scheme also assists the routing of requests through possible disparate network domains.
The forwarding system and the interdomain gateway that has been implemented demonstrates the practicality
of this scheme. Parallel work in other parts of the SAIL project have extended the name resolution aspects
in various ways that could be expanded to a global system.

The development of interoperable convergence layers suitable for operation in the highly connected Internet
domain and the likely communication challenged DTN domain shows that the NetInf architecture can be
used in such a hybrid environment as envisaged in the original proposal. The CL approach appears to be a
suitable solution but there are some potential downsides related to the granularity of transfer with NDOs.
This is discussed further in Section 8.4 below.

18 The OpenSSL Project web site

14/06/13 Page 58 of 64 Version 1.3

http://www.via.com.tw/en/initiatives/padlock/index.jsp
http://www.openssl.org/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

It should also be pointed out that the zero-knowledge verification scheme clearly facilitates retrieval from
any location that has a copy and minimizes the need for references to any central system or location to verify
the integrity of the content, but this has does have the downside that it does not inherently offer any
information to the user regarding the provenance of the NDO and limits the ability of the publisher to track
the usage of an NDO once it has been pushed out into the network.

8.2 The Rôle of Affiliated Data and Transmitting Alternative Forks
In the course of developing the NetInf protocol the rôle of what is usually described as metadata became
proportionally more important as work progressed. It became clear that the data that was 'affiliated' to the
NDO could be roughly subdivided into three classes:

Technical Data such as the content type of the NDO and the size of the data.

Historic Information about how it has been handled by NetInf such as where it is stored and when it was
published in these places.

Ontological Information about the information in the NDO such as an abstract and information about
searches that generated a match with this NDO.

There is some overlap between these categories and there would doubtless be discussion about where certain
items should be classified (for example, is the creation date of the NDO technical or historic information?).
The important thing is that not all of this information is fixed when the NDO is initially created – clearly
some of it is, but some information is added as the NDO is handled by the NetInf protocol. Some of this is
very useful for the effective operation of the NetInf such as locations where the information is published that
can supplement information obtained from a Name Resolution System (NRS). It may also be important in
communication challenged networks, such as in DTN situations, where avoiding the necessity for an extra
access to another system running the NRS may save a considerable amount of time.

Similarly having ontological data available may allow search operations to be short circuited if there is a
match or, at least, an overlap between the search tokens in a new search and a recorded search in the
ontological data.

The NetInf protocol now uses the term 'affiliated data' to cover both the metadata that is explicitly about the
content (see, for example, [RFC5013]) and other information that covers how the NDO has been handled by
the protocol.

The NetInf protocol has been developed to allow the carriage of this affiliated data; the ni URI scheme
allows a user to verify the content but does not provide any information about the authenticity of the the
affiliated data. It seems that further research is needed into ways that users can place a higher level of trust
in both the metadata and, preferably, the other parts of the affiliated data in an ICN.

It is interesting to contrast the handling of information in storage systems such as computer file systems with
the treatment of information in an ICN. Many file systems cater for the storage of affiliated data in
association with the actual content data. The terms that are used to cover this paradigm are 'forks' and
'extended attributes'. Forks are hardly a new concept: Macintosh and the Acorn ADFS filing systems from
the mid-1980s introduced the concept. The Windows NT filing system apparently has a fork capability but it
is hardly 'front and centre'. It is gradually filtering into Linux filing systems in the form of extended
attributes but again the capability is not used significantly in mainstream applications. In all probability, this
lack of integration into applications other than in the Apple Macintosh series of computers is key to this
neglect (indeed it can be a security risk if applications and systems are not properly aware of it). It seems
appropriate to consider paralleling the development of forks into ICN systems so that forks other than the
data fork can be transmitted.

Making the affiliated data accessible to search operations and, conversely, ensuring that searches take the
affiliated data into account also appears to be a fruitful area for study in ICNs.

14/06/13 Page 59 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

8.3 Multiple Results and Merging Affiliated Data
The NetInf protocol is designed to allow a request to be directed along multiple paths to more than one
destination and NDOs are expected to be cached in multiple separate nodes.

In the case of GET requests this may elicit multiple responses containing either just affiliated data or the
affiliated data and the content data. When multiple responses arrive at a node, the results can be merged. In
the case of the content data, each of the responses contains the same data, assuming it hasn't been corrupted
in transit or by a malicious node. If the node is paranoid, it can check the digest of the data to ensure it is
forwarding a good copy. The affiliated data, on the other hand, will generally be different in the various
responses, certainly in respect of the historic data, and it may also contain different ontological data if
different searches have been carried out on particular cached instances. The responses will all be in the form
of JSON-encoded strings. It is possible to merge the affiliated data producing a union of the historic and
ontological components and retaining a single copy of the static technical data. This merged form can be
cached locally and forwarded as a single result towards the request source.

In the case of PUBLISH and SEARCH requests, the responses constitute separate reports from the nodes
that actioned the request (if they have anything to report). It is probably appropriate to concatenate the
responses indicating the source of the report in each case.

This merging operation is a function of the NetInf layer at each NetInf-capable node. It is currently not
covered by the NetInf protocol specification. There is a prototype implementation in the HTTP↔DTN
gateway and in the HTTP server forwarding code. The specification needs further discussion and should
then be incorporated into the protocol, specification.

8.4 Granularity of NDOs
The NetInf architecture and protocol envisage that the Named Data Objects published and retrieved through
the protocol are complete logical units of data. This choice of granularity for NDOs contrasts with other
approaches such as Named Data Networking (NDN)19 which name data at the datagram granularity. The
NetInf protocol does not support fragmentation of NDOs during transmission.

The NetInf approach is more closely matched to the storage paradigm for information in devices rather the
NDN approach which is more closely matched to the transport mechanisms in the Internet. However for use
in network domains such as DTN networks, the NetInf approach matches more closely to the underlying
transport model where 'bundles' are also expected to be complete units of information.

The larger granularity and mapping to complete units of information in NetInf makes the addition of
affiliated data to NetInf messages a more realistic proposition. Addition of affiliated data to NDN messages
would probably be a prohibitive overhead if every message had to carry the affiliated data. However, how
the attachment of affiliated data to NDN messages could be achieved has not been studied so this remains
conjectural.

The downsides of the selected granularity and the requirement that NDOs are treated as indivisible units at
the NetInf layer20 include:

• real time streaming of content is not directly supported but SAIL has developed a scheme to provide
streaming under the NetInf architecture, and

• using a ni name for dynamically created content requires additional work. A scheme for extending the ni
scheme to dynamic content is described in Section 2.1 of [HALLAM2012]

19 Named Data Networking web site
20 Note: this does not rule out a CL transporting the NDO is smaller chunks but it has to be reassembled when it

reaches the next NetInf node.

14/06/13 Page 60 of 64 Version 1.3

http://www.named-data.net/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

8.5 The NetInf Device
Due to a number of unforeseen problems with the development of the infrastructure not as much time as
would have been desirable was able to be devoted to experimentation with the NetInf Device during this
project. However the basic aim of being able to access NDOs through the file interface was achieved and it
was possible to write files for automatic publication.

Fully integrating retrieval of NDOs with existing applications was not attempted. However, previous work
performed by our group during the previous N4C project indicated that a web interface could be provided
that would allow users to request retrieval of NDOs and notify them when they had arrived. This mechanism
would allow NDOs to be retrieved and cached locally and thus made available to applications through the
filing system interface. The NetInf SEARCH request would allow users to determine if there were NDOs
that would be useful. Again the web interface implemented to display search results from NetINf would
assist in informing users of relevant NDOs to retrieve.

As a result of the experimentation it was clear that a number of adaptations would have to be made if ICN
was to be fully usable as the sole communication means for the device:

• Access to dynamically varying internal data of the device from outside (e.g., for management or direct
access to devices) was not tested but the scheme suggested in the extensions of the ni URI scheme in
Section 2.1 of [HALLAM2012] would provide a way of accessing such dynamic data using a hashed
public key as the name of the data.

• The socket abstraction is not an ideal API for accessing NDOs that are not already present on the device. If
an application knows the ni name for an NDO but it is not yet cached in the device, a NetInf GET request
could be issued automatically when an attempt is made to read the data. However if the data has to be
retrieved via the DTN network, it may be some time before the data becomes available (this may be true
even for access over the Internet of course depending on where copies of the NDO are currently cached).
A notification mechanism would be preferable so that the application could continue with other processing
while the the GET operation proceeds and be informed when the data was available. This would require
significant alteration to the user interface of many applications as well as education of users to expect such
delays. Experimentation with a DBus API for NetInf might offer some useful information as to how this
mechanism could be implemented.

• Currently applications do not in general take into account any information forks or extended attributes of
NDOs (i.e., files). The importance of affiliated data for NetInf NDOs would make it desirable for
applications to be able to display and/or use some or all of the affiliated data.

• In many applications (such as writing this document), multiple versions of the document are written either
as snapshots to protect against losing work or when publishing work in progress. The automatic
publishing interface created in the NetInf Device provides a way to associate multiple ni names with a
single file object but this mechanism needs further refinement. The mechanism is in some ways akin to an
automated attachment to a revision control system or perhaps more closely (and intriguingly) a
'versioning' filing system such as the one originally developed for the Digital Equipment Corporation
VAX/VMS operating system and currently maintained as OpenVMS by Hewlett Packard21.

8.6 Practical Utility of the Development
 In practical terms, the development of a reasonably robust implementation of a new experimental protocol in
parallel with the specification of the protocol has been instructive. The feedback loop between the
implementation and the specification has a salutary effect on both pieces, making for a simpler, less
overloaded specification and helping to give a closer match between specification and implementation. The
development of 'running code' in parallel with a specification is intended to be a guiding principle of the
IETF where the specification has been published, but this has become less well followed in recent years and

21 Hewlett Packard OpenVMS documentation

14/06/13 Page 61 of 64 Version 1.3

http://www.hp.com/go/openvms/doc/

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

it is helpful both from the point of view of research and as a guide to standardization to participate in this
effort.

9. Suggested Further Developments

9.1 Netinffs Further Work

• Cope with long delays on PUBLISH responses

• Complete the history/link to bundle in current version

• Move database checking to a thread so it isn't done too frequently

• Implement auto-get so that reading non-existent ni URIs in ni directory automatically fires off a NetInf
GET operation for the NDO.

• Provide NDO metadata as extended attribute for bundles with BPQ blocks (see Section 9.3).

9.2 NetInf API

• Build a DBus interface to NetInf as suggested (by me) at ICNRG meeting.

• Add explicit timeout value to requests so that interfaces can respond tidily if the request takes longer to
service over DTN than web browsers and/or humans can tolerate.

9.3 DTN Specification
• Finish BPQ spec

• Work out whether PUBLISH belongs in BPQ block

• Do specification (I-D) for JSON Metadata block

• Think about whether payload placeholder Metablock is really needed.

• If bundle with BPQ block also has JSON ontology Metadata block, put the JSON string into the bundle
auxiliary table data also.

• We observe that there is no way for a recipient of a bundle to know if all the extension and/or metadata
blocks that were sent have arrived. If they are deliberately or accidentally deleted its impossible to tell.
Its also impossible for a custodian to know if what it has in custody matches what the originator sent or
whether it has lost or gained extension blocks.

9.4 NetInf DTN
• Sort out Replicate Block flags and ensure that BPQ and Metadata blocks are not dropped because a node

doesn't have a BPQ or Metadata Block Processor.

• Think about block ordering in DTN bundles: There is an issue in the API in that all API blocks are
unconditionally placed before the payload currently and in reverse order of placement in the API. This
currently doesn't really matter but it would be good to have some control if extension blocks are to be
really useful.. At the moment generated Metadata blocks always go on the end of the bundle. Will
probably live with this since there aren't any currently? But does this interact with the BSP?

• A general problem with DTN BP and DTN2 is that there is no way of ensuring that extension and
metadata blocks put into a bundle on creation actually make it to the destination and there is no way for
the destination (or any intermediate node) to be sure that the bundle it receives has the same set of blocks
that it had when it was created. This is potentially an issue for nodes that offer to take custody. The BSP
is no help here although the BAB makes sure the bundles is not corrupted per single hop but this doesn't

14/06/13 Page 62 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

help if a node deletes blocks inappropriately (or because the user forgot to set the 'pass through if not
recognized' block flag.

Bibliography
BPQ2012 Farrell, Stephen; Lynch, Aidan; Kutscher, Dirk; Lindgren, Anders, "Bundle Protocol

Query Extension Block", IETF, May 2012, http://tools.ietf.org/html/draft-irtf-dtnrg-bpq-
00

DTN2SQL Davies, Elwyn, "Improvements and Additions to the DTN2 Reference Implementation of
the Bundle Protocol (BP) and the Oasys Framework Adding SQL Database Storage and
Auxiliary Tables", TCD, February 2013,

FARRELL2011 Farrell, Stephen; Kutscher, Dirk; Dannewitz, Christian; Ohlman, Borje; Hallan-Baker,
Phillip, "The Named Information (ni) URI Scheme: Core Syntax", IETF, October 2011,
http://tools.ietf.org/html/draft-farrell-decade-ni-00

FARRELL2012 Farrell, Stephen; Kutscher, Dirk; Dannewitz, Christian; Ohlman, Borje; Keranan, Ari;
Hallan-Baker, Phillip, "Naming Things with Hashes", IETF, August 2012,
http://tools.ietf.org/html/draft-farrell-decade-ni-10

HALLAM2012 Hallam-Baker, Phillip; Stradling, Rob; Farrell, Stephen; Kutscher, Dirk; Ohlman, Börje,
"The Named Information (ni) URI Scheme: Optional Features", IETF, June 2012,
http://tools.ietf.org/html/draft-hallambaker-decade-ni-params-03

KUTSCHER2012 Kutscher, Dirk; Farrell, Stephen; Davies, Elwyn, "The NetInf Protocol", IETF, February
2013, http://tools.ietf.org/html/draft-kutscher-icnrg-netinf-proto-01

LYNCH2012 Lynch, Aidan, Using the BPQ Block for a DTN-based Search Mechanism in DTN2 ,
2012

RFC5013 Kunze, John A.; Baker, Thomas, The Dublin Core Metadata Element Set, 2007
RFC5050 Scott, Keith; Burleigh, Scott, "Bundle Protocol Specification", IETF, November 2007,

http://tools.ietf.org/html/rfc5050
RFC6258 Symington, Susan, "Delay-Tolerant Networking Metadata Extension Block", IETF, May

2011, http://tools.ietf.org/html/rfc6258
SCOTT2011 Scott, Keith, "Changes to the DTN2 Implementation to Support ARMY VRL Router v5",

Mitre Inc, July 2011,

14/06/13 Page 63 of 64 Version 1.3

NetInf Protocol for HTTP and DTN TCD-CS-2013-2

Revision History
Version Date Author Comments

0.0 20/02/13 Elwyn Davies Creation

0.1 28/02/13 Elwyn Davies More creation

0.2 01/03/13 Elwyn Davies More creation

0.3 04/03/13 Elwyn Davies More creation

0.4 05/03/13 Elwyn Davies More creation.

0.5 06/03/13 Elwyn Davies More creation (NIlib part 1)

0.6 07/03/13 Elwyn Davies More creation (NIlib part2)

0.7 08/03/13 Elwyn Davies More creation. (NetInfFS)

0.8 08/03/13 Elwyn Davies More creation. (analysis)

0.9 12/03/13 Elwyn Davies More creation. (analysis)

1.0 12/03/13 Elwyn Davies Added Executive Summary. Initial release for comments

1.1 13/03/13 Elwyn Davies Added section on multiple results. Improved Executive
Summary.

1.2 21/03/13 Elwyn Davies Minor typos fixed

1.3 14/06/13 Elwyn Davies Added header page for publication as SCSS technical
report.

14/06/13 Page 64 of 64 Version 1.3

	1. Introduction
	2. The NetInf Architecture
	2.1 High-level View of the Architecture
	2.2 Name Resolution & Routing
	2.3 Support for Challenged Networks
	2.4 Forwarding
	2.5 Mobility and Multihoming
	2.6 Transport
	2.7 API

	3. NetInf Protocol Overview
	3.1 NetInf Protocol Summary
	3.1.1 HTTP Convergence L ayer
	3.1.1.1 GET operation
	3.1.1.2 PUBLISH operation
	3.1.1.3 SEARCH operation

	3.1.2 DTN Convergence Layer
	3.1.2.1 GET operation
	3.1.2.2 PUBLISH operation
	3.1.2.3 SEARCH operation
	3.1.2.4 Selection of Destination EID for NetInf Bundles and DTN Routing

	4. NetInf Device Overview
	4.1 NetInf Device Operations

	5. Additions and Modifications to DTN2 Code
	5.1 ODBC-based SQL Persistent Storage
	5.2 Support for Auxiliary Data Table for Bundles in MySQL Database
	5.3 BPQ Extension Block Processing and BPQ Cache
	5.3.1 BPQ Extension Block and BPQ Cache Changeset 3550
	5.3.2 Changes to BPQ Extension Block and BPQ Cache

	5.4 Introduction of 'Publication' Status Reports
	5.5 Metadata Block Processing
	5.5.1 Problems Detected
	5.5.1.1 Non-conformance with Published Specification
	5.5.1.2 Possible Inappropriate Use of API Data Structure
	5.5.1.3 Differences in Handling Between Generated and Received Blocks
	5.5.1.4 Disposition of Metadata Blocks Received over Network and API

	5.5.2 Improvements and Fixes for Metadata Block Code
	5.5.2.1 Carrying Metadata Blocks Across Application Programming Interface
	5.5.2.2 Matching MetadataBlock Coding to Specification
	5.5.2.3 Dynamic Memory Allocation in Metadata Blocks
	5.5.2.4 Placement of Metadata Blocks when using API to Send Metadata

	5.6 Introduction of JSON Ontology Type for Metadata Blocks
	5.7 Completion of SWIG Generated Scripting Interfaces
	5.8 Preallocation of BlockInfo Lists and Creation of BP_Local Data

	6. Development of NIlib Python Code
	6.1 A Little History
	6.2 Licensing
	6.3 Documentation
	6.4 Code Volume and Installation
	6.5 Design Considerations
	6.5.1 NDO Content Size and Digest Generation Efficiency
	6.5.2 Multithreaded and/or Multiprocess Clients and Servers

	6.6 Overview of Python NIlib Modules
	6.6.1 Installation and Installed Scripts
	6.6.2 Logging
	6.6.3 Core ni URI Support
	6.6.3.1 ni.py
	6.6.3.2 nicl.py (run by script pynicl)

	6.6.4 NetInf Command Line Client Utilities
	6.6.4.1 niget.py (run by script pyniget)
	6.6.4.2 nigetalt.py (run by script pynigetalt)
	6.6.4.3 nigetlist.py (run by script pynigetlist)
	6.6.4.4 nipub.py (run by script pynipub)
	6.6.4.5 nipubalt.py (run by script pynipubalt)
	6.6.4.6 nipubdir.py (run by script pynipubdir)
	6.6.4.7 nisearch.py (run by script pyniserach)

	6.6.5 Server Common Code
	6.6.5.1 metadata.py
	6.6.5.2 file_store.py
	6.6.5.3 redis_store.py
	6.6.5.4 cache_single.py
	6.6.5.5 cache_multi.py
	6.6.5.6 cache_redis.py
	6.6.5.7 redisflush.py (run by script pyredisflush)
	6.6.5.8 nihandler.py
	6.6.5.9 nifwd.py
	6.6.5.10 ni_exception.py

	6.6.6 Servers Handling the HTTP Convergence Layer
	6.6.6.1 niserver.py
	6.6.6.2 httpshim.py
	6.6.6.3 niserver_main.py (run by script pyniserver)
	6.6.6.4 niserver_stop.py (run by script pystopniserver)
	6.6.6.5 niwsgiserver.py (run by script pyniwsgiserver)
	6.6.6.6 wsgishim.py

	6.6.7 HTTP Server Support Files
	6.6.7.1 netinf_ver.py
	6.6.7.2 data/niserver.conf
	6.6.7.3 data/niserver_log.conf
	6.6.7.4 scripts/install-nilib-wsgi.sh
	6.6.7.5 scripts/test.wsgi
	6.6.7.6 scripts/showenv.wsgi
	6.6.7.7 scripts/netinf_file.wsgi
	6.6.7.8 scripts/netinf_redis.wsgi
	6.6.7.9 data/help.html
	6.6.7.10 data/getputform.html
	6.6.7.11 data/nrsconfig.html
	6.6.7.12 data/favicon.ico

	6.6.8 Server and Gateway Handling the DTN Convergence Layer
	6.6.8.1 nidtnhttpgateway.py
	6.6.8.2 nihttpaction.py
	6.6.8.3 nidtnproc.py
	6.6.8.4 nidtnevtmsg.py

	6.6.9 DTN Support and DTN2 BPA Interface
	6.6.9.1 dtnapi.py
	6.6.9.2 dtn_api_const.py
	6.6.9.3 nidtnbpq.py
	6.6.9.4 nidtnmetadata.py
	6.6.9.5 nistruct.py
	6.6.9.6 _nistruct.c

	6.6.10 Modified 'Poster' Software
	6.6.10.1 streaminghttp.py
	6.6.10.2 encode.py

	6.6.11 Modified Standard Python Modules
	6.6.11.1 ni_urlparse.py
	6.6.11.2 nifeedparser.py

	6.6.12 NIlib Setup Support and Documentation
	6.6.12.1 setup.py
	6.6.12.2 __init__.py
	6.6.12.3 MANIFEST.in
	6.6.12.4 scripts/pynilib_test.sh
	6.6.12.5 README and doc/README

	7. Development of NetInfFS FUSE-based File System
	7.1 Introduction to FUSE Filing Systems
	7.1.1 FUSE Installation Notes

	7.2 Implementation of NetInfFS using Fuse-Python
	7.2.1 Starting and Stopping NetInfFS
	7.2.2 Handling Bundle Fragments
	7.2.3 Future Optimisation

	8. Analysis and Conclusions
	8.1 Demonstrating the NetInf Architecture
	8.2 The Rôle of Affiliated Data and Transmitting Alternative Forks
	8.3 Multiple Results and Merging Affiliated Data
	8.4 Granularity of NDOs
	8.5 The NetInf Device
	8.6 Practical Utility of the Development

	9. Suggested Further Developments
	9.1 Netinffs Further Work
	9.2 NetInf API
	9.3 DTN Specification
	9.4 NetInf DTN

	Bibliography
	Revision History

