
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Transactional Concurrent ML

Carlo Spaccasassi

Computer Science Department Technical Report TCD-CS-2013-01
Foundations and Methods Research Group February 15, 2013

Transactional Concurrent ML

Carlo Spaccasassi

February 15, 2013

email address: spaccasc@scss.tcd.ie

Abstract

Transactional Memory is a now popular abstraction to implement mu-
tual exclusion in concurrent shared-memory systems. TM achieves this
by effectively isolating processes from each other, but for this reason it
is not suitable for implementing consensus, where processes need to com-
municate. Recently proposed abstractions for streamlining consensus in
concurrent programming also take a transactional form, but these trans-
actions are allowed to communicate with their environment rather than
being isolated from it.

We present TransCML, a functional programming language that adds
Communicating Transactions to Concurrent ML. Communicating Trans-
actions are an abstraction developed within TransCCS, a calculus that
extends Milners CCS and that has a simple behavioural theory capturing
the notions of safety and liveness. The ultimate goal of this work is to de-
velop a language with an intuitive semantics, simple reasoning techniques
and an efficient runtime system, and in which programmers can simply
specify the local conditions for consensus, without spelling out how it can
be achieved.

Contents

1 Introduction 4

2 Language definition 6
2.1 Syntax . 6

2.1.1 Syntax operators . 8
2.2 Reduction semantics . 12
2.3 Type system . 19

2.3.1 Type soundness . 24

3 Language design choices 54
3.1 Asynchronous commits . 54
3.2 Transaction scope extension . 57

2

3.3 Programmable aborts . 65
3.4 Commit dependencies . 68

4 Examples 70
4.1 Even-Odd consumer . 70

4.1.1 Channel selection . 71
4.1.2 Buffered selection . 76

4.2 Three-way rendezvous . 80
4.3 Communication sequence buffering 85
4.4 Graph search . 87

5 Towards an LTS 91

6 Conclusion 95

3

1 Introduction

Transactional memory is a concurrent programming technique that has been
recently praised for significantly reducing at the same time the implementation
and verification effort to build concurrent system. In a recently drawn analogy
[8], transactional memory for shared-memory concurrency has been compared
to garbage collection for memory management. Just as garbage collection eases
memory management in a program by automating memory reclamation, trans-
actional memory greatly simplifies concurrent programming by automatically
managing conflicting operations on a region of memory shared by cooperating
processes.

In distributed systems, consensus [12] is a class of problems that is missing
programming language support comparable to garbage collection. In general,
solutions for consensus problems are well known, such the Paxos algorithm
[13]. On the one hand, implementations in low-level languages can be quite
complicated to program, scaling up to several thousands of lines of C++ code
[3]. On the other hand, high-level implementations tend to be ad-hoc solutions
that do not integrate well with the rest of the language. For example, it is not
possible to write a three-way rendezvous in CML [16], and Haskell’s STM cannot
implement a composable swap operation inside an STM transaction [9]. These
short-comings point to the need of programming language support to address
consensus problems.

On the wave of the success of transactional memory, the traditional concept
of transactions has attracted attention in distributed systems too. Many con-
structs drawing from this concept have been proposed recently, such as cJoin[1],
communicating memory transactions [14], transactors [18], stabilizer [7]. This
report focuses on communicating transactions, a construct proposed in [4] that
drops the isolation requirement from traditional transactions to model auto-
matic system recovery in distributed systems. We present TransCML, or TCML,
a functional language that draws inspiration for its concurrency model from a
core version of Concurrent ML [11] and its transactional model from TransCCS
in [4]. TransCML serves as the basis to investigate communicating transactions
in the more concrete setting of a concurrent functional language.

To draw a further analogy, transactions in TCML are similar to exception-
handling blocks, in which exceptions are thrown whenever processes in a trans-
action are deadlocked. Whenever such an exception is thrown, all side effect
that took place during the execution of a transactional block are automatically
annulled. Exceptions are automatically raised by the system, programmers do
not need to specify aborting points to throw them. Consider for example the
following scenario, in which some friends, among which Alice, Bob and Carol,
want to find a partner for all activities that each of them has planned for the
night. Let us assume that Alice wants to find a dinner partner and a salsa
dancing partner, Bob a dinner and cinema partner, and Carol a salsa dancing
partner. If Alice, Bob and Carol were to go out together, they would not be
able to reach an agreement, because Bob has no movie partner. In an ad-hoc
solution, a programmer would have to encode a protocol to find an agreement

4

and also to handle the failure cases, where an agreement cannot be met. Such
a solution would be burdersome to implement and hard to prove correct. In
TCML this scenario can be implemented by the following code:

// Alice

atomicrec alice J dinner (); salsa (); commit alice K

// Bob

atomicrec bob J dinner (); cinema (); commit bob K

// Carol

atomicrec carol J salsa (); commit carol K

where dinner, salsa and cinema are protocols that involve some communi-
cation among two partners to agree on where to go for dinner, salsa dancing or
for a movie. In TransCML failure is handled automatically, and the programmer
needs not to worry about recovering from deadlocks for example; for the sake of
efficiency, partial agreement can be preserved (for example an eventual partial
agreement between Alice and Bob for dinner), instead of aborting the whole
agreement, in case consensus can be reached by a different set of participants
(for example by replacing Carol with a friend that matches Alice and Bob’s
activities).

In this report we show the reduction semantics for TransCML, a type system
along with a proof of soundness. We discuss the design choices that led to
the formulation of the language as it is. We provide examples of common
interaction patterns such as a single consumer/multiple consumers scenario, and
show the expressiveness of the language by implementing a three-way rendezvous
operation and guarded commands. The example of Alice, Bob and Carol is an
example of three-way rendezvous. We also show a parallel between Prolog’s
backtracking capabilities and TransCML restarting transactions, through the
standard example of graph search, demonstrating how TransCML can be used
for speculative computing [2, 1]. Finally, we provide a draft Labelled Transition
System, to better study the dynamic behaviour of individual processes and to
guide a future implementation of the language.

5

2 Language definition

We will now present the syntax, type system and reduction semantics for TCML.
We will prove subject reduction, among with other lemmas such as the substitu-
tion lemma. Our work is inspired by Reppy’s [16] Concurrent ML and Jeffrey’s
core µCML [11], and by TransCCS in [4] and [5]. Notably, TCML does not
feature CML’s Events but communicating transactions, or more simply trans-
actions, in their place.

2.1 Syntax

Table 1 summarizes TCML’s syntax. We assume a countable set of variables
Var, channel names Chan and transaction names K. The set N describes the
set of natural numbers.

We can divide TCML’s syntax in two main categories: a functional core and
processes. On the one hand, the functional core comprises common expressions,
values and operations in programming languages, such as if - then - else expres-
sions and natural numbers. On the other hand, an expression is also a process,
which can be run in parallel with other processes and eventually communicate
with them over channels. Processes can also run within a transaction, which
uses the syntax of JP Bk P K.

v ::= () | true | false | n | x | c
| (v, v) | fun f(x) = e

e ::= v | (e, e) | e e | op e | let x = e in e | if e then e else e
| send e e | recv e | newChanA | spawn e
| atomic J eBk e K | commit k

op ::= fst | snd | add | sub | mul | leq

P ::= e | P ‖ P | νc.P | JP Bk P K | co k

A ::= unit | bool | int | A×A | A→A | A chan

where n ∈ N, x ∈ V ar, c ∈ Chan, k ∈ K

Table 1: TCML syntax.

Let us briefly describe the functional core first. Values comprise Natural
numbers, boolean values, a unit value, pairs and variables; functions are first-
class values too. The language provides conditional and let expressions, function
application and a small standard set of operation on pairs (fst and snd), num-
bers (add , mul and sub) and booleans (leq).

We introduce some syntactical conventions for functions and sequencing of
terms. We write fun f() = e for fun f(x) = e, where x does not occur free

6

in e. We also write fun f(x0, x1, . . . , xn) = e for fun f(x0) = fun f1(x1) =
. . . fun fn(xn) = e, where f1, . . . , fn do not occur free in e. We abbreviate
let x = e1 in e2 to e1; e2, where x does not occur free in e2.

Primitives to spawn new processes, send and receive messages over channels
and to create channels are provided too. In particular, new processes can be
spawned by the spawn expressions. A value can be sent over a channel from one
process to another by the send expression. A process can receive a value over
a channel from another process using the recv expression; two processes can
communicate with each other with the send and recv primitives only if they
are using the same channel. New channels can be created by the newChanA

expression, where A is the type of value that the generated channel transports.
Two additional expressions are available, atomic and commit , to start a

new transaction and to create a new commit point respectively. We will shortly
describe them at greater length.

We now describe processes. In TCML, processes run concurrently, are com-
posed by the parallel construct ‖, and communicate using synchronous channels.
Processes send and receive values over channels using send and recv . For ex-
ample, the following two processes will send integer 1 over channel c and receive
it on the same channel:

send c 1 ‖ recv c

New processes can be spawned using the spawn construct. The following
term will evolve to the two processes described above:

let z = spawn (fun f() = send c 1) in recv c

As already mentioned, TCML’s evaluation strategy is eager. Thus the ex-
pression bound to z in the above example must be fully reduced to a value
before the body of the let expression is evaluated. In this case, when the eval-
uation of the spawn expression will generate a new process and then reduce
to the unit value (). This value only indicates that process generation has been
successful. Since the value itself is not interesting for the rest of the expression,
it is discarded by not binding z anywhere in the body of the let expression.
We can abbreviate this example with the ‘;′ abbreviation introduced earlier as
follows:

spawn (fun f() = send c 1); recv c

Channels can be either public or private. As mentioned earlier, we assume to
have an infinite supply of channels Chan. Private channels are marked by νc.e
syntax, meaning that the channel name c is bound in the term e and cannot
be used outside the scope of e. New private channels can be created by the
expression newChanA, where A is the type of values that can be communicated
over that channel.

If we want the earlier conversation to be private, so that no other process
can interfere with it, we can create a new private channel as follows:

let c = newChan int in spawn (fun f() = send c 1); recv c

7

As already mentioned in the introduction, TCML provides transactions and
commit points in place of CML’s Events.

A running transaction has the form JP1 Bk P2 K, where P1 is called the
default process of transaction k, whereas P2 is called the alternative process.
Since a process P1 can be the parallel composition of processes, we might also
refer to P1 and P2 as the default and alternative processes. Running transac-
tions can also contain commit points co k, where k is a variable bound to the
transaction. Commit points only exist within a transaction; the type system
disallows commit points to appear outside of transactions.

A new transaction k can be started from an atomic J e1 Bk e2 K expression,
where the default expression e1 will constitute the default process of the trans-
action, and the alternative expression e2 will constitute its alternative process.
Commit points for a transaction k can be spawned by commit k expressions.
Up to the moment when an atomic J e1 Bk e2 K expression has been evaluated,
no transaction J e1 Bk e2 K is started, and neither can the default expression be
evaluated. Similarly, a commit point co k is only created after a commit k is
evaluated. Expressions atomic and commit activate, or trigger, a transaction
and a commit point, respectively.

Consider the following example:

J send c 0; send c 1; send c 2; commit k Bk () K

Intuitively, the default part of a transaction is an expression that is ten-
tatively executed, until the transaction is finalized by a commit point. The
alternative is an expression that can replace the default process at any time be-
fore committing. In this example, the transaction tries to send three numbers
over channel c and then commits. In order for the transaction to commit, the
three communications must have taken place. Since communications are tenta-
tive before committing, the behaviour of this example transaction is to either
send exactly three numbers over c, or do nothing.

Transactions can also be programmed to repeatedly try the default expres-
sion in case of abortion, until they are committed. For example, the following
example will repeatedly try to send exactly two numbers over channel c:

fun f() = atomic J send c 0; send c 1 Bk f () K

This transaction will try to send both numbers 0 and 1 over channel c. If
the transaction is aborted, the alternative expression will recursively run the
same transaction we started with. These kind of transactions are referred to as
restarting transactions. We will abbreviate restarting transactions as follows:

atomicrec k J e K = fun f() = atomic J eBk f () K

2.1.1 Syntax operators

Before presenting the type system and the reduction semantics of TCML, we
need to define some predicates over processes and expressions. The free variables

8

FV (()) = ∅ FV (x ∈ V ar) = {x}
FV (n) = ∅ FV (fun f(x) = e) = FV (e)/{f, x}
FV (true) = ∅ FV ((v1, v2)) = FV (v1) ∪ FV (v2)
FV (false) = ∅ FV (c ∈ Chan) = ∅

FV (e1e2) = FV (e1) ∪ FV (e2) FV (op e) = FV (e)
FV (let x = e1 in e2) = FV (if e1 then e2 else e3) =
FV (e1) ∪ FV (e2)\x FV (e1) ∪ FV (e2) ∪ FV (e3)

FV (send e1 e2) = FV (e1 ∪ FV (e2)) FV (recv e) = FV (e)
FV (newChanA) = ∅ FV (spawn e) = FV (e)
FV (commit k) = ∅ FV (atomic J e1 Bk e2 K) =

FV (e1) ∪ FV (e2)

FV (νc.P) = FV (P) FV (P1 ‖ P2) = FV (P1) ∪ FV (P2)
FV (JP1 Bk P2 K) = FV (P1) ∪ FV (P2) FV (co k) = ∅

Table 2: Free variables predicate FV.

predicate FV ∈ Proc−→P(V ar) is defined inductively over syntax expressions
in Table 2.

An expression is called closed if and only if FV (e) = ∅. We define the set of
closed values as CV al = {v|FV (v) = ∅}, the set of closed expressions as CExp =
{e|FV (e) = ∅} and the set of closed processes as CProc = {P |FV (P) = ∅}.
We also say that a variable x has a free occurrence in a term e if x ∈ FV (e). If
a variable x occurs in e but x 6∈ FV (e), then we will call it a bound occurrence
of variable x in e.

Along with the FV predicate, we thus define the free channels predicate FC
inductively over syntax expressions in Table 3. This predicate is necessary to
avoid variable-capture when creating channels and to provide a correct definition
of restriction.

We use the Barendregt’s variable convention, or just Barendregt’s conven-
tion, to deal with bound variables: in any mathematical context (e.g. defini-
tions, proofs etc), all bound occurrences of variables and channel names and
transaction names in an expression are different from all free occurrences of
variables and channel names and transaction names in that context, and we
identify terms up to alpha-conversion.

Consider for example the following expression:

let x = 1 in let x = x+ 1 in x

It is not clear which one of the two let expression binds the variable x in the
innermost body of the let expressions. With Barendregt’s convention we can
consider the above expression equivalent to the following one:

9

let x = 1 in let y = x+ 1 in y

which is not ambiguous.
We also define the free transaction names predicate FTN inductively over

syntax expressions in Table 4.
The substitution function −[−/−] : Proc × V al × V ar → Proc is defined

inductively over syntax expressions in Table 5.

FC(()) = ∅ FC(x ∈ V ar) = ∅
FC(n) = ∅ FC(fun f(x) = e) = FC(e)
FC(true) = ∅ FC((v1, v2)) = FC(v1) ∪ FC(v2)
FC(false) = ∅ FC(c ∈ Chan) = c

FC(e1e2) = FC(e1) ∪ FC(e2) FC(op e) = FC(e)
FC(let x = e1 in e2) = FC(if e1 then e2 else e3) =
FC(e1) ∪ FC(e2) FC(e1) ∪ FC(e2) ∪ FC(e3)

FC(send e1 e2) = FC(e1) ∪ FC(e2) FC(recv e) = FC(e)
FC(newChanA) = ∅ FC(spawn e) = FC(e)
FC(commit k) = ∅ FC(atomic J e1 Bk e2 K) =

FC(e1) ∪ FC(e2)

FC(νc.P) = FC(P)\c FC(P1 ‖ P2) = FC(P1) ∪ FC(P2)
FC(JP1 Bk P2 K) = FC(P1) ∪ FC(P2) FC(co k) = ∅

Table 3: Free channels predicate FC.

10

FTN(()) = ∅ FTN(x ∈ V ar) = ∅
FTN(n) = ∅ FTN(fun f(x) = e) = FTN(e)
FTN(true) = ∅ FTN((v1, v2)) = FTN(v1) ∪ FTN(v2)
FTN(false) = ∅ FTN(c ∈ Chan) = ∅

FTN(e1 e2) = FTN(op e) = FTN(e)
FTN(e1) ∪ FTN(e2) FTN(if e1 then e2 else e3) =

FTN(let x = e1 in e2) = FTN(e1) ∪ FTN(e2) ∪ FTN(e3)
FTN(e1) ∪ FTN(e2)/x FTN(recv e) = FTN(e)

FTN(send e1 e2) = FTN(spawn e) = FTN(e)
FTN(e1) ∪ FTN(e2) FTN(atomic J e1 Bk e2 K) =
FTN(newChanA) = ∅ (FTN(e1)\k) ∪ FTN(e2)
FTN(commit k) = {k}

FTN(νc.P) = FTN(P) FTN(P1 ‖ P2) = FTN(P1) ∪ FTN(P2)
FTN(JP1 Bk P2 K) = FTN(co k) = {k}
FTN(P1) ∪ FTN(P2)\k

Table 4: Free transaction names predicate FTN.

()[v/x] = () x[v/x] = v
n[v/x] = n x′[v/x] = x′ if x 6= x′

false [v/x] = false (e1, e2)[v/x] = (e1[v/x], e2[v/x])
true [v/x] = true c[v/x] = c

(fun f(x′) = e)[v/x] = (let x′ = e1 in e2)[v/x] =
fun f(x′) = e[v/x], let x′ = e1[v/x] in e2[v/x],
if x 6= x′, x 6= f and f, x′ 6∈ FV (v) if x 6= x′ and x′ 6∈ FV (v)

(if e1 then e2 else e3)[v/x] = (e1 e2)[v/x] = (e1[v/x] e2[v/x])
if e1[v/x] then e2[v/x] else e3[v/x] op e[v/x] = op e[v/x]

(send e1 e2)[v/x] = (recv e)[v/x] = recv e[v/x]
send e1[v/x] e2[v/x] spawn e[v/x] = spawn e[v/x]

newChanA[v/x] = newChanA atomic J e1 Bk e2 K[v/x] =
commit k[v/x] = commit k atomic J e1[v/x] Bk e2[v/x] K

(νc.e)[v/x] = νc.e[v/x], if c 6∈ FC(v) (e1 ‖ e2)[v/x] = e1[v/x] ‖ e2[v/x]
J e1 Bk e2 K[v/x] = co k[v/x] = co k

J e1[v/x] Bk e2[v/x] K

Table 5: Substitution function.

11

2.2 Reduction semantics

TCML’s evaluation strategy is eager, in that expressions can take a functional
reduction step only if the required arguments are values. In particular, it is
left-to-right and call-by-value. We can categorize evaluation rules in expression
rules and process rules. There are four main sets of rules, respectively three
sets for sequential, concurrency, transactions reduction rules, and one set for
structural equivalence.

Before further introducing the reduction semantics, we extend the syntax in
Table 1 with the notion of evaluation contexts.

E ::= [] | op E | (E, e) | (v,E) | E e | v E
| if E then e1 else e2 | let x = E in e
| send E e | send v E | recv E | spawn E

Table 6: Evaluation contexts syntax.

As in CML [16], we use Felleisen’s evaluation contexts [17] in the definition of
TCML’s reduction semantics. An evaluation context E is a function from an
expression to an expression, inductively defined by a grammar syntax. For ex-
ample, [] is the identity function, mapping an expression to itself; op E maps an
expression e to op(E e). TCML’s evaluation strategy is eager and left-to-right,
thus evaluation contexts are defined left-to-right too. Intuitively, an evaluation
context uniquely identifies a “hole” in an expression. The hole contains an ex-
pression that can take a reduction step within the larger expression. Note that
there an evaluation context never falls under the scope of a binder, thus there
is no danger of free variable capture when inserting an expression e into the
hole of any evaluation context. Evaluation contexts are very useful to separate
expression

Sequential reduction rules are marked by ↪→: CExp ⇀ CExp transitions.
Concurrency and transactions reduction rules are marked by −→ : CProc ⇀
CProc.

Table 7 present the set of reduction rules for the sequential part of TCML.
Sequential reduction steps are represented by the transition arrow ↪→.

In rule [E-App] , function application can be reduced only if it contains a
fun f(x) = e value as an operator and another value as its operand; in the
body of the function every occurrence of f is substituted by the operand, and
every occurrence of x is substituted by the operator. Similarly in rule [E-Let] ,
let expressions can be reduced only if the argument bound to the variable is a
value. Its reduction substitutes that value for occurrences of x in the body of the
expression. Conditional expressions are reduced as expected in rules [E-If-True]

and [E-If-False] . According to rule [E-Op] , operations can only be reduced on
values as well.

The actual evaluation of operations is summarized in the separate Table 8,
where the function δ ∈ op×V al−→V al assigns to each operation and its argu-

12

[E-If-True]

if true then e1 else e2 ↪→ e1

[E-If-False]

if false then e1 else e2 ↪→ e2

[E-Let]

let x = v in e ↪→ e[v/x]

[E-Op]

op v ↪→ δ(op, v)

[E-App]

fun f(x) = e v2 ↪→ e[fun f(x) = e/f][v2/x]

Table 7: Sequential reduction rules

δ(fst, (v, w)) = v δ(snd, (v, w)) = w
δ(add, (n,m)) = n+m δ(sub , (n,m)) = n−m
δ(mul, (n,m)) = n ∗m δ(leq (n,m)) = true if n ≤ m,

false otherwise

Table 8: Operations relation.

ment a corresponding value. Operations on values have the expected semantics.
Operations fst and snd project the first and second component of a pair value.
Operations add , mul and sub respectively add, subtract and multiply pairs
of values. Operation leq returns a true if the first component of a pair is lesser
or equal than the second component, and false otherwise.

[C-Spawn]

E[spawn v]−→ v () ‖ E[()]

[C-NewChan]

E[newChanA]−→ νc.E[c]
ty(c) = A chan
c 6∈ FC(E[()])

[Tr-Commit]

E[commit k]−→ co k‖E[()]

[Tr-Atomic]

E[atomic J e1 Bk e2 K]−→ JE[e1] Bk E[e2] K

Table 9: Expression reduction rules

The set of rules contained in Table 9 describes how to generate TCML pro-
cesses starting from expressions. Remember from Table 1 that there are five
kinds of processes in TCML’s syntax: expressions, parallel composition of pro-
cesses, channel restriction, transactions and commit points.

13

New processes can be spawned by the spawn expression, whose semantics
is given by rule [C-Spawn]. The new process starts as a function application,
in which a value v is applied to a unit value (). The new process will start
executing as soon as the function application (v ()) is reduced. The originating
process receives a unit value (), as a sign that a new process has been spawned.
New channels can be generated by the newChanA expression, as described by
the [C-NewChan] rule. Notice how the first side condition on the rule enforces
that the new channel c has the same type as the explicit type contained in
the newChanA expression. The second side condition avoids the problem of
variable capture, so that no free channel is mistakenly bound by restriction νc.

Given a default and an alternative expression, new transactions can be
spawned by the atomic expression as described by rule [Tr-Atomic]. For ex-
ample, suppose that we wanted a process to send the integer 1 over channel c
atomically, or alternatively to send the integer 2 over channel c. This process
can be written as follows:

atomic J(send c 1; commit k) Bk send c 2 K

The default expression of this transaction is send c 1; commit k, the alterna-
tive part is send c 1. The role of the commit k expression will be explained
later. After applying rule [Tr-Atomic], the above expression generates a new
transaction as follows:

J send c 1; commit k Bk send c 2 K

Notice that rule [Tr-Atomic] applies the evaluation context in which the atomic
expression is, to both the default and alternative expressions. This will allow the
original evaluation context, containing the atomic expression, to be restored in
case the transaction is aborted. For example, consider the following expression:

let x = atomic J recv cBk recv d K in x+ 1

The evaluation context of this expression is let x = [] in x+ 1. The transaction
that will be created by rule [Tr-Atomic] is the following:

J let x = recv c in x+ 1 Bk let x = recv d in x+ 1 K

When the atomic expression is reduced, the let expression is copied to both
the default and alternative part.

Lastly, commit points can be spawned by rule [Tr-Commit] when a commit
expression is reached. Let us consider the following process:

J commit k Bk send c 2 K

After applying rule [Tr-Commit], the process will reduce to the following:

J co k ‖ () Bk send c 2 K

14

[C-Step]

e ↪→ e′

E[e]−→E[e′]

[C-Par]

P1−→P ′1
P1 ‖ P2−→P ′1 ‖ P2

[C-Chan]

P −→P ′

νc.P −→ νc.P ′

[C-Sync]

E1[recv c] ‖ E2[send c v]−→E1[v] ‖ E2[()]

Table 10: Concurrency reduction rules

Notice how a transaction contains processes, such as a parallel composition of a
commit point and a unit value, rather than an expression. Before the expression
commit k was evaluated, the transaction could not commit. Only after creating
a commit point co k, transaction k can commit.

Table 10 contains the set of rules describing concurrency in TCML. Rule
[C-Step] allows functions to be reduced. This rule lifts functional reductions to
processes and reduces it.

A process can communicate a value v to another process a channel c. This sit-
uation is captured in rule [C-Sync], where two parallel processes contain send c v
and recv c in their respective evaluation contexts. After the reduction step is
performed, value v is passed to the receiving process, whereas the sending pro-
cess receives a unit value (). Communication is thus synchronous, because in
one step both processes send and receive a value over channel c.

Parallel processes and processes under channel restriction can each take re-
duction step independently if they can, as shown in rules [C-Chan] and [C-Par].

[Tr-Step]

P −→P ′

JP Bk P2 K−→ JP ′ Bk P2 K

[Tr-Abort]

JP1 Bk P2 K−→P2

[Tr-Emb]

P1 ‖ JP2 Bk P3 K−→ JP1 ‖ P2 Bk P1 ‖ P3 K

[Tr-Co]

P1 ≡ co k ‖ P ′1
JP1 Bk P2 K−→P ′1/k

Table 11: Transactions reduction rules

Table 11 describes reduction rules for transactions.
Only processes in the default part of a transaction are allowed to take re-

duction steps, according to rule [Tr-Step]. Transactions can be aborted at any
time, as shown in rule [Tr-Abort]. A process parallel to a transaction can be
embedded into it by rule [Tr-Emb]. When a process is embedded, it joins both
the processes in the default part of the transaction and those in the alternative

15

part. Remember however that the alternative processes never take any reduc-
tion step as long as the transaction is not aborted. In summary, the embedding
mechanism stores a process in the alternative part of a transaction and puts it
in parallel with the processes in its default part.

Let us see how transactions work with an example. Suppose we had the
following processes:

J send c 1; send c 2; commit k Bk send c 2 K ‖ recv c

The first process is a transaction that sends two numbers over channel c, 1
and 2, and then commits. Alternatively it sends the number 2 over channel c.
The other process just receives a single number from channel c.

An important point to make is that transactions are not evaluation contexts.
Because of this, processes within a transaction cannot communicate with pro-
cesses outside of it, until they are embedded in the transaction. In fact, consider
rule [C-Sync] from Table 10: channel communication only happens between par-
allel processes if send and recv expressions are available in their respective
evaluation contexts. But transactions are not evaluation contexts, thus pro-
cesses that could communicate without transactions cannot do so unless they
belong to the same transaction.

In our example, the process within the transaction cannot communicate with
the process outside of it. In order for them to communicate, we can embed the
process on the right into the transaction using rule [Tr-Emb]:

J send c 1; send c 2; commit k ‖ recv c Bk send c 2 ‖ recv c K

The processes can now synchronize over channel c using rule [Tr-Step], which in
turn is enabled by rule [C-Sync]:

J send c 2; commit k ‖ 1 Bk send 2 ‖ recv c K

Evaluation is now stuck in the default part of the transaction, since there is
no other process with which to synchronize over c. The only transition now
available for the system is to abort the transaction using rule [Tr-Abort]:

send 2 ‖ recv c

The embedding mechanism constitutes the core of communicating transac-
tions. Processes that want to collaborate with a transaction can do so, but
only if they register their own state in the alternative part of that transaction
first. In this way, if the transaction is aborted, all reductions and communica-
tions among default processes are discarded in case of a transaction abort. The
stored processes are then run instead.

The committing process can continue evaluation, while the transaction can
be committed at any time by rule [Tr-Co]. When the transaction is committed,
all references to transaction k are removed from the default processes by the
strip function \k.

Consider the following example:

16

J send c 1; commit k ‖ recv c Bk send 2 ‖ recv c K

After performing a synchronization step with rule [C-Sync] and generating a
commit point by rule [Tr-Commit], the above system evolves to the following:

J co k ‖ () ‖ 1 Bk send 2 ‖ recv c K

Transaction k is ready to commit now. Applying rule [Tr-Co], the system will
finally reduce to the following:

() ‖ 1

Upon commit of transaction k, the alternative processes stored in it have been
erased.

The strip function −/− : Proc×TName−→Proc is defined inductively over
syntax expressions in Table 12. Multiple commit points might be generated for
the same transaction. When one of these commit points is selected to commit
the transaction, the other ones become a dangling reference to a transaction
that does not exist any more. The strip function takes care of removing these
dangling reference. For example, consider the following transaction:

J co k ‖ co k ‖ () Bk send c 2 K

This transaction is ready to commit. Suppose that we chose to commit it using
the first commit point. Then, according to rule [Tr-Co] the transaction will
reduce to:

(co k ‖ ())\k

which is equal to (co k)\k ‖ ()\k, which in turn is equal to () ‖ ().
Finally we present the structural equivalence rules. Rules [Eq-Assoc] and

[Eq-Com] introduce associativity and commutativity of parallel processes, allow-
ing processes in parallel composition to be rearranged. Rule [Eq-Restr] allows
restrictions to be moved across parallel processes, provided that variable capture
is avoided, as specified in the side condition.

Intuitively, a TCML program is structurally equivalent to one where a se-
quence of channel restrictions contains all parallel processes. Processes within
a transaction can also be put in this form by structural equivalence.

17

()/k = () n/k = n
false /k = false true /k = true
c/k = c (e1, e2)/k = (e1/k, e2/k)
x/k = x (fun f(x) = e)/k =

fun f(x) = e/k

(if e1 then e2 else e3)/k = let x = e1 in e2)/k =
if e1/k then e2/k else e3/k let x = e1/k in e2/k

(e1 e2)/k = (e1/k e2/k) (op e)/k = op (e/k)
(send e1 e2)/k = send e1/k e2/k (recv e)/k = recv e/k
newChanA /k = newChanA (spawn e)/k = spawn e/k
commit k/k = () atomic J e1 Bl e2 K /k =
commit l/k = commit k, if k 6= l atomic J e1/k Bl e2/k K, if k 6= l

(νc.e)/k = νc.(e/k) (e1 ‖ e2)/k = e1/k ‖ e2/k
co k/k = () J e1 Bl e2 K /k =
co k′/k = co k′, if k 6= k′ J e1/k Bl e2/k K if k 6= l

Table 12: Strip function.

[C-Eq]

P1 ≡ P ′1 P ′1−→P ′2 P ′2 ≡ P2

P1−→P2

[Eq-Restr]

(νc.P1) ‖ P2 ≡ νc.(P1 ‖ P2)
c 6∈FC(P2)

[Eq-Assoc]

P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3

[Eq-Com]

P1 ‖ P2 ≡ P2 ‖ P1

Table 13: Structural equivalence rules.

18

2.3 Type system

We start the description of TCML’s type system by the formal definition of type
judgements.

We define the set of all types Types, specified by induction in Table 1. We
also define the set of variable bindings B = {x : A|x ∈ V ar ∧ A ∈ Types}.
A typing context Γ ∈ Contexts = P(K) × P(B) is a pair containing a set of
transaction names in the first component and a set of bindings in the second
component. The operation that projects the first component of a typing context
Γ is π1 : Contexts−→P(K) whereas π2 : Contexts−→P(B) is the operation
that projects the variable bindings associated to a typing context. We define the
domain of a typing context Γ as the set of both transaction names and variable
names in Γ. We denote this function as dom(Γ). Thus dom(Γ) = π1(Γ) ∪
{x|∃A.{x : A} ∈ π2(Γ)}. We also define two operators ,K : Contexts × K ⇀
Contexts and ,B : Contexts× B ⇀ Contexts, defined as follows:

• Γ,K k = (π1(Γ) ∪ {k}, π2(Γ)), if k 6∈ π1(Γ)

• Γ,B x : A = (π1(Γ), π2(Γ) ∪ {x : A}), if x 6∈ dom(Γ)

We will only write Γ, k for Γ,K k and Γ, x : A for Γ,B x : A whenever the
difference is obvious from the context.

[T-Unit]

Γ `() : unit

[T-Int]

Γ `n : int

[T-Bool]

Γ ` b : bool

[T-Var]

Γ, x : A ` x : A

[T-Tup]

Γ ` e1 : A Γ ` e2 : B

Γ `(e1, e2) : A×B

[T-Rec]

Γ, f : A→ B, x : A ` e : B

Γ ` fun f(x : A) : B = e : A→ B

[T-Chan]

Γ ` c : A chan
ty(c) = A chan,
A ∈ BaseType

Table 14: Types for values

Values in TCML are typed either by primitive types unit, int and bool,
or by composite types A−→A′, A × A′ and A chan. The former kind applies
to the unit value, natural numbers and boolean values. The latter kind applies
to functions, tuples and channels carrying values of type A. The corresponding
typing rules are defined in Table 14. The only rule we discuss in depth is rule
[T-Chan] in Table 14.

19

According to this rule, channels are well-typed if and only if two side con-
ditions are met. The first condition is that ty(c) = A chan. The pre-defined
function ty ∈ Chan−→Types is defined as a total function that maps channel
names to a channel type A chan. The second condition imposes that type of
channel c must be in the set of types BaseType, which can be defined as the
least set of types such that:

i. {unit, int,bool} ∈ BaseType

ii. a, b ∈ BaseType⇒ (a, b) ∈ BaseType

iii. a, b ∈ BaseType⇒ a→ b ∈ BaseType

Informally, base types are those types that do not comprise channel types. This
restriction prevents scope extrusion, the phenomenon in which a a process P
communicates a private channel c to a process Q without that channel’s restric-
tion scope. For example, consider the following case:

Q[recv a] ‖ νcP [send a c].

If scope extrusion is allowed, then channel c can be transmitted from process P
to process Q over channel a. In this case, channel c is no longer private in P ,
but can be used by Q as well. In this report we will not consider scope extrusion
in TCML for sake of simplicity.

[T-If]

Γ ` e1 : bool Γ ` e2 : A Γ ` e3 : A

Γ ` if e1 then e2 else e3 : A

[T-App]

Γ ` e1 : A→ B Γ ` e2 : A

Γ ` e1 e2 : B

[T-Let]

Γ ` e1 : A Γ, x : A ` e2 : B

Γ ` let x = e1 in e2 : B

[T-Op]

Γ ` e : A

Γ ` op e : B
tyo(op) = A→ B

[T-Send]

Γ ` e1 : A chan Γ ` e2 : A

Γ ` send e1 e2 : Unit

[T-Recv]

Γ ` e : A chan

Γ ` recv e : A

[T-NewChan]

Γ `newChanA : A chan

[T-Spawn]

Γ ` e : unit→ unit

Γ ` spawn e : unit

[T-Atomic]

Γ, k ` e1 : A Γ ` e2 : A

Γ `atomic J e1 Bk e2 K : A

[T-Commit]

Γ, k ` commit k : unit

Table 15: Types for expressions

Typing rules for expressions are provided in Table 15. The rules for the
functional part of TCML, such as if and let expressions, are the standard ones

20

from typed lambda calculi. For example, the expression if 1 then e1 else e2

is not allowed by the type system, since there is no reduction rule to evaluate
this expression. Rules [E-If-True] and [E-If-False] in fact only reduce an if
expression if the conditional expression in it is either the boolean value true or
false . Both branches of the if expression must have the same type, in order to
avoid expressions that cannot be reduced.

Typing rules [T-Send] and [T-Recv] guarantee that expressions send and
recv will only operate on channels of the appropriate type. For example,
consider the following process:

send c 1 ‖ if (recv c) then e1 else e2

After reducing the process with rule [C-Sync], we have:

() ‖ if 1 then e1 else e2

which is not allowed by the type system, for the reasons aforementioned. Thus
the typing rules [T-Send], [T-Recv] and [T-Chan] enforce that only values with an
expected type are passed from one process to another.

Expression newChanA is typed by the explicit type A annotation in rule
[T-NewChan].

As mentioned in section 2.1, new processes are created by the spawn expres-
sion. According to rule [T-Spawn], the argument of spawn must be a function
of the form unit−→unit. The rationale of this rule is to first reduce spawn ’s
argument into a function, and then resume its reduction later in a newly cre-
ated process by applying a unit value to it. For example, consider the following
process:

spawn (fun f(x) = send c 1; f())

which spawns a process that repeatedly sends number 1 over channel c. Ac-
cording to rule [C-Spawn], it will reduce to the following expression:

(fun f(x) = send c 1; f()) () ‖ ()

As you can notice, the spawned process is an application of the function f(x) to
the unit value (), which explain why typing rule [T-Spawn] requires the argument
to the spawn expression to be a function that only accepts unit values as input.
The reason why its return type is also unit is explained later, when discussing
rules [T-Par-L] and [T-Par-R], but intuitevely TCML processes cannot use the
value into which other processes reduce, so the return type of the argument is
chosen to be unit.

In rule [T-Atomic], the default and alternative expressions of a transaction
are required to have the same type. This ensures that, whether a transaction
is committed or aborted, the expression containing atomic J e1 Bk e2 K will be
able to continue reduction. This is the same rational behind rules such as [T-If].
Consider for example the following process:

if atomic J true Bk1 K then e1 else e2

21

If transaction k is activated by rule [Tr-Atomic], the process will reduce to the
following:

if J true Bk 1 K then e1 else e2

If transaction k is aborted by rule [Tr-Abort], the resulting expression if 1 then
e1 else e2 is not well-typed. This situation is remedied by forcing both the
default and alternative expression to have the same type.

Note that in the premises of [T-Atomic] the default expression’s typing con-
text contains transaction name k, whereas the typing context of the alternative
expression does not contain k, since k is only bound in the default of the trans-
action. On the one hand, this allows the default expression to define commit
points to transaction k. On the other hand, it disallows the alternative expres-
sion to have any reference to the same transaction k. When a transaction is
aborted, the default process is replaced by the alternative and the transaction
ceases to exist.

Rule [T-Commit] from Table 15 ensures that an expression commit k is well-
typed if its typing context contains the transaction name k. For example, the
following process:

atomic J commit j Bk () K

is not well-typed, because the commit j expression refers to a transaction name
j, which is not bound to any transaction. The following process is well-typed:

atomic J commit k Bk () K

[T-Par-L]

Γ `P1 : A Γ `P2 : unit

Γ `P1 ‖ P2 : A

[T-Par-R]

Γ `P1 : unit Γ `P2 : A

Γ `P1 ‖ P2 : A

[T-Restr]

Γ `P : B

Γ ` νc.P : B

[T-Trans]

Γ, k ` P1 : A Γ `P2 : A

Γ ` JP1 Bk P2 K : A

[T-Co]

Γ, k ` co k : unit

Table 16: Types for processes

Rules [T-Par-L] and [T-Par-R] reflect the fact that spawned TCML processes
have type unit, as discussed for rule [T-Spawn]. The type A of the main program
is preserved across all the spawned processes of type unit, so that a TCML
program maintains a type A across all parallel programs. For example, the
following process is not well-typed:

22

1 ‖ 2

but the following process is:

() ‖ 2

Thus at any time, there is only one process of type A, whereas the other spawned
processes all have type unit.

Rule [T-Trans] enforces the default and alternative processes of a transaction
to have the same type, mirroring rule [T-Atomic]. This condition guarantees that
a process maintains the same type in case an abort step is performed. Consider
the following process, very similar to the one we have already discussed for rule
[T-Atomic]:

if J true Bk 1 K then e1 else e2

If transaction k is aborted by rule [Tr-Abort], the resulting expression if 1 then
e1 else e2 is not well-typed. This situation is remedied by forcing both the
default and alternative expression to have the same type. Notice also that in rule
[T-Atomic] the alternative processes cannot be typed assuming the transaction
name k in the typing context. This condition ensures that, when transaction k is
aborted, the alternative process contains no reference to transaction k anymore.

Rule [T-Co] types commit point processes co k, where transaction name k
must be present in the typing context. This ensures that commit points can
only be contained by transactions bearing the same transaction name. Commit
point processes have type unit, just like other spawned processes.

tyo(fst) = A×B → A tyo(snd) = A×B → B
tyo(leq) = int× int→ bool tyo(add) = int× int→ int
tyo(mul) = int× int→ int tyo(sub) = int× int→ int

Table 17: Types for operations

Finally, predicate tyo specifies a type for the usual value operations such as
addition and multiplication. Table 17 provides its definition. For any type A
and B, pair operations fst and snd are assigned a matching arrow type, from
the pair type A×B to A or B respectively. Arithmetic and boolean operations
are typed as expected, namely they are functions from pairs of integer types to
either an integer or a boolean type.

23

2.3.1 Type soundness

In this section we will prove a soundness theorem for TransCML semantics, in-
tuitively that the evaluation of well-typed TCML processes never “goes wrong”,
in the spirit of Milner’s motto [15]. In order to prove this theorem, we need to
prove a type preservation theorem (2.9) and a progress theorem (2.11). We will
need a number of lemmas and a Type Uniqueness Theorem (2.3) for the former,
and a notion of “stuck” expressions for the second, which will be introduced
further on.

We start by proving some useful lemmas on typing contexts and the typing
judgement. The first lemma is Strengthening, which let’s us drop bindings to
the variables in typing context whenever these variables do not occur free in a
process:

Lemma 2.1 (Strenghtening)
If Γ, x : A ` P : B and x 6∈ FV (P), then Γ `P : B

Proof
We need to prove that, ∀∆, P,B. ∆ ` P : B ⇒ P(∆, B, P), where P(∆, B, P) =
(∆ = Γ, x : A)∧ (x 6∈ FV (P))⇒ Γ `P : B. Let us prove this by induction over
the judgement ∆ ` P : B. Note that values and expressions are instances of
processes, as defined in Table 1.

[T-Var] Let us assume that:

1) ∆′, y : B ` y : B, where ∆ = ∆′, y : B for some ∆′

2) ∆ = Γ, x : A

3) x 6∈ FV (y)

We need to show that Γ ` y : B.

By the definition of predicate FV , hypothesis (3) implies that variable x
and y are different. Because of this and the side condition on hypothesis
(1), the typing context Γ must contain a binding y : B; recall the definition
of ,B. Thus, Γ = Λ, y : B for some typing context Λ. From rule [T-Var],
we have Λ, y : B ` y : B, which is equivalent to Γ ` y : B

[T-Unit] Let us assume that:

1) ∆ ` () : unit

2) ∆ = Γ, x : A

3) x 6∈ FV (())

We need to show that Γ `() : unit.

This can be derived directly by application of rule [T-Unit]. The cases
for rules [T-Bool], [T-Int], [T-Chan], [T-NewChan] and [T-Recv] are immediate
too.

24

[T-Rec] Let us assume that:

1) ∆, f : B−→C, y : B ` e : C

2) P((∆, f : B−→C, y : B), C, e)

3) ∆ ` fun f(y) = e : B−→C

4) ∆ = Γ, x : A

5) x 6∈ FV (fun f(y) = e)

We need to show that Γ ` fun f(x) = e : B−→C.

Assuming Barendregt’s convention, variable x is different from bound vari-
ables f and y. Thus from hypothesis (4) we can infer that the typing con-
text Γ, f : B−→C, y : B, x : A is well defined according to the definition
of ,B, and that it is equal to because of the definition of ,B. From hy-
pothesis (5) we have that x 6∈ FV (e). Applying the last two consideration
on inductive hypothesis (2), we have that ∆, f : B−→C, y : B ` e : B.
Applying rule [T-Rec], we obtain Γ ` fun f(x) = e : B−→C.

Case [T-Let] can be proved similarly.

[T-App] Let us assume that:

1) ∆ ` e1 : C −→B

2) ∆ ` e2 : C

3) P(∆, e1, C −→B)

4) P(∆, e2, C)

5) ∆ ` e1 e2 : B

6) ∆ = Γ, x : A

7) x 6∈ FV (e1 e2)

We need to show that Γ ` e1 e2 : B.

From hypothesis (7) we can derive that x 6∈ FV (e1) (*) and x 6∈ FV (e2)
(**). We can apply hypotheses (6) and (*) on inductive hypothesis (3)
to derive Γ ` e1 : C −→B; similarly, we can derive Γ ` e2 : C applying
hypotheses (6) and (**) on inductive hypothesis (4). From these last two
judgements, we can derive Γ ` e1 e2 by rule [T-App].

Cases [T-Tup] , [T-Op], [T-If], [T-Spawn], [T-Send], [T-Restr], [T-Par-L] and
[T-Par-R] can be proved similarly.

[T-Atomic] Let us assume that:

1) ∆, k ` e1 : B

2) ∆ ` e2 : B

3) P((∆, k), e1, C −→B)

25

4) P(∆, e2, C)

5) ∆ ` atomic J e1 Bk e2 K : B

6) ∆ = Γ, x : A

7) x 6∈ FV (atomic J e1 Bk e2 K)

We need to show that Γ `atomic J e1 Bk e2 K : B.

By the definition of FV and hypothesis (7), we can derive that x 6∈ FV (e1)
(*) and x 6∈ FV (e2) (**). By hypothesis (6) we have that ∆, k = Γ, x :
A, k, and then that ∆, k = Γ, k, x : A (***) by the the definition of ,B and
,K. Applying hypothesis (***) and (*) on inductive hypothesis (3), we
have that Γ, k ` e1 : B. Applying hypotheses (6) and (**) on inductive
hypothesis (4), we can derive Γ ` e2 : B. From these last two judgements,
we can derive Γ `atomic J e1 Bk e2 K by rule [T-Atomic].

Case [T-Trans] can be proved similarly.

[T-Commit] Let us assume that:

1) ∆, k ` commit k : B

2) ∆, k = Γ, x : A

3) x 6∈ FV (commit k)

We need to show that Γ ` commit k : B.

From hypothesis (2) we can infer that transaction name k ∈ Γ by the
definition of ,K. Thus Γ = Λ, k is well-defined, for some typing con-
text Λ. From this consideration, we can apply rule [T-Co] to have Λ, k `
commit k, and thus that Γ ` commit k : B.

Case [T-Co] can be proved similarly.

Next we prove the Weakening lemma, which allows us to add assumptions
to a typing judgment, whenever this assumptions do not clash with existing
variable binding in a typing context:

Lemma 2.2 (Weakening)
If Γ `P : B and x 6∈ dom(Γ), then Γ, x : A ` P : B

Proof
We need to prove that, ∀Γ, P,B. Γ ` P : B ⇒ P(Γ, B, P), where P(Γ, B, P) =
x 6∈ dom(Γ)⇒ Γ, x : A ` P : B, for a given variable x and a given type A. Let
us prove this by induction over the judgement Γ `P : B.

[T-Var] Let us assume that:

1) Γ′, y : B ` y : B, where Γ = Γ′, y : B for some Γ′

26

2) x 6∈ dom(Γ)

We need to show that Γ, x : A ` y : B.

Because of hypothesis (2), we have that Γ, x : A is well-defined. Thus, from
hypothesis (1), Γ, x : A = Γ′, y : B, x : A. By the definition of ,B, we also
have that Γ′, y : B, x : A = Γ′, x : A, y : B . By rule [T-Var], we have that
Γ′, x : A, y : B ` y : B. Since Γ′, x : A, y : B = Γ′, y : B, x : A = Γ, y : B,
we have that Γ, x : A ` y : B.

[T-Unit] Let us assume that:

1) Γ `() : unit

2) x 6∈ dom(Γ)

We need to show that Γ, x : A ` () : unit.

This follows immediately from rule [T-Unit].

Cases [T-Bool], [T-Int], [T-Chan], [T-NewChan] and [T-Recv] are immediate
too.

[T-Rec] Let us assume that:

1) Γ, f : C −→B, y : C ` e : B

2) P((Γ, f : C −→B, y : C), e, B)

3) Γ ` fun f(y) = e : B

4) x 6∈ dom(Γ)

We need to show that Γ, x : A ` fun f(y) = e : B.

By the Barendregt convention, we can assume that variable x is different
variables f and y. From this consideration and hypothesis (4), we have
that x 6∈ dom(Γ, f : C −→B, y : B). We can apply this to inductive
hypothesis (2) to derive that Γ, f : C −→B, y : C, x : A ` e : B. By the
definition of ,B, Γ, f : C −→B, y : C, x : A = Γ, x : A, f : C −→B, y : C.
Thus our last derivation is equal to Γ, x : A, f : C −→B, y : C ` e : B, on
which we can apply rule [T-Rec] to get Γ, x : A ` fun f(y) = e : B.

Case [T-Let] can be proved similarly.

[T-App] Let us assume that, for some type C:

1) Γ ` e1 : C −→B

2) Γ ` e2 : C

3) P(Γ, e1, C −→B)

4) P(Γ, e2, C)

5) Γ ` e1 e2 : B

6) x 6∈ dom(Γ)

27

We need to show that Γ, x : A ` e1 e2 : B.

We can apply directly the inductive hypothesis (6) on both inductive hy-
potheses (3) and (4) to derive Γ, x : A ` e1 : C −→B and Γ, x : A ` e2 : C.
Using rule [T-App] on them, we can derive Γ, x : A ` e1 e2 : B.

Cases [T-Tup], [T-Op], [T-If], [T-Spawn], [T-Send], [T-Restr], [T-Par-L] and
[T-Par-R] can be proved similarly.

[T-Atomic] Let us assume that:

1) Γ, k ` e1 : B

2) Γ ` e2 : B

3) P((Γ, k), e1, B)

4) P(Γ, e2, B)

5) Γ `atomic J e1 Bk e2 K : B

6) x 6∈ dom(Γ)

We need to show that Γ, x : A ` atomic J e1 Bk e2 K : B.

We can apply hypothesis (6) on inductive hypothesis (4) to have Γ, x : A `
e2 : B (*). Since a transaction name is not a variable, variable x cannot
be equal to transaction name k, thus x 6∈ dom(Γ, k). We can apply this to
inductive hypothesis (3) to derive Γ, k, x : A ` e1 : B. By the definition of
,B and ,K, Γ, k, x : A = Γ, x : A, k. Hence, Γ, x : A, k ` e1 : B. From this
and (*), we can derive Γ, x : A ` atomic J e1 Bk e2 K by rule [T-Atomic].

Case [T-Trans] can be proved similarly.

[T-Commit] Let us assume that:

1) Γ′, k ` commit k : B, where Γ = Γ′, k for some Γ′

2) x 6∈ dom(Γ)

We need to show that Γ, x : A ` commit k : B.

Because of hypothesis (2), we have that the typing context Γ, x : A is well-
defined. Moreover, we can derive by hypothesis (1) that Γ, x : A = Γ′, k, x :
A, and, by the definition of ,B and ,K, we have that Γ, x : A = Γ′, x : A, k.
We can now apply rule [T-Commit] to derive Γ′, x : A, k ` commit k, that
is, Γ, x : A ` commit k.

Case [T-Co] can be proved similarly.

Another useful theorem is the Type Uniqueness theorem, which states that
well-typed processes can only be assigned a single type:

Theorem 2.3 (Type Uniqueness)
If Γ `P : A then, for all types B, Γ `P : B implies A = B.

28

Proof
We need to prove that ∀Γ, P,A, Γ `P : A⇒ P(Γ, P,A), where
P(Γ, P,A) = ∀B.Γ `P : B ⇒ A = B. Let us prove this theorem by induction
on derivations on judgement Γ `P : A.

[T-Unit] Let us assume that:

1) Γ `() : unit

We need to show that ∀B.Γ `P : B ⇒ unit = B

Let us assume a type B such that Γ `() : B. The only rule that can
derive this last judgement is rule [T-Unit], from which we can derive that
B = unit. We have Γ `() : B ⇒ unit = B by deduction, and ∀B.Γ `() :
B ⇒ unit = B by generalisation.

The cases for rules [T-Int] and [T-Bool] are very similar.

[T-Chan] Let us assume that:

1) Γ ` c : A chan

2) ty(c) = A chan

3) A ∈ BaseType

We need to show that ∀B.Γ ` c : B ⇒ A chan = B.

Let us assume a type B such that Γ ` c : B. The only rule that can
derive this last judgment is rule [T-Chan], from whose side conditions we
can derive that ty(c) = B. Since ty is a total function, it is also injective,
thus ty(c) = A chan = B. Using deduction and generalizing over B on
this last equation, we have that ∀B.Γ ` c : B ⇒ A chan = B.

The case for rule [T-NewChan] is similar, with the exception that we can
infer A = B from the type annotation embedded into the newChan
syntax. The cases for rules [T-Commit] and [T-Co] can be proved similarly.

[T-Var] Let us assume that:

1) Γ, x : A ` x : A

We need to show that ∀B.Γ, x : B ` x : B ⇒ A = B.

Let us assume a type B such that Γ, x : A ` x : B. This last judgement
can only be derived by rule [T-Var], according to which the variable in the
typing context and in the expression have the same type. Thus we have
that A = B and that Γ, x : B ` x : B. Using deduction and generalization,
we have that ∀B.Γ, x : B ` x : B ⇒ A = B.

[T-Tup] Let us assume that:

1) Γ `(e1, e2) : A1 ×A2

2) Γ ` e1 : A1

29

3) Γ ` e2 : A2

4) P(Γ, e1, A1)

5) P(Γ, e2, A2)

We need to show that ∀B.Γ `(e1, e2) : B ⇒ A1 ×A2 = B.

Let us assume a type B such that Γ `(e1, e2) : B. The only rule that
can derive this last judgement is rule [T-Tup], from which we have that
B = B1×B2 for some B1 and B2, and that Γ ` e1 : B1 (*) and Γ ` e2 : B2

(**). We can use hypothesis 2) and inductive hypothesis 4) on (*) and
hypothesis 3) and inductive hypothesis 5) on (**) to have that A1 = B1

and that A2 = B2. Since B = B1 ×B2, we can now derive B = A1 ×A2.
Using deduction and generalization on B, we have that ∀B.Γ `(e1, e2) :
B ⇒ A1 ×A2 = B.

The cases for rules [T-If], [T-Send], [T-Recv], [T-Spawn] and [T-Restr] can
be proved similarly. The cases for rules [T-Par-L] and [T-Par-R] are similar
too, since we must use one of the hypothesis according to which one of
the two parallel processes has type unit, to allow inversion.

[T-Rec] Let us assume that:

1) Γ `(fun f(x : A1) : A2 = e) : A1 → A2

2) Γ, f : A1 → A2, x : A1 ` e : A2

3) P((Γ, f : A1 → A2, x : A1), e, A2)

We need to show that ∀B.Γ `(fun f(x : A1) : A2 = e) : B ⇒ A1 → A2 =
B.

Let us assume a type B such that fun f(x : A1) : A2 = e : B. The
only rule that can derive this judgement is rule [T-Rec], thus we have that
B = A1 → A2. Using deduction and generalization on B, we have that
∀B.Γ `(fun f(x : A1) : A2 = e) : B ⇒ A1 → A2 = B.

[T-Let] Let us assume that:

1) Γ ` let x = e1 in e2 : A

2) Γ ` e1 : A′

3) Γ, x : A′ ` e2 : A

4) P(Γ, e1, A
′)

5) P((Γ, x : A′), e2, A)

We need to show that ∀B.Γ ` let x = e1 in e2 : B ⇒ A = B.

Let us assume a type B such that Γ ` let x = e1 in e2 : B. The only
rule that can derive this last judgement is rule [T-Let], from which we can
derive Γ ` e1 : B′ (*) and Γ, x : B′ ` B (**). From inductive hypothesis 4)
and (*), we can derive that A′ = B′. Because of this, we can consider (**)

30

as Γ, x : A′ ` B (***). Instantiating inductive hypothesis 5) with type B,
we can derive A = B from (***). Using deduction and generalization on
B, we have that ∀B.Γ ` let x = e1 in e2 : B ⇒ A = B.

[T-App] Let us assume that:

1) Γ ` e1 e2 : A

2) Γ ` e1 : A′

3) Γ ` e2 : A′ → A

4) P(Γ, e1, A
′)

5) P(Γ, e2, A
′ → A)

We need to prove that ∀B.Γ ` e1 e2 : B ⇒ A = B.

Let us assume a type B such that Γ ` e1 e2 : B. The only typing rule
that can derive this judgement is [T-App], from which we can deduce that
Γ ` e1 : B′ (*) and Γ ` e2 : B′ → B (**) for some type B′. We can apply
inductive hypothesis 4) on hypothesis 2) and (*), to derive that B′ = A′.
Similarly we can apply inductive hypothesis 5) on hypothesis 3) and (**)
to obtain that A′ → A = B′ → B. Because of this and A′ = B′, it follows
that A = B. Using deduction on our initial assumption and generalization
on B, we have that ∀B.Γ ` e1 e2 : B ⇒ A = B.

The case for rule [T-Op] can be proved similarly.

[T-Atomic] Let us assume that:

1) Γ `atomic J e1 Bk e2 K : A

2) Γ, k ` e1 : A

3) Γ ` e2 : A

4) P((Γ, k), e1, A)

5) P(Γ, e2, A)

We need to prove that ∀B.Γ `atomic J e1 Bk e2 K : B ⇒ A = B.

Let us assume a type B such that Γ `atomic J e1 Bk e2 K : B. The only
rule that can derive this judgement is [T-Atomic], from which we can derive
Γ ` e2 : B. We can apply inductive hypothesis 5) on hypothesis 3) and the
last derived judgment, to have that A = B. Using deduction on our initial
assumption and generalization on B, we have that ∀B.Γ `atomic J e1Bk
e2 K : B ⇒ A = B.

The case for rule [T-Trans] is similar.

We will now try to prove the type preservation theorem. In order to do
that, first of all we need to prove the Substitution lemma, also known as subject
reduction. This lemma proves that substitution of free variables for values of
the same type preserves typing of the overall process:

31

Lemma 2.4 (Substitution)
If Γ, x : A ` P : B and Γ ` v : A, then Γ `P [v/x] : B

Proof
We need to prove that ∀∆, P,B. ∆ ` P : B ⇒ P(∆, B, P), where P(∆, B, P) =
(∆ = Γ, x : A) ∧ (Γ ` v : A)⇒ Γ `P [v/x] : B, for any given variable x, value v
and type A. Let us prove this by induction over judgement ∆ ` P : B.

[T-Var] Let us assume that:

1) ∆ ` y : B

2) ∆ = Γ, x : A

3) Γ ` v : A

We need to show that Γ ` y[v/x] : B.

Only two cases are possible: either x = y or x 6= y.

[x = y] Since x = y, we can infer that ∆ = Γ, y : A from hypothesis 2), and
then ∆ ` y : A from rule [T-Var] (*). Notice that variable y cannot be
already defined in Γ, because the operation ,B is defined on a typing
context Γ and a variable x only if x 6∈ dom(Γ). Applying hypothesis
(1) and (*) to Theorem 2.3, we can infer that A = B. Hypothesis
(3) is thus Γ ` v : B. By the definition of substitution, we have that
v = x[v/x], and, since x = y, that v = y[v/x]. From this last fact
and hypothesis (3), we have that Γ ` y[v/x] : B.

[x 6= y] In the latter case, if x 6= y then y[v/x] = y by the definition of
the substitution function in Table 5. From the definition of the free
variable predicate FV in Table 2, we can also derive that x 6∈ FV (y).
We can apply these considerations and hypothesis (3) to Lemma 2.1
(Strengthening) to derive Γ ` y[v/x] : B

[T-Unit] Let us assume that:

1) ∆ ` () : unit

2) ∆ = Γ, x : A

3) Γ ` v : A

We need to show that Γ `()[v/x] : unit.

Rule [T-Unit] states that Γ `() : unit. From the definition of substitution,
we have directly that Γ `()[v/x] : unit, since ()[v/x] = () for any x and v.

Cases [T-Bool], [T-Int], [T-Chan], [T-NewChan] and [T-Recv] can be proved
similarly.

[T-Rec] Let us assume that, for some type C:

1) ∆, f : C −→B, y : C ` e : B

32

2) P((∆, f : C −→B, y : C), B, e)

3) ∆ ` fun f(y) = e : C −→B

4) ∆ = Γ, x : A

5) Γ ` v : A

We need to show that Γ `(fun f(y) = e)[v/x] : C −→B.

From hypotheses 1) and 4), we have that the typing context Γ, x : A, f :
C −→B, y : C is well-defined. Because of the definition of operator ,B,
we can write this typing context as Γ, f : C −→B, y : C, x : A. We can
apply this last fact and hypothesis (1) to inductive hypothesis (2) to derive
Γ, f : C −→B, y : C ` e[v/x] : B. We can apply rule [T-Rec] to derive
Γ ` fun f(y) = e[v/x] : B. Finally, by the definition of substitution and
by the Barendregt’s convention, we can derive Γ `(fun f(y) = e)[v/x] : B.

Case [T-Let] can be proved similarly.

[T-App] Let us assume that, for some type C:

1) ∆ ` e1 : C −→B

2) ∆ ` e2 : C

3) P(∆, C −→B, e)

4) P(∆, C, e)

5) Γ, x : A ` e1 e2 : B

6) ∆ = Γ, x : A

7) Γ ` v : A

We need to show that Γ `(e1 e2)[v/x] : B.

We can apply hypotheses (6) and (7) to inductive hypotheses (3) and (4)
to derive that Γ ` e1[v/x] : C −→B and Γ ` e2[v/x] : C. By rule [T-App],
we have that Γ ` e1[v/x] e2[v/x] : B and, by the definition of substitution,
that Γ `(e1 e2)[v/x] : B

[T-Atomic] Let us assume that:

1) ∆, k ` e1 : B

2) ∆ ` e2 : B

3) P((∆, k), C −→B, e)

4) P(∆, C, e)

5) Γ, x : A ` atomic J e1 Bk e2 K : B

6) ∆ = Γ, x : A

7) Γ ` v : A

33

We need to show that Γ `atomic J e1 Bk e2 K[v/x] : B.

By the definition of ,B and ,K, and by hypothesis (6), we have that ∆, k =
Γ, k, x : A. We can apply this consideration and hypothesis (7) to inductive
hypothesis (3) to derive that Γ, k ` e1[v/x] : B. We can also apply
hypotheses (6) and (7) to inductive hypothesis (4) to derive Γ ` e2[v/x] :
B. By rule [T-Atomic], we have that Γ `atomic J e1[v/x]Bk e2[v/x] K : B;
by the definition of substitution, we have Γ `atomic J e1 Bk e2 K[v/x] : B.

Case [T-Trans] can be proved similarly.

[T-Commit] Let us assume that:

1) ∆ ` commit k : unit, where ∆ = Γ′, k for some Γ′

2) ∆ = Γ, x : A

3) Γ ` v : A

We need to show that Γ ` commit k[v/x] : unit.

Variables and transaction names belong to different domains, thus x 6= k;
from this and the side conditions on hypotheses (1) and (2), we can derive
that Γ = Λ, k for some typing context Λ. Thus, we can derive Λ, k `
commit k : unit by rule [T-Commit]. By the definition of substitution,
we have that commit k[v/x] = commit k; since Γ = Λ, k, we have that
Γ ` commit k[v/x] : B.

Case [T-Co] can be proved similarly.

The following lemma, Context Abstraction, allows us to reason about and
decompose the evaluation context of an expression. If an well-typed expres-
sion is divided into an evaluation context and a sub-expression, then both the
evaluation context with a fresh variable in its hole, and the sub-expression are
well-typed:

Lemma 2.5 (Context Abstraction)
If Γ `E[e] : B and x 6∈ dom(Γ), then ∃A.Γ ` e : A and Γ, x : A ` E[x] : B

Proof We need to prove that ∀Γ.∀E. P(Γ, E), where P(Γ, E) = ∀B.∀e.Γ `
E[e] : B ∧ x 6∈ dom(Γ) ⇒ ∃A.Γ ` e : A ∧ Γ, x : A ` E[x] : B, for any given
expression e.

Let us prove this lemma by structural induction over the evaluation context
E.

[e]: Let us assume that:

1) Γ `[e] : B

2) x 6∈ dom(Γ)

34

We need to show that: ∃A.Γ ` e : A ∧ Γ, x : A ` [x] : B.

The empty context applied to an expression is equal to the expression
itself. Thus, [e] = e (*) and [x] = x (**). From (*) and hypothesis (1),
we have that Γ ` e : B. By axiom [T-Var] and (**), we also have that
Γ, x : B ` [x] : B. From the last two judgements, we have Γ ` e : B∧Γ, x :
B ` [x] : B. Thus B is a witness to ∃A.Γ ` e : A ∧ Γ, x : A ` [x] : B

op E[e]: We will prove the case for the add operation only; the remaining cases
can be proved similarly.

Let us assume that:

1) P(Γ, E)

2) Γ `add E[e] : B

3) x 6∈ dom(Γ)

We need to show that: ∃A.Γ ` e : A ∧ Γ, x : A ` add E[x] : B.

The only rule that can derive hypothesis (2) is [T-Op], from the premises
of which we can derive that B = int and Γ `E[e] : int× int. Let us
instantiate inductive hypothesis (1) with type int and expression e and
apply it on this last fact and hypothesis (3) to have that ∃A.Γ ` e : A ∧
Γ, x : A ` E[x] : B. Let us assume that T is such a type. Thus we have
that Γ ` e : T (*) and Γ, x : T ` E[x] : int× int (**). From the latter
judgement (**) and rule [T-Op], we have Γ, x : T ` add E[x] : int× int.
Taking this last statement together with (*), we have Γ ` e : and Γ, x :
T ` add E[x] : int× int. Thus, considering that B = int× int, type T
is a witness to ∃A.Γ ` e : A ∧ Γ, x : A ` add E[x] : B

Case spawn E[e] and recv E[e] can be proved similarly.

(E[e1], e2): Let us assume that:

1) P(Γ, E)

2) Γ `(E[e1], e2) : B

3) x 6∈ dom(Γ)

We need to show that: ∃A.Γ ` e1 : A ∧ Γ, x : A ` (E[x], e2) : B.

The only rule that can derive hypothesis (2) is [T-Tup], from the premises
of which we can derive that Γ `E[e1] : C1 (*), Γ ` e2 : C2 (**) and
B = C1×C2, for some type C1 and C2. Let us instantiate hypothesis (1)
with type C1 and expression e1, and apply (*) and hypothesis (3) to it
to have that ∃A.Γ ` e1 : A ∧ Γ, x : A ` E[x] : C1. Let us assume that T
is such a type. Then we have Γ ` e1 : T (***) and Γ, x : T ` E[x] : C1.
By (**), hypothesis (3) and lemma 2.2, we have that Γ, x : T ` e2 : C2.
Applying rule [T-VTup], we have Γ, x : T ` (E[x], e2) : C1×C2, that is,
Γ, x : T ` (E[x], e2) : C. Combining this derivation with (***), type T is
a witness to ∃A.Γe1 : A ∧ Γ, x : A ` (E[x], e2) : B.

35

Cases (v,E[e]), E[e1] e2, v E[e], if E[e1] then e2 else e3, send E[e1] e2

and send v E[e] can be proved similarly.

let y = E[e1] in e2: Let us assume that:

1) P(Γ, E)

2) Γ ` let y = E[e1] in e2 : B

3) x 6∈ dom(Γ)

We need to show that: ∃A.Γ ` e : A∧Γ, x : A ` let y = E[x] in e2 : B.

The only rule that can derive hypothesis (2) is [T-Let], from the premises
of which we can derive Γ `E[e1] : C (*) and Γ, y : C ` e2 : B (**) for some
type C. Let us instantiate hypothesis (1) with type C and expression e1,
and apply (*) and hypothesis (3) to it to have that ∃A.Γ ` e1 : A ∧ Γ, x :
A ` E[x] : C. Let us suppose that T is such a type. Then we have
that Γ ` e1 : T (***) and Γ, x : T ` E[x] : C (****). By Lemma 2.2
(Weakening) on (**) and hypothesis (3), and by Barendregt’s convention
(remember that y is a bound variable in the case in analysis) and the
definition of ,B, we have that Γ, x : T, y : C ` e2 : B. We can now apply
rule [T-Let] on this last judgement and (****) to derive that Γ, x : T `
let y = E[x] in e2. From this and (***), we have that Γ ` e1 : T ∧ Γ, x :
T ` let y = E[x] in e2. Thus, type T is a witness to ∃A.Γ ` e1 : A∧Γ, x :
T ` let y = E[x] in e2.

Before attempting to prove Type Preservation, we need to prove a lemma
to prove that the Strip function /k preserves type judgements:

Lemma 2.6 (Type Preservation under Strip function)
If Γ, k ` P : A, then Γ `P/k : A.

Proof
We need to prove that, ∀P.P(P), where P(P) = ∀Γ.∀B.∆ ` P : B ∧ (∆ =
Γ, k) ⇒ Γ `P/k : B, . Let us prove this by structural induction over the
process P.

() : Let us assume that:

1) ∆ ` () : A

2) ∆ = Γ, k

We need to prove that Γ `()/k : A.

This follows immediately from hypothesis (1), because ()/k = () by the
definition of Strip function −/− and by rule [T-Unit].

The cases for expressions true , false , n ∈ N, x ∈ V ar, c ∈ Chan and
newChanA can be proved similary.

36

fun f(x) = e Let us assume that:

1) ∆ ` fun f(x) = e : B−→A

2) ∆ = Γ, k

3) P(e1)

We need to prove that Γ ` fun f(x) = e/k : B−→A.

The only typing rule that can derive hypothesis (1) is [T-Rec], from the
premises of which we can derive that ∆, f : B−→A, x : B ` e : A (*). By
hypothesis (2) the typing context ∆, f : B−→A, x : B equal to Γ, k, f :
B−→A, x : B, which in turn is equal to Γ, f : B−→A, x : B, k by the
definition of operator “,”. We can instantiate inductive hypothesis (3)
with typing context Γ, f : B−→A, x : B, k and type A, apply our last
consideration and (*) to have Γ, f : B−→A, x : B ` (e/k) : A. By rule
[T-Rec] we have that Γ ` fun f(x) = (e/k) : B−→A. By the definition of
function −/−, Γ ` fun f(x) = e/k : B−→A.

e1 ‖ e2: Let us assume that:

1) ∆ ` e1 ‖ e2 : A

2) ∆ = Γ, k

3) P(e1)

4) P(e2)

We need to prove that Γ `(e1 ‖ e2)/k : A.

The only typing rules that can derive hypothesis (1) are [T-Par-L] and
[T-Par-R], from the premises of which we can derive that either ∆ ` e1 : A
and ∆ ` e2 : unit, or ∆ ` e1 : unit and ∆ ` e2 : A.

Let us analyze the former case first. We can apply ∆ ` e1 : A and
hypothesis (2) on inductive hypothesis (3) to derive Γ ` e1/k : A. Similarly
we can derive Γ ` e2/k : unit applying the other judgement and hypothesis
(2) on inductive hypothesis (4). From these two judgements, we can derive
Γ ` e1/k ‖ e2/k : A by rule [T-Par-L]. By the definition of the −/−
function, (e1 ‖ e2)/k = (e1/k) ‖ (e2/k). Thus, we have that Γ `(e1 ‖ e2)/
k : A. The latter case, where ∆ ` e1 : unit and ∆ ` e2 : A, can be proved
similarly.

Cases (e1, e2), let f = x in e, e1 e2, send v1 v2, recv v, spawn e, op e,
ν c. P can be proved similarly.

atomic J e1 Bk e2 K: Let us assume that:

1) ∆ ` atomic J e1 Bk e2 K : A

2) ∆ = Γ, k

3) P(e1)

37

4) P(e2)

We need to prove that Γ `(atomic J e1 Bk e2 K)/k : A.

The only typing rule that can derive hypothesis (1) is [T-Atomic], from the
premises of which we can derive that ∆ ` e1 : A and Γ ` e2 : A. We can
apply the first judgement to inductive hypothesis (3), instantiating Γ as
Γ, k and B as A. The second judgement to inductive hypothesis (3), where
Γ′ = Γ and B′ = A, to derive Γ, k ` e1/k : A and Γ ` e2/k : A. Using
rule [T-Atomic] on the last two judgements we have that Γ `atomic J e1/
k Bk e2/k K. By the definition of the −/− function, atomic J e1/k Bk e2/
k K = atomic J e1 Bk e2 K /k. Thus, we have that Γ `atomic J e1 Bk e2 K /
k : A.

Case J e1 Bk e2 K can be proved similarly.

commit k: Let us assume that:

1) ∆ ` commit l : unit

2) ∆ = Γ, k

We need to prove that Γ ` commit l/k : A

Regarding transaction names k and l, either l = k or l 6= k. In the former
case, commit k/k = () by the definition of the −/− function. Because of
this, since Γ `() : A by rule [T-Unit], we have that Γ ` commit k/k : A.
In the latter case, the proof follows directly from hypothesis (1), since
commit l/k = commit l if l 6= k.

Case co k can be proved similarly.

We also need to prove that type judgements are preserved under the equiv-
alence relation:

Lemma 2.7 (Type Preservation under Equivalence)
If P ≡ P ′, then Γ `P : A if and only if Γ `P ′ : A

Proof
We need to prove that ∀Γ, P1, P2, A. P1 ≡ P2 ⇒ P(Γ, P1, P2, A), where P(Γ, P1,
P2, A) = Γ `P1 : A⇔ Γ `P2 : A.

Let us prove this lemma by induction over the structural equivalence ≡.

Reflexivity: Let us assume that

1) Γ `P : A

2) P ≡ P

We need to show that: Γ `P : A.

This follows directly from hypothesis (1).

38

Symmetry: Let us assume that

1) P2 ≡ P1

2) P(Γ, P2, P1, A)

3) Γ `P1 : A

4) P1 ≡ P2

We need to show that Γ `P1 : A⇔ Γ `P2 : A.

In order to prove the equality in this case, we need to prove the following:

i) Γ `P1 : A⇒ Γ `P2 : A.

ii) Γ `P2 : A⇒ Γ `P1 : A.

In order to prove i), let us assume that Γ `P1 : A. By inductive hypothesis
(2), Γ `P1 : A ⇔ Γ `P2 : A. Thus we can apply our assumption on
inductive hypothesis (2) to have Γ `P2 : A (*). Thus, since we proved
this assuming (*), we can abstract our assumption from this proof and
have that Γ `P1 : A⇒ Γ `P2 : A.

Case ii) is symmetric and can be proved similarly.

From i) and ii) we can infer that Γ `P1 : A⇔ Γ `P2 : A.

Transitivity: Let us assume that

1) P1 ≡ P2

2) P(Γ, P1, P2, A)

3) P2 ≡ P3

4) P(Γ, P2, P3, A)

5) P1 ≡ P3

We need to show that: Γ `P1 : A⇔ Γ `P3 : A.

In order to prove the equality in this case, we need to prove the following:

i) Γ `P1 : A⇒ Γ `P3 : A.

ii) Γ `P3 : A⇒ Γ `P1 : A.

In order to prove i), let us assume that Γ `P1 : A. By applying it to induc-
tive hypothesis (2), we have that Γ `P2 : A. By applying this to inductive
hypothesis (4) we have Γ `P3 : A. By abstracting from assumption, we
have that Γ `P1 : A⇒ Γ `P3 : A.

In order to prove ii), let us assume that Γ `P3 : A. By applying it to
inductive hypothesis (4), we have that Γ `P2 : A. By applying this to
inductive hypothesis (2) we have Γ `P1 : A. By abstracting from our
assumption, we have that Γ `P3 : A⇒ Γ `P1 : A.

Combining i) and ii), we have that Γ `P1 : A⇔ Γ `P3 : A.

39

[Eq-Com] Let us assume that:

1) P1 ‖ P2 ≡ P2 ‖ P1

We need to show that: Γ `P2 ‖ P1 : A⇔ Γ `P1 ‖ P2 : A.

In order to prove the equality in this case, we need to prove the following:

i) Γ `P2 ‖ P1 : A⇒ Γ `P1 ‖ P2 : A.

ii) Γ `P1 ‖ P2 : A⇒ Γ `P2 ‖ P1 : A.

In order to prove i), let us assume that Γ `P2 ‖ P1. Only two rules can
derive this judgement: [T-Par-L] or [T-Par-R]. Let us analyze each case in
which they were used:

a) Rule [T-Par-L] was used. Then from its premises we have that Γ `P1 :
unit and Γ `P2 : A. We can then prove that Γ `P2 ‖ P1 : A using
rule [T-Par-R].

b) Rule [T-Par-R] was used. Then from its premises we have that Γ `P1 :
A and Γ `P2 : unit. We can then prove that Γ `P2 ‖ P1 : A using
rule [T-Par-L].

Abstracting from our initial assumption, we have that Γ `P2 ‖ P1 : A⇒
Γ `P1 ‖ P2 : A.

Case i) can be proved very similarly to case i), starting from assumption
Γ `P1 : A instead of assumption Γ `P2 : A. We will not reproduce it for
brevity’s sake.

Combining i) and ii), we have that Γ `P2 ‖ P1 : A⇔ Γ `P1 ‖ P2 : A

[Eq-Assoc] Let us assume that:

1) P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3

We need to show that: Γ `(P1 ‖ P2) ‖ P3 : A⇔ Γ `P1 ‖ (P2 ‖ P3) : A.

In order to prove the equality in this case, we need to prove the following:

i) Γ `(P1 ‖ P2) ‖ P3 : A⇒ Γ `P1 ‖ (P2 ‖ P3) : A.

ii) Γ `P1 ‖ (P2 ‖ P3) : A⇒ Γ `(P1 ‖ P2) ‖ P3 : A.

In order to prove i), let us assume that Γ `(P1 ‖ P2) ‖ P3 : A. This
assumption can only be derived by a combination of rules [T-Par-L] and
[T-Par-R], depending on which process Pi has type A. Let us analyze all
possible cases:

a) Rule [T-Par-R] was used first, and then either [T-Par-L] or [T-Par-L].
Then from the premises of these rules, we have that Γ `P1 : unit,
Γ `P2 : unit and Γ `P3 : A. We can then prove that Γ `P2 ‖ P3 : A
using rule [T-Par-R] and then that Γ `P1 ‖ (P2 ‖ P3) : A again by
rule [T-Par-R].

40

b) Rule [T-Par-L] and then [T-Par-R] were used. Then from all the
premises, we get that Γ `P1 : unit, Γ `P2 : A and Γ `P3 : unit.
We can then prove that Γ `P2 ‖ P3 : A by rule [T-Par-L] and then
that Γ `P1 ‖ (P2 ‖ P3) : A by rule [T-Par-R].

c) Rule [T-Par-L] and then [T-Par-L] were used. Then from all the
premises, we get that Γ `P1 : unit, Γ `P2 : unit and Γ `P3 : unit.
We can then prove that Γ `P2 ‖ P3 : unit using rule [T-Par-R] and
then that Γ `P1 ‖ (P2 ‖ P3) : A by rule [T-Par-R].

Abstracting from our previous assumption, we have that Γ `(P1 ‖ P2) ‖
P3 : A⇒ Γ `P1 ‖ (P2 ‖ P3) : A.

Case ii) can be proved with a very similar case analysis as the one above,
starting from assumption Γ `P1 ‖ (P2 ‖ P3) : A instead of assumption
(P1 ‖ P2) ‖ P3. We will omit it for brevity’s sake.

Combining i) and ii), we have that Γ `(P1 ‖ P2) ‖ P3 : A⇔ Γ `P1 ‖ (P2 ‖
P3) : A.

[Eq-Restr] Let us assume that:

1) νc.P1 ‖ P2 ≡ νc.(P1 ‖ P2)

We need to show that: Γ ` νc.P1 ‖ P2 : A⇔ Γ ` νc.(P1 ‖ P2) : A.

In order to prove the equality in this case, we need to prove the following:

i) Γ ` νc.P1 ‖ P2 : A⇔ Γ ` νc.(P1 ‖ P2) : A.

ii) Γ ` νc.(P1 ‖ P2) : A⇔ Γ ` νc.P1 ‖ P2 : A.

In order to prove i), let us assume that Γ ` νc.P1 ‖ P2 : A. This assump-
tion can only be derived by either rules [T-Par-L] and [T-Restr], or by rules
[T-Par-R] and [T-Restr]. Let us analyze each case:

a) Rules [T-Par-L] and [T-Restr] were used. From their premises we
have that Γ `P1 : A and Γ `P2 : unit. Then we can first derive that
Γ `P1 ‖ P2 : A by rule [T-Par-L], and then Γ ` νc.(P1 ‖ P2) : A from
rule [T-Restr].

b) Rule [T-Par-R] and [T-Restr] were used. From their premise we have
that Γ `P1 : unit and Γ `P2 : A. Then we can first derive that
Γ `P1 ‖ P2 : A by rule [T-Par-R], and then Γ ` νc.(P1 ‖ P2) : A from
rule [T-Restr].

Abstracting from our previous assumption, we have that Γ ` νc.P1 ‖ P2 :
A⇔ Γ ` νc.(P1 ‖ P2) : A.

Case ii) can be proved with a very similar case analysis as the one above,
starting from assumption Γ ` νc.(P1 ‖ P2) : A instead of assumption
Γ ` νc.P1 ‖ P2 : A. We will omit it for brevity’s sake.

41

Combining i) and ii), we have that Γ ` νc.P1 ‖ P2 : A⇔ Γ ` νc.(P1 ‖ P2) :
A.

We first prove a type preservation lemma for sequential reductions ↪→. The
lemma states that if a well-typed expression takes a sequential reduction step,
then the resulting expression is also well-typed:

Lemma 2.8 (Sequential Type Preservation)
If Γ ` e : A and e ↪→ e′, then Γ ` e′ : A

Proof
We need to prove that ∀Γ, e, A. e ↪→ e′ ⇒ P(Γ, e, e′, A), where P(Γ, e, e′, A)
= Γ ` e : A⇒ Γ ` e′ : A.

Let us prove this lemma by induction on the derivations of e ↪→ e′.

[E-App] : Let us assume that:

1) Γ `(fun f(x) = e) v2 : A

2) (fun f(x) = e) v2 ↪→ e[(fun f(x) = e)/f][v2/x]

We need to show that: Γ ` e[(fun f(x) = e)/f][v2/x] : A.

Hypothesis (2) can only be typed by rule [T-App]; from its premise we can
deduce that ∃T.Γ ` e1 : T −→A ∧ Γ ` e2 : T . Let us assume that B is
such a type T . We can then infer that Γ ` fun f(x) = e : B−→A (*) and
Γ ` v2 : B (**). The only typing rule that can infer (*) is [T-Rec], from
the premise of which we have that Γ, f : B−→A, x : B ` e : B. We can
also apply Lemma 2.2 (Weakening) on (*) to have Γ, x : B ` fun f(x) =
e : B−→A, since x 6∈ FV (fun f(x) = e), because x is bound in (*). From
these last two judgements, and because we can write Γ, f : B−→A, x : B
as Γ, x : B, f : B−→A, we have Γ, x : B ` e[(fun f(x) = e)/f] : B by
Lemma 2.4 (Substitution). From this and (**), we have Γ ` e[(fun f(x) =
e)/f][v2/x] : B again by Lemma 2.4 (Substitution).

[E-Let] : Let us assume that:

1) Γ ` let x = v in e : B

2) let x = v in e ↪→ e[v/x]

We need to show that: Γ ` e[v/x] : B.

Hypothesis (1) can only be derived from rule [T-Let]. From its premise,
we have that Γ ` e : A and Γ, x : A ` e : B. By Lemma 2.4 (Substitution),
Γ ` e : B.

[E-If-True] : Let us assume that:

1) Γ ` if true then e1 else e2 : A

42

2) if true then e2 else e3 ↪→ e1

We need to show that: Γ ` e1 : A.

Hypothesis (1) can only be derived from rule [T-If]. From its premises, we
get directly Γ ` e1 : A.

[E-If-False] : Same as [E-If-True] .

[E-Op] : We will only consider the case for add ; the cases for the other operations
are very similar. Let us assume that:

1) Γ `add v : B

2) add v ↪→ δ(v)

We need to show that: Γ ` δ(v) : B.

Hypothesis (1) can only be derived from rule [T-Op]. From the its premise,
we can infer that Γ ` v : A; from the condition on its premise, we can derive
that B = int and A = int× int. Thus, we need to show that Γ ` δ(v) :
int; moreover, we have that Γ ` v : int× int. Only rule [T-VTup] can
produce such a judgement, thus v must have the form (v1, v2). Moreover,
from the premises of [T-VTup], Γ ` v1 : int and Γ ` v2 : int. From rule
[T-Int], these values must be integers. Since δ(v1, v2) is equal to a sum of
integers, and integers have type int from rule [T-Int], we can derive that
Γ ` δ(v) : int.

We are now ready to prove the Type Preservation theorem. According to
this theorem, if a well-typed process takes a reduction step of any kind, the
resulting process will be well-typed:

Theorem 2.9 (Type Preservation)
If Γ `P : A and P −→P ′, then Γ `P ′ : A.

Proof
We need to prove that ∀P.∀P ′. P −→P ′ ⇒ P(P, P ′), where
P(P, P ′) = ∀Γ.∀A.Γ `P : A⇒ Γ `P ′ : A.

Let us prove this theorem by induction on derivations of P −→P ′.

[C-Step] Let us assume that:

1) e ↪→ e′

2) Γ `E[e] : A

3) E[e]−→E[e′]

We need to show that: Γ `E[e′] : A.

Let us pick a variable x 6∈ dom(Γ). By Lemma 2.5 (Context Abstraction)
on hypothesis (2), we have that ∃B.Γ ` e : B ∧Γ, x : B ` E[x] : A. Let us
assume that T is such a type. Then we have that Γ ` e : T (*) and Γ, x :

43

T ` E[x] : A (**). By Lemma 2.8 (Sequential Type Preservation) on (*)
and hypothesis (1), we have that Γ ` e′ : T . By Lemma 2.4 (Substitution),
this last derivation and (**), we have that Γ `E[x][e′/x] : A. Since we
have chosen a variable x that does not occur in Γ, we know that x does not
occur free in the evaluation context E either. Moreover, remember that a
hole in an evaluation context is never caught by a scope of a binder. Thus,
by the definition of substitution in Table 5, we have that E[x][e′/x] =
E[x[e′/x]] = E[e′], and thus that Γ `E[e′] : A

[C-Sync] Let us assume that:

1) Γ `E1[recv c] ‖ E2[send c v] : A

2) E1[recv c] ‖ E2[send c v]−→E1[v] ‖ E2[()]

We need to show that: Γ `E1[v] ‖ E2[()] : A.

Hypothesis (1) can only be derived by either rule [T-Par-L] or [T-Par-R].
We will first analyse the case where rule [T-Par-L] has been used.

From the premises of [T-Par-L], we have that Γ `E1[recv c] : A (*) and
Γ `E2[send c v] : unit (**). Let us pick two variable x 6∈ dom(Γ) and
y 6∈ dom(Γ). By Lemma 2.5 (Context Abstraction) on the two previous
judgements, we have that ∃B.Γ ` recv c : B ∧ Γ, x : B ` E1[x] : A and
that ∃C.Γ ` send c v : C ∧ Γ, y : C ` E2[y] : unit. Let us assume that T
and U are such types. Then we have Γ ` recv c : T , Γ, x : T ` E1[x] :
A(*), Γ ` send c v : U and Γ, y : U ` E2[y] : unit (**).

The only rule that can derive Γ ` recv c : T is [T-Recv]; because of the
side condition on this rule, we have that ty(c) = T chan (***). The only
rule that can derive Γ ` send c v : U is [T-Send] , from the premises of
which we have that U is equal to unit, Γ ` v : Z and ty(c) = Z chan. By
(***), Z = T and thus Γ ` v : T . By Lemma 2.4 (Substitution) on (*)
and this last judgement, we have that Γ `E1[v] : A (****).

We can also directly derive Γ `() : unit. By Lemma 2.4 (Substitution) on
(**) and this last judgement, we have that E2[()] : unit. From this last
judgement, (****) and rule [T-Par-L], we have that Γ `E1[v] ‖ E2[()] : A.

The case where [T-Par-R] has been used can be proved similarly.

[C-Spawn] Let us assume that:

1) Γ `E[spawn v] : A

2) E[spawn v]−→ v () ‖ E[()]

We need to show that: Γ ` v () ‖ E[()] : A.

By Lemma 2.5 (Context Abstraction) on hypothesis (1), we have that
∃B.(Γ ` spawn v : B) ∧ (Γ, x : B ` E[()] : A). Let us assume that T is
such a type. Then we have Γ ` spawn v : T (*) and Γ, x : T ` E[x] : A
(**). The only rule that can type (*) is rule [T-Spawn], from which we have

44

that Γ ` v : unit−→unit (***) and that T must be equal to unit. Thus
(**) becomes Γ, x : unit ` E[x] : A. By rule [T-Unit] we have Γ `() : unit;
applying Lemma 2.4 (Substitution) to this and (**), we have Γ `E[()] : A.
We can also infer that Γ ` v () from (***) and rule [T-App]. We can finally
derive Γ ` v () ‖ E[()] : A from the last two judgements we derived and
rule [T-Par-L].

[C-NewChan] Let us assume that:

1) Γ `E[newChanB] : A

2) E[newChanB]−→ νc.E[c]

3) ty(c) = B chan

4) c 6∈ FC(E)

We need to show that: Γ ` νc.E[c] : A.

By Lemma 2.5 (Context Abstraction) on hypothesis (1), we have that
∃C.Γ `newChanB : C ∧ Γ, x : C ` E[()] : A. Let us assume that T
is such a type. Then we have Γ `newChanB : T (*) and Γ, x : T `
E[()] : A. By rule [T-NewChan], we know that Γ `newChanB : B chan,
thus T = B chan and Γ, x : B chan ` E[x] : A (**). By rule [T-Chan]

and hypothesis (3) we have that Γ ` c : B chan. Applying Lemma 2.4
(Substitution) to (**) and this last judgement, we have that Γ `E[c] : A.
Finally, we get Γ ` νc.E[c] : A by rule [T-Restr].

[C-Par] Let us assume that:

1) P1−→P ′1

2) P(P1, P
′
1)

3) Γ `P1 ‖ P2 : A

4) P1 ‖ P2−→P ′1 ‖ P2

We need to show that: Γ `P ′1 ‖ P2 : A.

Hypothesis (3) can only be derived either by rule [T-Par-L] or by [T-Par-R].
In former case, we have Γ `P1 : A and Γ `P2 : unit. Applying the former
judgement on inductive hypothesis (2), we have Γ `P ′ : A. Applying rule
[T-Par-L] to the latter and this last judgement, we have Γ `P ′1 ‖ P2 : A.
Similarly for the latter case.

[C-Chan] Let us assume that:

1) P −→P ′

2) P(Γ, P, P ′, A)

3) Γ ` νc.P : A

4) νc.P −→ νc.P ′

45

We need to show that: Γ ` νc.P ′ : A.

Hypothesis (3) can only be derived by rule [T-Restr], from whose premises
we can derive that Γ `P : A. Applying this to inductive hypothesis (2),
we have Γ `P ′ : A. Applying rule [T-Restr], we have that νc.P ′ : A.

[C-Eq] Let us assume that:

1) Γ `P1 : A

2) P1 ≡ P ′1
3) P ′1−→P ′2

4) P(Γ, P ′1, P
′
2, A)

5) P ′2 ≡ P2

6) P1−→P2

We need to show that: Γ `P2 : A.

By Lemma 2.7 (Type Preservation Under Equivalence) on hypothesis 1)
and 2), we have that Γ `P ′1 : A. Applying inductive hypothesis (4) to
this last judgement and hypothesis (3), we have that Γ `P ′2 : A. Apply-
ing Lemma 2.7 (Type Preservation Under Equivalence) again on this last
judgement and hypothesis (5), we have that Γ `P2 : A.

[Tr-Co] Let us assume that:

1) Γ ` JP1 Bk P2 K : A

2) P1 ≡ co k ‖ P ′1
3) JP1 Bk P2 K : A−→P ′1/k

We need to show that: Γ `P ′1/k : A.

The only rule that can derive hypothesis (1) is [T-Trans], from the premises
of which we can derive that Γ, k ` P1 : A and Γ `P2 : A. By Lemma 2.7
(Type Preservation Under Equivalence) on hypothesis (2) and this last
judgement, we have that Γ, k ` co k ‖ P ′1 : A. This judgement can be
derived by either rule [T-Par-L] or [T-Par-R]. Thus either Γ, k ` co k : A
(*) and Γ, k ` P ′1 : unit, or Γ, k ` co k : unit and Γ, k ` P ′1 : A. In
the former case, we can apply Lemma 2.6 (Type Preservation under Strip
Function) to derive Γ `P ′1/k : unit. Since we have both Γ, k ` co k : unit
and (*), by Theorem 2.3 (Type Uniqueness) we have that A = unit, and
thus Γ `P ′1/k : A. In the latter case, we can apply Lemma 2.6 (Type
Preservation under Strip Function) to have Γ `P ′1/k : A.

[Tr-Abort] Let us assume that:

1) Γ ` JP1 Bk P2 K : A

2) JP1 Bk P2 K : A−→P2

46

We need to show that: Γ `P2 : A.

Hypothesis (1) can only be derived by rule [T-Trans], from whose premises
we have Γ `P2 : A.

[Tr-Emb] Let us assume that:

1) Γ `P1 ‖ JP2 Bk P3 K : A

2) P1 ‖ JP2 Bk P3 K : A−→ JP1 ‖ P2 Bk P1 ‖ P3 K

We need to show that: Γ ` JP1 ‖ P2 Bk P1 ‖ P3 K : A.

Hypothesis (1) can be derived by either by rule [T-Par-L] or [T-Par-R]. Let
us examine each case:

a) [T-Par-L] has been used. From the premises of this rule, we have
that Γ `P1 : A (*) and Γ ` JP2 Bk P3 K : unit. Moreover, this
last judgement can only be derived from rule [T-Trans], thus from
its premises we have Γ `P2 : unit (**) and Γ `P3 : unit (***). By
rule [T-Par-L] on (*) and (**) first, and then on (***) and (**), we
have that Γ `P1 ‖ P2 : A and Γ `P1 ‖ P3 : A. From these last two
judgements, we can derive Γ ` JP1 ‖ P2 Bk P1 ‖ P3 K : A.

b) [T-Par-R] has been used. From the premises of this rule, we have
that Γ `P1 : unit (*) and Γ ` JP2 Bk P3 K : A. Moreover, this
last judgement can only be derived from rule [T-Trans], thus from
its premises we have Γ `P2 : A (**) and Γ `P3 : A (***). By rule
[T-Par-R] on (*) and (**) first, and then on (***) and (**), we have
that Γ `P1 ‖ P2 : A and Γ `P1 ‖ P3 : A. From these last two
judgements, we can derive Γ ` JP1 ‖ P2 Bk P1 ‖ P3 K : A.

[Tr-Step] Let us assume that:

1) Γ ` JP1 Bk P2 K : A

2) P1−→P ′1

3) P(Γ, P1, P
′
1, A)

4) JP1 Bk P2 K : A−→ JP ′1 Bk P2 K

We need to show that: Γ ` JP ′1 Bk P2 K : A.

The only rule that can derive hypothesis (1) is [T-Trans], from the premises
of which we have that Γ, k ` P1 : A (*) and Γ `P2 : A (**). Let us
instantiate inductive hypothesis (3) with typing context Γ, k and type A.
Applying hypothesis (2) and (*) on the inductive hypothesis, we have that
Γ, k ` P ′1 : A. From this and (**), we have that Γ ` JP ′1 Bk P2 K : A by
rule [T-Trans].

[Tr-Atomic] Let us assume that:

1) Γ `E[atomic J e1 Bk e2 K] : A

47

2) E[atomic J e1 Bk e2 K]−→ JE[e1] Bk E[e2] K

We need to show that: Γ ` JE[e1] Bk E[e2] K : A.

Let us pick a variable x 6∈ Γ. Then by the Context Abstraction rule
and hypothesis (1), we have that ∃B.Γ `atomic J e1 Bk e2 K : B ∧ Γ, x :
B ` E[x] : A. Let us assume that T is such a type. Then we have that
Γ `atomic J e1 Bk e2 K : T and Γ, x : T ` E[x] : A (*). The only rule
that can type Γ `atomic J e1 Bk e2 K : T is [T-Atomic], from the premises
of which we have that Γ ` e1 : T and Γ ` e2 : T . Applying Lemma 2.4
(Substitution) to (*) and the last two judgements respectively, we have
that Γ `E[e1] : A and Γ `E[e2] : A. From these two statements, we can
derive JE[e1] Bk E[e2] K : A by rule [T-Trans].

[Tr-Commit] Let us assume that:

1) Γ `E[commit k] : A

2) E[commit k]−→ co k ‖ E[()]

We need to show that: Γ ` co k ‖ E[()] : A.

Let us pick a variable x 6∈ Γ. Then by Lemma 2.5 (Context Abstraction),
∃B.Γ ` commit k : B ∧Γ, x : B ` E[x] : A. Let us assume that T is such
a type. Then Γ ` commit k : T (*) and Γ, x : T ` E[x] : A (**). The
only rule that can derive (*) is [T-Commit], from which we can infer that
T = unit and that Γ = ∆, k (***) for some typing context ∆. Thus (**) is
Γ, x : unit ` E[x]. Moreover, by rule [T-Unit], we have that Γ `() : unit.
Thus, from these last two results, we can derive that Γ `E[()]. By rule
[T-Co] and (***) we have that Γ ` co k : unit; by rule [T-Par-R] on the
last two judgements, we can derive Γ ` co k ‖ E[()] : A.

Before proving the progress theorem, we define what it means for an expres-
sion to be stuck.

Stuck expression An expression e is called stuck if and only if:

i) e 6= v, that is e is not a value,

ii) 6 ∃E, v, c, k.e = E[send c v] or
e = E[recv c] or
e = E[spawn v] or
e = E[newChanA] or
e = E[atomic J e1 Bk e2 K] or
e = E[commit k]

iii) 6 ∃e′.e ↪→ e′

48

An expression is stuck if it is not a value, if it is not deadlocked on sending or
receiving over a channel, it is not trying to generate a new process, and cannot
take any further reduction step.

The following lemma proves that well-typed expressions cannot be stuck:

Lemma 2.10 (Expression progress)
If Γ ` e : A, then either e = v or ∃c.∃v.e = E[send c v] or ∃c.e = E[recv c] or
∃P.e→ P .

Proof
We need to prove that ∀Γ.∀e.∀A, Γ ` e : A⇒ P(Γ, e, A), where
P(Γ, P,A) = (e = v)∨ (∃c.∃v.e = E[send c v])∨ (∃c.e = E[recv c])∨ (∃P.e→
P). Let us prove this theorem by induction on derivations on judgement Γ ` e :
A.

[T-Unit] Let us assume that:

1) Γ `() : unit

We need to show that (() = v) ∨ (∃c.∃v.() = E[send c v]) ∨ (∃c.() =
E[recv c]) ∨ (∃P.()→ P).

This case is trivial, since () is a value.

The cases for rules [T-Int], [T-Bool], [T-Var], [T-Rec] and [T-Chan] are trivial
too.

[T-Tup] Let us assume that:

1) Γ `(e1, e2) : A1 ×A2

2) Γ ` e1 : A1

3) Γ ` e2 : A2

4) P(Γ, e1, A1)

5) P(Γ, e2, A2)

We need to show that ((e1, e2) = v) ∨ (∃c.∃v.(e1, e2) = E[send c v]) ∨
(∃c.(e1, e2) = E[recv c]) ∨ (∃P.(e1, e2)→ P).

From the inductive hypothesis, we can infer that (e1 = v) ∨ (∃c.∃v.e1 =
E[send c v]) ∨ (∃c.e1 = E[recv c]) ∨ (∃P1.e1 → P1), and that (e2 =
v) ∨ (∃c.∃v.e2 = E[send c v]) ∨ (∃c.e2 = E[recv c]) ∨ (∃P2.e2 → P2).

Let us assume that e1 = v1. If e2 = v2, then e = (v1, v2), which is a value,
and the theorem holds. If ∃c.∃v.e2 = E[send c v] or ∃c.e2 = E[recv c],
then e = (v1, E[send c v]) or e = (v1, E[recv c]) for a given c and v.
According to Table 1, (v1, E) is also an evaluation context, thus we can
state that ∃c.∃v.e = E[send c v] or ∃c.e = E[recv c], and the theorem
holds.

Lastly, let us suppose that ∃P2.e2 → P2. The only rules can reduce
an expression to a process are rules [C-Spawn], [C-NewChan], [Tr-Commit],

49

[Tr-Atomic] and [C-Step]. Let us consider rule [C-Spawn]. According to
this rule, e2 = E[spawn v] and e2 → v () ‖ E[()]. According to Table 1,
(v1, E) is also an evaluation context, thus we can define another evaluation
context E′ = (v1, E) such that e = E′[spawn v]. We can now apply rule
[C-Spawn] to derive E′[spawn v]→ v () ‖ E′[()]. This last reduction proves
that ∃P.(e1, e2)→ P .. The cases for [C-NewChan], [Tr-Commit], [Tr-Atomic]

and [C-Step] are similar.

Let us assume that ∃c.∃v.e1 = E[send c v] or ∃c.e1 = E[recv c]. Accord-
ing to Table 1, (E, e2) is also an evaluation context, thus we can define
another evaluation context E′ = (E, e2), for some given c and v, such that
∃c.∃v.e = E′[send c v] or ∃c.e = E′[recv c], in which cases the theorem
holds.

Lastly, let us assume that (∃P1.e1 → P1). The only rules can reduce
an expression to a process are rules [C-Spawn], [C-NewChan], [Tr-Commit],
[Tr-Atomic] and [C-Step]. Let us consider rule [C-Spawn]. According to
this rule, e1 = E[spawn v] and e1 → v () ‖ E[()]. Using the evaluation
context E′ that we just defined, we have that e = E′(spawn v). We can
now apply rule [C-Spawn] on e to derive E′[spawn v]→ v () ‖ E′[()]. This
last reduction proves that ∃P.(e1, e2) → P . The cases for [C-NewChan],
[Tr-Commit], [Tr-Atomic] and [C-Step] are similar.

Having analysed all cases, we have proved that the theorem holds.

[T-If] Let us assume that:

1) Γ ` if e1 then e2 else e3 : A

2) Γ ` e1 : bool

3) Γ ` e2 : A

4) Γ ` e3 : A

5) P(Γ, e1,bool)

6) P(Γ, e2, A1)

7) P(Γ, e3, A2)

We need to show that (if e1 then e2 else e3 = v) ∨ (∃c.∃v. if e1 then
e2 else e3 = E[send c v]) ∨ (∃c. if e1 then e2 else e3 = E[recv c]) ∨
(∃P. if e1 then e2 else e3 → P).

By inductive hypothesis 5) we know that either e1 = v or ∃c.∃v.e1 =
E[send c v] or ∃c.e1 = E[recv c] or ∃P.e1 → P . Let us analyse each
case.

Let us suppose that e1 = v. Hypothesis 2) states that Γ ` e1 : bool.
Thus e1 is a value of type bool. According to Table 14, there are only
two values of type bool, true and false . In either case the expression
if e1 then e2 else e3 can take a sequential reduction step through either
rule [E-If-True] or [E-If-False] , which is also a process reduction step
according to rule [C-Step]. Thus the theorem holds for this case.

50

PExpr(e) = {e} PExpr(P1 ‖ P2) = PExpr(P1) ∪ PExpr(P2)
PExpr(νc.P) = PExpr(P) PExpr(JP1 Bk P2 K) = PExpr(P1)
PExpr(co k) = {}

Table 18: PExpr predicate.

Let us assume that ∃c.∃v.e1 = E[send c v]. According to Table 1,
if E then e2 else e3 is also an evaluation context. For given c and v,
we can define another evaluation context E′ = if E then e2 else e3 such
that ∃c.∃v.e = E′[send c v], in which case the theorem holds. The case
in which ∃c.e1 = E[recv c] can be proved similarly.

Let us assume that ∃P.e → P . The only reduction steps that apply
on an expression are [C-Step], [C-Spawn], [C-NewChan], [Tr-Commit] and
[Tr-Atomic]. Let us assume that rule [C-Step] was used to derive that
∃P.e → P . According to this rule, e = E[e1] and e1 ↪→ e′1 (*). Accord-
ing to Table 1, if E then e1 else e2 is also an evaluation context. Thus
we can define another evaluation context E′ = if E then e2 else e3. We
can now derive that E′[e1] → E′[e′1] by rule [C-Step], which proves that
∃P.e → P . Thus the theorem holds in this case. The cases for rules
[C-Spawn], [C-NewChan], [Tr-Commit], [Tr-Atomic] are similar.

The cases for rules [T-Let], [T-Op], [T-Send], [T-Recv] can be proved simi-
larly. The case for [T-App] is similar, but it requires to consider all possible
instances of both e1 and e2.

[T-NewChan] We need to show that (newChanA = v)∨(∃c.∃v.newChanA = E[send
c v]) ∨ (∃c.newChanA = E[recv c]) ∨ (∃P.newChanA → P).

According to rule [C-NewChan] and picking the empty context E = [],
newChanA−→ νc.c. According to Table 1, channel restriction is a pro-
cess. If we pick P = νc.c, we have found a process P such that e−→P ,
which proves the theorem.

The cases for [T-Spawn], [T-Atomic] and [T-Commit] are similar.

In order to state the final progress theorem, we introduce the predicate
PExpr : CProc−→P(CExpr) from closed processes to closed expressions, to
collect all expressions running in a process:

Theorem 2.11 (Process progress)
If Γ `P : A, then ∀e ∈ PExpr(P), e is not stuck.

Proof
We need to prove that ∀Γ, P,A., Γ `P : A⇒ P(Γ, P,A), where
P(Γ, P,A) = ∀e ∈ PExpr(P), e is not stuck. Let us prove this theorem by
induction on derivations on judgement Γ `P : A.

51

[T-Unit] Let us assume that:

1) Γ `() : unit

We need to show that PExpr(()) is not stuck.

This case is trivial, since PExpr(()) = {()}, and () is a value.

The cases for rules [T-Int], [T-Bool], [T-Var], [T-Rec] and [T-Chan] are trivial
too.

[T-Tup] Let us assume that:

1) Γ `(e1, e2) : A1 ×A2

2) Γ ` e1 : A1

3) Γ ` e2 : A2

4) P(Γ, e1, A1)

5) P(Γ, e2, A2)

We need to show that PExpr((e1, e2)) is not stuck.

Since PExpr((e1, e2)) = {(e1, e2)}, we only need to show that (e1, e2) is
not stuck. By applying Lemma 2.10 (Expression Progress) on hypothesis
1), we have that (e1, e2) = v or ∃c, v.(e1, e2) = E[send c v] or ∃c.(e1, e2) =
E[recv c] or ∃P.(e1, e2)−→P . In the former three cases the theorem
holds trivially, since in these cases (e1, e2) is not stuck by Definition 2.3.1
(Stuck Expression). In the last case, there are only five rules that let
an expression take a −→ reduction step: [C-Step], [C-Spawn], [T-Spawn],
[T-Atomic] and [T-Commit].

Let us consider the case with [C-Step] first. By the hypothesis of rule
[C-Step], e ↪→ e′, and thus e is not stuck because of point iii) in Definition
2.3.1. In each of the other four cases e is not stuck because of point ii) in
Definition 2.3.1.

The cases for rules [T-If], [T-App], [T-Let], [T-Op], [T-Send], [T-Recv],
[T-NewChan], [T-Spawn], [T-Atomic] and [T-Commit] can be proved similarly.

[T-Par-L] Let us assume that:

1) Γ `P1 ‖ P2 : A

2) Γ `P1 : A

3) Γ `P2 : unit

4) P(Γ, P1, A)

5) P(Γ, P2,unit)

We need to show that ∀e ∈ PExpr(P1 ‖ P2), e is not stuck.

According to Table 18, PExpr(P1 ‖ P2) = PExpr(P1) ∪ PExpr(P2).
Since, by inductive hypotheses 4) and 5), all the expressions in both sets

52

are not stuck, then also all the expressions in the union of both sets will
not be stuck, thus proving the theorem.

The case for [T-Par-R] can be proved similarly

[T-Trans] Let us assume that:

1) Γ ` JP1 Bk P2 K : A

2) Γ, k ` P1 : A

3) Γ `P2 : A

4) P((Γ, k), P1, A)

5) P(Γ, P2, A)

We need to show that ∀e ∈ PExpr(JP1 Bk P2 K), e is not stuck.

By inductive hypothesis 4), all expressions in PExpr(P1) are not stuck.
Since PExpr(JP1 Bk P2 K) = PExpr(P1) according to Table 18, this case
is proved.

The case for [T-Restr] can be proved similarly.

[T-Co] Let us assume that:

1) Γ ` co k : unit

We need to show that ∀e ∈ PExpr(co k), e is not stuck.

Since PExpr(co k) is equivalent to the empty set, this case holds trivially.

We can now state the soundeness theorem and a corollary:

Theorem 2.12 (Soundness) If Γ ` e : A, then ∀P. if e−→∗ P then ∀e′ ∈
PExpr(P).e′ is not stuck.

Proof By Theorem 2.9 (Type Preservation) and Theorem 2.11 (Progress).

Corollary 2.13 If Γ ` e : A, then e−→∗ P 6 −→ implies that ∀e′ ∈ PExp(P).e′

is not stuck.

53

3 Language design choices

We discuss in this section the rationale for transaction rules. In particular,
we will show why we allow delays in committing transactions via rule [Tr-Co],
why the scope of a transaction can be extended by rule [S-Scope-Ext], why
transactions need to be aborted at any time rather than only at specific points
encoded in the term, and why transactions cannot be committed if their commit
point is nested in another transaction.

We will consider a special channel ω, over which terms can send a unit value
() to signal a successful computation. We will mark such transitions with a label
ω!().

3.1 Asynchronous commits

In TransCML, transactions are committed asynchronously. A transaction k can
notify the system that it is ready to commit with the commit k expression.
When this expression is evaluated, the transaction is not committed immedi-
ately; instead, commit k expressions are reduced to the unit value (), and a
commit point process co k, that refers to transaction k, is spawned. Let’s see
at the following example to illustrate the reason behind this rule.

Assume that there was no rule [Tr-Co], and that we replace rule [Tr-Commit]

with the following one:

[Tr-Commit]

P1 ≡ E[commit k] ‖ P ′1
JP1 Bk P2 K→ (E[()] ‖ P ′1)\k

According to this rule, transactions commit only when a process reaches a
commit expression in its functional core. Notice that this is the only rule that
can reduce expression commit k, thus evaluation of context E cannot proceed
unless the transaction is committed.

Suppose now that we had the following term P :

J send c (); commit k; send c () Bk () K ‖
J recv c; recv c; commit l; send ω () Bl () K

In this example, the first transaction commits only if it sends at least one
value over channel c. The second transaction must receive two values over
channel c in order to commit. Depending on the order in which transactions
are embedded, P will evaluate to two different results. On the one hand, if
transaction k is embedded into transaction l first, the process in transacion
k will be able to communicate over channel c with the process in transaction
l, and commit transaction k. Afterwards, another synchronization among the
two processes will happen, and transaction l can commit. More formally, the
following reductions are possible:

J send c (); commit k; send c () Bk () K

54

‖ J recv c; recv c; commit l; send ω () Bl () K
[Tr-Emb]
−−−−−−→ J J send c (); commit k; send c () Bk () K

‖ recv c; recv c; commit l; send ω ()

Bl J send c (); commit k; send c () Bk () K ‖ () K
[Tr-Emb]
−−−−−−→ J J send c (); commit k; send c ()

‖ recv c; recv c; commit l; send ω ()

Bk () ‖ recv c; recv c; commit l; send ω () K
Bl J send c (); commit k; send c () Bk () K ‖ () K

[Sync]
−−−−→ J J(); commit k; send c () ‖ (); recv c; commit l; send ω ()

Bk () ‖ recv c; recv c; commit l; send ω () K
Bl J send c (); commit k; send c () Bk () K ‖ () K

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J J commit k; send c () ‖ recv c; commit l; send ω ()

Bk () ‖ recv c; recv c; commit l; send ω () K
Bl J send c (); commit k; send c () Bk () K ‖ () K

[Tr-Commit]
−−−−−−−−−→

[E-Let]
−−−−−−→ J send c () ‖ recv c; commit l; send ω ()

Bl J send c (); commit k; send c () Bk () K ‖ () K
[Sync]
−−−−→

[E-Let]
−−−−−−→ J() ‖ commit l; send ω ()

Bl J send c (); commit k; send c () Bk () K ‖ () K
[Tr-Commit]
−−−−−−−−−→

[E-Let]
−−−−−−→() ‖ send ω ()

[Send]ω!()

−−−−−−−→νc.() ‖ ()

On the other hand, if transaction l is embedded into transaction k first, a
synchronization among the processes in the two transactions can happen. After
the synchronization, the expression commit k is available for reduction. Be-
cause, as a result of applying the embedding rules, transaction l is now the
innermost nested transaction, and transaction k is the outermost transaction,
rule [Tr-Commit] cannot be applied to commit transaction k from expression
commit k, because transaction l is in the middle between commit k and trans-
action k. The only option that the system is left in this case is to abort either
transaction k or transaction l. We choose to abort transaction l in the follow-
ing reduction, but the end result would be the same if we had chosen to abort
transaction k:

J send c (); commit k; send c () Bk () K

55

‖ J recv c; recv c; commit l; send ω () Bl () K
[Tr-Emb]
−−−−−−→ J send c (); commit k; send c ()

‖ J recv c; recv c; commit l; send ω () Bl () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Tr-Emb]
−−−−−−→ J J send c (); commit k; send c ()

‖ recv c; recv c; commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Sync]
−−−−→ J J(); commit k; send c () ‖ (); recv c; commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J J commit k; send c () ‖ recv c; commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Tr-Abort]
−−−−−−−−→ J send c (); commit k; send c () ‖ ()

Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K
[Tr-Abort]
−−−−−−−−→() ‖ J recv c; recv c; commit l; send ω () Bl () K
[Tr-Abort]
−−−−−−−−→() ‖ ()

After the application of the last [E-Let] rule, transaction l must abort. In
fact, transaction l contains commit k, which cannot reach the outer transaction
k and commit it. There is no other reduction step to perform other than aborting
l or k at this point. Even after aborting transaction l, there is no other option
than aborting the other transactions. Embedding on the right first will force us
to abort all transactions, no matter what we do. Moreover, we will not be able
to communicate success on channel ω.

The order in which transactions are embedded has become significant. On
one hand, embedding on the right first forces us to abort all transactions. On
the other hand, embedding on the left first allows us to commit all transactions
and signal success on channel ω. We want to avoid the former case: we want
to be assured that successful executions can always be reached, no matter what
the order of embeddings is.

Introducing rule [Tr-Co], we modify rule [Tr-Commit] to just spawn a commit
point, and let rule [Tr-Co] do the actual commit when it is possible. In this
way, commits are delayed and interdependencies between transactions are not
as stringent as before, since that the different order of embeddings yield the

56

same result now. Let us resume reduction after the application of the last
[E-Let] rule. We will use the new rule [Tr-Co] first to spawn a commit point for
transaction k, and resume reduction so that the second synchronization between
the two processes can continue. After the second synchronization happens, it is
possible to spawn a second commit point for transaction l is spawned, and now
both transactions can be committed. The following reduction is thus possible:

. . .

[E-Let]
−−−−−−→ J J commit k; send c () ‖ recv c; commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Tr-Co]
−−−−−→

[E-Let]
−−−−−−→ J J co k ‖ send c () ‖ recv c; commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Sync]
−−−−→

[E-Let]
−−−−−−→ J J co k ‖ () ‖ commit l; send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Tr-Co]
−−−−−→ J J co k ‖ () ‖ co l ‖ (); send ω ()

Bl send c (); commit k; send c () ‖ () K
Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K

[Tr-Commit]
−−−−−−−−−→ J co k ‖ () ‖ () ‖ (); send ω ()

Bk () ‖ J recv c; recv c; commit l; send ω () Bl () K K
[Tr-Commit]
−−−−−−−−−→

[E-Let]
−−−−−−→() ‖ () ‖ () ‖ send ω ()

[Send]ω!()

−−−−−−−→() ‖ () ‖ () ‖ ()

A final note worth considering is that it is indeed still possible for transac-
tions to abort at any time and not reach a successful computation. However,
a successful computation can be reached no matter what the order of embed-
dings was, which was not the case before introducing rule [Tr-Co]. We have thus
showed why it is not a good idea to force transactions to commit as soon as a
commit point is reached.

3.2 Transaction scope extension

The following example justifies the rules to extend the scope of a transaction
over expressions in rule [Tr-Atomic]. The discussion in this section is reminiscent

57

of Jeffrey’s µCML syntax in [11].
Suppose that we made no distinction between processes and expressions, but

that everything was an expression. Then we could add parallels and restrictions
as evaluation contexts. Since transactions might now appear in the middle of
an expression, we would have no need for atomic expressions.

We also need to ensure that reduction of functional expressions is consistent,
if its argument is a composition of parallel processes. One way to achieve this
is to first restrict parallel processes to be commutative only on the right:

[Eq-Com]

(P1 ‖ P2) ‖ P3 ≡ (P2 ‖ P1) ‖ P3

This rule will ensure that the thread on the rightmost position in a parallel com-
position never changes position. Secondly, we need another structural equiva-
lence rule to move parallel expression from an evaluation context and allow a
sequential reduction step:

[Eq-Ctx]

E[P1 ‖ P2] ≡ P1 ‖ E[P2]

Moreover, since the rightmost process cannot be moved, we would need to
duplicate a number of rules. For example, transactions could be either on the
right hand side or at the left hand side of a parallel expression. If we wanted
to perform an embedding step, rule [Tr-Emb] would only allow expressions to be
embedded into a transaction if this was on their right-hand side in a parallel
composition. The rightmost process of a parallel composition would not be able
to be embedded into a transaction on its left. We thus need to duplicate rules
to cover both cases, left-hand side and right-hand side. For example:

[Tr-Emb-L]

E[J e1 Bk e2 K] ‖ e3−→E[J e1 ‖ e3 Bk e2 ‖ e3 K]

We will not described rule [Tr-Emb-R] and other rules that need to be duplicated
for brevity’s sake.

Suppose now that we had the following term P :

J recv c; recv c; commit k Bk () K ‖
let z = J send c (); commit l Bl () K in send c (); send ω ()

In this example, we are using channel ω in expression send ω () to signal
success of a computation; when success is reached, we will mark the relative
transition with label ω!(). If the scope of transactions were not extensible, we
would get different traces depending on the order of embeddings performed.
After the first two embeddings, there will be two expressions running in parallel

58

inside the argument of the let expression. A synchronization is now available
between the two processes. After synchronizing, the innermost transaction l can
be committed by rule [Tr-Co]. After committing, we use structural equivalence
on the let expression to move the parallel processes into the let expression out-
side of it, so that rule [E-Let] can be applied to the let expression. After this
rule is applied, another synchronization is available, after which the remain-
ing transaction k can be committed, and success can be signaled. The term
reduction we just described is the following:

J recv c; recv c; commit k Bk () K ‖
let z = J send c (); commit l Bl () K in send c (); send ω ()

[Tr-Emb-L]
−−−−−−−−→ J recv c; recv c; commit k ‖

let z = J send c (); commit l Bl () K in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

≡ J let z = (recv c; recv c; commit k ‖
J send c (); commit l Bl () K) in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Tr-Emb-R]
−−−−−−−−→ J let z = J recv c; recv c; commit k ‖ send c (); commit l

Bl recv c; recv c; commit k ‖ () K in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Sync]
−−−−→ J let z = J(); recv c; commit k ‖ (); commit l

Bl recv c; recv c; commit k ‖ () K in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J let z = J recv c; commit k ‖ commit l

Bl recv c; recv c; commit k ‖ () K in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Tr-Commit]
−−−−−−−−−→ J let z = J recv c; commit k ‖ co l ‖ ()

Bl recv c; recv c; commit k ‖ () K in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

59

[Tr-Co]
−−−−−→ J let z = (recv c; commit k ‖ () ‖ ()) in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

≡ J recv c; commit k ‖ () ‖ let z = () in send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[E-Let]
−−−−−−→ J recv c; commit k ‖ () ‖ send c (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Sync]
−−−−→ J(); commit k ‖ () ‖ (); send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J commit k ‖ () ‖ send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Tr-Commit]
−−−−−−−−−→ J co k ‖ () ‖ () ‖ send ω ()

Bk () ‖ let z = J send c (); commit l Bl () K
in send c (); send ω () K

[Tr-Co]
−−−−−→() ‖ () ‖ () ‖ send ω ()

[Send] ω!()

−−−−−−−−→() ‖ () ‖ () ‖ ()

By the structural equivalence rule [Eq-Ctx], term P is equivalent to the
following term:

J recv c; recv c; commit k Bk () K ‖
let z = J send c (); commit l Bl () K in send c (); send ω ()

≡ let z = (J recv c; recv c; commit k Bk () K ‖
J send c (); commit l Bl () K) in send c (); send ω ()

Unfortunately, we will now show that no reduction of term Q can execute
succesfully. Transaction l can embed into transaction k first, or viceversa, but
neither embedding will be able to commit. If we embed transaction l into

60

transaction k first, the two processes inside transaction l can perform one syn-
chronization and spawn a commit point co l. Transaction l can be committed
by rule [Tr-Co], but transaction k cannot be committed, because commit point k
can be spawned only if a process is willing to perform send c (). Unfortunately,
the system has the form let z = J . . . Bk . . . K in send c (), and the expression
send c () cannot be reached from transaction k. Thus transaction k can only
be aborted.

The reduction we just described is the following:

let z = (J recv c; recv c; commit k Bk () K ‖
J send c (); commit l Bl () K) in send c (); send ω ()

[Tr-Emb-L]
−−−−−−−−→ let z = J recv c; recv c; commit k ‖

J send c (); commit l Bl () K
Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

[Tr-Emb-R]
−−−−−−−−→ let z = J J recv c; recv c; commit k ‖ send c (); commit l

Bl recv c; recv c; commit k ‖ () K
Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

[Sync]
−−−−→ let z = J J(); recv c; commit k ‖ (); commit l

Bl recv c; recv c; commit k ‖ () K
Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ let z = J J recv c; commit k ‖ commit l

Bl recv c; recv c; commit k ‖ () K
Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

[Tr-Commit]
−−−−−−−−−→ let z = J J recv c; commit k ‖ co l ‖ ()

Bl recv c; recv c; commit k ‖ () K
Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

[Tr-Co]
−−−−−→ let z = J recv c; commit k ‖ ()

Bk () ‖ J send c (); commit l Bl () K K
in send c (); send ω ()

61

[Tr-Abort]
−−−−−−−−→ let z = () ‖ J send c (); commit l Bl () K

in send c (); send ω ()

[Tr-Abort]
−−−−−−−−→ let z = () ‖ () in send c (); send ω ()

[E-Let]
−−−−−−→() ‖ send c (); send ω ()

If we embed transaction k into transaction l first, the two processes inside
transaction k can synchronize and a commit point co l can be spawned. Un-
fortunately, commit point l cannot commit transaction k, and a commit point
k can only be spawned if a process is willing to perform a send c () operation.
Again, the only process that can perform that operation is outside transaction
k, since the system has again the form let z = J . . . Bl . . . K in send c ();
The only options are to abort either transaction k or l; in the following reduc-
tion we abort transaction k first, but the end result would not change in the
other case. After a few more necessary transaction aborts, the system reaches
a deadlocked state, where it cannot signal success.

If we embed whereas in the latter case:

let z = (J recv c; recv c; commit k Bk () K ‖
J send c (); commit l Bl () K) in send c (); send ω ()

[Tr-Emb-R]
−−−−−−−−→ let z = J J recv c; recv c; commit k Bk () K

‖ send c (); commit l

Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[Tr-Emb-L]
−−−−−−−−→ let z = J J recv c; recv c; commit k ‖ send c (); commit l

Bk () ‖ send c (); commit l K
Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[Sync]
−−−−→ let z = J J(); recv c; commit k ‖ (); commit l

Bk () ‖ send c (); commit l K
Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ let z = J J recv c; commit k ‖ commit l

Bk () ‖ send c (); commit l K
Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

62

[Tr-Commit]
−−−−−−−−−→ let z = J J recv c; commit k ‖ co l ‖ ()

Bk () ‖ send c (); commit l K
Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[Tr-Abort]
−−−−−−−−→ let z = J() ‖ send c (); commit l

Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[Tr-Abort]
−−−−−−−−→ let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω ()

[Tr-Abort]
−−−−−−−−→ let z = () ‖ () in send c (); send ω ()

[E-Let]
−−−−−−→() ‖ send c (); send ω ()

We would expect equivalent terms to have the same behaviour. Unlike term
P though, Q can never signal success on ω. If we allow the scope of a transaction
to be extended, Q can signal success. Such a rule could be:

[Tr-Scope-Ext]

E[atomic J e1 Bk e2 K]−→atomic JE[e1] Bk E[e2] K

Let us consider the case where transaction k was embedded into transac-
tion l first. If we resume reduction just after rule [Tr-Commit] has been ap-
plied, it is now possible to apply rule [Tr-Scope-Ext] to reduce the system
from expression let z = J . . . Bk . . . K in send c () to expression J let z =
. . . in send c (); . . . Bk let z = . . . in send c (); . . . K, where the let expres-
sion inside transaction k (and l) can now be reduced by rule [E-Let] and a
new synchronization over channel c is made available. After the synchroniza-
tion happens, a new commit point for transaction k can be spawned, and both
transactions can be committed. The reduction we have just described is the
following:

. . .

[Tr-Commit]
−−−−−−−−−→ let z = J J recv c; commit k ‖ co l ‖ ()

Bk () ‖ send c (); commit l K
Bl J recv c; recv c; commit k Bk () K ‖ () K
in send c (); send ω ()

[Tr-Scope-Ext]
−−−−−−−−−−−→ J let z = J recv c; commit k ‖ co l ‖ ()

63

Bk () ‖ send c (); commit l K in send c (); send ω ()

Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[Tr-Scope-Ext]
−−−−−−−−−−−→ J J recv c; commit k ‖ co l ‖

let z = () in send c (); send ω ()

Bk () ‖ let z = send c (); commit l in send c (); send ω () K
Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[E-Let]
−−−−−−→ J J recv c; commit k ‖ co l ‖ send c (); send ω ()

Bk () ‖ let z = send c (); commit l in send c (); send ω () K
Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[Sync]
−−−−→ J J(); commit k ‖ co l ‖ (); send ω ()

Bk () ‖ let z = send c (); commit l in send c (); send ω () K
Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J J commit k ‖ co l ‖ send ω ()

Bk () ‖ let z = send c (); commit l in send c (); send ω () K
Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[Tr-Commit]
−−−−−−−−−→ J J co k ‖ co l ‖ send ω ()

Bk () ‖ let z = send c (); commit l in send c (); send ω () K
Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[Tr-Co]
−−−−−→ J() ‖ co l ‖ send ω ()

Bl let z = J recv c; recv c; commit k Bk () K ‖ ()

in send c (); send ω () K
[Tr-Co]
−−−−−→() ‖ () ‖ send ω ()

[Send] ω!()

−−−−−−−−→() ‖ () ‖ ()

As we have seen, process Q has now managed to signal success after ex-
tending the scope of the transaction. We will not show the second case for the

64

sake of brevity, but Q can signal success in the latter case too, by extending
both transactions over the let construct, applying rule [Tr-Co] on term co l
and using the resulting unit value () to reduce the let expression.

Finally, we might question whether a term P has the same atomic, all-or-
nothing behaviour after using one of the transaction’s scope extension rules.
Intuitively, the commit point of a transaction is not moved, but only the trans-
action’s scope is. After a commit point is spawned, the transaction can be
committed at any time. Thus, all reductions up to the commit point are still
executed atomically, with an all-or-nothing semantics. But in order to prove
this property, a formal theory is necessary.

In TCML, instead of having the extra structural equivalence rules and eval-
uation rules, we keep the distinction between processes and expressions, add the
atomic expression and keep rule [Tr-Atomic].

3.3 Programmable aborts

According to rule [Tr-Abort] in the reduction semantics of TCML, transactions
can be aborted at any time. This might look like an odd choice, which brings
unnecessary non-determinism in the system; we will explain why it is necessary.

Let us add a new expression and a new process in our syntax, abort k and
ab k respectively, where k is a transaction name. This new term will be used in
TCML programs to explicitly ask the system to abort transaction k, and only
then, rather than at any times. To this end, let us replace rule [Tr-Abort] with
the following two rules:

[Tr-Prog-Ab]

E[abort k]
τ
−−→ ab k ‖ E[()]

[Tr-Prog-Abort]

e1 ≡ ab k ‖ e′1
J e1 Bk e2 K

τ
−−→ e2

Rule [Tr-Prog-Ab] will avoid that the ordering of embeddings in transaction
be relevant, as we have seen for rule [Tr-Co] in section 3.1. Rule [Tr-Prog-Abort]

will make sure that a transaction k will be aborted only if an ab k term has
been spawned in it. Before reaching an abort point, it will not be possible to
abort a transaction.

Consider now the following two examples, adapted from [4]:

1. J(recv b; commit l)⊕ recv a Bl () K1

2. J recv b; commit l Bl () K

Communication on channel b can become definitive only after reaching the
commit point co l. Instead, communications on channel a is always tentative
and never definitive: there is no commit point after choosing the right branch of
the internal choice in example 1). Thus we would expect the two terms to always

1P ⊕Q stands for internal choice. Internal choice represents the non-deterministic choice
between alternative P and Q. It can defined in TCML as νa.a!() ‖ a?;P ‖ a?;Q. For clarity’s
sake, we will assume that internal choice is a language primitive with the obvious semantics.

65

display the same behaviour, namely that of receiving a value from channel b.
We would expect no test to be able to distinguish the two examples.

Surprisingly, it is indeed possible to distinguish them with the following test:

J send a (); abort k Bk send b (); send ω () K

Example 1) can pass this test by communicating over ω. It is possible to em-
bed transaction k into transaction l first, and then perform another embedding.
If the right branch is chosen in the non-deterministic choice ⊕, then the abort
point ab k can be created after a synchronization over channel a. At this point
transaction k is aborted, and the non-deterministic choice ⊕ is restored from
the alternative process that was stored in transaction k, together with an ex-
pression that can signal success on channel ω after performing a synchronization
over channel b. If the left branch of the non-deterministic choice ⊕ is chosen,
then a synchronization over channel b can happen and a commit point co l can
also be spawned. After committing transaction l, it is possible to signal success
over channel ω. The following reduction is thus possible:

J(recv b; commit l)⊕ recv a Bl () K ‖
J send a (); abort k Bk send b (); send ω () K

[Tr-Emb]
−−−−−−→ J(recv b; commit l)⊕ recv a ‖

J send a (); abort k Bk send b (); send ω () K
Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

[Tr-Emb]
−−−−−−→ J J(recv b; commit l)⊕ recv a ‖ send a (); abort k

Bk (recv b; commit l)⊕ recv a ‖ send b (); send ω () K
Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

⊕
−−−−−→ J J recv a ‖ send a (); abort k

Bk (recv b; commit l)⊕ recv a ‖ send b (); send ω () K
Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

[Sync]
−−−−→

[E-Let]
−−−−−−→ J J() ‖ abort k

Bk (recv b; commit l)⊕ recv a ‖ send b (); send ω () K
Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

[Tr-Prog-Ab]
−−−−−−−−−−→ J J() ‖ ab k ‖ ()

Bk (recv b; commit l)⊕ recv a ‖ send b (); send ω () K
Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

[Tr-Prog-Abort]
−−−−−−−−−−−−→ J(recv b; commit l)⊕ recv a ‖ send b (); send ω ()

Bl () ‖ J send a (); abort k Bk send b (); send ω () K K

66

⊕
−−−−−→ J recv b; commit l ‖ send b (); send ω ()

Bl () ‖ J send a (); abort k Bk send b (); send ω () K K
[Sync]
−−−−→ J(); commit l ‖ (); send ω ()

Bl () ‖ J send a (); abort k Bk send b (); send ω () K K
[E-Let]
−−−−−−→

[E-Let]
−−−−−−→ J commit l ‖ send ω ()

Bl () ‖ J send a (); abort k Bk send b (); send ω () K K
[Tr-Commit]
−−−−−−−−−→ J co l ‖ () ‖ send ω ()

Bl () ‖ J send a (); abort k Bk send b (); send ω () K K
[Tr-Co]
−−−−−→() ‖ () ‖ send ω ()

[Send] ω!()

−−−−−−−−→() ‖ () ‖ ()

We have just proved that aborting transaction k enables a new communi-
cation on channel b after which we can signal success on ω. On the contrary,
transaction l from example 2) cannot enable the abort point of transaction k,
simply because it does not communicate over channel a at all.

Rule [Tr-Prog-Abort] has introduced something undesirable in our system:
uncommitted actions can bear an effect on the system. In fact, the right-hand
side branch of the internal choice enables a successful execution in example 1).
But that term can never committed: choosing the right-hand side automatically
excludes the left-hand side of the internal choice, which has the only commit
point. So example 1) does not have the same behaviour as example 2), which
can never commit.

System aborts are also desirable for another reason. Imagine that we wanted
to tentatively receive a communication from two given channels. We might write
something like the following term:

J recv a; commit k Bk recv b; send ω () K

Even though communication is available on channel b, reduction is blocked
because transaction k is waiting on channel a. In fact, such a term could never
programmatically abort, because there is no mechanism in TCML to detect
whether any communication is available over a channel. In general, it is im-
practical or even impossible to identify all paths that need to be aborted (e.g.
an infinite loop inside a transaction). Allowing the system to abort transactions
at any time lifts programmers from the responsibility to foresee all possible er-
roneous situations and only focus on the committable actions the system will
perform. Programming in concurrent and distributed systems is a notoriously
error-prone task; programmers need not to worry about erroneous states with
communicating transactions, provided the system is “smart” enough to identify
such states.

67

It is still possible to add programmable aborts alongside system aborts. For
example, programmers might know that some paths will eventually lead to an
abort. The system might not be aware of this, so a programmable abort could
be a mechanism for programmers to elicit the abortion of a transaction and
increase the efficiency of the system.

3.4 Commit dependencies

Whenever an inner transactions reaches and contains the commit point of an
outer transaction, the latter cannot be committed unless the former is. This
observation might seem obvious, but it is still worth discussing.

Suppose that we added the following structural equivalence rule:

[S-Co]

J co k ‖ P Bl Q K ≡ co k ‖ JP Bl Q K
k 6= l

This rule, together with the other structural equivalence rules, would allow
commit points to move from a transaction to another, and to enable transactions
to be committed at any level. It is easy to find one of the undesired effects
introduced by this choice:

J send ω () ‖ send a (); commit k Bk () K ‖ J recv a Bl () K
[Tr-Emb]
−−−−−−→ J send ω () ‖ send a (); commit k ‖ J recv a Bl () K

Bk () ‖ J recv a Bl () K K
[Tr-Emb]
−−−−−−→ J send ω () ‖ J send a (); commit k ‖ recv a

Bl send a (); commit k ‖ () K Bk () ‖ J recv a Bl () K K
[Sync]
−−−−→

[E-Let]
−−−−−−→ J send ω () ‖ J commit k ‖ ()

Bl send a (); commit k ‖ () K Bk () ‖ J recv a Bl () K K
[Tr-Commit]
−−−−−−−−−→ J send ω () ‖ J co k ‖ () ‖ ()

Bl send a (); commit k ‖ () K Bk () ‖ J recv a Bl () K K
[Tr-Co]
−−−−−→ send ω () ‖ J() ‖ () ‖ () Bl send a (); commit k ‖ () K

[Send]ω!()

−−−−−−−→() ‖ J() ‖ () ‖ () Bl send a (); commit k ‖ () K
[Tr-Abort]
−−−−−−−−→() ‖ send a (); commit k ‖ ()

In this example, transaction k can signal success over ω only if it commits,
which can only happen after communicating over a. The only term it can

68

communicate with is in transaction l, which in turn can never be committed,
because it lacks a commit point. Thus, transaction k should never be able to
signal success. But this is what happens in the last reduction.

Transaction k has managed to signal success, even though we did not ex-
pected it to, thus breaking the consistency of transactions. The problem is that
the commitment of transaction k depends on transaction l, but we ignore this
dependency when we commit k as soon as we reach its commit point.

69

4 Examples

We will now show the capabilities of the language through some examples. In
order to have a better understanding of the behaviour of each system that we
are going to present, we informally introduce a Labelled Transition System
(LTS). We will not give a formal definition for it. Instead, next to the reduction
steps presented in section 2.2, we will introduce two new kinds of transitions,
annotated by labels c?v and c!v, where c ∈ Chan and v ∈ V al. A TCML
process can take such a transition in the cases described by the following rules:

[Send]

E[send c v]
c!v
−−→ E[()]

[Recv]

E[recv c]
c?v
−−→ E[v]

For clarity’s sake, we omit the rules that propagate these labelled transitions
over parallel composition, channel restriction and transactions. Intuitively, these
transitions model the interaction of the system with an external agent perform-
ing a complementary receive or send action.

We will also annotate the transition arrow in rules [Tr-Abort] with label
ab k, rule [Tr-Co] with label co k and rule [Tr-Emb] with label emb k. These
labels will clarify which rule is used to perform a reduction step on transactions.

When a new transaction is started by rule [Tr-Atomic] or a process is em-
bedded into a transaction, we will label the corresponding state with the name
of the transaction. Transactions can be aborted at any time by rule [Tr-Abort],
so instead of explicitly drawing an arrow from every state in a tentative path
to its abort state, we will only draw one from the very start of the transaction
to its next state. All tentative transitions and nodes performed in a transaction
will be drawn in the orange color, definitive ones in black. Thus each orange
node has an implicit abort arrow, that points at the first black state that can
be reached by traversing the orange arrows backwards. This may be possible
for multiple embeddings. When a co k transition is performed by a transaction
that does not contain nested transactions, the color of transition arrows will be
black again.

4.1 Even-Odd consumer

The Even-Odd Consumer describes a system containing three public channels,
c, evens and odds. A stream of integer numbers is input into the system from
channel c. Even numbers are output on channel evens, and odd numbers on
channel odds. The system comprises three agents: a producer of integer num-
bers and two consumers of integer numbers, one for even numbers and one
for odd ones. This system describes the common interaction pattern of single
producer/multiple consumers.

We will first analyse the case in which a single number is sent to the system,
and then the more complicated case of a stream of numbers. We will provide
three TCML programs for both cases: a specification and two implementations.

70

S .

E .

O .

c?v

evens!ve

odds!vo

ν e. ν o. let n = recv c in if (isEven n) then (send e n) else (send o n)
‖ send evens (recv o)
‖ send odds (recv e)

Figure 1: Even/Odd consumer specification.

The specification will describe the expected behaviour of the system without
using communicating transactions, which will be employed to build the two
implementations instead. We will show informally that the specification and
implementations describe the same system. In particular, given an informal
notion of test on a system, we will show that they all pass the same set of
tests.

4.1.1 Channel selection

In this scenario, the system receives a single integer number, which is sent either
on channel evens if it is even, otherwise on channel odds. Figure 1 shows the
specification’s TCML code and the resulting LTS.

There are three processes running in parallel in the TCML code. We will
refer to the first process as the producer, to the next one as the evens consumer,
and the last process as the odds consumer. We can also notice two private
channels e and o, which are only used within the system. They let the producer
connect with the even and odd consumer, respectively.

State S in the LTS refers to the system in this initial state, as just described,
where the producer is waiting for a number on channel c, and the consumers
are waiting for an input from the producer. The first transition corresponds to
the producer receiving a number v on channel c.

The system can then follow one of the two transitions to either state E or
O, depending on the value of the v. State E represents the following situation:

ν e. ν o. send e ve ‖ send evens (recv o) ‖ send odds (recv e)

where v is an even number, and the subscript e beneath it represents that v is
even. State O represents the situation in which the received number is odd:

71

ν e. ν o. send o vo ‖ send evens (recv o) ‖ send odds (recv e)

and vo is the odd number v. From state E the system can output ve on pub-
lic channel evens; similarly, from state O it can output vo on public channel
odds. In either case, the system cannot receive any more inputs at this point.
Consequently no more transitions are available.

Observing the LTS, we can deduce that the system can perform three se-
quences of actions with the external environment:

1. receive a number on channel c.

2. receive a number on channel c and send it on channel evens if the number
is even.

3. receive a number on channel c and send it on channel odds if the number
is odd.

These are all possible sequences of actions that an external agent can observe
on the system. We can imagine, for example, that the first test just checks
whether the system is running, while the other two tests verify that the system
forwards even and odd numbers on the appropriate channels. Assume now that
the transactional versions pass the same set of tests. In that case, we would
not be able to distinguish the transactional versions from the specification as
an external examiner. In that case, we can say that the transactional version
implements the specification.

Figure 2 shows the first version of transactional Even/Odd consumer and its
LTS. There are still three agents but only one private channel a. The producer
receives an integer from public channel c as in the specification, but it does not
perform any test on it. Instead, it will send it immediately on private channel a
and let the consumers contend to receive it. The consumers are now restarting
transactions. Each consumer will tentatively receive a number from channel a.
Then they will commit the transaction only if they received the appropriate
even or odd number. Otherwise, there will be no other option but to abort the
transaction, undo the communication with the producer and try again.

Let us explore the resulting LTS. After the initial state S and receiving a
number v, the producer tries to send v over the private channel a. Because
transactions are not evaluation contexts, rule [C-Sync] cannot be applied to two
processes unless they are nested within the same transaction. To enable this
scenario, the producer can be embedded into either one of the two running
transactions that contain a consumer and communicate with it.

In this example, two transitions are available: one in which the producer is
embedded into transaction k, which contains the even consumer, and another
one in which it is embedded into transaction j, where the odd consumer is. Each
transition is marked by the emb label. In the first case, the system evolves to:

νa.J send a v ‖ let n = recv a in
if (isEven n) then commit k ; send evens n else
Bk send a v ‖ EvenC K ‖ OddC

72

S

k

j

S1

F1
F2

c?v

evens!ve

odds!vo

[n is even]

[n is odd]

co k

[n is even]

[n is odd]

co j

emb k

ab k

ab j
emb j

νa.(send a (recv c) ‖ EvenC ‖ OddC)
where
EvenC = atomicrec k J let n = recv a in

if (isEven n) then commit k ; send evens n else () K
OddC = atomicrec j J let n = recv a in

if (isOdd n) then commit j ; send odds n else () K

Figure 2: First version of transactional Even/Odd consumer implementation.

As far as reduction semantics is concerned in rule [Tr-Emb], there is no reason
to prefer embedding the producer into transaction k rather than transaction j.
The choice of which process to embed is entirely non-deterministic, but obviously
some embeddings are more useful than others. For example, it would not help
to embed the odd consumer into the even consumer here, even though it is a
legitimate transition. An actual implementation would favor embeddings that
have greater hope of reaching a commit point, taking care at the same time
not to alter the semantics of the language by completely disallowing legitimate
transitions.

Let us now assume that v is an odd number. Then the system would evolve
to the following state:

νa. J() ‖ () Bk send a v ‖ EvenC K ‖ EvenC

This state is represented by node F1, from which no more transitions are avail-
able in the LTS. At this point, the system cannot take any other reduction steps
except aborting transaction k. This transition is labelled by ab k at the very
start of the tentative transitions in transaction k, and ends in node S1.

The alternative process in transaction k is the following:

send a v ‖
atomicrec k′ J let n = recv a in if (isEven n) then commit k′ ; send evens n else () K

73

The alternative process contains the producer and even consumer in the same
condition they were before exchanging any value. When transaction k is aborted,
it is substituted by these processes, which are put in parallel with the odd con-
sumer. The system reaches a state equivalent to state S1 and is thus effectively
rolled back to its original state. The same analysis holds if the producer receives
an even number and is embedded into the odd consumer’s transaction.

Let us assume that a new number is communicated to the producer over
public channel c, and that the producer is embedded in transaction k. Then the
consumer will reach expression commit k and will be able to spawn a commit
point by rule [Tr-Commit]:

νa.J() ‖ co k ‖ send evens ve Bk send a v ‖ EvenC K ‖ OddC

Transaction k can now commit by rule [Tr-Co], since we can move the com-
mit point co k to the left by structural equivalence rule [Eq-Assoc]. Then the
consumer can communicate even number ve on public channel evens. This se-
quence of actions is represented by the transition labelled co k and evens!ve
in the LTS. After committing, the alternative processes are discarded and the
system evolves to the following:

νa.() ‖ send evens ve ‖ OddC

After committing transaction k, the system cannot be rolled back anymore,
thus all communications among processes in transaction k become definitive.
The same analysis holds if number v is odd and the producer is embedded into
transaction j.

This system passes the same set of may tests [10] as the specification. Obvi-
ously the system can receive a single number over channel c, since the producer
has not changed. Consider now the paths containing co k labels within them
in the LTS. There are two such paths, one where an even number is sent to
the even consumer, and one where an odd number is sent to odd consumer. In
both cases, the system performs a tentative communication on channel c first,
and then commits, thus making the communication definitive. If we only con-
sider these kind of paths, and do not consider the paths that lead to an abort,
since they are not definitive and whatever effect was performed on the system
is rolled-back, we can easily verify that the system will output even numbers on
the evens channel and odd numbers on the odds channel, after having received
it from channel c. It is also possible that a transaction infinitely aborts, i.e. is
looping forever between state S1 and state k. If we assume an implementation
of TransCML w/ a fair scheduler (e.g. using randomness to some extent to
resolve non deterministic choice) the infinitely aborting traces disappear, in the
sense that its probability of happening tends to zero, and implementation and
specification have the same set of traces.

There are further transition that the system can perform and that we have
not described, such as embedding the unit value from the last transition in
the last example into transaction j. However, this embedding does not help
transaction j to reach a commit point and can only be aborted. Even without

74

k

l

c?n

c?n

ab k

co k

ab l

co l

evens!ve

odds!vo

fun f(x) =
atomic J let v = recv c in if isEven v then commit k; send evens v else ()Bk

atomic J let v = recv c in if isOdd v then commit j; send odds v else ()Bj
f () K K ()

Figure 3: Second version of transactional Even/Odd consumer implementation.

performing any embedding, transaction j can be aborted infinitely often, since it
is a restarting transaction. The LTS does not keep track of tentative transition
paths that never reach a commit point, because the only option in these cases is
to abort the transaction, and any effect that took place in the system within that
transaction will have not be definitively observable by an external examiner.

In the previous example we could have also embedded transaction j in trans-
action k at any time, resulting in transaction k being the outermost transac-
tion. This embedding does not lead to any committed behaviour either. If the
producer is embedded into transaction j and communicates with the odd con-
sumer, then there will be no communication available for the even consumer
in transaction k. Transaction k will have to be aborted, even if transaction j
was committed. If transaction j is embedded but no process is embedded into
it, then transaction k will be able to commit and the system will end up in
the same state as that explained in the previous example. The LTS does not
consider reduction steps that do not contribute to committing a transaction.

With these considerations about the LTS in mind, let us examine the second
version of transactional Even/Odd consumer, shown in Figure 3.

The second version only features a single process containing a recursive func-
tion f and no private channels. This function first starts a transaction k, whose
alternative is to start another transaction j. The alternative to transaction j is
to recursively call f , which starts transaction k again. We can thus argue that
either transaction k is active or transaction j is. Aborting transaction k will
activate transaction j, and aborting transaction j will activate transaction k.

In short, the behaviour of the system will alternate between that of transac-
tion k and that of transaction j. In particular, transaction k receives a number
v on public channel c and sends it on channel evens if it is even; similarly does
transaction j on channel odds if it receives an odd number. If either of these

75

tests is passed, the respective transaction will be committed and the rest of the
transaction will be executed definitively. Otherwise the transaction will reach a
state where the only possible reduction step is to abort.

Here transactions in TCML look similar to exception-handling blocks, with
the difference that aborting exception here are thrown by deadlocks and that
thrown exceptions automatically undo previous side effects of the block (the
recv c in this example). Note that the programmer does not need to specify
each individual aborting point in TCML transactions because these are all the
points where a transaction deadlocks.

We will not describe the LTS in ulterior length, as it can be easily understood
in light of the previous discussion. It is also easy to verify that this system passes
all three tests of the specification, including the case of the single communication
to the system.

The alternating behaviour of this last version is particularly interesting. This
version contains two mutually recursive transactions, that are committed only
if one of the tests for even or odd numbers is passed. This reminds very closely
guarded commands, and it in fact possible to generalize this construct. For
example, if expression e1 is guarded by condition b1 and expression e2 is guarded
by condition b2, their composition can be written as:

fun gCom(e1, e2) = atomic J if b1 then commit k; e1 else ()Bk
atomic J if b2 then commit j; e2 else () Bj gCom () K K

Guards in guarded commands will be tried until one of them can be commit-
ted; their eventual effects will always be rolled back. Similarly, it is possible to
exploit the alternating behaviour of the same construct to have external choice.
If expression e1 is chosen only after communicating on channel c1, and expres-
sion e2 is chosen only after communicating on channel c2, then external choice
can be encoded as:

fun extCh(e1, e2) = atomic J let x = recv c1 in commit k; e1Bk
atomic J let x = recv c2 in commit j; e2 Bj extCh () K K

If a matching communication is available to synchronize with one of the two
branches in the external choice, the construct can abort transactions until the
transaction containing the matching branch is available for communication.

4.1.2 Buffered selection

Let us now see the case where the producer receives a stream of numbers from
c, rather than a single one. In order to process a potentially infinite number of
inputs from c, both producer and consumers must always be able to process a
new input after consuming an input; in short, they must be recursive processes.
This can be easily achieved by extending the specification in section 4.1.1 with
recursive calls. The resulting code and LTS are shown in Figure 4.

While the code needs little explanation, since we have just added recursive
calls at the end of the producer and consumers, the resulting LTS has become
more complicated. States S , E O represent the same states in which the

76

S .

E . EO

.

O . OE

.

c?v1

evens!v1

c?v2

evens!v1

odds!v1

evens!v1

c?v3odds!v2

evens!v2

odds!v1

c?v2

odds!v1

evens!v1

c?v3

odds!v1

odds!v2

odds!v2

νe.νo.
(fun np(x) = let n = (recv c) in

(if (isEven n) then send e n else send o n);np ()) ()
‖ (fun ec(x) = send evens (recv e); ec ()) ()
‖ (fun oc(x) = send odds (recv o); oc ()) ()

Figure 4: Even/Odd consumer specification

non-recursive system started and then finished after receiving a number v1 over
public channel c. Because all processes are recursive, the system will be brought
back to its initial state S after outputting numbers in states E and O, rather
than terminate execution.

Being recursive, the producer might also receive a new number v2 over chan-
nel c before a consumer outputs the previous value v1 on either channel evens
or odds. There are two such transitions labelled c!v2, from state E and state
O. Let us assume that number v1 is even. If number v2 is even too, the even
consumer will not be able to receive a new input without outputting number v1

77

first, and the producer will have to wait. In this case, the system will go back to
the state right after S. If the number is odd, then it might be communicated to
the odd consumer, in which case the system will reach state EO. At this point,
both consumers contain a number but the producer does not. There are three
possible transitions now: either one of the consumer outputs, or the producer
receives a third number from c. At this point, both consumers have to output
before receiving any further numbers. The same considerations hold if v1 is odd
and we consider states O and OE.

The system mainly can receive at most three numbers, if they are not all
even or all odd, and send them on channels evens and odds respectively. Notice
that the system can behave as a three-place buffer. In fact, that the LTS can
perform three c?vi transitions before any number is output on any channel, thus
it can hold three values at the same time before outputting any of them.

A transactional implementation of this specification is shown in figure 5.
This implementation extends the non-recursive transactional version with a

recursive call for both producer and consumers. If we consider only committed
behaviour and we exclude embeddings that do not directly influence commit
paths of a transaction, in light of the discussion about the non-recursive version
in Figure 1, the resulting LTS is fairly similar to the specification.

Right after the producer receives a value v1 in state S, there are two available
transactions in which the producer can be embedded. Embedding in the wrong
transaction will result in an abort and the system going back to the point where
it could choose which embedding to perform. It is also possible to recognize in
state S the original LTS of the transactional system, with the only difference
that, being recursive, outputting on either channel evens or odds will bring the
system back to its original state.

After the producer receives the second number, there is only one embedding
available, namely into the transaction containing the free consumer. Again, if
the consumer is not compatible with the choice, the system will be rolled back.
When this further transaction is committed, the system can take a third value,
before being forced to output.

We will not prove formally that this system can pass the same tests as the
specification, but from the shape of the LTS it should not be difficult to be
convinced that the implementation follows the specification.

Unfortunately, it is not possible to extend the second transactional version
so that it passes the same tests as the specification. Suppose that we had three
recursive processes running in parallel, such as the one shown in Figure 3, then
the system would be able to consume three consecutive even number, which the
specification cannot do. If on the other hand we only spawned two processes to
obviate to this problem, then the implementation would not be able to behave
as a three-place buffer.

Even though this second system is not equal to the specification, it is in-
teresting to observe that this system is more scalable than the specification.
In fact, we can simulate a three-place buffer by just spawning three transac-
tional processes; if we wanted to have more places in the buffer, we could just
spawn more processes, with no need to modify any line of code in any of the

78

S

k

E j EO odds!v1

j

O k OE evens!v1

c?v1

emb k

emb j

co kevens!v1

c?v2

evens!v1

emb j

ab j

co j

odds!v1

c?v3

odds!v2

evens!v2

co jodds!v1

c?v2

odds!v1

emb k

ab k

co k

evens!v1

c?v3

odds!v2

odds!v2

ab k

ab j

E

O OE

EO

ν a.
(fun np(x) = send a (recv c);np()) ()
‖ (fun ec(x) = atomicrec k J

let v = recv c in if isEven v then commit k; send evens v else () K; ec ()) ()
‖ (fun oc(x) = atomicrec j J

let v = recv c in if isEven v then commit j; send odds v else () K; oc ()) ()

Figure 5: Even/Odd consumer implementation

processes. It is not possible to achieve the same scalability in the specification.
For example, we might spawn an extra odd consumer, which would compete
with the other existing consumer for inputs, but the resulting system would be
unbalanced towards odd numbers. In a practical setting, the producer would
also be the bottleneck of the system, since it would manage all communications

79

with channel c. This second transactional version is more distributed instead,
in that all processes can receive on channel c and they can all output even and
odd numbers.

4.2 Three-way rendezvous

In the following section we will demonstrate that TransCCS is expressive enough
to define the three-way rendezvous, a construct that can synchronize three pro-
cesses at a time, just like a channel is a rendezvous that can synchronize two
processes. The solution presented in this section is inspired by the implementa-
tion in Transactional Events from [6].

The following theorem is stated in [16]:

Theorem 6.1 Given the standard CML event combinators and an n-way
rendezvous base-event constructor, one cannot implement an (n+1)-way ren-
dezvous operation abstractly (i.e., as an event value).

The 2-way rendezvous event constructors that CML offers are sendEvt and
recvEvt. One of the constructors is choose, which creates an event from two
given events; the resulting event is the non-deterministic choice between the two
input events. This theorem does not preclude the implementation of a (n+1)-
way rendezvous in particular scenarios. It is in fact possible to implement the
3-way rendezvous in the presence of exactly three processes, as shown in the
following CML code:

fun twr (c : int chan chan, v0 : int) =

let

val c0 : int chan = channel ()

val (isLeader, c1) = sync (

choose [wrap (recvEvt c, (fn y => (true, y))),

wrap (sendEvt (c, c0), (fn () => (false, c0)))])

in if isLeader

then let

val v1 = recv c1

val c2 = recv c

val v2 = recv c2

in

send (c1, v0); send (c1, v2);

send (c2, v0); send (c2, v1);

(v1, v2)

end

else send (c0, v0);

(recv c0, recv c0)

end

fun twrTest () =

80

let val c : (int chan) chan = channel ()

in

spawn (fn () => twr (c, 1));

spawn (fn () => twr (c, 2));

spawn (fn () => twr (c, 3));

end

Let us assume that three processes want to rendezvous with each other using
the twr function. Let us also assume that they all share the same given channel
c. Each process creates a private channel c0, and then each tries either to
receive the private channel of another process from channel c, or to send its
own channel over c, in the choose event. Upon synchronization of this event,
the process that picked the first wrap event in the choice, will act as the leader
of the rendezvous, indicated by setting the boolean flag isLeader to true. The
other process event will take the role of a follower, thus its isLeader flag will
be set to false. Next, the leader process will try to receive another private
channel from channel c. At this point, the third process will have no choice but
to become a follower. Having gathered the private channels of the followers, the
followers communicate their own values to the leader, which in turn proceeds
to exchange values among all participants through their private channel.

As we have shown, this piece of CML code does manage to rendezvous three
processes over the same channel c. But notice that the type of this function is
actually a’ chan chan * a’ -> unit, which is not an event type. This means
that we cannot compose the three-way rendezvous function we just implemented
with other communication primitives. For example, we cannot create a function
that non-deterministically performs a three-way rendezvous on a channel c or on
a channel d. Non-deterministic choice is given by the choose event constructor,
which requires its arguments to be events. The expression choose [twr c,

twr d] is not well-typed, because twr has function type, not an event type.
More importantly, this implementation will not work in the presence of more

than three participants. In the case of four participants, two processes might
become leaders after synchronizing with the other two followers, and the two ren-
dezvous just started would end up in a deadlock. When Theorem 6.1 states that
states CML cannot implement an (n+1)-way rendezvous operation abstractly,
it refers to the impossibility of creating a (n+1)-way rendezvous of type event,
which would compose well with the other communication primitives. This also
means that it is not possible to create an implementation that works in an
arbitrary context. Such a a potential abstract implementation of type other
than event, for example of functional type, would require the use of timeout
expressions and a complex ad-hoc recovery mechanism.

TCML does not have any event combinators, but just primitives for CCS
communication and transactions, which can spawned by the atomic and the
atomicrec expressions (the latter being an composite expression that uses the
former). The only 2-way rendezvous provided are the send and recv expres-
sions. We will first show an implementation of the three-way rendezvous in
TCML, and then discuss its composability in TCML and show that Theorem

81

6.1 does not apply for TCML, that is, there exists an abstract implementation
of (n+1) rendezvous.

Let’s assume that each client i, where i ∈ N , is associated with a value vi of
type A to communicate, and an integer IDi that uniquely identifies it. Let us
also assume a function cmap, that associates a process ID to a unique channel of
type A chan. This mapping function is necessary to circumvent the restriction
imposed on channels on rule [T-Chan]. Channels are well-typed if and only if
the value they carry is of type BaseType, that is, if it does not contain any
channel names. Instead of sending channel names, we will send process IDs. A
fixed assignment of process to a channel will be enough to perform a three-way
rendezvous among processes.

The authors in [6] show an implementation of three-way rendezvous using
Transactional Events. Apart from the use of transactions instead of Transac-
tional Events, and the use of identifiers, our implementation in TCML is very
similar. The code and the LTS are shown in figure 6.

Each participant in the three-way rendezvous non-deterministically decides
whether to be a follower or leader in the rendezvous, because of internal choice
⊕ in the body of the rendezvous function. As shown in the LTS, on the one
hand a follower tries to send its own ID over public channel c first, and then
it will try to communicate its own value vi on its own private channel cid. At
this point, it will try to receive from that same channel the values of the other
participants and commit. On the other hand, the leader will try to receive the
IDs of the other participants in the rendezvous, receive their values, swap values
accordingly, and commit.

There is an obvious complementarity between follower and leader. Each
action performed by the former can be matched by the latter. When the follower
sends its own ID over the public channel c, the leader can receive it; then when
the follower can send its own value, the leader can receive it, and so on. It is also
evident from the LTS that a leader can reach its commit point if it is interacting
with two followers. We can in fact recognize for each step that can be matched
by a follower, another duplicate step that can be matched by another follower.

Let us consider the scenario depicted in figure 7, in which three participants
are trying to rendezvous on channel c, utilizing the three-way rendezvous. Let
us assume that their identification numbers are ID1, ID2 and ID3. At the start,
the three participants have not decided which role to fulfill in the rendezvous. A
process in the “undecided” state, drawn as a black dot, can non-deterministically
decide to become either a follower (blue dot) or a leader (red dot).

There are four states in which the system can evolve. Either all participants
decide to become leader, all become followers, one becomes follower and two
leaders, or one becomes leader and two followers. The identity of processes does
not matter in the rendezvous, so we can consider the scenario in which process
ID1 becomes leader, to be equivalent to the one where it is process ID2 to
become leader.

Figure 7 does not show the full LTS, but we can be easily convinced that the
only scenario that leads to a commit point is the one where there is one leader
and two followers. Looking again at the LTS for a single participant in Figure

82

k

c?id2 c?id3 cid2
?v2 cid3

?v3 cid2
!v1 cid2

!v3 cid3
!v1 cid3

!v2

c!id1 cid1
!v1 cid1

?v2 cid1
?v3

co k

co k

fun rendezvous(vid1 , id1, c) =
let leader =

let cid2
= cmap (recv c) in

let cid3
= cmap (recv c) in

let vid2
= recv cid2

in
let vid3 = recv cid3 in
send cid2 vid1 ; send cid2 vid3 ;
send cid3

vid1
; send cid3

vid2
;

(vid2
, vid3

)
in
let follower =

let cid1 = cmap id in
send c id1;
send cid1

vid;
let vid2

= recv cid2
in

let vid3
= recv cid3

in
(vid2 , vid3)

in
atomicrec k J

(let rend = leader x in commit k; rend) ⊕
(let rend = follower x in commit k; rend) K

Figure 6: Three-way rendezvous code and LTS.

6, if there are three followers or three leaders, no synchronization can happen
on public channel c. If there are two leaders and only one follower, there will
be a race condition for the leaders to receive the ID of the follower, but then
both leaders will not be able to proceed because they need at least one more
follower to send them its own ID. Each of these cases leads the system to abort
the rendezvous and try a different configuration. Notice that it is not necessary
to abort the whole rendezvous for it to succeed. For example, if all the processes
became followers, it might be enough to abort a single transaction. The process
within the aborted transaction will have another chance to become leader next,
and the rendezvous might succeed. This consideration should be taken into
account in the creation of an efficient implementation.

83

3wR

C0

C1

C2 C3

. . .

: leader
: follower
: undecided

co k1 co k2 co k3

Figure 7: LTS for three participants engaging in the three-way rendezvous.

In the case in which there is one leader and two followers, every action of
all participants can be matched by one another, and thus all transactions can
reach its commit point. Recalling that we can ignore all paths that lead to an
abort, we can state that three participants engaging in a three-way rendezvous
will eventually exchange values with each other.

In light of this discussion, let us finally turn our attention to the case in which
there are more than three participants engaging in a three-way rendezvous. If
there are 4 participants performing a three-way rendezvous, there will be five
possible scenarios: either all of them are leaders, or they are all followers, are
one, two or three of the will be leaders and the rest followers. Obviously the
three-way rendezvous construct will only allow three out of four participants to
exchange values. As discussed previously, the rendezvous is successful only if
there are two followers and one leader. Therefore, only two cases will succeed:
the case with one leader and three followers, and the case with two leaders and
two followers. In this last case, the followers might synchronize with different
leaders, but the system would not be in a deadlock, because it is always possible
to abort one of the transactions and try again.

Similarly, the five participants case comprises six different scenarios, and
only three of them will succeed, whenever there are at least one leader and two
followers.

The six participants scenario is different. If there are one, three or four
leaders, three participants can rendezvous as already discussed. However, af-
ter this initial three processes rendezvous, the remaining three processes can
perform another rendezvous, after aborting some transactions. In the case in
which two participants become leaders and four followers, the system can actu-
ally perform two separate rendezvous sequentially. In fact, if we assign the six
participant in two separate groups, one of the two sets will first use channel c to
exchange process IDs. After that, the participants in the other set will be able
to exchange their own process IDs as well, while the former set are exchanging
values. Each set can be considered as a rendezvous with three participants.
Thus we can conceive three scenarios as partially successful, and one scenario
as fully successful.

84

On the light of this discussion, we can note that a system of n participants
trying to perform a three-way rendezvous on a public channel c, will eventually
reduce to bn/3c sets of pairs of exchanged values, and possibly n modulo 3
processes aborting forever.

TCML’s type system does not have the same distinguishing power that CML
has. TCML’s three way rendezvous has type (int, int). Nonetheless, the three-
way rendezvous composed well with other constructs. As an example, we can
non-deterministically choose to a three-way rendezvous over two different chan-
nels with the following transaction, in the same vein of the external choice
function introduced at the end of section 4.1.1:

fun twrChoice(vid1
, id1, c, d) =

atomic J let x = rendezvous c in commit k;xBk
atomic J let y = rendezvous d in commit j; y Bj twrChoice () K K

4.3 Communication sequence buffering

We will now consider the effect of moving a commit point within a transaction.
Suppose that a process must receive either all values coming from a public chan-
nel c until an ’end-of-file’ (EOF) token is received, or none of them. Afterwards,
all values must be retransmitted in any order over another channel d. Before
starting to receive values, the process starts a fresh transaction. Obviously,
the commit point must be placed after the termination token is received. Two
choice are possible though: the commit point can be place either right after
receiving the termination token, or after all values have been sent back. We will
call the first version early commit and the second version late commit. Code
listings for both cases are shown in Figure 8 and 9.

k . . .

. . .

c?v1 c?v2 c?vn−1 c?vn c?′EOF ′

ab k
ab k

ab k
ab k

co k

c!vnc!vn−1c!vn−2c!v2c!v1

atomicrec k J
(fun f(x) =

let n = recv c in
(if n = EOF then commit k else f ());
send d n) () K

Figure 8: Communication sequence buffering with early commit.

85

In the early commit case, the buffering process will recursively receive a
communication from channel c until the EOF token is received. Note that each
recursive call creates a let expression that is bound to send expression after the
commit point. As soon as the EOF token is received in the if − then − else
expression, the commit point commit k is reached and then send expressions
accumulated during the recursive calls and bound by the previous let expres-
sions are evaluated.

The transaction enclosing the buffering process can be committed as soon
as the commit point is reached. Because of rule [Tr-Abort] from Table 11 in
the reduction semantics, transactions can be aborted at any time, and their
effect will be undone. Thus the LTS shows an abort transition from any state
before the commit transition labelled co k is performed. In case of an abort,
the system is brought back to the start, because it is a restarting transaction.
After the commit transition, subsequent communications on channel d will be
definitive and cannot be rolled back anymore, which are drawn in black colour
in the LTS.

The communicating transaction in which the buffering process is embedded
can thus guarantee its atomic behaviour, since either all values from c will be
received first, in order for the transaction to commit.

k . . .

. . .

c?v1 c?v2 c?vn−1 c?vn

c?′EOF ′)

ab k
ab k

ab k

ab k

ab k
ab k

ab k

c!vn

c!vn−1c!vn−2c!v1co k

atomicrec k J
((fun f(x) =

let n = recv c in
(if n = EOF then () else f ());
send d n) ());

commit k K

Figure 9: Communication sequence buffering example with late commit.

In the late commit version, the commit point is placed outside the if − then − else
expression and after the send expression. The buffering process will then re-
cursively receive values on channel c until the EOF token is received, and then
it will proceed to send the values back on channel d. At this point the commit

86

point is reached and the transaction can commit.
The difference from the early version is evident from the resulting LTS. All

communications are now tentative, thus affecting the behaviour of the buffering
process. It will either receive and send all values, or do nothing. As external
observers, we would be able to differentiate the two systems with the following
test:

send c v1; send c v2; send c EOF ; recv d

This test would try to send two values to the system in exam, send an EOF
token and then try to receive only one of the two values sent. The late commit
version of the system will be not able to satisfy this test. In order to complete
the transaction, the system needs to reach its commit point. In order to do so,
the late version must first send all the values it received from channel c. The
same does not hold true for the early commit system, which can complete its
transaction as soon as the EOF token is received.

4.4 Graph search

We will now examine a simple form of transaction nesting and a similarity
we have found with the Prolog programming language and its backtracking
capabilities.

A classical example in Prolog is graph searching. Given an acyclic directed
graph, such as the one shown in Figure 10, the problem is to find a path between
a starting node and an ending node in the graph, if such a path exists. For
example, we might want to find a path between node a and node c, drawn in
green and red colour respectively.

a b c

e

d
f

g
h

Figure 10: An example graph. The start node ’a’ is green, the end node ’c’ is
red.

One standard solution in Prolog is to perform a depth-first search on the
graph, as described in the following Prolog code:

go(X, X, [X]).

go(X, Y, [X|T]) :-

87

link(X, Z),

go(Z, Y, T).

The first argument in the go clause is the current node being evaluated in
the graph. The second argument is the final node that needs to be reached, and
the third one is the list of traversed nodes. The link predicate is true if an only
if an edge exists in the node passed to it as arguments. According to the Prolog
implementation, there exists a path between the starting and ending node either
if they are the same node (first clause), or if there exists a path from a node to
which the starting node is linked to, and the ending node (second clause). This
intermediate node becomes the new starting node, and the go clause is invoked
recursively on it.

At execution time, there might be many edges departing from the starting
node. A Prolog machine will pick any edge satisfying the link clause and will
try to find a path from there to the ending node, using the go clause recursively.
After each recursive step, the Prolog machine will pick edge after edge until the
ending node is found; because of this, this style of searching is called depth-first.
If at some point a node is not connected to any other node, the Prolog machine
will stop and it will try to revert the last decision it made when picking edges,
and try another link; this step is called backtracking. No edge is tried twice,
so the algorithm is guaranteed to terminate after having examined all possible
paths in the graph.

A Prolog machine would find the following solutions:

|?- go(a, c, X).

X = [a,e,f,c]

X = [a,b,f,c]

X = [a,b,c]

TCML can reproduce the same backtracking behaviour using restarting
transactions, as shown in Figure 11. For the sake of the current discussion,
let us lift for the BaseType restriction in rule [T-Chan] and let channel names
to be sent over channels. Let us also model each edge from node n to node n′

in Figure 10 as a process that is trying to send channel name n′ on channel
n. Given the channel name relative to a node, we can non-deterministically
retrieve one of the nodes that is directly connected to it. We will use the term
node and channel interchangeably in the following discussion.

The go function in the TCML code will verify whether starting node x and
ending node e are the same. If they are, then it will output node x on channel
result and commit the transaction, as in the first Prolog clause. Otherwise, it
will receive one of the nodes y connected to node x first, send x to the result
channel and invoke go on the new node, as in the second clause.

First of all, note that the whole go function is inside a restarting transaction,
thus all communications are tentative until a path to the end node is found. If
the depth-first search performed by the go function encounters a node that is not
connected to any other node, then the transaction can be aborted and another
path can be tried.

88

k

ab k

result!a

result!b

result!e

result!f

result!c

result!c

result!f

co k

co k

atomicrec k J
(fun go(x, e) =

if (x = e)
then send result x; commit k
else send result x; let y = recv x in go (y, e))

(startNode, endNode) K

Figure 11: Graph Search algorithm with a single transaction.

From the resulting LTS in Figure 11, we can recognize three sequences of
actions that lead to a commit point:

• result!a, result!e, result!f, result!c

• result!a, result!b, result!f, result!c

• result!a, result!b, result!c

which form basically the same set of answers of the Prolog program. There
are a couple of points to keep in mind though. Even though the set of answers
is the same, a Prolog machine would exhaustively test all possible paths in the
graph, in depth-first order. In particular, no two equivalent paths are ever tried
twice. Even though the TCML example follows the depth-first style to explore
the graph, nodes connected to the current node are chosen non-deterministically.
Thus the same path may be tried several times. Note also that a Prolog ma-
chine has the ability to say that there are no more paths after finding the first
three paths. On the contrary, a TCML program is wrapped into a restarting
transaction, which can be aborted indefinitely. Thus a restarting transaction
will run indefinitely if no solution exists.

Another point worth mentioning is that, when a wrong path is taken, the
TCML program will restart the whole transaction, whereas the Prolog program

89

would only backtrack up to the latest choice taken. It is possible to obviate to
this problem in TCML by opening a new transaction at each invocation of the
go function:

(fun go(x, e) =
atomicrec k J

if (x = e)
then send result x; commit k
else send result x; let y = recv x in go(y, e); commit k K)

(startNode, endNode)

Notice that the go function declaration and the beginning of the restarting
transaction k are swapped. At each recursive call to go, a new transaction is
started. The system is now free to abort any of the new transactions spawned,
so that it can try different y nodes at any point during path searching, thus
mimicking backtracking more closely.

Even with the last TCML version, transactions can be aborted at any time,
even a correct solution was being found; it could even just abort indefinitely.
In a practical environment, an implementation of TCML would have to be
particularly smart to achieve both efficiency and faithfulness to the reduction
semantics, maybe exploiting knowledge on the behaviour of the system accrued
over time, such as which transactions aborted most often, or on the currently
active processes in the system, and wisely orchestrate all running transactions.

90

5 Towards an LTS

We have discussed the dynamic behaviour of the examples in the previous sec-
tion, making recourse to an informal notion of LTS. In this chapter we will draft
a formal definition of an LTS for TCML’s reduction semantics, based on a dif-
ferent syntax for transactions. The current definition is still work in progress,
so we will only present intuitions rather than formal arguments.

The syntax for values, expressions, evaluation contexts and types is un-
changed. We modify the syntax for processes, and add labels α, β and ` as
follows:

P ::= 〈e, ts〉p | νc.P | P ‖ P | 〈 co k, ts〉p
ts ::= (k, P) :: ts | []

α ::= c?v | c!v
β ::= ab k | co k | emb ∆ k
` ::= τ | α | β

In the LTS, a process pairs an expression e and a transaction stack ts, and
is associated a unique identifier p ∈ PID, the set of all process identifiers.
Processes can be composed by parallel composition. Channel restrictions are
unchanged. Processes can either take an internal step, communicate with other
processes or perform a transaction step. Internal transitions are those marked
by the τ label. Transisions involving communication over channels is marked
by α labels. Transitions performed by processes in a transaction are marked by
β labels. In the emb ∆ k label, the set ∆ : P(PID)×P(K∗) contains a pair of
sets: the first is a subset of the set PID, the secpmd is a subset of the set of all
sequences of transaction names. The set of all labels is `.

The sequential part of the language is the same as in the reduction semantics
in Table 7 and Table 8. We assume no structural equivalence between processes.

Concurrency rules are presented in Table 19. A process can take an internal
step with rule [C-Step]. Communications from the send and recv expressions
can be evaluated by the [Send] and [Recv] rules, and generate transitions labelled
by c?v and c!v respectively. Communication is propagated through parallel
composition by rule [C-Par] and through channel restriction by rule [C-Restr].
In order to communicate, two processes can synchronize on a channel c if and
only if their transaction stacks contain matching names k, as expressed in rule
[C-Sync]. Processes spawned by spawn are assigned a fresh unique identifier
p′ and the transaction stack ts of its parent process, after function killer has
been applied to it. The killer function replaces each alternative process in the
transaction stack with the process 〈(), []〉∅, which cannot perform any transition.
Let us call this process NIL. If a process p is spawned within a transaction and
that transaction is aborted, the effect of spawning p must be rolled back. Rather
than removing it, the spawned process is replaced by the NIL process, which
cannot perform any transition, except begin embedded into other transactions.

The LTS transaction rules in Table 20 define how to manipulate the stack
of transactions that each process is equipped with. LTS transaction rules are

91

[C-Step]

e ↪→ e′

〈E[e], ks〉p
ks(τ)
−−−→ 〈E[e′], ks〉p

[C-Spawn]

〈E[spawn v], ks〉p
ks(τ)
−−−→

〈v(), killer(ks)〉p′ ‖ 〈E[()], ks〉p

p′ is globally fresh

[Send]

〈E[send c v], ks〉p
ks(c!v)
−−−−→

〈E[()], ks〉p

[Recv]

〈E[recv c], ks〉p
ks(c?v)
−−−−−→

〈E[v], ks〉p
[C-Par]

P1

ks(α)
−−−→ P ′1

P1 ‖ P2

ks(α)
−−−→ P ′1 ‖ P2

α = c?v, c!v

[C-Restr]

P1

ks(α)
−−−→ P ′1

νc.P1

ks(α)
−−−→ νc.P ′1

c 6∈ α

[C-Sync]

P1

ks(c!v)
−−−−→ P ′1 P2

ks(c?v)
−−−−−→ P ′2

P1 ‖ P2

ks(τ)
−−−→ P ′1 ‖ P ′2

π1(ks1) = π2(ks2)

Table 19: LTS Concurrency rules

labelled by either emb k, ab k or co k, and trailed by a list ks of transaction
names k ∈ K. The list of transaction names ks also occurs in the stack of
transactions that belongs to each process. For example, rule [Tr-Co] has the
following rules:

[Tr-Co]

〈e, ks :: (k,Q) :: ks′〉p
ks(co k)
−−−−−−→ 〈e, ks :: ks′〉p

In this rule, ks indicates both a list of transaction names k in the transition
label, and a list of pairs K×Proc, i.e. a pair composed of a transaction name k
and a process Q. In the LTS rules, we omit writing that the list of transaction
names ks in the transition label is obtained by projecting the first element of
the pair K×Proc. In an abuse of notation, we omit the pi1(ks) operation from
the transition label, that would need to be specified in most rules in Table 20.

Rule [Tr-Abort] substitutes the current process with an alternative process
from the transactions stack of the process itself. In fact, the transaction stack
is divided by the :: operator in ks :: (k, 〈e′, ks′′〉) :: ks′. When generating a
signal ks(ab k), the alternative 〈e′, ks′′〉 that corresponds to k is removed from
the stack and substitutes the current default process. The former part of the
stack ks is discarded, whereas the latter part ks′ is merged with the alternative
process’ transactions stack ks′′. Rule [Tr-Ignore-Abort] allows processes to ig-
nore ab k transitions when the transactions stack of the process and the list of

92

[Tr-Abort]

〈e, ks :: (k, 〈e′, ks′′〉) :: ks′〉p
ks(ab k)
−−−−−−→

〈e′, ks′′ :: ks′〉p

[Tr-Ignore-Abort]

〈e, ks〉p
ks′(ab k)
−−−−−−→ 〈e, ks〉p

ks′ :: k 6≤ ks

[Tr-Commit]

〈e, ks :: (k,Q) :: ks′〉p
ks(co k)
−−−−−−→

〈e, ks :: ks′〉p

[Tr-Ignore-Commit]

〈e, ks〉p
ks′(co k)
−−−−−−→ 〈e, ks〉p

ks′ :: k 6≤ ks

[Tr-Emb-Process]

〈e, ks〉p
ks(emb∆ k)
−−−−−−−−→

〈e, (k, 〈e, ks〉) :: ks〉p

p ∈ π1(∆)

[Tr-Ignore-P-Emb]

〈e, ks〉p
ks′(emb∆ k)
−−−−−−−−−→ 〈e, ks〉p

p 6∈ π1(∆), or
ks′ 6≤ ks

[Tr-Emb-Transaction]

〈e, ks :: ks′〉p
ks(emb∆ k)
−−−−−−−−→

〈e, (ks :: (k, 〈e, ks〉) :: ks′〉p

p 6∈ π1(∆)
ks′ ∈ π2(∆)

[Tr-Ignore-T-Emb]

〈e, ks〉p
ks′(emb∆ k)
−−−−−−−−−→ 〈e, ks〉p

p 6∈ π1(∆)
ks′ 6∈ π2(∆)
ks′ :: k 6≤ ks

[Tr-Co]

〈 co k, ks〉p
ks(co k)
−−−−−−→ 〈(), []〉

[Tr-Ignore-Co]

〈 co k, ks〉p
ks′(co k)
−−−−−−→ 〈 co k, ks〉p

ks′ 6≤ ks

[Tr-Broadcast]

P1

ks(β)
−−−→ P ′1 P2

ks(β)
−−−→ P ′2

P1 ‖ P2

ks(β)
−−−→ P ′1 ‖ P ′2

Table 20: LTS Transaction rules

transaction names in the transition do not match.
Rule [Tr-Commit] simply removes an alternative from the transactions stack,

when transactions stack and the list of transaction names in the transition
match. The transition is ignore otherwise by rule [Tr-Ignore-Commit].

There are two rules for embedding, one to embed single processes and one to
embed transactions. In both cases, the set ∆ : P(PID)×P(K∗) identifies which
processes must be embedded into a transaction either by processes identifier
or by matching lists of transaction names in the transaction stack. The two
cases are described by rules [Tr-Emb-Process] and [Tr-Emb-Transaction]. Both
rules save the transaction ks being embedded on the transactions stack, which
thus becomes (k, 〈e, ks〉) :: ks for single processes, and ks :: (k, 〈e, ks〉) :: ks′

93

for transaction. Rules [Tr-Ignore-P-Emb] and [Tr-Ignore-T-Emb] define in which
cases emb ∆ k labels can be ignored.

By rule [Tr-Co], a commit point co k can take a co k transition and re-
duce to a NIL process, or ignore any other transition label otherwise by rule
[Tr-Ignore-Co].

Lastly, by rule [Tr-Broadcast] processes in parallel composition must take
the same β actions. A transition ks(β) is broadcast to all processes running in
parallel.

As already stated in the beginning, the present LTS is work in progress
and needs to be finished. Some intuitions about the transactions stack and
embedding of processes and transactions have been presented, but need to be
investigated in further depth. An implementation of TransCML would surely
benefit from the present work, since it presents a distributed version of the
reduction semantics. Processes that are part of the same transaction k in the
reduction semantics have two separate transactions stack in the LTS, but the
transaction name k occurs in both of them. It would be easy then to implement
TransCML processes as standard UNIX process or threads, equipped with a
transactions stack. An implementation will also have to provide a scheduler,
in order to decide into which transactions processes are to be embedded and
which transactions are to be aborted. These problems will have to be addressed
in future work.

94

6 Conclusion

We have introduced TransCML, a concurrent functional language enriched with
communicating transactions. Inspired to TransCCS, we have shown its reduc-
tion semantics and explained the rationale behind its design. We have explored
its expressiveness with several examples, and provided a draft of a Labelled
Transition System to better capture the distributed behaviour of TCML pro-
cesses.

Much work remains to be done on TCML. First of all, the drafted Labelled
Transition System needs to be completed and defined more formally. It will be
necessary to verify that the LTS semantics does actually reflect the reduction
semantics presented so far. Namely, we want to prove that if a process P
takes a step into process P ′ in the reduction semantics, then process Q , where
Q = f(P) given an appropriate translation function from TCML syntax to the
extended LTS syntax, can also take a step into Q′ in the LTS semantics, such
that Q′ = f(P ′), and vice versa.

After the LTS is defined, it would be interesting to define an equational
theory on TCML, to find an appropriate characterization and establish inter-
esting equivalences between transactions. It would certainly be interesting to
verify whether the equivalences defined for TransCCS in [4] and [5] still hold
in TransCML. This direction of work would justify program transformations to
optimize an implementation of TransCML.

Finding an efficient implementation for TransCML is another great chal-
lenge, in order to asses the usefullness of TransCML in practice. The LTS
might guide such an implementation, given that it more accurately reflects the
behaviour of TCML processes; it would make it easier to verify the correct-
ness of the implementation and its faithfulness to the reduction semantics. An
essential component for an efficient implementation would surely be a transac-
tion scheduler. As we have shown in the three-way rendezvous in section 4.2,
there are few computation paths that lead to a commit point, but there are
many paths leading to states where the only option is to abort some trans-
action. Ideally, a transaction scheduler would embed or abort transactions so
that it can maximize the number of committed transactions and minimize the
number of aborted transactions. In this regard, it would also be interesting to
develop larger scale applications to verify both the efficiency of the scheduler
and to identify novel and useful programming idioms allowed by communicating
transactions.

95

References

[1] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. cjoin: Join with
communicating transactions.

[2] Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for long-
running transactions. In Proceedings of the 2004 international conference
on Communicating Sequential Processes: the First 25 Years, CSP’04, pages
133–150, Berlin, Heidelberg, 2005. Springer-Verlag.

[3] Tushar Chandra, Robert Griesemer, and Joshua Redstone. Paxos made
live: an engineering perspective. In In Proc. of PODC, pages 398–407.
ACM Press, 2007.

[4] Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy. Communi-
cating transactions. In Proceedings of the 21st international conference
on Concurrency theory, CONCUR’10, pages 569–583, Berlin, Heidelberg,
2010. Springer-Verlag.

[5] Edsko De Vries, Vasileios Koutavas, and Matthew Hennessy. Liveness of
communicating transactions. In Proceedings of the 8th Asian conference on
Programming languages and systems, APLAS’10, pages 392–407, Berlin,
Heidelberg, 2010. Springer-Verlag.

[6] Kevin Donnelly and Matthew Fluet. Transactional events. In Proceedings
of the eleventh ACM SIGPLAN international conference on Functional pro-
gramming, ICFP ’06, pages 124–135, New York, NY, USA, 2006. ACM.

[7] J. Field and C. A. Varela. Transactors: A programming model for main-
taining globally consistent distributed state in unreliable environments. In
ACM Conference on Principles of Programming Languages (POPL 2005),
pages 195–208, Long Beach, CA, January 2005.

[8] Dan Grossman. The transactional memory / garbage collection analogy.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, OOPSLA ’07, pages 695–
706, New York, NY, USA, 2007. ACM.

[9] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. Commun. ACM, 51(8):91–100, August
2008.

[10] Matthew Hennessy. Algebraic theory of processes. MIT Press series in the
foundations of computing. MIT Press, 1988.

[11] Alan Jeffrey. Semantics for core concurrent ml using computation types.
In Higher Order Operational Techniques in Semantics, Proceedings. Cam-
bridge University Press, 1997.

96

[12] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Prin-
ciples, Algorithms, and Systems. Cambridge University Press, New York,
NY, USA, 1 edition, 2008.

[13] Leslie Lamport. Paxos made simple, fast, and byzantine. In OPODIS,
pages 7–9, 2002.

[14] Mohsen Lesani and Jens Palsberg. Communicating memory transactions.
In Proceedings of the 16th ACM symposium on Principles and practice of
parallel programming, PPoPP ’11, pages 157–168, New York, NY, USA,
2011. ACM.

[15] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978.

[16] John H. Reppy. Concurrent programming in ML. Cambridge University
Press, New York, NY, USA, 1999.

[17] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994.

[18] Lukasz Ziarek, Philip Schatz, and Suresh Jagannathan. Stabilizers: a
modular checkpointing abstraction for concurrent functional programs. In
ICFP, pages 136–147, 2006.

97

	Introduction
	Language definition
	Syntax
	Syntax operators

	Reduction semantics
	Type system
	Type soundness

	Language design choices
	Asynchronous commits
	Transaction scope extension
	Programmable aborts
	Commit dependencies

	Examples
	Even-Odd consumer
	Channel selection
	Buffered selection

	Three-way rendezvous
	Communication sequence buffering
	Graph search

	Towards an LTS
	Conclusion

