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Abstract

This work describes novel methods and techniques to decrease the cost of employing active

learning in text categorisation problems. The cost of performing active learning is a combi-

nation of labelling effort and computational overhead. Reducing the cost of active learning

allows for accurate classifiers to be constructed inexpensively, increasing the number of real-

world problems where machine learning solutions can be successfully applied. In this thesis

we investigate strategies and techniques to reduce both computational expense and labelling

effort in active learning.

Critical to the success of active learning is the query selection strategy, which is respon-

sible for identifying informative unlabelled examples. Selecting only the most informative

examples will reduce labelling effort as redundant and uninformative examples are ignored.

The majority of query selection strategies select queries based on the labelling predictions

of the current classifier. This thesis suggests that information from prior iterations of ac-

tive learning can help select more informative queries in the current iteration. We propose

History-based query selection strategies, which incorporate predictions from prior iterations

of active learning into the selection of the current query. These strategies have been shown

to increase the accuracy of classifiers produced using active learning, thereby reducing la-

belling effort. In addition, History-based query selection strategies are very efficient since

information is reused from previous iterations of active learning.

Another contributing factor to the cost of active learning is computational expense. Query

selection strategies can require considerable computation to identify the most informative ex-

amples. We investigate pre-filtering optimisation for the computationally inefficient error

reduction sampling (ERS) query selection strategy. Pre-filtering restricts the number of un-

labelled examples considered to a small subset of the pool, constructed using query selection

strategy. Optimising ERS using pre-filtering was found to simultaneously reduce computa-

tional overhead and the labelling effort.
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2.6.2 Näıve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . 23

2.6.4 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.5 Multi-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 PAC Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.1 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.4 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.5 F1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Active Learning 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Limited Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Cost of Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 PAC Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Canonical Active Learning Algorithm . . . . . . . . . . . . . . . . . . 43

3.3.2 Source of Unlabelled Examples . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.5 Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Query Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Furthest-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



3.4.3 Uncertainty Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 Version Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5 Incorporating Unlabelled Data . . . . . . . . . . . . . . . . . . . . . . 54

3.4.6 Multiple Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Fixed Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Deficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 p-value Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.5 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.6 Semi-supervised performance metrics . . . . . . . . . . . . . . . . . . . 65

3.5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4 Methodology and Baseline Analysis 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 R10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experiments in Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Active Learning Components . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Baseline Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



Chapter 5 History-Based Query Selection 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 History-Based Query Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 History Uncertainty Sampling (HUS) . . . . . . . . . . . . . . . . . . . 86

5.4.2 History Kullback-Leibler Divergence (HKLD) . . . . . . . . . . . . . . 87

5.5 Filtered History-Based Query Selection . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Subset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.2 History Uncertainty Sampling Filtered (HUSF) . . . . . . . . . . . . . 90

5.5.3 History Kullback-Leibler Divergence Filtered (HKLDF) . . . . . . . . 90

5.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.1 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.2 HUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.3 HKLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.4 HUSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.5 HKLDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.6 History Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.7 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 6 Dimensionality Reduction for Active Learning 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Unsupervised Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Document Frequency Global (DFG) . . . . . . . . . . . . . . . . . . . 115

6.3.2 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . 116

6.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.3 Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

viii



6.4.4 Labelling Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4.5 Fixed Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.6 Random Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.7 Supervised Dimensionality Reduction . . . . . . . . . . . . . . . . . . 125

6.4.8 Alternative Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 7 Adaptive Pre-Filtering Error Reduction Sampling 131

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Error-Reduction Sampling (ERS) . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4 Subset Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.1 Random Sub-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.2 Pre-filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.3 Subset Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Adaptive Pre-filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5.1 ERS-FPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5.2 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.6.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.6.2 Error-Reduction Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.6.3 Pre-Filtered ERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6.4 Subset Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.6.5 Adaptive Pre-Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.6.6 Computational Expense . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.6.7 Subset Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 8 Conclusions 162

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 Thesis Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

ix



8.2.1 History-Based Query Selection . . . . . . . . . . . . . . . . . . . . . . 163

8.2.2 Pre-Filtering Error Reduction Sampling . . . . . . . . . . . . . . . . . 164

8.2.3 Dimensionality Reduction for Active Learning Settings . . . . . . . . . 165

8.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3.1 Computational Efficiency of Active Learning . . . . . . . . . . . . . . 165

8.3.2 Incorporating Past Information . . . . . . . . . . . . . . . . . . . . . . 166

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4.1 Active Learning Performance . . . . . . . . . . . . . . . . . . . . . . . 166

8.4.2 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4.3 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.4.4 Alternative Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 168

Appendix A Supplemental Baseline Analysis Results 174

Appendix B Supplemental History-based Query Selection Results 177

B.1 HBQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Filtered HBQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2.1 Optimal Filtered HBQB . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendix C Supplemental Pre-Filtering Results 191

x



List of Figures

2.1 CONSTRUE if-then-else rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Text Categorisation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Vector Space Model example . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Kernel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 SVM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Automated Text Categorisation System . . . . . . . . . . . . . . . . . . . . . 36

3.1 Passive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Active Learning Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Stream and Pool based Active Learning . . . . . . . . . . . . . . . . . . . . . 45

3.5 Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Data split for the R10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 R10 Baseline Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Filtered History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Preliminary Results of HUS and HKLD on 20NG-4 with k-NN . . . . . . . . 91

5.4 Aggregate Learning Curves for HUS on 20NG-4 . . . . . . . . . . . . . . . . . 93

5.5 Learning Curves for HUS on R10 . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Aggregate Learning Curves for HKLD on 20NG-4 . . . . . . . . . . . . . . . . 97

5.7 Learning Curves for HKLD on R10 . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



5.8 Optimal HUSF and HKLDF Learning Curves for 20NG-4 . . . . . . . . . . . 100

5.9 Optimal HUSF and HKLDF Learning Curves for R10 . . . . . . . . . . . . . 101

5.10 Surface plot of the filtered History-based query selection parameters . . . . . 108

6.1 DFG aggressiveness on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 DFG aggressiveness on R10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Learning Curves for Unsupervised Dimensionality Reduction on R10 . . . . . 122

6.4 Learning Curves for Unsupervised Dimensionality Reduction on 20NG-4 . . . 124

6.5 Learning Curves for Random Dimensionality Reduction on R10 . . . . . . . . 126

6.6 Learning Curves for Supervised and Unsupervised Dimensionality Reduction

on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Learning Curves for Alternative Classifiers on R10 . . . . . . . . . . . . . . . 128

7.1 Learning Curves for ERS-RS on 20NG-4 . . . . . . . . . . . . . . . . . . . . . 145

7.2 Learning Curves for ERS-RS on R10 . . . . . . . . . . . . . . . . . . . . . . . 146

7.3 Learning Curves for Pre-Filtering on 20NG-4 . . . . . . . . . . . . . . . . . . 149

7.4 Learning Curves for Pre-filtering on R10 . . . . . . . . . . . . . . . . . . . . . 151

7.5 Learning Curves for Subset Comparison on R10 . . . . . . . . . . . . . . . . . 152

A.1 Baseline Analysis Learning Curves on R10 . . . . . . . . . . . . . . . . . . . . 175

A.2 Baseline Analysis Learning Curves on R10 . . . . . . . . . . . . . . . . . . . . 176

B.1 Learning Curves for HUS on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . 178

B.2 Learning Curves for HKLD on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . 179

B.3 20NG-4 HUSW T10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.4 20NG-4 HUSW T25 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.5 20NG-4 HUSW T50 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.6 20NG-4 HUSW T100 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.7 20NG-4 HKLDW T10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.8 20NG-4 HKLDW T25 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.9 20NG-4 HKLDW T50 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.10 20NG-4 HKLDW T100 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.11 Surface Plots HUSF on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.12 Surface Plots HKLDF on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . . 190

xii



C.1 Pre-filtered ERS Results on R10 . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.2 Pre-filtered ERS Results on R10 . . . . . . . . . . . . . . . . . . . . . . . . . 193

xiii



List of Tables

2.1 Commonly used Kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 R10 category distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 20NG-4 Sub-problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Baseline Labelling Effort on R10 . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 History Uncertainty Sampling Example . . . . . . . . . . . . . . . . . . . . . 87

5.2 Deficiency Values for HUS on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Deficiency Values for HUS on R10 . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Deficiency values for HKLD on 20NG-4 . . . . . . . . . . . . . . . . . . . . . 97

5.5 Deficiency Values for HKLD on R10 . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Deficiency values for HUSF on the 20NG-4 . . . . . . . . . . . . . . . . . . . 102

5.7 Deficiency values for HUSF on the R10 . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Deficiency values for HKLDF on the 20NG-4 . . . . . . . . . . . . . . . . . . 104

5.9 Deficiency values for HKLDF on the R10 . . . . . . . . . . . . . . . . . . . . 104

5.10 Deficiency values for HUSF on the 20NG-4 . . . . . . . . . . . . . . . . . . . 106

5.11 Deficiency values for HUSF on the R10 . . . . . . . . . . . . . . . . . . . . . . 106

5.12 Deficiency values for HKLDF on the 20NG-4 . . . . . . . . . . . . . . . . . . 106

5.13 Deficiency values for HKLDF on the 20NG-4 . . . . . . . . . . . . . . . . . . 107

6.1 Dimensionality of Each Representation . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Labelling Effort for Unsupervised DR on R10 . . . . . . . . . . . . . . . . . . 123

6.3 Labelling Effort for Unsupervised DR on 20NG-4 . . . . . . . . . . . . . . . . 125

7.1 Confidence Intervals for ERS-RS on 20NG-4 . . . . . . . . . . . . . . . . . . . 144

7.2 Deficiency for ERS-RS on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . . . 144

xiv



7.3 Confidence Intervals for ERS-RS on R10 . . . . . . . . . . . . . . . . . . . . . 146

7.4 Deficiency for ERS-RS on R10 . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Confidence Intervals for Pre-Filtering on 20NG-4 . . . . . . . . . . . . . . . . 148

7.6 Deficiency for Pre-Filtering on 20NG-4 . . . . . . . . . . . . . . . . . . . . . . 150

7.7 Confidence Intervals for Pre-Filterting on R10 . . . . . . . . . . . . . . . . . . 150

7.8 Deficiency for Pre-Filtering on R10 . . . . . . . . . . . . . . . . . . . . . . . . 151

7.9 Rank for Subset Construction Techniques Deficiency Value . . . . . . . . . . 155

7.10 Deficiency Values for Subset Size on 20NG-4 and R10 . . . . . . . . . . . . . 157

xv



Associated Publications

Davy, M. & Luz, S. (2007a). Active learning with History-based query selection for text cate-

gorisation. Proceedings of the 29th European Conference on Information Retrieval Research,

ECIR 2007 , 4425, 695.

Davy, M. & Luz, S. (2007b). Dimensionality reduction for active learning with nearest

neighbour classifier in text categorisation problems. Proceedings of the 6th International

Conference on Machine Learning and Applications (ICMLA07).

Davy, M. & Luz, S. (2008). An adaptive pre-filtering technique for error-reduction sam-

pling in active learning. In Proceedings of the Eighth IEEE International Conference on

Data Mining Workshops , IEEE Computer Society Washington, DC, USA.

xvi



Chapter 1

Introduction

This thesis investigates methods and techniques to lower the cost of applying machine learning

solutions using active learning. The cost of constructing an accurate classifier in an active

learning setting is a combination of the number of labels required and the computational

expense of performing active learning:

Cost = Labelling effort + Computational overhead

In this thesis we investigate two fundamental ways to reduce cost of active learning. First, we

investigate ways to reduce the labelling effort. The critical component of active learning is the

query selection strategy, which is responsible for identifying informative unlabelled examples.

Selecting only the most informative examples will reduce labelling effort as redundant or

uninformative examples are ignored. We investigate ways to select more informative queries

by incorporating information from prior iterations into the query selection process. Secondly,

we investigate ways to reduce the computational overhead. Many of the most successful

query selection strategies require considerable computational overhead to select informative

unlabelled examples. Practical solutions to reduce the computational expense in applying

active learning are also investigated. We examine optimisation techniques for computationally

expensive query selection strategies and unsupervised dimensionality reduction techniques.

In the next section we provide some motivation for active learning and describe the

research setting. Contributions made in this thesis are outlined in Section 1.2. Related work

is discussed in Section 1.3. Finally, Section 1.4 describes the structure of the remainder of

this thesis.
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1.1 Motivation

Categorisation is an integral part of human nature. Most humans find it difficult to extract

information from unstructured data. By applying structure to data, information can be

retrieved easily and efficiently. Perhaps the best example of the application of structure to

data is exemplified through biological taxonomy. In recent years the production and storage

of textual data has increased dramatically. Efficient automatic categorisation systems are

required since the scale of the data produced renders manual categorisation impractical.

A first approach (Hayes & Weinstein, 1990) was a rule-based expert system with hand-

crafted rules constructed by a dedicated team of domain experts. This approach required

considerable effort to implement; however, it produced accurate classifiers which success-

fully met the requirements of the problem. A serious limitation of hand-crafted rules is the

knowledge acquisition bottleneck (Sebastiani, 2002), whereby to redeploy the system to a new

domain, a new set of hand-crafted rules need to be produced, incurring considerable time

and expense.

Machine learning offers a solution to the knowledge acquisition bottleneck through super-

vised learning. Accurate text categorisation systems can be induced from a set of training

data consisting of labelled examples. The task of hand-crafting rules was replaced by the

much easier task of labelling examples. Training data are constructed by labelling a large

sample of unlabelled examples drawn at random from the underlying data distribution. The

probably approximately correct (PAC) learning model (see Section 2.7) places a bound on

the number of labelled examples required to induce an accurate classifier for a particular

concept. However, in practice, training data supplied to supervised learning process typically

contains many times more labelled examples than is strictly necessary in order to guarantee

the production of an accurate classifier. Supervised learning lowered the cost of construct-

ing automated categorisation systems and propelled the widespread use of machine learning

solutions in many domains, allowing for considerable savings and increased productivity.

A limitation of supervised learning is the requirements it places on the availability of

labelled training data. Many domains exist where there is an abundance of unlabelled data

but there is a severe shortage of labelled training data due to the extremely high cost of

labelling. We define this as the label acquisition bottleneck, where the cost of producing large

amounts of labelled training data is too high and often outweighs the benefits of a machine

learning solution. For example, harvesting webpages is inexpensive and many thousands
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can be collected in a few hours; however, acquiring labels for all those webpages would take

considerable time and effort. Employing supervised learning in such domains is impractical

since there are insufficient training data to ensure that an accurate classifier is produced and

the cost of producing enough training data outweighs the potential benefit of the solution.

A machine learning technique known as active learning (Angluin, 1988; Lewis & Gale,

1994) offers a possible solution to the label acquisition bottleneck. Active learning is a

technique which can significantly reduce the number of labelled examples required to induce

an accurate classifier. It does so by controlling the training data and labelling only the most

informative examples. The difference in the number of examples (m) required to construct an

accurate classifier as specified by the PAC learning model and the number of examples (N)

supplied to supervised learning in practice can be quite large, with m ≪ N . Training data

can contain many redundant and irrelevant examples which represents a considerable waste

in labelling effort especially if the cost of acquiring labels is high. Active learning attempts to

label only the m most informative examples. Significant reductions in the amount of labelled

data required to produce an accurate classifier has been reported in the literature (Lewis &

Gale, 1994; Tong & Koller, 2001).

Central to the success of active learning is the query selection strategy which is responsible

for identifying informative examples in the pool. The primary focus of this thesis is to improve

the query selection process, either by incorporating information from previous iterations to

help select more informative examples or by reducing the computational overhead of applying

certain query selection strategies.

Active learning is a way to significantly reduce the cost of applying a machine learning so-

lution. Contributions made in this thesis allow for further savings to be made when producing

an accurate classifier using active learning. Reduced costs of deployment could potentially

expand the number of domains in which machine learning solutions can be applied.

1.2 Contributions

This thesis investigates two principled ways to reduce the cost of constructing an accurate

classifier using active learning. First, we focus on the query selection strategy and develop

novel methods to increase the quality of queries selected by incorporating information from

prior iterations of active learning. Selecting more informative queries will lower the labelling

expense and by association the cost of producing an accurate classifier. Second, active learn-
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ing can be very computationally expensive. We investigate practical issues for lowering the

computational overhead of performing active learning.

1.2.1 Information from Past Iterations

Active learning is an iterative process whereby in each iteration, information such as predic-

tions on the remaining unlabelled examples are produced. This potentially valuable infor-

mation is commonly discarded at the end of each iteration. We hypothesise that information

from past iterations of active learning can help select more informative examples in the cur-

rent iteration.

History-based Query Selection

The majority of query selection strategies in the literature base the selection of the query on

the predictions from the most recent classifier. These strategies are Markovian, in that the

selection of a query in the current iteration is conditional only on the current classifier. The

classifier and predictions produced in each iteration of active learning are ephemeral, that is,

once the query is selected, the predictions are discarded.

We hypothesise that some potentially valuable information, which could help select in-

formative unlabelled examples, is being lost. We investigate non-Markovian query selection

strategies that incorporate predictions from past iterations of active learning into the selection

of queries in the current iteration.

A data structure called History is used to capture all predictions on the unlabelled data

produced in every iteration of active learning. History-based query selection strategies are

developed which utilise the History to select unlabelled examples based on both the current

and past predictions. Empirical evaluations show that incorporating History information into

the query selection process, more informative examples are selected as queries, increasing the

accuracy of the classifier produced and reducing labelling effort.

Adaptive Pre-Filtering

Past information is also utilised in a proposed adaptive pre-filtering strategy, which dynami-

cally switches among several fixed pre-filtering techniques based on the performance of each

in prior iterations. The chosen pre-filtering technique is used to construct a subset from which

the query will be selected. Information from past iterations is used indirectly to influence the

selection of the query in the current iteration.
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1.2.2 Computational Efficiency for Active Learning

Performing active learning can consume considerable computational resources. Reducing the

computational overheads of active learning will subsequently reduce the cost of producing an

accurate classifier, allowing machine learning solutions to be applied to many more domains.

Pre-Filtering Error Reduction Sampling

The computational overhead of employing error reduction sampling (Roy & McCallum, 2001)

is directly proportional to the number of unlabelled examples it must consider as potential

queries. Subset optimisation has been suggested as a way to reduce the computational over-

head by restricting the number of candidate queries considered.

The most common way to construct the subset is random sub-sampling. We investigate

pre-filtering, where a query selection strategy is used to filter informative unlabelled examples

from the pool to form the subset. Pre-filtering is empirically evaluated as a way to both

decrease the computational expense of error reduction sampling and simultaneously improve

the quality of queries selected using error reduction sampling.

Empirically it is shown that pre-filtering can result in more accurate classifiers compared

to random sub-sampling. Furthermore, pre-filtering using uncertainty sampling allows for

smaller subsets to be used without decreasing the accuracy of the resulting classifier.

Dimensionality Reduction for Active Learning

Natural language text results in high-dimensional data when parsed into the vector space

model. High-dimensional data is a problem since it increases both computational and storage

overheads. Furthermore, some classifiers perform poorly in high-dimensional data due to

the curse of dimensionality. Dimensionality reduction techniques are commonly applied to

text data in supervised learning. However, the most frequently used technique, namely

supervised feature selection, cannot be readily employed in an active learning setting since

the majority of data supplied to an active learning algorithm is unlabelled. We investigate

unsupervised dimensionality reduction as a possible solution to high-dimensional data in

active text categorisation problems.
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1.3 Related work

There has been substantial research into the problem of query selection. Chapter 3 discusses

in detail some of the query selection strategies pertinent to the research in this thesis.

Chapter 5 investigates novel non-Markovian History-based query selection strategies,

which incorporate information from prior iterations of active learning into the query se-

lection process. Typically, query selection strategies have based the selection of queries on

the predictions from the most recently induced classifier. Roy & McCallum (2001) discussed

First order Markov active learning, where the aim is to select a query (x∗) such that, when

labelled and included in the training data, it will result in lower error than any other potential

query.

It could be argued that History-based query selection strategies incorporate information

about the unlabelled examples by utilising predictions from prior iterations. Query selection

strategies discussed in Section 3.4.5 also incorporate information about unlabelled examples

into the query selection process. However, such strategies incorporate unlabelled data di-

rectly, while History-based query selection strategies incorporate the information indirectly

via predictions. In addition, query selection strategies which incorporate unlabelled informa-

tion are generally computationally expensive. Error reduction sampling (Roy & McCallum,

2001) for example has a time complexity of O(n2). The use of History makes it very efficient

to incorporate extra information about the unlabelled data.

Chapter 7 investigates pre-filtering as a way to reduce the computational overhead of

performing error reduction sampling (Roy & McCallum, 2001). Culver et al. (2006) have

previously used pre-filtering in error reduction sampling experiments. However, we extend

the comparison both in terms of scale and techniques considered. Furthermore, the proposed

adaptive pre-filtering technique is an extension of adaptive query selection strategies (Baram

et al., 2004; Pandey et al., 2005; Donmez et al., 2007). Adaptive query selection strategies

dynamically choose which fixed query selection strategy to use in the current iteration of

active learning based on the performance of each potential strategy in the past. Adaptive

pre-filtering dynamically chooses which query selection strategy is used to form the subset

for error reduction sampling. Information from past iterations is also used indirectly by

the proposed adaptive pre-filtering technique. The performance of each fixed pre-filtering

technique in prior iterations of active learning determines which is selected in the current

iteration.
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1.4 Thesis Layout

The remainder of this thesis is as follows:

Chapter 2 provides an overview of automated text categorisation. Various components of

an automated text categorisation system are discussed including: parsing, dimension-

ality reduction, classifier induction and evaluation. The PAC model, which gives a

bound on the number of labelled examples required to induce an accurate classifier, is

also discussed.

Chapter 3 reviews active learning, giving details on each component of the active learning

process. The critical component of an active learning algorithm is the query selection

strategy, which is responsible for the selection of informative examples from the pool.

Query selection techniques which have emerged in the literature are reviewed.

Chapter 4 provides details on methodology of experiments conducted including datasets,

classification algorithms and evaluation metrics used in the empirical evaluation. Base-

line analysis provides motivation for active learning by demonstrating the benefit in

reducing labelling effort.

Chapter 5 introduces History-based query selection which incorporates predictions from

classifiers in previous iterations of active learning into the selection of informative unla-

belled examples from the pool. Predictions from the classifier induced in each iteration

of active learning on the unlabelled examples are collected and stored in a data struc-

ture called History. Non-Markovian query selection strategies are then developed which

incorporate the information from the History into the selection of queries in the current

iteration.

Chapter 6 discusses dimensionality reduction for an active learning setting. The major-

ity of data supplied to an active learner is unlabelled; therefore, the most commonly

used dimensionality reduction technique used in text categorisation, namely supervised

feature selection, cannot be readily employed. We suggest the use of unsupervised

dimensionality reduction techniques and empirically show how they benefit a k-NN

classifier.

Chapter 7 discusses pre-filtering as a way to simultaneously increase the quality of queries

selected by error reduction sampling while also reducing computational overhead. An
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adaptive pre-filtering technique is proposed which can dynamically switch between fixed

pre-filtering techniques.

Chapter 8 draws conclusions from the results presented in the thesis and suggests directions

for future research.
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Chapter 2

Text Categorisation

2.1 Introduction

Classification is the task of separating data into categories defined by concepts that represent

topics of interest. A text classification system assigns natural language documents to a set

of predefined categories. Manual classification of documents is feasible for small amounts of

data, however, due to the rapid growth in the production and storage of natural language

documents manual categorisation has become impractical.

Automated text classification systems have emerged to solve this problem. Since their

introduction in the 1980s they have evolved as new advances in machine learning have been

proposed. The main motivation for continued research has been the reduction in effort to

construct the automated systems.

This chapter reviews the sub-systems present in a modern automated text classification

system. We begin by describing the first solutions to automated text categorisation known as

expert systems. Machine learning solutions which overcome the knowledge acquisition bottle-

neck are discussed including the constituent components of an automated text classification

system. Details are given on how the natural language documents are transformed into a

model which can be used by induction classification algorithms. Methods of reducing dimen-

sionality are covered which help lower computational and memory overheads of categorisation

systems. Finally, evaluation metrics used to measure the performance of categorisation sys-

tems are discussed. All these sub-systems combine to produce an accurate categorisation

system.
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2.2 Background

Classification is the task of assigning labels to data depending on whether or not they match

a particular concept. Concepts are usually denoted by a label which can be used to categorise

the data. For example if the input domain is e-mail and a message matches the concept of

spam, it is assigned with “spam” label to signify its membership of this category.

More formally, given some input domain (X) and a set of labels (Y), a classifier can

be viewed as a Boolean-valued function which maps from input to labels according to some

concept, thereby assigning membership to a particular category. The target function (f :

X 7→ Y) always maps from input documents to their correct labels. The goal of automated

text classification is to construct a hypothesis (h : X 7→ Y) which approximates the target

function as closely as possible.

The manner in which the hypothesis is constructed has evolved over time, however, the

objective of constructing a function, which approximates as closely as possible to the target

function, remains the same.

2.2.1 Expert Systems

The first successful solution to the problem of automated text classification was delivered

through expert systems in the 1980s. Expert systems consist of a series of hand-crafted rules

constructed by dedicated domain experts. These rules form the hypothesis (h : X → Y ) and

are used to classify previously unseen documents.

The CONSTRUE system (Hayes & Weinstein, 1990) is a well-documented example of a

successful expert system. Domain experts constructed rules which classified documents based

on words that occurred within them. An example rule is shown in Figure 2.1.

CONSTRUE was a major success achieving high levels of performance, practically match-

ing precision and recall levels of human indexers. Its deployment saved millions of dollars

and significantly reduced the time taken to classify documents.

While very effective, rule-based expert system are inflexible, requiring domain experts to

continuously construct new rules to adapt to changes in the input. This problem, referred

to as the knowledge acquisition bottleneck (Sebastiani, 2002), prohibits widespread use of

such systems in many problem domains. Manual construction of the hypothesis is far too

expensive for many domains where automated solutions could be applied but are not due to

the cost of developing and maintaining the expert system being simply too high.
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if 

then WHEAT else (¬ WHEAT)

("wheat" & "farm") or

("wheat" & "commodity")

("bushels" & "export")

or

or

or("wheat" & "tonnes")

("wheat" & "winter" and (¬ "soft"))

Figure 2.1: An if-then-else rule from CONSTRUE. For example, this rule assigns the label
WHEAT to a document which contains the word “wheat” and the word “farm”. Documents
for which the conditions are not met are assigned the label ¬WHEAT

2.3 Automated Text Categorisation

Machine Learning offers a solution to the knowledge acquisition bottleneck through the use

of classifier induction algorithms, which learn a particular concept automatically from a set

of positive and negative examples of the concept. This eliminates the burden of requiring

domain experts to manually construct a hypothesis using hand-crafted rules and replaces it

with the far less expensive task of labelling a set of examples.

Automated Text Categorisation (ATC) is a machine learning solution to the problem of

classifying natural language documents. These techniques employ induction algorithms to

construct classifiers from a set of examples labelled according to the concept to be learned.

Supplied with training data consisting of positive and negative examples of the concept, the

induction algorithm must produce a classifier that accurately classifies unseen examples.

An ATC system is comprised of a series of sub-processes. Figure 2.2 shows how these sub-

processes interact to deliver a classifier capable of accurately classifying new and previously

unseen examples.

Evaluation
Classifier 
InductionPreprocessing

Figure 2.2: Text Categorisation Overview.
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We give a brief overview of each element in an ATC system, ranging from pre-processing

to evaluation metrics used to asses the quality of the classifier produced. Text categorisation

is a very broad topic encompassing many disciplines. In this thesis we give details only

for those aspects of text categorisation that are pertinent to our research. The interested

reader is directed to (Sebastiani, 2002; Mitchell, 1997) for a full description of automated

text categorisation and machine learning techniques.

2.4 Pre-processing: Parsing

Induction algorithms do not have the ability work directly with real world objects; rather

they work on models, which represent real world objects. Even machine-readable document

formats such as XML and PDF require transformation into an appropriate model before use

with classification induction algorithms.

Parsing is the process whereby document attributes are extracted from the original raw

representation and stored in a new internal representation, which can be easily interpreted

by classification induction algorithms. This process is depicted in Figure 2.3

Parsing

VSM

Attributes

D
o
c
u
m
e
n
ts

Figure 2.3: Parsing. Information from raw text documents in encoded in the Vector Space
Model (VSM) which classifier induction algorithms can interpret. The VSM can be seen as
a document X attribute matrix where documents are represented by the rows and attributes
are represented by the columns.

2.4.1 Vector Space Model

The most commonly used model in text categorisation is the Vector Space Model (VSM)

(Salton et al., 1975), which represents documents as vectors of attributes. Each element

of a vector stores the value of the attribute for the particular document. The VSM is often

presented as a matrix where rows represent documents and columns represent attributes. The
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matrix is formed by stacking the document vectors.

Documents are described by their attributes, which can be any information about a docu-

ment. A common approach for text classification is for attributes to represent the text within

the document. The most straightforward approach is the bag-of-words (BOW) representa-

tion, where documents are considered to be an unordered set of words. Documents are parsed

into their individual words (tokenised) and frequency information is recorded in a vector of

length |τ | with the vocabulary (τ) containing all possible words in the corpus.

Attributes correspond to the words and their values represent the frequency of the word

within the document. All position and structural information about the occurrences of the

words are ignored. Despite this disposal of potentially beneficial information the BOW rep-

resentation works very well and it is the de-facto standard in text classification.

"a b a c d"

h

1
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Figure 2.4: Vector Space Model (VSM). Each document is encoded in the VSM as a vector
where each element represents the frequency of each attribute in the document. For example,
the attribute “a” occurs twice in document d1, once in d3 and not at all in d2

Increasingly sophisticated representations can be achieved by changing what constitutes

an attribute. For example, n-grams consider an attribute to be a phrase rather than a word.

This allows some ordering information to be retained. However, new problems arise as the

vocabulary size dramatically increases. Dumais et al. (1998) suggest that the addition of

n-gram terms actually decreases the overall performance of classification systems.

2.4.2 Weighting Schemes

As testament to the influence of Information Retrieval (IR) in machine learning, term weigh-

ing schemes (Salton & Buckley, 1988) are commonly used. Term weights were developed for

use with the vector space model as a means to adjust the influence of certain attributes.

There are three components to a weighting scheme:

Document Component. The document component captures term frequency information
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within individual documents. Binary weighting simply represents the absence or pres-

ence of a term in a document by a 0 or 1 respectively. Terms that occur more frequently

in a document should be considered more important, hence given a higher weight. Term

frequency (tf) measures the number of times a term (wi) occurs in a document (dj).

tf(wi, dj)

Collection Component. The collection component of the weighting scheme allows us to

adjust the influence of a term. The document frequency of a term is the number of

documents it appears in within the corpus.

DF (wi)

By multiplying the term frequency by the inverse of document frequency (tf ∗ idf),

more influence can be given to terms which are frequent in a document but which are

infrequent within all documents in the corpus (D).

tf ∗ idf(wi, dj) = tf(wi, dj) ∗ log
|D|

DF (wi)

Normalisation Component Finally the normalisation component allows for documents of

different length to be given equal weight. L2 (cosine) normalisation is commonly used

as shown in (2.1).

xi =
tf ∗ idf(wi, d)

√

∑|τ |
j=1 tf ∗ idf(wj , d)

(2.1)

where τ is the vocabulary. Weighting schemes range in complexity and generally have a large

impact on the performance of the classification system.

2.4.3 High-dimensional Data

Text data is high-dimensional by nature. The principal causes of high-dimensional data in

text stems from the richness and variety of natural language combined with the vector space

model representation of documents.

The VSM dimensions will be defined by the number of documents in the corpus and

the vocabulary (τ) which is the set of all unique words in the corpus. Even for relatively

small corpora, the size of the vocabulary can be extremely large (|τ | ≃ 102 . . . 105 is com-

mon). Additionally, representing documents in the vector space model tends to create very
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sparse vectors, with the number of non-zero elements being quite low, as demonstrated in

the example from Figure 2.4.

High-dimensional data increases computational expense. Comparisons between two fea-

ture vectors requires examining all features, therefore high-dimensional data requires in-

creased computational expense. Similarly, memory and storage requirements are increased

in order to handle very large vectors and matrices.

Furthermore, induction algorithms are susceptible to the curse of dimensionality (Mitchell,

1997), which loosely states: as the number of features increases, the performance of machine

learning algorithms tends to decrease, sometimes significantly. Unlike information retrieval

where matching algorithms scale well with very large numbers of features, classifier induction

algorithms tend to suffer when supplied with high-dimensional data. The degradation in

performance can be attributed to the presence of many irrelevant and redundant features in

the data, which make the classification process all the more difficult. For example, classifi-

cation algorithms such as the k-nearest neighbour (k-NN) that depend on similarity metrics

are affected since examples from completely disparate topics can seem similar if they share a

large number of these irrelevant features.

In an effort to reduce the overall number of terms to consider the Porter stemming algo-

rithm (Porter, 1980) and stopword removal are sometimes used. Stemming is the collapsing of

words to their common morphological root (e.g. “computers” and “computing” are stemmed

to “comp”). Stemming sometimes reduces the effectiveness of classification systems hence

there are times when it is not used. Stopwords are words that occur frequently in all docu-

ments. These offer little information and waste storage resources. Removal of stopwords is

straightforward; a list of common stopwords is kept and while documents are being tokenised,

if a token matches a stopword it is discarded.

2.5 Dimensionality Reduction

Even with stopword removal and stemming, the vocabulary can remain very large. High-

dimensional data places heavy demands on computation and storage. Dimensionality Reduc-

tion (DR) is a technique that allows for significant reduction in the number of attributes used

to describe the data without significant loss in overall classification performance. It can be

seen as a lossy-compression algorithm which reduces the size of the data with minimal loss

of information.
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After parsing is complete, the original data is represented by a set of attributes. The di-

mensionality of this representation is typically very high. Dimensionality reduction is achieved

by representing the original data using a small number of features as shown in Figure 2.5.

A feature can be any attribute or a combination of multiple attributes and can either be

selected or extracted from the original set of attributes describing the data. Here we make

the distinction that the data is described by attributes after parsing while it is described

using features after dimensionality reduction (if any) is performed. The number of features

should be less than the number of attributes.

|features| ≪ |attributes|

Of course if no dimensionality reduction is performed, then the number of features will equal

the number of attributes.

Dimensionality 

Reduction

VSM

Attributes

D
o
c
u
m
e
n
ts VSM

D
o
c
u
m
e
n
ts

Features

Figure 2.5: Dimensionality Reduction for the VSM. After parsing the data is represented
using a large number of attributes. Dimensionality reduction represents the same data using
much fewer features with minimal loss of information.

Dimensionality reduction offers a host of benefits including reducing computational over-

heads and sometimes increasing classifier performance (Yang & Pedersen, 1997). Given the

benefits of dimensionality reduction it is commonly used as a pre-processing stage in ATC

systems.

Features are found in two principled ways, namely feature selection and feature extraction.

Feature selection is where a subset of the original attributes are used to represent the data.

Feature extraction is where features are formed as combinations of one or more attributes.

2.5.1 Feature Selection

Feature selection seeks to find the minimum number of features that offer the best repre-

sentation of the original data. The original attributes are evaluated using some performance

metric and a subset of the best attributes are selected to represent the original data.
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Many metrics have been proposed to evaluate the attributes. Empirical evaluation of

the various metrics (Yang & Pedersen, 1997; Forman, 2003) has shown Information Gain to

be one of the best performing. These studies have also shown that increased classification

accuracy can be achieved when feature selection is applied. There are two principled methods

to perform feature selection:

Filter-based methods seek to find the optimal subset of features irrespective of the classi-

fication algorithm used. The original attributes are ranked with an appropriate metric

(e.g. Information Gain) that defines how discriminative the attribute is. A subset of the

most discriminative attributes are chosen to be the features according to a user-defined

threshold.

Wrapper-based feature selection is where the selection method has explicit knowledge (and

use) of the classification induction algorithm. Induced classifiers are used to help se-

lect the optimal subset of attributes for the particular type of classification induction

algorithm. While wrapper-based methods have the advantage of tailoring the feature

selection to the classification algorithm, a major disadvantage is the computational

overhead.

The simpler and computationally less expensive filter-based methods are far more preva-

lent in text categorisation systems.

2.5.2 Feature Extraction

Feature extraction is an alternate approach for dimensionality reduction where the original

data is represented by a succinct number of new features constructed from (combinations

of) the original attributes. These new features are constructed in such a way that there is

minimal loss of information.

Feature extraction techniques are sometimes referred to as transformation techniques aris-

ing from the fact that the original data is transformed (projected) to a new lower dimensional

representation. Perhaps the best known feature extraction technique is Principal Components

Analysis (PCA) (Pearson, 1901) which transforms the data onto a set of orthogonal dimen-

sions. It is readily performed using Eigenvalue decomposition of the covariance matrix or

singular value decomposition of the data matrix. Depending on the domain, PCA is referred

to as Latent Semantic Indexing (Deerwester et al., 1990) in information retrieval and is also

sometimes referred to as the Karhunen-Loève transform (Kirby & Sirovich, 1990).
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More formally, PCA orthogonally transforms the coordinate system used to represent

the data. The new coordinate system is defined by principal components which represent

directions of maximal variance in the original data. Most of the information contained in the

original representation can generally be represented using just a small number of principal

components.

Principal components are the eigenvectors as given by the eigenvalue decomposition of

the covariate matrix constructed from the centred data. Eigenvectors are ranked according

to their associated eigenvalues, which signify the proportion of variance in the data accounted

for by the eigenvector. Thus, the first principal component is the eigenvector with the largest

associated eigenvalue, the second principal component is the eigenvector with the second

largest associated eigenvalue and so on.

A small set of leading eigenvectors are selected which account for the majority of the

variance and the original data is projected onto this subspace. The number of eigenvectors

chosen is typically based on the proportion of variance in the data set accounted for by

the chosen eigenvectors. If too few are chosen, reconstruction error will be high as the

variance in the data was not well captured, similarly if too many are chosen the reduction in

dimensionality can be low.

There are a number of drawbacks to PCA. The first is that features are no longer hu-

man interpretable which can cause confusion in real world scenarios. Secondly eigenvalue

decomposition on very large matrices is an expensive operation.

Finally, there are assumptions made in PCA, the most notable one being that the data

is linearly separable. Kernel Principal Component Analysis (Schölkopf et al., 1999b) was

proposed which extends the ability of PCA to find non-linear transformations of the original

data. Other feature extraction techniques used in machine learning include, Independent

Component Analysis (Comon, 1994), Random Projections (Bingham & Mannila, 2001) and

Local Linear Embedding (Roweis & Saul, 2000).

2.5.3 Unsupervised Dimensionality Reduction

It is worth mentioning that the majority of feature selection methods and some feature

extraction methods are supervised, that is, they explicitly make use of the label information.

This is of particular importance to active learning problems where the majority of supplied

data is unlabelled. Chapter 6 highlights this issue and proposes the use of unsupervised

dimensionality reduction techniques for use in active learning problems.
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2.5.4 Policy

The way in which a dimensionality reduction technique is applied is referred to as a policy.

There are two distinct ways in which a dimensionality reduction technique can be applied,

namely a global and local policy.

Local is where a reduced set of features are chosen for each individual category in isolation of

other categories (Apté et al., 1994). Essentially this means that each document will have

a separate representation for every category under consideration. Local dimensionality

reduction is a context-sensitive method since category information is explicitly used.

Global is where a reduced set of features are chosen irrespective of the category under

consideration (Yang & Pedersen, 1997). This is a context-free method of performing

dimensionality reduction.

Most dimensionality reduction techniques can be applied in both a local and global policy.

However, local dimensionality reduction assumes that label information is available. This

assumption does not hold in an active learning setting and we explore this issue further in

Chapter 6.

2.6 Classifier Induction Algorithms

In classification we wish to build classifiers for concepts, such as “is this e-mail a spam?”.

Concepts correspond to a subsets of the input domain (X). For text classification, the goal

is to build classifiers from a set of labelled examples that can automatically assign new

documents to a set of predefined categories.

An alternative view of a concept is as a Boolean-valued function f : X 7→ Y which decide

membership of an input patterns to a concept. This function is referred to as the target

function, which always correctly labels input patterns.

Induction allows the learner to learn an approximation (hypothesis) of the target function

from a limited amount of examples labelled by the target function. Generally more than one

hypothesis can be induced from a given training set. The set of all hypotheses consistent

with the observed training data is called the version space (Mitchell, 1997).

Given that the learning algorithms induce a classifier from a set of labelled examples, this

is commonly referred to as supervised learning. More formally, the standard supervised learn-

ing problem is stated as follows. Given a set of training examples Dℓ = {(x1, y1) . . . (xm, ym)}
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drawn from the input space X and labelled using some unknown function y = f(x), an in-

duction learning algorithm will output a classifier h(x) which is a hypothesis of the unknown

target function f(x).

There is a vast number of classifier induction algorithms available. Detailed description

of all classifiers is beyond the scope of this thesis. The remainder of this section gives an

overview of each of the main classification induction algorithms used throughout the research

conducted. We also discuss ensemble based approaches where multiple classifiers are used.

2.6.1 k-Nearest Neighbour (k-NN)

The k-NN classifier is perhaps one of most straightforward classification algorithms. It is

an instance based classifier where new documents are assigned labels based on the closest

training examples as given by a similarity metric. An assumption exists that examples of the

same concept should be similar to each other.

In contrast to most classification algorithms which are eager (process their training data

immediately) the k-NN is a lazy algorithm, delaying processing of training data until classi-

fication time. See (Yang et al., 2003) for more details on running time.

For an input xq ∈ X the k-NN will find the k training examples which are most similar

as defined by the similarity metric. Let S be the set of the k most similar training examples,

then, the predicted label for the input example is assigned to be the mode of the predictions

of the nearest neighbours labels as shown in (2.2)

h(xq)← arg max
y∈Y

∑

xi∈S

δ(y, f(xi)) (2.2)

where δ(a, b) equals 1 iff a = b otherwise 0. The similarity of the input xq and the most

similar training examples can be used to give finer control on the predicted class label as

shown in (2.3). Here, more similar training examples have more influence in the predicted

label.

h(xq)← arg max
y∈Y

∑

xi∈S

sim(xq,xi)δ(y, f(xi)) (2.3)

The most popular similarity metric used is Euclidean distance (2.4). Euclidean distance

defines similarity as the L2 norm between two feature vectors (xi = {x1, x2 . . . x|τ |}), where
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the greater the distance the more dissimilar two feature vectors are.

d(xi,xj) = ||xi − xj || =

√

√

√

√

|τ |
∑

l=1

(xil − xjl
)2 (2.4)

While Euclidean distance works well for many types of machine learning problems, it

sometimes works poorly with high-dimensional data common in text classification problems

due to the curse of dimensionality. Two quite different documents might be deemed similar

because they share a large number of irrelevant features. An alternative similarity metric

commonly used in information retrieval tasks is cosine similarity (2.5). It defines similarity

as the angle between two feature vectors. This metric can be used in place of Euclidean

distance for the k-NN classifier, where neighbours are defined based on maximum similarity

rather than minimum distance.

COS(xi,xj) =
〈xi,xj〉
||xi|| · ||xj ||

(2.5)

Predictions

The output of the k-NN can be transformed into a probabilistic classifier by considering the

distance to each of the neighbours. Equations (2.2) and (2.3) can be modified to return the

weight of each predicted label. The weights are then normalised to give a pseudo-probabilistic

output from the classifier predictions.

Parameters

The choice of k is an important parameter. The most straightforward approach is to assign

the label of the most similar training example, referred to as a 1-NN. Varying the value of

k will have an impact on the accuracy of the classifier. The optimal value for k is typically

found using a validation set.

Performance

The k-NN classifier has been shown to be one of the best performing classifiers for document

classification tasks (Yang & Liu, 1999). Furthermore, lazy learning algorithms are desirable

for active learning given a potentially large number of iterations and a classifier being induced

in each iteration.
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2.6.2 Näıve Bayes

Probabilistic classifiers estimate P (Y|X) the probability of a label given a document. Given

a new document to classify (x ∈ X) a Bayesian classifier will assign a label (y ∈ Y) for which

P (y|x) is highest, as shown in (2.6).

f̂(x) = arg max
y∈Y

P (y|x) (2.6)

Induction algorithms must approximate the target function by estimating the probabil-

ities based on observed training data. Bayes rule (Mitchell, 1997, Chapter 6) specifies how

the conditional probability P (Y|X) can be constructed from observing training examples

consisting of documents from each concept as labelled by the target function.

Using Bayes theorem (2.6) can be rewritten as:

h(x) = arg max
y∈Y

P (y)
P (x|y)

P (x)
(2.7)

Estimates of P (Y) are constructed from the training data by simply counting the fre-

quency of the labels. However, estimating P (X|Y) is more challenging since there are poten-

tially infinite variations of X. In order to obtain reliable estimates, the training data must

contain multiple copies of every possible variation of X.

The näıve Bayes classifier makes the assumption that attributes are conditionally inde-

pendent. While this assumption is clearly false, significant simplifications in calculations can

be made where (2.7) can be written as shown in (2.8):

h(x) = arg max
y∈Y

P (y)
∏

xi∈x

P (xi|y) (2.8)

where P (xi|y) is the probability of a term for a given label and the denominator P (x) in

(2.7) is not computed since it is the same for all y ∈ Y.

Multinomial Näıve Bayes

Throughout this thesis we concentrate on the multinomial variant of the näıve Bayes classifier

as used in (McCallum & Nigam, 1998). The multinomial näıve Bayes assumes text documents

are generated by a mixture model, parametrised by θ.

A classifier is induced by estimating θ from a set of labelled training data (Dℓ ⊂ X). The

probability of a word given a particular category is simply the fraction of times the word
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occurs in a document of that category.

θ̂xi|y =
1 +

∑

x∈Dℓ
tf(xi,x)P (y|x)

|τ |+ ∑|τ |
k=1

∑

x∈Dℓ
tf(xk,x)P (y|x)

where tf(xi,x) is the count of the term xi in the document x and P (y|x) is the class label for

the training document x. Laplacian smoothing is used to avoid zero probabilities. Similarly,

calculation of the probability of a category is simply the percentage of the training data that

is of the same category.

θ̂y =

∑

x∈Dℓ
P (y|x)

|Dℓ|
Using these two estimates a classifier can be constructed where the predicted category is

the label (y ∈ Y) with the highest probability and the probability of a label given a document

(x) is calculated using (2.9):

P (y|x) =
P (y|θ̂)

∏

xi∈x P (xi|y; θ̂)
∑

y∈Y P (y|θ̂)
∏

xi∈x P (xi|y; θ̂)
(2.9)

Performance

The näıve Bayes classifier was popular for text categorisation tasks due to its simplicity and

ease of implementation. Despite the strong independence assumptions made, the classifier

performed well in text classification tasks. However, it has been shown (Yang & Liu, 1999)

that its performance has been eclipsed by kernel methods classifiers such as the support vector

machine.

2.6.3 Support Vector Machine (SVM)

In recent years kernel methods have been extremely popular due to their excellent per-

formance on many machine learning tasks and in particular on text categorisation tasks

(Joachims, 1997). Rather than devising a different algorithm for each domain, they settle on

a standard set of algorithms and transform the data to a representation that suites the set

of algorithms. Kernel methods consist of two modular components. The first is a standard

classification algorithm, while the second is a kernel function that is used to transform the

data to allow for easier classification using the classification algorithms.

We briefly discuss kernels and how they can be used to transform the data. The set of

classification algorithms used in kernel methods are standard and have only one prerequisite:

they must be described in terms of dot-products only.

23



Kernel

A classifier can easily be induced to correctly classify data from a domain which is linearly

separable. However, for many real world problems the classes in the input space are unlikely

to be linearly separable. One solution is to use a classifier specifically for each domain,

e.g. using the non-linear classifier such as the k-NN. Kernel methods use an alternative

strategy whereby the data is re-coded so that it becomes much easier to classify. A standard

classification algorithm can therefore be used on all domains.

The function Φ(x) transforms (re-codes) the original input into a new feature space.

Typically the dimensionality of the transformed feature space is much higher than the original

feature space. Figure 2.6 shows an example where the data is non-separable in 2 dimensions

but is separable in 3 dimensions. Explicitly transforming each input into the new feature

space is computationally expensive (and potentially infeasible when infinite dimensions are

used).

X

Y

Z

X

Y

Φ(x)

Figure 2.6: Kernel mapping. A trivial example showing that linear classification becomes
easier once the original two-dimensional data is mapped to another three-dimensional feature
space.

A “kernel” is a similarity measure that can be thought of as a dot product in some, user

defined, feature space, as shown in (2.10). The kernel trick refers to the fact that the dot

product of two projected examples 〈Φ(xi),Φ(xj)〉 can be calculated without ever explicitly

transforming the original data.

For example, consider the transformation function that maps from two dimensional feature

space (x = {x1, x2}) to three dimensional feature space (Φ(x) = {x2
1, x

2
2,
√

2x1x2})
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Table 2.1: Commonly used Kernels.

Kernel Formula

Linear K(xi,xj) = 〈xi,xj〉
Polynomial K(xi,xj) = 〈xi,xj〉d

Gaussian K(xi,xj) = e−(
||xi−xj ||

2

2σ2 )

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 (2.10)

〈Φ(xi),Φ(xj)〉 = 〈{x2
i1

, x2
i2

,
√

2xi1xi2}, {x2
j1

, x2
j2

,
√

2xj1xj2}〉 (2.11)

= x2
i1

x2
j1

+ x2
i2

x2
j2

+ 2xi1xi2xj1xj2 (2.12)

= 〈xi,xj〉2 (2.13)

In this way we can compute the dot product of two instances in the transformed feature

space using (2.13) meaning that we never have to explicitly evaluate the coordinates in the

new feature space (as is done in (2.11)). The power of the kernel trick becomes evident when

the transformation function (Φ) projects the original data into possibly infinite dimensions.

A number of kernel functions that are commonly used in the literature are given in Table 2.1.

Gram Matrix

The Gram matrix (sometimes called the kernel matrix) is formed by evaluating the kernel

function on the training data and storing the results in a matrix K where its element are:

Ki,j = K(xi,xj)

The dimensions of the matrix are m×m where m is the number of documents in the training

data. The Gram matrix offers an interface between the kernel component and the classifier

component in a kernel machine.

Classifier Component

The second component of a kernel machine is a classification learning algorithm. The support

vector machine (Vapnik, 1995; Schölkopf et al., 1999a) is a linear learner that separates the

training data using a decision hyperplane (〈w,x〉 + b = 0). The classification of an example

(x) is given by its projection along the hyperplane, plus some offset b and is shown in (2.14).
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f̂(x) = 〈w,x〉+ b (2.14)

Linear classifiers are binary therefore the predicted label is determined based on which

side of the hyperplane the example lies. Figure 2.7 shows a linear classifier which separates

the data. In the case of Y = {±1} the classification is simply the sign of predicted values as

shown in (2.15)

h(x) = sign(f̂(x)) (2.15)

A special characteristic of the hyperplane produced by an SVM is that the margin is

maximised. The margin is the distance to the separating hyperplane from the point closest to

it. It is desirable to have a large margin since it will be better able to tolerate noisy examples.

In general, for a linear classifier to generalise well, a large margin should be sought. Finding

the hyperplane which maximises the margin can be formulated as the following optimisation

problem.

Minimise : ||w|| (2.16)

subject to : ∀(x,y)∈Dℓ
: y〈w · x〉+ b ≥ 1 (2.17)

Lagrange multipliers are used to translate the difficult primal optimisation problem (2.16)

into an equivalent dual quadratic maximisation optimisation problem (2.18) for which there

exists efficient algorithms.

Maximise : −
m

∑

i=1

αi +
1

2

m
∑

i,j=1

αiαjyiyj〈xi · xj〉 (2.18)

subject to :

m
∑

1=1

αiyi = 0 with αi ≥ 0 (2.19)

The result of the optimisation process is a set of coefficients α. Only those training

examples which have αi > 0 contribute to the construction of the hyperplane. These examples

are called the support vectors and define the margin. Figure 2.7 shows a linear classifier

constructed from three support vectors (highlighted) that lie on the margin.

Classification can now be evaluated in terms of dot products between the input instance

and the training data set examples ((2.20) and (2.21)). Additionally only the support vectors

need to be evaluated allowing for computational speed-ups to be made.
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X

Y

w

Margin

Support
Vectors

<w,x> + b = 0

<w,x> + b = -1

<w,x> + b = 1

Figure 2.7: SVM Classifier. The SVM is a linear classifier that constructs a hyperplane w
separating the data. The hyperplane is constructed in such a way to create maximal (margin)
distance between the two classes. Computational efficiency is achieved since only the three
Support Vectors are required to classify further instances. In this particular example the
offset parameter b is zero since w passes through the origin.

f̂(x) =
m

∑

i

αiyi〈xi · x〉+ b (2.20)

h(x) = sign(f̂(x)) (2.21)

Both the optimisation problem of finding the hyperplane and the classification function

are expressed in terms of dot products. These can easily be “kernelised” by substituting

the dot product for an appropriate kernel function. Eqn. 2.18 and (2.20) can be substituted

with (2.22) and (2.23) respectively. This allows classification algorithms to be applied in the

new feature space while only ever operating on the original feature space by using the kernel

function.
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Maximise : −
m

∑

i=1

αi +
1

2

m
∑

i,j=1

αiαjyiyjK(xi,xj) (2.22)

f̂(x) =

m
∑

i

αiyiK(xi,x) + b (2.23)

Performance

Support vector machines have been shown to be one of the best performing classifiers for text

classification (Yang & Liu, 1999; Joachims, 1997). Since the classification learning algorithm

is fixed, kernel machines place the importance on choosing the correct kernel rather than

choosing the correct classifier. Sometimes choosing the appropriate kernel is almost as difficult

as choosing the correct classifier.

2.6.4 Ensembles

The “No Free Lunch” theorem (Wolpert, 1995) states that there is no single learning al-

gorithm that always induces the most accurate classifier for every domain. Each learning

algorithms will perform differently depending on the domain. Yang & Liu (1999) considers

the performance of many different learning algorithms for the task of text classification. In

general, for supervised learning tasks, a number of different learning algorithms will be con-

sidered and the one which outputs the best performing classifier, as evaluated on a validation

set, is chosen.

An alternative solution is to combine multiple classifiers together. An ensemble (or com-

mittee) (Breiman, 1996) is a collection of classifiers whose individual decisions are combined

in order to classify new examples. The members of the ensemble as referred to as the base-

learners. Ensembles have been shown to increase accuracy when used with reasonably accu-

rate base-learners. Ensembles perform best when the constituent base-learners are diverse.

A number of methods for constructing ensembles are given below:

• Stacking. The easiest way to ensure diversity in the ensemble is to use different learning

algorithms for each base-learner.

• Parameters. Most learning algorithms are characterised by a set of user defined pa-

rameters. An ensemble can be constructed by altering the parameters supplied to each

base-learner. For example, different k values for the k-NN algorithm.
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• Representations. Diversity can be established by training each base-learner using a

separate representation of the data. This is similar to the idea of Co-Training (Blum

& Mitchell, 1998) where multiple representations of the same data exist. Similarly,

one could use different kernels for each base-learner to transform the original data into

different representations.

• Training Data. The most common way to construct an ensemble is to train each

base-learner with different training data. Two bootstrapping approaches have been

successfully used in the literature, namely boosting and bagging.

Bagging

Bagging (Breiman, 1996) is where an ensemble of N members is constructed by sampling N

bootstrap samples from the labelled training data, with replacement. Each base-learner is

induced from one of the bootstrap samples.

Boosting

Boosting, in particular AdaBoost (Schapire, 1999) is an iterative process to construct a set

of complementary base-learners for an ensemble. It iteratively adds new base-learners such

that the training data of base-learners added in successive iterations are tailored by the

misclassifications of the base-learner in previous iterations.

A weak base-learner is induced from a subset constructed by sub-sampling from the

training data according to the weights. Initially all weights are uniform but are updated based

on the misclassifications of the weak base-learner. Training examples which are incorrectly

classified have their weights adjusted so that they are more likely to be chosen in subsequent

iterations of boosting. In this way sampling is focused on these hard to classify examples.

The output of AdaBoost is an ensemble formed using all the induced weak base-learners.

Ensemble Predictions

Predictions from an ensemble are obtained by combining the predictions of the members. Ma-

jority voting is the most commonly used method and simply finds the mode of the predictions

in the ensemble (see (2.24)).

f̂(x) = arg max
y∈Y

N
∑

i=1

f̂i(x) = y (2.24)
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where f̂i is the prediction given by the ith member of the ensemble.

The use of ensembles (committees) in machine learning has grown due to the increased

performance achieved. However, considerable computational overheads are encountered since

numerous classifier must be induced and considered for each prediction.

2.6.5 Multi-Class Classification

We have discussed mainly binary classification problems, where there are only two possible

labels for an instance and the task is to construct a function which maps input examples to

one of the two possible labels. However, we often wish to solve classification problem that

have more than two labels. Multi-class classification is where the number of labels is greater

than two.

Certain classifiers such as the k-NN are capable of easily extending to the multi-class

setting while others such as Support Vector Machines do not. To overcome this, multi-class

classification problems can be decomposed into a series of binary classification problems. Two

principled techniques can be employed to achieve this, namely One-v-Rest and One-v-One.

Below we give some details on both techniques. For a comprehensive evaluation of various

multi-class techniques please see (Hsu & Lin, 2002).

One-v-Rest

One-v-Rest (1vR) decomposes a n-class problem into n separate binary classification prob-

lems where one concept is compared with all other concepts. For example, a multi-class

classification problem to identify digits would construct 10 binary classifiers, one for each

digit. One such classifier would identify the digit 7 and considers all other digits to be

negative examples of this concept (Vapnik, 1995).

One-v-One

An alternative approach is One-v-One (1v1) where a series of binary classifiers are constructed

for each possible pairing of concepts. Reusing the digits classification example, a classifier is

constructed to for each pair of digits. In this way, n(n−1)
2 classifiers are constructed.
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2.7 PAC Learning Model

An obvious question regarding induction algorithms is how many examples are required to

produce an accurate classifier. Ideally we would like the induction algorithm to construct a

classifier consistent with the target function for any possible input. In other words we wish

the classifier to have zero error. Unfortunately this is infeasible for two reasons.

First, to achieve zero error requires training data consisting of labelled examples for every

possible input pattern. This is infeasible for all but the most trivial of problems. Second,

the training data is a random sample of examples. There exists a small probability that

the sample contains noisy examples that mislead the induction algorithm and result in the

production of a poor classifier. Hence, the construction of a classifier consistent with the

target function may not always be possible.

The Probably Approximately Correct (PAC) (Valiant, 1984; Mitchell, 1997) learning

model studies the number of examples required to achieve a classifier with a bounded er-

ror rate. It does so by weakening the demands on the induction algorithm. The induction

algorithm is not required to succeed in constructing a classifier for every possible sequence

of randomly drawn training examples. Failure is bound by some arbitrarily small parameter

δ. Furthermore, the algorithm is not required to produce a zero-error classifier. Rather it is

required to produce a classifier that has error bounded by ǫ.

These bounds presented allow PAC to state that, a learner will output a classifier (hy-

pothesis) with probability (1−δ) that has error less than ǫ after observing a sufficient number

of training examples and after performing a reasonable amount of computation.

The number of examples required is intrinsically linked to the efficiency of the learning

algorithm in the PAC learning model. Training data size is limited by the time required

to process it since PAC requires the output of a hypothesis after a reasonable amount of

computation.

In document classification tasks, explicit calculation of PAC bounds is generally not con-

ducted. A heuristic of supplying as much training data as possible is typically employed.

There are many domains where the collection of labelled training data is impractical due

to the high cost of acquiring labels. Active learning has been proposed as a technique to

overcome this problem and is capable of construction of an accurate classifier from the small

number of labelled training data. Chapter 3 describes active learning in greater detail.
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2.8 Evaluation

A classifier induced from a set of labelled training examples will be deployed to classify

new and previously unseen examples from the input space. Evaluation is concerned with

estimating the performance of induced classifiers on future examples.

Induction of classifiers with zero error requires a labelled training example for every pos-

sible input pattern. Since this is impractical for all but the most trivial of classification

problem, induced classifiers will misclassify a certain percentage of data. The optimal perfor-

mance metric to use is true error which is the probability that the classifier will misclassify

a randomly drawn instance from the input space.

Error(h) = P (h(x) 6= f(x))

The true error of a classifier is unknown, however, an estimate can be calculated using a

number of machine learning evaluation techniques.

2.8.1 Data Partitioning

Estimates are constructed from a test set, which is a set of examples labelled by the target

function and is used to evaluate the classifier performance. The test set can be constructed in

a number of ways but, crucially, test data is completely unknown to the induction algorithm.

In other words, test data is never used in training a classifier. Two of the most popular

methods for constructing a test set are:

• Holdout Testing. This is where the training data is split into two mutually exclusive

sets. One set becomes the training data from which the classifier is induced. The second

is used as the test and is used to estimate the performance of the induced classifier.

Figure 2.8(a) shows this process where half of the data is used as training data while

half is held back for testing data. This is called 50/50 train/test split. However, it is

considered more beneficial to have a larger test set as used in the RCV1 dataset (Lewis

et al., 2004).

• k-fold-cross-validation. When the number of labelled training data is small the holdout

method becomes infeasible. k-fold-cross-validation overcomes this by problem by seg-

menting the data in to k folds (or sets). k trials of the experiment are then conducted

where in each trial one fold is held back as testing data while all other folds are used as
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training data. The fold used as testing data changes in each trial. Results are averaged

over all trials of the experiment. Figure 2.8(b) shows this for 4-fold cross validation.

Experiment 1

Test Data

Train Data

Experiment 2 Experiment 3 Experiment 4

(a) 50/50 Split

Trial 1 Trial 2 Trial 3 Trial 4

Test Data

Train Data

(b) k-Fold

Figure 2.8: Data partitioning methods. The entire circle represents all the data in the
corpus. (a) randomly divides the dataset into two sets, where one is used for training while
the other is held back for testing. (b) shows 4-fold cross validation where in each trial one
fold is held for training while all others are used for testing. The results are averaged over
all trials.

The misclassifications made by the classifier on the test set are stored in a confusion

matrix from which a number of performance metrics can be calculated. In the next section

we discuss the confusion matrix next as well as a number of performance metrics commonly

used in the literature. Evaluation of classifiers is an important aspect of machine learning

and there are many strategies and metrics in the literature. In this review we concentrate on

the most popular evaluation metrics used for text categorisation tasks.

2.8.2 Confusion Matrix

Central to all of the following metrics is the confusion matrix (sometimes referred to as the

contingency matrix) which encodes the errors made by a classifier when evaluated on a test

set. The classifier is used to predict the labels for the members of the test set and the

predictions are compared to their true labels as given by the target function.

Table 2.2 shows the confusion matrix for a binary classification problem (Y = {−1, 1}).
Predictions given by the classifier (h) are compared to the labels given by the target function

(f). The table consists of four entries:

• True Positives (TP) counts the number of examples where h(x) = 1 and f(x) = 1
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• False Positives (FP) counts the number of examples where h(x) = 1 and f(x) = −1

• False Negative (FN) counts the number of examples where h(x) = −1 and f(x) = 1

• True Negative (TN) counts the number of examples where h(x) = −1 and f(x) = −1

These four counts can be combined to evaluate a classifiers performance. Generally, high-

performing classifiers will have relatively few false positives and false negatives.

f(x) = 1 f(x) = −1

h(x) = 1 TP FP

h(x) = −1 FN TN

Table 2.2: Confusion Matrix for a binary classifier. True labels are given by the columns
while the predicted labels are given by the rows.

2.8.3 Accuracy

The accuracy of a classifier is perhaps the most often used metric. It examines effectiveness

of the induced classifier to correctly classify examples from the test set and is calculated as

shown in (2.25).

Acc =
TP + TN

TP + FP + FN + TN
(2.25)

Accuracy gives the percentage of predictions which were consistent with the true labels

as given by the target function. Analogously, error is percentage of predictions inconsistent

with the true labels and is simply 1−Acc.

Accuracy is best used when there is little to no bias in the data. If the data consists

of a large percentage of a single class, then a trivial acceptor classifier (assigns the label of

the majority class found in the training data) will achieve high accuracy. For this reason

accuracy is rarely used as an evaluation metric for imbalanced datasets (Yang & Liu, 1999;

?).

2.8.4 Precision and Recall

Precision (π) and Recall (ρ) are commonly used performance metrics in information retrieval

systems. They are less sensitive to imbalanced dataset and can also be used in a classification

setting. Precision is defined to be the probability that examples predicted by the classifier as
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being positive are indeed positive. More formally, when the prediction is h(x) = 1 the true

label is f(x) = 1. It can be calculated from the confusion matrix as shown in (2.26):

π =
TP

TP + FP
(2.26)

Similarly, recall is the probability that positively labelled examples are given positive

predictions by the classifier. More formally, given f(x) = 1 the probability that h(x) = 1

also. It is calculated from the confusion matrix as shown in (2.27):

ρ =
TP

TP + FN
(2.27)

When dealing with multi-class classification, precision and recall must be averaged over

the whole category set (Y). There are two ways to do this:

Macro-averaging is where precision and recall are computed per-category then the mean

precision and recall values are computed. This is a local policy where each category is

given equal weight.

Micro-averaging is where precision and recall are computed from the combined confusion

matrix over all categories. This is effectively summing over all the individual decisions

made by the classifier. Micro-averaging is a global policy, where each decision is given

equal weight therefore more frequent topics will receive a higher weight in the average.

When micro-averaging is performed, it is denoted by the super-script M in the remainder

of this thesis.

2.8.5 F1 Measure

Neither precision or recall make sense in isolation. The F1 is a way to combine the separate

precision and recall performance metrics into a single value. This allows for easier comparisons

since only one value needs to be compared. It is defined to be the harmonic mean of precision

and recall, where attributes equal importance to both and is calculated as shown in (2.28):

F1 =
2πρ

π + ρ
(2.28)

In this thesis we compute F1 using both macro- and micro- averaged precision and recall.

F1 calculated using micro-averaged precision and recall is denoted at FM
1 .
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2.9 Summary

In this chapter, we have reviewed the many sub-systems involved in the construction of

a automatic text classification system. Figure 2.9 shows how the various sub-systems are

combined to produce an automated text categorisation system.

Pre-processing
Dimensionality 
Reduction

EvaluationClassifier 
Induction

VSM

Attributes

D
o
c
u
m
e
n
ts VSM

D
o
c
u
m
e
n
ts

Features

Figure 2.9: Automated Text Categorisation System

We reviewed the vector space model which is central to traditional machine learning and

described feature extraction methods for constructing the VSM from raw data. The causes

of high-dimensional data in text categorisation was discussed. Automatic dimensionality

reduction techniques were reviewed and the benefits to text categorisation were given. Di-

mensionality reduction is a particular problem for active learning settings which is discussed

further in Chapter 3 along with proposed solutions. We reviewed a number of classification

induction algorithms, which learn classifiers from a set of examples. The number of examples

required to learn an accurate classifier was described by the PAC learning model.

While labelling examples is an easier task than constructing rules by hand, domains exist

where even the task of labelling is prohibitively expensive. Active learning is a solution to

reduce the number of labels required to induce an accurate classifier and is discussed in detail

in Chapter 3.
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Chapter 3

Active Learning

3.1 Introduction

Supervised learning techniques assume the availability of a large number of labelled examples.

Training data supplied to a supervised learning algorithm are constructed by labelling a

large random sample of unlabelled examples. However, in many real-world domains the cost

associated with constructing a large corpus of training material, suitable for use in supervised

learning, is prohibitively high. Unlabelled examples, on the other hand, are plentiful and

cheap to collect.

High labelling costs restrict the application of machine learning solutions to domains where

the availability of labelled data is plentiful. In this chapter, we discuss active learning which

is a technique in machine learning used to produce high quality (read accurate) classification

systems from a small set of labelled examples.

Active learning expedites the learning process by allowing the learner control over the

training data. Training data is constructed by the learner sequentially selecting the most

informative examples to label from a pool of unlabelled examples. Significant reductions

in labelling effort have been demonstrated when active learning was used to construct the

training data (Lewis & Gale, 1994; Tong & Koller, 2001).

Rather than randomly select training examples, an active learner will carefully select and

label only the most informative examples. Active learning is directly beneficial to domains

where the cost of labelling is high but also has potential benefits for practically all domains

where it can be used to expedite the learning process.

This chapter provides an extensive review of the active learning literature. As a moti-
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vation for active learning, the problem of limited training data in discussed in Section 3.2.

Section 3.3 discusses active learning, giving details on the components that form the active

learning process as well as describing a canonical active learner. Query selection is a critical

component to active learning and we describe this in detail in Section 3.4. As with tradi-

tional supervised learning, evaluating performance is an important aspect to active learning

research. Methods and techniques used to measure the performance of active learning are

given in Section 3.5. Finally, we summarise and detail research conducted in latter chapters

of this thesis in Section 3.6.

3.2 Limited Training Data

In many real-world problems unlabelled data is abundant and cheap to collect while labelling

an example incurs a cost. In some domains the costs are prohibitively expensive resulting in

severely restricted amounts of labelled training data. Limited amounts of training data pose

a problem for supervised learning techniques which rely on the availability of large amounts

of labelled training data to produce high-quality classifiers. The net result is that supervised

learning techniques cannot be applied to a variety of domains.

In this section we discuss the cost of labelling examples in text categorisation problems.

Furthermore the PAC learning model is revisited to discover how many examples are required

to construct a classifier with a bounded error (ǫ).

3.2.1 Cost of Labelling

Even in domains where acquisition of large amounts of labelled data is common, the cost

associated with obtaining the labelled data is often overlooked. As an example we look at

the recently released RCV1 corpus (Lewis et al., 2004), which comprises of over 800, 000

manually categorised Reuters news articles collected in the 12 months between August 1996

and August 1997. Lewis et al. (2004) report that Reuters, at one stage, employed 90 staff to

categorise 5.5 Million English news articles produced in one year and estimate the labelling

effort for the RCV1 corpus to be 12-person years. This represents a considerable undertaking

in terms of both time and resources. Furthermore, despite strict quality checks the resulting

corpus contained many labelling errors.

Since labelling is an expensive task, a classification system should be induced from as few

examples as is strictly necessary. Furthermore reducing the labelling effort also diminishes
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the possibility for errors since even manual classification is not infallible (precision and recall

for humans are estimated to be approximately 90% (Hayes & Weinstein, 1990))

3.2.2 PAC Bounds

It is desirable to know a priori how many labelled examples are required in order to construct

a classifier with a bounded error. The PAC learning model (see Section 2.7) allows for an

upper bound to be placed on the number of labelled examples required (m) to produce a

classifier of given accuracy (ǫ) with high probability (1− δ).

Sample complexity (Mitchell, 1997, Chapter 7) measures the growth in the number of

required training examples in connection with the problem. In most practical settings this

is the factor that limits the success of the learner due to the limited availability of training

data.

m ≥ 1

ǫ

(

ln(|H|) + ln(
1

1− δ
)

)

(3.1)

The sample size (m) is described in terms of the PAC learning model in (3.1). It places

a bound on the number of examples required to successfully learn a target concept. Sample

size is dependent on the size of the hypothesis space |H| and grows linearly with 1/ǫ and

logarithmically with δ.

The size of the hypothesis space is difficult to quantify for many learning algorithms and

can even be infinite. This means that calculation of the sample complexity can be difficult, if

not impossible, when the hypothesis space is infinite. Vapnik-Chervonenkis (VC) Dimensions

(Mitchell, 1997, Chapter 7) is an alternate measure of the complexity of the hypothesis space.

VC measures the size of the subset of S (S ⊂ X) which can be shattered. The concept of

shattering is where, for every dichotomy of the set S, there exists some consistent hypothesis

h ∈ H. If S cannot be shattered by H then there must exist some dichotomy for which there

does not exist a consistent hypothesis in H.

The upper bound on the number of training examples required to probably approximately

learn a target concept can then be formulated using the VC of the hypothesis space rather

than the potentially infinite value |H|. Sample complexity calculated using VC is shown in

(3.2) which is analogous to (3.1). The VC-Dimensionality of linear decision surfaces in an r

dimensional space is r + 1.
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m ≥ 1

ǫ

(

4 log2(
2

δ
) + 8 ∗ V C(H) log2(

13

ǫ
)

)

(3.2)

For example, if a consistent learner is to learn the target concept in a 10 dimensional

space 95% of the time and achieve an error of less than 10% then it requires at most m

training examples, where m is calculated as follows:

207.3147 ≥ 1

0.1

(

4 log2(
2

0.05
) + 8 ∗ 11 log2(

13

0.1
)

)

The highest cost of applying a machine learning solution is the cost associated with

collecting sufficient labelled training data. Ideally only the minimum number of examples

required to achieve an accurate classifier should be labelled. However, in practice a large

amounts of labelled data are supplied to the supervised learner in order to guarantee the

PAC bounds are met and an accurate classifier is output. In some domains the cost of

labelling is extremely high and the cost of collecting sufficient labelled training data restricts

the application of machine learning solutions. We refer to this as the labelling acquisition

bottleneck and in the next section we discuss techniques to overcome it.

3.3 Active Learning

The PAC learning model places an upper bound on the number of training examples required

(m) in traditional supervised learning problem. Supervised learning algorithms are typically

supplied with a large set of labelled training data (|Dℓ| ≫ m) to ensure an accurate classifier

is produced. Figure 3.1 depicts this batch process whereby the training data are supplied to

the learner. The learner outputs a classifier induced from the training data.

Labelled

Data

Passive

Learner
Induction h(x)

Figure 3.1: Passive supervised learning has no control over the training data, it is simply
supplied to the classifier learning algorithm. Induction is used to construct a classifier (h)
from all the training data.

Training data for supervised learning are formed by labelling an independent and iden-

tically distributed (i.i.d) sample of the underlying data distribution P (x). In this way, the
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learner has no control over the construction of the training data. However, there are many

domains where constructing large amounts of labelled training data is impractical due to the

expense of labelling (labelling acquisition bottleneck). Ideally one would want to construct

an effective training set composed of a small number of highly informative examples.

Active learning is a machine learning technique that gives the learner control over the

training data. Humans interact with the active learning system to label examples chosen by

the learner from a source of unlabelled examples. Figure 3.2 depicts an active learner, where

the batch process of passive learning is replaced with an interactive process.

The set of training data selected by active learning should not contain redundant or

uninformative examples allowing for a reduction in the labelling effort. Ideally, only the

minimum number of examples required to induce an accurate classifier should be labelled

(|Dℓ| = m). Once the active learning process is finished, the output is the same as passive

learning, namely a classifier induced from all the labelled training data.

Unlabelled

Data

Active

Learner

Select

Queries

Oracle

Label

Queries

Labelled

Data
Induction h(x)

Figure 3.2: Active learning is given control over the training data. It constructs the train-
ing data by interacting with an external entity (the oracle) before applying the traditional
supervised learning algorithm to construct the classifier.

The process of active learning proceeds as follows. An active learner is given just a small

amount of labelled training data but has access to a large amount of unlabelled data. Training

data are accumulated iteratively whereby in each iteration, the active learner carefully selects

unlabelled examples and acquires their true labels via interaction with an external entity (the

oracle). The process is iterated until a stopping criterion is met. Training data produced

via active learning are populated with only the informative examples selected by the learner,

thereby expediting the learning process and reducing the overall labelling burden.
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It is the role of the query selection strategy to identify informative examples from the un-

labelled data. Informative examples are often those which are difficult to classify. Challenging

examples often contain more information about the target function than easy to classify ex-

amples. This is similar to the idea of boosting (Schapire, 1999), which focuses the training

data on difficult to classify examples. However, unlike boosting, the label information is not

known a priori in the active learning setting.

As motivation for active learning, the toy example shown in Figure 3.3 is commonly used

(Cohn et al., 1994; Dasgupta, 2005). Given some data that lies on the real line, consider the

concept of learning a thresholding function hw from H = {hw : w ∈ ℜ}:

hw(x) =











1 x > w

0 otherwise

(3.3)

VC theory states that if the underlying distribution can be separated perfectly by some

hypothesis in H (the realisable case) then the number of examples required to construct a

classifier with error ǫ is m = O(1/ǫ). One may simply supply m randomly chosen labelled

training examples and return any consistent classifier.

If m unlabelled examples were drawn from P and laid down as shown in Figure 3.3, their

hidden labels form a series of 0s followed by 1s. The goal is now to find the point w at which

the transition occurs. Active learning, in this case a binary search, can be employed and

requires just m = O(log 1/ǫ) examples to produce a ǫ−accurate threshold function.

Q1 Q3 Q4 Q2

hw

Figure 3.3: Active Learning Toy Example. Starting with all unlabelled examples (grey
circles) active learning selects queries using a binary search (Q1-Q4). The true labels are
revealed (black circle = 0 and white = 1) and the location of the transition is established
using very few labelled examples.

This gives an exponential reduction in the number of labels required. Applying the active

learning approach to more challenging concept classes is regrettably not so straightforward.

The benefit achieved by employing active learning is dependent on the specific hypothesis

class and the domain.
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In the ideal case active learning can exponentially reduce the number of labelled training

examples required. However, there may be domains, where in order to induce the perfect

classifier, given some training sample of size m, all m labels are required.

In its worst case, active learning cannot be worse than randomly labelling examples. In

other words, the passive learning setting. Empirical results have found that significant reduc-

tions (orders of magnitude) in the number of labelled examples required were achieved when

active learning was employed in text categorisation tasks (Lewis & Gale, 1994; McCallum &

Nigam, 1998; Tong & Koller, 2001).

3.3.1 Canonical Active Learning Algorithm

The pseudo-code for a canonical active learner is given in Algorithm 1. Active learning

is seeded with a very small amount of labelled training data (Dℓ) and a large amount of

unlabelled data (DU ).

In each iteration a classifier is induced from all the known labelled training data. While

this step is not strictly necessary it is often done to evaluate performance and the classifier

is commonly used to help select the query from the unlabelled examples. Queries are chosen

according to a query selection strategy and presented to the oracle whereby its true label is

obtained. The newly labelled query is then added to the labelled training data.

The amount of labelled data grows as active learning progresses. In this way, queries from

previous iterations help select more informative examples in subsequent iterations. These

steps are iterated until a stopping criterion is met. Once stopped, a final classifier is induced

from all known labelled training data.

Algorithm 1: Canonical Active Learner

Data: Dℓ: the labelled data.
Data: DU : the unlabelled data source.
Result: f̂ : classifier induced from all training data
repeat

induce classifier from Dℓ ;
select query (x) from DU and obtain label (y);
update labelled data Dℓ ← Dℓ

⋃{x, y} ;
until stop criterion reached ;

This canonical active learner forms a basis for the majority of active learning strategies

found in the literature. Active learning has been applied in a number of domains giving rise

to a wide variety of settings. The most critical component of the active learning algorithm is
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the query selection strategy which we describe in detail in Section 3.4. In the remainder of

this section we focus on the other components and parameters of the active learner.

3.3.2 Source of Unlabelled Examples

One of the main distinguishing factors in the active learning literature is the source of unla-

belled examples. Membership queries (Angluin, 1988) construct unlabelled examples based

on the most uncertain aspects of a learners knowledge.

This form of active learning has certain advantages in that informative unlabelled exam-

ples arbitrarily close to the decision boundary can be constructed without the learner ever

needing to observe such an example in the real world. However, membership queries are less

popular in text categorisation tasks since constructed unlabelled examples tend to be difficult

(if not impossible) for the oracle to label. This is due to the fact that the oracle is assumed

to be human and the constructed examples are often incomprehensible random collections of

terms making manual classification impossible (Baum & Lang, 1992).

Rather than constructing artificial examples, an alternative approach is to filter queries

from a source of unlabelled examples. Within the active learning literature there are two

sources:

Stream-based active learning is where queries are selected from an infinite stream of

unlabelled examples supplied to the active learner (see Figure 3.4(a)). In each iteration

the learner must decide whether to select the unlabelled example as a query or reject it

and move on to the next unlabelled example in the stream. This is an on-line decision

where the learner only has access to the current unlabelled example, it cannot consider

alternatives.

Pool-based active learning is where the learner is given the set of all unlabelled examples

from which it must select queries (see Figure 3.4(b)). This differs from stream-based

active learning since every possible unlabelled example can be evaluated before the

query is selected. Pool-based active learning is seen as an off-line problem.

Stream-based active learning has been applied to some problems (Saunier et al., 2004;

Dagan & Engelson, 1995). However, pool-based active learning is by far the more popular

(Hoi et al., 2006; Lewis & Gale, 1994; Schohn & Cohn, 2000; Tong & Koller, 2001) in active

learning settings. Unless stated otherwise, when we refer to active learning in this thesis, we

are referring to pool-based active learning.
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(b) Pool-Based Active Learning

Figure 3.4: Graphical representation of Stream-based and Pool-based active learning.
Stream-based active learning is where the learner is presented with an infinite stream of
unlabelled examples. Pool-based active learning is where the learner is given a set of all
unlabelled examples

3.3.3 Granularity

The canonical active learning algorithm is an iterative process where in each iteration a

query is selected. The granularity refers to the number of queries chosen in each iteration.

A query selection strategy ranks the unlabelled examples such that highly ranked examples

are selected as queries. Various levels of granularity can be achieved by selecting more or

fewer queries per iteration of active learning. The finest granularity is where just one query is

selected - the highest ranked unlabelled example. Lower granularity is achieved by selecting

a batch of queries per iteration by simply selecting the top N unlabelled examples as queries.

Finer granularity means that fewer queries will be selected per iteration resulting in maxi-

mal learning. However, finer granularity increases computational costs per query selected. To

offset the computational expense batches of queries can be selected in each iteration. While

the cost per query will decrease, learning may not be maximal since if the batch size is too

large there is a possibility for sub-optimal queries to be selected.

Cohn et al. (1994) analyse the effect of various batch sizes in active learning. It was found

that smaller batch sizes increased the effectiveness of active learning. However, the authors

point out that the advantages obtained must be weighed against the increased computational

cost incurred with finer granularity. Similarly, Schohn & Cohn (2000) also analysed batch size.

Again it was found that smaller batch sizes led to greater improvement in the performance

of active learning for small training sets.
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Batch Selection

As already mentioned batches can be selected as the top N ranked unlabelled examples as

given by some query selection function. A more principled way of constructing the batch

of queries is given by Hoi et al. (2006), which selects queries such that the redundancy

between the unlabelled examples is minimised. The set of queries is chosen such that the

Fisher information is maximised. Alternatively, clustering can be utilised to select batches

of queries (Xu et al., 2003). Queries correspond to the cluster centres (metoids) obtained by

clustering the top ranked examples as given by the query selection strategy.

3.3.4 Stopping Criteria

The canonical active learning algorithm is supplied with a parameter to determine when to

stop the iterative process. Deciding when to stop the active learning process is a surprisingly

difficult task and remains an open problem. A stopping criterion is dependent on the con-

straints of the problem being solved. We broadly define two types of stopping criteria, namely

adaptive and fixed. While this is not an exhaustive list the majority of criteria encountered

in the literature can be defined by one of the two types.

Fixed

Fixed stopping criteria terminate the active learning process once a resource has been ex-

hausted. By far the most straightforward and popular stopping criterion for active learning is

a limit on the number of labels the oracle will supply. Once the oracle resource is exhausted,

it will refuse to label any more examples. The active learner must achieve the highest possible

accuracy in the limited number of iterations. Similarly exhaustion of alternative resources

can also be used to stop active learning. One such resource is the pool of unlabelled examples.

Once all unlabelled examples have been queried then active learning stops due to the fact

there are no more unlabelled examples.

Adaptive

Adaptive stopping criteria terminate the active learning process as soon as a desired level of

performance is achieved. This requires an effective monitoring mechanism for the performance

of the active learner. Performance in supervised learning is typically evaluated using a hold-

out test set. Given the scarcity of labelled data in an active learning setting, the use of a test
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set is not applicable.

The performance of an active learner can be calculated by conducting cross-validation on

the labelled data. However this is impractical for two reasons. First there is considerable

computational overhead associated with this approach. Second, cross-validation is performed

on data assumed to be sampled i.i.d. according to the underlying distribution. Since the

active learner selects the training data, this assumption is violated.

Schohn & Cohn (2000) proposed a self-contained stopping criterion for active learning

using a SVM classifier. An assumption is made that the data is linearly separable. In

this case active learning is terminated once all unlabelled examples lying within the margin

are exhausted. This is determined when the distance from each unlabelled example to the

hyperplane is greater than the distance of all the support vectors. Empirical evaluation found

this margin-based stopping criterion worked well; stopping active learning slightly after the

maximum performance was achieved.

Vlachos (2007) suggest an alternative stopping criterion for active learning using uncer-

tainty sampling. After each iteration of active learning the confidence of the current classifier

is calculated using a separate large unannotated dataset, which has undergone the same pre-

processing as the training and pool data. Intuitively, as active learning progresses and more

training data is available, confidence should increase. Uncertainty sampling (Lewis & Gale,

1994) selects those examples that are difficult to classify and are also dissimilar to those

already in the training data. A point will be reached where all the remaining unlabelled

examples will have confident predictions. Queries added after this point will not contribute

novel information, as they are similar to those already in the training data. Additionally if the

labels contradict the predictions this will invalidate generalisations induced from knowledge

obtained in previous iterations of active learning leading to confidence remaining unchanged

or falling. While the authors show that confidence tracks the performance of the classifier,

they do not offer a definitive stopping criterion. Stopping after 3 successive declines in confi-

dence was shown empirically to work well. However, it was left to future work to determine

the optimal number of iterations of declining confidence to stop active learning.

3.3.5 Oracle

The canonical active learning algorithm must acquire labels for the selected queries. The

oracle is an external entity whose role is to return the true label for queries presented to it.

In passive learning the training data is labelled using an oracle prior to use. Conversely, in
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active learning, the training data is accumulated by iteratively interacting with the oracle.

It is generally assumed that the oracle is human, however this need not be the case. The

oracle could be an expensive test, such as a fMRI scan or drilling a test hole in the sea bed. In

the setting of text categorisation, however, the oracle is assumed to be human. As mentioned

previously, human oracles pose a problem for membership queries as examples presented may

not be interpretable (Baum & Lang, 1992).

A further assumption is that the oracle is infallible, that is, no noise is introduced to the

learning process from the oracle. This is a strong assumption which is not always valid. The

A2 algorithm (Balcan et al., 2006) is an agnostic active learner which works in the presence

of arbitrary forms of noise. The strong assumption of infallibility can therefore be relaxed in

this case. In our experiments we do not make the assumption that the oracle is human but

we do assume it is infallible.

3.3.6 Summary

By far the most important component in active learning is the query selection strategy, which

is responsible for the identification of informative unlabelled examples from the pool. This

section summarised the remaining components and parameters of a canonical active learning

algorithm. Details were given on the oracle, source of unlabelled examples, granularity and

stopping criteria. In the next section we describe in detail the query selection strategy.

3.4 Query Selection

Critical to the success of active learning is the ability to select informative queries from a

source of unlabelled examples. Within the literature a number of heuristics have emerged

that attempt to identify and select the most informative examples. Classifiers induced from

training data constructed using these heuristics have been shown to outperform classifiers

induced using standard passive supervised learning.

3.4.1 Random Sampling

As previously noted, training data for supervised learning is constructed in a batch manner by

randomly drawing a set of examples independent and identically distributed (i.i.d.) from the

input distribution P (x) and labelling them. This process is emulated in an active learning
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setting by using the random sampling query selection strategy. Random sampling selects

queries at random from the source of unlabelled examples.

In the worst case, active learning should perform at the same level as random sampling.

Random sampling is therefore typically used as a baseline from which other query selection

strategies are assessed. Queries selected using alternative selection strategies should result in

more accurate classifiers.

3.4.2 Furthest-First

Hochbaum & Shmoys (1985) propose the Furthest First (FF) strategy, which selects queries

that are most dissimilar to all other known labelled examples. Similarity is defined using a

metric such as Euclidean distance. Similar to random sampling, the FF selection strategy can

be applied without the construction of a classifier. The input space is maximally explored

since in each iteration the furthest unlabelled example is selected as the query. While FF

will rapidly explore the input space, convergence to the supervised learning performance will

be slow. The algorithm was used in a kernel machine context in (Baram et al., 2004) where

distance was defined using squared Euclidean distance.

3.4.3 Uncertainty Reduction

Uncertainty reduction based strategies select queries which are difficult to classify given the

current training data. Such examples often reside in regions of the input space for which

there is little information known.

Regions of Uncertainty

In (Cohn et al., 1994) a region of uncertainty is defined to be the area of the input space

that is currently not well defined by the known labelled data. More formally, the region of

uncertainty R(Dℓ) is defined as given in (3.4)

R(Dℓ) = {x : ∃hi,hj∈H · hi(x) 6= hj(x)} (3.4)

where hi and hj are two hypotheses both consistent with the training data. Selecting unla-

belled examples from outside the region as queries will not benefit learning since that area is

already well defined by the known labelled examples. Queries selected from within the region

of uncertainty will increase the knowledge of the domain and further restrict the region.
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Explicit calculation of the region of uncertainty is an expensive and difficult task for all but

the most trivial problems. One way to approximate sampling from the region of uncertainty

is to sample unlabelled examples close to the decision boundary. Uncertainty is defined as

the ambiguity surrounding the predicted class for an unlabelled example. Examples close to

the decision boundary are by definition difficult to classify therefore have high uncertainty.

Uncertainty Sampling

Lewis & Gale (1994) proposed uncertainty sampling (US) which was the first selective sam-

pling technique for a single classifier active learning. US is a straightforward query selection

strategy which can be applied to any classification algorithm. The only prerequisite is that

the classifier provide some measure of confidence about its predictions. It was demonstrated

using a probabilistic classifier for a binary classification problem, where the probability of

class membership was used as a metric of confidence for the prediction. Predictions close

to 0 or 1 were considered confident while predictions close to 0.5 were considered uncer-

tain. Queries are selected as those most uncertain unlabelled examples, that is, those with

predictions closest to 0.5 as shown in (3.5)

x∗ = arg min
x∈DU

|P̂ (y|x)− 0.5| (3.5)

where h(x) = P̂ (y|x) is a probabilistic classifier trained using all known examples of the target

function P (y|x). Predictions close to 0.5 represent those unlabelled examples close to the

decision boundary. These examples correspond to sampling from the region of uncertainty.

The idea of uncertainty sampling was later extended for use with Support Vector Machines

(Schohn & Cohn, 2000; Campbell et al., 2000) where these query selection strategies attempt

to maximally narrow the existing margin. Uncertainty was defined as proximity to the

decision hyperplane (see Section 2.6.3 for more information on SVM hyperplanes) and the

region of uncertainty corresponds to the margin of the SVM. Selecting queries from outside

the margin will have little effect on the classifier while selecting queries from within the

margin will cause maximal change in the hyperplane. Evaluating distance to the hyperplane

is an inexpensive procedure requiring just one dot product calculation. Uncertainty based on

distance to the hyperplane was also used in (Tong & Koller, 2001) which was referred to as

SIMPLE. Empirical evaluation on real world text corpora showed that improvements were

consistently made over random sampling.
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Despite its simplicity, uncertainty sampling has demonstrated strong performance in text

categorisation tasks (Lewis & Gale, 1994; Tong & Koller, 2001). Throughout this thesis

uncertainty sampling is used as a baseline from which other query selection strategies are

measured.

3.4.4 Version Space Reduction

A theoretically motivated way to select examples is based upon maximally reducing the size

of the version space (H) (Mitchell, 1997). The version space is comprised of all hypotheses

consistent with the known labelled training data. Assuming the target hypothesis is present

in the version space, the goal of supervised learning is to identify the target hypothesis from

H.

Active learning reduces the sample complexity for the supervised learning task. Selecting

queries which maximally reduce the size of the version space is advantageous since each query

will restrict the possible space in which the target hypothesis can lie. Ultimately the target

hypothesis can be found using exponentially fewer labelled examples (Seung et al., 1992;

Freund et al., 1997) by selecting queries that reduce maximally the size of the version space.

Although similar to the idea of uncertainty reduction, version space reduction is theoretically

proven while uncertainty reduction is mostly empirically driven.

Motivation

A greedy active learning strategy was proposed in (Dasgupta, 2005) and is shown to be as

good at minimising the sample complexity as any other strategy. More formally the greedy

strategy will select queries that cause maximal disagreement within the version space. Given

an unlabelled example x, let C+ be the number of hypotheses in H that predict a positive

label and C− be the number of hypotheses in H that predict a negative label. Queries are

selected such that min(C+, C−) is largest.

For most, non-trivial problems the geometry of the version space is complex, making the

area of C± impractical to explicitly calculate. A number of strategies have emerged in the

literature which attempt to select those queries which will maximally reduce the version space

using various approximations.
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QBC

The Query-By-Committee (QBC) selection strategy (Seung et al., 1992; Freund et al., 1997)

attempts to find queries which reduce the version space by utilising the principle of max-

imal disagreement. A committee of classifiers is constructed using the (zero temperature)

Gibbs algorithm, which selects hypotheses at random from the version space. Predictions

are obtained from both hypotheses for all unlabelled examples. If the predictions from the

committee members disagree for a particular unlabelled example then it is selected as a query,

otherwise it is rejected.

The QBC query selection strategy has been applied to a variety of inductive learning

algorithms including perceptrons (Freund et al., 1997) and näıve Bayes (McCallum & Nigam,

1998). QBC is commonly used in stream-based active learning.

SG-Net

SG-Net (Cohn et al., 1994) reduces the version space by selecting queries from the region of

uncertainty, which is defined by two subsets of the version space. Within the version space

(H) there exists a partial ordering in the generality of the hypotheses. Two subsets of the

version space are maintained, namely S ⊂ H which contains the most specific consistent

hypotheses and G ⊂ H which contains the most general hypotheses.

Queries are selected from the region defined by the intersection of S and G. If the query’s

true label is positive then hypotheses in S will become inconsistent and be removed from S,

conversely if the true label is negative then some hypotheses in G will become inconsistent

and be removed from the version space. In either case, the version space is reduced with

every query labelled.

Unlike QBC, SG-Net is only applicable to relatively simple learning problems, since as

the complexity increases so does the difficulty in computing and maintaining approximations

of the version space.

Single Classifier Solution

Strategies discussed so far have utilised committees in order to find queries that minimise

the version space. A single classifier solution was developed (Tong & Koller, 2001), which

utilises the duality between the feature space (X) and the parameter space (W) of a Support

Vector Machine. By definition, points in parameter space correspond to hyperplanes in
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feature space. Similarly, points in feature space correspond to hyperplanes in parameter

space, where observing a labelled example x in feature space restricts the set of hyperplanes

to those which correctly classify x.

Queries should be selected so that the version space is reduced as much as possible. This

corresponds to queries that bisect the version space, that is, half of the hypotheses predict

one label while the remainder predict the opposite label. Tong & Koller (2001) propose three

strategies:

SIMPLE which is based on (Campbell et al., 2000; Schohn & Cohn, 2000) selects the un-

labelled example closest to the hyperplane. The motivation for this strategy is that a

SVM corresponds to the largest radius hypersphere that can fit inside the current ver-

sion space, where the unit vector w is the centre of the hypersphere in parameter space.

Selecting examples in X close to the hyperplane corresponds to selecting the hyperplane

in W that is closest to w, thereby bisecting the version space and maximally reducing

its size. The SIMPLE strategy assumes the version space is symmetrical. However, this

is often not the case.

MinMax was proposed to deal with the relatively strong assumption of SIMPLE and allows

for non-symmetrical versions spaces. Similar to ERS, MinMax is an exhaustive process

where each unlabelled example x is tentatively labelled with every possible label and a

SVM is induced from Dℓ

⋃{x, y}.

The size margin of the resulting SVM is proportional to the radius of the hypersphere

in the version space. Dealing with a binary classification problem, two SVMs will be

constructed per unlabelled example (x), with margin+ being the size of the margin pro-

duced by labelling {x,+1}. Similarly, margin− being the size of the margin produced

by labelling {x,−1}.

Queries are selected as those examples which most equally divide the version space,

that is, result in similarly sized hyperspheres. MinMax selects the unlabelled example

for which min(margin+,margin−) is largest.

RatioMargin is a further adaption of MinMax where the possibility of an elongated version

space is taken into consideration. It examines the relative sizes of the margins and

chooses the query as the unlabelled example for which min(margin−

margin+ , margin+

margin− ) is largest.
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Both MinMax and RatioMargin offer improvement over SIMPLE during the early itera-

tions of active learning but are computationally far more expensive to run.

3.4.5 Incorporating Unlabelled Data

Query selection strategies described thus far have based the selection of queries only on

the information contained in the labelled training data. Potentially a lot of information is

contained in the large number of unlabelled examples at the disposal of the active learning.

In this section we discuss query selection strategies which utilise unlabelled data information

to select informative unlabelled examples.

Stream-based active learning implicitly incorporates density as unlabelled examples are

drawn according to the underlying distribution P (x). However, query selection decisions

must be made on-line, not allowing for the consideration of alternative unlabelled examples.

Conversely pool-based active learning allows all unlabelled examples to be considered but the

implicit modelling of P (x) is lost.

Clustering

Clustering the unlabelled data provides information about the underlying distribution of the

data P (x). This information can be incorporated into query selection strategies so that

queries are chosen as those unlabelled examples for which there is high uncertainty and also

are representative of many other unlabelled examples. Selecting queries from dense regions

of the input space mitigates against the possibility of selecting outliers (uncertain examples

are found in sparse and uninteresting regions of the input space). Outliers offer little to no

information about the target concept and waste valuable labelling effort. Furthermore, the

true decision boundary should reside in low density regions (Chapelle et al., 2003).

Representative sampling (Xu et al., 2003) incorporates clustering with uncertainty sam-

pling to select the most important uncertain queries. In each iteration of active learning,

the k-means algorithm (Forgy, 1965) is used to cluster those unlabelled examples that lie

within the margin of the SVM. Queries are chosen to be the unlabelled examples closest to

the centroids. Empirical evaluations demonstrate improvements during the early iterations

of active learning while uncertainty sampling outperforms in later iterations. As active learn-

ing progresses, the quality and quantity of training data increases resulting higher accuracy

classifiers induced in each iteration. A high accuracy SVM can better separate the data,

meaning fewer unlabelled examples within the margin. Clustering with few examples will
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not be capable of providing a good estimate of the underlying data distribution.

McCallum & Nigam (1998) extend the QBC query selection strategy to incorporate un-

labelled data. First it is used to provide an approximation of density P (x) by measuring

the average distance from an example to all other examples. Second, a committee of näıve

Bayes classifiers are formed by sampling according to the classifier parameter distribution

specified by the training data. Since active learning is seeded with a very small amount of

training data, the parameter estimates can be poor leading to poor classification accuracy.

Expectation-Maximisation (EM) is applied to the unlabelled examples to produce better

estimates for the näıve Bayes classifier.

Pool-leveraged active learning runs EM to convergence on each committee member before

QBC is used to select the query. Density weighted pool-based sampling selects queries as

the unlabelled example with the largest product of density and disagreement among the

committee. In this way queries are those unlabelled examples which are most uncertain and

also representative of many other unlabelled examples.

Nguyen & Smeulders (2004) propose a probabilistic framework that incorporates knowl-

edge of the density of a region P (x) into the query selection strategy. The motivation is

that examples in the centre of clusters are more informative and should be selected first.

Furthermore, samples from the sample cluster are likely to have the same label hence the

number of samples taken from the same cluster should be reduced.

Clustering information is used to approximate P (x) and is incorporated directly into a

formal model. The model is trained using logistic regression trained on the set of cluster repre-

sentatives. A Gaussian noise model is then used to infer the class label for non-representative

examples. The model allows for representative queries to be selected from the pool while

also avoiding repeated sampling from the same cluster. Queries selected are those unlabelled

examples which are in proximity to the decision boundary but also reside in regions of high

density.

A drawback of employing clustering algorithms such as k-means is that extra parameters

need to be set. The success of k-means depends directly on the correct value of k being

supplied. In an active learning setting where labelled data is scarce it is unclear how good

values for parameters can be found given that validation sets are not available.
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Expected-Error Reduction

An alternative method to utilise unlabelled data to select queries is to examine the effect on

the remainder of the unlabelled data. Chapter 7 examines techniques in which to increase the

quality of examples selected by Error-Reduction Sampling (ERS) (Roy & McCallum, 2001).

Cohn et al. (1996) proposes an ideal query selection strategy, namely one which selects

queries that, once labelled and incorporated into the training data, will result in lower future

error on text examples. Using an appropriate loss function (L) the expected error of the

learner is calculated as shown in (3.6).

E
P̂Dℓ

=

∫

x

L(P (y|x), P̂Dℓ
(y|x))P (x) (3.6)

where P (y|x) is the output of the target function while P̂Dℓ
(y|x) is the output of the hypoth-

esis trained from all known labelled examples.

Unfortunately, closed form calculation of expected future error is intractable for most

problems. ERS constructs an estimate of the expected future error using the unlabelled

data. ERS selects queries as those unlabelled examples that generates the lowest expected

error on the remainder of the unlabelled pool. The expected error on the remainder of the

unlabelled examples is calculated as shown in (3.7) using the entropy of the posterior class

distribution on a sample of the unlabelled examples and a log-loss function.

Ẽ
P̂D∗

ℓ

=
1

|Du|
∑

x∈Du

∑

y∈Y

P̂D∗
ℓ
(y|x) log(P̂D∗

ℓ
(y|x)) (3.7)

The true label (y) for unlabelled examples is not available therefore the expected error

must be estimated using every possible label. The prediction from the current classifier is

used to give a weighted average over all the possible labels as shown in (3.8):

x∗ = arg min
x∈Du

∑

y∈Y

P̂Dℓ
(y|x) ẼPDℓ

S

{x,y}
(3.8)

In contrast to alternative selection strategies which consider unlabelled examples in isola-

tion, ERS selects queries based on the effect their labelling will have on the remainder of the

unlabelled examples. Queries selected by ERS are those examples which maximally reinforce

the existing belief of the learner.

A related technique is that of look-ahead query selection (Lindenbaum et al., 1999) which

estimates the utility of knowing the true label for an unlabelled example for the k-Nearest
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Neighbour algorithm. Queries are selected as the unlabelled example which has the highest

utility. This strategy is similar to ERS where the log-loss function in (3.7) is replaced with a

0/1 loss function.

Guo & Greiner (2007) proposed MCMI[min] which is similar to ERS except rather than

take the weighted average as done in (3.8) the y value which cause the lowest entropy in the

posterior predictions is used.

3.4.6 Multiple Strategies

Query selection strategies are generally fixed and do not change over the life-cycle of the ac-

tive learner. A strategy will generally either explore or exploit. Exploration-based strategies,

such as random sampling or furthest-first, discover new information by traversing previously

unexplored regions of the input space. Conversely, exploitation-based strategies, such as un-

certainty sampling, leverage the learners internal knowledge to focus sampling from confined

regions of the input space. Neither exploration- nor exploitation- based strategies dominate

in active learning.

Empirical studies (Donmez et al., 2007; Xu et al., 2003) found that exploration is desirable

in the early iterations of active learning while exploitation is optimal in the later iterations.

This motivates the need for an adaptive query selection strategy that can balance exploration

and exploitation in order to increase the performance and stability of active learning.

Recently online active learning algorithms (Baram et al., 2004; Donmez et al., 2007; Osugi

et al., 2005; Pandey et al., 2005) have emerged to dynamically switch between a number

of different query selection strategies in each iteration. These online strategies adaptively

choose which query selection strategy to use based on their relative performance. In this

way, a particular query selection strategy is applied during the iterations where it is most

useful. Combining diverse strategies allows for greater flexibility in the selection of queries

and potentially a more robust selection strategy across multiple datasets. Managing multiple

strategies then becomes the problem of balancing exploration and exploitation in order to

achieve the highest performance possible.

Combining Strategies

In this section we discuss ways that have emerged to combine strategies. Typically two

alternative query selection strategies are combined. Methods for combining many query

selection strategies are discussed later.
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A straightforward method of combining two query selection strategies is presented in

(Osugi et al., 2005). Here the choice between using the explorative KFF (Baram et al.,

2004, Section 4.3) or using the exploitative SIMPLE (Tong & Koller, 2001) query selection

strategy is decided at random. A biased coin is flipped in each iteration of active learning and

exploration-based query selection is performed if the result is heads otherwise exploitation-

based query selection is performed.

The probability associated with performing an exploration-based query selection is based

upon how successful the previous exploration queries were. Success is defined to be a change

in the classifier induced after the query has been incorporated. This is measured using the

predicted labels (V ) of the unlabelled data prior to the query and the predicted labels (V ′)

obtained once the query was incorporated. It is calculated as the cosine of the angle between

the two vectors as shown in (3.9):

〈V · V ′〉
||V || ||V ′|| (3.9)

Intuitively exploration should cause a significant change in the classifier as previously

unseen regions of the domain are encountered. If exploration does not lead to a change

in the classifier, then it is deemed unsuccessful and the chances of exploration on the next

iteration of active learning is reduced. Empirical evaluation of the above algorithm was

conducted on both artificial and real world data. Results show that the adaptive algorithm

either outperforms or keeps track with pure query selection strategies. The algorithm favours

exploration in early iterations before tending towards exploitation in later iterations.

Guo & Greiner (2007) proposes Mm+M which combines two query selection strategies,

namely MCMI[min] and uncertainty sampling. During the MCMI[min] strategy an optimistic

guess is made on the label of y for the query example. The true label is revealed by the oracle

in the next iteration. If the optimistic guess is incorrect, uncertainty sampling us used to

select the query otherwise MCMI[min] continues to select the query. Mm+M was reported

to be statically significantly better on 12 of 17 UCI dataset it was evaluated on.

Donmez et al. (2007) proposed dual strategy active learning (DUAL) which combines two

query selection strategies, namely density-weighted uncertainty sampling (DWUS) as pro-

posed in (Nguyen & Smeulders, 2004) with uncertainty sampling. Xu et al. (2003) previously

found that density-based query selection strategies perform well in the early iterations of

active learning while uncertainty-based strategies performed better in the later iterations.

DWUS favours those unlabelled examples with lower uncertainty but with higher infor-
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mation (due to density). This is advantageous in the early iterations where many unlabelled

examples are highly uncertain. However, in later iterations informative queries reside in low-

density regions. Since DWUS favours queries from dense regions unlabelled examples with

high uncertainty are not selected, decreasing performance.

The primary objective of DUAL is to achieve better performance in the later iterations

of active learning by finding the optimal point at which to switch from the density-based

to uncertainty-based query selection. The cross-over point is found by predicting the low

derivative of the expected error as shown in (3.10):

∂ǫ(DWUS)

∂xt
≤ δ (3.10)

where the expected error is calculated as the average expected error of DWUS on the unla-

belled data. Monitoring the average expected error allows for an estimate of when perfor-

mance saturates. In this case it is when it falls below δ which is a small fixed, user defined,

value. When the cross-over point is reached DUAL uses both DWUS and US to select queries.

Unlike the hybrid method in (Xu et al., 2003) DUAL determines dynamically when to switch

over to uncertainty sampling. Empirically DUAL was shown to be better than each of the

sampling strategies used in isolation.

Multi-Armed Bandit

In the multi-armed bandit (MAB) problem a gambler is presented with k non-identical slot

machines1 and must choose one machine to play. This decision is repeated over a number of

trials T and the objective of the gambler is to maximise their total reward.

At the heart of the MAB problem is a trade-off between exploration and exploitation:

choosing to always play a single machine can prevent discovery of a better machine and

choosing to play all machines can prevent maximising reward. Combining several query

selection strategies can be formulated as a MAB problem. A number of existing reinforcement

learning algorithms that solve the MAB problems can then be applied.

One way to combine strategies is to formulate the task as an opaque Multi-Armed Bandit

(MAB) (Vermorel & Mohri, 2005) problem, where the learner must choose among several

machines to play, with the goal of maximising the overall reward. A number of trials are

conducted which give a finite horizon.

1Sometimes this is stated as one slot machine with several arms but it is conceptually easier to consider
several one-armed bandit machines
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In an active learning setting the learner must choose to play one of the k machines (query

selection strategies) in each iteration. Playing a machine represented selecting a query using

the chosen query selection strategy. After playing the machine the reward is calculated.

Ideally the reward should be the true accuracy of the classifier induced from all labelled data.

However, this information is not available so estimates must be used.

Pandey et al. (2005) proposes a technique of combining two query selection strategies

using an opaque MAB. The follow the perturbed leader (FPL) algorithm was used to choose

amongst the k slot machines (query selection strategies). FPL chooses the slot machine

to play based on the performance of each machine when it was played in the past. The

machine which has performed best in the past is chosen. A perturbation is added to allow

for exploration.

In each iteration, the learner must choose between an explorative strategy (Random

Sampling) and an exploitative strategy (Uncertainty Sampling). In this so called hard choice

the learner must play only one query selection strategy. Soft choice allowed the learner to use

both strategies but limits the number of query examples each strategy can select. Reward is

the expected error, calculated using cross validation on the training data 2.

Empirical results demonstrated an increase in the learning rate of active learning when

the combined strategy was used. In addition, combining the two query selection strategies

using both hard and soft choice techniques increased performance of active learning. The

lift in performance was attributed to the learner favouring the more optimal query selection

strategy in different stages of active learning (i.e. random exploration in the early iterations

while exploitation in the later iterations). While this strategy combines just two strategies,

the use of MAB allows for more strategies to be combined.

Baram et al. (2004) propose COMB, which combines three different query selection strate-

gies. However, active learning is formulated as a problem of prediction with expert advice

(PEA). In this setting the goal is to utilise and combine k experts in order to maximise

reward. Each expert will give advice on how to play the n slot machines.

In active learning the k experts correspond to the query selection strategies while the

n slot machines are the unlabelled pool of examples. In each iteration the advice from the

experts is combined and the slot machine to play is chosen. COMB utilises the EXP4 (Auer

et al., 2003; Vermorel & Mohri, 2005) algorithm which combines the advice of the experts to

select the next slot machine to play.

2this strategy is not ideal given the small amounts of training data
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The query selection strategies combined are: SIMPLE which is an uncertainty sampling

strategy as described in (Tong & Koller, 2001), ERS which is the strategy described in (Roy

& McCallum, 2001) but adapted to work with a SVM and KFF which is a furthest first

strategy that is designed to work in the kernel-defined feature space. Both SIMPLE and

ERS are exploitation-based strategies since they select the next query example based on

the current hypothesis. KFF is an exploration-based strategy, which seeks to find the most

dissimilar examples to those already labelled.

Each of the three query selection strategies provides advice on which slot machine to play

next, essentially ranking the machines. The three ‘ranked’ advice vectors are combined to

construct an advice probability vector from which the slot machine to play is chosen. The

slot machine with the highest advice probability is greedily selected in each iteration to be

played. As previously stated each slot machine corresponds to an unlabelled example and

the query corresponds to the chosen slot machine. Classification entropy maximisation was

used as the reward.

Empirically evaluations of COMB on a number of dataset show that its performance is

consistently strong. The algorithm generally always either tracked the performance of the

best strategy in hindsight or outperformed it.

The performance of both approaches using MAB algorithms to incorporate more than

one query selection function to active learning (Baram et al., 2004; Pandey et al., 2005)

demonstrates that performance increase can be achieved if exploration and exploitation are

carefully balanced.

3.4.7 Summary

Query selection is critical to the success of active learning since it must identify the informative

unlabelled examples. In the latter chapters of this thesis we investigate novel query selection

strategies which can identify more informative examples, thereby reducing the labelling effort

and ultimately the cost of applying machine learning solutions. Furthermore, we investigate

techniques to reduce the computational expense of existing query selection strategies, thereby

reducing the computational overhead of active learning and lowering the cost of deploying

machine learning solutions.
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3.5 Evaluation

The goal of active learning is to induce an accurate classifier using the minimal number of

labelled training examples. It is therefore desirable to measure the performance of active

learners allowing for comparisons to be made between various competing strategies.

The performance of an induced classifier is dependent on the training data supplied to

it. Alternative query selection strategies will result in the construction of different training

sets. Various query selection strategies can be compared by examining the performance of

the classifiers induced from the training data selected by each of the strategies.

Performance in supervised learning tasks is typically measured by means of a hold-out

test set (see Section 2.8). Most active learning research is conducted using a pre-labelled

corpus, hence a hold-out test set can be used to track the performance of the various active

learning strategies. We discuss the techniques and performance metrics commonly reported

in the literature.

3.5.1 Fixed Intervals

The performance of alternative active learning strategies can be reported by comparing per-

formance values obtained from the various query selection strategies after a predetermined

number of iterations. The classifier induced in the ith iteration is evaluated on a hold-out

test set using an appropriate performance metric. In the most extreme case, performance

is only evaluated once. This form of evaluation is computationally inexpensive since it is

only performed after a number of iterations of active learning. This style of evaluation only

records a snap-shot of the performance of the active learning.

3.5.2 Learning Curves

A straightforward way in which to display the performance of active learning throughout

its life cycle is to evaluate the performance of the classifier induced in each iteration. A

classifier is induced from all the known labelled data and evaluated against a hold-out test

set in each iteration. A series of performance values are obtained, one for each iteration

of active learning. Plotting these values gives the learning curve for the particular query

selection strategy (as shown in Figure 3.5). Alternative query selection strategies will result

in different queries being selected and thereby producing a different learning curve.

The top-line performance of active learning is to achieve the same performance as su-
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Figure 3.5: Learning Curves for active learning. The plot shows the top-line performance
obtained by supervised learning (SL) as well as the baseline performance of random sam-
pling (RS). The active learner should outperform the baseline and approaching the top-line
performance using the minimal number of queries

pervised learning when all unlabelled examples are labelled. The baseline performance is

random sampling. Active learning should approach the top-line performance using the mini-

mum number of queries. Furthermore the active learner should also outperform the baseline.

Learning curves are an easy way to report the performance of various query selection

strategies. The success of strategies can be shown visually by plotting their learning curves.

Ceteris paribus, the optimal strategy corresponds to the highest performing learning curve.

3.5.3 Deficiency

Deficiency (Baram et al., 2004) is a global performance metric for active learning and measures

the ratio between area A and B of Figure 3.5. The area A corresponds to the deficiency

between the top-line supervised learning accuracy (trained on all examples in the pool) and

the active learner. Area B corresponds to the deficiency between the top-line supervised

learner (trained on all examples in the pool) and random sampling. The deficiency value
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(DA(AL)) is calculated as shown in (3.11)

DA(AL) =

∑T
i=1 A(SL)−Ai(AL)

∑T
i=1 A(SL)−Ai(RS)

(3.11)

where T is the number of iterations of active learning, A(SL) is the accuracy achieved by

passive learning using the entire pool and Ai(AL) is the accuracy achieved by the active

learner after the ith iteration. Similarly Ai(RS) is the accuracy achieved by random sampling

after the ith iteration. While accuracy is used in the calculation of deficiency, alternative

performance metrics can be substituted in (e.g. F1) when appropriate.

3.5.4 p-value Plot

Proposed by Becker (2008) the plots are formed using the p-value obtained from performing

a paired t-test at every iteration of active learning. The plot shows at which iterations each

strategy is statistically significantly better than random sampling.

3.5.5 Confidence Intervals

Confidence Intervals (Culver et al., 2006) are a method of combining the p-values obtained

from performing one tail paired t-tests in every iteration of active learning into a single value.

This allows for easier comparison between alternative strategies to be made.

Statistical significance is established between two alternative strategies by taking the

median confidence level at which they differ across all iterations of active learning. At

each iteration of active learning the maximum confidence level at which the difference be-

tween two alternative strategies is calculated. A number of confidence level thresholds

{0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99, 0.995} are considered. For example, if the null hypothesis

is rejected at α = 0.05 then the confidence level for that iteration is 0.95. One tailed paired

t-test have a null hypothesis H0 : A > B. Positive values correspond to iterations where

strategy A is significantly better than B, similarly negative values correspond to iterations

where strategy B is significantly better.

A series of confidence level values (ti), one for each iteration, is returned where the values

correspond to the confidence threshold (e.g. {t1, t2, . . . , tm}). The median confidence level

across all iterations of active learning is used to establish significance. Using the median

rather than the mean offers greater protection from outliers and also requires at least half of

the iterations to be significantly better in order to be considered significantly better overall.
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3.5.6 Semi-supervised performance metrics

The scarcity of labelled data in active learning problems means that supervised learning per-

formance measurement techniques, in particular hold-out test sets, cannot be readily applied.

The performance metrics discussed above can be used in conjunction with cross-validation

on the labelled data. However as pointed out by (Schohn & Cohn, 2000; Baram et al., 2004)

unless the labelled data is sufficiently large, cross-validation will provide substantially biased

estimates. This is due to the fact that the training data selected by active learning is not

i.i.d. since the query selection strategy will favour difficult to classify examples.

Classification Entropy Maximisation (CEM) (Baram et al., 2004, Section 6) is a semi-

supervised performance metric. It is defined as the binary entropy of the classification predic-

tions given by the most current classifier over the set of unlabelled examples and is calculated

as shown in (3.12)

CEM(P̂Dℓ
) = H(

|P̂Dℓ
(Du) = +|
|Du|

) (3.12)

where |P̂Dℓ
(Du) = +| is the number of positive predictions given by the classifier when run

on the unlabelled data and H is the binary entropy3. CEM gives higher values to a more

even distribution of labels and was seen to closely resemble the true error estimate.

3.5.7 Summary

Results reported in the empirical evaluations in this thesis use one or more of the metrics

described here. Where possible we use multiple metrics to ensure the performance of active

learning is accurately and comprehensively reported.

3.6 Summary

This chapter reviewed the active learning process. Motivated by scarcity of labelled training

data, active learning has been shown to construct accurate classifiers from very small amounts

of training data. The active learning process was described in detail with a canonical process.

A large number of parameters are used to control the active learning process, each of which

were discussed.

We reviewed the query selection strategy arguably the critical component of an active

learning system. It is responsible for selecting informative examples from the unlabelled

3The binary entropy of a random variable with bias p is: H(p) = H(1− p) = −p log(p)− (1− p) log(1− p)
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pool and ultimately determines the success of active learning. Query selection is an active

research topic and as such a wide variety of strategies have emerged. We highlighted a number

of heuristics used to select queries.

The goal of the research in this thesis is to reduce the labelling effort. The dual problem

is increasing the learning rate of active learning. In the latter chapters of this thesis we

empirically evaluate novel query selection strategies which aim to select more informative

examples in an efficient and practical manner.
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Chapter 4

Methodology and Baseline Analysis

4.1 Introduction

In this chapter we describe the experimental methodology used in the empirical evaluations

with the goal of providing sufficient information to aid reproducibility of the results reported

in this thesis. We begin by describing the real world text corpora and partitions of the data

used in the empirical evaluation. Details on pre-processing, classification induction algorithms

and evaluation metrics (reviewed in Chapter 2) are given.

Performing active learning for text categorisation problems in real world scenarios presents

a bewildering number of settings and parameters. Chapter 3 reviewed the components of

active learning and the parameters which are used to control the process. Active learning

parameters used in the empirical evaluation in latter chapters are given.

Baseline analysis is performed to demonstrate not only the benefit of active learning

over passive learning but also to highlight the active learning process used in the empirical

evaluations in the latter chapters of this thesis. Despite its simplicity uncertainty sampling

(US) has demonstrated strong performance in text categorisation tasks (Lewis & Gale, 1994;

Tong & Koller, 2001). Throughout this thesis uncertainty sampling is used as a baseline from

which other query selection strategies are measured.

4.2 Datasets

Experiments were conducted on two well-established, publicly available benchmark text cat-

egorisation corpora. Where possible we used standardised splits and techniques to partition

the corpora into training and testing sets. Below we describe each corpus, giving details on
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the pre-processing performed.

4.2.1 R10

The Reuters-21578 is a collection of 21,578 news articles collected from the Reuters newswire

in 1987. There are 135 categories into which the articles are classified. Multiple labels are

possible whereby one article can be assigned to many categories. Additionally, some articles

are not assigned to any category. Some 8,676 articles had not been manually indexed and

are usually removed from the corpus, leaving 12,902 articles.

Debole & Sebastiani (2005) examine the R10, a subset of the Reuters-21578 that considers

only the top ten categories ranked by the number of positive training examples. Table 4.1

shows the number of each category found in the training and testing sets. The distribution

of categories is imbalanced making the task of automated text categorisation challenging.

Table 4.1: R10 category distribution

Category Train Test Rank

Acq 1650 719 2

Corn 181 56 10

Crude 389 189 5

Earn 2877 1087 1

Grain 433 149 4

Interest 347 131 7

Money-Fx 538 179 3

Ship 197 89 9

Trade 369 117 6

Wheat 212 71 8

Pre-processing

Documents were parsed into the vector space model (see Section 2.4). Individual words

formed the features used, where the total number of features was the lexicon of all unique

words in the training set. Stopwords were removed and stemming was applied in order to

help reduce the dimensionality of the resulting vector space model. Term weighting (see

Section 2.4.2) (tf ∗ idf) was applied, where the idf component was computed using only the

training data for empirical soundness. Feature selection was not applied.
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Partition

Standardised splits of the data have been used in the text categorisation literature in order

to help reproducibility and allowing for direct comparisons to be made. The most common

is the ModApté split (Apté et al., 1994) which divides the corpus into a set of 9,603 training

examples and a set of 3,299 testing examples. The division is done based on chronological

order, with test examples being newer than training examples. This mirrors real world

deployment where the classifier would have to deal with new previously unseen documents.

Pool

To reduce computational cost, a subset of the training examples are used as the unlabelled

pool for active learning experiments. Figure 4.1 shows the methodology used in the experi-

ments which closely resembles that of (Tong & Koller, 2001). In each trial of an experiment,

a pool of 1,000 examples was formed by randomly selecting examples from the 9,603 training

data. Seed examples are drawn at random from the unlabelled pool and labelled. The pool

size at the start of active learning is therefore 1,000 minus the number of seed examples

supplied.

In contrast to passive supervised learning, pool-based active learning considers the train-

ing data to consist of a pool of unlabelled examples. A separate set of training data exists

which initially contains just the labelled seed examples - which are chosen at random from

the pool. Queries selected from the pool are placed in the training data once labelled by the

oracle.

4.2.2 20NG-4

The 20 Newsgroups corpus1 consists of approximately 20,000 newsgroup articles collected

from 20 Usenet topics by Ken Lang. The dataset is a popular benchmark corpus used in

a variety machine learning tasks including text categorisation and clustering. Topics range

from sports to atheism.

The 20NG-4 is a subset of the 20 newsgroups dataset, consisting of four binary classifica-

tion problems of varying difficulty were used in the experiments. Table 4.2 describes the four

sub-problems which were previously used in active learning experiments (Schohn & Cohn,

2000). This dataset was used extensively for empirical evaluation in this thesis due to its size

1http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 4.1: Data split for the R10 dataset. The original raw corpus (left) is divided into
training and testing sets using the ModApté split (middle). The training set is further
divided (right) into a small training set consisting of just the seed examples and a pool of
1,000 unlabelled examples drawn at random from the training data. The test set remains
unchanged.

and range of problems.

Pre-processing

Documents in the 20NG-4 are parsed into the vector space model. Individual words formed

the features used where the total number of features was the lexicon of all unique words in

the training set. Stopwords were removed and stemming was applied in order to help reduce

the dimensionality of the resulting vector space model. Feature selection was not performed

and documents were normalised for length.

Partition

The 20NG-4 can be partitioned in a number of ways (see Section 2.8.1). Two methods of

splitting this dataset are used in the empirical evaluations in this thesis:

50/50 Split This is where the data is randomly divided into two subsets, where one set is
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Table 4.2: 20NG-4 Sub-problems

Label Data Difficulty

(AR) alt.atheism vs. Difficult
talk.religion.misc

(GX) comp.graphics vs. Moderately
comp.windows.x Difficult

(WH) comp.os.ms-windows.misc vs. Moderately
comp.sys.ibm.pc.hardware Easy

(BC) rec.sports.baseball vs.
sci.cryptography Easy

used for training while the other is held back for testing. This is referred to as 50/50

train/test split (Schohn & Cohn, 2000). Several trials of the experiments are conducted,

each with a different random 50/50 split. Results are then averaged across all the trials

of the experiment. Each problem had approximately 2,000 examples giving a training

set size of roughly 1,000 and a test set size of roughly 1,000. Unless otherwise stated,

ten trials of the experiment were conducted.

k-Fold Cross Validation An alternative approach to split this dataset is k-Fold cross vali-

dation, where the data is partitioned into k folds (or sets) and k trials of the experiment

are conducted - one for each fold. In each trial of the experiment a different fold is held

back as test data while all other folds are used as training data. The results of the

k trials are averaged to produce the final results. 10-fold cross validation was used in

our experiments, where each problem of the 20NG-4 had approximately 2,000 exam-

ples giving a fold size of roughly 200. The test set consisted of just one fold while the

training set consisted of 9 folds (approximately 1,800 examples).

Pool

Unlike the R10 dataset, the number of documents in each of the 20NG-4 problems is suffi-

ciently small that the unlabelled pool was formed using all the original training data. Seed

training examples are extracted at random from the unlabelled pool and labelled. The pool in

the 50/50 partition therefore consists of approximately 1,000 minus the s seed examples while

in the k-Fold validation consists of 1,800 unlabelled examples minus the s seed examples.
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4.3 Software

Where possible we have attempted to use open-source machine learning software to implement

our experiments. When this was not feasible we constructed bespoke software to meet our

requirements. Below we will discuss the software used in the various components of the

experiments conducted.

4.3.1 Pre-processing

We built a custom parsing engine in order to allow for greater flexibility in processing text

data. The Berkeley parsing engine (BPE) is built using modNLP2 and is responsible for the

conversion of textual documents into document vectors within a vector space model. The

model can be stored and used later with classification algorithms in both passive and active

learning settings.

Documents are tokenised based on white-space characters and the frequency of each token

in the corpus is maintained. The Matrix Toolkit for Java (MTJ)3 provides matrix function-

ality, used in the vector space model. Due to the sparse nature of text data, computational

savings where made by using the sparse versions of both matrices and vectors.

Dimensionality reduction is commonly combined into the pre-processing stages in an effort

to reduce memory and storage overheads. Feature selection (Section 2.5.1) was incorporated

into BPE in order to allow for reductions in dimensionality to be made prior to storing the

model. Several feature selection techniques are implemented including document frequency

and information gain.

A common interface is required between the parsing engine and the classification system.

The use of the vector space model suggested the use of a matrix-based representation. The

matrix market4 was developed by NIST to allow for the convenient access to repositories of

test data for use in comparative studies of algorithms. A number of file formats are used to

efficiently store large matrices. We used the coordinate file format to store the output of the

processing engine. The choice of this format was motivated by the sparse nature of text data.

2http://modnlp.berlios.de
3http://ressim.berlios.de/
4http://math.nist.gov/MatrixMarket
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4.3.2 Classification

A number of different machine learning software libraries are available each offering different

benefits and drawbacks. While no one software library met all our requirements we combined

several in order to perform the experiments. We strived to utilise open-source machine

learning libraries for two reasons. First, since the software is open-source we could easily

adapt and change the existing software to meet our requirements. Secondly, the use of

existing, freely available software increases reproducibility.

WEKA

Waikato Environment for Knowledge Analysis (Witten & Frank, 2005) is a machine learning

library written in Java. It consists of a vast collection of classification induction algorithms

ranging from decision trees to support vector machines. WEKA was chosen since it is open-

source and is commonly used in machine learning experiments. The primary use for WEKA

was to supply implementations of näıve Bayes and k-NN.

Spider

The Spider is a Matlab toolbox for performing supervised, unsupervised and semi-supervised

machine learning. It is an open source toolbox available for download online5. The spider

implements a number of classification induction algorithms and encapsulates many existing

machine learning libraries and offers a unified interface to them using the data object. In our

research we have used the Spider toolbox for performing principal component analysis on

text categorisation data as well as providing an implementation of a support vector machine.

4.3.3 Active Learning

Existing machine learning software is primarily used for passive supervised learning. Our

requirements were for an experimental platform on which we could quickly develop experi-

ments that could be run in conjunction with existing open-source machine learning libraries.

We decided to implement bespoke software to meet the active learning requirements of our

research. Matlab was chosen as the development platform given its ability to handle matrices

as well as easy integration to Java. We developed a framework of utility functions and scripts

which we could assemble in a script to perform an experiment.

5http://www.kyb.tuebingen.mpg.de/bs/people/spider/
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4.4 Experiments in Active Learning

In this section we detail the experimental settings used in the empirical evaluations in the

latter chapters of this thesis. Chapter 3 reviewed the various components of an active learning

system and detailed the parameters used to control the process. Query selection was identified

as the critical component of the active learning system and a wide variety of query selection

strategies were reviewed.

In order to fully compare alternative query selection strategies, every possible combination

of active learning parameters must be evaluated for each strategy. The number of experiments

quickly becomes unwieldy. For this reason it is common to fix all parameters except those

which are directly under investigation. In this way, fair comparisons can be made between

various strategies using fewer empirical evaluations.

We begin by discussing implementation details for the various components of the canonical

active learning algorithm (see Section 3.3.1). A common set of parameters used to control

the active learning process are given along with values. These parameters can be fixed in

order to reduce the number of experiments conducted to evaluate a query selection strategy.

Finally we detail the evaluation criteria used for the empirical evaluations.

4.4.1 Active Learning Components

Active learning combines several components in order to perform its task. These components

are supplied to the learner and are outside its control. We give details on these components

below.

Unlabelled Data

Unlabelled data can be obtained in a number of ways (see Section 3.3.2). In this thesis we

focus on pool-based active learning. Since annotated corpora are used, the unlabelled pool

was formed by taking the appropriate training data and masking the labels.

Oracle

Labelling text documents is a tedious and time consuming job. If a human oracle was

used only a limited number of active learning experiments could be conducted. Rather than

having a human-in-the-loop for active learning experiments the role of the oracle is commonly

emulated by performing experiments on annotated corpora. Queries are selected from the
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pool using the query selection strategy and the true label is obtained by revealing the masked

label supplied in annotated corpus. In this way the human oracle is emulated allowing for

more active learning experiments to be conducted.

Classifier

A small set of classifier induction algorithms (see Section 2.6) were used in the empirical

evaluation in the latter chapters. Throughout this thesis we perform homogenous active

learning, where the classifier used to provide predictions on the unlabelled data is of the

same type as the final classifier produced when active learning is stopped. Heterogeneous

active learning (Lewis & Catlett, 1994; Iyengar et al., 2000) is where a different type of

classifier is used to provide predictions than the one used as the final classifier.

Seed Data

Seed examples form the initial training set supplied to the active learner and are crucial for

the success of active learning in the early iterations. In order to allow for fair comparisons

to be made between alternative active learning strategies, seed data is fixed across each trial

of an experiment. This ensures that any changes to the training data are strictly due to the

strategy in use. Seeds are selected by randomly sampling a number of unlabelled examples

from the pool and labelling them prior to the start of active learning. In most experiments

an equal number of positive and negative examples are selected as seed data. This removes

initial bias from the first classifier and also ensures that examples of minority classes are

represented in the training data.

4.4.2 Parameters

Section 3.3 described the parameters used to control the active learning process. Below we

give details on a common set of parameters used in all active learning experiments in this

thesis.

Stopping Criteria

In most experiments a fixed stopping criterion was employed. We stopped active learning

when a resource was exhausted, where the resource chosen was either the unlabelled pool or

the oracle.
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Where possible active learning was allowed to continue until all unlabelled examples

from the pool were exhausted. This approach gives a more detailed representation of the

performance of active learning over its entire life-cycle. However, the size of the pool is

typically extremely large since it is inexpensive to collect unlabelled data. In order to reduce

computational overhead we generally halted active learning when the oracle was exhausted.

The oracle is willing to label a predefined number of unlabelled examples. Typically, the

number is relatively low since it is believed that the oracle (human) will quickly tire of

labelling examples.

In the empirical evaluation we choose to stop active learning after 100 or 250 iterations as

we consider this to be a reasonable number of queries to label. It is unrealistic for an oracle

to label thousands of examples especially if we assume the oracle is human. In addition, if

labelling requires considerable time or is expensive to perform (e.g. biological tests) then

only a small number of queries are likely to be labelled.

Granularity

Using a fixed stopping criterion means the objective of the active learner is to achieve maximal

performance within the limited number of queries allowed. In this setting more emphasis is

given to selecting informative examples rather than computational efficiency. We wished

to reduce the labelling burden therefore the finest granularity was used in the empirical

evaluations. In this case, we trade computational expense for reduction of labelling effort.

4.4.3 Evaluation

In order to compare alternative active learning strategies, a way to evaluate the relative

performance is required. In Section 3.5 a number of the most popular evaluation metrics

were discussed. All are based on evaluating the current classifier using a holdout test set.

This is possible when performing active learning in laboratory conditions where annotated

corpora are used.

Experiments conducted in latter chapters of this thesis evaluated the current classifier

against a holdout test set for every iteration of active learning. A series of performance

values are obtained for each strategy. The confusion matrix obtained was stored and from

this confusion matrix a number of common performance metrics can be calculated and plotted

to form a learning curve. Additionally, metrics such as CEM can be calculated from the stored

confusion matrices.
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The correctness of a performance metric depends on the data and parameters of the exper-

iment. In order to achieve a more complete and comprehensive analysis of the performance of

various active learning strategies we conducted our evaluation using the performance metric

(accuracy, F1, . . . ) most suitable to the setting. Where possible we also display results using

multiple evaluation metrics.

4.5 Baseline Analysis

Baseline analysis was performed to highlight the difference between active and passive learn-

ing. In order for active learning to be considered beneficial it should demonstrate a significant

reduction in the labelling effort required to produce an accurate classifier.

The supervised learning accuracy is the accuracy attained by a classifier induced via

supervised learning when the entire pool is labelled. We consider how many labelled examples

are required by both passive and active learning to achieve the supervised learning accuracy.

Active learning should converge to the supervised learning accuracy at a faster rate than

passive learning.

4.5.1 Experiment Settings

Experiments were performed on the R10 dataset as described in Section 4.2.1. Ten trials of

the experiments were conducted where a new pool 1,000 unlabelled was constructed in every

trial.

Labelled training data consists of seed data plus labelled queries from the pool. Seed

data was constructed by selecting ten positive and ten negative examples from the pool at

random. In order for a fair comparison to be made active learning using both query selection

strategies were supplied with the same seed data.

Active learning was performed using uncertainty sampling (Lewis & Gale, 1994) where the

query is selected as the most uncertain example as determined by the prediction confidence

of the most recently induced classifier. The classifier used was a committee consisting of

10 members and was constructed using bagging (see Section 2.6.4). The WEKA bagging

classifier returns a class probability estimate from the committee for any unlabelled examples

presented to it. Predictions for all examples in the pool are obtained from the committee and

queries are selected based on the uncertainty of these predictions. The unlabelled pool is never

replenished and active learning was continued until the pool was exhausted. Granularity was
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set to 1, meaning that just a single query was selected in each iteration.

Passive learning is emulated by random sampling whereby the selection of the query

from the pool is done at random. Results are reported using macro and micro averaged F1.

Additional learning curves for individual categories are given in Appendix A.

4.5.2 Results

Figure 4.2 shows the results obtained by performing active learning until the pool of unlabelled

examples was fully exhausted. As the number of labelled examples increases, the accuracy

achieved by both of the active learning strategies converge to the passive supervised learning

accuracy. The supervised learning accuracy is denoted using the solid horizontal line (SL) in

Figure 4.2. Active learning using random sampling (RS) is denoted as the dotted line and

active learning using uncertainty sampling (US) is denoted as the dashed line.
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Figure 4.2: Results obtained using a bagged multinomial näıve Bayes classifier with Active
Learning run until pool exhausted, seeded with 10 examples from each class and selecting 1
query per iteration. F1 is used as the evaluation metric and evaluation on the test set was
done after every 5 iterations.

Both active and passive learning will converge to the supervised learning accuracy as the

pool of examples are labelled and added to the training data. The power of active learning

is in the rate at which the convergence happens. Random sampling can be seen to slowly

converge to the supervised learning accuracy while uncertainty sampling is seen to rapidly

converge to the supervised learning accuracy. The results reported here are consistent with

previous research (Lewis & Gale, 1994).
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Table 4.3 shows the number of queries required by both random sampling and uncertainty

sampling to achieve the supervised learning accuracy.

Table 4.3: Queries required to achieve supervised learning accuracy on R10 dataset.

RS US

Macro F1 972 125
Micro F1 840 103

The benefit of performing active learning becomes evident when the number of queries

required to achieve the supervised learning accuracy is examined. It was found that random

sampling required 972 queries before reaching the supervised learning macro F1 value while

840 queries were required to reach the micro F1 value.

Conversely, active learning requires significantly fewer queries. At just 125 queries the

supervised learning macro F1 value is achieved, while just 103 queries were required to achieve

the supervised learning macro F1 value.

By carefully selecting examples using uncertainty sampling a reduction of 847 queries was

observed for the macro F1 when compared to random sampling. Similarly, a reduction of 737

queries was observed for micro F1 when compared to random sampling. This demonstrates

a significant reduction in labelling effort.

Statistical Significance

Statistical significance is demonstrated using a paired t-test. Directly under the learning

curves in Figure 4.2 a plot of the p-value associated with performing a paired t-test (as

proposed in (Becker, 2008)) is given. The paired t-test compares uncertainty sampling with

random sampling for every iteration of active learning. Statistical significance at α = 0.05 is

shown in the plot as a solid line. Results obtained demonstrate that uncertainty sampling is

statistically significantly better than random sampling over the majority of the iteration of

active learning.

Random sampling is competitive only in the very early iterations and again in the later

iterations. Initially, with small amounts of training material, the classifiers induced tend to be

poor, hence providing poor predictions on the unlabelled data. In these situations uncertainty

sampling is no better than random sampling. However, as the size of the training data

increases, classifiers induced are more accurate leading to better predictions on the unlabelled
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data. Uncertainty sampling can now leverage the information given by the predictions to

select more informative examples than random sampling.

As active learning approaches the later iterations, random sampling is seen to become

competitive once again. This is due to the fact that the pool is almost depleted and both

strategies converge to the supervised learning rate.

4.5.3 Discussion

The results obtained are consistent with previous research that has shown active learning to

significantly reduce the labelling effort compared to supervised learning. It was observed that

an 87 percent reduction in the number of queries was achieved when uncertainty sampling

was employed.

Uncertainty sampling demonstrates significant improvements over random sampling. How-

ever, during the early and latter iterations of active learning random sampling was competitive

with uncertainty sampling. This result supports the idea that there is not a globally optimal

query selection strategy, rather different strategies are optimal during distinct phases of the

active learning life cycle. Donmez et al. (2007) found that exploration based query selec-

tion strategies, such as random sampling, offer greater benefit during the initial iterations

of active learning. In latter iterations, once a good model of the problem is established,

exploitation-based query selection strategies such as uncertainty sampling are optimal.

An interesting phenomenon which has been previously reported in the literature (Schohn

& Cohn, 2000) is that active learning can achieve higher accuracy than that of a passive

learner trained on all 1, 000 labelled examples. This is also observed in the reported baseline

analysis.

4.6 Summary

This chapter detailed the methodologies used for empirical evaluations throughout this thesis.

Details of datasets and software used were given to aid reproduction of results presented in

latter chapters. Active learning is controlled by a large number of parameters. In order to

curtail the number of experiments required when comparing two query selection strategies

certain parameters are fixed. We gave details on the parameters used in the active learning

experiments conducted and supply default values.

Baseline analysis on the R10 dataset demonstrated the ability of active learning to signif-
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icantly reduce the labelling effort. Despite its relative simplicity, uncertainty sampling is one

of the best performing query selection strategies in active learning. Throughout this thesis

we compare alternative query selection strategies to both uncertainty sampling and random

sampling.

In the following chapters we propose methods and techniques which improve the perfor-

mance of active learning. Novel query selection strategies are developed that are capable of

selecting more informative examples and techniques are investigated to decrease the compu-

tational overhead of active learning.
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Chapter 5

History-Based Query Selection

5.1 Introduction

In this chapter we propose History-based query selection strategies, which incorporate infor-

mation from prior iterations of active learning into the selection of informative unlabelled

examples as queries in the current iteration.

Query selection strategies typically exhibit the Markov property (Sutton & Barto, 1998,

Chapter 3) that implies that selection of future queries are based only on the current clas-

sifier’s predictions. In addition, predictions obtained in the current iteration are ephemeral

and are discarded after the query is selected. We hypothesise that valuable information is

being lost and propose to capture and incorporate information from prior iterations to help

select more informative queries in the current iteration.

Predictions from every iteration of active learning are collected and stored in a data

structure we call History. The History allows for the prediction for a particular unlabelled

example to be retrieved for every iteration of active learning thus far. Novel History-based

query selection strategies are proposed which utilise the History to incorporate predictions

given in prior iterations of active learning into the query selection process. History-based

query selection strategies are non-Markovian since they select queries based on information

from both the current and past iterations of active learning. Furthermore, the use of the His-

tory makes History-based query selection strategy very efficient since they reuse predictions

given in prior iterations of active learning.

Empirical evaluations on a real-world text corpora demonstrate that increased effective-

ness is achieved from classifiers produced by active learning when historical predictions are
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incorporated into the query selection process. Increasing the quality of queries selected will

reduce the labelling effort and ultimately reduce the cost of applying machine learning solu-

tions to problems.

Section 5.2 discusses the background and motivation for History-based query selection.

In Section 5.3 we describe the data structure History that is used to store the predictions

from each iteration of active learning. History-based query selection strategies are developed

in Section 5.4 which utilise information from the History into the selection of informative

unlabelled examples. Section 5.5 discusses filtered History-based query selection, which place

more emphasis on the most recent predictions. Empirical evaluations and results are reported

in Section 5.6 and discussion are given in Section 5.8.

5.2 Background

The canonical query selection strategy (see Chapter 3) involves construction of a classifier

from the known labelled data, obtaining predictions on the unlabelled data and using the

predictions to select the next query. The query selection strategy exhibits the Markov prop-

erty (Sutton & Barto, 1998, Chapter 3) which implies that selection of the query is based

only on the predictions of the current classifier. For example, uncertainty sampling (Lewis &

Gale, 1994) selects queries from an unlabelled pool of examples based on uncertainty in the

prediction from the current classifier. Roy & McCallum (2001) discuss first order Markov

active learning which states that the aim is to select a query (x∗) such that, when its true

label (y) is acquired from the oracle and added to the training data, the classifier trained on

the resulting training data has lower error than any other unlabelled example (x).

Predictions obtained in the current iteration of active learning are ephemeral: once used

to select the query, they are discarded. Potentially valuable information in the prediction

confidence of each remaining unlabelled example received in every iteration of active learning

is being lost.

We hypothesise that capturing the predictions about unlabelled examples from prior it-

erations of active learning can be useful in the selection of queries in the current iteration.

Potentially, classifiers produced in prior iterations are more accurate than the current clas-

sifier. This may be particularly evident in the early iterations of active learning, where the

predictive power of a classifier can be poor (due to the very small training data) resulting

in a sub-optimal query being selected and misdirecting learning. In this case it may be
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advantageous to use predictions from a classifier in a previous iteration of active learning.

Informative queries are generally those examples which have high uncertainty and reside

close to the decision boundary Lewis & Gale (1994); Tong & Koller (2001). We hypothesise

that these informative unlabelled examples should remain uncertain over many iterations

of active learning. Examining the predictions over the last d iterations of active learning,

consistently uncertain unlabelled examples can be identified.

We propose History-based query selection strategies that incorporate information from

prior iterations of active learning. The information in the History supplies the query selection

process with some additional information about the unlabelled examples. These History-

based query selection strategies are non-Markovian since the selection of the query in no

longer based only on the predictions given by classifiers in the current iteration.

5.3 History

In this section we describe the data structure History that is used to store the predictions

from each iteration of active learning. Active learning is an iterative process whereby in every

iteration one or more queries are selected to be labelled by the oracle and incorporated into

the training data.

Predictions made in each iteration of active learning are ephemeral. We propose to store

and utilise the historical predictions in a data structure we refer to as History. In essence, the

History is a matrix, where each column represents the predictions for all unlabelled examples

(rows) in an iteration of active learning. For any particular unlabelled example the predictions

given by a classifier in any iteration of active learning, thus far, can be retrieved from the

History. This information can then be incorporated into a query selection strategy to help

select more informative examples.

Figure 5.1 shows how the History is integrated into the active learning process. In each

iteration a classifier (h) is induced from all known labelled data and is used to provide

predictions (h(x)) on the remaining unlabelled examples. In contrast to traditional active

learning, the History is now used to store the predictions of each iteration of active learning.

Queries are selected using the History rather than just the current classifiers predictions.

Once the query is selected and labelled by the oracle {x∗, y} it is added to the training data.

The History is an efficient way to store information from prior iterations of active learning.

The space complexity of the History is bounded by the number of unlabelled examples since
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Figure 5.1: History process. In each iteration of active learning a classifier is induced and
provides predictions on the unlabelled examples. Predictions are stored in the History, which
is then used by the query selection process to select the query. The labelled data is updated
with the newly labelled query and the process continues.

only the predicted values for the unlabelled data are stored. This gives a space complexity

of O(nT ), where n is the number of unlabelled examples (|DU |) and T is the number of

iterations of active learning. The time complexity is linear with the number of predictions

since values are just stored.

5.4 History-Based Query Selection

In this section we describe ways in which information from the History can be incorporated

into a query selection strategy. The History is an extra resource that a query selection

strategies can utilise in order to help select more informative unlabelled examples. Predicted

values for a given unlabelled example are retrieved from the history using the Hist(x, j)

function, where x is the unlabelled example and j is a parameter which controls from how far

back in the History the prediction should be retrieved (j = 0 is the current iteration, j = 1

is from the last iteration, and so on).

Two History-based query selection strategies are proposed, each of which utilise History
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in a different way. These History-based query selection strategies are controlled using two

parameters, namely History depth and History delay.

History Depth

Exactly how far back in the History predictions are sought is controlled by the History depth

parameter d. A depth of d = 0 will use just the most current predictions, which is the same

as performing uncertainty sampling.

The most recent classifier is also likely to be the most accurate since it is induced from

the largest amount of available labelled data. For this reason more recent predictions should

be favoured over older predictions. History depth allows us to set a limit on how far back in

the History a particular History-based query selection strategy will seek prediction from.

History Delay

Before a History-based query selection strategy can start, it requires the History it to contain

a sufficient numbers of predictions. History delay is a parameter used to delay the use of

History-based query selection strategies until such time when the History is populated with

enough predictions. It does this by only applying History-based query selection strategies

after a given number of iterations have occurred. Non History-based query selection strategies

are employed until the number of iterations satisfy the History delay criterion.

5.4.1 History Uncertainty Sampling (HUS)

In Section 3.4.3 we discussed uncertainty sampling (US) which is a straightforward query

selection strategy which can be applied to any probabilistic classification algorithms. Queries

are selected as those examples which have the highest uncertainty. Uncertainty is defined as

the lack of confidence in the prediction given by the current classifier whereby a prediction

close to 0.5 gives high uncertainty.

We propose History Uncertainty Sampling (HUS) as an extension to uncertainty sampling.

HUS attempts to identify those unlabelled examples which have been consistently uncertain

over a number of iterations. Queries are selected based on the sum of the uncertainty in the

prediction obtained over the last d iterations of active learning, as shown in (5.1). On the ith

iteration the query is selected as the unlabelled example which has the highest cumulative

uncertainty over the past d iterations of active learning.
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x∗ = arg min
x∈Du

d
∑

j=0

|Hist(x, j) − 0.5| (5.1)

where Hist(x, j) retrieves the prediction for the given unlabelled example from the History,

The second parameter j controls how far back in the History predictions are retrieved, where

j = 0 retrieves the predictions from the current classifier, j = 1 retrieves the prediction given

by the classifier in the previous iteration of active learning and so on.

Table 5.1 shows an example History for three documents. In the 5th iteration of active

learning, uncertainty sampling would select document x1 as the query since this has a pre-

diction of 0.49 which is the most uncertain. Considering a history depth of d = 3, the query

selected using HUS will be document x2. HUS examines the historical predictions where it

can be seen that document x2 has also received highly uncertain predictions over the last two

iterations.

Table 5.1: History Uncertainty Sampling Example. Predictions for the three document in
all five iterations are stored in the History. HUS with a history depth of three (d = 3) uses
the predictions highlighted by bold text to select the query

1 2 3 4 5 US Rank HUS Rank

x1 0.61 0.74 0.80 0.81 0.49 1∗ 2
x2 0.59 0.56 0.45 0.49 0.70 2 1∗

x3 0.32 0.21 0.22 0.81 0.11 3 3

5.4.2 History Kullback-Leibler Divergence (HKLD)

An alternative view of the History is as a collection of classifiers, one for every iteration of

active learning. We propose History Kullback-Leibler Divergence (HKLD) which constructs

a committee from classifiers induced in prior iterations of active learning. Queries are then

selected as those unlabelled examples which cause the most disagreement in the committee.

A committee of size d can be constructed by simply combining the predictions of the

past d iterations. While the committee cannot be used to label new examples it can provide

predictions on the remaining unlabelled examples in the pool.

In the Query By Committee (QBC) query selection strategy (see Section 3.4.4) queries

are selected as those unlabelled examples which cause maximal disagreement among the

committee members. We used Kullback-Leibler (KL) divergence to the mean (McCallum &
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Nigam, 1998) to measure disagreement as it incorporates the uncertainty of each committee

member’s predictions.

KL divergence (5.2) measures the difference between two probability distributions P and

Q. It is sometimes referred to as relative entropy when used in information theory.

D(P ||Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
(5.2)

KL divergence to the mean, measures the difference between the individual committee

member class probability distribution and the mean class probability distribution for the

committee. The mean class probability distribution (5.3) for a committee of size d is simply

the average prediction for all d members.

P̄ =
1

d

∑

m

Pm(Y|x) (5.3)

The KL divergence to the mean for a particular example (x) with a committee of d

members is calculated as in (5.4):

KLD(x) =
1

d

d
∑

i=1

D(Pi || P̄ ) (5.4)

where the class distribution of an individual committee member is Pi. The query is selected

as the unlabelled example which results in the most disagreement among the committee as

shown in (5.5). Queries selected by HKLD tend to be unlabelled examples which have erratic

and confident predictions.

x∗ = arg max
x∈Du

KLD(x) (5.5)

While committee based query selection strategies such as QBC typically have high compu-

tational overheads associated with them, HKLD has practically no additional computational

expense. Since the History contains predictions, no extra computational effort is required to

induce or employ a classifier to obtain predictions for the unlabelled pool.

5.5 Filtered History-Based Query Selection

The current classifier is likely to be the most accurate since it is induced from all known

labelled information. It makes intuitive sense to lend more weight to the predictions it

gives rather than predictions from further back in the History. A straightforward way to
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accomplish this is by applying the History-based query selection strategies only to a subset

of the pool populated with the most uncertain unlabelled examples as defined by the most

recently induced classifier.

Figure 5.2 shows the updated process whereby the predictions given by the current clas-

sifier induced from all known labelled training data is used to filter examples from the pool

and populate the subset. History-based query selection strategies are then applied only to

the subset rather than the entire pool of unlabelled examples.

Unlabelled

Examples

Labelled

Examples

hi(x)

hi(x1)

hi(x2)

hi(xm)

h1(x1)h2(x1) ... hi(x1)

h1(x2)h2(x2) ... hi(x2)

...

h1(xm)h2(xm) ... hi(xm)

Query

Selection
{x*,y}

History

Predictions

Subset

Figure 5.2: Filtered History process. In each iteration of active learning a classifier is
induced and provides predictions on the unlabelled examples. Predictions are stored in the
History, which is then used by the query selection process to select the query. The labelled
data is updated with the newly labelled query and the process continues.

5.5.1 Subset Construction

In our experiments uncertainty sampling was used to form the subset. The subset is con-

structed by selecting the t most uncertain examples as given by the current classifier pre-

dictions. Subsets of various sizes (t = {10, 25, 50, 100}) were compared in the empirical

evaluation.
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5.5.2 History Uncertainty Sampling Filtered (HUSF)

In each iteration of active learning a subset is constructed by filtering the t most uncertain

unlabelled examples from the pool as given by uncertainty sampling. HUS is then applied to

the subset and a query is selected. The use of the subset ensures that the query is uncertain

in the current iteration and also uncertain in the past d iterations of active learning.

5.5.3 History Kullback-Leibler Divergence Filtered (HKLDF)

Similar to HUSF, a subset is formed in each iteration of active learning by filtering the t most

uncertain unlabelled examples from the pool and queries are selected by applying HKLD only

to the subset. The use of the subset in HKLD ensures the query is uncertain in the current

iteration and also has caused disagreement in the committee formed using classifiers in the

past d iterations of active learning.

5.6 Empirical Evaluation

Through empirical evaluation we establish if incorporating information from the History is

beneficial to active learning. Lewis & Gale (1994) have shown uncertainty sampling to be

a top performing query selection strategy, reducing labelling effort by orders of magnitude.

Uncertainty sampling was taken as a baseline and the various History-based query selection

strategies were compared against it.

Experiments were evaluated on the 20NG-4 and R10 datasets, as described in Section 4.2.

The 20NG-4 dataset consists of four binary text classification problems (AR, BC, GX and

WH) of varying difficulty, while the R10 dataset consists of ten binary classification tasks. All

documents were tokenised on non-word characters, stopwords removed and stemming applied

using the Porter algorithm (Porter, 1980). Feature selection was not performed. 10-fold cross

validation was performed.

Active learning was seeded with equal number of positive and negative examples. In

the case of the 20NG-4 dataset, 3 positive and 3 negative seeds were randomly chosen from

the unlabelled pool, while for the R10 dataset, 10 positive and 10 negative examples were

randomly chosen from the unlabelled pool. In each iteration just one query is selected and

active learning is stopped after 100 iterations. In order for fair comparison to be made, the

same seeds were supplied to each of the strategies under investigation.

History-based query selection strategies can only be applied when the History is populated
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with some information. The History delay parameter was used to postpone the use of History-

based query selection strategies, whereby uncertainty sampling is performed until such time

as the History is populated with sufficient information. Through empirical evaluation we

settled on a History delay value of 10. This means that uncertainty sampling was used for

the first ten iterations of active learning, while the respective History-based query selection

strategy is utilised for the 11th and subsequent iterations.

5.6.1 Preliminary Experiments

Preliminary experiments were conduced using a k-NN classifier, where cosine similarity (2.5)

was used in place of Euclidean distance. The History depth (d) was tested for d = {3, 5, 7}.
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Figure 5.3: 20NG-4 results with history depth (d = 3). Accuracy is given on the Y axis and
the iterations of active learning are given on the X axis. Active learning was stopped after
100 iterations.

Figure 5.3 displays the learning curves obtained. Accuracy was averaged over the ten

trials of 10-Fold cross validation, where active learning was halted after 100 iterations. A

History depth of d = 3 was found to be optimal in these experiments. In all four problems
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accuracy at the 100th iteration was increased by (AR) 2.178%, (BC) 0.946%, (GX) 2.027%

and (WH) 3.887%, when HKLD was used. All increases are statistically significant using a

paired t-test (α = 0.05). The results for HUS, however, are inconclusive. We believe this was

due to the failure of HUS to capture the variation in class prediction.

While the experiments demonstrated a positive effect when incorporating History infor-

mation using the k-NN, the classifier was changed for the full evaluation as several problems

emerged in implementation. Specifically, the high dimensional data used in these text cate-

gorisation exasperated the curse of dimensionality for the k-NN resulting in poor accuracy,

extra computational expense and long running times. In Chapter 6 we examine ways to

make the k-NN classifier more competitive using dimensionality reduction. In the following

experiments we used a näıve Bayes classifier. This classifier has the considerable advantage

of being parameterless1.

5.6.2 HUS

History Uncertainty Sampling selects as the query the unlabelled example that has been most

uncertain over the past d iterations of active learning. In the following experiments, a number

of history depth values d = {3, 5, 7} are compared.

Figure 5.4 displays the aggregate learning curves (see Section 3.5.2) for HUS performed on

all four problems in the 20NG-4. HUS is seen to outperform random sampling, however, while

competitive, none of the variants of HUS are seen to outperform the baseline of uncertainty

sampling. Examining the p-value plot it is seen that HUSd3 offers some advantage over US

between iteration 25 and 40. In the later iteration of active learning, uncertainty sampling is

seen to outperform all other strategies.

Figure 5.5 plots the learning curves for HUS conducted on the R10 dataset using both

macro- and micro-averaged F1. HUS was observed to outperform the baseline of uncertainty

sampling in the early iterations of active learning when it was applied. The History-based

query selection strategies were delayed until the tenth iteration. A lift in effectiveness is

observed for HUS from iteration ten until approximately iteration 25. This lift is also shown

in the p-value plot. Uncertainty sampling was seen to be optimal in the later iterations of

active learning outperforming HUS with all possible History depths.

1A threshold can be tuned via a validation set but we used the default threshold of 0.5
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Figure 5.4: Aggregate HUS results averaged over all four 20NG-4 problems. Obtained using
a multinomial näıve Bayes classifier with Active Learning run for 100 iterations, seeded with
3 examples from each class and selecting 1 query per iteration. Accuracy was used as the
performance metric and evaluation on the test set was done after every 5 iterations. Below
each graph the p-value showing statistical significance against random sampling (RS) is given
(α = 0.05 is shown as a solid line)
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Figure 5.5: HUS results obtained from R10 experiments using a multinomial näıve Bayes
classifier with Active Learning run for 100 iterations, seeded with 10 examples from each
class and selecting 1 query per iteration. F1 (computing using both macro-avering and
micro-averaging) was used as the performance metric and evaluation on the test set was done
after every 5 iterations. Below each graph the p-value showing statistical significance against
random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Deficiency

Deficiency values (see Section 3.5.3) for HUS on the 20NG-4 are reported in Table 5.2. A

reduction in deficiency was observed in a number of the individual problems (e.g. the AR

(d = 5), WH (d = 3) and BC (d = 3) problems). However, on average HUS did not decrease

deficiency.

Table 5.2: Deficiency Values for HUS on 20NG-4. Lowest deficiency is indicated by bold
text. Averages across the four problems as well as across the different History depths are also
given

AR BC GX WH Avg

US 0.8241 0.5656 0.7521 1.0488 0.7976

HUSd3 0.8286 0.5437 0.7910 1.0348 0.7995
HUSd5 0.7981 0.6223 0.7602 1.0939 0.8186
HUSd7 0.8342 0.6121 0.7895 1.1390 0.8437

Avg 0.8203 0.5927 0.7802 1.0892 0.8206

Table 5.3 reports the deficiency values obtained when performing HUS on the R10 dataset.

Given the imbalanced nature of the data F1 is commonly used to report effectiveness. We cal-

culated Deficiency as standard with Accuracy as well as using both macro- and micro-averaged

F1. It can be seen that lower values obtained when HUS is employed when considering defi-

ciency calculated using accuracy and micro-averaged F1, however this is not observed when

deficiency is calculated using macro-averaged F1. We believe this is an artefact of HUS per-

forming better on a per-document basis than a per-category basis and corresponds to the

learning curves reported in Figure 5.5.

Table 5.3: Deficiency Values for HUS on R10. Lowest deficiency is indicated by bold text.
Average deficiency over all three History depths is also given

Acc F1 FM
1

US 0.8793 0.6229 0.7115

HUSd3 0.8569 0.6946 0.6980
HUSd5 0.8505 0.6464 0.6924
HUSd7 0.8672 0.6723 0.7143

Avg 0.8582 0.6711 0.7016
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Summary

History uncertainty sampling was observed to give benefit to active learning only in the early

iterations. In later iterations uncertainty sampling was seen to be optimal. We hypothesise

that HUS would benefit by placing more emphases on predictions given by the most recent

classifier, giving less emphasis to predictions in previous iterations. Filtered HUS (HUSF) is

proposed to address this problem.

5.6.3 HKLD

The following experiments examined the performance of HKLD query selection. HKLD

considers those unlabelled examples which consistently change their label assignment as being

the most interesting queries. Various values for history depth d = {3, 5, 7} are compared in

these experiments.

Figure 5.6 displays the learning curves obtained for HKLD applied to the 20NG-4 dataset.

The results demonstrate that incorporating History information using HKLD did not improve

the effectiveness of active learning. In fact, it reduced effectiveness, in some cases performing

worse than random sampling.

Figure 5.7 reports the learning curves obtained by applying HKLD to the R10 dataset.

Effectiveness is measured using both macro- and micro- averaged F1. It was observed that

HKLD performed poorly on this dataset consistently under-performing the baseline of uncer-

tainty sampling. The micro-averaged F1 showed that HKLD showed some improvement over

uncertainty sampling in the early iterations (between iteration 10 and approximately itera-

tions 25), however, uncertainty sampling quickly recovered and was optimal for the remaining

iterations.

Deficiency

Deficiency values for HKLD conducted on the 20NG-4 dataset are given in Table 5.4. The

reported values confirm that HKLD did not outperform the baseline of uncertainty sampling.

Furthermore, the performance of HKLD was worse than random sampling, as indicated with

deficiency values greater than one.

Table 5.5 reports the deficiency values obtained by performing HKLD on the R10 dataset.

Due to the imbalanced nature of the dataset F1 is generally used to measure effectiveness.

We calculated deficiency as standard using accuracy but also calculate using both macro- and
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Figure 5.6: Aggregate HKLD results averaged over all four 20NG-4 problems. Obtained
using a multinomial näıve Bayes classifier with Active Learning run for 100 iterations, seeded
with 3 examples from each class and selecting 1 query per iteration. Accuracy was used
as the performance metric and evaluation on the test set was done after every 5 iterations.
Below each graph the p-value showing statistical significance against random sampling (RS)
is given (α = 0.05 is shown as a solid line)

Table 5.4: Deficiency values for HKLD on 20NG-4. Lowest deficiency is indicated by bold
text. Averages across the four problems as well as across the different History depths are also
given

AR BC GX WH Avg

US 0.8241 0.5656 0.7521 1.0488 0.7976

HKLDd3 1.1141 2.9535 1.0680 1.6113 1.6867
HKLDd5 1.0890 2.9437 1.0611 1.6364 1.6825
HKLDd7 1.0883 2.9439 1.0431 1.6003 1.6689

Avg 1.0971 2.9470 1.0574 1.6160 1.6794
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Figure 5.7: HKLD results obtained from R10 experiments using a multinomial näıve Bayes
classifier with Active Learning run for 100 iterations, seeded with 10 examples from each
class and selecting 1 query per iteration. F1 (computing using both macro-avering and
micro-averaging) was used as the performance metric and evaluation on the test set was done
after every 5 iterations. Below each graph the p-value showing statistical significance against
random sampling (RS) is given (α = 0.05 is shown as a solid line)
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micro- averaged F1. The reported values all demonstrate that HKLD did not outperform the

baseline of uncertainty sampling. Furthermore, it can be seen that HKLD did not outperform

random sampling as indicated by deficiency values greater than one.

Table 5.5: Deficiency Values for HKLD on R10. Lowest deficiency is indicated by bold text.
Average deficiency over all three History depths is also given

Acc F1 FM
1

US 0.8793 0.6229 0.7115

HKLDd3 1.2735 1.0198 1.0435
HKLDd5 1.2399 1.0134 1.0198
HKLDd7 1.2212 1.0047 1.0062

Avg 1.2449 1.0127 1.0232

Summary

We hypothesise the poor performance of HKLD is due to the fact that the query selection

strategy gives equal emphasis to each committee member. The current classifier is the most

accurate since it is induced from all known labelled training data. Therefore its predictions

should be considered more informative than historical predictions. Filtered variants of HKLD

are proposed in Section 5.5 that address this problem.

5.6.4 HUSF

HUSF places more importance on the predictions given by the most recent classifier induced.

Active learning was conducted in the same manner as described previously in Section 5.5.2.

Various subset sizes t = {10, 25, 50, 100} and History depths d = {3, 5, 7} were compared.

Given the large number of possible combinations of parameters we only present the plot

for HUSF using optimal parameter found during empirical evaluation. A sensitivity analysis

of the History depth and subset size parameters is given in Section 5.6.6 and plots for all

permutations of parameters is given in Appendix B.

Figure 5.8 plots the learning curves for HUSF applied to the 20NG-4 dataset. Accuracy

is calculated as the average accuracy over all four sub-problems. From the plot it can be seen

that HUSF outperforms uncertainty sampling over all iterations of active learning.

Figure 5.9 displays the learning curves obtained by applying HUSF to the R10 dataset.

F1 is commonly used as an effectiveness metric due to the imbalanced nature of the R10
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Figure 5.8: HUSF and HKLDF learning curves for optimal History depth and subset size
on the 20NG-4 dataset. (a) displays an aggregate plot of all four 20NG-4 problems. The
plots for each of the four 20NG-4 problems is given underneath.
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Figure 5.9: HUSF and HKLDF learning curves for optimal History depth and subset size
on the R10 dataset

dataset. We computed both macro- and micro- averaged F1. It can be seen that HUSF is

of greatest benefit in the early iterations of active learning. HUSF outperforms the base-

line of uncertainty sampling between iteration 10 and approximately iteration 25. However,

uncertainty sampling is optimal in the subsequent iterations of active learning.

Deficiency

Table 5.6 reports the deficiency values obtained for HUSF on the 20NG-4 dataset. HUSF is

seen to outperform uncertainty sampling in all combinations of history depth and subset size.

This trend is also evident in the average across all four sub-problems (rightmost column in

Table 5.6).

Table 5.7 reports the deficiency values for HUSF on the R10 dataset. Deficiency is calcu-

lated using accuracy as well as both macro- and mirco- averaged F1. Considering deficiency

calculated using accuracy HUSF is seen to outperform the baseline of uncertainty sampling

over all combinations of History depth and subset size. However, using F1 only certain com-

binations of the two parameters resulted in lower deficiency values than the baseline. We

discuss the sensitivity of HUSF to these parameters further in Section 5.6.6.

Summary

HUSF achieved greater effectiveness in the early iterations of active learning in both datasets

considered. In the 20NG-4 dataset the increase in effectiveness was observed over all itera-
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Table 5.6: Deficiency values for HUSF on the 20NG-4. Bold text signifies minimum defi-
ciency achieved in each subset size (t)

AR BC GX WH Avg

US 0.8241 0.5656 0.7521 1.0488 0.7977

HUSFd3 t10 0.7397 0.5129 0.6779 1.0132 0.7359
HUSFd5 t10 0.8043 0.4615 0.6961 1.0781 0.7600
HUSFd7 t10 0.8022 0.4878 0.6981 1.0542 0.7605

HUSFd3 t25 0.7685 0.5471 0.6786 1.1006 0.7737
HUSFd5 t25 0.7481 0.5558 0.6781 1.0108 0.7482
HUSFd7 t25 0.7625 0.4731 0.6811 1.0031 0.7299

HUSFd3 t50 0.8156 0.5375 0.6752 1.0382 0.7666
HUSFd5 t50 0.7901 0.4751 0.7206 0.9974 0.7458
HUSFd7 t50 0.7565 0.4984 0.7004 0.9694 0.7312

HUSFd3 t100 0.7507 0.5511 0.7228 1.0411 0.7664
HUSFd5 t100 0.7617 0.5856 0.6984 1.0467 0.7731
HUSFd7 t100 0.8031 0.5440 0.6781 1.0658 0.7728

Table 5.7: Deficiency values for HUSF on the R10. Bold text signifies minimum deficiency
achieved in each subset size (t)

Acc F1 FM
1

US 0.8793 0.6229 0.7115

HUSFd3 t10 0.8301 0.6325 0.6739
HUSFd5 t10 0.8313 0.5980 0.6711
HUSFd7 t10 0.8323 0.6131 0.6766

HUSFd3 t25 0.8262 0.6346 0.6866
HUSFd5 t25 0.8273 0.6381 0.6890
HUSFd7 t25 0.8242 0.6629 0.6840

HUSFd3 t50 0.8682 0.6243 0.7139
HUSFd5 t50 0.8415 0.6147 0.6891
HUSFd7 t50 0.8438 0.6410 0.6951

HUSFd3 t100 0.8720 0.6474 0.7149
HUSFd5 t100 0.8752 0.6734 0.7307
HUSFd7 t100 0.8609 0.6894 0.7223

102



tions, while in the R10 it was only observed only in the initial iterations of active learning.

Increases in effectiveness were reported irrespective of the parameters used, namely His-

tory depth and subset size. However, the magnitude of the increase is directly related to the

parameters used. Sensitivity analysis of the parameters used in filtered History-based query

selection strategies is discussed in Section 5.6.6.

5.6.5 HKLDF

In this section we present results obtained by selecting queries using HKLDF. This History-

based query selection strategy considers examples informative if they are uncertain in the

current iteration and if there is a large disagreement among the committee formed by the clas-

sifiers in the last d iterations of active learning. A variety of subset sizes t = {10, 25, 50, 100}
and History depths d = {3, 5, 7} are evaluated.

As with the HUSF experiments, given the large number of possible combinations of pa-

rameters we only present the plot for HKLDF using optimal parameter found during empirical

evaluation. A sensitivity analysis of the History depth and subset size parameters is given in

Section 5.6.6 and plots for all permutations of parameters is given in Appendix B.

Figure 5.8 plots the aggregate learning curves for HKLDF applied to the 20NG-4 dataset.

From the plot it can be seen that HKLDF only outperforms uncertainty sampling until

approximately iteration 70 where it then converges to the baseline. It was also found that

HKLDF does not outperform the alternative filtered HBQS strategy in this dataset.

Learning curves obtained by applying HKLDF to the R10 dataset are given in Figure 5.9.

It can be seen that HKLDF is of greatest benefit in the early iterations of active learning,

where it outperforms uncertainty sampling between iteration 10 and approximately iteration

25 (iterations 10 to approximately 35 for FM
1 ). Additionally, HKLDF is seen to marginally

outperform HUSF in the iterations where both outperform the baseline. Uncertainty sampling

becomes optimal in the later iterations of active learning.

Deficiency

Table 5.8 reports the deficiency values obtained from the 20NG-4 dataset. HKLDF is seen to

outperform uncertainty sampling in the majority of combinations of history depth and subset

size.

Table 5.9 reports the deficiency values for HKLDF on the R10 dataset. HKLDF is seen

to outperform the baseline of uncertainty sampling over all combinations of History depth
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Table 5.8: Deficiency values for HKLDF on the 20NG-4. Bold text signifies minimum
deficiency achieved in each subset size (t)

AR BC GX WH Avg

US 0.8241 0.5656 0.7521 1.0488 0.7977

HKLDFd3 t10 0.7906 0.5311 0.7106 1.0269 0.7648
HKLDFd5 t10 0.7621 0.4539 0.7181 1.0437 0.7444
HKLDFd7 t10 0.7918 0.5313 0.6973 1.0495 0.7675

HKLDFd3 t25 0.8091 0.4826 0.6915 1.0214 0.7511
HKLDFd5 t25 0.7741 0.5325 0.6531 1.0665 0.7565
HKLDFd7 t25 0.7790 0.4942 0.7574 0.9436 0.7435

HKLDFd3 t50 0.7632 0.5279 0.6955 1.0551 0.7604
HKLDFd5 t50 0.7739 0.5248 0.7149 1.1025 0.7794
HKLDFd7 t50 0.8461 0.4901 0.7086 1.0388 0.7709

HKLDFd3 t100 0.8371 0.4946 0.7101 1.0774 0.7798
HKLDFd5 t100 0.8314 0.5248 0.6816 1.1871 0.8062
HKLDFd7 t100 0.7740 0.4930 0.6990 1.0454 0.7529

Table 5.9: Deficiency values for HKLDF on the R10. Bold text signifies minimum deficiency
achieved in each subset size (t)

Acc F1 FM
1

US 0.8793 0.6229 0.7115

HKLDFd3 t10 0.8130 0.6434 0.6737
HKLDFd5 t10 0.8156 0.6749 0.6852
HKLDFd7 t10 0.8091 0.6332 0.6729

HKLDFd3 t25 0.8043 0.6622 0.6814
HKLDFd5 t25 0.7947 0.6606 0.6715
HKLDFd7 t25 0.8109 0.6817 0.6764

HKLDFd3 t50 0.7944 0.6751 0.6650
HKLDFd5 t50 0.8030 0.6500 0.6725
HKLDFd7 t50 0.8142 0.6993 0.6906

HKLDFd3 t100 0.8403 0.7278 0.7158
HKLDFd5 t100 0.7981 0.6794 0.6738
HKLDFd7 t100 0.8195 0.6871 0.6875
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and subset size. Averages across all History depths and subset sizes are also reported. On

average HKLDF is seen to outperform the baseline.

Summary

Filtered History KL Divergence showed improved effectiveness compared to the baseline of

uncertainty sampling. In both datasets HKLDF gives increased effectiveness in the early

iterations of active learning, however, this increase can be short lived. In the 20NG-4 dataset

the improvement was noted for all iterations of while in the R10 the improvement was only

observed in the initial iterations and uncertainty sampling was optimal in later iterations of

active learning.

As with HUSF, the parameters used for HKLDF directly related to the magnitude of the

increase in effectiveness. Sensitivity analysis of the parameters used in filtered History-based

query selection strategies is discussed in next section.

5.6.6 History Parameters

In this section we report the results obtained for various combinations of the History param-

eters, namely History depth (d) and subset size (t). Both of the filtered History-based query

selection strategies are sensitive to these parameters. In order to help identify a possible

trend we consider the average deficiency across each parameter.

HUSF

Table 5.10 compares the different deficiency values obtained using the various permutations

of History depth and subset size in the HUSF query selection strategy. In this case we use the

average deficiency value obtained across all four sub-problems of the 20NG-4 dataset. From

these results it can be seen that on average, lower deficiency is obtained for larger History

depths and medium sized subsets.

Results obtained for HUSF conducted on the R10 dataset are given in Table 5.11. Defi-

ciency was calculated using accuracy in this case. The results show that on average, lower

deficiency values were recorded when HUSF was employed with larger History depths and

smaller subsets (25).
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Table 5.10: HUSF Deficiency Values for the 20NG-4. Various combinations of History depth
and subset size are compared

t10 t25 t50 t100 Avg

US 0.7976 0.7976 0.7976 0.7976 0.7976

HUSFd3 0.7359 0.7737 0.7666 0.7664 0.7607
HUSFd5 0.7600 0.7482 0.7458 0.7731 0.7568
HUSFd7 0.7605 0.7299 0.7312 0.7728 0.7486

0.7521 0.7506 0.7479 0.7708

Table 5.11: HUSF Deficiency Values for the R10. Various combinations of History depth
and subset size are compared. Deficiency is calculated using accuracy

t10 t25 t50 t100 Avg

US 0.8793 0.8793 0.8793 0.8793 0.8793

HUSFd3 0.8301 0.8262 0.8682 0.8720 0.8491
HUSFd5 0.8313 0.8273 0.8415 0.8752 0.8438
HUSFd7 0.8323 0.8242 0.8438 0.8609 0.8403

0.8312 0.8259 0.8512 0.8694

HKLDF

Table 5.12 reports the deficiency values obtained by performing HKLDF on the 20NG-4

dataset. Values in the table represent the average deficiency obtained over all four sub-

problems. It can be seen that for HKLDF, lower deficiency values are obtained for larger

History depth and smaller subsets (25).

Table 5.12: HKLDF Deficiency Values for the 20NG-4. Various combinations of History
depth and subset size are compared

t10 t25 t50 t100 Avg

US 0.7976 0.7976 0.7976 0.7976 0.7976

HKLDFd3 0.7648 0.7511 0.7604 0.7798 0.7640
HKLDFd5 0.7444 0.7565 0.7794 0.8062 0.7716
HKLDFd7 0.7675 0.7435 0.7709 0.7529 0.7587

0.7589 0.7504 0.7702 0.7708

Table 5.13 gives the deficiency values when HKLDF was employed in the R10 dataset.

Deficiency, in this case, is calculated using accuracy. It can be seen that lower deficiency

values for HKLDF are recorded when the History depth is medium with a smaller subset size
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Table 5.13: HKLDF Deficiency Values for the 20NG-4. Various combinations of History
depth and subset size are compared

t10 t25 t50 t100 Avg

US 0.8793 0.8793 0.8793 0.8793 0.8793

HKLDFd3 0.8130 0.8043 0.7944 0.8403 0.8130
HKLDFd5 0.8156 0.7947 0.8030 0.7981 0.8028
HKLDFd7 0.8091 0.8109 0.8142 0.8195 0.8134

0.8126 0.8033 0.8039 0.8193

(25).

Summary

Sensitivity analysis showed that on average small to medium sized subsets (t = {25, 50})
were optimal in the two datasets considered, while large subsets (t = 100) did not produce

the lowest deficiency. A larger History depth was advantageous in both HUS and HKLD.

Figure 5.10 gives a surface plot of the two parameters for both HUSF and HKLDF in both

datasets considered.

5.6.7 Running Time

In this section we describe the overall computation overhead as recorded on the experimental

apparatus. Experiments were performed on a 2.2GHz Intel Core 2 Duo processor with 2GB of

RAM running at 667MHz. The maximum running time of uncertainty sampling was 0.0037

seconds. Averaging across all iterations of active learning US had a mean running time of

less than 0.0001 seconds.

History-based query selection strategies will incur extra running time since they perform

extra calculations. At a History depth of 3, HUS was found to have an average running time

of 0.0011 seconds (averaged over all runs of active learning). HKLD was the most compu-

tationally expensive method due to the KL calculations. At a History depth of 3, HKLD

had an average time of 0.0500 seconds. Larger History depths added to the computational

expense. At depth 7, the average running time for HUS was 0.0012 seconds and for HKLD

was 0.0710 seconds.

Filtering the pool also increases the computational expense, however, the number of

candidates considered decreased substantially, thereby reducing the calculations performed
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Figure 5.10: Surface plot of the filtered History-based query selection parameters

to select the next query. The average running time of HUSF and HKLDF at History depth

of 7 were 0.0010 seconds and 0.0019 seconds respectively. Some computational savings are

made at lower History depths with HUSF and HKLDF reporting an average running time at

depth 3 of 0.0010 seconds and 0.0017 seconds respectively.

The increase in computational running time of History-based query selection strategies

compared to uncertainty sampling is significant. However, HBQS strategies are still entirely

practical with running times less than 0.1 seconds. We are confident that the potential benefit

of increased effectiveness of active learning, where the overall aim is to reduce labelling effort,

mitigates the increased computational expense.
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5.7 Related Work

Boosting (Schapire, 1999) is a machine learning technique that focuses the training on the

hard to classify examples in the supplied training data. This is somewhat similar to the idea

of the History-Based query selection strategy HUS, which selects queries as those unlabelled

examples which have constantly been difficult to classify. In particular, selecting queries

based on their predictions over successive iterations of active learning is somewhat similar

to the re-weighting in Boosting. However, boosting is applied to labelled training data while

active learning operates on unlabelled data.

The QBC (Freund et al., 1997) query selection strategy selects queries based on dis-

agreement among committee members. The proposed History Kullback-Leibler Divergence

(HKLD) similarly selects queries as those unlabelled examples with maximal disagreement

in a committee. However, the committee is constructed in a principally different manner.

Furthermore, we utilise Kullback-Leibler Divergence to the mean (Roy & McCallum, 2001)

as the metric to measure disagreement.

Query selection strategies discussed in Section 3.4.5 also incorporate information about

unlabelled examples into the query selection process. However, such strategies incorporate

unlabelled data directly while History-based query selection strategies incorporate the infor-

mation indirectly via predictions. In addition, query selection strategies which incorporate

unlabelled information are generally computationally expensive. Error reduction sampling

for example has a computational complexity of O(|DU |2). The use of History makes it very

efficient to incorporate extra information about the unlabelled data.

5.8 Discussion

Active learning strategies typically select the query based on the predictions of the most

recently induced classifier. This is first order Markov active learning whereby the assumption

is that the current training data contains all the relevant information required to select the

best query. This chapter introduces History-based query selection strategies (HBQS), which

challenge this idea by incorporating predictions from prior iteration of active learning into

the query selection process. These non-Markovian strategies attempt to leverage potentially

informative classifiers in past iterations to identify those unlabelled examples which are con-

sistently uncertain. We hypothesise that examples which are difficult to classify over many

iterations of active learning correspond to those examples near the decision boundary and
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therefore are the most informative queries to select.

Through empirical evaluation, we wished to show that incorporating information from

previous iterations of active learning via the History can help select more informative queries.

Two History-based query selection strategies were proposed, each of which used the History

in a different manner. One is a single classifier solution, while the other emulates a query

by committee technique. History Uncertainty Sampling (HUS) selects queries based on the

cumulative uncertainty over the past d iterations. This is an extension of the idea of uncer-

tainty sampling technique which considers uncertainty not only in the current iteration but

also in past iterations. History KL Divergence (HKLD) selects queries based on uncertainty

in a committee formed using classifiers produced the last d iterations of active learning.

Uncertainty sampling (US) was used as a baseline to compare the performance of the

proposed History-based query selection strategies since it is a very effective query selection

strategy that works well across many domains. The more familiar baseline of random sam-

pling is also given to show the benefit of the active learning strategies over passive learning.

In both the R10 and the aggregated 20NG-4 results HUS demonstrated marginal increases

in effectiveness over the baseline of US in the early iterations of active learning. However,

US recovered in the later iterations, where it became optimal. HKLD performed poorly in

experiments conducted on both datasets. While there was some evidence of improvement

over the baseline in the early iterations on the R10 dataset, this was not evident on the

20NG-4 where it failed to outperform even random sampling.

We attribute the poor performance of these HBQS strategies to the equal emphasis given

to all predictions. The current classifier is generally considered to be the most accurate,

since it is trained on all known labelled training data. Predictions from the more recent

iterations of active learning should be given more emphasis than predictions taken from deep

in the History. Filtered HBQS strategies give more emphasis to predictions from the current

classifier by selecting queries from a subset of the most uncertain examples. The subset is

formed by filtering from the pool the t most uncertain examples as given by uncertainty

sampling.

HUSF and HKLDF are filtered variants of the HBQS strategies. HUSF selects queries

from the subset based on the cumulative uncertainty of the unlabelled examples. Similarly

HKLDF selects queries from the subset based on the disagreement among committee members

formed using the classifiers from previous predictions. Results obtained for the filtered HBQS

strategies show considerable increases in the effectiveness of active learning compared with
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both the non-filtered HBQS strategies and the baseline. On average it was found that HUSF

was more effective on the 20NG-4 dataset while HKLDF was most effective on the R10 data.

The impact of filtered HBQS strategies tends to be in the early iterations of active learning.

This was observed in the R10 and the 20NG-4 datasets whereby the filtered HBQS strategies

outperformed US in the iterations directly after the History delay while converging in later

iterations of active learning.

History depth and subset size are important parameters for the HBQS strategies. We

showed that filtered HBQS was capable of outperforming the baseline of US using any com-

bination of the History depth and subset size parameters. Analysis of the results obtained

for the various values used showed that on average larger History depths led to lower defi-

ciency values reported. A medium sized subset was also found, on average, to result in lower

deficiency values.

An important characteristic of an active learning strategy is that the number of parameters

that require tuning be minimal, since there are typically no validation sets. This was one

of the motivations for the use of the multinomial näıve Bayes classifier. While we report

optimal values of t and d for the filtered HBQS we did not use a validation set to select

these. We believe that a more consistent approach would be an adaptive solution, which

would dynamically alter the parameters based on the current performance of active learning.

In the early iterations of active learning a large History depth could be used while in later

iterations, a small History depth could be employed, emulating uncertainty sampling. This

is proposed as future work since, at the time of writing, there does not currently exist an

effective metric to measure active learning performance.

The increased performance of History-based approaches are achieved with remarkably

little extra computational expense since the strategies reuse predictions made in previous

iterations. Some increased memory is required to store the History and there is a signifi-

cant increase in computation compared to US but overall the proposed HBQS strategies are

entirely practical making their use in active learning settings advantageous.

5.9 Summary

This chapter introduced History-based query selection for active learning, an inexpensive

method to increase the effectiveness of active learning by incorporating classifier predictions

from previous iterations of active learning.
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Most query selection strategies are Markovian, whereby they select queries based only

on the current classifier. Moreover, the predictions used in every iteration of active learning

are ephemeral and are duly discarded after the query has been selected. We investigated

non-Markovian History-based query selection strategies which selected queries based on pre-

dictions given in both current and past iterations of active learning.

A data structure known as the History is used to store all predictions given on the remain-

ing unlabelled examples in every iteration of active learning. History-based query selection

strategies select unlabelled examples incorporating information from the History. Empirical

evaluation on benchmark text corpus demonstrated that incorporating historical information

using a filtered scheme led to increased effectiveness of active learning compared to uncer-

tainty sampling.

Difficulties were encountered when attempting to use a k-NN classifier in text categorisa-

tion active learning problems. In Chapter 6 we investigate this problem further and suggest

methods to overcome this problem. The filtered HBQS schemes discussed in this chapter also

motivated work described in Chapter 7, in particular pre-filtering.
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Chapter 6

Dimensionality Reduction for

Active Learning

6.1 Introduction

In this chapter we highlight the difficulties arising from performing dimensionality reduction

in an active learning setting and investigate possible solutions. This research was motivated

by a desire to use the k-NN classifier in active learning experiments for text categorisation.

The k-NN was shown to be a high-performance classifier for text categorisation when suit-

able dimensionality reduction is employed (Yang & Liu, 1999). However, if dimensionality

reduction is not performed, the k-NN can perform poorly due to the curse of dimensionality

(Mitchell, 1997).

Automated text categorisation utilises the vector space model representation, which re-

sults in very high-dimensional data for natural language text. The number of dimensions

corresponds to the number of unique terms in the corpora. Sparsity is a consequence of the

high dimensionality where the number of non-zero elements of a feature vector for a document

is likely to be very small (≤ 5%). Synonymity, polysemy and homonymy all exacerbate the

problem further.

High-dimensional data has a dramatic impact on learning systems, increasing the compu-

tational overhead and in some cases limiting the choice of classifier to those which are capable

of operating successfully in high-dimensional data.

Dimensionality reduction techniques are used in machine learning to reduce the number of

features used to represent the data. The most successful dimensionality reduction techniques
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for text categorisation are supervised feature selection methods (Yang & Pedersen, 1997).

However, performing supervised feature selection is a significant problem in an active learning

setting since the majority of supplied training data are unlabelled.

We investigate the application of unsupervised dimensionality reduction to active learning

on text categorisation problems. The application of unsupervised dimensionality reduction

will bring all the benefits of reduced computational and storage overheads while also allowing

for greater flexibility in the choice of classifier used in active learning. We first highlight the

issues surrounding performing dimensionality reduction in an active learning setting, before

examining which established techniques are applicable.

Section 6.2 discusses the background of performing dimensionality reduction in an active

learning setting. Suggested unsupervised dimensionality reduction techniques for use in active

learning settings are discussed in Section 6.3. Empirical evaluation on benchmark corpora is

given in Section 6.4 and discussion on the result obtained are given in Section 6.5.

6.2 Background

In text categorisation tasks supervised feature selection techniques (see Section 2.5) are com-

monly used to reduce dimensionality. Yang & Pedersen (1997) have shown such techniques

to yield significant reductions in dimensionality with no loss in accuracy of the resulting

classifier and in some cases to show a small increase in accuracy.

Supervised feature selection techniques explicitly utilise label information from the sup-

plied training data. Supervised learning is supplied with a large amount of labelled training

data hence supervised feature selection can be successfully employed. However, a problem

exists for active learning settings, where the majority of the training data are unlabelled,

therefore supervised techniques cannot be readily employed.

Within the literature two solutions to the problem of dimensionality reduction in ac-

tive learning settings have emerged. The first approach is to circumvent the problem by

using pre-labelled benchmark corpora. Supervised feature selection can be applied prior to

experimentation of active learning techniques (Hoi et al., 2006). However, in real world ap-

plications the label information will not available a priori thereby limiting the applicability

of this approach.

In the second approach dimensionality reduction is not performed. Experiments are con-

ducted on very high-dimensional text data (102 . . . 105 features is not uncommon). Operat-
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ing with such high-dimensional data has several implications including significantly increased

computational overhead. Furthermore, the choice of classifier used is restricted to those

which can successfully operate in high-dimensional data. The potential benefits offered by

dimensionality reduction, including reduced storage and computational overheads, are never

realised. In the next section we explore an alternative solution for reducing the dimensionality

of text categorisation data in active learning problems.

6.3 Unsupervised Dimensionality Reduction

Unsupervised dimensionality reduction techniques offer the ability to significantly reduce

dimensionality without the need for labelled training data. Unlike supervised dimensionality

reduction, label information is not explicitly required by unsupervised techniques. Two well

established unsupervised dimensionality reduction techniques are considered for use in active

learning settings below.

6.3.1 Document Frequency Global (DFG)

Document frequency (Apté et al., 1994; Sebastiani, 2002) is a straightforward and efficient

feature selection technique where features are chosen based on the number of documents

within the corpus in which they occur. Preference is given to those terms which have a high

frequency within the corpus.

The preference for high frequency features is a somewhat surprising criteria for a di-

mension reduction technique since this is in contrast to beliefs from Information Retrieval,

where low frequency features are assumed to be informative while high frequency features

are assumed to be irrelevant. However, many of the low frequency terms appear only once

in the corpus and offer little discriminative power. As such their removal will not degrade

the performance of a resulting classifier. Additionally high frequency topic neutral terms

(stopwords) are removed before document frequency is performed. What remains are terms

which appear with medium frequency in the corpus.

Yang & Pedersen (1997) have shown that dimensionality can be reduced by a factor of

ten (removal of 90 percent of terms) using document frequency with no loss in the accuracy

of the resulting classifier. Despite its simplicity, the performance of document frequency is

comparable to the best performing feature selection methods when dimensionality is reduced

by up to a factor of ten. Advanced techniques such as Information Gain are superior when

115



more than 90 percent of terms are removed.

Document Frequency performed Globally

As discussed in Section 2.5.4 dimensionality reduction can be performed using either a local

or global policy. Document frequency behaves differently depending on which policy is used.

Local document frequency is where a reduced set of features are selected based on the

document frequency of features for each individual category. In practice this can mean

that each document will have a distinct representation for every category. This is re-

ferred to as context-sensitive since the representation used is dependent on the category

under consideration.

Global document frequency is where a reduced set of features are selected using docu-

ment frequency irrespective of category. Only one reduced set of features will be used

for all categories. This is referred to as context-free since the representation is not

dependant on the category.

Performing document frequency using a local policy requires explicit knowledge of label

information and is therefore not suitable for an active learning setting where the majority

of data are unlabelled. Conversely, performing document frequency using a global policy is

an unsupervised dimensionality reduction technique and therefore is applicable to an active

learning setting.

6.3.2 Principal Components Analysis (PCA)

Principal Components Analysis, as discussed in Section 2.5.2 is a feature extraction method

which projects high-dimensional data on to a new low-dimensional space with minimum loss

of information. It is an unsupervised feature extraction technique, which makes it suitable

for use in an active learning setting.

PCA has been used extensively for image processing while a related technique called

Latent Semantic Indexing (Deerwester et al., 1990) has been used in the Information Re-

trieval domain. LSI employs singular value decomposition on the Term × Document matrix.

However, the result is the same as performing PCA on a covariance matrix.

A criticism levelled at PCA (and all feature extraction techniques) is that the new fea-

tures are not human readable. This is in contrast to feature selection, which uses a subset
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of the original attributes to express the data therefore the features are still readable after

dimensionality reduction has been applied. Feature extraction constructs new features from

the original attributes often combining several into a single new feature. The result is that

while the new feature is very expressive, it is illegible to humans.

PCA for Text Categorisation.

Given a set of m examples, principal component analysis will first centre the data by con-

structing the mean of the data µ (as given in (6.1)) and subtracting this from each example.

Centering the data is not essential but can remove irrelevant variance as it reduces the overall

sum of the eigenvalues.

µ =
1

m

m
∑

i=1

xi (6.1)

The covariance matrix (C) is constructed as the dot product of the centered examples as

given in (6.2) (centering is incorporated into the construction of the covariance matrix).

C =
1

m

m
∑

i=1

(xi − µ)(xi − µ)T (6.2)

The eigenvalue problem (6.3) is solved by performing eigenvalue decomposition on C.

The solution is a set of eigenvectors (v) and their associated eigenvalues (λ).

Cv = λv (6.3)

The d largest eigenvalues are sorted in descending order (λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λd) and

their associated eigenvectors stacked to form the transformation matrix W = [v1, v2, v3, . . . , vd].

For a given example x it can be transformed into the PCA reduced space by (6.4).

y = W Tx (6.4)

The original set of examples and any subsequent data can be transformed to the d-

dimensional space using (6.4).

Variance

The value of d is an important factor in the success of PCA. Since the eigenvalues correspond

to the amount of variance accounted for by their associated eigenvector, the proportion of

variance accounted for by the first d eigenvectors can be calculated as given in (6.5):
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λ1 + λ2 + . . . + λd

λ1 + λ2 + . . . + λd + . . . + λ|m|
(6.5)

.

6.4 Empirical Evaluation

Experiments were conducted to examine the effect of the proposed unsupervised dimension-

ality reduction techniques on the performance of active learning.

6.4.1 Experiment Settings

In order to assess the impact of dimensionality reduction, three representations of the data

were used in the experiments:

FULL This representation is where no dimensionality reduction is performed. All features

obtained from parsing the corpora were used. Stopwords and punctuation were removed

and stemming was performed using the Porter stemming algorithm (Porter, 1980).

DFG This representation was constructed by applying document frequency with a global

policy to the FULL representation. The data is expressed by a subset of the original

features. Only 10 percent of the most frequent features were retained.

PCA This representation was constructed by transforming the FULL representation using

principal component analysis. In our experiments we choose the leading d components

which account for 90 percent of the variance in the data. Eigenvalue decomposition

results in m eigenvalues eigenvector pairs, where m is the number of documents. The

value of d is found by iteratively increasing d until the output of (6.5)

In the case of DFG and PCA, the reduced (or transformed) feature sets were found using

the seed data and the unlabelled data only. The test data was subsequently re-expressed

using the reduced set of features. This ensures that no information is leaked from the testing

data.

Active Learning

Active learning performed on the 20NG-4 was seeded with three positive and three negative

examples. Similarly, for the R10 dataset active learning was seeded with ten positive and
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ten negative examples of the class. In each iteration just a single query is selected, which

corresponds to the finest granularity. Active learning was not terminated until the pool of

unlabelled examples was exhausted.

Datasets

Two standard benchmark corpora previously described in Section 4.2, namely the R10 and

the 20NG-4 corpora were used. Similar to (Schohn & Cohn, 2000) a 50/50 train/test split

was used in the 20NG-4 experiments. The data was randomly divided into two sets where one

was used as training while the other was held back for testing. The R10 used the ModApté

split where ten binary classification problems were constructed in a one-v-rest manner (see

Section 2.6.5).

Accuracy (see Section 2.8) is used as the performance metric for the 20NG-4 dataset.

However, due to the unbalanced class distribution in the R10 dataset the F1 value of precision

(π) and recall (ρ) was chosen as the performance metric, (where F1 = 2πρ
π+ρ

). F1 was calculated

using both macro-averaged and micro-averaged variants of precision and recall.

Classifier Details

Yang & Liu (1999) demonstrated the k-NN to be a high-performance classifier for text cate-

gorisation. However, it is sensitive to curse of dimensionality. While it is not commonly used

for active learning text categorisation tasks, we chose the k-NN since it is expected to benefit

greatly from dimensionality reduction. The k value was fixed at 3 in our experiments. The

optimal value for k is typically found using validation data, which is not available in active

learning. A low value for k is also important for the early iterations of active learning since

the number of training examples can be very low.

The Spider toolbox for Matlab (see Section 4.3.2) was used to perform the experiments

due to the fact it can easily perform principal components analysis and has a k-NN classifier.

However, the k-NN in Spider did not fully meet our requirements. We extended the func-

tionality of the k-NN by transforming the output of the classifier into a class membership

probability estimate P (y|x). This was done based on the inverse distance of the neighbours

to the query example in a manner that is similar to that of the WEKA implementation.
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6.4.2 Dimensionality

Table 6.1 shows the dimensionality of each representation used in the experiments. DFG was

configured to retain only the top 10 percent of the most frequently occurring features while

PCA was configured to adaptively select the number of features which account for 90 percent

of the variance in the data.

Table 6.1: Dimensionality of each representation

FULL DFG PCA

R10 19868 1986 309
AR 1427 142 194
GX 1953 195 23
WH 1968 196 232
BC 1985 198 210

The number of features retained is an important parameter for document frequency.

We performed an experiment to assess the sensitivity of this parameter on the accuracy

obtained using passive supervised learning. The number of retained features was varied from

1 percent to 100 percent and the accuracy obtained from a k-NN operating in the resulting

representation was observed.

Figure 6.1 shows the results obtained from the 20NG-4 dataset. It is observed that

in the individual sub-problems the optimal number of features retained can vary. However,

considering the aggregate of the 20NG-4, it can be seen that accuracy is optimal when a small

percentage of the most discriminating features are retained (the maximum point resides in

the interval of 1 to 10 percent).

Figure 6.2 shows the results obtained from the R10 dataset. Similarly, it can be seen that

accuracy is optimal when a small percentage of the most discrimination features are retained.

6.4.3 Learning Curves

Experiments were conducted to establish if unsupervised dimensionality reduction can benefit

a k-NN in the active learning process. To show this we made comparisons between a k-NN

operating on the full feature set (FULL) and a k-NN operating on either of the dimensionality

reduced data (DFG or PCA).

Figure 6.3 shows the learning curves for active learning using each of the representations

for the R10 dataset. The FULL representation is the worst performing achieving the lowest
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Figure 6.1: Document frequency aggressiveness for 20NG-4 obtained using a 3-NN classifier.
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Figure 6.2: Document frequency aggressiveness for R10 obtained using a 3-NN classifier.

overall F1 values in practically all iterations of active learning. This can be attributed to the

poor performance of the k-NN in high-dimensional data.
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Figure 6.3: Learning curves for R10 obtained using a 3-NN classifier in three representations
of the data: FULL contains all possible features, PCA is the d- dimensional representation
given by principal components analysis and DFG is the reduced representation given by the
top 10 percent of features as given by document frequency performed with a global policy

Increases in F1 are achieved when dimensionality is reduced using both unsupervised

techniques. Document frequency with a global policy (DFG) achieves a higher overall F1

value than FULL, while the best performance is obtained when dimensionality is reduced

using principal components analysis (PCA).
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Similar results are obtained from the 20NG-4 dataset. Figure 6.4 shows the learning curves

for the 20NG-4. The performance of the k-NN is weakest when the FULL representation of

the data is used. The k-NN operating in the DFG representation performed better than the

k-NN operating in the FULL representation while the best performance was achieved by the

k-NN operating in the PCA representation.

6.4.4 Labelling Effort

An alternative way in which to assess the impact of dimensionality reduction is to establish

how long it takes an active learner in each representation to achieve the accuracy obtained

from passive supervised learning using the entire pool in the FULL representation. Table 6.2

shows the number of queries required in order to achieve the passive supervised learning level

for the R10 dataset.

Table 6.2: Iterations of active learning required to achieve supervised passive learning per-
formance on R10. Percentage of pool labelled is given in brackets

Full DFG PCA

MacroF1 454 (46%) 324 (33%) 243 (25%)
MicroF1 923 (93%) 444 (45%) 385 (39%)

The application of unsupervised dimensionality reduction can be seen to reduce the num-

ber of queries required. PCA offers the greatest reduction in labelling effort, requiring only

25 percent of the pool to be labelled in the case of macro F1 and 39 percent in the case of

micro F1. Reductions are also achieved when dimensionality is reduced using DFG, however

the reductions are not as pronounced as those given by PCA.

Results from the 20NG-4 dataset exhibit similar characteristics to those found in the R10

dataset. Table 6.3 shows the number of queries made before the supervised passive learning

rate was achieved for the 20NG-4 dataset. The application of dimensionality reduction using

DFG led to a decrease in the number of queries required in three of the four problems.

The k-NN operating in the PCA representation was the top performer. In three of the

four problems the number of queries was approximately halved while in the GX problem only

58 queries (6 percent of the pool) required labels. In contrast, 773 queries (80 percent of

the pool) were required to achieve the supervised passive learning rate when the k-NN was

operating in the FULL representation.
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Figure 6.4: Learning curves for 20NG-4 obtained using a 3-NN classifier in three represen-
tations of the data: FULL contains all possible features, PCA is the d- dimensional represen-
tation given by principal components analysis and DFG is the reduced representation given
by the top 10 percent of features as given by document frequency performed with a global
policy
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Table 6.3: Iterations of active learning required to achieve performance of supervised learn-
ing for 20NG-4. Percentage of pool labelled is given in brackets

Full DFG PCA

AR 672 (95%) 597 (85%) 416 (59%)
GX 773 (80%) 661 (68%) 58 (6%)
WH 616 (64%) 553 (57%) 342 (35%)
BC 408 (42%) 428 (44%) 201 (21%)

6.4.5 Fixed Stopping Criteria

Active learning is used in domains where the cost of acquiring label information is high.

For this reason it is common to use a fixed stopping criterion (see Section 3.3.4). If active

learning is stopped after 250 iterations the increase in F1 on the R10 dataset using the PCA

representation (compared to FULL) is (Macro) 0.0496 (Micro) 0.1561 while the increase in

F1 of the DFG representation compared to FULL is (Macro) 0.0219 (Micro) 0.0802. Bold

text indicates statistical significance (α = 0.05).

Similarly for the 20NG-4 dataset the increase in accuracy when active learning is per-

formed in the PCA representation is: (AR) 0.0574 (GX) 0.1883 (WH) 0.0643 (BC) 0.1517

while the increase in accuracy of DFG compared to FULL is: (AR) 0.0255 (GX) 0.028 (WH)

0.0316 (BC) 0.0386. Bold text, again, indicates statistical significance (α = 0.05).

6.4.6 Random Feature Selection

It could be the case that the observed improvements in performance is due simply to the

positive effect of reducing the number of features has on the classifier, irrespective of the

quality of the reduced set. In order to test that possibility we compared performance of the

baseline to random feature selection (Forman, 2003).

Figure 6.5 plots the performance of random feature selection (RAND) with respect to the

original feature set (FULL) on the R10 dataset. The performance of Rand is significantly

worse which shows features selected by the unsupervised techniques are discriminative.

6.4.7 Supervised Dimensionality Reduction

To establish how competitive the unsupervised methods are with a top performing supervised

dimensionality reduction technique, we conducted active learning using a k-NN operating in a

representation described using just the top 500 features as given by Information Gain (IG500)
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Figure 6.5: Performance of RAND compared to FULL. Similar to the other dimensionality
reduction techniques in this chapter, random feature selection was performed in each trial
of the experiment and ten trials were conducted. Results shown are the average of the ten
trials. Iterations of active learning is given on the X-axis and the F1 is given on the Y-axis.

(Hoi et al., 2006).

Figure 6.6 shows the results obtained from experiments conducted on the 20NG-4 dataset.

DFG offers some improvements over the FULL representation. However, PCA is very com-

petitive with the supervised technique and in some cases (e.g. Figure 6.6(c)) outperforms

it.

The strong performance of PCA is encouraging and we believe this is due to the adaptive

way in which the number of features retained are selected. However, the computational

overhead of performing PCA is not to be underestimated and must be considered when

choosing the dimensionality reduction technique.

6.4.8 Alternative Classifiers

To assess the improvement achieved by the application of unsupervised dimensionality re-

duction, the k-NN is compared against a number of alternative classifiers, namely a support

vector machine and a multinomial näıve Bayes classifier. The support vector machine is

implemented using the Spider implementation1 while the multinomial näıve Bayes is from

WEKA.

Figure 6.7 shows that while the SVM still maintains a clear advantage the combination

1the andre optimiser was used
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Figure 6.6: Comparison of supervised feature selection using information gain retaining
the top 500 features (IG500) to unsupervised dimensionality reduction using DFG and PCA.
Results obtained using a 3-NN classifier
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of k-NN with unsupervised dimensionality reduction does offer more competition than a

k-NN operating within the FULL representation. While there is improvement, the lift in

performance offered by alternative classifiers should not be ignored.
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Figure 6.7: Performance of SVM and näıve Bayes classifiers compared to k-NN on the R10
Dataset. Iterations of active learning is given on the X-axis and the the F1 is given on the
Y-axis.

6.5 Discussion

High-dimensional data is common in text categorisation problems. Supervised feature se-

lection techniques, which are typically used to reduce dimensionality in text categorisation

problems cannot be employed since the majority of data supplied to the learner are unlabelled.

We investigated unsupervised techniques to reduce dimensionality of text categorisation data

in active learning settings without adversely effecting the accuracy of the induced classifier.

Reducing dimensionality provides benefits by reducing computational and storage overheads

but also allows greater flexibility in the selection of classifier used in active learning.

Two unsupervised dimensionality reduction techniques were investigated for use in active

learning settings, namely document frequency performed globally and principal components

analysis. Empirical evaluation in Section 6.4.3 shows that the suggested unsupervised di-

mensionality reduction increases the performance of active learning using a k-NN. The k-NN

was chosen for use in the experiments as it suffers from the curse of dimensionality and can

perform poorly in high-dimensional data. However, it exhibits state-of-the-art performance

128



when operating in a reduced feature set given by an appropriate supervised feature selection

(Yang & Liu, 1999)

Comparisons were made between active learning operating in the original FULL feature

set and active learning operating in the reduced feature sets as given by DFG and PCA re-

spectively. Reducing dimensionality using DFG offered some performance increase compared

with the FULL representation. However, the k-NN performed best in the representation as

given by performing dimensionality reduction using principal component analysis.

PCA was found to outperform DFG in all experiments conducted. We believe this was

due to PCA adaptively choosing the number of features to retain (the d Eigenvectors which

account for 90 percent of the variance in the data). Conversely, DFG statically reduced the

dimensionally of the data. In the 20NG-4 experiments, for instance, PCA reduced dimen-

sionality to just 23 features in the GX problem. Subsequently classification in the reduced

feature set was considerably easier leading to higher performance of active learning and a

large reduction in the labelling effort (58 compared to the baseline of 773).

It may be argued that the increased performance of active learning is simply due to the

reduction in features, irrespective of the method used to reduce dimensionality. Section 6.4.6

demonstrated the performance increase was as a result of the selection of discriminative

features since random feature selection failed to achieve similar results to DFG.

Section 6.4.7 compares the relative performance of the two unsupervised techniques to

a top performing supervised technique on the 20NG-4 dataset. Yang & Pedersen (1997)

demonstrated Information Gain as being a top performing supervised dimensionality reduc-

tion technique for text categorisation problems. Reducing dimensionality using PCA was

seen to be competitive with Information Gain retaining only the top 500 ranked features

(Hoi et al., 2006). This demonstrates that the unsupervised techniques can deliver significant

reductions in dimensionality comparable with the best performing supervised techniques.

While PCA was shown to be best performing unsupervised dimensionality reduction tech-

nique for the k-NN, the associated computational overhead is high, which limits its applicabil-

ity to very large datasets. Conversely, document frequency offers some increased performance

at much lower computational expense. Active learning prefers to incur computational expense

in favour of manual labelling, therefore the additional cost of principal component analysis

may be justified. If the cost of PCA is too high, alternative classifiers such as those com-

pared in Section 6.4.8 could be used, since the SVM and näıve Bayes classifiers operate well

in high-dimensional data and do not require dimensionality reduction.
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6.6 Summary

Motivated by the desire to use the k-NN classifier for active learning in text categorisation

problems, we highlight the specific problems of performing dimensionality in an active learn-

ing setting. High-dimensional data is common in text categorisation problems due to the

size of the vocabulary in natural text documents. Dimensionality reduction is commonly em-

ployed to shrink the size of the data while maintaining all the salient information contained

in the original representation.

Supervised dimensionality reduction is typically used for text categorisation problems

which assumes the presence of label information. This is a significant problem in an active

learning setting where the majority of the data is unlabelled.

This chapter investigated unsupervised dimensionality reduction for use in active learning

settings. It was found that unsupervised dimensionality reduction clearly benefits the k-NN

classifier making it more competitive. Reducing dimensionality using principal components

analysis was found to be competitive with a top-performing supervised feature selection

technique (commonly used in text categorisation). The use of unsupervised dimensionality

reduction techniques allows for greater flexibility in the choice of classifier used in active

learning.
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Chapter 7

Adaptive Pre-Filtering Error

Reduction Sampling

7.1 Introduction

In this chapter we investigate the pre-filtering optimisation technique for error reduction

sampling (ERS) (Roy & McCallum, 2001; Lindenbaum et al., 1999). The computational

overhead of error reduction sampling is extremely high, requiring O(n2) classifications to

select each query, where n = |DU |. We hypothesise that pre-filtering optimisation will increase

the quality of queries selected by error reduction sampling as well as reduce computational

overhead by allowing for smaller subsets to be used. Furthermore, we propose a novel adaptive

pre-filtering technique which dynamically switches among a number of fixed pre-filtering

techniques based on performance in past iterations.

Roy & McCallum (2001) have proposed subset optimisation as a technique to reduce

the computational expense of ERS. Subset optimisation reduced computational overhead by

restricting the number of unlabelled examples considered by error reduction sampling. The

most popular technique for constructing the subset is random sub-sampling (ERS-RS), which

randomly selects unlabelled examples from the pool to form the subset. We investigate an

alternative technique called pre-filtering, which constructs the subset in a more principled

manner. Pre-filtering populates a subset with unlabelled examples filtered from the pool using

a query selection strategy. The pre-filtered subset will contain a large amount of potentially

informative unlabelled examples compared to sub-sampling. We hypothesise that pre-filtered

subset optimisation will increase the quality of queries selected by error reduction sampling
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as well as reduce computational overhead by allowing for smaller subsets to be used.

A novel adaptive pre-filtering technique is proposed (ERS-FPL) that constructs the subset

using a number of alternative query selection strategies. Adaptive query selection (Baram

et al., 2004; Pandey et al., 2005; Osugi et al., 2005; Pandey et al., 2005) dynamically switches

among a number of fixed query selection strategies, where the strategy that has performed

best in the past iterations of active learning is used to select the query in the current iteration.

We extend this idea to the task of pre-filtering, where a single fixed query selection strategy

is chosen to construct the subset based on performance in prior iterations. ERS-FPL should

perform as well as the best performing fixed pre-filtering technique.

Section 7.2 gives some motivation for error reduction sampling, pre-filtering and the pro-

posed adaptive pre-filtering technique. Error reduction sampling is described in detail in

Section 7.3. Subset optimisation, including random sub-sampling and pre-filtering, is dis-

cussed in detail in Section 7.4, while Section 7.5 describes the proposed adaptive pre-filtering

technique. Details of the experimental settings and results from the empirical evaluation

conducted are given in Section 7.6. Finally, discussions on the findings obtained are given in

Section 7.7.

7.2 Background

The success of active learning depends directly on the ability to identify and label only the

most informative examples. In pool-based active learning (see Section 3.3.2) it is responsible

for the selection of informative queries from a large pool of unlabelled examples. Informative

examples are those which maximise learning of the target concept and result in the lowest

future error on test examples. An ideal query selection strategy is to select queries based

on reduction of future error, since this is the metric on which active learning performance is

ultimately evaluated.

Section 3.4.5 discusses two query selection strategies proposed in the literature which

select unlabelled examples based on the criterion of directly reducing future error. In this

chapter we explore error-Reduction Sampling (ERS) (Roy & McCallum, 2001), which selects

queries that directly minimise expected future error. ERS is not frequently used in active

learning due to its large computational overhead - selecting a query requires O(|DU |) clas-

sifications. Roy & McCallum (2001) have proposed subset optimisation as a way to reduce

the computation expense of ERS. Subset optimisation applies ERS to only a small fraction
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of examples from the pool.

The most popular technique for constructing the subset is random sub-sampling (ERS-

RS), which randomly select unlabelled examples from the pool to form the subset. This

has two main drawbacks. First, the subset must be large enough to provide a representative

sample of the pool, restricting the computational reduction possible. Second, there is a chance

that the randomly selected example contains uninformative examples wasting effort as ERS

is applied to them.

Pre-filtering, also proposed by (Roy & McCallum, 2001), constructs the subset with un-

labelled examples filtered from the pool using a query selection strategy. In this way the sub-

set will contain potentially more informative unlabelled examples compared to sub-sampling.

Pre-filtering will not lead to a decrease in computational overhead with respect to random

sub-sampling. However, it can increase the quality of the examples in the subset allowing

for smaller subset to be used and reductions in labelling effort by improving active learning

learning rates.

Active learning typically employs a single fixed query selection strategy throughout its

entire life-cycle. Empirically it has been found (Donmez et al., 2007; Xu et al., 2003) that

different query selection strategies are desirable in different iterations of active learning. This

motivates the need for an adaptive query selection strategy that can balance exploration

and exploitation in order to increase the accuracy of active learning. Online adaptive query

selection strategies (Baram et al., 2004; Pandey et al., 2005; Osugi et al., 2005; Pandey

et al., 2005) dynamically switch among a number of fixed query selection strategies, where at

each iteration of active learning the best performing strategy is used to select the query. We

develop this idea to propose a novel adaptive pre-filtering technique which adaptively chooses

the query selection strategy used to filter examples from the pool. The choice is based on

the performance of each strategy when it was chosen in past iterations of active learning.

7.2.1 Related Work

ERS has been shown to be a very strong performing query selection strategy (Culver, 2006;

Roy & McCallum, 2001). Due to the computational overhead, random sub-sampling has

been typically employed when performing ERS (Roy & McCallum, 2001; Baram et al., 2004;

Culver et al., 2006). Results obtained for ERS-RS in the empirical evaluation conducted are

consistent with these findings.

Recently, uncertainty sampling was used as pre-filtering for ERS in (Culver et al., 2006;
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Culver, 2006). The subset was formed by selecting only the N most uncertain examples. It

was found that pre-filtering using uncertainty sampling increased accuracy when the base

classifier for active learning was an SVM. However, no improvement was found when a näıve

Bayes classifier was used. The poor performance was attributed to the inaccurate probability

estimates generated.

In contrast to (Culver et al., 2006), empirical evaluations in this thesis were conducted

on text categorisation problems using a multinomial näıve Bayes classifier, where Bagging

was used to increase the quality of the probability estimates obtained. This setting is sim-

ilar to that of (Roy & McCallum, 2001) where ERS was shown to achieve higher accuracy

than uncertainty sampling. In addition, we investigate an alternative exploration based pre-

filtering strategy (ERS-FF) and also examine the effect of subset size for both sub-sampling

and pre-filtering.

Furthermore, we propose a novel adaptive pre-filtering technique, which constructs the

subset by dynamically switching among a number of alternative query selection strategies

throughout the active learning process. While online adaptive query selection strategies have

emerged from the literature (Baram et al., 2004; Donmez et al., 2007; Osugi et al., 2005;

Pandey et al., 2005), these strategies are concerned with the selection of queries and not with

the construction of a subset for use with ERS. We extend this idea to the problem of selecting

a pre-filtering technique in an adaptive fashion.

7.3 Error-Reduction Sampling (ERS)

As discussed in Section 3.4.5 error reduction sampling (Roy & McCallum, 2001), in contrast

to alternative selection strategies that optimise different criteria, selects queries that directly

minimise expected future error. Closed form calculation of expected error is impractical

for all but the most trivial of problems. However, estimates can be calculated using only

the unlabelled data. For a probabilistic classifier trained on all known labelled data P̂Dℓ
an

estimate of future error is calculated using (7.1):

E
P̂Dℓ

=

∫

x

L(P (y|x) , P̂Dℓ
(y|x))P (x) (7.1)

where L is an appropriate loss function. The loss function L measures the disagreement

between the predicted class and the true class. In the case of error reduction sampling,

log-loss (7.2) is used:
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L =
∑

y∈Y

P (y|x) log(P̂ (y|x)) (7.2)

Rather than estimating the error over the full distribution of data P (x), sample estimation

is used over the unlabelled pool DU to calculate the estimated future error, as shown in

Eqn. 7.3. The true output distribution P (y|x) is unknown therefore the current classifier

(P̂Dℓ
) predictions are used.

Ẽ
P̂Dℓ

=
1

|DU |
∑

x∈DU

∑

y∈Y

P̂Dℓ
(y|x) log(P̂Dℓ

(y|x)) (7.3)

The true label for unlabelled examples is not available therefore the expected error must

be estimated using every possible labelling. The prediction from the current classifier is used

to give a weighted average over all the possible labels as shown in (7.4):

x∗ = arg min
x∈DU

∑

y∈Y

P̂Dℓ
(y|x) ẼPDℓ

S

{x,y}
(7.4)

The use of the log-loss means that queries selected are those examples which maximise

the sharpness of the learner’s posterior belief of the unlabelled examples. In other words,

ERS will select queries which maximally reinforce the current learner’s existing belief over

uncertain unlabelled examples.

Algorithm 2: Error Reduction Sampling : Active Learner

Data: Dℓ: the labelled data.
Data: DU : the unlabelled data source.
Result: P̂Dℓ

: classifier induced from all training data
repeat

induce classifier from Dℓ ;
forall x ∈ DU do

foreach y ∈ Y do
Estimate expected error for Dℓ

⋃{x, y} ;
weight each expected error by P̂Dℓ

(y|x) ;

select query (x∗) with lowest expected future error;
update labelled data Dℓ ← Dℓ

⋃{x∗, y} ;
until stop criterion reached ;

Algorithm 2 shows the pseudo-code for an active learner using error reducing sampling.

Each unlabelled example in the pool (x ∈ DU ) is considered a candidate query. The unlabelled

examples are assigned a possible label and tentatively added to the training data (D∗
ℓ =

Dℓ

⋃{x, y}). A new classifier is induced (P̂D∗
ℓ
) using the updated training data and the
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expected future error is estimated using (7.3). This is repeated for all possible labels and the

estimated expected error for x is calculated as an average, weighted by the current classifiers

predictions P̂Dℓ
(y|x). The query is selected as the unlabelled example that resulted in the

lowest estimated expected error

A related technique to ERS is that of look-ahead query selection (Lindenbaum et al., 1999)

which estimates the utility of knowing the true label for an unlabelled example. Queries are

selected as the unlabelled example that has the highest utility. This strategy is similar to

ERS where the log-loss function in (7.3) is replaced with a 0/1 loss function.

Computational Efficiency

Implemented näıvely, error-reduction sampling is hopelessly inefficient. For a binary classi-

fication problem, selecting a query would require the induction of |DU |2 classifiers for every

iteration of active learning. Typically the size of the unlabelled pool is large in active learning

rendering ERS impractical for most real world problems. Several optimisations that reduce

the associated computational overhead have been suggested (Roy & McCallum, 2001):

• Many classification induction algorithms support incremental training, whereby adding

and incorporating additional training data is far less expensive than inducing a new

classifier from all available training data. Computational expense can be reduced if

an incremental training implementation is used for ERS due to the large number of

classifiers which are induced in every iteration of active learning.

• Estimates can be expensive to calculate especially if the pool is very large. A good

estimate may be obtained from a subset of the pool. Sub-sampling and pre-filtering are

ways in which a subset of the large pool is constructed. Estimates of future error are

then found for just the examples in the subset.

Sub-sampling is frequently used to make ERS more computationally efficient. While pre-

filtering is less common we believe it has the potential to be more beneficial to ERS than

sub-sampling. Section 7.4 describe each technique in detail while Section 7.5 proposes a novel

adaptive pre-filtering technique.
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7.4 Subset Optimisation

The computational expense of ERS is proportional to the size of the unlabelled pool. Re-

stricting the number of unlabelled examples in the pool can significantly reduce computational

overhead. To achieve this, a subset of the pool (D′
U ) can be constructed and ERS applied to

only those examples within the subset.

The manner in which the subset is constructed is the topic of investigation in this chapter.

Two ways in which to construct the subset are random sub-sampling and pre-filtering. Ran-

dom sub-sampling has been used frequently when ERS is applied. However, we believe the

less commonly used pre-filtering technique has some significant advantages. We now describe

both random sub-sampling and pre-filtering in greater detail.

7.4.1 Random Sub-sampling

Sub-sampled error-reduction sampling (ERS-RS) is the most frequently used optimisation

(Roy & McCallum, 2001; Baram et al., 2004). The subset is constructed by randomly selecting

unlabelled examples from the (large) pool.

D′
U ⊂ DU s.t. |D′

U | ≪ |DU |

Random sub-sampling is an efficient method of populating the subset. Furthermore,

selecting examples at random ensures there is a variety of examples in the subset, provided

the samples are large enough. However, with large subsets there is a possibility that it

contains a significant number of uninformative examples.

7.4.2 Pre-filtering

Pre-filtering constructs the subset in a more principled way than random sampling. Query

selection strategies are used to select the examples which form the subset. Intuitively, the sub-

set should contain more informative examples since the uninformative examples are filtered

out by the query selection strategies.

Practically all query selection strategies can be used as a pre-filter. Care should be taken

however that the application of the pre-filtering does not increase computational overhead

significantly. Two query selection strategies are proposed for use as pre-filters to construct

the subset:
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ERS-US is where Uncertainty Sampling is used as a pre-filtering technique (Culver et al.,

2006) to construct the subset. The N most uncertain examples from the pool of un-

labelled examples are used to populate the subset. Uncertainty is defined by the pre-

diction confidence of the classifier induced in the current iteration of active learning.

Uncertainty sampling is a pure exploitation-based query selection strategy that selects

examples close to the current decision boundary.

ERS-FF is where a Furthest First query selection strategy (Hochbaum & Shmoys, 1985) is

used to populate the subset. Furthest First selects queries which are most dissimilar

to all known labelled examples. Similarity is defined using a standard metric such as

Euclidean distance. Furthest first is a pure exploration-based selection strategy that

selects queries from regions of the input space where there is currently little or no

knowledge.

Constructing the subset by filtering examples from the pool using a query selection strat-

egy is expected to benefit ERS. This is because the subset should contain more informative

examples than a subset constructed using random sub-sampling, resulting in an increase in

the accuracy of active learning.

Random sub-sampling will be more computationally efficient to employ than pre-filtering,

since the query selection strategy used to populate the subset will incur extra computational

costs. However, we hypothesise the increased accuracy obtained from the pre-filtered subset

will justify the extra computational expense.

Furthermore, we expect pre-filtering will allow for smaller subsets to be used without

effecting the accuracy of the classifier produced using active learning. In this way, pre-

filtering will not only reduce computational overhead but can also increase the accuracy

of the classifier produced using active learning, offering significant advantages over random

sub-sampling.

7.4.3 Subset Size

The running time of ERS is directly related to the size of the subset. The subset should

be small enough to obtain a significant computational advantage but cannot be too small to

ensure the sample contains some informative examples. This matter is discussed further in

Section 7.6.7 where sensitivity analysis is conducted to determine the impact of subset size

in the experiments conducted.
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7.5 Adaptive Pre-filtering

Online adaptive query selection strategies (Baram et al., 2004; Donmez et al., 2007; Osugi

et al., 2005; Pandey et al., 2005) have emerged that dynamically switch between a number of

different query selection strategies. These online strategies adaptively choose which strategy

to use in each iteration of active learning based on their relative performance. In this way, a

query selection strategy is applied during the iteration where it is most useful. The adaptive

query selection strategy should be as good as the best fixed strategy in hindsight.

7.5.1 ERS-FPL

Similarly to query selection strategies, we suggest that different pre-filtering techniques will

be optimal during different phases in the life-cycle of an active learner. We proposed a

novel adaptive pre-filtering technique, which will switch among several pre-filtering techniques

based on their relative performance, thus extending the idea of online adaptive query selection

to the problem of selecting a pre-filtering technique to construct the subset for ERS. An

adaptive pre-filtering technique is expected to be as good as the best performing fixed pre-

filtering technique in hindsight.

The task of selecting a pre-filtering scheme used to construct the subset in every iteration

of active learning is cast as an instance of the Multi-Armed Bandit (MAB) problem (see

Section 3.4.6). In the MAB setting, each pre-filtering technique is considered to be a slot

machine and in every iteration of active learning just one machine is selected to be played.

After playing a machine a reward is received based upon how successful that machine was.

The goal is to maximise reward over the finite horizon (the T iterations of active learning).

In an active learning setting the goal is to converge to the supervised learning accuracy as

quickly as possible.

We employed the follow-the-perturbed-leader (Kalai & Vempala, 2005; Pandey et al., 2005)

as the MAB algorithm in the adaptive pre-filtering technique. An opaque version of the

algorithm was used, where rewards for machines that were not played are not available to

the gambler. This mimics the slot machine analogy where we do not know the reward for

machine that we did not play.

The reward (si) associated when each machine (pre-filtering technique) was played is

maintained and used in combination with a perturbation (pi) factor to choose the optimal

machine for the next iteration of active learning.
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Algorithm 3: Pseudocode for the opaque Follow-the-Perturbed-Leader algorithm.

for t = 1 . . . T do
Choose machine arg mini si<t + pi ;
Play machine i and receive reward for selected machine. ;

Algorithm 3 details the pseudo-code for the FPL algorithm where si<t is the total reward

associated with machine i obtained in all previous iterations. The reward associated with

machines not played in the current iteration is zero. Perturbation values are drawn from the

exponential distribution and the horizon (T ) in this case is the stopping criterion for active

learning. Similar to (Pandey et al., 2005) the perturbation is drawn from the exponential

distribution pt = e−|x| where x = rand ∗ pt−1.

Algorithm 4 shows the pseudo-code for an adaptive pre-filtered active learning using ERS.

The additional step of selecting the pre-filtering technique is achieved using Algorithm 3 which

switches among a number of alternative query selection strategies to use as pre-filters. The

subset (D′
U ) is constructed using the selected pre-filtering technique and ERS is applied to

only the examples within the subset.

Algorithm 4: Adaptive Pre-Filtered Error Reduction Sampling : Active Learner

Data: Dℓ: the labelled data.
Data: DU : the unlabelled data source.
Result: P̂Dℓ

: classifier induced from all training data
repeat

induce classifier from Dℓ ;
select pre-filtering technique ;
construct subset D′

U ;
forall x ∈ D′

U do
foreach y ∈ Y do

Estimate expected error for Dℓ

⋃{x, y} ;
weight each expected error by P̂Dℓ

(y|x) ;

select query (x∗) with lowest expected future error;
update labelled data Dℓ ← Dℓ

⋃{x∗, y} ;
until stop criterion reached ;

7.5.2 Reward

The reward is an important aspect of a reinforcement learning strategy. Without an effective

feedback mechanism the learner will not be able to select the optimal pre-filtering technique

in every iteration of active learning. Ideally, the best reward to use would be the true error of

the classifier. Clearly this is not available. Indeed even an estimate of the true error obtained
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on a hold-out test set is not strictly available due to the scarcity of labelled examples in an

active learning setting.

An obvious metric to use is the error rate achieved on the current set of labelled data.

Since the number of labelled examples is small, techniques such as k-fold cross validation or

leave-one-out (LOO) validation are often used - this reward structure was used in (Pandey

et al., 2005). While this offers an estimate of the error achieved by the current classifier,

there are problems, namely in the data used for evaluation. Active learning populates the

training data with examples that are inherently difficult to classify. The training examples are

therefore generally not representative of the underlying data (not i.i.d.). Thus, conducting

evaluation on a biased training data, such as one constructed using active learning, may lead

to misleading rewards. In the experiment LOO rewards were not used for this reason.

An alternative metric to measure the performance of active learning is Classification

Entropy Maximisation (CEM) (Baram et al., 2004), which measures the entropy (H) of

label predictions given by the current classifier on the remaining unlabelled examples. It is

calculated using (7.5).

CEM(P̂Dℓ
) = H(

|P̂Dℓ
(DU ) = +|
|DU |

) (7.5)

where |P̂Dℓ
(DU ) = +| is the number of positive predictions given by the classifier when run

on the unlabelled data. CEM gives higher values to a more even distribution of labels. It

was previously used as a reward in (Baram et al., 2004) and was seen to closely resemble the

true error estimate. CEM was used as the reward structure in the experiments.

7.6 Empirical Evaluation

In this section we describe empirical evaluations that examine pre-filtered error-reduction

sampling. First comparisons between random sub-sampled error-reduction sampling and less

complex query selection strategies are made to establish the benefits offered by employing

ERS. Secondly, experiments are conducted to establish whether pre-filtering had a positive

influence on the accuracy of active learning compared to random sub-sampling. Comparisons

are made between ERS applied to subsets constructed using random sub-sampling as well

as subsets constructed using pre-filtering. Furthermore we compare the quality of unlabelled

examples in a subset constructed by random sub-sampling with a subset constructed using

pre-filtering. Third, the proposed adaptive pre-filtering technique was evaluated is respect
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to each of the fixed pre-filtering techniques. An adaptive pre-filtering technique should be

as good as the best fixed pre-filtering technique in hindsight. Finally sensitivity analysis

is conducted to discern the impact subset size has on error-reduction sampling. Compared

to random sub-sampling, pre-filtering should reduce the number of examples in the subset

required to achieve a similar level of accuracy. Smaller subsets can lead to decreased compu-

tational overheads for ERS.

7.6.1 Experiment Settings

In this section we describe experimental settings used in the empirical evaluations. Details

are given on the datasets, classifier and evaluation metric employed.

Datasets

Experiments were evaluated using two real world benchmark text corpora, namely the 20NG-

4 dataset and the R10 dataset. A subset of the 20 newsgroups dataset (as described in

Section 4.2.2) was used in the experiments. The dataset consists of four binary text classifi-

cation problems of varying difficulty. 10-fold cross validation was performed on each of the

four sub-problems.

The second corpus used was the R10 dataset (as described in Section 4.2.1). Ten binary

text classification problems were constructed for the R10 data in a one-v-rest manner (one for

each category). The experimental setup closely follows that of (Tong & Koller, 2001) where

the pool of unlabelled examples are formed by randomly sampling 1,000 examples from 9,603

Mod-Apté training set and removing their labels. The test set remained unchanged and

consisted of the 3,299 Mod-Apté test examples.

Classifier

Similar to (Roy & McCallum, 2001) an ensemble of multinomial näıve Bayes classifiers were

used. However the Weka (Witten & Frank, 2005) implementation was utilised in the exper-

iments. The ensemble consisted of 10 members constructed using Bagging. The aim of the

ensemble is to provide smoother probability estimates.

Evaluation Metric

Since there is no standard way in which to report results of active learning experiments, a

number of evaluation metrics are used:
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• Learning curves (see Section 3.5.2) plot the accuracy of the classifier induced for ev-

ery iteration of active learning on a hold out test set. They allow for quick visual

comparisons to be made between alternative active learning strategies.

• p-value plots (see Section 3.5.4) show at which iterations each strategy is statistically

significantly better than random sampling. The confidence level α = 0.05 is shown in

each plot to help assessment.

• Deficiency values (see Section 3.5.3) are used to report the global performance of each

active learning strategy.

• Confidence Intervals as described in Section 3.5.5 are a method of combining the p-

values obtained from performing one tail paired t-tests in every iteration of active

learning into a single value. Statistical significance is established between two alter-

native strategies by taking the median confidence level at which they differ across all

iterations of active learning.

7.6.2 Error-Reduction Sampling

The first set of experiments was conducted to establish whether error-reduction sampling

outperforms uncertainty sampling. The accuracy of active learning using three query selection

strategies was compared. Namely random sub-sampled error-reduction sampling (ERS-RS)

is compared to the accuracy obtained using both uncertainty sampling (US) and random

sampling (RS). For ERS to be considered advantageous it must outperform both RS and US.

Active learning was performed as described in Algorithm 2. Seed data for the 20NG-4

experiments was constructed by randomly selecting 3 positive and 3 negative examples of the

class. Seed data for R10 was constructed by randomly selecting 10 positive and 10 negative

examples of the class. In order for fair comparison to be made, the same seeds were supplied

to each of the strategies under investigation. A single query is selected in every iteration and

active learning was stopped after 100 queries were labelled. A subset of size 100 was used for

all ERS experiments.

20NG-4 Results

Figure 7.1 shows the learning curves for the 20NG-4 dataset. Error-reduction sampling (ERS-

RS) is seen to outperform both random sampling (RS) and uncertainty sampling (US) for all
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four problems. This is very evident in the aggregate plot of all four sub-problems given in

Figure 7.1(a). Surprisingly, Figure 7.1(d) shows random sampling outperforming uncertainty

sampling. However, similar results are reported (Tong & Koller, 2001) when the same Usenet

articles were used in active learning experiments.

Table 7.1 report the confidence interval for the 20NG-4 dataset. Large confidence interval

values are reported when US is compared to RS (except in the WH problem which correlates

with the findings from the learning curves).

Error reduction sampling was found to outperform uncertainty sampling with confidence

interval ≥ 0.7 on three of the four problems. The poor confidence interval value for the BC

sub-problem is due to the fact the problem is particularly easy, hence both ERS and US

converge to the supervised learning rate rapidly.

Table 7.1: 20NG-4 Confidence interval values for US and ERS-RS

AR GX WH BC

RS v US 0.9 0.9925 -0.99 0.995
US v ERS-RS 0.7 0.7 0.99 0.0

Deficiency values obtained for the 20NG-4 dataset are reported in Table 7.2. The lowest

deficiency value was obtained using ERS-RS on all four problems. Error reduction sampling

also outperformed random sampling in the WH problem as indicated by the deficiency values

being less than one.

Table 7.2: 20NG-4 Deficiency scores (DA) for US and ERS-RS. Lower values are better.
The lowest deficiency values are indicated in bold text

AR GX WH BC

US 0.8494 0.7257 1.3568 0.5588
ERS-RS 0.7602 0.6176 0.9923 0.4586

R10 Results

Figure 7.2 shows the learning curves for the R10 dataset. Due to the highly unbalanced

data distribution F1 is used instead of accuracy. The graphs report the F1 values averaged

over all ten categories. Additional learning curves for individual categories on the R10 are

available in Appendix C. Both macro and micro-averaged F1 are reported, where macro-
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Figure 7.1: 20NG-4 Results. Obtained using a bagged multinomial näıve Bayes classifier
with Active Learning run for 100 iterations, seeded with 3 examples from each class and
selecting 1 query per iteration. Accuracy was used as the performance metric and evaluation
on the test set was done after every 5 iterations. Below each graph the p-value showing
statistical significance against random sampling (RS) is given (α = 0.05 is shown as a solid
line)
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averaged takes the mean F1 across categories while micro-averaged F1 is constructed from

the averaged confusion matrix. The learning curves show that uncertainty sampling achieves

better F1 values than random sampling. Furthermore, error reduction sampling was found to

be the top-performing query selection strategy achieving higher F1 values than uncertainty

sampling.
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Figure 7.2: R10 Results, obtained using a bagged multinomial näıve Bayes classifier with
Active Learning run for 100 iterations, seeded with 10 examples from each class and selecting
1 query per iteration. F1 is used as the evaluation metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)

Confidence interval values obtained for the R10 dataset are reported in Table 7.3. Sig-

nificant improvements are observed when uncertainty sampling is used in place of random

sampling. Moreover, ERS-RS was found to outperform US during the first number of iter-

ations. In the case of macro F1 it continues to outperform US for the majority of the 100

iterations. However, in micro F1 the initial gains obtained using ERS-RS are quickly recov-

ered by US. Individual category learning curves in Appendix C show that while in six of the

R10 categories ERS-RS was observed to improve obtained F1 values, in three of the top five

most popular categories ERS-RS obtained lower F1 values than US.

Table 7.3: R10 Confidence interval values for US and ERS-RS

F1 FM
1

RS v US 0.99 0.995
US v ERS-RS 0.7 -0.65
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Deficiency values for the R10 dataset are reported in Table 7.4. Values less than 1 show

improved performance compared to random sampling. Uncertainty sampling is seen to be

better than random sampling. Furthermore, error-reduction sampling was found to be the

best performing query selection strategy with lower deficiency values than those obtained

from uncertainty sampling.

Table 7.4: R10 Deficiency scores (DA) for US and ERS-RS. Lower values are better. The
lowest deficiency values are indicated in bold text.

F1 FM
1

US 0.8905 0.8222
ERS-RS 0.8741 0.8094

Summary

Error reduction sampling was shown to achieve better results than alternative commonly

used query selection strategies. The results presented here are consistent with those found in

(Roy & McCallum, 2001). This motivates the use of ERS when computational expenditure

is favoured in place of labelling effort.

7.6.3 Pre-Filtered ERS

The following experiments were conducted to compare alternative pre-filtering techniques.

There are many query selection strategies which select queries based on different heuristics

(see Chapter 3). We establish if alternative query selection strategies, when used as pre-filters

will have an impact on quality of queries selected by ERS.

The pre-filtering techniques described in Section 7.4 were used to construct the subset,

from which a query is subsequently selected using ERS. Active learning was conducted fol-

lowing Algorithm 2, where the set of unlabelled examples DU is the subset constructed using

the three techniques: ERS-RS which constructs the subset using random sampling, ERS-US

which constructs the subset using uncertainty sampling and ERS-FF which constructs the

subset using furthest first sampling. A subset of size 100 was used for all ERS query selection

strategies.

Seed data for the 20NG-4 experiments was constructed by randomly selecting 3 positive

and 3 negative examples of the class. Seed data for R10 was constructed by randomly selecting

10 positive and 10 negative examples of the class. In order for a fair comparison to be made,
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the same seeds were supplied to each of the strategies under investigation. A single query is

selected in every iteration and active learning was stopped after 100 queries were labelled.

20NG-4 Results

Learning curves for the 20NG-4 dataset are reported in Figure 7.3. Of the three1 techniques

under investigation, pre-filtering using uncertainty sampling (ERS-US) was found to be the

top performing technique. Examining the individual sub-problems this is borne out by ERS-

US being the top-performing technique on three of the four 20NG-4 problems. However, in

the GX problem, pre-filtering with furthest first (ERS-FF) was the top performing technique.

p-value plots are reported directly under each learning curve plot in Figure 7.3 and show

statistical significance against ERS-RS. Comparing the three techniques overall, it can be seen

that ERS-US comes much closer to achieving statistically significantly (p = 0.05) difference

to ERS-RS than the other two techniques. Examining the individual problems: in the AR

and BC problems ERS-US is seen to be better than ERS-RS while ERS-FF does not offer a

statistically significant advantage. Roles are reversed in the GX problem where ERS-FF is

seen to be best and ERS-US is not statistically significantly better than ERS-RS. In the WH

problem ERS-RS performs well hence pre-filtering strategies do not outperform it.

Confidence interval values for the 20NG-4 dataset are reported in Table 7.5. The two pre-

filtering techniques are compared against the random sub-sampling technique over all 100

iterations of active learning. Statistically significant increases in accuracy are achieved when

pre-filtering using uncertainty sampling is used in the AR, WH and BC problems. Similarly

significant increases compared to random sub-sampling are observed with pre-filtering using

furthest first is employed in the GX problem.

Table 7.5: 20NG-4 Confidence interval values for Pre-filtering. Pre-filtering techniques are
compared against ERS-RS

AR GX WH BC

ERS-RS v ERS-US 0.95 0.0 0.6 0.7
ERS-RS v ERS-FF 0.0 0.8 -0.95 -0.975
ERS-RS v ERS-FPL 0.95 0.75 -0.9 0.6

Table 7.6 reports the deficiency values for each of the subset construction techniques.

Pre-filtering using uncertainty sampling achieved the lowest deficiency value on three of the

1For brevity the figure also includes the learning curve for ERS-FPL which is discussed in §7.6.5
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Figure 7.3: 20NG-4 Results, obtained using a bagged multinomial näıve Bayes classifier with
Active Learning run for 100 iterations, seeded with 3 examples from each class and selecting
1 query per iteration. Accuracy was used as the performance metric and evaluation on the
test set was done after every 5 iterations. Below each graph the p-value showing statistical
significance against random sampling ERS-RS is given (α = 0.05 is shown as a solid line)
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four problems, while ERS-FF achieved the lowest deficiency value in the GX problem.

Table 7.6: 20NG-4 Deficiency scores (DA) for Pre-filtering. Lower values are better. The
lowest deficiency values are indicated in bold text

AR GX WH BC

US 0.8494 0.7257 1.3568 0.5588
ERS-RS 0.7602 0.6176 0.9923 0.4586
ERS-US 0.6272 0.6110 0.9513 0.4039
ERS-FF 0.7685 0.5388 1.2716 0.7210
ERS-FPL 0.6876 0.5705 1.1825 0.4682

R10 Results

Learning curves for pre-filtering techniques on the R10 dataset are given in Figure 7.4 where

the average F1 calculated over all categories is reported. Individual learning curves for the

ten categories of the R10 are given in Appendix C.

Pre-filtering using uncertainty sampling (ERS-US) achieved the largest F1 values, outper-

forming random sub-sampling. Pre-filtering using furthest-first performed significantly worse

than random sub-sampling. Furthest first has a tendency to select outliers which do not help

in active learning since they offer little information.

p-value plots in Figure 7.4 compare statistical significance of each pre-filtering technique

against random sub-sampling. The plots show that ERS-US is statistically significantly better

than ERS-RS while ERS-FF is not. This is consistent with the learning curves observed.

Confidence intervals for the R10 dataset are given in Table 7.7. Pre-filtering with uncer-

tainty sampling was found to give the greatest statistically significantly improvement over

random sub-sampling. Subsets constructed using furthest first sampling were found to be

significantly worse than random sub-sampling.

Table 7.7: R10 Confidence interval values for Pre-filtering. Pre-filtering techniques are
compared against ERS-RS

Accuracy F1 FM
1

ERS-RS v ERS-US 0.995 0.995 0.995
ERS-RS v ERS-FF -0.995 -0.995 -0.995
ERS-RS v ERS-FPL 0.975 0.7 0.95

Table 7.8 displays the deficiency values for the R10 dataset. The lowest deficiency value
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Figure 7.4: R10 Results, obtained using a bagged multinomial näıve Bayes classifier with
Active Learning run for 100 iterations, seeded with 10 examples from each class and selecting
1 query per iteration. F1 is used as the evaluation metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against ERS-RS is given (α = 0.05 is shown as a solid line)

was achieved by pre-filtering with uncertainty sampling. Pre-filtering using furthest first had

the highest deficiency values which confirms its as a sub-optimal technique.

Table 7.8: R10 Deficiency scores (DA) for Pre-filtering. Lower values are better. The lowest
deficiency values are indicated in bold text

Accuracy F1 FM
1

US 0.7988 0.8905 0.8222
ERS-RS 0.8182 0.8741 0.8094
ERS-US 0.6683 0.7831 0.7062
ERS-FF 0.9127 1.0576 0.9250
ERS-FPL 0.7449 0.8517 0.7614

7.6.4 Subset Quality

Pre-filtering should populate the subset with more informative examples than random sub-

sampling. The next set of experiments was conducted to examine the quality of the subset

constructed. Comparisons are made by selecting queries at random from a subset constructed

using random sub-sampling as well as a subset constructed using the best performing pre-

filtering technique. In this way, we can determine if the unlabelled examples in the pre-filtered

subset are intrinsically more informative than those in the randomly sub-sampled subset.
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Active learning was performed as described in Algorithm 2. Seed data for the 20NG-4

experiments was constructed by randomly selecting 3 positive and 3 negative examples of the

class.

RS-RS randomly selects examples from the subset constructed using random sub-sampling,

while RS-US randomly selects examples from the subset constructed by pre-filtering using un-

certainty sampling. Random sampling is used to select queries to ensure no bias is introduced

from the query selection strategy.

Active learning was conducted on the R10 corpus where seed data was constructed by

randomly selecting 10 positive and 10 negative examples of the class. In order for fair compar-

ison to be made, the same seeds were supplied to each of the strategies under investigation.

A single query is selected in every iteration and active learning was stopped after 100 queries

were labelled. A subset of size 100 was used for both RS-RS and RS-US.

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Iterations of AL

F
1

R10

 

 

RS−RS
RS−US

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

p 
V

al
ue

(a) Macro F1

0 10 20 30 40 50 60 70 80 90 100
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iterations of AL

F
1M

R10

 

 

RS−RS
RS−US

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

p 
V

al
ue

(b) Micro F1

Figure 7.5: Comparison of random sampling operating in a subset constructed from sub-
sampled subset and pre-filtered subset. A bagged multinomial näıve Bayes classifier was used
and Active Learning was run for 100 iterations. Evaluation on the test set was done after
every 5 iterations with F1 used. Below each graph the p-value showing statistical significance
against random sampling (RS) on the full pool is given (α = 0.05 is shown as a solid line)

Figure 7.5 shows the learning curves obtained. Increased F1 values were reported for active

learning performed using the pre-filtered subset (RS-US). Given that the only difference

between the two active learners is the manner in which the subset was constructed, these

results show that the unlabelled examples selected by pre-filtering to populate the subset are

more informative than those selected by random sub-sampling.
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7.6.5 Adaptive Pre-Filtering

In this section we empirically evaluate the adaptive pre-filtering technique proposed in Sec-

tion 7.5. In every iteration of active learning ERS-FPL dynamically switches between a

number of pre-filtering techniques used to construct the subset. The goal of adaptive pre-

filtering is to be as good as the best fixed pre-filtering technique in hindsight.

Experiments followed Algorithm 4 where the follow-the-perturbed-leader was used to

switch between random sampling, uncertainty sampling and furthest first sampling. Rewards

were constructed using CEM on the entire unlabelled pool. In each iteration of active learn-

ing, a single pre-filtering strategy is selected by the FPL algorithm to construct the subset.

ERS selects the query from the constructed subset. The same seed data used in Section 7.6.3

was supplied to the adaptive pre-filtering experiments to allow for fair comparison.

20NG-4 Results

The learning curves obtained from the adaptive pre-filtering technique have been included in

Figure 7.3 to allow for direct comparison. Visual inspection reveals that the adaptive pre-

filtering technique works well in the early and late iterations of active learning. Examining the

individual sub-problems of the 20NG-4: ERS-FPL is competitive with the best performing

technique on three of the four problems. Furthermore, p-value plots which show statistical

significance against ERS-RS, report that ERS-FPL tracked the performance of the best fixed

pre-filtering technique in AR, GX and BC problems.

The deficiency values in Table 7.6 and confidence interval values in Table 7.5 correlate

with the results observed in the learning curves. In the AR and GX problems, ERS-FPL

performed as expected and was runner-up to the best fixed pre-filtering strategy, namely

ERS-US and ERS-FF respectively. ERS-FPL demonstrated adaption in the selection of pre-

fitlering technique by tracking ERS-FF in the GX problem.

In the BC problem ERS-US was the best fixed pre-filtering technique. While ERS-RS

was runner-up there is only marginal difference between it and ERS-FPL. The BC problem

is particularly easy, hence all techniques (with the exception of ERS-FF) perform well.

In the WH problem ERS-US is the best fixed pre-filtering technique with ERS-RS be-

ing the runner-up. ERS-FPL was ranked third outperforming ERS-FF. This result can be

attributed to the strong performance of random sampling on this problem, as observed in

Section 7.6.2 where random sampling outperformed uncertainty sampling.
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R10 Results

Figure 7.4 plots the learning curves for the adaptive pre-filtering technique. Both macro and

micro F1 values are reported. In the case of macro F1 ERS-FPL is initially seen to closely

follow the learning curve of the top performing uncertainty sampling pre-filtering technique

before tracking the learning curve of the random sub-sampled error reduction sampling in

subsequent iterations. In the micro F1 plots, the learning curve for the adaptive pre-filtering

technique resides between the top performing uncertainty sampling pre-filtering technique

and the learning curve given by random sub-sampled error reduction sampling. p-value plots

which show statistical significance against ERS-RS are consistent with the learning curves.

ERS-FPL is initially significantly better than ERS-RS in the macro F1 before tailing off. In

the micro F1 plot ERS-FPL is seen to be significantly better than ERS-RS and tracks the

performance of ERS-US.

Confidence intervals for the adaptive pre-filtering technique are reported in Table 7.7.

It was found that statistically significant improvements in F1 values were obtained using

the adaptive pre-filtering technique when compared with random sub-sampling. The top

performing technique was ERS-US while the worst was ERS-FF.

Table 7.8 reports the deficiency value obtained for ERS-FPL. Both the macro and micro

F1 variants show that lower deficiency is obtained by the adaptive technique than random

sub-sampling and pre-filtering using furthest first. Across all evaluation metrics ERS-FPL

was found to be runner-up to the top performing ERS-US. I

Friedman Test

Demšar (2006) proposes the use of the Friedman test to compare classifiers over multiple

datasets. The Friedman test is a non-parametric test which is equivalent to the repeated-

measures ANOVA. Table 7.9 reports the rank of each subset construction technique. The

average rank of each technique is given at the bottom of the table. From these values alone

we can see that pre-filtering using uncertainty sampling is the best technique on the given

datasets. The adaptive technique is runner up and is seen to outperform both random sub-

sampling and pre-filtering using furthest first.

The Friedman test compares the average rank of each of the k subset construction tech-

niques over the N datasets as shown in (7.6). From the table it can be seen that the adaptive

pre-filtering technique is runner up to ERS-US.
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Rj =
1

N

∑

i

rj
i (7.6)

Table 7.9: Rank for subset construction techniques deficiency values. A rank of one indicates
the lowest deficiency value

ERS-RS ERS-US ERS-FF ERS-FPL

AR 3 1 4 2
BC 2 1 4 3
GX 4 3 1 2
WH 2 1 4 3

Acq 3 1 4 2
Corn 3 1 4 2
Crude 3 1 4 2
Earn 3 1 4 2
Grain 3 1 4 2

Interest 2 1 4 3
Money-Fx 3 1 4 2

Ship 3 1 4 2
Trade 2 1 4 3
Wheat 3 1 4 2

Average 2.7857 1.1429 3.7857 2.2143

The Friedman statistic (7.7) is distributed according to χ2
F with k−1 degrees of freedom.

However, the statistic is undesirably conservative and an alternative statistic derived from

the Friedman is used. It is calculated as shown in (7.8) and is distributed according to the

F-distribution with k − 1 and (k − 1)(N − 1) degrees of freedom.

χ2
F =

12N

k(k + 1)





∑

j

R2
j −

k(k + 1)2

4



 (7.7)

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(7.8)

From Table 7.9 the Friedman statistic is χ2
F = 27.72857 and FF = 25.25826. The critical

value for F (3, 39) = 2.85 for α = 0.05 hence the null hypothesis is rejected. This means there

is a statistically significant difference between the four subset construction techniques.

Post-hoc analysis can determine which of the techniques are statistically different from

each other. The Nemenyi test was used to establish if the difference between each tech-

nique was significant. The differences between each technique was found to be statistically

significant.
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7.6.6 Computational Expense

If pre-filtering is to be regarded as a practical alternative to sub-sampling the computational

cost of applying pre-filtering should not outweigh the accuracy benefits it brings. We per-

formed CPU timing experiments in order to establish that the various pre-filtering strategies

do not incur significantly larger computational overhead than sub-sampling.

Pre-filtering techniques such as ERS-US requires extra computational expense compared

to random sub-sampling, namely in the construction of a classifier, obtaining predictions

on unlabelled examples and sorting the predictions to find the queries. The experiments

conducted utilised a multinomial näıve Bayes classifier.

Training of a multinomial näıve Bayes classifier requires that the conditional probabilities

for each feature is calculated which is achieved using just one run through the training data

and has the time complexity of O(|Y||τ | + |Dℓ|Lavg) where |Y| is the number of categories,

τ is the vocabulary of the corpus, |Dℓ| is the number of training documents and Lavg is the

average length of a document (see (Manning et al., 2008, Chapter 13)). Similarly, testing a

document requires the combination of the conditional probabilities for those features which

appear in the test document.

Both training and testing a multinomial näıve Bayes are linear in the time it takes to scan

the data (the cost incurred when alternative classifiers are used is discussed in (Yang et al.,

2003)). Moreover, sorting the predictions can be achieved using an efficient sorting algorithm,

such as Quicksort, with time complexity of O(N log N) where N is the number of items to

sort. Therefore the computational expense of performing pre-filtering can be justified if an

improvement in active learning is achieved.

We also empirically timed the pre-filtering and compared it to random sub-sampling. Ex-

periments were conducted using the AR sub-problem of the 20NG-4 dataset and performed

on an Intel Core 2 Duo 2GHz processor with 2GB of RAM. A subset of size 10 constructed

using sub-sampling and pre-filtering was used in these experiments. Pre-filtering led to an

increase in computation of approximately 0.4 seconds per iteration of active learning using

ERS when compared to sub-sampling. Given the running time per iteration of ERS is approx-

imately 16 seconds this is an increase in computation expense of 0.02 percent. Similar results

were found for the adaptive pre-filtering technique. The marginal increase in computational

expense acceptable given the potential improvements obtained in active learning.
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7.6.7 Subset Size

In the following experiments the effect of subset size on the performance of ERS using both

sub-sampling and pre-filtering was investigated. Subset size has a direct influence on the

running time of ERS therefore smaller subsets are preferred.

Comparisons are made by performing active learning using ERS with subset sizes of size

k ∈ {10, 50, 100}. Furthermore, we also compared subsets constructed using both random

sub-sampling and pre-filtering using uncertainty sampling.

Active learning was performed as described in Algorithm 2. Seed data for the 20NG-4

experiments was constructed by randomly selecting 3 positive and 3 negative examples of the

class. Seed data for R10 was constructed by randomly selecting 10 positive and 10 negative

examples of the class. In order for fair comparison to be made, the same seeds were supplied

to each of the strategies under investigation. A single query is selected in every iteration and

active learning was stopped after 100 iterations.

Table 7.10 shows the deficiency values for the various subset sizes. Each row reports the

deficiency value obtained by performing active learning using ERS on a subset of the specified

size ({10, 50, 100}) and constructed using either random sub-sampling (RS) or pre-filtering

using uncertainty sampling (US). Random sub-sampling is seen to benefit from a larger

subset, where lower deficiency values reported for subsets of size 50 and 100. Conversely, pre-

filtering using uncertainty sampling did not to the same degree from the use of larger subsets.

Decrease in deficiency values in larger subsets were not as pronounced as those reported for

random sub-sampllng.

Table 7.10: Deficiency for various subset sizes for ERS on both 20NG-4 and R10 (rightmost
columns). Lower values are better and the lowest deficiency value is indicated using bold text

AR GX WH BC F1 FM
1

US 0.850 0.726 1.357 0.559 0.891 0.744

ERS-RS10 0.830 0.737 1.136 0.629 0.896 0.673
ERS-RS50 0.733 0.716 0.961 0.529 0.885 0.746
ERS-RS100 0.760 0.618 0.992 0.459 0.874 0.712

ERS-US10 0.748 0.643 1.036 0.451 0.786 0.566
ERS-US50 0.665 0.571 1.020 0.418 0.777 0.608
ERS-US100 0.627 0.611 0.951 0.404 0.783 0.611

The benefit of pre-filtering is also evident in the results obtained. Deficiency values

reported for pre-filtered ERS are significantly lower than those reported for random sub-
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sampling using the same subset size. Furthermore, pre-filtering using a subset of size 10

reports lower deficiency than random sub-sampling with a subset of size 100 on the majority

of the problems.

7.7 Discussion

Error reduction sampling (ERS) is a top performing query selection strategy. Results obtained

from Section 7.6.2 demonstrate the ability of ERS to increase the accuracy achievable by

active learner. However, error reduction sampling is a computationally expensive process.

In order for ERS to be used more frequently in real world active learning problems, the

computational overhead must be reduced.

Pre-Filtering

Pre-filtering is proposed as a way to both increase the quality of queries selected by ERS and

simultaneously reduce the computational expense. We examined two pre-filtering techniques

which are based around exploration and exploitation. ERS-US, which constructs a subset

using uncertainty sampling, is an exploitation-based pre-filtering technique. It leverages the

current knowledge to populate the subset with those unlabelled examples which are believed

to be close to the decision boundary. Conversely, ERS-FF constructs a subset using furthest

first sampling, which is an exploration-based pre-filtering technique. The subset is populated

with those examples most dissimilar to all known labelled examples.

Comparisons were made between ERS applied to subset constructed using random sub-

sampling and subsets constructed using the two pre-filtering techniques. Results from Sec-

tion 7.6.3 demonstrated that overall ERS-US was capable of increasing the learning rate of

active learning using ERS in all problems, with the exception of GX problem where ERS-FF

was best. We believe that this correlates with the finding that exploration is optimal only in

a small number of iterations at the beginning of the active learning process (Xu et al., 2003;

Donmez et al., 2007). ERS-FF was forcing exploration when exploitation was advantageous.

Results obtained in Section 7.6.4 showed that a subset constructed via pre-filtering using

uncertainty sampling contained more informative examples than one constructed using ran-

dom sub-sampling. The only difference between the two is the manner in which the subset

was constructed, therefore it is rational to say that the pre-filtered subset contained more

informative examples.

158



Adaptive Pre-Filtering

The fact that there was no globally optimal pre-filtering technique motivated the need for an

adaptive pre-filtering technique, which can balance exploration and exploitation. Section 7.6.5

reports the results of the proposed adaptive pre-filtering technique (ERS-FPL) that uses the

follow-the-perturbed-leader to switch among three subset construction techniques namely,

random sub-sampling, pre-filtering using uncertainty sampling and pre-filtering using further

first sampling. In every iteration of active learning ERS-FPL dynamically switches to the

relatively best performing technique where performance is tracked using CEM since the lack

of labelled data limits forming a holdout test set.

The goal of the adaptive pre-filtering technique was to be as good as the best fixed pre-

filtering technique in hindsight. Overall, comparisons between the various subset optimisation

techniques explored in this chapter ranked ERS-FPL as second best with ERS-US ranked first.

Moreover, in the individual case where ERS-FPL followed the best performing pre-filtering

technique. There is clearly some benefit to performing an adaptive pre-filtering strategy. As

part of our future work we intend to explore more advanced reinforcement learning techniques

and reward metrics.

Subset Size

We also examined the effect of subset size on ERS. Section 7.6.7 found that ERS-RS benefited

from larger subsets while larger subsets did not offer as much improvement for ERS-US.

We believe this is due to the fact that larger randomly sub-sampled subset have a greater

chance of containing informative examples. Conversely, a pre-filtered subset will have a higher

proportion of informative examples at small subset size, hence the addition of more unlabelled

examples to the subset will generally be of inferior quality.

It was found that higher accuracy was obtained by ERS-US with a subset of size 10 than

by ERS-RS with a subset of size 100. As stated previously, the computational expense of

ERS is directly related to the size of the subset. Pre-filtering allows for significant reductions

in the size of the subset without adversely affecting accuracy.

Summary

Results obtained in this chapter found that pre-filtering offers a way to both reduce compu-

tational overhead of ERS as well as increase accuracy of the classifier produced from active
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learning. The proposed adaptive pre-filtering technique was shown to be ranked second while

ERS-US was shown to be the overall winner.

7.8 Summary

This chapter examined the application of error reduction sampling (ERS) which is a high-

performing query selection strategy for active learning. ERS is a computationally expensive

process which limits its application in real world settings. Subset optimisation has been

proposed as a way to reduce the computational expense of error reduction sampling. Rather

than applying ERS to the entire pool of unlabelled examples it is only applied to a small

fraction.

The main focus of this chapter was on the manner in which the subset is constructed.

The most popular technique is random sub-sampling where the subset is populated with

randomly chosen unlabelled examples. We investigated pre-filtering which is an alternative

technique where a subset is constructed by filtering unlabelled examples from the pool using

a less expensive query selection strategy.

Comparisons were made between random sub-sampling and two fixed pre-filtering tech-

niques. Empirical evaluations found that pre-filtering using uncertainty sampling increases

the rate of active learning leading to higher accuracy and lower labelling effort. The increase

in the learning rate of active learning was attributed to the intrinsically more informative

examples found in subsets constructed using pre-filtering.

While pre-filtering using uncertainty sampling was the overall winner there were prob-

lems where pre-filtering using alternative query selection strategies was not optimal. We

proposed an adaptive technique that dynamically switches among a number of pre-filtering

techniques in every iteration based on the relative performance of each. The goal of the adap-

tive technique was to be as good as the best technique in hindsight and empirical evaluations

showed that the adaptive technique was runner-up to the optimal strategy in the majority of

problems.

Finally, sensitivity analysis conducted on the size of the subset revealed that subsets

constructed using uncertainty sampling achieved higher rates of learning than larger subsets

constructed using random sub-sampling. Pre-filtering allows for smaller subsets to be used

without sacrificing potential improved learning rates.

Results obtained in this chapter support the use of pre-filtering as a way to reduce the
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cost of applying active learning by reducing both computational expense and labelling effort.
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Chapter 8

Conclusions

8.1 Introduction

A limiting factor in the widespread application of machine learning solutions has been the

cost of gathering sufficient training data for supervised learning. The cost of labelling is

often overlooked and in certain domains can be extremely high (e.g. performing expensive

biological tests). Active learning has been shown to significantly reduce the number of la-

belled examples required to induce an accurate classifier using supervised learning. In this

thesis we addressed two fundamental problems in active learning, namely the identification

of informative unlabelled examples and the computational overhead of active learning.

In this thesis we primarily focused on the query selection strategy, which is responsible for

selecting informative unlabelled examples. We proposed novel non-Markovian query selection

strategies, which identify informative unlabelled examples by incorporating information from

prior iterations of active learning. Reducing labelling effort significantly lowers the cost of

producing an accurate classifier.

The computational expense of active learning must be considered in practical applica-

tions. Efficient and scalable solutions to reduce computational expense in active learning

were investigated in this thesis. Some of the best-performing query selection strategies are

under-utilised due to their high computational overhead. We investigated optimisation tech-

niques which lowered the computational expense and helped select more informative queries.

In addition, high-dimensional text categorisation data is a contributing factor to computa-

tional expense. Unsupervised dimensionality reduction techniques were also investigated as

a way to lower the computational expense of active learning.
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In Section 8.2 we review the main findings of the thesis. Section 8.3 discuss the contribu-

tions of the thesis and Section 8.4 outlines general directions of future research.

8.2 Thesis Findings

8.2.1 History-Based Query Selection

Query selection strategies typically select queries based on predictions from a classifier in-

duced in the current iteration. This is a Markov process, which selects queries using ephemeral

predictions. We hypothesised that valuable information is being discarded in every iteration

of active learning and developed novel query selection strategies that store and incorporate

this information.

In Chapter 5 we investigated non-Markovian query selection strategies, which incorporate

information from past iterations of active learning into the selection of queries in the current

iteration. In each iteration, predictions from the current classifiers are stored in a data

structure we call History. Given a particular unlabelled example, labelling predictions from

every iteration of active learning can be retrieved from the History.

Novel History-based query selections strategies were developed. History uncertainty sam-

pling (HUS) selects queries based on the cumulative uncertainty over the past d iterations

of active learning. History Kullback-Leibler Divergence (HKLD) selects queries based on

disagreement within a committee formed using the classifiers produced in the last d itera-

tions of active learning. Empirical evaluation revealed that incorporating information from

the History did benefit active learning, producing higher accuracy classifiers than Markovian

query selection strategies in certain situations.

HUS and HKLD placed equal emphasis on all predictions, including those predictions

from the History. The current classifier is likely to be the most accurate, therefore the most

recent predictions should receive greater emphasis. Filtered variants of the History-based

query selection strategies were proposed (HUSF and HKLDF respectively) to address this

problem. A subset of the pool is formed by filtering the N most uncertain examples using

uncertainty sampling. History-based query selection is applied only to the subset. Empirical

evaluation revealed that both HUSF and HKLDF demonstrated significant improvement over

a Markovian query selection strategy.

History-based query selection offers a way to reduce the labelling effort of active learning

by aiding the selection of more informative examples as queries. Furthermore, the computa-
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tional expense of History-based query selection strategies are extremely low since they reuse

predictions made in previous iterations of active learning.

8.2.2 Pre-Filtering Error Reduction Sampling

Error reduction sampling (ERS) has been shown to be a top-performing query selection

strategy. However, practical application is limited by the excessive computational expense of

the strategy. Several optimisation techniques have been proposed to reduce the computational

overhead, with subset optimisation being the most popular. The computational expense of

ERS is proportional to the number of unlabelled examples it must consider. Significant

computational savings can be obtained by applying ERS only to a subset of the unlabelled

pool. The most popular method for constructing the subset is random sub-sampling, which

selects unlabelled examples at random from the pool.

In Chapter 7 an alternative subset optimisation technique known as pre-filtering was

extensively investigated. Pre-filtering constructs the subset by filtering examples from the

pool using a query selection strategy. Comparisons were made between random sub-sampling

and pre-filtering using both an exploration-based strategy (furthest first) and an exploitation-

based strategy (uncertainty sampling). Pre-filtering ERS using uncertainty sampling (ERS-

US) was found to be the best performing technique overall. The accuracy of classifiers

produced using ERS-US were found to achieve significantly higher accuracy than classifiers

produced using either random sub-sampling (ERS-RS) or pre-filtering using furthest first

(ERS-FF). In general, it was found that exploitation is preferable for ERS. However, this is

not always the case and in certain problems exploration is optimal.

We proposed a novel adaptive pre-filtering technique, which dynamically chooses either

an exploration-based or an exploitation-based query selection strategy to form the subset in

every iteration of active learning. The adaptive technique attempts to balance exploration

and exploitation. Empirical evaluation showed that the adaptive technique was ranked second

overall, outperforming ERS-RS and ERS-FF, while still tracking the performance of ERS-FF

in problems where exploration was found to be optimal.

Pre-filtering allows for potential reductions in the computational overhead. ERS-US was

found to achieve similar levels of deficiency to ERS-RS using subsets an order of magnitude

smaller. Smaller subsets allow for significant savings in computational expense for ERS.
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8.2.3 Dimensionality Reduction for Active Learning Settings

As well as increasing computational and storage overheads, high-dimensional data can limit

the choice of classifier used in active learning. The k-NN classifier exhibits state-of-the-art

performance when operating in a reduced feature set given by an appropriate supervised

feature selection (Yang & Liu, 1999). However, it performs poorly in high-dimensional data

as it is susceptible to the curse of dimensionality. In order to use a k-NN classifier in an

active learning setting, dimensionality reduction must first be applied.

The most commonly used dimensionality reduction techniques employed in text categori-

sation are supervised feature selection techniques. These have been shown to significantly

reduce computational overhead and in some cases increase the accuracy of the classifier pro-

duced (Yang & Pedersen, 1997). However, the majority of data supplied to active learning is

unlabelled, which poses a significant problem for the application of supervised dimensionality

reduction techniques.

Chapter 6 investigated the effect of unsupervised dimensionality reduction techniques on

active learning. Document frequency applied with a global policy (DFG), was shown to

reduce the dimensionality and improve the accuracy of the k-NN classifier in active learning.

Principal Components Analysis (PCA) was found to be the best-performing unsupervised

dimensionality reduction technique. The k-NN operating in the PCA-reduced data achieved

similar levels of accuracy as a k-NN operating in dimensionally reduced data given by a top

performing supervised feature selection technique.

8.3 Thesis Contribution

This thesis reviewed both automated text categorisation and active learning, with particular

emphasis placed on query selection strategies in active learning. We identified two funda-

mental problems in active learning, namely the computational expense of performing active

learning and the selection of informative unlabelled examples. Novel techniques and strategies

were proposed as possible solutions to these problems.

8.3.1 Computational Efficiency of Active Learning

The computational expense of active learning must be considered in practical applications.

Some of the most promising query selection strategies are under-utilised due to their com-

putational overhead. We developed novel, efficient and scalable solutions to reduce the com-
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putational overhead of active learning. Unsupervised dimensionality reduction was found to

increase the performance of the k-NN classifier in an active learning setting. Pre-filtering

error reduction sampling demonstrated both considerable saving in computational overhead,

by using smaller subsets and reduced labelling effort, by selecting more informative unlabelled

examples using error reduction sampling.

8.3.2 Incorporating Past Information

We investigated ways to incorporate information from prior iterations of active learning into

the selection of queries in the current iteration. History-based query selection did this ex-

plicitly by incorporating the predictions from previous iterations of active learning into the

selection of queries in the current iteration. Adaptive pre-filtering did this indirectly by select-

ing the pre-filtering technique based on the performance of each fixed pre-filtering technique

chosen in previous iterations. Empirical evaluations found that incorporating information

from previous iterations selects more informative examples than traditional Markovian query

selection strategies.

8.4 Future Work

8.4.1 Active Learning Performance

The performance of supervised learning is measured using a hold-out test set. Given the

scarcity of labelled data in an active learning setting, withholding labelled data to form a

test set is impractical. An accurate way of measuring the performance of active learning

would be of major benefit in a host of applications. One obvious use for such a metric would

be as a reward in an adaptive query selection strategy. The ability to accurately monitor

the progress of active learning would allow for the optimal strategy to be selected in every

iteration.

8.4.2 Distributed Computing

Significant computational speed-up is possible through the use of distributed processing in

machine learning. A number of the algorithms presented in this thesis are embarrassingly

parallel (Foster, 1995). Error reduction sampling (Roy & McCallum, 2001) in particular

could see significant computational speed-up if implemented in a distributed manner.
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8.4.3 Early Stopping

An interesting phenomenon reported in the baseline analysis in Chapter 4 and which has

been previously reported in the literature (Schohn & Cohn, 2000) is that active learning can

achieve higher accuracy than that of a passive learner trained on the entire labelled pool.

These results motivate the need for an early stopping mechanism for active learning.

Section 3.3.4 reviewed stopping criteria for active learning. However, early stopping active

learning remains an open problem since an effective generic solution has not been proposed.

The ability of active learning to detect and stop at a global maxima could result in improved

accuracy and reduce labelling effort if the maxima is reached at an early iteration.

8.4.4 Alternative Domains

The novel techniques proposed in this thesis can be ported to alternative domains. In par-

ticular we believe that the construction of classifiers from small amounts of training data is

paramount to many labour saving tasks emerging as part of social networking and online

presence. Reducing labelling effort makes classifiers more ephemeral. They can be created

quickly and efficiently in an ad-hoc manner and applied to many more domains.

Media is generally labelled by the content producer into a broad set of categories. How-

ever, consumers are defining custom labels, which are used to categorise media in a per-

sonalised way. Categories are subjective and the availability of large annotated corpora of

user-defined labels are difficult to obtain. Active learning offers a tailor made solution to the

problem of automating categorisation of new media using personalised labels or tags.

Singh et al. (2008) examines ways of annotating images using active learning to train a

classifier. We believe that the techniques proposed in this thesis to lower the cost of active

learning could be directly applied to such tasks. Tagging all manner of multimedia is a

growing trend. An accurate classifier capable of labelling many thousands of items after

being trained with only a small number of examples is an ideal solution for automating such

tasks.
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Appendix A

Supplemental Baseline Analysis

Results

We present additional learning curves for the baseline analysis experiments in Chapter 4 on

the R10 dataset. Figures reports the learning curves for each category where F1 is averaged

over all 10 trails of the experiment.
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Figure A.1: Baseline Analysis Learning Curves on Acquisitions, Corn, Crude and Earn
categories. A committee of 10 multinomial näıve Bayes classifiers (constructed using bagging)
were used. F1 was used as the performance metrics
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Figure A.2: Baseline Analysis Learning Curves on Grain, Interest, Money-Fx, Ship, Trade
and Wheat categories. A committee of 10 multinomial näıve Bayes classifiers (constructed
using bagging) were used. F1 was used as the performance metrics
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Appendix B

Supplemental History-based Query

Selection Results

We present additional learning curves for the history-based query selection as desribed in

Chapter 5. Analysis of different subset sizes (t = {10, 25, 50, 100}) and different history

depths (d = {3, 5, 7}) was conducted.

B.1 HBQS

Figure B.1 displays the individual learning curves obtained when HUS was applied to each of

the 20NG-4 sub-problems. Similarly, Figure B.2 plots the individual learning curves obtained

when HKLD was applied to each of the four problems in the 20NG-4 dataset.

Results obtained by performing HUSF on the 20NG-4 are given in Figure B.3 where a

subset of size 10 was used. Figure B.4 where a subset of size was used 25, Figure B.5 where

a subset of size 50 was used and Figure B.6 where a subset of size 100 was used.

B.2 Filtered HBQS

Results obtained by performing HUSF on the 20NG-4 are given in Figure B.3 where a subset

of size 10 was used. Figure B.4 where a subset of size was used 25, Figure B.5 where a subset

of size 50 was used and Figure B.6 where a subset of size 100 was used.

Similarly, results obtained by performing HKLDF on the 20NG-4 are given in Figure B.7

where a subset of size 10 was used. Figure B.8 where a subset of size was used 25, Figure B.9

where a subset of size 50 was used and Figure B.10 where a subset of size 100 was used.
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Figure B.1: HUS results obtained using a multinomial näıve Bayes classifier with Active
Learning run for 100 iterations, seeded with 3 examples from each class and selecting 1 query
per iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.2: HKLD results obtained using a multinomial näıve Bayes classifier with Active
Learning run for 100 iterations, seeded with 3 examples from each class and selecting 1 query
per iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.3: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.4: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.5: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.6: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.7: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.8: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.9: Results obtained using a multinomial näıve Bayes classifier with Active Learning
run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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Figure B.10: Results obtained using a multinomial näıve Bayes classifier with Active Learn-
ing run for 100 iterations, seeded with 3 examples from each class and selecting 1 query per
iteration. Accuracy was used as the performance metric and evaluation on the test set was
done after every 5 iterations. Below each graph the p-value showing statistical significance
against random sampling (RS) is given (α = 0.05 is shown as a solid line)
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B.2.1 Optimal Filtered HBQB

Figure B.11 plots the learning curves for the optimal HUSF. Optimal parameters for history

depth and subset size were taken from the minimum deficiency value. A surface plot of the

deficiency values obtained is given beside each learning curve plot.

Figure B.12 plots the learning curves for the HKLDF. Optimal parameters for history

depth and subset size were taken from the minimum deficiency value. A surface plot of the

deficiency values obtained is given beside each learning curve plot.
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Figure B.11: HUSF learning curves for optimal history depth and subset size in each of the
four 20NG-4 problems. A surface plot of the deficiency values for both parameters is shown
next to each learning curve 189
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Figure B.12: HKLDF learning curves for optimal history depth and subset size in each of
the four 20NG-4 problems. A surface plot of the deficiency values for both parameters is
shown next to each learning curve 190



Appendix C

Supplemental Pre-Filtering Results

We present the results obtained from the pre-filtering experiments conducted in Chapter 7

performed on the individual categories of the R10 dataset. F1 was used as the evaluation

metric.
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(b) Corn
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Figure C.1: Results obtained by pre-filtering error reduction sampling on the Acquisitions,
Corn, Crude and Earn categories. A committee of ten multinomial näıve Bayes classifier
(constructed using bagging) was used. F1 was used as the evaluation metric
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(a) Grain
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(b) Interest
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(c) Money-Fx
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(d) Ship
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(e) Trade
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(f) Wheat

Figure C.2: Results obtained by pre-filtering error reduction sampling on the Grain, Interest,
Money-Fx, Ship, Trade and Wheat categories. A committee of ten multinomial näıve Bayes
classifier (constructed using bagging) was used. F1 was used as the evaluation metric
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