
Collaborative Video Surveillance

by

Ezzeddine Wessam, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2011

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Ezzeddine Wessam

August 31, 2011

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Ezzeddine Wessam

August 31, 2011

I would like to dedicate this to all my loved ones, whether still with us or not, as a

gesture of appreciation for all the care and support they have shown throughout my

journey,

Thank You

Acknowledgments

I would like to thank Prof. Vinny Cahill and Dr. Rozenn Dahyot for their advising,

supervising and guidance during the entire year. In addition to their attention and time

invested in our meetings to put this on the right track.

Special thanks to all my family, here in Dublin and back home, for their love, support

and understanding.

Thank you to all my friends for the time they’ve invested in discussing ideas, sharing

thoughts and for their words of encouragement.

As for YOU, I can not thank you enough.

Ezzeddine Wessam

University of Dublin, Trinity College

September 2011

v

Collaborative Video Surveillance

Ezzeddine Wessam, M.Sc.

University of Dublin, Trinity College, 2011

Supervisor: Cahill Vinny Co Supervisor: Dahyot Rozenn

Collaborative Video Surveillance is concerned with automating and distributing the

detection and tracking of individuals in a surveillance ready environment. It allows camera

nodes to detect and track individuals based on an image query created using a mobile

phone application. The detection and tracking of the target is accomplished by applying

computer vision technology to video streams collected from pre-existing private and/or

public cameras. Taking into consideration today’s wide availability of smart cameras and

powerful technological devices, redesigning conventional surveillance systems provides a

better security service that utilizes the wide spread of such technologies. In a network

of visual sensor nodes, Collaborative Video Surveillance allows the efficient use of both

the available bandwidth and the advanced capabilities of these nodes through automating

and distributing the detection and tracking process. This is achieved by processing and

analyzing the collected footage locally at the end nodes, rather than being processed in a

centralized fashion at the base station. Camera nodes will only return vital information

to the base station, thus using a negligible percentage of the available bandwidth when

compared to that used by a conventional surveillance system. The utilization of the

available bandwidth in such a manner allows the collected footage to be processed at a

faster rate, making such a system suitable for real-time applications.

vi

Contents

Acknowledgments v

Abstract vi

List of Figures xi

Chapter 1 Introduction 1

1.1 Concept . 1

1.2 Motivation . 2

1.3 Requirements . 3

1.4 System Overview . 4

1.5 Achievements . 6

1.6 Dissertation Structure . 7

Chapter 2 State of The Art 8

2.1 Introduction . 8

2.2 Middleware . 10

2.2.1 Network Topology . 10

2.2.2 Routing Algorithms . 13

2.2.3 Data Fusion . 14

2.2.4 Node Collaboration . 15

2.3 Computer Vision . 18

vii

2.3.1 Image Querying Techniques . 18

2.3.2 Object Detection . 19

2.3.3 Object Tracking . 21

2.3.4 Occlusion . 22

2.4 State of The Art Conclusion . 23

Chapter 3 Design 24

3.1 System Architecture . 24

3.1.1 System Overview . 24

3.1.2 System Components . 25

3.2 Mobile Application . 26

3.2.1 Mobile Platforms . 27

3.2.2 Android OS . 29

3.2.3 Android SDK . 30

3.2.4 Android Components . 31

3.2.5 Mobile Application Components . 32

3.3 The Base Station . 37

3.3.1 Multithreaded Server . 37

3.3.2 Base Station Monitoring User Interface 38

3.4 Client Camera Node . 39

3.4.1 OpenCV Library for C . 39

3.4.2 Detection and Tracking - Vision Component 40

3.4.3 Middleware Component . 56

3.5 System Middleware . 56

3.5.1 Network Topology . 56

3.5.2 Communication Protocols . 57

3.6 Software Development Approach . 60

viii

Chapter 4 Implementation 61

4.1 Mobile Application . 61

4.1.1 Main Activity . 61

4.1.2 Middleware Service . 64

4.2 The Base Station . 65

4.2.1 Updates Manager . 65

4.2.2 Multithreaded Server Application 67

4.3 Client Camera Node . 68

4.3.1 Computer Vision Component . 68

4.3.2 Middleware Component . 75

Chapter 5 Evaluation 77

5.1 Mobile Application . 77

5.2 The Base Station . 78

5.3 Client Camera Node . 79

5.4 Overall System Evaluation . 81

Chapter 6 Conclusion 82

6.1 Future Work . 84

Appendix A Abbreviations 86

Appendix B Android Photo Activity 87

Appendix C Android Manifest 89

Appendix D Histograms 91

Appendix E Sockets 92

Appendix F Random File Access 93

ix

Bibliography 95

x

List of Figures

1.1 System Diagram. 5

3.1 Components Diagram. 26

3.2 Mobile OS Market Share. 27

3.3 Android System Diagram. 30

3.4 Mobile Application GUI. 34

3.5 Mobile Application Image Editing Tool. 36

3.6 Base Station GUI. 38

3.7 Difference and Background Image Calculation at Client Camera Node. . . 42

3.8 Object Detection using histograms and HBP. 46

3.9 Image Segmentation Diagram. 51

3.10 Kalman filter when applied to predict the next possible position of an object

based on it’s current position. 52

3.11 Diagram showing the method in which a Kalman filter predicts a system’s

next state from the current state. 53

3.12 Displays how the system uses a Kalman filter to track a target from one

frame to another. 54

3.13 Method of Direction Calculation. 55

4.1 Android Animation Layout Example. 62

4.2 Android Touch Events Handling Example. 62

4.3 Implementing Drag Using Touch Inputs in Android. 63

xi

4.4 Android XML Layout Example. 64

4.5 Packet Segmentation Method. 65

4.6 Base Station Display Updater Method. 66

4.7 Target Direction Arrow Drawing Method. 67

4.8 Multithreaded Server Implementation. 68

4.9 Client Responses Correlation at The Base Station. 69

4.10 Difference Image Calculator Implementation. 70

4.11 Background Estimation Using Stable Values Implementation. 71

4.12 Frame Segmentation Implementation. 72

4.13 HBP Implementation. 73

4.14 Kalman Filter Implementation. 74

4.15 Direction of Movement Implementation. 75

B.1 Photo Capturing Methods. 87

C.1 Defining Permissions in Android Manifest. 89

D.1 Histograms Implementation. 91

E.1 Sockets Implementation. 92

F.1 Random File Access. 94

xii

Chapter 1

Introduction

1.1 Concept

In order to effectively integrate emerging technologies into previously deployed

systems that were designed to take advantage of what is currently considered out-of-date

technologies, it is required to redesign and rebuild these systems in a way that facilitates

and improves the execution of mundane tasks. Collaborative video surveillance allows the

deployment of a smart and automated vision tracking system that utilizes pre-installed

surveillance equipment and the wide spread of smart phones. The system distinguishes

itself from the conventional surveillance systems by the way it automates and distributes

the detection and tracking of individuals rather than the common centralized one. This

may be accomplished by moving the vision processing functions to a smart camera client

node. A smart camera is a camera equipped with sensors/devices that adds processing

and networking capabilities to its visual capabilities [5, 7, 10, 18, 19]. Allowing most

of the processing to occur locally at the node rather than on a centralized server cuts

down on transmission delays, making such a system suitable for real-time applications.

Thus cameras can efficiently detect and track an individual target without any human

intervention. How will the camera know it’s target? The integration of smart mobile

phones to the system will allow users of mobile application specifically developed for this

1

purpose, to create an image query that will be used by the client camera nodes through-out

the detection process. An image query contains information that defines a certain object

and on which future identifications of this object will be based on [1] .In this system,

the image query will define the target, and will be used by camera nodes through-out

the detection process when searching for the target within their field of view. An image

query will be sent to the base station from an android mobile application along with

goe-location information. Based on the received location information, the base station

will then forward this query to cameras neighboring the target’s received location. Upon

detection of the target, the camera node will inform the base station of the sighting. It

will as well, once the target leaves its field of view, inform neighboring cameras located

at the next possible target location to begin a new search process locally or continue an

already started tracking process. Therefore, different components, such as the mobile

phone and the involved camera nodes, will cooperate in a smart and efficient manner to

allow the detection and tracking of a certain suspect. Smart infers to the ability of the

mobile phone to capture a photo of the suspect, crop it for better representation of the

individual and forward it to a server with other relevant information, and to the ability

of the camera nodes to process the captured footage, detect and track the target through

the application of complex computer vision techniques. While the term efficient refers to

how the detection and tracking process were only cameras located at the targets possible

location are involved in the search of the suspect leaving the rest of the cameras idle. It, as

well, refers to the efficient use of the available bandwidth by refraining from transmitting

video streams back to the base station as in conventional video surveillance applications.

1.2 Motivation

The increasing importance of security in cities and the possibility of using widely

deployed CCTV and smart phones to help improve security strongly motivates the design

of such a system. Most of the currently deployed surveillance systems are designed to

2

take advantage of technology that is out-of-date and does not take into consideration the

technological integration into our mundane lives and the adoption people have exhibited

for such devices, smart phones in specific, in the last few years. Since security is normally

a top priority for the majority of the nations, making use of modern technologies that

are capable of providing a more advanced service is a necessity. The most recent surveys

show that around 1.1 million people in The Republic of Ireland own a smart phone, that

is around 25 % of the population. These figures have inspired the addition of a mobile

application component to the system during the design stage. Further research in the

surveillance field, shows that modern smart cameras are becoming more commercially

available for less prices on a daily basis. In other words, replacing old cameras that’s

capabilities are limited to collecting video streams with modern smart ones that are

equipped with processing and networking features, will not be as expensive as expected.

Integrating the latter technologies together with an aim of providing a better security

service describes what the collaborative video surveillance system is. The system will

automate and distribute the detection and tracking of individuals in a smart and efficient

manner. Thus, utilizing as much of the available technologies as possible in order to

improve the deployed surveillance systems.

1.3 Requirements

Collaborative Video Surveillance is a system of large scale that may include a wide

variety of features and provide several services. The design, development and testing

phases may take several years in order to be completed. However, the time frame assigned

for the design, development and testing of this project does not allow for a system of such

scale to be built. Instead, a prototype of a smaller scale system grasping the core features

of the initial design was developed. Therefore, for this system it is required :

• To design a network that allows the exchange of information between a mobile

phone, a base station and several client camera nodes.

3

• To design and develop a mobile application that allows its user to create an image

query. The application should allow the user to capture, edit and send images using

the mobile phone.

• To design and develop a smart camera application that is capable of detecting and

tracking targets based on the received image query.

• To visually present correlated data received from different client cameras at the base

station.

• To efficiently detect and track a target from the field of view of one camera to that

of another.

1.4 System Overview

In this section, a scenario describing how the deployment of such a system may

be used and benefited from. The scenario will assist in giving the reader an overview

of the system components, features and services it can provide. In the city surveillance

scenario, citizens who would like to be involved in providing a safer place to live will

only be required to download the mobile application to their phones and to use it when

necessary. The users will then use this application to create an image query of the suspect

when required. The transmitted image queries will be received at the base station, which

will normally be monitored by someone who has a basic understanding of the system and

the underlying components. He/She may as well assist by confirming possible sightings

received from the camera nodes, thus removing any false positives that may result during

the detection process. In regards to the camera nodes, they’re usually modern surveillance

cameras that are deployed in the city and that are capable of executing certain computer

vision techniques and equipped with networking capabilities.

Since the latter is it a bit complex to build and requires several permits before

4

Figure 1.1: System Diagram.

5

implementing, it will be impossible to complete such a project in the time frame allocated

for this Masters course. Therefore, a prototype built inside one of the university’s labs

will be used to demonstrate the operability of the system and the features it’s expected

to provide. In the lab, two local area networks will be setup, one connecting the mobile

phone wirelessly to the server and the other connecting the server to the camera nodes.

The connection between the base station and the client camera nodes can be either wired

or wirelessly, depending on the kind of equipment used. The visual capabilities of the

camera nodes will be simulated by storing footage previously collected by CCTV cameras

deployed around the city. Streaming in an offline manner as the one described, was

preferred over connecting webcams to PCs and analyzing real-time streams. This is due

to the fact that the footage collected by the CCTV cameras is closer representation of

the kind of video the system will have to deal with when deployed in a real world. The

similarities are mostly related to the brightness levels, the size of the target and the angles

they might be view at. A photo will be taken using a smart phone, cropped and sent

to the server and then distributed to the camera nodes. A map on the server showing

the geographical locations of all connected camera nodes will indicate the location of the

target upon detection and will allow the visual tracking of the suspect on the map.

1.5 Achievements

The prototype designed and developed for this system was capable of detecting

and tracking individuals from the field of view of one camera to that of another. The

prototype was designed to be tested offline. Therefore, there was no real time streaming.

The camera nodes would analyze footage that has been previously gathered by CCTV

cameras and has been stored locally. The detection and tracking process is based on

an image query created using an android mobile phone application. Once created, the

image query is transmitted to the base station, and then from there forwarded to the

client camera nodes. In addition, the base station provides visual feedback to the user

6

based on information received from client camera nodes through-out the detection and

tracking process. The feedback provided indicates the target’s current location, as well

as the direction he/she might be moving in.

1.6 Dissertation Structure

Chapter 2 presents the state of the art of this project, which mainly focuses on the

previous work that has been done in fields related to distributed surveillance and vision

based tracking. It may as well include other technologies that may be associated with the

collaborative video surveillance system.

The Design Chapter (chapter 3) illustrates the design decisions that have helped

sculpt this system, including software, languages, libraries, algorithms, topologies and

many more.

The implementation Chapter (chapter 4) provides a more in depth discussion on

the algorithms implemented, through the use of examples.

This is followed by the Evaluation Chapter (chapter 5), that analyses the perfor-

mance of the overall system as well as the individual components and algorithms used.

Chapter 6 concludes, including a section that presents some of the future work that

can be added to the developed system, thus improving it’s performance and integrating

extra features that it may lack.

7

Chapter 2

State of The Art

This chapter discusses previous research that is related directly or indirectly to the

design and implementation stages of this system. The methods, algorithms, technologies

and architectures discussed below are part of the system’s design. However, not all the

mentioned technologies will be used in the development of this prototype as their use is

considered invalid for a system of such a scale.

2.1 Introduction

Collaborative Video Surveillance describes the concept of distributed surveillance

in which monitoring is not restricted to the field of view of a limited number of individual

cameras that operate independently but rather dependent on distributed smart cameras

that operate cooperatively to provide a monitoring/tracking service. Smart cameras are

camera nodes equipped with video sensing, processing and communication capabilities,

they are also known as visual sensor nodes (VSNs) [5, 7, 10, 18, 19]. The tracking service

for which such cameras are deployed involves the detection of objects of interest and the

tracking of such objects from the field of view (FoV) of one camera to another. Such a

system makes use of pre-installed private and public surveillance cameras without com-

promising the privacy of the environment that are being monitored by these cameras. In

8

other words, the collected video streams are processed and analyzed by machines, with no

human intervention. Therefore, the collected footage is not monitored by people directly,

thus human privacy is conserved. The system reacts to image queries received by the

server from a mobile application running on a smart phone. The queries are routed to

cameras located at addresses relevant to the targets candidate locations. Cameras that

receive the queries analyze both recorded and real-time footage in search of the described

suspect. The search process is implemented using complex image processing techniques,

mainly related to pattern recognition and comparing images. Cameras within the network

will collaborate throughout the tracking process, in order to provide a more accurate and

efficient tracking process. This is due to the fact that the search process will only be

triggered at camera nodes that are around the current targets location. The informa-

tion passing between the camera nodes may as well limit the number of false positives

identified, however, this will require some human intervention who will validate true pos-

itives upon detection. Efficiency may as well be improved by sharing information in a

decentralized manner, enforcing spatial and temporal collaboration and the use of data

aggregation techniques. The use of such a system is not solely restricted to tracking of

suspect individuals but may serve various other purposes, for instance, tracking lecturers

within a lecture hall (in such a scenario cameras may have overlapping fields of view,

which may not be true in video surveillance). A very similar system has recently been

deployed by the Chicago City government, providing security personnel with an eagle

eye’s view of all on-going events on the city’s streets [4].

The goal of this paper is twofold. First, it will discuss the middleware layer

that underpins the overall system, allowing the flow of information between it’s various

components. The middleware section discusses some of the routing algorithms that have

been used to design such system. The section will as well focus on other aspects such as

node collaboration techniques that will govern how the communication between among

the client camera nodes and between the base station as well. As for the computer vision

9

section, it is mostly related the design of the computer vision component of the client

camera node. The section will discuss computer vision techniques that may be used for

the detection and tracking of the target based on image queries. Section 2.2 introduces the

middleware part of this project, discussing the issues of network topology Section 2.2.1,

routing algorithms Section 2.2.2, data fusion Section 2.2.3, node collaboration Section

2.2.4, and scalability Section 2.2.5. Section 2.3, discusses the vision techniques used for

image querying Section 2.3.1, object detection Section 2.3.2, object tracking Section 2.3.3,

and the occlusion problem Section 2.3.4. Section 2.4 describes this project’s methodology,

and finally section 2.5 concludes.

2.2 Middleware

The integration of visual sensor nodes into a distributed and collaborative network

is normally supported by a well defined middleware that abstracts the physical devices

into a logical model, providing a set of networking and communication services [22]. Such

networks are known as VSN. Taking into consideration data fusion and node collaboration

techniques, will aid in efficiently executing such services . The section will focus on designs

and algorithms that will define the middleware layer underpinning the vision applications

running on higher layers in the client nodes. Technologies that are relevant to VSNs

deployed for surveillance purposes are only taken into consideration.

2.2.1 Network Topology

Smart cameras or visual sensor nodes are a type of sensing device deployed for

the purpose of collecting visual information about their surrounding environment. Their

main task involves monitoring the area covered by their FoV. Therefore, nodes need to be

linked according to some predefined network topology to allow efficient communication

to take place within the network, which also takes into consideration the geographical

locations of these nodes and the covered FoVs.

10

Issues arise as to whether the system should have a centralized or distributed

architecture. The system should allow multiple cameras to exchange information in a

manner that will aid in tracking a target in real-time. Information exchange can either

be done through a centralized node or in a distributed fashion in which nodes are able

to exchange information directly. In the latter case, implementing a distributed architec-

ture imposes several difficulties and challenges, especially in the case where the system’s

components are visual sensor nodes. For example, the lack of a central station requires

that nodes have some knowledge of other network nodes for routing purposes, as well as

synchronization difficulties and extensibility. In addition to these problems, VSNs suffer

from issues related to determining the FoVs of each camera node, which adds to the com-

plexity of both the design and implementation process. This is due to the fact that the

range covered by visual sensor nodes depends on the direction in which the node’s lens

is pointed, as well as the type of lens(wide angle lens, etc.). Unlike other types of sensor

nodes, the range covered by visual sensor nodes is not circular but rather diverges in

one direction. Taking these issues into consideration, developing a distributed system of

wireless sensor nodes may be considered quite ambitious, but the expected improvements

in network performance, reduced energy consumption due to the decrease in the number

of transmissions and efficient routing, resolving the single point of failure and bottleneck

issues, and several other benefits will make it worthwhile. For example, a distributed

system is tolerant to the implications of bottlenecks and central points of failure from

which centralized systems constantly suffer, not to mention the latency that could be

involved when such a system is to be used for a real-life application, such as real-time

tracking. Additional latency costs may be a result of the large number of transmitted

packets in camera sensor networks [19]. Round trip delays will have an impact on decision

making. The latency centralized systems introduce when constantly routing packets back

to the base station may cause the system output to be somehow irrelevant, since decisions

may be based on stale data due to transmission time delays. Therefore the system may

11

not serve the purpose for which it was initially developed. In relation to data communi-

cation, centralized surveillance systems transmit the data gathered at the sensor nodes

directly to the base station, creating an immense amount of traffic due to the large size

of collected footage, leading to an increase in cost, as well as causing network congestion

and data packet loss. Communication can be more than 100 times more expensive in

terms of energy consumption than processing [19]. Therefore, processing data locally and

compressing it prior to transmission, as well as only transmitting data to relevant nodes

through a minimum number of hops has a positive impact on bandwidth requirements,

reduces heat dissipation and is considered as a more efficient technique. Such advantages

make a distributed system more suitable for video surveillance where the size of the data

collected by the visual nodes is quite large.

Within a distributed architecture, different network topologies may be consid-

ered. Charfi et al [6], discuss how grouping visual sensor nodes into clusters may enhance

the performance of the network. Forming clusters within a network, often referred to as

a hierarchical topology, divides the network into smaller groups of nodes. Each group or

cluster is assigned an aggregation node. The aggregation node is responsible for routing

traffic to and from the edge nodes of its cluster, as well as filtering and fusing the received

data [7, 14]. In addition, the node connects to other aggregation nodes and to the BS.

Other types of topologies include the mesh or decentralized topology, in which all nodes

are considered as equals and are able to communicate directly with each other [32]. An-

other possibility would be a hybrid topology, which normally are a mixture of the above

mentioned topologies. Mesh networks require that all the nodes in a network acquire

information related to the other nodes with which it might communicate with. Therefore,

extensibility might be considered quite a complex and costly option. In addition, setting

up a network for a mesh topology is a complicated step and may not be easily automated.

A distributed network adopting a hierarchical topology is to be considered for

12

this system. Visual sensor nodes are grouped into clusters according to the geographical

locations of their FoVs and are assigned an aggregation node. Aggregation nodes are

aware of the network and will be able to forward data to relevant nodes efficiently through

applying data fusion techniques.

2.2.2 Routing Algorithms

A routing algorithm is a methodology that allows the communication of network

traffic along a path determined by the defined methods. Routing algorithms in sensor

networks tend to be different than these used in LANs, due to the limited processing

and power capabilities of the nodes,as well as the purposes and environments they’re

deployed for. For sensor networks, routing algorithms are designed in a way that takes

into consideration the limited resources available, especially the limited power supply.

However, since camera sensor nodes in the VSN to be built for this project have no power

restrictions, the considered routing algorithms are not evaluated with respect to their

efficient power usage. Liu et al. [14], discusses two of the most popular hierarchical routing

protocols LEACH and PEGASIS, as well as a third proposed routing protocol combining

the two. LEACH (Low Energy Adaptive Cluster Hierarchy) divides the network into

clusters and assigns each a cluster head. It uses the cluster heads to communicate traffic

between the BS and the network nodes. As for PEGASIS(Power Efficient Gathering

in Sensor Information System) nodes connect to their closest neighbours until a link is

created connecting the end nodes to the BS. Master nodes are the only nodes allowed

to communicate directly with the BS. Master nodes are re-elected on a regular basis.

However, since the PEGASIS routing protocol tends to form a chain structure among

the nodes, the LEACH protocol is considered to be more appropriate for the hierarchical

cluster-based topology adopted for this project. Unfortunately, acquiring source code for

such protocols has proven, from past experience, to be quite difficult. Therefore, a more

widely used protocol such as the Uniform Datagram Protocol(UDP) may be used. In

13

UDP, nodes may transmit packets, known as datagrams, onto the network without the

need to establish a transmission channel with the destination node [23]. The UDP protocol

was not specifically designed to be used in VSNs, however, since the camera nodes used

for this project are already connected to a backbone network, adopting a protocol such

as UDP is considered to be effective and efficient.

2.2.3 Data Fusion

Data fusion is a mechanism that reduces the amount of data transmitted in a

network by employing local processing at nodes within the network. Data received at

a forwarding node is combined with local data prior to being forwarded. The process

includes the use of data redundancy checks and some aggregation algorithms. Charfi et

al. [6], explain how data fusion can be used in VSNs by referring to various techniques

such as visual data filtering and visual data coding. The latter is a process that reduces

the size of transmitted data by encoding packets locally prior to transmission. While

the former, visual filtering, would include methods such as converting from 2D to 1D,

lowering image resolution, checking for redundant data and filtering images that do not

indicate any change. Wu and Chen [31], have implemented a different technique that

works in conjunction with an already existing image processing algorithm. The technique

transmits the background and target images separately making use of the background

subtraction technique used for detecting moving objects. The background image is trans-

mitted only once, when the nodes are initially set up. Afterwards, only the subtracted

image containing the detected object is transmitted after being fused with spatial and

location information relevant to the node and the detected object. The receiving node,

then reconstructs the image by using both the background image and the received data.

This technique has been proven quite effective especially in the case were the FoVs of the

visual sensor nodes are overlapping. The effectiveness of a technique is normally measured

by comparing the technique’s computational costs with the transmission costs that it’s

14

meant to reduce. Therefore, it is important to note that decoding the segments at the

receiving nodes should be computationally cheap otherwise such a process would be con-

sidered infeasible and cannot operate in conjunction with other data fusion techniques.

Consequently, Wu and Chen’s [31] technique is considered more efficient and effective

than that described by Charfi et al. [6], due to its implementation simplicity and cheap

computational costs. That being said, both techniques can work in conjunction with each

other, if necessary, since their implementations do not overlap.

2.2.4 Node Collaboration

At the heart of a distributed system, lies the cooperation between the different

nodes and the knowledge that each has of the other. Node collaboration is the process

by which nodes store and process data collectively rather than autonomously. Whether

the collected or produced data should be kept local or shared depends on the type of

the data and its relevance to the task at hand. For this project, it is more important

to focus on the sharing of data produced from processing information collected by the

visual sensor nodes. Rinner et al. [18], mentions how smart cameras may be classified

into three different categories: single, distributed and pervasive smart cameras. In sin-

gle smart cameras data processing occurs locally without taking into consideration the

results produced by other nodes within the network. This evolved into a much smarter

system, defined in the Distributed Smart Cameras (DSC) and Pervasive Smart Cameras

(PSC) categories where the collected data is processed in a distributed and collaborative

manner. PSCs take DSCs a step further by integrating adaptivity and autonomy with the

aim of providing a service-oriented network that adapts to various changes. DSCs tackle

the task at hand from different angles by taking the bigger picture into consideration.

This may be accomplished by taking the field of views of several cameras and acting upon

the inferred knowledge from these views rather than making decisions based on the FoV

of an individual cameras. In other words, implementing collaboration between the nodes

15

belonging this network. For this, a network of DSCs it considered an improvement to

a network of single smart cameras. Agents - tasks that can be triggered as distributed

applications - may be used to assist in the distributed processing. This may accomplished

due to the dynamic nature of agents, allowing tasks to be executed when required depend-

ing on specific state of the whole system. PSCs extends DSCs by adding extra features

such as the addition and removal of nodes without the need to manually configure the

network as well as the level of adaptivity with which the nodes operate. DSCs and PSCs

rely on calibrated image data in the spatial and temporal domain. Spatial and temporal

collaboration is a technique which allows nodes to identify their locations with respect to

the other nodes in the network and to synchronize to the same time. The technique is

further discussed in [13], where a map of the FoVs belonging to camera nodes within a

network is created based on the available spatial and temporal data. Such techniques are

used for the implementation of ’application-specific’ and ’application-independent’ pro-

grams. Application-specific features are these that are related to a certain higher level

task, while application-independent are related to lower level task that are more related

to the platform than to the system’s main goals. Spatial and temporal calibration allows

source nodes to identify destination nodes for their data packets by defining the location

of nodes with respect to each other. To aid in the development of such systems, mobile

agents may be used.

A mobile agent is a software that resides on camera nodes for representation

and management of the node’s activities [16]. Agents have partial knowledge of the state

of the system, by combining locally generated information with that generated by other

mobile agents within the network. Therefore, decisions made by a mobile agent are nor-

mally dependent on the limited information offered, thus promoting distribution among

the camera agents. Their advantages range from scalability to fault-tolerance, especially

when compared to centralized systems. Mobile agents operate in coherence with the spa-

tial and temporal calibration technique mentioned previously since it relies on the spatial

16

information produced in the calibration phase. Rinner et al. [17], represent different

types of services required for implementing a distributed system such as deployment,

operational, networking and application-specific services. From these, mobile agents are

normally used for operational services. A case study related to tracking individuals using

multiple cameras in a decentralized system of DSCs, where agents represent an object

tracking task that was created on demand. The agent will then ’move’ from one camera

to another, following the target’s movement. Thus the agent continues the task it started

on the first camera, on the new camera at which it is currently located. In other words,

the agent processes the captured footage only on cameras that have the target within

their FOV. The code mobility concept is further discussed in [19], where a multi-camera

system uses agents for following targets among cameras. The experiment highlights the

importance of having very well defined spatial and temporal data. For the implementation

of VSN, mobile agents are known to be quite useful given their support for scalability and

fault-tolerance.

Another method that takes advantage of the distributed nature of the network

to achieve efficient processing, analysis and sharing of the collected data is the use of a

Service Oriented Architecture [13]. In a Service Oriented Architecture a node is capable

of providing a set of services. Such services may not operate all at once,therefore enabling

and disabling of a service depends on other attributes. Nodes will enable services as they

are required while keeping the rest of the services disabled. The dynamic disabling and

enabling of services is made possible by modeling the system into three major layers:

• application

• service

• middleware layers

Even though such a technique efficiently uses the available processing resources,

it consumes space by storing services that might rarely be used. Available space is crucial

17

in distributed video systems, since nodes have limited resources and the gathered footage

takes up a significant amount of space. Besides that, adding new services to the system

that were not part of the initial design will require upgrading of the entire system. The

dynamicity and scalability of mobile agents makes it suitable for a distributed system.

Unlike other techniques, mobile agents allow the design of more robust and decentralized

systems.

2.3 Computer Vision

Computer vision allows information extraction from an image for inspection, anal-

ysis and control purposes [21]. These images can be stills as well as video frames and

are either processed as greyscales, colour or multi-spectrals. The manipulation of images

is normally achieved through a combination of image processing algorithms that are ap-

plied consecutively depending on the task at hand. Algorithms range from basic image

processing techniques such as digitization and smoothing to more complex ones such as

object recognition and motion analysis. Applying these techniques could be quite diffi-

cult if not provided with the right tools. However, with the aid of high-level computer

languages such as C/C++ and using a powerful library such as OpenCV [27], applying

such algorithms can be done in an efficient and reliable manner producing very accurate

results.

2.3.1 Image Querying Techniques

Image querying is the process of identifying objects that are relevant to a query

using a semantic based representation of the expected result [3]. Image querying is nor-

mally divided into a semantic-based and content-based approaches. The semantic-based

approach represents the image using metadata and queries the image database for similar

context. As for the content-based approach, the query is executed by matching low-level

features such as texture, edges, color histograms and many more. It is normally referred

18

to as Content-Based Image Retrieval (CIBR). Users will create an image query by taking

a photo using their mobile phones. This photo is geo- tagged and forwarded to the BS.

Geo-tagging the photo allows to forward the created image query to camera nodes neigh-

bouring the location in which the photo was tagged. The BS processes the image prior to

forwarding it, isolating the target object from the background. Then, the receiving nodes

will analyze the collected frames as well as previously gathered footage in search of the

queried target.

2.3.2 Object Detection

Object detection allows for the identification of semantic objects using computer

vision techniques. It may be a very complex process unless provided with the right tools

and data sets that define how the object may appear from different angles and under

different lighting conditions. Diehl et al. [8], discusses how object detection is applied

in the real-time classification and detection of moving objects. The technique presented

mainly focuses on the use of classifiers. Using classifiers for object detection gives context

definitions under which the detected objects may fall. Therefore, object recognition is

restricted by the quality and the quantity of the original specified context. Techniques

attempting to automate the learning phase have been developed, but they are prone to

error when not guided by humans. The learning phase allows the application to gather

information that will be used to improve the detection of true positives and limiting that

of false positives. However, semi-automation is quite useful in which both man and ma-

chine may collaborate in offering a continuous learning service. This could be done by

requesting the user to classify an unidentified object that has been detected by the system.

Wolf et al. [30], discusses the early developments of a DSC system that may be

used for detecting and tracking individuals, as well as activity recognition. The classifi-

cation of human activities is not of interest to us in this project, but the Hidden Markov

19

Model used in the activity recognition process may be used for object detection to reduce

the number of false positives a system might produce during the object detection pro-

cess. The paper presents the process of detecting humans from the captured footage using

low-level image processing methods which consists of a series of four different algorithms

applied consecutively to detect and identify different parts of a human body. Region

extraction, contour following, ellipse fitting and graph matching are the four algorithms

used for identifying humans, especially body part detection. Region extraction allows

the separation of the foreground and background in a captured frame, as well as the de-

tection of the body part’s skin area using the luminance and chrominance(YUV) colour

model. This is succeeded by the contour following technique, which groups the identi-

fied pixels into contours. Then, ellipse fitting corrects deformations produced during the

image processing caused by clothing, objects in the frame, or due to occlusion. Finally,

graph matching, classifies the parts identified during the previous steps with respect to

predefined data. The system was tested and performed as expected, even though real-

time response varied in accordance with the complexity of the applied image processing

techniques.

The classification technique presents a method that allows to separate objects

into groups according to a certain classifier or feature. Therefore, it could be considered

quite inefficient when used for tracking human individuals. As for the latter, the series

of algorithms used are considered quite effective if used for human detection, tracking

and activity recognition, however this is not the case for this project. Therefore, simple

techniques such as template matching are found to be the most appropriate due to their

simplicity and cheap computational costs.

20

2.3.3 Object Tracking

Tracking has been the focus of the majority of computer vision researchers for the

past decade. As a result, a variety of techniques have been developed for tracking objects

located within the FoV of one camera or moving from the FoV of one camera to another,

also known as multiple-camera tracking. Some of the most common algorithms used are

the mean shift, Kalman filter and particle filtering algorithms. The most effective way

of implementing tracking is through a combination of these algorithms. Rinner Wolf [19]

discuss how effective combining the spatial masking of histograms with an isotropic kernel

followed by mean shifting can be in tracking moving objects. He also mentions contour

following techniques for tracking people without the need for a 3D model and Kalman

filtering for predicting trajectories to deal with occlusion issues. As discussed in [12, 29],

tracking multiple objects in multiple cameras may be a very challenging task. It requires

spatial and temporal calibration of all camera nodes within the network, the locations of

their FoVs and whether they overlap or not. Such issues may be overcome by determin-

ing the FoV of each camera within the network in order to simplify the object hand off

process. Object hand off is the movement of an object from the FoV of one camera into

that of another. Furthermore, an object entering the FOV of one camera may not nec-

essarily be heading into the FOV of the following camera. Therefore, spatial calibration

assisted by object labeling will reduce the number of false positives produced. Therefore,

objects detected in one camera must be assigned labels and such labels must be shared

with other cameras in the network in order to allow the successful tracking of the target

object in an area covered by multiple cameras. The establishment of some correspon-

dence between the camera nodes in the network must precede any object detection and

labeling activities. Correspondence may be established by identifying the edges of each

FoV and finding which FoVs are closer to each other. Overlapping FoVs must be taken

into consideration as well. Such a technique may be very useful in the case of having

multiple cameras covering the same area. As for establishing correspondence between

21

non overlapping cameras, this is done using spatial calibration which takes may also take

into consideration geographical locations.

Others [2], have focused on tracking individuals in a large-scale smart camera

network using a signature created from classifying objects according to descriptors based

on a Difference of Gaussian detector. A signature specific for each object is created at the

identified node and shared with all camera nodes within the network. Receiving nodes

will store the signature in a buffer and compare it with all objects within the FoV of the

camera. A predefined threshold allows for the removal of noise and for the recreation

of a more robust description of the previously-defined object. Even though the methods

described take into consideration the temporal synchronization of the camera nodes using

the Network Time Protocol (NTP), they, fail to mention any sort of spatial calibration.

The object signature is transmitted using broadcasts to inter and intra group members -

members belonging to same or different clusters respectively. Such methods may be quite

inefficient due to increase caused on the network load and on local processing at the nodes

in search of a matching object, especially in large-scale camera networks. On the other

hand, the reacquisition and tracking of objects has proven to work as expected in given

experiments.

2.3.4 Occlusion

The occlusion problem may be summarized as the case when an object is in the

FoV of a camera but cannot be observed in the acquired footage due to the presence

of an obstacle between the visual node and the target object [9]. Occlusion is a very

common issue, especially when visual sensor nodes are deployed in public areas that are

often crowded by people. In this case, an individual target may not be detected by

the monitoring camera due to the presence of other objects between the target and the

camera, mainly another person. Consequently, occlusion is an issue that will not be dealt

22

with in the work applied for this project.

2.4 State of The Art Conclusion

The above mentioned techniques may be utilized in a way to provide a collaborative

video surveillance system that is capable of monitoring and tracking suspects in an efficient

and smart manner. This could be achieved by implementing a robust and dynamic visions

layer supported by a transparent, extensible and scalable middleware layer. The higher

level vision layer may benefit from the use of a combination of the described querying,

object detection and tracking techniques. While the middleware layer is designed to be

distributed and fault-tolerant, decreasing the possibility of network failures and packet

losses.

23

Chapter 3

Design

This chapter discusses the design decisions that have been made in relation to the

system components, the methods these components use to communicate among them

and the algorithms that will run their individual engines. Each of these components,

the mobile application, the base station and the client camera node, will be discussed

individually and as a system, providing an in depth explanation on each of their elements.

In addition, a section on the system’s architecture will allow for a better understanding

of the overall design and layout of the whole system. Finally, a brief summary on the

Iterative and Incremental Development model, as it was the adopted development model.

3.1 System Architecture

This section gives an overview of the system and it’s individual components. It as

well lays out the links that bridge these components together.

3.1.1 System Overview

The system is comprised of three interconnected components. The links bonding

these components together represent the type of communication used to allow the flow

of information within the system. The links could either be temporary or permanent

24

depending on the components it connects, as each component provides a system feature.

For instance, the mobile application connects temporarily to the base station when the

user wishes to send an image query. It is impossible and unnecessary to gather any sort

of knowledge on the transmitting mobile phone a prior to transmission, as it is neither

beneficial nor required by this system. However, when referring to the client camera

nodes, it is essential to gather a prior knowledge regarding each camera node. This is

usually done when a connection is established between that connecting node and the base

station. The information allows the base station to assign a unique ID to this camera

node that will map to the camera’s provided geographical location. Such information

will be used by the base station when attempting to visually represent the target during

tracking.

3.1.2 System Components

The system is comprised of three components, a mobile phone application, a base

station and a client camera node. The mobile phone application is designed to be used an

image query creating tool. Once created, the query will be transmitted to the base sta-

tion and from there forwarded to relevant client nodes. The application allows its user to

capture a photo using the device’s built in camera and crop the image using the provided

image editing tools prior to sending it to the base station. Cropping the image specifies

exactly where the target is in the captured photo, creating a more accurate image query.

As for the base station, it’s main aim is to bridge the mobile and client node components

together to allow the image query to be used as a template by the client camera node. It

as well is responsible for visually presenting the location of the target, upon detection, to

the user. The visual representation includes an on map indicator, an arrow pointing in

the estimated direction of movement, as well as snapshots of the identified target. The

addition of the snapshots feature allow the user to identify false positives that have been

wrongly detected by the client camera nodes. As for the client camera node, it is re-

25

sponsible for the detection and tracking of the target defined in the received image query.

Upon detection the client node transmits regular updates back to the base station.

Figure 3.1: Components Diagram.

3.2 Mobile Application

A Mobile application is a piece of software that runs on smart phones, usually

presenting the user with a friendly graphical user interface that allows him/her to make

use of the underlying hardware[15]. In this system, the mobile application is the first step

taken towards the detection and tracking of a target. It provides the user with image

capturing and editing tools to complete this task. In this section, the motivation behind

the choice of the Android OS and how the image query is created and transmitted to the

user will be discussed.

26

3.2.1 Mobile Platforms

When discussing the platform upon which it was intended to create the mobile

application for, there were several very well developed and popular mobile OS. Some of

these are:

• Android

• iOS (the platform for Apple i devices)

• Symbian

• Web OS

• Windows Phone 7

Figure 3.2: Mobile OS Market Share.

27

Looking into the platforms, it was discovered that all platforms provided simi-

lar features which would be of use to the system, such as access to GPS, networking and

advanced graphics. The next was narrowing down the possible platforms. Limited avail-

ability of either Web OS and Windows 7 phones, removed the latter off the list. Taking

into consideration that news that have been out in the past few weeks, not developing for

Web OS was a good decision. Symbian was ruled out for similar reasons, the unpopular-

ity of the Nokia devices in the smart phone market the devices available were lower end

devices. In addition, recent decisions taken by Nokia to adopt the Windows 7 Mobile to

be used for its phone. This means that there’s a no market for applications developed

for such platforms. Which leads to less people buying Nokia phones, thus less people

downloading and using the application if it were to be developed for such a platform.

Therefore, the two final platforms left would be with Android and iOS. The Android OS

was the platform of choice due to the following:

1. Developing using familiar languages such Java and XML, languages used for Android

development, was preferred over the use of Objective C.

2. The SDK for Android is a cross platform with versions for Windows, Mac OS X

and Linux. While the SDK for iOS is designed only for Mac OS X.

3. The SDK for Android is free of charge and easily allows a user to test an application

on a number of different devices simultaneously. The iOS SDK has a free version

which does not allow the user to test an application on a device, only the 99 SDK

will allow for device testing which is more limited in the number of devices which

can be used for testing than the Android SDK.

4. Another factor that was not as important as the ones listed above but which was

considered when deciding, was the rapid growth which Android has been experi-

encing which resulted in the platform becoming the largest selling mobile platform

worldwide by the end of 2010. There’s around 500,000 Android devices that are

28

being activated on a daily basis around the world.

5. Previous experience with Android development was a factor as well.

3.2.2 Android OS

Android is a software stack for mobile devices that includes an operating system,

middleware and key applications. It is based on the Linux Kernel [25]. It features:

• An application framework for components replacement and reuse

• A Dalvik virtual machine optimized for mobile devices

• An Integrated browser

• Optimized graphics powered by a custom 2D graphics library

• SQLite for structured data storage

• Media support for common audio, video, and still image formats

• GSM Telephony

• Bluetooth, EDGE, 3G, and WiFi

• Camera, GPS, compass, and accelerometer

• Rich development environment including a device emulator, tools for debugging,

memory and performance profiling, and a plug in for the Eclipse IDE

The diagram in Figure 3.3 gives a detailed explanation of the major components

compromising the Android operating system.

29

Figure 3.3: Android System Diagram.

3.2.3 Android SDK

The Android SDK provides the tools and APIs necessary to begin developing appli-

cations on the Android platform using the Java programming language. By providing an

open development platform, Android offers developers the ability to build extremely rich

and innovative applications. Developers are free to take advantage of the device hardware,

access location information, run background services, set alarms, add notifications to the

status bar, and much, much more. Developers have full access to the same framework

APIs used by the core applications. The application architecture is designed to simplify

the reuse of components; any application can publish its capabilities and any other appli-

cation may then make use of those capabilities (subject to security constraints enforced

by the framework). This same mechanism allows components to be replaced by the user.

30

3.2.4 Android Components

Android applications are designed to be made of a set of predefined application

components. Each of these components provides different access methods for the system

to enter an application. Components exist as entities on their own and do not necessarily

form a point of interaction with the user, as they may depend on one another. These

components can be defined as a unique building block that helps scope an application’s

overall behavior.

There are four different application components that a developer can use while

building an android application. Each type serves a specific purpose and has a unique

life cycle that sets how the component is created and destroyed. These four components

are Activities, Services, Content Providers and Broadcast Receivers. Below you will find

a more in depth explanation of the first two components, Activities and Services, as they

are the two components used while developing the mobile application for this system.

• Services: A service is a component that performs work for remote processes or

performs long-running operations. It is mainly distinguished from activities by how

it runs, as it executes in the background and does not provide any kind of user

interface. For example, a service may play music in the background while the

user is interacting with a different application. A service may as be used by several

activities or applications that bind to it while its running to make use of the methods

it has available. It is implemented as a sub class of Service.

• Activities: An activity represents a single screen with a user interface. Although

activities collaborate together to form a cohesive user experience, each one is inde-

pendent of the other. Each user interface will provide the user with certain features

and methods he/she can use. They appear to the user as a single application, how-

ever, it is formed of several activities and other components that interact with each

other to provide such an experience.

31

• The mobile application developed for this system allows the user to capture a photo,

edit and send it to a server. The photo capturing and editing features were imple-

mented using the activity component. As for the networking aspect of the applica-

tion, a service component was extended to allow the segmentation and transmission

of the edited photo.

3.2.5 Mobile Application Components

This section discusses the mobile application that has been developed as part of the

collaborative video surveillance system. The application was developed for the Android

mobile OS using the android SDK plug in for the Eclipse IDE.

Mobile application overview

Since the android SDK is based on both Java and XML languages, the mobile

application is separated into two parts, one that is in XML, mostly related to the GUI

and the other is in Java, and usually relates to all the developed methodologies. Com-

ponents, if activities, may be a result of a combination of code written in both Java and

XML. However, this is not the case if the class extends a Service. The main application

components include:

• A class for accessing the built-in camera when capturing a photo.

• A class for handling touch events and android graphics.

• A class implementing the middleware layer, which deals with incoming and outgoing

traffic.

Application Components

The application is divided into components that co-operate in delivering an image

query to the base station by executing specific individual tasks. Each component is dis-

32

cussed in more detail in the sections below.

Camera Activity

Prior to capturing a photo, the mobile phone’s screen will display to the user what a

camera application usually does, the data collected by it’s visual sensors. Therefore,

since this class requires to constantly draw onto the screen it was designed to extend

the Activity component. For clarity and astetical reasons, the activity is displayed on

a full screen removing an side bars and hiding all the buttons and layouts. Underneath

the display, the class is required to gain access to the built-in camera, therefore, relevant

permissions to the camera must be added to the application’s manifest in order to al-

low unrestricted access to the camera. The android system uses information declared in

AndroidManifest.xml file in order to allow the application to execute. These information

declare permissions the application must have in order to access protected sections of the

API [25]. Failing to define certain permissions will cause the application to crash.

Once the photo is captured, data is stored onto a bitmap. This bitmap is used

by the application for all proceeding tasks. It is either compressed into a .PNG file prior

to cropping or into a .JPG file for local storage. The bitmap is as well used to draw

onto the activity’s canvas in order to display the image to the user. Suitable instructions

usually follow the display of the image in order to guide the user through the next steps.

Networking Service

As previously discussed, all components that require to draw onto the display must extend

an activity regardless of how much of the display will be used. In other words, anything

that does not wish to draw onto the display doesn’t have to be an activity, it can be

a service. Since the networking class aims to manage all incoming and outgoing data

and does not contribute to the application’s GUI, it will extend the service component.

Implementing the networking class as a service allows other applications to avail of the

33

Figure 3.4: Mobile Application GUI.

34

features provided by this class by simply binding to it. The networking class essentially

creates a datagram socket through which datagrams are transmitted to/from the server.

Two methods that overload one another are defined within this class. These methods take

different types of arguments, either an array of bytes or a string. It then encapsulates

the data along with a UDP header and transmits it to the base station. The methods

incorporate a size checking mechanism which segments the data into smaller fragments

in order to meet the requirements of the UDP protocol in relation to the size of the data

to be added to the datagram. Suffixes and prefixes have been added to the data prior

to transmission in order to ensure ordered delivery of data and to prevent the loss of

datagrams as well as the arrival of duplicates.

Image Editing Tools

The image editing tools designed for this application allows the user to crop the photo

containing the target. Cropping assists in creating image queries that focus more on

the target and removes most of the background the can be considered as noise. Crop-

ping the image can is easily done by bounding the target inside a rectangle. Using his

fingers, the user will mark the coordinates of the bounding rectangle. Visual feedback

guides the user through-out the whole process. the application also handles user error,

allowing him/her to discard or alter their selection before cropping and sending the image.

Layouts using XML

XML is usually used as a format for data on the Internet. Retrieving and sending data

to/from the Internet will normally involve dealing with XML data. In addition, XML

provides developers with an intuitive tool for building astetically pleasing graphical user

interfaces. The GUI and animations that meet the user when using this application was

mostly implemented in XML. The toasts, buttons, layouts and animations have all been

defined, aligned and organized in XML files. Figure 4.4 in Section 4.1.1 gives an example

of an XML file used to implement layouts different android components. The layout is

35

Figure 3.5: Mobile Application Image Editing Tool.

36

then referenced from the main activity in Java allowing it to easily integrate with the rest

of the code.

3.3 The Base Station

The base station is a multithreaded server that accepts both UDP and TCP requests

from the smart phones and camera nodes respectively. The base station, as well, provides

a user interface to the user. The interface displays updates as they are received from the

client camera nodes. Updates include information related to the location of the target,

snapshots of the most recent sightings, and the direction the target is moving in. The

server is implemented using the Java programming language.

3.3.1 Multithreaded Server

A multithreaded server designed to accept both UDP and TCP requests acts as

the system’s base station. UDP was the protocol of choice to communicate with smart

phones willing to transmit an image query to the base station. The decision was based

on the assumption that a mobile phone is very unlikely to transmit more than once to

the base station, and the transmission duration will be for very shot due to the size of

the data being transmitted. Furthermore details is these regards is given in Section 3.5.

As for the TCP protocol, it’s used to establish a somehow permanent connection with

the client camera nodes. There will be a regular exchange of information between the

two nodes, and any transmission is required to be as error free as possible. Therefore,

building on top of a robust and connection oriented protocol, such as the TCP protocol,

that deals with different types of errors provides a better middleware service.

37

Figure 3.6: Base Station GUI.

3.3.2 Base Station Monitoring User Interface

The base station is not entirely about handling connections from the various system

components. There is another aspect to it that aims at providing the user with visual

feedback about the system. Users at the base station are presented with a map, displaying

the geographical locations of all connected client camera nodes. This is accomplished by

mapping camera ID’s uniquely assigned by the server with the geographical locations of

the client camera nodes. New camera nodes wishing to join the network will be assigned

a unique ID and will be requested to supply the base station with its exact geo-locations.

Once connected the new camera node will be shown on the map with the rest of the

camera nodes. The server remains idle as long as there are no new connections or any

image queries received. Once an image query is received, a window pops up on the screen

displaying the image. The image will then be distributed to the client nodes to be used

as a template image while searching for the specified target. Once the target is detected,

the user is informed of the sighting. This will be followed by visual presentations on the

38

map showing the estimated location of the detected target, with respect to the observing

camera. Continuous updates are received through-out the tracking process. The value of

the angle is displayed which estimates the direction the target is moving in. The tracking

process will be accompanied by snapshots of the target as he appears in the camera’s

field of view to allow the user to rule out any false positives of candidates who’ve been

falsely identified as the target. The target may be seen by more than one camera at once.

Therefore, the server may be receiving data from different cameras. All the incoming

data from different camera nodes is correlated at the server in order to present valid and

consistent information to the user prior to being displayed.

3.4 Client Camera Node

The camera client node is composed of a smart camera that is equipped with high

processing power and networking capabilities. It could either be one of the new high

tech surveillance cameras that has everything in one apparatus. Or, in our case, could

be a desktop computer with a web cam connected to it. In the case of the latter, two

application will run on the client camera node. One is Java based application that is used

to connect this camera to a network of other cameras and to the base station. It will

establish a TCP connection between the camera node and the base station. While the

second application will provide all the vision functions that will allow the processing of

the collected footage for detection and tracking purposes. It is implemented in C using

the OpenCV library.

3.4.1 OpenCV Library for C

The platform used for developing the computer vision section in this project is

the OpenCV libraries under Microsoft Visual Studio. OpenCV (Open Source Computer

Vision Library) is a library of programming functions mainly aimed for real time computer

vision [27] . It has been initially developed by a team from Intel and is currently supported

39

by the Willow Garage. The library has more than 2500 optimized algorithms. Its uses

range from interactive art, to mine inspection as well as stitching maps on the web through

advanced robotics.

3.4.2 Detection and Tracking - Vision Component

The computer vision component of the client camera node is responsible for the

detection and tracking aspect of the whole system. A combination of computer vision

techniques that execute in a particular sequence make such a task possible. Computer

vision is considered to be quite complex due to the loss of information frames suffer

from during recording a video. This happens since a frame is in 2D to represent a 3D

object, how images are interpreted, different types of noise, large sizes of data produced

while recording a video, level of brightness and many more. This section focuses on the

adopted vision techniques, the reason behind each decision and how they contribute in

the detection and tracking process.

Introduction to Computer Vision

Computer vision allows machines to interpret images in a similar manner to the way

human beings do. This is done by using a combination of vision techniques that execute

in a particular sequence. Each of these adopted techniques are used to accomplish a

specific task. Before getting into the details of each technique and what its used for, it’s

preferable to introduce a few popular vision terms that will be used regularly through-out

this section. Since this system only deals with videos, a brief introduction on how videos

are processed in computer vision will follow. When recording a video, the recording device

does that by capturing frames of the field of view of the camera at a certain rate, this rate

is normally referred to as fps (frames per second). Therefore, when processing a video

each frame is processed individually.

40

Background and Difference Image Calculation

Looking at each frame individually, it is almost impossible for a machine to be

able to identify and label objects in a scene, or even know which objects are moving and

will no longer be in the scene any more. Therefore, it is required to have a background.

A background is an image of a specific scene that shows all stationary objects in that

scene without any moving objects that exist temporarily within the scene. Therefore, a

background image of a street somewhere in a city, will only contain the buildings on that

street, the street, poles and other objects that are always there, excluding any people

and cars. In most of the cases, a background image may be given or easy to acquire.

However, this is not always the case. Therefore, whenever a background image cannot be

acquired directly from a frame, it has to be calculated. Even if a background is given, it

doesn’t mean that the background will always be the same forever. Places change, the

weather changes and the time of the day changes, thus affecting the captured frames in

many different ways. Therefore, calculating backgrounds must always be performed.

41

Figure 3.7: Difference and Background Image Calculation at Client Camera Node.

42

Calculating backgrounds can be done in several ways, such as Static Back-

grounds, Mode Background image, Median Background image, and the method of Stable

Values. The method of static background is when a frame of scene is captured with no

moving objects in it. This works, however it doesn’t accommodate well to changes within

the scene as previously discussed. Next is the Mode Background method, this method

requires the machine to keep track of a certain number of frames, and then pick the most

common pixel values for each point in these frames. It then puts theses values into one

frame. The problems from calculating a background using such a method can be easily

identified. First, it requires a lot of processing and a lot of storage since it must keep track

of a certain number of frames. Second, the mode in a sequence of frames does not rule out

the fact that the object may be temporarily stationary. Another method is the Median

Background method, this is very similar to the method previously discussed, but instead

of calculating the mode in the previous frames it calculates the medians. This method

suffers from similar issues as it’s predecessor, as well as when calculating the median, a

totally new value is calculated for a pixel that may have not existed in the first place.

Therefore, the background calculated will be an image of a scene different than the one

calculated for, more likely not real. Last but not least, is the method of Stable Values,

the method adopted for calculating the background in this system. The algorithm for

stable values is as follows:

• Initially start with the first frame as the background

• Update points in the background image if the value is different in the current frame

and has been near this different value for a certain number of frames

Now that it’s clear how a background is calculated, the next step will be to

explain what the background image is used for. The background image is used to identify

moving objects in a scene. This is done by calculating a difference image. A difference

image contains only colored pixels that have different values than these in the background

image, while the rest of the pixels have a zero value (black). Calculating the difference

43

image is kind of trivial. First you subtract the current frame pixel value for each point

in that frame from the corresponding point in the background image. The value is then

compared against a certain threshold, to determine which pixels represent the moving

object and to, as well, filter out any noise. Most of the algorithms to follow will be

applied on the difference image, to improve the speed at which the program executes

since any black patches are very likely to be left out.

Object Detection using HBP

Object detection is a very common task in computer vision. It is mainly used

to detect objects within a frame whether moving or stationary of different shapes and

sizes. There are several methods in which this task may be implemented in, the method

normally depends on the type and quality of the input frame, the type and quality of

the given template and the target’s characteristics. Some of the most popular object

detection algorithms include template matching, chamfer matching, statistical pattern

recognition and HBP (Histogram Back-Projection). Only template matching and HBP

will be discussed in more details as the rest of the algorithms require a much lower level

detail (higher resolution images) to give accurate results which is not the case for this

system, as CCTV footage contains a large amount of noise.

As for template matching, it may be defined as a technique in which a sub

image is searched for within an image through direct comparison to a given template [21].

The region of interest, the sub image, represents the target object, defined by the given

template, in 2D. Such a technique is known for it’s simplicity, and may be very effective

in many cases, especially when the target in the template closely resembles how the target

will look like in the searched image. However, if this wasn’t the case, template matching

is very likely to perform poorly and generate a large amount of false positives. Some of

these cases include the following:

• image quality is poor

44

• different brightness levels

• object of interest is of different size due to the position of the target with respect

to the camera

• object of interest is captured from a different view in the template than in the image

• object of interest is at a different angle

and many more. The issues mentioned above are some of the most relevant to issues this

system may suffer from if it were to use template matching for object detection. How-

ever, many of these issues can be solved, by applying geometric transformations to the

template prior to comparison, such as rotation, skewing, change of scale (expand/shrink),

panoramic distortion, perspective projection and many more. Comparing a template to

an image at every point in that image is computationally expensive on its own. What

if you were to apply the mentioned transformational algorithms, which have hundreds of

variations each, prior to executing the template matching algorithm. The answer would

be that such an algorithm is infeasible, especially with the low detection rate and the high

computational costs. Besides that, such a system may never be used for any real time

applications.

45

Figure 3.8: Object Detection using histograms and HBP.

46

The solution may lie in the other algorithm, HBP. The HBP algorithm slides a

window through the current frame and calculates the likelihood that each point belongs to

the model defined in the template [20]. The comparison metric it computes the likelihood

on is histograms. HBP is applied in different ways, however, you are always required to

compute the histograms of both images. Before discussing the different HBP techniques

available, it is essential to mention that using histograms to detect an object is a very

sensible decision for a system like this. First, image queries created using mobile phones

are very unlikely to show the suspects features. Second, the angle the photo is captured at

is very likely to be different to that the camera might see the suspect at. Third, detecting

the target with regards to the colour of clothing he/she is wearing is very reasonable, even

a human would do it such a way if he/she knows nothing about a target they are searching

for. Therefore, using the pixel colour values is very likely to produce valid results. Some

of the widely known HBP techniques are the following:

• Confidence Back-Projection: Assigns a likelihood value for each point in the image by

computing the confidence histogram hr which is the ratio of the model histogram hq and

the target histogram ht .

hr[m] =
hq[m]

ht[m]

(3.1)

• Quadratic Confidence Back-Projection: is similar to Confidence Back-Projection with the

addition of Am,n that defines the similarity of the histogram elements at m & n.

hr[m] =

∑
nhq[m]Am,n

ht[m]

(3.2)

47

Smoothing and thresholding are then applied to reduce noise and to reveal the most

likely positions of hq.

• Local Histogramming: In local Histogramming the back-projection and smoothing steps

are combined. The algorithm computes a local histogram hl for each point in the target

image I[x,y] and measures it’s distance to the model histogram hq . After thresholding,

the shortest distance indicates the closest match.

I
′′
[x, y] = dq,l (hq, hl(x, y))

(3.3)

• Binary Set Back-Projection: points in the target image are assigned a value of true

or false depending on the membership in the model binary set sq.

I
′
[x, y] = sq[k]

(3.4)

Smoothing and thresholding are then applied to reduce noise and to reveal the most

likely locations of sq.

• Single Element Quadratic Back-Projection: This algorithm combines both Quadratic

Confidence and Binary Set Back-Projection, weighing points in the target image based

on their similarity to the back projection element m, where sq[m] = 1 and sq[k] = 0.

I
′
[x, y] = Am,k

(3.5)

48

Smoothing and thresholding are then applied to reduce noise and to reveal the most

likely locations of sq.

The algorithms defined above were tested and evaluated by John R. Smith [20]

to find the most effective of them all. It was found that Quadratic and regular Confi-

dence Back-Projection’s main drawback is that the back-projection algorithms can only

be applied to like bins. Local Histogramming proved to be very robust. Binary Set Back-

Projection was very simple but results were not as adequate as Local Histogramming.

The same applies to Single Element Quadratic Back-Projection. Based on these tests,

Local Histogramming was chosen as the type of HBP to be used for this system.

Frame Segmentation

Applying HBP using the Local Histogramming method proved, to be very com-

putationally expensive. If you were to break down the steps involved in applying this

algorithm, you would notice that at every point in the target image you are to calculate

a histogram of a sub-image that is of the same size as the template image, then measure

the distance between the sub-image’s histogram and that of the template’s image. Doing

this for large frames in the videos that are recorded at around 15 fps (low resolution), will

take extremely long and is totally infeasible. Therefore, in order to solve this problem,

each frame was segmented into smaller overlapping sub-images of different sizes, yet larger

than that of the template image. In this case it was around 61 sub images. This means,

if the frame size was around 700x700 and the template image size was around 200x200,

instead of computing histograms for 501x501 points in the image and then measuring

their distance to the model histogram, this will only be done 61 times for each frame, i.e.

around 4000 times faster.

49

Figure 3.9: Image Segmentation Diagram.

Euclidean Distance

In order to measure the distance between two histograms, the method of Euclidean

distance was used. The Euclidean distance between two points can be defined as the

shortest distance between these two points. The Euclidean distance equation used to

measure the distance between two histograms is as follows:

d(H1, H2) =
√∑

(H1(x, y, z) −H2(x, y, z))2

(3.6)

Object Tracking Using a Kalman Filter

Once the target is detected, it is no longer required to be detected again and

again for every new frame. A better practice would be to track the detected target in

50

Figure 3.10: Kalman filter when applied to predict the next possible position of an object
based on it’s current position.

every new frame based on the previous location he/she were detected in. Therefore,

once the target is detected in the current frame, the position it is likely to be at in

the new frame can be efficiently predicted using Kalman filtering [28, 11]. The Kalman

filtering algorithm estimates the state of the system by taking into consideration a set

of measurement errors. It assumes that the system is linear, and the observations of it

are linear functions of the underlying state[21]. Considering two sequential observations

(z1 with a variance σz1 and z2 with a variance σz2), basic Kalman mathematics can be

explained as follows: The system state x(t2) is:

x(t2) = z1 +

[
σ2
z1

σ2
z1 + σ2

z2

]
[z2 − z1]

(3.7)

Substitute the observation with the previous model and bringing the Kalman filter

51

form into the equation K(t), where

K(t) = z1 +

[
σ2
z(t−1)

σ2
z(t−1) + σ2

zt

]

(3.8)

gives the following

x(t2) = x(t1) +K(t2)[z2 − x(t1)]

(3.9)

Figure 3.11: Diagram showing the method in which a Kalman filter predicts a system’s
next state from the current state.

For this system, Kalman filtering was used to estimate the next likely positions

the target might be at. Since it is assumed that people move at a certain speed, a rectangle

of a certain size that is a few human steps larger than the size of the detected target will

be used to limit the search for the target in the new frame. Therefore, Kalman filtering

allows the system to narrow down the region in which HBP will be applied producing

52

more accurate results and less computational costs.

Figure 3.12: Displays how the system uses a Kalman filter to track a target from one
frame to another.

Size Thresholds

Size thresholds have been applied as well to the detected objects. This produces

more accurate results by ruling out objects that have similar histograms to the object

model but are either too small or too large to be the object. Taking into consideration,

the position of the camera and how large and small human beings may appear when

viewed from this camera, such a threshold helps removes moving objects smaller or larger

53

than human beings that have similar histogram ratios, such as cars or animals.

Direction of Movement Calculator

In order to evaluate the direction the target is moving in, it is required to calculate

the angle of the direction vector that indicates the direction the target is moving in. The

direction vector can be acquired by keeping track of the targets previous locations as well

as the current location. Taking older previous locations rather than the most recent one

will provide more accurate results.

Figure 3.13: Method of Direction Calculation.

sin(α) =

√
(ym − yp(t))2√

(xp(t) − xp(t−2))2 + (yp(t) − yp(t−2))2

(3.10)

54

3.4.3 Middleware Component

In order to allow the camera nodes to communicate with the base station, a middle-

ware component is required. The middleware component will be designed on top of the

TCP protocol. It will allow the camera nodes to identify what kind of data it is receiving

from the base station, reassemble it if it was segmented prior to sending and prefix data

prior to sending. The middleware component is a key aspect of the collaboration of the

system, otherwise each camera will be considered autonomous from the whole system.

3.5 System Middleware

This section discusses how the middleware components of the individual elements of the

system are interconnected.

3.5.1 Network Topology

This section discusses the network topology chosen for the layout of this system. A

network topology is the pattern followed for the layout of different entities in the system

or a network. It describes the structure of the network and how these components are

linked together. For this system, it was found that a hybrid topology would be the more

efficient especially due to the fact that the system must be expandable and scalable. The

hybrid topology adopted combines both a star topology and a distributed one, where each

of the end nodes in a conventional star topology is a central node for another star topology

or cluster that branches at it, the diagram below provides a better overview of what the

topology looks like. However, for this system, the latter topology was not adopted due

to the fact that the prototype will not include as many nodes as there would have been

in the real system, thus affecting performance. Therefore, a conventional start topology

was followed for this purpose, thus producing better results for a system of the described

scale. The 2nd figure is a visual representation of the adopted topology.

55

3.5.2 Communication Protocols

This chapter covers the architecture of the system from the networking layer that

underpins the whole system, to the different applications that make use of this network

layer to communicate with one another such as the camera client nodes and the mobile

application.

For this system, a combination of Internet protocols were used to satisfy the het-

erogeneous components forming this system as well as the various functionalities they are

expected to provide. The Internet protocols mentioned are mostly those that lie within

the transport layer of the OSI model (Open System Interconnection model). The diagram

below shows the OSI model emphasizing the location of the transport layer within this

model. This is then followed by a brief description of the two main protocols in this layer

and how these protocols have been adopted by this system.

TCP/IP

TCP (Transmission Control Protocol) is a connection oriented protocol that was par-

ticularly designed for the purpose of providing a reliable end-to-end data stream over an

unreliable network[23]. Normally, when transmitting data packets between two nodes, the

packets propagate through the Internet-work. The Internet-work is typically formed of

several networks connected together, each with different topologies, bandwidths, delays,

packet sizes and other parameters. The intention of TCP was to provide a service that is

capable of dynamically adapting to the characteristics of the Internet-work and that is ro-

bust in the face of failures. The TCP protocol is part of the Internet Suite Protocol in the

transport layer. Establishing and Terminating a TCP connection between two nodes is

normally accomplished using the three-way and four-way handshake phases respectively.

During transmission, each sent packet is is created by encapsulating a TCP header with

data to be sent. The TCP header contains valuable information that is required for the

56

complete and successful delivery of a file from one end to another. The protocol also

provides features such as error detection, flow control and congestion control, making it

a reliable service.

UDP

UDP (User Datagram Packet) is a connectionless transport protocol that is supported

by Internet Protocol Suite. The Internet Protocol Suite is the set of protocols used for

the Internet[23]. UDP allows applications to transfer encapsulated data packets, usually

known as datagrams, without the need to set up a connection. It provides an unreliable

service, therefore, the protocol does not handle issues such as datagrams arriving out of

order, being lost or even receiving duplicate packets. Such a protocol is considered useful

when used with servers that are required to handle small queries from a huge number of

clients.

Uses

For this particular system, there are two networks or in other words two types of

connections. There is one that connects the mobile application to the server and another

that connects the server to the client camera nodes. Each of these connections has its own

characteristics and will be used for different purposes, therefore, it would be a sensible

decision to assign each with a different protocol. Taking in to consideration, the merits

and demerits of the previously described protocols, and due to the reasons to follow, the

UDP protocol was picked to be used for transmitting the image query from the mobile

phone to the server while the TCP protocol will be used to connect the camera nodes to

the server. For clarity purposes, it would make more sense to point out the fact that the

server is a multithreaded server that has been designed to accept both TCP and UDP

requests.

In any conventional scenario, a mobile application will only be transmitting

57

one image to the server. Taking into consideration that additional measures are taken to

ensure the guaranteed delivery of the transmitted packets to the server and the ordered

delivery of these packets, as well as the fact that this mobile application is unlikely to be

transmitting again to the server, UDP is the protocol of choice. Therefore, establishing

a connection between the mobile phone and the server through a three way handshake is

considered inefficient. It may as well effect the use of such a system for real time purposes

due to the delay it introduces for establishing and tearing down the connection. This will

have a further effect on getting the image to the client camera nodes, thus postponing

the launch of the search for the target at the camera nodes.

As for connecting the client camera nodes to the server, a protocol that is more

reliable such as TCP/IP has been chosen. The main motivation behind such a choice is

supported by the fact that there will be regular data transmissions between the connected

nodes. Therefore, it is required to have a permanent connection between the server and

the client camera nodes such as that provided by the TCP/IP protocol. Furthermore,

the server holds a map that indicates the geographic location of each of the client camera

nodes in their deployment environment with respect to one another and with respect to

the server. Such a map in created when a connection is established between the two nodes

(the server and any of the client camera nodes). Once a connection is established, the

server assigns each client camera a specific id to which it maps to a specified geographical

location indicated by the administrator. This allows the server to multicast an image

query to a selected cluster of client cameras depending on the geo-information received

with the image from the smart phone. Such information narrows down the regions of

interest, or the next possible target locations, thus allowing the detection and tracking

process to be executed efficiently, utilizing both the available bandwidth and processing

power. It’s worth mentioning that implementing such an application on top of UDP

protocol is unfeasible and inefficient due to all the associated complexities.

58

3.6 Software Development Approach

The Iterative and Incremental Model was the adopted software development for

building this system. It is considered an updated version of the waterfall model. It makes

the early stages of the life cycle, Requirements and Design, less vital than the Waterfall

Model, as there is room for change in later iterations. Thus early stages of the software

development cycle are not as critical as they are in other development models. This results

in reduction in costs induced from inadequate decisions made at early stages. The model

divides the cycles according to the required functionalities or with respect to the area of

development, if the system is to be developed in different platforms. Using such a model,

provides at the end of each cycle a system component that has been designed, built, and

tested and is ready for use.It is favored by clients as there’s room for modifications, allows

regular feedback, aims at providing a prototype at every cycle. This means features not

included in the initial set of requirements can be included at later stages. This results

in better customer satisfaction on the cost of meeting submission deadlines. Thus the

Iterative and Incremental Model provides a dynamic development model that allows the

production of robust systems that has been rigorously tested from different aspects and

in various methods.

59

Chapter 4

Implementation

This chapter focuses on how the algorithms discussed in Chapter 3 were applied

while building this application. It presents the underlying classes that collaborate in

providing a higher level task required by the system. It also presents the UML diagrams

that give an overview of how these classes relate to one another.

4.1 Mobile Application

The mobile application was developed using the Android SDK which is based on

both Java and XML. Most of the algorithms are coded using Java. XML was mostly used

in defining layouts for the GUI, as well as the manifest that allows the configuration of

access permissions required by the application.

4.1.1 Main Activity

The camera class extends the Android activity class. It’s the main activity for this

application. It contains code that allows the user to capture and edit a photo. It’s the

only activity in this application, and makes use of features provided by other classes and

services, through either creating local objects or through binding in the case of a service.

The figures in this section display of the code used to implement features that will handle

60

touch inputs, crop and display images.

Figure 4.1: Android Animation Layout Example.

Figure 4.1 defines a few of the animations were used to add visual effects when

calling certain layouts. The layout this code was used to be called upon was the buttons

layout which allows the user to enter specific modes of the application. These modes will

provide environments that support the implemented image editing tools. These anima-

tions add a sliding effect to the assigned buttons.

Figure 4.2: Android Touch Events Handling Example.

Figure 4.2 defines how the application handles touch inputs from the user. It

at the beginning detects whether the user is trying to place points on to the image or

edit the location of his/her selection by dragging an already placed bounding rectangle.

This mode is usually specified by which buttons has the user selected. If the user was

61

to crop the image through the selection of bounding points, some visual feedback is re-

quired. Therefore, the canvas that currently displays that image on the screen needs to

be redrawn over recursively. A canvas in android, contains the draw() call that allows a

developer to draw in android [26]. The method in Figure 4.2 calls the feedback class that

takes the current bitmap as an argument, and draws onto it again, creating a new bitmap

containing all the recent inputs and then displays it on the devices screen.

Figure 4.3: Implementing Drag Using Touch Inputs in Android.

Figure 4.3 shows how the drag feature is implemented in this application. This

is implemented by receiving regular updates of the current finger positions, every few mil-

liseconds, and calculating the difference between the current coordinates and the previous

coordinates, then redraws the rectangle in the new position. Similarly to the previous

part, the canvas needs be redrawn with every update, however the same bitmap needs to

remain in the background. The layer holding the rectangle needs only to be updated.

Figure 4.4 presents an example of some XML code, it defines how the main

camera activity will be laid out. As you can notice, there are many layouts defined in

the file. All the layouts are nested inside the main Frame Layout and will be displayed

when required by the application. The first layout inside the main layout, is another

Frame Layout. However this layout is used to display data received from the camera.

This is followed by an image view, in which images are displayed. The third, is a Relative

62

Figure 4.4: Android XML Layout Example.

Layout. A Relative Layout gives the developer more control over how components inside

this layout are to be aligned than other layouts would. This layout contains all the buttons

that will display what options the user have after he/she captures a photo.

4.1.2 Middleware Service

The networking class extends the service class. It allows the camera activity to

bind to it once it requires to transmit any data. The class as well contains methods that

allow the segmentation of data prior to sending. Figure 4.5 show how the constructor of

this class initializes all the variables, defining the base stations address and the port it is

to transmit and receive on. It as well shows the method that is used to send a packet.

This method overloads another method that takes a string input instead of an array of

bytes. The method checks the size of the data, compares it to the maximum datagram size

allowed (60 KB) in order to either segment before transmitting or immediately transmit.

63

Figure 4.5: Packet Segmentation Method.

4.2 The Base Station

The base station is a multithreaded server that accepts both UDP and TCP requests

from the smart phones and camera nodes respectively. The base station, as well, provides

a user interface to the user. The interface displays updates as they are received from the

client camera nodes. Updates include information related to the location of the target,

snapshots of the most recent sightings, and the direction the target is moving in. The

section below gives an in depth discussion on how these components were implemented

using the Java programming language.

4.2.1 Updates Manager

The GUI component describes how the map is loaded into a frame in the main

server class, and the image class waits for updates from the camera client nodes and

displays the data accordingly. It as well contains a method that draws an arrow indicating

64

Figure 4.6: Base Station Display Updater Method.

65

the direction the target is moving in according to the angle received from the camera

node and to the camera’s ID, which allows the server to identify the location of the

camera and the direction it is pointing in. In order keep the map displaying up-to-date

information, a separate thread keep repainting the graphics object and the static variables

used throughout the tracking process.

Figure 4.7: Target Direction Arrow Drawing Method.

Figure 4.7 shows how the method that is used to draw the arrow (discussed above)

that displays the direction the target is moving in.

4.2.2 Multithreaded Server Application

Figure 4.8 displays the main server class that implements the Runnable interface.

Part of the class is shown above displaying the code the handles incoming UDP and TCP

requests. As you can see, the TCP server can only handle 8 requests. This is due to the

fact that the scenario it was tested in contains 8 cameras, therefore, it was optimized to

suit the latter.

66

Figure 4.8: Multithreaded Server Implementation.

Figure 4.9 shows how the server correlates incoming data from different camera

nodes in order to display accurate information to the user. Correlating the data depends

on camera related information that has been initialized upon the establishment of a con-

nection with each camera.

4.3 Client Camera Node

The camera client node is separated into two main components, middleware and

computer vision. The middleware is implemented in Java while the computer vision is

implemented in C using the OpenCV library.

4.3.1 Computer Vision Component

This section illustrates how the algorithms that have been adopted in the design

stage, discussed in Chapter 3, were implemented in C using the OpenCV library.

67

Figure 4.9: Client Responses Correlation at The Base Station.

68

Difference Image Calculator

Figure 4.10 shows how the difference image is calculated by subtracting the pixel

values at similar positions in the current frame and the background image. The result

image will contain the current frame pixel values where the difference is greater than a

defined threshold or zero if otherwise.

Figure 4.10: Difference Image Calculator Implementation.

Background Estimation Using Stable Values

The implementation of the Stable Values algorithm used for calculating the back-

ground image is discussed in more details in Section 3.4.2.2. Figure 4.11 shows how the

algorithm can be implemented using the OpenCV library.

69

Figure 4.11: Background Estimation Using Stable Values Implementation.

70

Frame Segmentation

Frame segmentation, discussed in more details in Section 3.4.2.4., is an automated

process applied to every frame. The algorithm takes into consideration the size of the

frame and segments accordingly. Figure 4.12 shows how this is implemented while Fig-

ure 3.9 shows the end result.

Figure 4.12: Frame Segmentation Implementation.

Object Detection using Histogram Back Projection

Figure 4.13 illustrates how HBP was implemented in OpenCV. The values resulting

from comparing two histograms at each point are stored in an image that has a size equal

to the difference between the target image and the template image plus 1.

71

Figure 4.13: HBP Implementation.

Object Tracking using Kalman Filter

For this system, the Kalman filter allows the program to narrow down the region

of interest while searching for the target in new frames. Searching for the target will be

limited to the vicinity of the previous location the target was detected at. Figure 4.14

illustrates how this was implemented.

72

Figure 4.14: Kalman Filter Implementation.

73

Direction of Movement Determination

The direction of movement algorithm allows the client camera node to estimate the

direction the target is moving in based on the current and previous locations the target

is/was detected at. This allows the tracking process to be executed in a smarter and more

efficient manner by limiting the search process to cameras located around that direction.

It as well gives the user at the base station an idea in which direction the target is moving

in. This equation used has been discussed in Section 3.4.2.8. while Figure 4.15 shows how

it was implemented.

Figure 4.15: Direction of Movement Implementation.

4.3.2 Middleware Component

Since the computer vision component runs separately from the middleware com-

ponent, it is required to have some communication between the two that will allow the

middleware component to transmit to the base station what the computer vision compo-

nent has processed. For this, a text file has been used to which one writes and the reads

74

from, the computer vision application writes while the middleware application reads. Any

read and writes exceptions are handled in a way the prevents any errors. Since most of

the data to be read will not undergo any sudden change, they both read and write every

one second. The visions application does this by counting the number of frames and

comparing it to the number of frames per second the video is being played at, while the

middleware application implements this by causing the accessing thread to sleep for a

second. Random File Access in Appendix F, shows how this was implemented.

75

Chapter 5

Evaluation

For this project, a prototype of the system described in Chapters 3 and 4 was devel-

oped. In this Chapter the developed prototype and the algorithms used will be evaluated.

The performance of the prototype will be evaluated, as well as compared against the

original system for scalability purposes. The major differences between the two is mostly

related to scale, the topology used, processing power at the client nodes, the footage col-

lected at the client nodes, and the actual network bandwidth.

The chapter discusses the efficiency of the algorithms used for implementing each

component, and whether the use of other algorithms may improve the performance of the

system. Integrating additional algorithms to the ones implemented is also considered, as

the combination of two or more algorithms for the execution of a certain task is more

likely to yield better results. In addition, the chapter evaluates design choices and their

suitability for their parent components and the system as a whole.

5.1 Mobile Application

The mobile application built for this system, was designed to run on an Android

mobile phone. Testing of this application was applied at several stages through out the

76

development phase, using white and black box testing methods. Each component com-

prising this application was tested individually once built, then again once integrated into

the whole system. The testing cases checked the components for errors, bugs and whether

it executed as expected. Other tests involved stress testing which allows the evaluation of

the robustness of the application. The test results indicated the application’s performance

is within tolerance.

Aside from the test cases, development for the android platform was associated

with several bugs related to the Android OS. This hindered the development process and

required the alteration of the methods use. However, the android support team were

responsive and addressed issues as soon as possible which was helpful in some cases.

5.2 The Base Station

The base station built for this prototype did not undergo as many tests as the other

system components. This is due to the fact that the server built was designed specifically

for this prototype, thus to support a limited number of client camera nodes. Even though

the original system was taken into consideration while building the base station in this

model, the base station was optimized to suit the addressed scenario. The number of

clients that can connect was limited to 8, which is the number of client camera nodes

available from the PETS 2010 workshop [24]. However, the methods implemented and

their execution was rigorously tested.

The server was designed to accept both TCP and UDP requests. Upon testing,

the dual protocol support proved advantageous to the system as each was found suitable

for the type of communication it was implemented for. For instance, the UDP protocol

suffers from several demerits related to the protocol’s lack of any error handling mech-

anisms, no packet lost support, possible out of order delivery or even duplicate packet

77

delivery. However, for this system UDP was used for the transmission of small packages,

usually one datagram, containing the image query from the mobile application to the

server. In this case UDP removes all the time delays required to establish and tear down

connections that may have affected the system’s performance negatively if it was based

on TCP.

As for the GUI, the design took into consideration visual clarity as much as

possible. Since such an application is aimed for security purposes, keeping the design as

simple, intuitive and clear was the goal. The user was presented with a map such as that

in Figure 3.6 on which the information was displayed. The interface presents the user

with updates regarding the detected target, in a way that will grab his/her refraining

from the use of any visual distractions. However, the application does not allow the user

to have any kind of control over the camera nodes or to send any feedback regarding the

detected target. Such a feedback may assist in removing any false positives identified by

the camera nodes, thus providing a more accurate tracking and detection service.

Overall, there server application designed and developed for the base station

performed quite well, however, it was tested for a limited number of clients in a predefined

and limited geographical area. Whether the system scales well to perform similarly for a

larger number of client cameras is not known.

5.3 Client Camera Node

Most of the detection and tracking process occurs at the client camera nodes. The

camera nodes connect directly to the base station and exchange information that may be

interpreted at both ends based on a protocol specifically designed for this system. The

protocol was designed to be implemented on top the TCP protocol, therefore, taking ad-

vantage of the quality assurance tools provided by the protocol.

78

In relation to the computer vision aspect, the detection and tracking algorithms

implemented were evaluated with respect to their performance and computational cost.

As a result of running several tests, it was observed that the target detection rate in

the tested scenarios varied from one camera to another. The highest observed detection

rate was around 87% in camera views that captured the target from a similar angle to

that in the template image. While the lowest detection rate was around 35% in camera

views that captured the target from a different angle view and had different birghtness

levels than these in the template image. It was also noticeable that the system did not

detect any false positives, which proves the importance and the effectiveness of the applied

filters, especially these related to size and the speed of movement. The detection rate was

estimated by measuring how many times the target was correctly identified in a single

sighting from the time it enters the FoV of that camera till it exits it. The detection rate

when using HBP was noticeably higher than that from using template matching, where the

highest was at 40%Ṫhus supporting the decision of replacing template matching with HBP

as the implemented algorithm for object detection. However, from the cost of computation

perspective, HBP was found to be quite expensive. During early implementations of the

HBP method, especially the Local Histogramming HBP method, it took an average of 1

minute and 20 seconds to process a single frame. The machine used to run the application

on was equipped with an 2.4GHz Intel Core2Quad CPU , 3GB of RAM and an NVIDIA

GeForce 8800 GTX GPU. This cost was later reduced to allow the application to be used

for processing videos running at 15 fps. This was achieved through the integration of

segmentation, size thresholds, and a kalman filter with the HBP method. Through the

integration of the latter techniques, the application is capable of detecting and tracking

targets in videos that run at 15 fps without causing any delays.

79

5.4 Overall System Evaluation

Based on the different tests that have been applied to evaluate the system’s com-

ponents individually and as a whole, in a scenario acquired from the PETS 2010 vision

workshops database [24], the built prototype was found to meet the proposed require-

ments in Section 1.3. The test results prove the robustness of the system and its ability

to detect and track a target based on an image query created using a smart phone ap-

plication. The system was designed in a way that took scalability and extensibility into

consideration. However, none of the test cases evaluated the system’s performance and

robustness in a scenario where it was required to support a large number of client camera

nodes.

80

Chapter 6

Conclusion

The prototype designed and developed for this project as an initial demonstration of

a collaborative video surveillance system shows how a target may be detected and tracked

in the FoVs of several client camera nodes. The detection and tracking engine at the client

node uses a smart phone created image query as the template image. The system was de-

veloped using the incremental and iterative development model which allows the building

of robust components that were heavily tested individually and as a whole, using both

black box and white box testing. Thus, creating a system that performs within expecta-

tions upon integration of the separate components. This, as well, assisted in developing

for components that are different in their application and the platforms they are built on.

The system lacked certain features that will be discussed in more details in Section 6.1

covering the future work aspect of this report, however all the main requirements were met.

As discussed in Section 2.1, the requirements for this system were:

• To design a network that allows the exchange of information between a mobile

phone, a base station and several client camera nodes.

• To design and develop a mobile application that allows a user to create an image

query. The application should allow the user to capture, edit and send images using

81

the mobile phone.

• To design and develop a smart camera application that is capable of detecting and

tracking targets based on the received image query.

• To visually present correlated data received from different client cameras at the base

station.

• To efficiently detect and track a target from the field of view of one camera to that

of another.

The network designed and developed for this system allows the base station to

receive an image query from a smart phone and distribute it to the client camera nodes.

The image query is received as a datagram using the UDP protocol while the TCP proto-

col was used to establish connections between the base station and the client camera nodes.

A mobile application was designed and developed for the Android platform.

The application after installation allows its user to capture, edit and send a photo to the

base station using any smart phone running the Android OS. The editing feature allows

the user to specify the exact location of the target within the image, thus creating an

image query. The image query will be used by the camera nodes as a template image to

detect and track the specified target.

The client camera node was designed as two separate applications that collab-

orate in creating on of the system’s components. Each application was designed as an

individual element using different programming languages. Both applications run simul-

taneously and collaborate in providing a single service. One application is the middleware

component of the client camera node while the other is related to the computer vision

aspect of it. Using the developed middleware layer, the computer vision application re-

ceives and transmits information related to the target that is to be or being tracked. A

82

combination of computer vision algorithms that execute in a sequential order allow the

detection and tracking of the target.

A multithreaded server that handles both UDP and TCP requests while pro-

viding up-to-date visual feedback was built to act as the system’s base station. Besides

allowing the exchange of information between the different system components, the base

station visually presents to the user information received from the client camera nodes.

Such information is mostly related to the target being tracked, his/her location and the

direction he/she may be moving in. Information received from various camera nodes is

correlated at the base station in order to provide the most accurate target related infor-

mation.

Overall, the system allows the user to detect and track a target from the FoV

of one camera node to another while utilizing the available bandwidth and the processing

power at the node. This was achieved by triggering the detection and tracking process

only at relevant nodes, depending on previous sightings of the target from either the

mobile phone application or by other camera nodes.

6.1 Future Work

The scope of this project inspires many ideas and makes room for several inquiries

that makes the potential of future growth inevitable. Future development may be applied

to the system as a whole and to individual components as well. Starting with the mo-

bile application, developing multiple versions of the application that runs on a number

of mobile platforms such as Windows Mobile 7, Blackberry and iOS. In addition, the

application should be further improved to include features that will provide the user with

more powerful editing tools. Such a feature provides better accuracy to the user while

cropping, thus excluding from the image query any background related information, that

83

is irrelevant to the target being tracked. Besides that, the fact that the mobile application

user is the only user that might have seen the target in real life, it would be beneficial to

the system if he/she were able to give either positive or negative feedback on the candi-

date targets detected by the camera nodes.

As for the base station, it should allow the user to give feedback on the can-

didate targets detected by the camera nodes, in a similar fashion to that discussed for

the mobile application. The base station may as well take the system’s scalability into

consideration. The base station built for this prototype, is capable of establishing con-

nections to a limited number of client camera nodes. This may be altered in a way that

will allow the system to be more scalable and extensible, while retaining it’s robustness

and performance levels.

Last but not least, the client camera nodes. The computer vision techniques used

at the client camera nodes accomplish the required tasks in the test scenarios, however

the algorithms performance wasn’t constantly within accepted tolerance range. There-

fore, different algorithms, such as feature based object detection, may be used in addition

to HBP. This will improve the systems performance by boosting the true positives de-

tection rate, yet decrease the number of false positives. In addition, camera nodes may

be upgraded to include capabilities that allow the detection and tracking of multiple

targets that may simultaneously co-exist in its FoV. Taking into consideration the regu-

lar advancements in visual equipment, future smart camera nodes are quite likely to be

equipped with visual sensors capable of recording high quality video. The algorithms to

be used in the detection process may as well take this into consideration.

84

Appendix A

Abbreviations

Short Term Expanded Term

CIBR Content-Based Image Retrieval

DSC Distributed Smart Cameras

FoV Field of View

FPS Frames per Second

HBP Histogram Back Projection

LEACH Low Energy Adaptive Cluster Hierarchy

NTP Network Time Protocol

OSI Open System Interconnection

PEGASIS Power Efficient Gathering in Sensor Information System

PSC Pervasive Smart Cameras

TCP Transmission Control Protocol

UDP User Datagram Protocol

VSN Visual Sensor Network

85

Appendix B

Android Photo Activity

Figure B.1: Photo Capturing Methods.

The code in Figure B.1 describes how the application listens to events on the

trackball button and captures a photo once the button is pressed. A push on the button

will provoke calls to the shutter, data collection and jpeg classes. These classes gather

the data read by the device’s lens and compresses the data into JPG format. It’s worth

mentioning that the JPG compression is only used to store a local copy of the image.

However, prior to transmitting the image to the base station, the data is compressed

86

into PNG format, which is lossless, this gives more information to the camera nodes to

compare against when searching for the target.

87

Appendix C

Android Manifest

Figure C.1: Defining Permissions in Android Manifest.

The code in Figure C.1 shows the code stored in the applications manifest. It

shows all the activities, services and android components that have been extended in this

application. It as well defines the themes each of these components will use and how they

will be displayed. Besides that, the manifest defines access permissions that are given

88

to this application. The access permissions are displayed to the applications user upon

installation of the application, which is one of android’s distinguishable security features.

89

Appendix D

Histograms

Figure D.1 illustrates how histograms are calculated for each image in OpenCV and the

data structures used for this purpose.

Figure D.1: Histograms Implementation.

90

Appendix E

Sockets

The code in Figure E.1 shows how the connection is established between a client camera

node and the base station. It defines the port and the IP address of the base station, then

creates a thread that handles all incoming and outgoing requests on the created socket.

Figure E.1: Sockets Implementation.

91

Appendix F

Random File Access

Figure F.1 shows the middleware code that reads from the text file at the client camera

node. This allows the vision application to communicate with network application that

run in parallel at the client camera node.

92

Figure F.1: Random File Access.

93

Bibliography

[1] Saiful Akbar, Josef Küng, and Roland Wagner. Multi-feature integration with rel-

evance feedback on 3d model similarity retrieval. J. Mob. Multimed., 3:235–254,

September 2007.

[2] C. Arth, C. Leistner, and H. Bischof. Object reacquisition and tracking in large-scale

smart camera networks. In Distributed Smart Cameras, 2007. ICDSC ’07. First

ACM/IEEE International Conference on, pages 156 –163, sept. 2007.

[3] D. Beatty and N. Lopez-Benitez. Image query service using content management

techniques. In Information Technology: New Generations, 2009. ITNG ’09. Sixth

International Conference on, pages 1335 –1340, april 2009.

[4] WILLIAM M. BULKELEY. Chicago’s camera network is everywhere, April 2011.

[5] M. Casares, A. Pinto, Youlu Wang, and S. Velipasalar. Power consumption and

performance analysis of object tracking and event detection with wireless embedded

smart cameras. In Signal Processing and Communication Systems, 2009. ICSPCS

2009. 3rd International Conference on, pages 1 –8, sept. 2009.

[6] Y. Charfi, N. Wakamiya, and M. Murata. Challenging issues in visual sensor net-

works. Wireless Communications, IEEE, 16(2):44 –49, april 2009.

[7] Yongil Cho, Sang Ok Lim, and Hyun Seung Yang. Collaborative occupancy reasoning

in visual sensor network for scalable smart video surveillance. Consumer Electronics,

IEEE Transactions on, 56(3):1997 –2003, aug. 2010.

94

[8] C.P. Diehl and II Hampshire, J.B. Real-time object classification and novelty de-

tection for collaborative video surveillance. In Neural Networks, 2002. IJCNN ’02.

Proceedings of the 2002 International Joint Conference on, volume 3, pages 2620

–2625, 2002.

[9] Weiming Hu, Xue Zhou, Min Hu, and S. Maybank. Occlusion reasoning for tracking

multiple people. Circuits and Systems for Video Technology, IEEE Transactions on,

19(1):114 –121, jan. 2009.

[10] M. Jovanovic and B. Rinner. Middleware for dynamic reconfiguration in distributed

camera systems. In Intelligent Solutions in Embedded Systems, 2007 Fifth Workshop

on, pages 139 –150, june 2007.

[11] Young-Kee Jung, Kyu-Won Lee, and Yo-Sung Ho. Content-based event retrieval

using semantic scene interpretation for automated traffic surveillance. Intelligent

Transportation Systems, IEEE Transactions on, 2(3):151 –163, sep 2001.

[12] S. Khan, O. Javed, Z. Rasheed, and M. Shah. Human tracking in multiple cameras.

In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Con-

ference on, volume 1, pages 331 –336 vol.1, 2001.

[13] Chang Hong Lin, W. Wolf, A. Dixon, X. Koutsoukos, and J. Sztipanovits. Design

and implementation of ubiquitous smart cameras. In Sensor Networks, Ubiquitous,

and Trustworthy Computing, 2006. IEEE International Conference on, volume 1,

page 8 pp., june 2006.

[14] Fuqiang Liu, Kai Zhou, and Donglei Wang. Application of video sensor networks

in traffic surveillance. In Sensor and Ad Hoc Communications and Networks, 2006.

SECON ’06. 2006 3rd Annual IEEE Communications Society on, volume 3, pages

916 –919, sept. 2006.

[15] Zhifang Liu, Xiaopeng Gao, and Xiang Long. Adaptive random testing of mobile

95

application. In Computer Engineering and Technology (ICCET), 2010 2nd Interna-

tional Conference on, volume 2, pages V2–297 –V2–301, april 2010.

[16] M. A. Patricio, J. Carbó, O. Pérez, J. Garćıa, and J. M. Molina. Multi-agent frame-

work in visual sensor networks. EURASIP J. Appl. Signal Process., 2007:226–226,

January 2007.

[17] B. Rinner, M. Jovanovic, and M. Quaritsch. Embedded middleware on distributed

smart cameras. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.

IEEE International Conference on, volume 4, pages IV–1381 –IV–1384, april 2007.

[18] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf. The evolution from

single to pervasive smart cameras. In Distributed Smart Cameras, 2008. ICDSC

2008. Second ACM/IEEE International Conference on, pages 1 –10, sept. 2008.

[19] B. Rinner and W. Wolf. An introduction to distributed smart cameras. Proceedings

of the IEEE, 96(10):1565 –1575, oct. 2008.

[20] John R. Smith and Shih-Fu Chang. Integrated spatial and feature image query.

Multimedia Syst., 7:129–140, March 1999.

[21] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis, and

Machine Vision. Thomson-Engineering, 2007.

[22] Stanislava Soro and Wendi Heinzelman. Review article a survey of visual sensor

networks.

[23] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Ref-

erence, 4th edition, 2002.

[24] IEEE Computer Society (PAMI TC) and IEEE Signal Processing Society (IVMSP

TC). Pets, August 2011.

[25] Android Dev Team. Android guide, August 2011.

96

[26] Android Dev Team. Android sdk, August 2011.

[27] OpenCV Dev Team. Opencv wiki, August 2011.

[28] A. Murat Tekalp. Digital video processing. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1995.

[29] S. Velipasalar and W. Wolf. Recovering field of view lines by using projective in-

variants. In Image Processing, 2004. ICIP ’04. 2004 International Conference on,

volume 5, pages 3069 – 3072 Vol. 5, oct. 2004.

[30] Wayne Wolf, Burak Ozer, and Tiehan Lv. Smart cameras as embedded systems.

Computer, 35:48–53, September 2002.

[31] Min Wu and Chang Wen Chen. Collaborative image coding and transmission over

wireless sensor networks. EURASIP J. Appl. Signal Process., 2007:223–223, January

2007.

[32] Ren Yueqing and Xu Lixin. A study on topological characteristics of wireless sensor

network based on complex network. In Computer Application and System Modeling

(ICCASM), 2010 International Conference on, volume 15, pages V15–486 –V15–489,

oct. 2010.

97

