
Executing synchronous data flow graphs on heterogeneous
execution architectures using integer linear programming

Avinash Malik
School of computer science and statistics

Trinity College Dublin, Ireland

David Gregg
School of computer science and statistics

Trinity College Dublin, Ireland

Abstract
This paper presents an integer linear programming (ILP) technique
to partition and schedule Synchronous Data Flow (SDF) graphs
onto heterogeneous execution architectures. Our ILP formulation
gives a partition and schedule for SDF graphs, which provide the
optimal execution time. We incorporate new methods of exploit-
ing stateless data-parallelism on a heterogeneous architecture. We
quantitatively show that our ILP formulation performs better com-
pared to the current state of the art heuristic techniques available,
distributing SDF graphs. In fact, our ILP formulation gives an ex-
ecution boost ranging from 15% to 70% for heterogeneous archi-
tectures. Finally, in this paper we also explore a new optimization
technique based on actor granularity, which further improves the
overall throughput of the SDF graph.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
The streaming model, where data continuously flows from the in-
put to the output of the machine is increasingly becoming a com-
mon place programming approach. A plethora of real world appli-
cations, from complex real-time sensor networks to financial trad-
ing with very large amounts of data, adhere more closely to the
streaming rather than the von Neumann model. Applications pro-
cessing large quantities of data suffer from memory access bottle-
necks, which stream computing can overcome by allowing sequen-
tial processes called actors to be dependent only upon their indi-
vidual local copies of data, running in parallel, working together
by passing data using First In First Out (FIFO) channels to achieve
a given task. The streaming model exposes the concurrency in pro-
grams for exploitation.

The recent proliferation of multi-core and distributed systems,
has lead to a resurgence in research in scheduling stream pro-
grams [3, 5, 11, 15, 18]. The current literature has two major draw-
backs. First, most existing solutions do not take account of hetero-
geneous computer architectures, such as IBM’s Roadrunner super-
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Figure 1. An example stream program

computer (which consists of a heterogeneous mix of conventional
AMD multi-core processors and IBM’s 9-core CELL processor [9])
and STMicro’s P2012 [1] many core platform for embedded sys-
tems. Secondly, most existing approaches do not deal well with
communication costs between processors, something which is very
important for larger stream computers where communication costs
may be significant. The result is that programmers who want to use
the streaming model end up hand coding or manually partitioning
the applications in order to exploit the parallelism of the underly-
ing platform. The task of efficiently and automatically coordinating
heterogeneous parallel processors is a major challenge.

Figure 1 shows a pedagogical example stream program. There
are six actors, each connected to the other via FIFO channels. Actor
A produces tokens that are consumed by actor B. Actor B duplicates
these tokens and passes them onto actors C, D, and E. Finally, these
actors after carrying out some transformations on the received to-
kens, send them onto the merge actor F, which joins the incoming
tokens in a round robin manner. A single execution of the stream
from A to F is called an iteration. The semantics of any stream ap-
plication require that the state, number of tokens, of the buffers con-
necting the actors remain stable before and after an iteration, and
hence, we term it a stable state iteration. The input/output chan-
nel ports for each actor are typed and annotated with the number
of tokens produced (output rate of an actor) and consumed (input
rate of an actor) for every invocation of that actor. If the number
of tokens produced and consumed remain static throughout the life
time of the application, we call such a stream application a static
stream application, sometimes also termed a synchronous data flow
(SDF) graph [12]. Finally, the schedule length, time required to
complete a single stable state iteration, is termed makespan. Our
overall goal in this paper is to automatically partition and statically
schedule a SDF graph onto resource constrained heterogeneous ex-
ecution architectures in order to obtain a minimal makespan. For
well formed conditional constructs, implemented using split and
merge nodes, we assume dummy tokens being sent across the uns-
elected branches as described in [6].

A cornucopia of work exists [3, 5, 7, 11, 14, 18] that attempts
to partition and statically schedule SDF graphs on multi-processor
execution architectures. Almost all of the current state of the art [5,
7, 11, 14, 18] is dedicated to statically scheduling SDF graphs on
homogeneous execution architectures, i.e., architectures where ex-
ecution time of actors on different processors does not vary. Most
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of these attempts [5, 7, 11, 18] also do not consider time to commu-
nicate across different processors. A very recent attempt [3] made
at incorporating a heterogeneous execution and communication ar-
chitecture targets load balancing rather than a reduced makespan,
which in turn also leads to the possibility of reduced throughput.

Another very important aspect that is unanswered in the current
literature is the extraction of stateless data-parallelism from an
SDF graph executing on a heterogeneous execution architecture.
The current approaches [5, 7] incorrectly partition and replicate
stateless actors without any concern for the varying execution times
on different processors.

In this paper, we propose a new approach to partitioning and
statically scheduling SDF graphs on resource constrained hetero-
geneous execution and communication architectures, which over-
comes the aforementioned drawbacks. A more detailed comparison
of our approach with the related work is provided later in Section 7.
Our major contributions in this paper are:

1. To provide the very first Integer Linear Programming (ILP)
formulation that:

• Attempts to partition and statically schedule cyclic/acyclic
SDF graphs onto resource constrained heterogeneous exe-
cution architectures to provide the optimal makespan and
throughput.

Our approach finds a distribution and static schedule of
SDF graphs on architectures where execution time of an
actor varies across processors.

Our approach finds a distribution and static schedule of
SDF graphs on architectures where communication time
between actors allocated on different processors varies.

2. Our ILP formulation handles stateless data-parallelism so as to
provide an optimal makespan.

3. We are the first to consider both multi-core and networked dis-
tributed systems and provide a granularity based optimization
technique specific to networked systems.

The process allocation and scheduling problem tackled in this
paper is NP-hard [5]. Nonetheless we believe it is worthwhile
to develop techniques for computing the optimal makespan for
heterogeneous architectures for two reasons:

• There is always a class of embedded applications where in-
creased compilation time is worthwhile, when compared with
increased developer time, or failing to meet performance or
power requirements.
• There is currently a lack of good heuristic approaches to

scheduling stream graphs for heterogeneous architectures and
inter-processor communication costs. The optimal makespan
obtained using our approach can be used as a benchmark against
which good heuristic approaches targeting heterogeneous exe-
cution architectures can be developed and compared.

The rest of the paper is arranged as follows: Section 2 gives
an intuitive description of the scheduling and partitioning of SDF
graphs. In Section 3 we formalize the problem and describe our
first, partitioning ILP formulation. We describe granularity based
optimization in Section 4. Section 5 describes our compilation
strategy and the resultant tool chain. Experimental results are pre-
sented in Section 6. Section 7 compares our work with the current
state of the art. Finally, we conclude the paper in Section 8.

2. The problem explained – scheduling and
partitioning SDF graphs

Before formalizing the problem statement, we present an intuitive
description of the problem and related concepts.

2.1 Finding the granularity of actors
The SDF graph in Figure 1 needs to be scheduled for every stable
state iteration. A number of algorithms have been proposed in the
literature [3, 7, 13, 18], which schedule SDF graphs with static
buffer sizes and static number of invocations for each actor. These
algorithms use the notion of balance equations for allocating buffer
sizes and scheduling a single stable state iteration. For example, in
Figure 1 actor B requires one token at its input for invocation. Actor
A on the other hand also produces only one token per invocation,
and hence both are balanced. On the other hand, actors C, D, and E,
only consume one token per invocation, but B produces two tokens.
Thus, for every invocation of B, actors C, D, and E, need to be run
twice. Same can be said for the edges connecting actors C, D, E and
the join actor F.

A = B 2B = C
C = 4F 2B = D
D = 4F 2B = E
E = 4F

(1)

The so called balance equations in Equation (1) relate the in-
put/output rates of actors and determine the minimal number of in-
vocation of any actor within the SDF graph for a single successful
stable state iteration. The result of solving the balance equations is
the vector G = {2, 2, 4, 4, 4, 1}. Vector G is called the repetition
vector and each element Gi gives the natural granularity of actor
i in the SDF graph. All cycles in a SDF graph need delay tokens,
sometimes also termed as initial tokens to be well formed. Any
cyclic SDF graph without delay tokens cannot be scheduled and is
considered incorrect by construction.

2.2 Partitioning SDF graphs

P1

P2

P3

P4

shared memory

shared memory

network

network

memorymemory

memory loopback network

Figure 2. Example heterogeneous execution architecture and exe-
cution traces

Figure 2 shows an example heterogeneous execution architec-
ture with four processors: P1, P2, P3, and P4. Processors P1, P3,
P3, P4, P2, P3, and P1, P4 are connected via shared memory. Pro-
cessors P2, P4 and P2, P1 are connected via a network cable. All
processors, except P3, use memory for storing data, P3 uses loop-
back network and message passing.

Let actors C and D be stateless actors, i.e., actors where any
invocation is independent of any other invocation of that actor. The
example below shows a stateless actor.

while(counter<4){ i[c] = j[c] + 1; c++;}

In the example loop above, the output i only depends upon
the incoming input j. Thus, instead of carrying out the above
computation four times in a sequence, we can parallelize the actor
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(a) The optimal makespan obtained using our ILP
formulation

0 1 2 3 4 5 6 7 8 9
P1 A A B B C1 C2 C3 D3 D4 F
P2 D1 D1 D2 D2
P3 C4 C4 C4
P4 E E E E

(b) The best makespan obtained using state of the art StreamIt heuristic [7]
0 1 2 3 4 5 6 7 8 9 10

P1 A A B B CD1 CD1 CD4 CD4 F
P2 CD2 CD2 CD2 CD2
P3 CD3 CD3 CD3 CD3 CD3 CD3
P4 E E E E

Table 1. Sample execution trace

into four different actors, each working on a separate part of the
vectors i and j, respectively, once, and then joining them back
together to decrease the overall makespan.

Figure 3(a), shows the loop level stateless parallelism being ex-
tracted from the SDF graph in Figure 1. The stateless actors are
replicated processor (core) number of times. The granularity and
input/output data-rates are adjusted accordingly [16]. Such loop
level stateless parallelism is called naive stateless actor replica-
tion. Such naive stateless actor replication can cause communica-
tion bottlenecks and loss of task-parallelism (split/join nodes) in
the SDF graph. In order to overcome this difficult, the StreamIt
compiler introduces a judicious fusion-fission algorithm (a heuris-
tic), which fisses stateless data-parallel actors without forgoing the
task-parallelism inherent within a SDF graph.
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(a) Extracting loop-level stateless data-parallelism
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(b) StreamIt’s approach to judicious fission

Figure 3. Modified SDF graph with stateless data-replication

The state of the art StreamIt heuristic [7], is a multi-step process,
it first identifies the stateless actors (using simple static analysis).
Next, it greedily fuses stateless actors together as much as possi-
ble. This fusion step might even fuse complete stateless split/join
nodes and finally, it uses a simple heuristic (considering the fraction
of work done by the stateless fused actor compared to the overall
work done by the complete split/join) to fiss the stateless actor. The
result of applying StreamIt heuristic (as is, i.e., without account-
ing for heterogeneity) to our SDF graph in Figure 1 is shown in
Figure 3(b).

The execution architecture is heterogeneous. Let the execution
time for the actors be given by the function ξ: {A, B, C, D, E,
F} → {1, 1, {1, 2, 3, 4}, {1, 2, 3, 4}, 1}. From these sets we can
see that actors C and D perform differently on the four available
processors, while the others complete execution in the same time.
We consider the communication time between processors to be 0

time units, purposely, since StreamIt heuristic is unable to handle
communication times. We will revisit this state of the art heuristic
and describe a new heuristic technique combining StreamIt and
declustering [14] in Section 5.1, in order to handle stateless data-
parallelism involving communication times.

Table 1, gives the optimal execution trace (Table 1(a)) obtained
by our ILP formulation compared to the best possible execution
trace that the StreamIt heuristic can produce. The schedule pro-
duced by our ILP formulation is 10% faster. More importantly, we
have purposely chosen to allocate CD1 and CD4 on processor P1 to
get the best possible solution. According to the proposed heuristic
in [7], the makespan of 17 time units, obtained by allocating CD4 to
on processor P4 is as good as the execution trace in Table 1(b), be-
cause StreamIt heuristic assumes homogeneous computation times.

We have simplified the above example considerably by homog-
enizing the computation time for most of the actors and getting
rid of the varying communication costs. Yet, the partitioning and
scheduling solution obtained in Table 1(a) is non-obvious, due to
the slight heterogeneity introduced in the execution architecture.

From Table 1, the following observations become essential:

• A partitioning and scheduling strategy, needs to consider com-
munication and computation time for actors.
• A partitioning and scheduling strategy should be able to accom-

modate heterogeneity.
• A partitioning and scheduling strategy should be able to exploit

stateless data-parallelism and task-parallelism considering both
communication costs and heterogeneity.

Finally, we would like to reiterate that we purposely are trying to
provide an optimal solution to this NP-hard problem. Consider that
there are a myriad heuristics for partitioning and scheduling on ho-
mogeneous execution architecture [5, 7, 11, 14]. A heterogeneous
execution architecture exponentially complicates the search space.
There are a number of solutions, but the space for good solutions is
much smaller. This in turn leads to complex heuristic approaches –
how does one know that a heuristic targeting heterogeneous execu-
tion architecture is a good heuristic, if one does not know what is
the optimal solution?

3. Partitioning and scheduling SDF graphs
3.1 Definitions
A SDF application is a graph G(V,E), where V are the ver-
tices representing the actors and E ⊆ V × V are the edges rep-
resenting the FIFO communication channels between actors. Let
graphA(P,C) represent the heterogeneous execution architecture,
where P represents the processors available for actor execution and
C ⊆ P × P represents the communication link between proces-
sors. Finally, let Π represent the makespan of the schedule.

Lemma 1. The allocation solution that minimizes makespan also
provides the highest throughput.

Proof. Let ωi represent the number of bytes produced for each
invocation of some actor Vi ∈ V . Thus, for a single stable state
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iteration of G, the number of bytes produced by actor Vi is ωiGi,
recall that Gi is the natural granularity of actor Vi. Let T represent
some absolute time elapsed from the start of execution of G on A.
We define the throughput of Vi as:

ζi =
ωiGiN (Π)

T
∀i = {1 . . . N} (2)

whereN (Π) = T/Π gives the number of stable state iterations
of G in T . Finally, we define the throughput of the graph G as:

ζ =

N∑
i=1

ζi (3)

As we can see from Equation (2), the throughput and makespan
are inversely proportional. Hence, minimizing makespan (Π) is
equivalent to maximizing throughput (ζ).

3.2 Integer linear programming formulation to partitioning
SDF graphs for makespan

In this section we provide the ILP formulation that partitions the
SDF graphs on heterogeneous resource constrained architectures
to obtain the optimal makespan (Π).

objective minimize(Π)
subject to

L1 ∀(i, j) ∈ E aj ≥ ai +
∑
∀x∈P (bix.Tix) +

∑M
g=1

∑
∀(x,y)∈C(bixgy.Dxy)

L2 ∀k ∈ Vt Π ≥ ak +
∑
∀x∈P (bkx.Tkx) +

∑M
g=1

∑
∀(x,y)∈C(bkxgy.Dxy)

L3 ∀k ∈ Vs ak ≥ 0
P1 ∀x ∈ P

∑
∀i∈V bix = 1

P2 ∀i ∈ V, ∀j ∈ V, ∀x ∈ P sij = max(|bix − bjx|)
P3 ∀(i, j) ∈ E,∀(x, y) ∈ C bixjy ≥ bix + bjy − 1
S1 ∀i ∈ V ∀j ∈ V rij + rji = 1− sij
S2 ∀i ∈ V ∀j ∈ V aj ≥ ai +

∑
∀x∈P (bix.Tix) +

∑M
g=1

∑
∀(x,y)∈C(bixgy.Dxy)−M∞(1− rij)

∀ai ≥ 0, ∀i ∈ V, ∀x ∈ P, Tix = Eix ∗Gi, Eix ∈ N∗
whereEix is i′s execution time for a single invocation

(4)

Equation (4) gives the overall ILP formulation used to partition
the SDF graph on a resource constrained heterogeneous execution
architecture. We will go through each constraint describing them in
detail.

3.3 Constraints
Resource constraints Each actor is allocated to exactly one pro-
cessor. Note that for the purposes of our formulation we consider
a processor to be any computing device that can execute an ac-
tor. For example, a “processor” may be a single core of multi-core
processor. Or it may be a part (or whole) of an FPGA that can be
programmed to perform the work of some actor. Or it may even
be a GPU which can be devoted to executing an actor (with the
actor implemented as a GPU kernel with many small threads of
control internally, but treated as a single execution from the point
of view of the formulation). The important thing is that an actor can
be allocated exclusively to the “processor”, and that no other actor
executes on the same “processor” simultaneously. For purposes of
illustration, it is probably easiest to think of a “processor” as being
a single core of a multi-core processor.

One limitation of our approach is that it does it does not model
simultaneous multi-threading (SMT) well. SMT, which allows
multiple threads of execution to share the resources of a single
hardware core, can be modelled badly in our formulation. Each
SMT hardware thread can be treated as a separate “processor” in
the same way as operating systems such as Linux do. However,
there is usually significant competition for resources among the
hardware threads in an SMT core. Our experience has been that the
execution times of actors varies significantly depending on what is
running on the other hardware threads of an SMT core. For this rea-
son, we do not exploit the SMT capability of the machines we use
in our experiments, and instead leave the more accurate modelling
of SMT cores to future work.

We define a 0−1 integer variable bix to represent the allocation
of actor i ∈ V on processor x ∈ P . Thus, the constraint ∀x ∈
P
∑
∀i∈V bix = 1, P1 in Equation (4), guarantees that each actor

is allocated to exactly one processor.
Actors allocated to the same processor need to be identified in

order that only a single actor is executing on a given processor
at any point in time. We identify actors allocated on the same
processor with a 0− 1 integer variable sij , ∀i ∈ V, ∀j ∈ V . Thus,
the constraintP2 in Equation (4), ∀x ∈ P, sij = max(|bix−bjx|),
gives a value of 0 or 1, for actors i and j being allocated to same or
different processors, respectively.

Finally, since in a heterogeneous architecture the communica-
tion cost between actors allocated to different processors varies,
we need to identify, which communication link will be used. We
define yet another 0− 1 variable called bixjy , for actors i and j, al-
located to processors x and y, respectively. Note that x and y might
be the same processor. Thus, the constraint P3 in Equation (4),
bixjy ≥ bix + bjy − 1 gives a value of 1 or 0 if the communication
link (x, y) ∈ C is utilized or not, respectively.

W

X Y

Z

Figure 4. Example SDF graph

Scheduling constraints Consider the very simple SDF graph in
Figure 4, allocated to a two processor system. Suppose that allocat-
ing actors X and W on one processor and Y and Z on another proces-
sor gives the smallest makespan. In such a scenario, the execution
order of actors X and W on a single processor needs to be decided
since that affects the overall makespan. We define this ordering as
a scheduling constraint, S1 in Equation (4), for all actors on any
given processor. Two 0− 1 integer variables rij and rji define the
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execution order of actors i and j, respectively. In the constraint,
rij + rji = 1 − sij the ILP solver is allowed to set either rij or
rji to 1 in order to find the best schedule order. Notice that this is
the only constraint where variable sij is useful, one can get rid of
the sij variable and use bix instead, but we keep the sij variable for
ease and clarity of understanding. Also, dependencies in the SDF
graph are considered when ordering actors on a single processor.
Hence, while the ILP solver is allowed to order actors X and W in
any order it sees fit when both are allocated to the same processor,
actors X and Y are ordered one after the other provided they are
scheduled on the same processor.

Every actor in the SDF graph has a start or activation time.
We identify the activation time for an actor by the integer variable
ai,∀i ∈ V . The actors in the graph can be divided into two distinct
sets; source actors, identified by the set Vs and terminal actors
identified by the set Vt. All actors in the source set are considered
to have an activation time of 0 (e.g., ax = aw = 0 in Figure 4). On
the other hand, the activation time for actors in the terminal set is
affected by the schedule of the graph.

Since the execution of all actors on a single processor is serial-
ized, consequently, the activation time for actors is delayed by this
serialization. Consider the aforementioned scenario of actors X and
W being scheduled on the same processor. Suppose, variable rxw is
set 1, then the activation time for actor W is delayed by the compu-
tation and communication time of actor X. We represent this delay
in activation time by scheduling constraint S2. Thus, the activation
time for actor W according to constraint S2 is given by:

aw ≥ ax + bxp1.Txp1 + bxp2.Txp2 + bxp1yp1.Dp1p2+
bxp1yp2.Dp1p2 + bxp2yp1.Dp1p2 + bxp2yp2.Dp1p2−

M∞.(1− rxw)

Where, ax = 0 is the activation time for actor X, Txp1 and Txp2

are the computation time for actor X on processors P1 and P2, re-
spectively. The 0−1 integer variables bxp1, bxp2, bxp1yp1, bxp1yp2,
bxp2yp1, bxp2yp2, represent the allocation of actor X on processor
P1 or P2 and the use of communication link between processors P1
and P2, respectively, when communicating between actors X and Y.
The integer variable Dp1p2 gives the varying communication time
when differing communication links are used. Finally, M∞ repre-
sents a fairly large integer number. Notice that aw is only affected if
rxw is one, else it remains unaffected. Supposing that actors X and
W are both allocated on processor P1 and the computation and com-
munication time for actor X is 1, we can solve the above equation
to get:

aw ≥ 0 + 1.1 + 0 + 0 + 1.1 + 0 + 0− 0
⇒ aw ≥ 2

Dependency constraints Except for the scheduling and resource
constraints, one also needs to consider the dependency constraints
in the SDF graphs. As stated previously all actors have an activation
time: ai, ∀i ∈ V , and there are two sets of actors, source actors
Vs and terminal actors Vt. We consider the activation time for all
actors in the source set to be zero, denoted by the constraint L3
in Equation (4). The makespan (Π) is determined by the addition
of the activation time of all actors in the terminal set and their
individual computation and communication times. This constraint
is defined by L2 in Equation (4).

In our ILP formulation we need to consider the delay in activa-
tion time for some actor i ≺ j (aj) due to an edge ((i, j) ∈ E). We
do not implement a software pipelined schedule. Software pipelin-
ing can be easily incorporated in our framework by ignoring all
edges, except for the strongly connected components or cycles in
the SDF graph. Instead, we concentrate on exploiting stateless data
and task parallelism in this paper. The delay in the activation time

for any given actor due to an edge dependency is shown by con-
straint L1 in Equation (4). The activation time for some actor j
is delayed by the computation and communication time of actor i,
i ≺ j and edge (i, j) ∈ E. Constraints L1, L2, and S2 are similar,
because they all calculate delays in activation time for actors.

Optimal exploitation of stateless data and task parallelism Let
us revisit our original example in Figure 1 and its stateless data-
parallel actor replication shown in Figure 3(a). Our ILP formulation
does not need any changes to accommodate optimal stateless data
and task parallelism. Constraints, L1 and S2 together guarantee
that the optimal solution is found. For example, constraint L1 leads
to the placement of actors C1 and C4 on processors P1 and P3,
respectively, while constraint S2 leads to the delay in the activation
times for actors C2 and C3 when placed on processor P1. Same can
be said for stateless actor D. Thus, the resultant execution trace in
Table 1(a).

If we consider the stateless actor C, then three copies of C: C1,
C2, and C3 are run on processor P1 and the fourth copy is run on
processor P3. This partitioning can also be restated as: actor C is
split into two copies with the first copy running on processor P1
with a granularity of 3 and the second one running on P3 with a
granularity of one. Similarly, D is split into two copies, allocated
onto processors P1 and P2 and each copy runs with a granularity
of 2. This observation inherently depends upon the fact that every
copy of a stateless actor is equivalent. By restating the stateless
actor replication we get the final graph, which is implemented by
our compiler as in Figure 5.
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Figure 5. Optimal stateless data and task parallelism exploited by
our ILP formulation

4. Granularity based optimization
Our optimal data and task parallel exploitation approach does not
coarse the granularity of actors (by greedy stateless actor data fu-
sion) explicitly like in StreamIt. Instead we explore a new optimiza-
tion technique: granularity based optimization. The basic premise
of this technique is to increase the granularity of actors in the SDF
graph in integer multiples provided the throughput increases. This
technique is specifically targeted at network systems, because of
the nature of communication flow.

Granularity based optimization technique and exploiting state-
less data-parallelism are complimentary optimization techniques
as we will show in this section. Granularity based optimization
techniques should always be applied after exploiting stateless data-
parallelism, especially if exploiting stateless data-parallelism gives
worse results than the original graph.

Consider the SDF graph in Figure 6(a). Consider that actor A’s
computation time is one time unit and communication time is three
time units. Similarly, assume that computation time for B is one
time unit and communication time is five time units. Without loss
of generality assume that these runtimes are valid for all processors
and communication links in Figure 2.

If actor A is a stateless actor, one can replicate the four invo-
cations of actor A into four independent actors as shown in Fig-
ure 6(b). We term this restructuring of the SDF graph as homog-
enization. In a homogenized SDF graph, all actors have a natural
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(b) Homogenized sub-graph

Figure 6. Sub-graph from Figure 1 and its homogenized version

granularity of 1. The execution trace of the two SDF graphs in Fig-
ure 6(a) and 6(b) on the four processor system in Figure 2 is shown
in Table 2.

Table 2(a) gives the makespan the SDF graph in Figure 6(a),
while Table 2(b) gives the execution trace for the homogenized
version in Figure 6(b). As we can see from the two tables, the non-
homogenized version has a makespan of 13 time units, while the
homogenized version has a makespan of 19 time units. The four
separate copies of actor A execute for one time unit on each of the
processors and then communicate with the join actor B. All four
copies cannot communicate at once, because processors (in this
case P1) are single threaded entities. Even with increased utilization
of resources (4 processors in Table 2(b)) the homogenized SDF
graph has a longer makespan. In fact, the exploitation of data-
parallelism has lead to a increase in makespan by≈ 31%. The main
reason for this disparity is the communication costs. In the non-
homogenized version, the communication between A and B takes
place only once, at the end of the four individual invocations of
actor A, whereas in the homogenized version, data is sent after every
invocation of the replicated actor.

If we assume that the communication costs remain constant
for a range of bytes being transferred across processors, then we
can increase granularity, which leads to increased throughput and
reduced makespan. When the granularity is increased and if the
communication costs remain constant, more work is done by the
actors, because increasing granularity increases the number of actor
invocations, which in turn leads to production of more tokens in less
amount of time. For the example in Figure 6, increasing granularity
by a multiple of 10, leads to a makespan difference of 21 time units,
between the makespan of the homogenized and non-homogenized
SDF graphs in the favor of the homogenized SDF graph, i.e., an
improvement of≈ 67%. Increasing granularity 20 times, makes the
difference larger still, at 51 times units in favor of the homogenized
SDF graph. Thus, one can search for an optimal granularity of the
SDF graph for a given execution architecture.

Our granularity based optimization technique assumes a con-
stant communication time for a range of bytes [ωlb, ωub], i.e.,
the communication is modeled as a step function. Communication
links in networked systems exhibit stepwise increase in communi-
cation costs. Network protocols such as TCP/IP send packets with
minimum and maximum bounds. We utilize these characteristics
of networked systems by increasing the granularity of the compu-
tation actors, while maintaining the granularity of communication
as 1 to increase the overall graph throughput.

This optimization technique may be applicable to an architec-
ture of only a single chip multi-core system depending upon the
model of communication employed. If the communication model
assumes data transfer by copy, then the communication costs might
grow linearly with increasing number of bytes. A detailed analysis
of the target architecture is required to determine the communica-
tion costs in a data transfer by copy model, which we do not tackle
in this paper. If a shared memory-based communication protocol
is assumed, the main communication cost is often the cost of syn-

chronizing access to shared buffers. In this case, the communica-
tion cost may not vary significantly with the amount of data sent,
and can be treated as a constant. In this paper we assume a shared-
memory based communication model for the system on chip archi-
tecture and hence, run only multi-core systems at the highest possi-
ble granularity, bounded by only the bandwidth of the communica-
tion fabric. In distributed memory heterogeneous architectures (the
main focus of this paper) the network communication costs far out-
weigh the system on chip communication costs and the granularity
is bounded by these costs.

This granularity based optimization technique applied to our
ILP framework leads to two important results.

1. Our approach gives a value of the granularity, Gi, ∀i ∈ V ,
which provides the optimal makespan. We iteratively increase
the granularity of computation actors, by an integer multiple
and input it into the ILP solver until we obtain a maximum
fixed point. Since the granularity of all actors in a SDF graph
is related and needs to be increased by the exact same multiple,
the final result is guaranteed to be the optimal solution. This
approach allows us to optimize the granularity generally.

2. Searching for an optimal makespan by increasing granularity
is linear in time. The increase in granularity is carried out
in integer multiples greater than or equal to 1. Increasing the
granularity of a single computation actor by some multiple
requires an increase in the granularity of all other computation
actors with the exact same multiple, because of the balance
equations and semantics of the SDF graph.

5. Generating ILP formulations from StreamIt
We have used the StreamIt [17] language as a representative from
amongst a plethora of other stream languages [2, 4, 15] due to ease
of use and familiarity, but our approach is language agnostic. Our
compilation procedure is shown in Figure 7.

StreamIT program

Compilation

Execution

Communication

time Database

Execution arch

Profiling

GXL description

Graph Flatening

solver
Cplex

C
o

d
e
 g

e
n

Data and task
parallelism

Translating G −−> P

Generating lp file

Increasing Granularity

Generating heuristics

Figure 7. Compilation flow

A given StreamIt program is first compiled using the StreamIt
compiler. We use a modified StreamIt compiler, from the StreamIt
subversion repository. Our modifications disable task and data par-
allel heuristics. Instead, we apply a modified set of heuristics,
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(a) Execution trace 1

P1 A A A A A A A
P2 B B B B B B

(b) Execution trace 2

P1 A0 A0 A0 A0 B B B B B B
P2 A1 A1 A1 A1
P3 A2 A2 A2 A2
P4 A3 A3 A3 A3

Table 2. Execution traces for Figure 6 on the execution architecture in Figure 2

which will be shown in this section. The StreamIt compiler pro-
duces a “dot” file. We translate the “dot” file into an XML based
representation called “GXL” (Graph eXchange Language) [10]. All
our tools work on this intermediate format and hence, any language
that can be translated into this format can use our tool for partition-
ing and scheduling. Every actor in the compiled StreamIt program
is separately executed and profiled on the target execution architec-
ture, using oprofile. The communication time between processors is
profiled by sending varying sized data packets. A database is built
using these profiled times.

The GXL file is used as an input into our tool chain, shown by
the dotted trapezoid in Figure 7. The SDF graph is first translated
into a precedence graph, which makes the communication actors
explicit. Figure 8, shows the precedence graph generated from the
SDF graph in Figure 1.
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Figure 8. Precedence graph for the SDF graph in Figure 1

Communication costs play an important role in the makespan
minimization problem. For the sake of uniformity we translate the
FIFO channels into communication actors. The translation of G into
a precedence graph results in a new graph P where the FIFO chan-
nels are made explicit. As we can see from Figure 8, the commu-
nication actors have their input and output data rates calculated by
looking up the natural granularity of their respective source actors.
From Section 2.1, we know that the natural granularity for the com-
putation actors in P is given by {2, 2, 4, 4, 4, 1}. Hence, for the
communication actor C1, its input and output rates are 2 × 1, be-
cause its source execution actor, A, has a natural granularity of 2
and an output rate of 1 token per invocation, same for the others.

Intuitively, the communication actor’s input and output rates
represent the size of the buffers used for sending data between
actors for a single stable state iteration. Every communication actor
is invoked only once for execution. During this invocation it passes
all the data from its source to its target.

5.1 Heuristic algorithms
We compare our ILP formulation with heuristic techniques to
gauge its effectiveness. As there are no readily available heuris-
tic techniques that can be used for comparison, we need to use our
own. We used modified versions of declustering [14] and critical
path scheduling techniques for comparison. Both these techniques
needed to be modified in order to account for heterogeneity of
the execution architecture and judicious data/task parallelism. In
order to account for heterogeneity, we consider the average com-
putation/communication time for any given actor on the execution

architecture. For example, from Section 2.2, we know that actor
C’ computation time is given by the set {1, 2, 3, 4}, for the execu-
tion architecture of Figure 2. Thus, for heuristics we consider the
average, 5 time units, as the computation time for actor C. Intro-
ducing judicious data/task parallelism is a bit more involved. We
introduce a modified version of the StreamIt judicious data/task
parallelism heuristic as described in [7] in declustering and criti-
cal path scheduling. This heuristic is applied before applying the
declustering and critical path scheduling algorithms. The modified
StreamIt heuristic is shown in Algorithm 1.

ALGORITHM 1: Judicious exploitation of data and task parallelism
– accommodating heterogeneous communication and computation

Input: Precedence graph P , Number of processors N
Output: Modified precedence graph P
. Greedily fuse stateless computation and communication actors in P
set S is all stateless actors in P
. Estimate work done by F as a fraction of the complete work done
by all branches of split/join node
fraction = 1.0
for all F ∈ S do

Stream parent← getParent(F )
Stream child← F
while parent 6= ∅ do

if parent is split-join then
totalwork ←
Σc∈children(parent)AVGWORKPERFILTER(c)

mywork ← AVGWORKPERFILTER(child)
fraction← fraction ∗mywork/totalwork

end
child← parent
parent← getParent(parent)

end
end
. Fiss F according to fraction
Fiss F into CEIL(fraction ∗N) filters

Figure 9(a), gives the result of greedy stateless actor fusion
when applied to the precedence graph of the running example in
Figure 8. The communication actors connected to stateless com-
putation actors (C and D) are fused separately. It is essential that
these actors be fused separately, in order to exploit communica-
tion links later on during declustering and critical path scheduling
phases. The result of this greedy fusion is removal of task paral-
lelism, which will be later reinstated as data parallelism.

The judicious fission algorithm is employed on this resulting
precedence graph, the result of which is shown in Figure 9(b).
We know that the communication time for actor C5C7 is 0 time
units, from Section 2. The computation time for actor CD is 10
time units, which is the sum of the average computation time for
actors C and D, 5 time units each, respectively. The total time for
the split/join node is 11 time units. Thus, fraction = 10/11
and the total number of copies for actor CD is CEIL(10/11 ∗
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(a) Modified precedence graph after applying greedy stateless actor fusion
on the prcedence graph in Figure 8
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Figure 9. Exploiting data and task parallelism judiciously

4) = 4. Hence, we split CD into 4 copies, which may execute
on the 4 available processors, depending upon the declustering
and critical path scheduling phases. Once this judicious data and
task parallelism algorithm is applied the resultant precedence graph
is then ready to be input into the declustering and critical path
scheduling heuristics.

Our implementation of the declustering and CP scheduling al-
gorithms further modifies the original ones. These modifications
are essential to account for heterogeneity of the execution ar-
chitecture. Without these modifications these heuristic perform
abysmally. In our implementation, we assume the average com-
putation and communication cost for all processors and commu-
nication fabrics during the clustering phase. During the final list
scheduling and load balancing phases the real costs are considered.
CP-scheduling approach permutes through all possible processor
allocations to find the minimum possible makespan, declustering
on the other hand fixes the processor allocation during the list
scheduling phase. Thus, it is possible for the declustering algo-
rithm to make poor allocation decisions (see [14] for more details).
Finally, CP clustering does not exploit speedups in the sequential
sub-graphs of the SDF graph, i.e., complete clusters are allocated
to a single processor. Declustering approach only carries out partial
load balancing (dependent upon edge nodes, see [14]). Like in the
clustering phase, the original declustering does not consider vary-
ing execution costs of actors on different processors, we modified
the load balancing algorithm to account for this heterogeneity.

6. Experimental results
We have carried out a number of experiments to gauge the effec-
tiveness of our approach. Our experimental setup is shown in Fig-
ure 10. The setup is a heterogeneous execution architecture consist-
ing of: 2.6GHz Intel Core2Duo processors with 4GB of random ac-
cess memory (RAM), 2.6GHz newer Intel Core i7 processors with
8GB of RAM and finally, two different types of NVIDIA GPUs,
the newer GTX 480 card with 700MHz graphics clock speed and
1.5GB of graphics memory and an older Geforce 320M clocked at
450MHz and with 256MB shared memory.

The speedup in makespan for a number of benchmark exam-
ples from StreamIt and three of our own; proportional-integral-
differential (PID) controller, simple meeting scheduler (SMS), and
the human tracking system (SS), which include complex cycles, is
shown in Figure 11. The number of nodes in Figure 11 indicates the
size of the benchmarks. All the numbers in Figure 11 are for natural

granularity only, i.e., we haven’t applied any granularity based opti-
mizations. The increase in throughput due to granularity based opti-
mizations is shown in Figure 11(c). Finally, the runtime, to find the
optimal makespan solutions at natural granularity, using the cplex
solver is shown in Table 3. The heuristic solutions are magnitudes
faster compared to the cplex solver. This is to be expected, because
the allocation problem is a NP-hard problem further exacerbated
by the heterogeneity of the execution architecture.

Benchmarks MILP Declustering CP
FFT 1856 4 3

Audiobeam 22 9 7
Bitonicsort 26793 6 3

TDE 26984 10 10
Vocoder 38190 11 8

DES 5718 17 12
Mpeg3decoder 36 6 3

Radar 1837 8 2
SMS 2367 7 4
PID 1592 2 2
SS 89278 9 6

Table 3. MILP Vs model-checking solve times (sec)

Even with our modifications the heuristic solutions perform
poorly compared to the optimal solution, with the difference rang-
ing from 8.6% to 29% for the declustering algorithm and 10.8%
to 26% for the CP algorithm. This poor performance of heuristics
can be attributed to the fact that the heterogeneity is not consid-
ered appropriately in the judicious data and task parallel algorithm
from StreamIt or the declustering and critical path scheduling al-
gorithms. Even our modifications to StreamIt and declustering/CP
cannot overcome the inherent deficiency in these algorithms. For
example, the StreamIt heuristic with our modification creates 4
copies of the fused FFT/DFT actor and allocates them onto the 4
processors, thereby resulting in a makespan of 14 time units, that
is a difference of ≈ 29% from the optimal (Table 1). In our ex-
periments we have found that using the maximum or the minimum
amongst all the computation/communication times for any given
actor gives worse performance compared to using the average. So,
what values should one use: the mean? How to compensate for out-
liers in the computation/communication times? All these questions
are unanswered when considering applying the current heuristic
techniques to heterogeneous architectures. These quantitative re-
sults reinforce our belief that our work is essential in further pro-
gressing research on compile time distribution and scheduling.

7. Related work
A large body of work exists for scheduling SDF graphs on varying
architectures with varying goals. Farhad et.al. [5] propose a heuris-
tic algorithm for partitioning a SDF graph onto multi-core homo-
geneous platforms in order to reduce the input token arrival rate
for actors. Their heuristic technique does not consider a heteroge-
neous execution platform where actors might take different amount
of time to execute on different platforms and also the time for com-
munication between different processors in not accounted for. Also,
their approach is compared with a bin-packing style ILP formu-
lation, which does not model cyclic SDF graphs correctly, giving
a under approximation of the makespan. Gordon et.al. [7] exploit
parallelism for the RAW architecture [19] without considering the
communication cost or the varying execution costs prevalent in a
heterogeneous environment. Similar attempts have been made by
Udupa et.al. [18] and Kudlur et.al. [11] with their individual ILP
formulations targeting reduced makespan on GPUs and multi-core
platforms, respectively, without consideration for communication
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Figure 11. Experimental benchmarks

costs and heterogeneity. We are able to handle complex cycles, en-
capsulating branches, they are unable to do so. The same authors
have also previously attempted an ILP formulation for scheduling
SDF graphs on general purpose processors [8]. [8] and [18] are re-
lated and inherit the same deficiency of ignoring complex cyclic
SDF graphs. Another drawback of [8], is that it models resource
unconstrained architectures, which is generally not the case. Fi-
nally, [18] reports sub-optimal makespan and buffer allocation, be-
cause their ILP formulation is not an optimization problem, rather
it is a constraint problem.

The closest attempt to including heterogeneity is presented
in [3], where stream programs are mapped to a heterogeneous exe-
cution platform and then load-balanced using heuristic techniques.
Carpenter et.al. [3] also consider communication costs when apply-
ing their heuristic techniques. Yet, [3] provides an unsatisfactory
result, because; (1) their formulation does not consider reducing
the makespan of the SDF graph, rather they target load balancing
actors on the architecture to equally utilize processor resources
and (2) they consider convex graphs without cycles. Lastly, this
approach is based on Kernighan’s heuristic graph algorithm, and
hence, proivdes a sub-optimal solution.

One related approach that targets reducing the makespan, while
considering communication costs and targeting global reduction
in makespan is presented in [14]. Sih et.al. [14] use a heuristic
technique called “declustering”. The declustering algorithm takes
a SDF graph as input, carries out critical path based clustering al-
gorithm to partition the graph into basic clusters most viable for
partitioning. Next, it combines these clusters together to form a bi-
nary tree with leaves as the basic clusters. Finally, looking at the
topology of the execution architecture the binary tree is declustered
by allocating the clusters in the descending order, from most re-
cently clustered to the basic ones, in the process allocating and list-
scheduling clusters onto processors in order to obtain the smallest
possible makespan. This approach again suffers from drawbacks

such as lack of assumptions about differing communication and
execution time for actors, and a non-optimal partition.

8. Conclusions and Future Work
In this paper we have described an Integer Linear Programming
(ILP) approach to distribution and scheduling of Synchronous Data
Flow (SDF) graphs. Our ILP formulation is able to accommo-
date task and data-parallelism in an optimal manner. Moreover,
we have shown a granularity based optimization technique that
compliments the task/data parallel exploitation and is well suited
for networked systems. We have compared our ILP approach with
modified declustering and critical-path scheduling heuristics. We
have introduced modifications to these heuristics to account for ju-
dicious task/data parallelism. Moreover, we have also introduced
new ways to account for heterogeneity of execution framework.
Even with these introduced changes the heuristic solutions perform
poorly compared to the ILP formulation, which gives the optimal
solution. This work shows the need to research for better heuris-
tics that would give good solutions compared to the optimal. Our
ILP formulation can be used as a benchmark to develop these new
heuristic solutions.
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