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Abstract We give two equivalent decision procedures for nilpotency of
square matrices with non-negative elements, which do not involve computa-
tion of the matrix eigenvalues. To the best of our knowledge these procedures
have not been formalised elsewhere: we have decided to produce this brief
technical report as a future reference.

Nilpotent
matrix

A matrix is said to be nilpotent of order k if k is the least natural number such that:

Mk
= 0

We aim at a decision procedure to enable us to decide by visual inspection if a matrix M ∈ Rn×n is
nilpotent. In particular we are interested in matrices characterised by non-negative elements, and
in this case we are sure that nilpotency can be inferred from considerations on the positions of null
elements.

The most trivial observations are the following:

• Null columnif there is not at least one null column in M , then it is not nilpotent;

• Null matrixif all columns of M are null (i.e. M is the null matrix), then it is nilpotent, and its nilpotency
order is 1.

Terminal
matrix

In the above cases M is said to be terminal, as its nilpotency is trivially decidable.

We are now going to describe informally how to understand where the other null elements should
be so that a non-terminal matrix M is nilpotent.
If Nilp(M) denotes the nilpotency order of M , we have that:

∀v ∈ Rn
●MNilp(M) v = 0

Informal
description

If we imagine that v = (µ1, µ2, . . . , µn)
T represents a distribution of mass in n different places, then

M can describe some event that leads to a new mass distribution, that depends on the previous
one. The new distribution v′ = (µ′1, µ

′

2, . . . , µ
′

n)
T is such that:

µ′i =mi1µ1 +mi2µ2 + ⋅ ⋅ ⋅ +minµn

and hence we can see this in the following way:

• if mij = 1, a copy of the mass in the j-th place is moved to the new i-th place: µ′i = µj;

• if mij = 0, a copy of the mass in the j-th place is trashed into the bin: µ′i = 0;

• if mij < 1, a copy of the mass in the j-th place is shrunk and moved to the new i-th place and
part is trashed into the bin: µ′i =mijµj < µj;
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• if mij > 1, a copy of the mass in the j-th place is enlarged and moved to the new i-th place:
µ′i =mijµj > µj .

The subsequent application of the matrix M causes the mass to “follow” a certain path from its
initial position to some other position: if every path leads to the bin, then we are happy to say that
M is nilpotent.
We can describe the path in quite fine detail, as:

• if some k-th column is null, then all copies of the mass originally in the k-th place are thrown
away after the first application of M ;

• if some h-th column is null with the exception of the element mkh (k as above), then all
copies of the mass originally in the h-th place are thrown away in two steps;

• if some g-th column is null with the exception of some elements among mhg and mkg (h,k
as above), then all copies of the mass originally in the g-th are thrown away in at most three
steps;

• . . .

In the next section we formalise this procedure, we then provide a different procedure (with a
proof), and finally provide an equivalence proof of the two procedures.

1 First procedure

Set TiLet M be non-terminal; given a succession Z1, Z2, . . . of sets let Ti be the set given by the union of
the first i sets in the succession:

Ti ≙ ⋃
1≤j≤i

Zj

Procedure 1Let Z1, Z2, . . . , Z(k+1) be the succession such that:

• Z1 is the set of the indices of all null columns of M ;

• if Zi ≠ ∅, then Zi+1 is the set of indices identifying the non-null columns of M such that the
only non-null elements are those with row index contained in Ti or in a subset thereof;

• Z(k+1) = ∅.

Then M is nilpotent if and only if Tk = {1,2, . . . , n}; moreover in this case it is Nilp(M) = k.
If we look at the succession Z1, Z2, . . . , Z(k+1) from the perspective used in the informal description,
we have that:

• Z1 indicates all places from where the mass is thrown away;

• more in general, Zi indicates what are the places from where the mass is thrown away in i
steps;

• therefore Ti indicates what are the places from where the mass is thrown away in at most i
steps.

2 Second procedure

Reduced
matrix

Let M be non-terminal; MR is the reduction (or reduced matrix) of M , if it can be obtained from M
by removing all rows and columns with indices contained in Z1, where Z1 is the set of all indices
of null columns (as in procedure 1).

SuccessionLet M1,M2, . . . ,Mk be the succession such that:

• M1 =M ;

• if Mi is not terminal, then Mi+1 =M
R
i ;
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• Mk is terminal.

Then M is nilpotent if and only if Mk is nilpotent; moreover in this case all the matrices in the
succession are nilpotent, and their nilpotency orders verify the relations

Nilp(Mk) = 1 Nilp(M(i−1)) = Nilp(Mi) + 1

and therefore
Nilp(M) = k

Procedure 2The procedure to decide on the nilpotency of M is therefore to start with the matrix M and
subsequently cross out all columns containing exclusively null elements along with the rows with
the same index: by iterating the process we eventually end up with a reduction Mk of M which
contains only non-null columns or only null columns, and therefore the nilpotency ofMk is trivially
decidable.

3 Proofs

3.1 Proof of procedure 2

Let P be a permutation matrix such that:

PMP −1
=
⎛
⎜
⎝

0r×r Hr×s

0s×r MR

⎞
⎟
⎠

which contains r null columns, with indices less or equal than r, and s = n − r non-null columns,
with indices greater than r.

We then have that:

PMhP −1
= (PMP −1

)
h
=
⎛
⎜
⎝

0r×r Hr×s(M
R)(h−1)

0s×r MR(MR)(h−1)

⎞
⎟
⎠

We also have that Mh = 0⇔ PMhP −1 = 0, and therefore:

Mh
= 0⇔

⎛
⎜
⎝

Hr×s

MR

⎞
⎟
⎠
(MR

)
(h−1)

= 0

which can be true if and only if (MR)(h−1) = 0, given that in the matrix

⎛
⎜
⎝

Hr×s

MR

⎞
⎟
⎠

all columns are non-null, and all elements are non-negative.

We can therefore conclude that:

• M is nilpotent if and only if MR is nilpotent;

• Nilp(M) = Nilp(MR) + 1.

It should be noted that removing the assumption mij ≥ 0 allows us to conclude that in general

Nilp(MR
) ≤ Nilp(M) ≤ Nilp(MR

) + 1

Observation Given that Mh → 0⇔ PMhP −1 → 0, we can show with a similar proof that

Mh
→ 0⇔ (MR

)
h
→ 0
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3.2 Proof of equivalence of the procedures

The set Zi of procedure 1, contains the indices of the columns and rows which are crossed out
at the (i + 1)-th step of procedure 2; hence the equivalence ot the procedures is proved by the
following remarks:

• for i = 2, . . . , k the matrix Mi of procedure 2 can be obtained from M by removing all rows
and columns with indices contained in Ti−1 of procedure 1;

• the matrix Mk is terminal and null if and only if Zk ≠ ∅ and Tk = {1, . . . , n}; moreover in this
case it is Zk+1 = ∅;

• the matrix Mk is terminal and non null if and only if Zk = ∅ and T(k−1) ≠ {1, . . . , n}.
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