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Abstract We give two equivalent decision procedures for nilpotency of
square matrices with non-negative elements, which do not involve computa-
tion of the matrix eigenvalues. To the best of our knowledge these procedures
have not been formalised elsewhere: we have decided to produce this brief
technical report as a future reference.

A matrix is said to be nilpotent of order k if k is the least natural number such that:
M"=0

We aim at a decision procedure to enable us to decide by visual inspection if a matrix M € R™*"™ is
nilpotent. In particular we are interested in matrices characterised by non-negative elements, and
in this case we are sure that nilpotency can be inferred from considerations on the positions of null
elements.

The most trivial observations are the following:
* if there is not at least one null column in M, then it is not nilpotent;

e if all columns of M are null (i.e. M is the null matrix), then it is nilpotent, and its nilpotency
order is 1.

In the above cases M is said to be terminal, as its nilpotency is trivially decidable.

We are now going to describe informally how to understand where the other null elements should
be so that a non-terminal matrix M is nilpotent.
If Nilp(M) denotes the nilpotency order of M, we have that:

Vv e R" o MNIP(M) 4 —

If we imagine that v = (1, o, . .., it ) - represents a distribution of mass in n different places, then
M can describe some event that leads to a new mass distribution, that depends on the previous
one. The new distribution v’ = (u}, i, ..., 1., )T is such that:

Mg =M1y + Mg + 0+ My i
and hence we can see this in the following way:
* if m;; = 1, a copy of the mass in the j-th place is moved to the new i-th place: p] = p;;
¢ if m;; = 0, a copy of the mass in the j-th place is trashed into the bin: x; = 0;

* if m;; < 1, a copy of the mass in the j-th place is shrunk and moved to the new i-th place and
part is trashed into the bin: p} = m;;p; < 1153
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* if m;; > 1, a copy of the mass in the j-th place is enlarged and moved to the new i-th place:
i = Mgy > fu.

The subsequent application of the matrix M causes the mass to “follow” a certain path from its
initial position to some other position: if every path leads to the bin, then we are happy to say that
M is nilpotent.

We can describe the path in quite fine detail, as:

¢ if some k-th column is null, then all copies of the mass originally in the k-th place are thrown
away after the first application of M;

* if some h-th column is null with the exception of the element my; (k as above), then all
copies of the mass originally in the h-th place are thrown away in two steps;

* if some g-th column is null with the exception of some elements among my, and my, (h,k
as above), then all copies of the mass originally in the g-th are thrown away in at most three
steps;

In the next section we formalise this procedure, we then provide a different procedure (with a
proof), and finally provide an equivalence proof of the two procedures.

1 First procedure

Let M be non-terminal; given a succession Z1, Zs, ... of sets let T; be the set given by the union of
the first ¢ sets in the succession:
= U %

1<j<i
Let Zy, Z, ..., Z(i+1) be the succession such that:
e Z; is the set of the indices of all null columns of M;

* if Z; + @, then Z,,; is the set of indices identifying the non-null columns of M such that the
only non-null elements are those with row index contained in 7; or in a subset thereof;

* Zk+1) = -

Then M is nilpotent if and only if 7}, = {1,2,...,n}; moreover in this case it is Nilp(M) = k.
If we look at the succession 71, Zs, . .., Z(;,+1) from the perspective used in the informal description,
we have that:

* 7 indicates all places from where the mass is thrown away;

* more in general, Z; indicates what are the places from where the mass is thrown away in ¢
steps;

* therefore T; indicates what are the places from where the mass is thrown away in at most 4
steps.

2 Second procedure

Let M be non-terminal; M % is the reduction (or reduced matrix) of M, if it can be obtained from M
by removing all rows and columns with indices contained in Z;, where Z; is the set of all indices
of null columns (as in procedure 1).

Let My, Ms, ..., M; be the succession such that:
° My=M;

e if M; is not terminal, then M;,, = M%;




e M, is terminal.
Then M is nilpotent if and only if M is nilpotent; moreover in this case all the matrices in the
succession are nilpotent, and their nilpotency orders verify the relations
Nilp(M},) =1 Nilp(M(;_1)) = Nilp(M;) + 1
and therefore

Nilp(M) = k

The procedure to decide on the nilpotency of M is therefore to start with the matrix M and
subsequently cross out all columns containing exclusively null elements along with the rows with
the same index: by iterating the process we eventually end up with a reduction M} of M which
contains only non-null columns or only null columns, and therefore the nilpotency of Mj, is trivially
decidable.

3 Proofs

3.1 Proof of procedure 2

Let P be a permutation matrix such that:

OT‘X’I“ H’I”XS
PMP=
Osxr  ME

which contains » null columns, with indices less or equal than r, and s = n — r non-null columns,
with indices greater than r.

We then have that:

Opcr s (M)
PM"Pt = (PMP )" =

Osxr MR(MR)(h—l)
We also have that M" =0 < PM"P~! =0, and therefore:

H’I"XS
M" :0@( )(MR)<“> =0

which can be true if and only if (M7)("~1) = 0, given that in the matrix

Hixs

MR
all columns are non-null, and all elements are non-negative.
We can therefore conclude that:

M is nilpotent if and only if M? is nilpotent;

* Nilp(M) = Nilp(M*#) + 1.

It should be noted that removing the assumption m,; > 0 allows us to conclude that in general

Nilp(M ™) < Nilp(M) < Nilp(M*) + 1

Observation Given that M"* - 0 < PM"P~! - 0, we can show with a similar proof that

M" -0« (M%) -0




3.2 Proof of equivalence of the procedures

The set Z; of procedure 1, contains the indices of the columns and rows which are crossed out
at the (¢ + 1)-th step of procedure 2; hence the equivalence ot the procedures is proved by the
following remarks:

e for i =2,...,k the matrix M; of procedure 2 can be obtained from M by removing all rows
and columns with indices contained in T;_; of procedure 1;

* the matrix Mj, is terminal and null if and only if Z; + @ and T}, = {1,...,n}; moreover in this
case it is Zy,.1 = &;

* the matrix M}, is terminal and non null if and only if Z; = @ and T(;_1) # {1,...,n}.
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