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Figure 1: Sample time-critical renderings of the vismale, porsche and walnut datasets.

Abstract

We present a system for time-critical ray-cast direct volume render-
ing which can be easily integrated into existing acceleration tech-
niques. Our system modifies the global sampling rate of the scene
based on knowledge of past frame rates and quickly and robustly
converges on a user specified frame rate while requiring no over-
head to implement. We have tested our technique on a wide variety
of datasets and our system quickly adapts to any changes in scene
complexity and transfer function and dramatically minimises the
large change in frame rates that traditionally occur due to user nav-
igation of a complex volume dataset.
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1 Introduction

The size of volume datasets continues to grow and to date graph-
ics hardware has failed to keep pace with this increased demand
for rendering power, indeed we have reached a stage where some
of the larger volume datasets can no longer be resident in GPU
memory due to their size. Interactive rendering of high quality vol-
ume datasets is a challenging problem and increasingly researchers
have investigated methods to accelerate the speed of volume ren-
dering. Methods that have been explored include, dataset compres-
sion [Ljung et al. 2004], early ray termination [Kruger and West-
ermann 2003], volume bricking [Hadwiger et al. 2005] and many
more. The majority of the methods investigated rely on the user
manually changing some quality metric in order to obtain the de-
sired frame rate. The value of this quality metric can change from
dataset to dataset and even from frame to frame and in order to ob-
tain a consistent frame rate the user is required to continually update
the quality metric.

We propose a method for dynamically changing the global sam-
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pling rate of ray-cast volume rendering in order to achieve consis-
tently interactive frame rates for all volumes and all views without
requiring user interaction. Our method can implemented within a
standard volume rendering pipeline and can therefore be easily in-
tegrated with many of the already proposed acceleration method-
ologies.

Our method compares the sampling rate and the rendering time of
the previous frame and calculates the optimal sampling rate for the
next frame in order to achieve the target frame rate which allows us
to rapidly increase and reduce the sampling rate in order to quickly
achieve the target frame rate.

2 Related Work

Numerous approaches exist for volume visualisation which range
from the very accurate to the very interactive [Chen et al. 2001;
Preim and Bartz 2007]. The gap between the interactive and the ac-
curate has been maintained despite increases in computation power
due to parallel advances in high resolution data capture. While
some approaches to volume rendering first obtain a surface repre-
sentation from the volume before applying standard 3D renderings,
direct volume rendering (DVR) techniques operate directly on the
volume data. This can be achieved through techniques such as vol-
ume ray-casting [Hadwiger et al. 2005; Kruger and Westermann
2003], facilitated through adaptive optimisations for real-time visu-
alisation of implicit surfaces defined by a volumetric grid of sample
data. Other approaches describe techniques such as the use of 3D
textures, generated from view aligned slices of volume data and op-
timised using GPU hardware for real-time performance [Cullip and
Neumann 1994; Cabral et al. 1994].

Although adaptive sampling has been widely explored in render-
ing and volume visualisation, it has traditionally been used to vary
the sampling detail across a scene based on some local measure of
importance. Our strategy of on-demand modulation of the sam-
pling rate to achieve target framerates is most closely related to
techniques in dynamic simulation, which deal with adaptive time-



stepping. For instance, Joukhadar et al. [1996] employ such a tech-
nique to optimise the computational efficiency of a dynamic simula-
tion system for robotics by reducing numerical integration step-size
where it doesn’t affect the stability of the system adversely. Baraff
and Witkin [1998] modulate animation detail in a similar manner
for cloth simulation when greater accuracy is needed.

Related to this, time-critical techniques in computer graphics em-
ploy progressive refinement processes which can be terminated be-
fore completion if processing time available for the rendering or
simulation of the scene has elapsed. A coarser solution is returned
whilst the rendering remains constrained to within a defined bud-
get of computation time, thus ensuring target framerates. Graceful
degradation techniques will return this coarser result without exces-
sively sacrificing precision, correctness or stability of the frame be-
ing rendered thereby optimising tradeoff between speed and accu-
racy. Some early examples of this are the adaptive rendering tech-
nique of Bergman et al. [1986], virtual environment walkthroughs
by Funkhouser and Sequin [1993] and the collision detection sys-
tem of Hubbard [1996]. Gobbetti and Bouvier [1999] investi-
gated time-critical rendering for multiresolution polygonal models
and proposed a method for ensuring time-critical rendering which
could be implemented with any generic multiresolution data struc-
ture. Zach et al. [2004] investigated dynamic switching between
point rendered objects and discrete polygonal geometry in order to
achieve real-time rendering of large scale datasets.

In volume rendering, adaptive sampling techniques have been used
in order to specify areas in the volume where reduced sampling can
be used. Roettger et al. [2003] introduce the concept of an impor-
tance volume which is used to reduce the sampling rate in areas of
the volume classified as failing to contribute significantly to the fi-
nal image. This importance volume is pre-calculated and must be
regenerated when the transfer function is changed. Hadwiger et al.
[2005] discussed using adaptive sampling in order to improve inter-
section detection for iso-surface volume rendering. Their algorithm
automatically increases the sampling rate as the ray nears the iso-
value being rendered. Time-critical computing has been employed
by Liao et al. [2004] with their investigation of time-critical updates
to four dimensional time varying volume data. Their technique
does not guarantee that the current volume data being rendered is
accurate. Instead they prioritise data upload to the GPU in areas
of the volume which have changed the most from frame to frame.
While their technique is innovative it is unfortunately only applica-
ble to time variant volume data and does not provide any speed up
for static data. Li and Shen [2002] have investigated a technique
for performing time-critical volume rendering on texture mapping
hardware. They propose generating a hierarchical octree structure
for storing multiple level of detail(LOD) representations of the vol-
ume data and generating an importance value for each node. Their
algorithm automatically selects LOD’s from the volume structure in
order to achieve the targeted rendering time. Their technique gen-
erates a texture for every LOD at the initialisation of their program
and stores these textures on the GPU. This decision dramatically
increases the memory requirements of the data and also requires
a complete update of every texture whenever the user changes the
transfer function. In addition their technique requires that a new set
of view aligned texture slices are generated for each level of detail
node selected for rendering and they do not comment on the over-
head required for this step. In another paper Li and Shen [2001]
propose a fuzzy logic system for automatically selecting the correct
level of detail threshold to use in order to achieve the user targeted
frame rate. They classify the current frame rate into three possi-
bilities; high, medium and low and define maximum sampling rate
changes for each possibility. They are able to achieve a reasonably
fast convergence on the targeted frame rate for texture slicing vol-
ume rendering.

3 Implementation

3.1 Background

In this subsection we describe general volume rendering techniques
which the reader may find useful in order to understand our contri-
bution but which are not directly related to time-critical rendering.

The current state of the art technique for direct volume rendering
uses GPU ray-casting in order to generate a complete rendering of
the volume dataset. In GPU ray-casting a three dimensional tex-
ture containing the volume data is uploaded to the GPU, this tex-
ture contains discrete intensity values at each location called vox-
els. A fragment program on the GPU is then run for each pixel in
the scene. This fragment program implements ray-casting by cal-
culating the direction of a ray cast from the view position through
each pixel in the scene. The fragment program iterates along this
ray, sampling the volume texture at discrete steps. At each step the
fragment program obtains the intensity value of the volume data,
maps this value to a colour and transparency using a transfer func-
tion texture and adds the colour to a running total. When the ray
reaches the end of the volume the running total contains the final
colour for the current pixel.

The quality of the final image is heavily dependant on the frequency
of the samples along the ray. The more frequently the samples are
the smoother and more accurate the final image is. The Nyquist-
Shannon [1949] sampling theorem states that in order to accurately
recreate a discretely sampled signal it is necessary for the frequency
of the sampling rate to be twice the highest frequency in the signal.
In practical terms this means that in order to sample the volume
accurately it is necessary for the frequency of the samples along the
ray to be twice the frequency of the volume data (or in other words,
one must sample the volume texture twice between each voxel).
However, in addition to sampling the volume accurately it is also
required to sample the transfer function texture accurately and so
in order to obtain an accurate final image the frequency of samples
along the ray must be twice the frequency of whichever has the
highest frequency; the volume data or the transfer function.

Unfortunately users very rarely generate a smoothly changing
transfer function, instead they tend to want to highlight distinct sur-
faces in the volume which requires a transfer function which dra-
matically changes. It is quite common to create transfer functions
with infinite frequency due to the requirement to see surface bound-
aries in the volume data which therefore means it is impossible to
sample at a high enough frequency to accurately render an image.
Pre-integrated volume rendering [Engel et al. 2001] has been pro-
posed as a method to precalculate the convolution integral of the
transfer function and thus eliminate the high frequency sampling
requirement. Unfortunately this technique scales with the square of
the range of intensity values in the volume data (O(n2)). The range
of intensity values captured by modern volume capture techniques
has increased dramatically since pre-integrated rendering was pro-
posed and this technique is no longer feasible due to the high mem-
ory requirement of the pre-integrated texture.

3.2 Time-Critical Rendering

For modern datasets it is no longer possible to perform a volume
rendering with a high enough sampling rate in order to generate a
perfectly accurate image. Current interactive techniques deal with
this problem by acknowledging the possibility of a non ideal image
and allowing the user to specify the rendering quality and hence the
rendering speed. Ray-cast implementations enable this change in
rendering quality by allowing the user to change how frequently
each ray samples the volume. By increasing the sampling rate



the quality of the rendering is increased as smaller features are
more likely to be sampled and aliasing artefacts are minimised.
This increase in sampling results in an increase in computational
cost, however the relationship between sampling rate and compu-
tational cost is not easy to quantify as factors such as viewpoint
location, percentage of the volume on screen and transfer function
content heavily influence the rendering time. Current acceleration
techniques such as early ray termination [Kruger and Westermann
2003], empty space skipping [Kruger and Westermann 2003] and
level of detail rendering [Crassin et al. 2009] further complicate
this relationship as they provide view dependant decreases in com-
putational cost. For a user who wishes to maintain a certain frame
rate in order to interact with a volume dataset it is not sufficient to
specify a constant sampling rate and it is required to vary the sam-
pling rate as both viewpoint location and transfer function content
change.

Figure 2: A screenshot from our implementation with Time-Critical
sampling enabled, our technique has identified extra computation
cycles and increased the sampling rate in order to generate a higher
quality image while still maintaining the target frame rate.

The rendering time for individual frames may vary widely depend-
ing on the factors described above, however for a sufficiently high
frame rate, localised frames should be broadly alike and therefore
have similar rendering times. We observe that for interactive navi-
gation of a dataset users require frame rates which are sufficiently
high that adjacent frames achieve similar rendering times. This ob-
servation allows us to use knowledge of the previous frames ren-
dering time and sampling rate in order to tailor the sampling rate
of the next frame in order to achieve the target rendering time. By
linearly interpolating the sampling rate of the previous frame be-
tween the previous frames render time and the desired render time
we can automatically vary the sampling rate in order to ensure a
constant frame rate. Equation 1 shows the calculation we perform
to determine the new sampling rate where Sn is the new sampling
rate, Sn−1 is the previous frames sampling rate, fn−1 is the frames
per second of the previous frame and ftarget is the user selected
target frame rate.

Sn = Sn−1 ∗ (fn−1/ftarget) (1)

Figure 3: A screenshot from a standard volume rendering imple-
mentation, notice how the quality of the image remains poor even
though the frame rate has increased beyond the original frame rate
selected by the user. The user had originally selected a sampling
rate which provided interactive frame rates at low quality but when
the view was zoomed further out this reduced sampling rate failed
to take advantage of spare computational cycles available.

Our algorithm dynamically adjusts the sampling rate of a ray-cast
direct volume rendering on a frame by frame basis in order to en-
sure that the highest possible quality rendering for a given time bud-
get is achieved. By ensuring that the only change from frame to
frame is the global sampling rate we ensure that our method can be
integrated with a wide variety of existing acceleration techniques.
To date we have integrated it with both early ray-termination and
volume bricking [Hadwiger et al. 2005] but our algorithm can be
applied to nearly all existing ray casting acceleration methods as
the only requirement is the ability to vary the sampling rate on a
per frame basis, something which is widely supported by ray-cast
rendering.

At very low sampling rates significant wood grain artefacts occur
in the majority of ray-cast volume rendering systems. Our tech-
nique is no different, however due to our method of dynamically
changing the sampling rate with every frame these artefacts will
tend to move slightly from frame to frame and temporal coherence
is lost. This is the only drawback of our technique but fortunately
a method already exists to eliminate wood grain artefacts. Ray-cast
jittering [Hadwiger et al. 2006] is a method for randomly varying
the start position of each ray which eliminates the artefacts and in-
troduces some slight blurring. This blurring is much less noticeable
than wood grain artefacts and with jittering enabled our technique
maintains frame to frame coherence. There is some slight overhead
to enabling jittering in the form of generating a small texture con-
taining random values however this only needs to be done once at
initialisation and there is no ongoing cost on a frame by frame ba-
sis. Therefore the only significant drawback to our technique can
be eliminated by an already proven method which contains no over-
head bar an initial generation of a small texture.



3.2.1 Implementation Details

Our technique uses a high precision CPU timer available through
the Windows API in order to accurately account for how long it
takes to render each frame and is implemented in OpenGL using
the Voreen [Meyer-Spradow et al. 2009] volume rendering engine.
However we need to take account of the buffered nature of the
OpenGL API which allows the graphics system to buffer commands
before executing them. We need to obtain an accurate and high pre-
cision timing of how long it took to generate each individual frame
but OpenGL by default does not guarantee that each command will
be executed immediately. In order to circumvent this we need to
force the OpenGL graphics system to clear all its buffers and exe-
cute all waiting instructions before we stop our frame timer. The
command glFinish() blocks waiting for all OpenGL commands to
execute, this command causes a stall in CPU execution and per-
forms a full round trip to the graphics card and can be quite com-
putationally expensive if called indiscriminately. However by en-
suring that we have performed all necessary CPU instructions and
waiting till the very end of the pipeline before calling glFinish() we
can ensure that we have completed all the rendering steps and avoid
any costly blocking overhead.

Once we can accurately obtain the rendering time for each individ-
ual frame we can use the sampling rate and the computation time
of the previous frame in order to calculate the sampling rate for the
next frame in order to obtain the user specified target frame rate.

In a standard volume ray-casting implementation the GPU ray-
casting routine calculates the distance between samples along the
ray based on a static variable representing the sampling rate. In or-
der for our technique to dynamically change the sampling rate on
a per frame basis we must update the sampling rate variable on the
GPU every frame. There is inbuilt support for fast updates to vari-
ables in the GPU and we can calculate the new sampling distance
and update the GPU variable with virtually no overhead.

4 Evaluation

We tested our technique by recording the frame rate and the sam-
pling rate for a 360◦ rotation around a number of random volume
datasets (See Table 1). We then compared the differences between
a standard rendering and our time-critical rendering. As expected
the frame rate for a standard rendering can vary quite dramatically,
in same cases there can be as much as a 40% difference between
the maximum and the minimum frame rate for the same dataset
(eg. the walnut dataset). In contrast our technique quickly adapts
to any changes in scene complexity and dynamically adjusts the
samping rate in order to maintain the targetted frame rate. As can
be seen from Figures 4-11 and Table 2 our technique is success-
ful in smoothing out variations in frame rate and providing the user
with a constant interactive frame rate in order to easily navigate the
volume.

All calculations were performed on a machine equipped with a Intel
Core 2 Quad Q6600 processor, 4 Gigabytes of RAM and a Nvidia
GeForce 9800 GX2 graphics card, additionally all renderings were
performed with a window size of 512 x 512 pixels.

Name Size
Vismale1 128 x 256 x 256
Walnut2 128 x 96 x 114
Porsche1 559 x 1023 x 347
Bucky1 32 x 32 x 32

Table 1: The dimensions of the datasets we used in our evaluation.

Standard Rendering Time-Critical Rendering
Average σ Average σ

Vismale 11.03 0.73 11.01 0.25
Walnut 13.32 2.09 14.01 0.35
Porsche 6.25 1.13 6.27 0.17
Bucky 13.83 0.98 13.00 0.27

Table 2: Table showing the average frames per second and the
standard deviation for each dataset. Our time-critical technique
significantly reduces the standard deviation resulting in smoother
and less varied frames per second.

Our technique integrates into the core rendering loop of any ray-
cast direct volume rendering system and only requires a very simple
linear interpolation calculation and a timing query in order to work.
Therefore the overhead is minimal. From analysis of the frames
per second numbers produced from our testing we observed that
our technique produced no significant overhead. Our method is
able to quickly and consistently determine the ideal sampling rate
in order to achieve the targeted frame rate. This ability to guarantee
a given frame rate is invaluable in generating volume renderings for
interactive user navigation.

As can be seen from Figures 2 and 3 we can reduce the appearance
of artefacts associated with low sampling rate renderings and im-
prove final image quality. In addition our technique requires very
little modification to a normal ray-cast volume rendering pipeline
and therefore can be integrated into many already existing volume
rendering optimisations.

5 Conclusions and Future Work

We have presented a system which allows for dynamic variation
of the sampling rate of ray-cast direct volume rendering in order
to maintain a stable frame rate. Our system is robust and quick
to respond to both user input and significant computational loads
and rapidly converges on the target frame rate. We have tested our
technique with a wide variety of datasets and it has succeeded in
maintaining the target frame rate on all datasets at a wide variety
of target frame rates. Our technique can be integrated into exist-
ing ray-casting optimisation techniques and contains no significant
overhead.

In addition we are investigating varying the sampling rate on a local
basis in image space in order to allocate higher sampling rates in
regions of the final image that are more likely to have significant
volume information. By increasing the sampling rate in important
areas and reducing the sampling rate elsewhere we can increase the
overall image quality without any extra computation. Once again
we can use our knowledge of the similarity between adjacent frames
in order to generate an importance map to guide the local sampling
rate. By combining both our local and global sampling methods
together we intend to generate a high quality time critical rendering
with low computation cost.
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Figure 4: Results of a standard rendering of the Vismale dataset.
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Figure 5: Results of a standard rendering of the Walnut dataset.
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Figure 6: Results of a standard rendering of the Porsche dataset.
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Figure 7: Results of a standard rendering of the Bucky dataset.
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Figure 8: Results of a time-critical rendering of the Vismale
dataset.
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Figure 9: Results of a time-critical rendering of the Walnut dataset.
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Figure 10: Results of a time-critical rendering of the Porsche
dataset.
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Figure 11: Results of a time-critical rendering of the Bucky dataset.


