
Interactive Manycore Photon Mapping

by

Dipl.-Inform. Bartosz Fabianowski

A dissertation submitted to the University of Dublin, Trinity College

in ful�llment of the requirements for the degree of

Doctor of Philosophy

January 2011

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other

university and that unless stated, it is entirely my own work.

I agree that the library may lend or copy the thesis upon request. This permission covers only single

copies made for study purposes, subject to normal conditions of acknowledgment.

Dipl.-Inform. Bartosz Fabianowski

14th January 2011

ii

Summary

Photon mapping is a state of the art global illumination rendering algorithm. Photons are traced

from the light sources in a �rst pass and their interactions with scene surfaces stored. A second pass

reconstructs illumination by density estimation, reproducing a wide range of optical phenomena. This

thesis addresses the question how photon mapping can be turned from an o�ine algorithm to one

synthesizing images at interactive frame rates.

An emerging trend in computer architecture is manycore computing. Performance increases no

longer result from higher operating frequencies and instruction-level parallelism but from more pro-

cessing cores working in parallel. Owing to this, photon mapping is investigated in the context of

manycore computing, ensuring computations are e�ciently distributed to highly parallel processing

units. The speci�c platform employed is CUDA, utilizing commodity NVIDIA GPU hardware.

Techniques enabling e�cient parallel execution in CUDA are presented for each component of the

photon mapping algorithm. We begin with a focus on the tracing of rays and photons through a scene.

A new heuristic for constructing the spatial index that accelerates these operations is introduced and

the resulting speedup demonstrated. Spatial index traversal is addressed next, investigating both its

stackless and stack-based variants. The latter is found to be more e�cient. We then show how to ex-

ploit hardware resources not used during traversal as explicitly managed caches, reducing bandwidth

requirements. Our �ndings identify computational cost as a factor whose importance is understated

by the CUDA documentation. Reducing bandwidth requirements does improve performance but the

overheads of explicit cache management in many cases negate the bene�ts.

Photon mapping uses k-th nearest neighbor density estimation, locating the k photon interactions

nearest a query point to determine a smoothing kernel bandwidth for it. This costly operation is not

e�ciently possible on the CUDA platform. We therefore employ variable kernel density estimation

instead, a priori choosing an individual bandwidth for each photon interaction. Our extension of

the photon di�erentials framework e�ciently computes bandwidths adaptive to the local interaction

density from information tracked with each photon. We demonstrate image quality matching that

obtained with k-th nearest neighbor density estimation.

The �nal photon mapping component is the photon map, a spatial index over photon interactions

that accelerates their retrieval. We show how to replace the kd-tree originally used with a bounding

volume hierarchy (BVH). This simpli�es density estimation and permits parallel construction via

the linear BVH (LBVH) algorithm. We improve the e�ciency of LBVH construction, illustrate the

quality of the resulting photon maps relative to an expensive heuristic BVH construction and �nally

present benchmarks of the complete photon mapping algorithm running in CUDA.

An extension to volumetric photon mapping for simulating light transport in participating media

forms the �nal part of the thesis. Photon di�erentials are further extended to account for extinction

and scattering. Volumetric photon mapping leads to more expensive density estimation. We there-

fore investigate additional improvements by rederiving the e�cient beam radiance estimate method,

correcting its physical units, and showing that packetization provides a large performance bene�t.

iii

Acknowledgments

First and foremost, I thank Suule Soo for entering my life during this PhD, giving it all an additional

sense of purpose. I am grateful for the unconditional support I have received from her and from my

family throughout the weeks, months and years of this onerous but rewarding journey. My parents

and sister have always been the cornerstones of my life and given me the strength I needed.

My �atmates Ìàðèÿ Ëåâ÷óê and Martin Praºák provided me with the cheerful distractions that

are so important in life. I am equally grateful to my other friends here in Ireland, back home and

elsewhere in the world for enriching my life in the years leading up to this PhD and during the time

it took to complete it. Many fellow members of the GV2 group at Trinity College have become good

friends over the years. I especially thank Paul Reitsma, Colin Flower and Yann Morvan for numerous

long and insightful discussions.

I was very fortunate to have Dr John Dingliana as my supervisor. He provided me with invaluable

advice and support whenever I needed it but also allowed me to roam freely and explore ideas. I am

glad I had the opportunity to work on my PhD under his supervision. Dr Steven Collins gave me

the inspiration that started o� this PhD in the right direction while my examiners Dr Erik Reinhard

and Dr Michael Manzke were there at the end, providing me with their professional assessment of my

work. I thank them all for their involvement.

This thesis is dedicated to Kees Kwak, a dear family friend. While the completion of this PhD

marks a happy moment in my life, his current battle with cancer reminds me that good things must

never be taken for granted and many di�cult moments lie ahead for all of us.

v

Contents

Contents vii

List of Tables xi

List of Figures xiii

List of Algorithms xv

List of Acronyms xvii

1. Introduction 1

1.1. Motivation . 1

1.1.1. Photon Mapping . 1

1.1.2. Manycore Computing . 2

1.2. Scope and Limitations . 3

1.3. Contributions . 4

1.3.1. Peer Reviewed Publications . 5

1.4. Thesis Overview . 5

2. Background 7

2.1. Light Transport . 7

2.1.1. Radiometry . 7

2.1.2. Rendering Equation . 9

2.1.3. Re�ection . 10

2.1.4. Participating Media . 12

2.2. Manycore Computing . 14

2.2.1. CPU-GPU Convergence . 14

2.2.2. CUDA Programming Model . 15

2.2.3. CUDA Hardware Implementation . 17

2.2.4. Algorithmic Building Blocks . 21

3. Related Work 25

3.1. Ray Tracing . 25

3.1.1. Recursion . 25

3.1.2. Footprints . 26

3.1.3. Surface Intersection . 28

3.2. Spatial Indexing . 30

3.2.1. Space Partitioning . 31

3.2.2. Primitive Partitioning . 31

vii

Contents

3.2.3. Construction . 32

3.2.4. Traversal . 35

3.3. Monte Carlo Rendering . 39

3.3.1. Monte Carlo Quadrature . 39

3.3.2. Rendering Algorithms . 40

3.3.3. Sampling . 41

3.4. Photon Mapping . 42

3.4.1. Photon Tracing . 43

3.4.2. Density Estimation . 45

3.4.3. Photon Map . 50

3.5. Simpli�cation . 52

3.5.1. Virtual Point Lights . 52

3.5.2. Photon Mapping . 54

3.5.3. Object Space Interpolation . 56

3.5.4. Participating Media . 58

4. Ray and Photon Tracing 61

4.1. kd-Tree Construction . 61

4.1.1. Geometric Probability . 62

4.1.2. Numerical Approximation . 63

4.1.3. SIROH . 63

4.1.4. Results and Discussion . 65

4.2. Stackless kd-Tree Traversal . 68

4.2.1. Zero Volume Nodes . 68

4.2.2. Traversal Algorithm . 70

4.2.3. Extensions . 71

4.2.4. Results and Discussion . 74

4.3. Stack-Based kd-Tree Traversal . 76

4.3.1. Node Caching . 76

4.3.2. Stack Caching . 78

4.3.3. Results and Discussion . 80

5. Density Estimation 85

5.1. Photon Di�erentials . 85

5.1.1. Initialization . 86

5.1.2. Specular Re�ection . 88

5.1.3. Di�use Re�ection . 89

5.1.4. Russian Roulette . 92

5.2. Bandwidth Selection . 92

5.2.1. Anisotropic Kernel Support Region . 93

5.2.2. Dampened Adaptation . 95

5.2.3. Results and Discussion . 96

viii

Contents

6. Photon Map 103

6.1. BVH Construction . 103

6.1.1. Voxel Volume Heuristic . 104

6.1.2. Linear BVH . 105

6.1.3. Termination Criterion . 107

6.1.4. Results and Discussion . 107

6.2. BVH Storage . 109

6.2.1. Compact Representation . 110

6.2.2. Ray Tracing Traversal . 111

6.2.3. Photon Mapping Traversal . 112

6.2.4. Results and Discussion . 113

6.3. Combined Results . 115

7. Participating Media 117

7.1. Beam Radiance Estimate . 117

7.2. Photon Di�erentials . 119

7.2.1. Propagation . 119

7.2.2. Scattering . 121

7.2.3. Russian Roulette . 124

7.3. Bandwidth Selection . 125

7.3.1. Isotropic Kernel Support Region . 125

7.3.2. Dampened Adaptation . 125

7.3.3. Spectral Considerations . 126

7.3.4. Results and Discussion . 126

7.4. Stream Processing . 128

7.4.1. Job Queuing . 132

7.4.2. Packetization . 133

7.4.3. Results and Discussion . 133

7.5. Combined Results . 134

8. Conclusions and Future Work 137

8.1. Conclusions . 137

8.2. Future Work . 139

A. Benchmarks 141

A.1. Benchmark Environment . 141

A.1.1. Code Base I . 141

A.1.2. Code Base II . 141

A.2. Benchmark Scenes . 142

A.2.1. Common Scenes . 142

A.2.2. Photon Mapping Scenes . 142

Bibliography 147

ix

List of Tables

2.1. Summary of radiometric terms . 8

4.1. Ray tracing frame rates with the numerical approximation from section 4.1.2 and SIROH 66

4.2. Ray tracing frame rates with SIROH for two other ray tracers 67

4.3. nT and nI with the numerical approximation from section 4.1.2 and SIROH 67

4.4. Construction timings and kd-tree statistics with SIROH 67

4.5. nT with stackless traversal . 74

4.6. Ray tracing frame rates with stackless traversal . 75

4.7. Instructions per ray with stackless traversal . 75

4.8. Global memory accesses during inner node traversal with explicitly managed caches . 81

4.9. Instructions per ray with explicitly managed caches . 82

4.10. Ray tracing frame rates with explicitly managed caches 83

5.1. Photon tracing and density estimation statistics . 96

6.1. Rendering frame rates with di�erent minimal photon map leaf size thresholds 108

6.2. Photon map node counts and construction timings with LBVH 109

6.3. Photon map nT , nI and rendering frame rates with LBVH construction 109

6.4. Traversal statistics and rendering frame rates with compact BVH photon map 114

6.5. Global memory accesses, instructions per ray and frame rates with compact BVH . . . 115

6.6. Photon mapping statistics and frame rates with dynamic illumination 116

7.1. Light source type and participating medium properties 127

7.2. Adaptation dampening for di�erent bounce depths . 127

7.3. Photon tracing and density estimation statistics . 128

7.4. Density estimation instructions per ray with di�erent job queue types and packetization134

7.5. Density estimation times per frame with di�erent job queue types and packetization . 135

7.6. Volumetric photon mapping statistics and frame rates with dynamic illumination . . . 135

A.1. Properties of the benchmark scenes used for algorithm evaluation 144

xi

List of Figures

2.1. High level view of CUDA . 15

2.2. CUDA thread and memory hierarchy . 16

2.3. CUDA texture processor cluster on the GT200 chip . 18

2.4. Parallel prescan in CUDA . 22

2.5. Parallel stream compaction . 23

2.6. Split . 24

2.7. Parallel prescan order for CUDA radix sort . 24

3.1. Linear BVH construction . 35

3.2. Two-dimensional slabs test . 37

4.1. Probability pN that a node N is visited by a ray originating in S nN 64

4.2. Information reuse in SIROH . 65

4.3. Stackless kd-tree traversal by restarting at the root with shifted ray start 69

4.4. Stackless kd-tree traversal by restarting at the root with �ags register 73

5.1. Kernel support region de�ned by photon di�erentials 93

5.2. Distribution of skewed ellipsoid semiprincipal axis lengths 97

5.3. Images rendered by ray tracing and photon mapping 98

6.1. E�cient linear BVH construction . 106

6.2. BVH bounding plane inheritance in two dimensions . 110

7.1. Images rendered by volumetric photon mapping . 129

7.2. Rendering by stream processing . 132

A.1. Benchmark scenes for algorithm evaluation . 143

A.2. Additional benchmark scenes for photon mapping evaluation 145

xiii

List of Algorithms

3.1. Möller-Trumbore intersection test for triangle 4 (~v0; ~v1; ~v2) and ray ~z (t) = ~x+ t ~! . . 29

3.2. Precalculation for Wald triangle intersection test . 30

3.3. Wald intersection test for a triangle represented by k; ~n0; ~e01; ~e
0
2 and ray ~z (t) = ~x+ t ~! . 30

3.4. Slabs test for node (~m; ~M) and ray ~z (t) = ~x+ t ~! . 37

3.5. Photon map test for node (~m; ~M) and point ~x . 37

4.1. Stackless kd-tree traversal . 71

4.2. Stackless kd-tree traversal with push-down and short-stack extensions 72

4.3. Push operation with stack cache I . 78

4.4. Pop operation with stack cache I . 78

4.5. Push operation with stack cache II . 79

4.6. Pop operation with stack cache II . 79

6.1. Slabs test for sibling nodes encoded as ~m, ~M , ~l, ~L and ray ~z (t) = ~x+ t ~! with t 2 [ta; tb]112

6.2. Photon map test for sibling nodes encoded as ~m, ~M , ~l, ~L and point ~x 113

xv

List of Acronyms

AABB axis-aligned bounding box 31

BFS breadth-�rst search 33

BRDF bidirectional re�ectance distribution function 10

BVH bounding volume hierarchy 31

CTA cooperative thread array 17

CUDA compute uni�ed device architecture 15

DFS depth-�rst search 34

DPU double precision unit 18

GPU graphics processing unit 14

LBVH linear BVH 34

RSM re�ective shadow map 53

SAH surface area heuristic 32

SFU special function unit 18

SIMD single instruction multiple data 14

SIMT single instruction multiple thread 15

SIROH scene-interior ray origin heuristic 63

SM streaming multiprocessor 18

SP streaming processor 18

TPC thread processor cluster 18

VPL virtual point light 53

VVH voxel volume heuristic 51

xvii

1. Introduction

The physical world is visible because of light being emitted, interacting with objects and the atmo-

sphere and ultimately reaching an observer. Physically based rendering aims to simulate this process

and synthesize realistic images of three-dimensional scenes as seen by a virtual camera. Photon map-

ping [Jen96] is a state of the art algorithm combining e�cient simulation of light transport with the

ability to reproduce a wide range of optical phenomena. Its computational cost is still substantial,

however, placing it in the o�ine domain. With the advent of the manycore computing paradigm and

especially a platform implementing it on commodity hardware [NVI10b], the opportunity arises to

turn photon mapping into an interactive rendering algorithm.

1.1. Motivation

Competing goals of ever higher realism and rendering speeds exist in computer graphics. Commodity

graphics processing units (GPUs) now routinely synthesize convincing images of three-dimensional

scenes at real time frame rates by rasterization. However, only the surface closest to the observer is

then visualized and illumination calculated not by simulating physical light transport but by applying

fast heuristics yielding visually pleasing results [SA10].

The focus is placed di�erently in physically based rendering, simulating light transport from source

to observer. A global illumination simulation is obtained by accounting for light arriving from sources

directly and also that redirected via other parts of the scene. This allows optical e�ects such as color

bleeding from one surface onto another, subtle indirect illumination and highly focused caustics to be

reproduced [DBB06]. Numerous rendering algorithms exist, each characterized by the subset of light

paths from source to observer it can simulate [Hec90] and the tradeo�s between physical accuracy

and speed made in its design.

1.1.1. Photon Mapping

Photon mapping is a two-pass physically based global illumination rendering algorithm. Particles

carrying �ux are emitted by the light sources and traced through their interactions with the scene

�rst. Information about these interactions is stored in the photon map data structure. To generate an

actual image, a second pass determines the surfaces visible from a virtual camera and computes their

illumination. The link between the two passes is provided by kernel density estimation [Par62]. A

circular kernel is centered around each interaction, spreading �ux to nearby regions of the scene and

allowing illumination to be reconstructed. Using this approach, all paths from light source to observer

can be accounted for. The main tradeo� is between variance (noise) and bias (blurring). Increasing

the number of photons emitted reduces both noise and bias at the expense of higher computational

cost. Varying the kernel bandwidth allows the tradeo� to be adjusted locally.

In photon mapping, kth-nearest-neighbor searches are used to select kernel bandwidths [LQ65].

1

1. Introduction

Whenever illumination is being reconstructed at a point, the k nearest photon interactions are located.

A kernel is then centered around each with bandwidth equal to the distance at which the kth-nearest

interaction was found. This approach yields kernel bandwidths adaptive to the local interaction

density. In areas of highly focused illumination, small bandwidths and crisp caustics result. Regions

of sparse illumination are assigned larger bandwidths, reducing variance.

While elegant in design and general in the range of optical e�ects it can reproduce, photon mapping

remains computationally expensive. Photon map construction is a recursive process that does not

e�ciently scale with the number of computational cores. Locating the k nearest interactions at each

visible point requires the photon map to be searched for candidates and the k nearest to be extracted.

Although these searches can be accelerated by optimizing the photon map [WGS04] and some of them

eliminated by interpolating between neighboring pixels [WRC88, KGPB05], such techniques introduce

their own overheads and do not reduce overall computational complexity.

The question emerges whether bottlenecks in the algorithm can be addressed di�erently, by re-

placing parts of it with alternative solutions. Eliminating the need for kth-nearest-neighbor searches

would be an important step but requires an alternative method of selecting kernel bandwidths to be

found. Could information such as photon di�erentials [SFES07] traced together with each photon

be used for this purpose in a wide range of scenes? What further acceleration opportunities would

arise from removing the need to locate neighboring interactions? Is it ultimately possible to achieve

interactive frame rates on commodity hardware?

Photon mapping can easily be extended to simulate interactions with participating media [Jen01].

While the algorithm remains elegant and general, computational cost increases even further. The in-

vestigation should therefore be extended to also determine whether photon mapping for participating

media can be accelerated to reach interactive speeds.

1.1.2. Manycore Computing

Microprocessor technology is famously following Moore's law [Moo65] of exponentially increasing

performance. With operating frequencies approaching physical limits and diminishing returns from

added instruction-level parallelism, this rate of growth can only be sustained by increasing the number

of processing cores working in parallel. Beginning with two cores on one die [TDJ+02], the number of

cores has been increasing ever further. This shift in computer architecture is creating new challenges

for algorithm design, requiring scalable algorithms to be devised for optimal performance.

As the number of parallel processing cores increases, traditional programming models become ever

less e�cient. Eventually, the point of manycore computing is reached where all performance stems

from parallel processing and serial algorithms are no longer viable. In recent years, there has been

a strong trend toward manycore architectures in both CPU [SCS+08] and GPU [Adv09, NVI10b]

design. Traditional CPUs are extended by increasing the number of general purpose processing cores.

GPUs, historically based on a parallel processing model, are extended by adding better support for

general purpose computing to their cores. This convergence of CPU and GPU architectures on the

manycore paradigm motivates investigations of the implications for existing algorithms.

CUDA is the �rst widely available manycore computational platform. Built on commodity NVIDIA

GPU hardware, it provides a low-cost entry to manycore computing. As an example, the GTX 280,

a member of the second generation of CUDA-capable GPUs, has 240 parallel processing cores and

o�ers a theoretical peak performance of almost 1 TFLOP/s. This speed is achieved by omitting many

2

1.2. Scope and Limitations

components found in traditional CPU designs such as branch prediction and most caches. Instead,

all performance is due to a large number of simple cores working in parallel.

Threads executing on the cores are organized in a hierarchical manner. The cost of cooperation

and synchronization varies with hierarchy level. At the bottom of the hierarchy, groups of 32 threads

execute in lock-step, simultaneously processing the same instruction. Having evolved from earlier

NVIDIA GPUs, the CUDA platform also includes legacy features which should be utilized for optimal

performance, such as dedicated texture address calculation and interpolation units.

With the manycore paradigm an emerging trend in computer architecture, its e�cient use in

algorithms is becoming increasingly more important. Photon mapping has the potential to be a

fully parallel rendering algorithm. Photons are traced independently of each other and illumination

can be computed independently for all pixels. Parallelizing photon map construction would remove

the last parallelization bottleneck. More challenges exist, however. The simpli�cation of individual

processing cores and the ways in which they cooperate and synchronize call into question established

best practices. Can the photon mapping algorithm be made to perform well on a manycore platform

with its novel architecture?

Because it is readily and widely available, CUDA is a good target for this work. Although some

of its features are speci�c to CUDA, a large overlap exists with other manycore architectures such as

those by Intel and AMD. By adapting photon mapping to the manycore paradigm, the unprecedented

processing power provided by this new trend could be harnessed.

1.2. Scope and Limitations

In this thesis, we investigate the challenges of adapting the photon mapping algorithm to obtain

interactive rendering speeds on commodity hardware. Motivated by the trend toward manycore

computing, our main aims are to remove scalability bottlenecks and ensure the algorithm makes

e�cient use of the massively parallel processing units provided by a manycore platform.

Being an emerging trend, manycore computing is a volatile and moving target. We concentrate on

the CUDA platform, speci�cally that provided by a GTX 280 GPU. This GPU has been at the top

end of NVIDIA's consumer o�ering for several years, creating a stable platform for our research. At

the time of this writing, the next generation of NVIDIA GPU hardware is reaching wide availability.

Reevaluating our work on this evolution of the CUDA platform would be interesting. However, due to

the many subtle technical challenges in porting forward code and the need to thoroughly investigate

any architectural di�erences, it is not part of our current e�ort.

A single GPU provides a complete manycore platform with massively parallel processing cores, a

full memory subsystem and hierarchical thread cooperation and synchronization mechanisms. Our

goal of investigating photon mapping on a manycore architecture can be met with this hardware.

Using several GPUs would increase the available processing power but would also add another level

of complexity and new, di�erent technical challenges. Multi-GPU computing is therefore a separate,

extensive topic outside the scope of our work.

Many extensions of the photon mapping algorithm are orthogonal to our e�ort. Techniques for

interpolating and reusing information can provide acceleration with few visible artifacts. Because

such methods are largely independent of the way in which light transport is simulated, our focus is

on simulation only. Combining our work with interpolation techniques is largely an implementation

problem and therefore not part of this thesis. In the interest of interactive performance, we also do

3

1. Introduction

not use the optional �nal gather component of the photon mapping algorithm which improves image

quality at the expense of an order of magnitude more illumination reconstructions.

As photon mapping is a physically based rendering algorithm, we ensure physical plausibility in

our work. Simulating light transport both with and without participating media, we support several

surface and participating medium models that follow physical principles, are e�cient to evaluate and

widely used in computer graphics. In the resulting rendering algorithms, photons are retraced every

frame, allowing for interactive light source manipulation. Because illumination is fully recalculated

per frame, the scene geometry could also be modi�ed at this rate. However, our focus is on dynamic

illumination and the incorporation of dynamic geometry is beyond its scope.

Research Question

Can scalability bottlenecks and ine�ciencies in the photon mapping algorithm be overcome and the

performance characteristics of the emerging manycore computing paradigm be leveraged for global

illumination rendering at interactive frame rates on consumer hardware?

1.3. Contributions

We propose solutions that make the photon mapping algorithm operate e�ciently on a manycore

platform and allow it to achieve interactive speeds. The �rst aspect investigated is the problem of

tracing photons and rays through a scene. Both operations involve the traversal of a spatial index to

�nd the nearest surface seen in a given direction:

� In cooperation with a fellow researcher, we propose and evaluate SIROH, a novel heuristic for

constructing spatial indexes. We demonstrate ray tracing performance often exceeding that

obtained using the best currently known method, the surface area heuristic (SAH) [MB90].

� We study the traversal of the resulting spatial indexes without the need for a stack data struc-

ture. If nodes of zero volume are present in an index, traversal can be shown to enter an in�nite

loop. We present a simple modi�cation of the traversal algorithm that avoids this problem.

� On current hardware, stack-based traversal outperforms the stackless variant. We investigate

opportunities for further acceleration by using a small pool of fast memory o�ered by CUDA

and registers as explicitly managed caches, benchmarking several methods.

Our next focus is on eliminating the need for kth-nearest-neighbor searches by selecting bandwidths

for all photon interactions independently:

� We extend the concept of photon di�erentials to e�ciently handle di�use re�ections and photon

termination by Russian roulette. We also reduce storage and bandwidth requirements.

� Photon di�erentials allow anisotropic kernel support regions adaptive to the local interaction

density to be constructed. We combine these with a dampening of the adaptation that avoids

excessive support regions where illumination arrives via di�erent paths.

Having constructed a kernel support region for each photon interaction, we replace the kd-tree

traditionally used for the photon map with a bounding volume hierarchy (BVH):

4

1.4. Thesis Overview

� We adapt the voxel volume heuristic (VVH) [WGS04] to BVH photon maps and show that its

traversal performance is not signi�cantly better than that achieved by using the linear BVH

(LBVH) construction algorithm [LGS+09] which is scalable and e�cient in CUDA.

� For storing the BVH, we propose a novel, compact representation that reduces storage and

bandwidth requirements and exhibits improved traversal performance.

� We demonstrate the integration of all components into a complete global illumination rendering

algorithm that enables photon mapping at interactive speeds on consumer hardware.

Our �nal focus is on the extension of photon mapping to participating media:

� Basing our work on the concept of the beam radiance estimate [JZJ08a], we rederive the equa-

tions with correct physical units.

� We extend photon di�erentials to take into account extinction and scattering in participating

media. Comparing with the results of kth-nearest-neighbor searches, we investigate the amount

of adaptation dampening required to adjust for illumination arriving via di�erent paths across

a range of scenes and illumination conditions.

� Demonstrating the integration of all components into a rendering algorithm for participating

media, we show that illumination reconstruction signi�cantly bene�ts from grouping threads

into packets and compare di�erent grouping methods.

1.3.1. Peer Reviewed Publications

[FD09b] Bartosz Fabianowski and John Dingliana. Interactive Global Photon Mapping. In Computer

Graphics Forum (Proceedings of the 20th Eurographics Symposium on Rendering (EGSR)),

28(4), pages 1151�1159, 2009.

[FFD09] Bartosz Fabianowski, Colin Flower and John Dingliana. A Cost Metric for Scene-Interior

Ray Origins. In Short Paper Proceedings of the 30th Annual Conference of the European Asso-

ciation for Computer Graphics (Eurographics), pages 49�52, 2009.

[FD09a] Bartosz Fabianowski and John Dingliana. Compact BVH Storage for Ray Tracing and Pho-

ton Mapping. In Proceedings of the 9th Irish Workshop on Computer Graphics (Eurographics

Ireland), pages 1�8, 2009. Best Paper Award

1.4. Thesis Overview

Chapter 1: Introduction provides a general introduction to the motivation behind this work, outlines

its scope and gives a summary of the contributions, including a list of peer-reviewed publications.

Chapter 2: Background begins with an overview of the physics behind light transport. Manycore

computing in general and the CUDA platform in particular are then explained, detailing its

architecture, performance characteristics and the principles of e�cient manycore algorithms.

Chapter 3: Related Work �rst introduces the important operation of ray tracing and the techniques

devised to accelerate it. Di�erent types of spatial indexes are described along with their e�cient

construction and traversal. Photon mapping is presented next in the context of Monte Carlo

physically based rendering. The chapter concludes with a look at simpli�cations commonly

used to achieve interactive rendering speeds.

5

1. Introduction

Chapter 4: Ray and Photon Tracing is concerned with the tracing of photons and rays through

a three-dimensional scene. This key operation is known to be fastest when a spatial index

in the form of a kd-tree is used. In this chapter, a novel heuristic for constructing kd-trees is

presented and e�cient kd-tree traversal in CUDA is addressed. Benchmarks are used to analyze

the performance of the discussed methods.

Chapter 5: Density Estimation focuses on reconstructing illumination from stored photon interac-

tions without kth-nearest-neighbor searches. The concept of photon di�erentials is extended

from specular interactions only to di�use re�ections and Russian roulette as used in photon

mapping. Its e�ciency is also improved by reducing storage and bandwidth requirements.

The construction of anisotropic kernel support regions is then described and a dampening of

the adaptation to the local interaction density proposed that avoids excessively large support

regions. Applicability to a number of scenes with di�use and specular surfaces is shown.

Chapter 6: Photon Map deals with the �nal component required for interactive photon mapping.

The traditionally used kd-tree photon map is replaced with a BVH. An analysis shows that an

e�cient CUDA construction method produces BVHs of high quality. A novel compact BVH

representation is introduced and shown to reduce storage and bandwidth requirements. All com-

ponents are then integrated and a complete photon tracing algorithm is obtained. Benchmarks

illustrate the performance and demonstrate interactive frame rates.

Chapter 7: Participating Media extends the focus to scenes with participating media. The beam

radiance estimate used for e�cient density estimation is rederived with correct physical units

�rst, followed by an extension of photon di�erentials and bandwidth selection to this scenario. A

comparison with kth-nearest-neighbor density estimation shows the adaptation dampening re-

quired to account for the in�uence of illumination arriving via di�erent paths on the interaction

density. Illumination reconstruction performance is shown to bene�t from grouping threads into

packets and di�erent methods for doing so are compared. Image quality and rendering speeds

are again assessed in benchmarks.

Chapter 8: Conclusions and Future Work summarizes the work presented in the previous chapters,

providing an overview and a discussion of the results and suggesting directions for future work.

6

2. Background

The discussion of physically based rendering at interactive frame rates requires background knowledge

from two areas. A model of the physics behind light transport is needed as well as an understanding

of the computer architecture being considered. Both are introduced in this chapter.

2.1. Light Transport

At the core of all physically based rendering lies the simulation of light transport in the real world.

The behavior of light is studied by the �eld of optics which provides several models for it [BW99].

Physically based rendering typically concerns itself with geometric optics only [DBB06]. This is the

simplest model available, making the assumptions that light travels in straight lines, is una�ected by

external forces and propagates instantly. Additional e�ects explained by wave optics, such as rays

curving due to gravitational forces [WSE04], are sometimes additionally considered.

2.1.1. Radiometry

Before describing and simulating light transport, physical units must be de�ned that allow the amount

of light present to be quanti�ed. The relevant disciplines are radiometry and photometry [McC94].

Both de�ne systems of physical units but with di�erent backgrounds. Photometry is based on the

perceptual e�ects light has on the human visual system. Radiometry is independent of a potential

human observer. Synthesizing images as captured by a virtual camera, physically based rendering

uses radiometric theory and quantities.

2.1.1.1. Solid Angle

A mathematical concept frequently encountered in radiometry is that of the solid angle
. Given a

point ~x and a surface S, the solid angle subtended by S is the area covered by its projection onto

the unit sphere around ~x. This is useful for expressing portions of directions. For example, a sphere

containing all possible directions has solid angle 4�, a hemisphere above or a below a surface, 2�.

2.1.1.2. Radiance

Surfaces on which light originates are light sources. A source emits a radiant power or radiant �ux �

into a solid angle
 above an area A. Flux is measured in watts (W), solid angle in steradians (sr)

and area in square meters (m2). The principal quantity in physically based rendering is radiance L,

the di�erential �ux traveling in a direction per unit solid angle per unit projected area,

L (~x; ~!) =
d2�

dA? d

: (2.1)

7

2. Background

Quantity Symbol Unit

Radiance L W m�2 sr�1

Intensity I W sr�1

Exitance, Radiosity, Irradiance M;B;E W m�2

Power, Flux � W

Table 2.1.: Summary of radiometric terms

This may vary with position in space ~x and direction ~!, creating a �ve-dimensional radiance �eld.

Projected area is used as radiance depends on the area orthogonal to its direction. When radiance

interacts with a surface of normal ~n, the projected area di�erential becomes dA? = j~n � ~!j dA and

L (~x; ~!) =
d2�

j~n � ~!j dAd

: (2.2)

Radiance has two essential properties. First, it is invariant along straight lines in a vacuum. If not

occluded by a surface between them, the radiance Li incident at a point ~x from the direction of a

point ~y is identical to the radiance Lo emanating from ~y toward ~x,

Li(~x;
�

~y � ~x) = Lo(~y;
�

~x� ~y): (2.3)

Its second important property is that both cameras and human observers respond proportionally

to incident radiance. A physically based rendering algorithm should therefore compute the radiance

reaching a virtual camera.

2.1.1.3. Cumulative Quantities

The radiance �eld on a surface can be integrated into cumulative quantities. Integrating projected

radiance L over the surface area A yields radiant intensity I, the total �ux emanating or incident per

unit solid angle,

I (~!) =

Z
A

L (~x; ~!) j~n � ~!j dA =
d�

d

: (2.4)

Integrating projected outgoing radiance Lo over the hemisphere of directions
 above a point ~x

yields radiant exitance M or radiosity B, the total �ux emanating per unit area. The corresponding

integral of projected incident radiance Li yields irradiance E, the total �ux incident per unit area,

M (~x) =

Z

Lo (~x; ~!) j~n � ~!j d
 =
d�o

dA
; (2.5)

E (~x) =

Z

Li (~x; ~!) j~n � ~!j d
 =
d�i

dA
: (2.6)

By integrating over the area A and the hemisphere of directions
, the total radiant power �

emanating from or incident on a surface can be calculated,

� =

Z
A

Z

L (~x; ~!) j~n � ~!j d
 dA:

Table 2.1 summarizes these radiometric terms. For brevity, the pre�x radiant is consistently omitted

throughout this thesis.

8

2.1. Light Transport

2.1.1.4. Point Light Sources

A popular approximation for small light-emitting surfaces is the point light. By reducing the source

area to zero, light originates from a single point ~y. A point light is physically impossible and introduces

singularities that require special case treatment. Because no source area A exists, the integral in

equation 2.4 cannot be evaluated and intensity I (~!) must be directly speci�ed for all directions. Not

associated with any surface, a point light may emit into the full sphere of directions.

The lack of a light source area also means that radiance is unde�ned and cannot be integrated.

However, irradiance due to a point light may be computed in another way. Let ~x be an unoccluded

point on a surface. The area di�erential dA at ~x projects to dA? = j~n � (�~x� ~y)j dA and subtends

a di�erential solid angle d
 = k~x� ~yk�2 dA? = k~x� ~yk�2 j~n � (�~x� ~y)j dA at ~y. Inserting this,

I (~!) = d�o

d
 from equation 2.4 and �i = �o due to no occlusion into equation 2.6 yields

E (~x) =
d�i

dA
=

d�o

dA
=

d�o

d

j~n � (�~x� ~y)j
k~x� ~yk2 = I(

�

~x� ~y)
j~n � (�~x� ~y)j
k~x� ~yk2 : (2.7)

The simplest point light source is isotropic, emitting �ux evenly into the sphere of directions with

I (~!) = �
4� . The irradiance due to this type of light source then is

E (~x) =
�j~n � (�~x� ~y)j
4� k~x� ~yk2 :

2.1.1.5. Color

So far, a single color of light has been presumed. In reality, all radiometric quantities have spectral

variants, de�ned as di�erentials of the terms in table 2.1 with respect to wavelength �. Fully account-

ing for a continuous spectrum is too computationally expensive. Physically based rendering therefore

uses discrete color bands. A simple and popular approximation is the RGB model, computing radi-

ance and related quantities separately for three bands. To better reproduce spectral e�ects such as

dispersion, a higher number of color bands may be chosen [Col94].

2.1.1.6. Photons

Corpuscular theory models light as a stream of elementary particles, photons, each carrying an energy

E = hc=� [Pla00] where h is Planck's constant, c is the speed of light and � is the wavelength.

Simulating the propagation of actual photons carrying elementary amounts of light is prohibitively

expensive. However, it serves as the inspiration for photon mapping, the physically based rendering

algorithm used in this thesis. In photon mapping, particles also called photons but carrying larger

fractions of the total light source �ux � are emitted and traced. Color may be accounted for by

assigning each photon information for multiple color bands.

2.1.2. Rendering Equation

A concise model of light transport on surfaces is given by the rendering equation [Kaj86],

Lo (~x; ~!) = Le (~x; ~!) +

Z

i

f (~x; ~!i; ~!)Li (~x; ~!i) j~n � ~!ij d
i: (2.8)

9

2. Background

Here, Lo is the radiance leaving a surface point ~x in direction ~!. It is the sum of the radiance Le
emitted by the surface itself and the radiance Li incident from other surfaces re�ected by it. Incident

radiance from a hemisphere of directions
i above ~x is projected onto the surface and re�ected

according to a bidirectional re�ectance distribution function (BRDF) f [Nic65].

In vacuum and, approximatively, also air, radiance exchange between surfaces follows equation 2.3.

Radiance emanating from a surface instantaneously propagates in a straight line to the nearest surface

on its path. The radiance incident at a point ~x from direction !i is thus identical to that emanating

in direction �!i from the nearest surface point ~y seen in this direction. With ~r a helper function

that locates ~y, the relationship is Li (~x; ~!i) = Lo (~r (~x; ~!i) ;�~!i). Inserting this into the rendering

equation yields the de�nition of a steady state radiance equilibrium in the scene,

L (~x; ~!) = Le (~x; ~!) +

Z

i

f (~x; ~!i; ~!)L (~r (~x; ~!i) ;�~!i) j~n � ~!ij d
i: (2.9)

A useful decomposition of this equation is that into its direct and indirect components,

L (~x; ~!) = Le (~x; ~!) + Ldirect (~x; ~!) + Lindirect (~x; ~!) : (2.10)

Ldirect is the re�ection of radiance arriving at a surface directly from light sources. Lindirect is the

corresponding re�ection of radiance that has undergone at least one re�ection before. With the total

radiance re�ected by a surface denoted Lr = Ldirect + Lindirect, the two terms are

Ldirect (~x; ~!) =

Z

i

f (~x; ~!i; ~!)Le (~r (~x; ~!i) ;�~!i) j~n � ~!ij d
i; (2.11)

Lindirect (~x; ~!) =

Z

i

f (~x; ~!i; ~!)Lr (~r (~x; ~!i) ;�~!i) j~n � ~!ij d
i: (2.12)

Equation 2.11 cannot directly be applied to point light sources because their emitted radiance Le
is unde�ned. With a point light, the BRDF needs to be evaluated for the single incident direction

~!i =
�

~y � ~x and may be taken out of the integral. The remaining integral is equation 2.6, the irradiance

due to a light source. For point lights, this is given in equation 2.7. A point light source not occluded

by another surface thus contributes the direct illumination

Ldirect (~x; ~!) = f(~x;
�

~y � ~x; ~!)E~y (~x)

= f(~x;
�

~y � ~x; ~!)I(
�

~x� ~y)
j~n � (�~x� ~y)j
k~x� ~yk2 :

(2.13)

When multiple point light sources are present, equation 2.13 must be evaluated for each. If all

sources are point lights, the surface emission term in equation 2.10 is zero and can be omitted. The

equation for indirect illumination is una�ected by the choice of light source type.

2.1.3. Re�ection

Light re�ection on a surface is modeled by its BRDF. This function relates the di�erential outgoing

radiance Lo in a direction ~! to the di�erential incident irradiance from a direction ~!i,

f (~x; ~!i; ~!) =
dLo (~x; ~!)

dE (~x; ~!i)
:

10

2.1. Light Transport

A BRDF has unit sr�1. By integrating it over the hemisphere of outgoing directions
, the

dimensionless re�ectivity � is obtained,

� (~x; ~!i) =

Z

f (~x; ~!i; ~!) d
:

Conservation of energy dictates that re�ectivity cannot exceed one. Thus, for any ~!i 2
i,

� (~x; ~!i) � 1:

A second property is Helmholtz-reciprocity [vH67] which mandates that

f (~x; ~!i; ~!) = f (~x; ~!; ~!i) :

2.1.3.1. BRDFs

The simplest surface model is the Lambertian or di�use re�ector which redirects all irradiance uni-

formly back into the hemisphere
. It has re�ectivity �d = kd and a constant BRDF

fd (~x; ~!i; ~!) = kd
1

�
: (2.14)

At the other end of the spectrum lies the perfect specular re�ector which redirects incident radiance

into the mirror re�ection of ~!i about the surface normal ~n only. Its re�ectivity is �s = ks. Using a

spherical coordinate system with zenith direction ~n, inclination � relative to ~n and azimuth ' around

it, the BRDF can be written using Dirac � functions as

fs (~x; ~!i; ~!) = 2ks�
�
sin2 � � sin2 �i

�
� ('� 'i � �) : (2.15)

For glossy re�ection around the perfect mirror direction, the Phong model [Pho75] is frequently

used. While its original de�nition violates physical principles, a modi�ed variant [LW94] ensures

energy conversation and Helmholtz reciprocity. Sharpness is controlled by an exponent n � 0 with

n = 0 yielding di�use re�ection and n!1, perfect specularity. Re�ectivity depends on the incident

angle but is guaranteed to be �g (~!i) � kg. The re�ected direction (�;') is expressed in a spherical

coordinate system whose zenith is the perfect mirror direction. With
 the hemisphere of possible

outgoing directions, the BRDF is

fg (~x; ~!i; ~!) =

8<
: kg

n+ 2

2�
cosn � if ~! 2
;

0 else.
(2.16)

2.1.3.2. Generalizations

In analogy to the BRDF, a translucent surface is characterized by its bidirectional transmittance

distribution function (BTDF). Conservation of energy and Helmholtz-reciprocity hold for BTDFs in

similar form [Vea96]. Using BTDFs, refraction can be modeled, the redirection of radiance resulting

from a change in refractive index �. A surface with both re�ective and transmissive characteristics

has a BRDF and a BTDF pair for light incident on one side and again for the other. These four

functions may be combined into a single bidirectional scattering distribution function (BSDF).

11

2. Background

The bidirectional scattering-surface re�ectance distribution function (BSSRDF) [NRH77] is another

generalization. Instead of assuming radiance is re�ected at the same point at which it arrived, the

BSSRDF f (~xi; ~x; ~!i; ~!) establishes a relationship between arbitrary pairs of points on a surface. This

allows subsurface scattering to be described but signi�cantly increases model complexity.

2.1.3.3. Light Paths

When comparing physically based rendering algorithms, a classi�cation of the paths from light source

to virtual camera is useful. A popular notation [Hec90] uses L for a light source, E for the virtual

camera or eye, S for specular and D for di�use interaction. Paths are described by simple regular

expressions, such as LDE for a single di�use interaction, LS+DE for one or more specular interactions

followed by one di�use (giving rise to caustics) or L (SjD)
�
E for all possible paths. When discussing

further phenomena, additional letters may be used.

2.1.4. Participating Media

Equation 2.3, the invariance of radiance along straight lines, only holds for a vacuum. When particles

are suspended in the atmosphere, the radiance transfer from a point ~y to a point ~x is subject to

further phenomena [KvH84]. To describe these, the path from ~y to ~x is �rst parameterized using a

direction vector ~! =
�

~x� ~y and a parameter 0 � t � tmax = k~x� ~yk as

~z (t) = ~y + t ~!:

Absorption A photon on the path from ~y to ~x may encounter a particle and be absorbed by it, ceasing

to exist. The fraction of photons absorbed per unit distance traveled is given by the absorption

coe�cient �a with unit m�1. This leads to a di�erential change in radiance of�
dL

dt
(~z (t) ; ~!)

�
absorption

= ��a (~z (t))L (~z (t) ; ~!) :

Out-scattering When it encounters a particle, a photon may not be absorbed but scattered instead,

continuing in another direction. The fraction of photons scattered per unit distance traveled is

given by the scattering coe�cient �s with unit m�1, yielding the di�erential change in radiance�
dL

dt
(~z (t) ; ~!)

�
outscatter

= ��s (~z (t))L (~z (t) ; ~!) :

In-scattering Photons scattered out of other directions may be redirected onto the path from ~y to

~x. The directional distribution of scattered photons is given by a phase function p with unit

sr�1. Accumulating redirected photons from the entire sphere of directions
4�, the di�erential

change in radiance caused by in-scattering is�
dL

dt
(~z (t) ; ~!)

�
inscatter

=

Z

4�

p (~z (t) ; ~!i; ~!)�s (~z (t))L (~z (t) ; ~!i) d
i:

Emission The �nal phenomenon is the emission of new photons onto the path from ~y to ~x by the

atmosphere. This is modeled by an emittance function � with unit W m�3 sr�1 that leads to a

12

2.1. Light Transport

di�erential change in radiance of�
dL

dt
(~z (t) ; ~!)

�
emission

= � (~z (t) ; ~!) :

2.1.4.1. Volume Rendering Equation

The total di�erential change in radiance is the sum of these four e�ects. To simplify notation,

properties of the atmosphere or participating medium dependent on ~z (t) are parameterized using

t only. Furthermore, the extinction coe�cient �e (t) = �a (t) + �s (t) subsumes out-scattering and

absorption, resulting in

dL

dt
(~z (t) ; ~!) = ��e (t)L (~z (t) ; ~!) + �s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i + � (t; ~!) : (2.17)

With the boundary condition L(~y; ~!) = Lo(~y; ~!) and � (a; b) = e�
R
b

a
�e(t) dt the transmittance

between two points in the medium, the solution to this di�erential equation is

L(~x; ~!) = � (0; tmax)Lo(~y; ~!)

+

Z tmax

0

� (0; t)

�
�s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i + � (t; ~!)

�
dt:

(2.18)

This equation models all e�ects on the radiance emanating from ~y toward ~x, capturing attenuation

due to absorption and out-scattering but also intensi�cation due to in-scattering and emission by the

medium itself. The resulting radiance incident at ~x from the direction of ~y is

Li(~x;�~!) = L(~x; ~!): (2.19)

Equations 2.18 and 2.19 describe the relationship between radiance Lo emanating at surfaces,

radiance Li incident at surfaces and �eld radiance L at any point in the medium. Inserting these

instead of equation 2.3 into the rendering equation 2.8 provides the recursive formulation of a steady

state radiance equilibrium in a scene containing a participating medium. This is what a rendering

algorithm should solve.

2.1.4.2. Simpli�cations

In order to reduce the complexity of the problem, simpli�cations may be applied. If the medium

does not emit radiance, terms accounting for � drop out. When the medium is made of a single

substance with spatially varying density, the phase function is independent of position, the scattering,

absorption, extinction coe�cients and the emission function are proportional to the scalar medium

density � (~x) and transmittance reduces to � (a; b) = e��e
R
b

a
�(t) dt. A homogeneous medium is a

further simpli�cation with constant density � = 1 and � (a; b) = e��e(b�a).

2.1.4.3. Phase Functions

The phase function relates outgoing radiance in a direction ~! to that incident from a direction ~!i.

Like BRDFs, phase functions are Helmholtz-reciprocal. To obey the conservation of energy, a phase

function must integrate to one [BLS93]. The fraction of incident radiance redistributed into other

13

2. Background

directions depends not on the phase function but on the volume albedo,

� =
�s

�a + �s
: (2.20)

Phase functions are typically symmetric around the incident direction and parameterized by the

cosine of the phase angle, cos � = ~! � ~!i, only. The simplest phase function represents isotropic

scattering [Bli82], redistributing incident radiance evenly into the hemisphere of directions via

p (cos �) =
1

4�
: (2.21)

More complex empirically motivated phase functions are e�ciently approximated by the Schlick

function [BLS93]. Its parameter k 2 (�1; 1) controls anisotropy. A setting of k = 0 produces

isotropic scattering. Decreasing k results in progressively stronger backward scattering, increasing it

yields forward scattering. The phase function is

p (cos �) =
1� k2

4� (1� k cos �)
2 : (2.22)

An e�ect not accounted for in the current model is elastic scattering, radiance redistribution not

only into di�erent directions but also to other wavelengths. Simulating this in a physically based

rendering algorithm is possible but requires the radiative transfer equation 2.17 to be replaced with

the more complex and computationally expensive full radiative transfer equation [GMAS05].

2.2. Manycore Computing

Simulating light transport is computationally expensive. While Moore's law [Moo65] predicts that

available processing power will grow exponentially, such gains are no longer transparently achieved.

As the returns from added instruction-level parallelism diminish and operating frequencies approach

physical limits, increasingly more parallel processing is needed, leading to manycore computing and

the need for highly scalable algorithms.

2.2.1. CPU-GPU Convergence

Modern CPUs employ data parallelism. Using the single instruction multiple data (SIMD) [Fly72]

processing model, a single operation is simultaneously performed on several data items. The popular

x86 architecture has a SIMD width of 4 [RCC+06], one instruction a�ecting up to four data items.

Multicore CPUs gain further parallelism from independent processing cores working in parallel. After

early dual core designs [TDJ+02], CPUs featuring eight cores are now widely available [Int09].

GPUs have gained programmability with the addition of shader support [LKM01] to their already

highly parallel processing units. Despite initially limited �exibility and access through graphics APIs

only, general purpose computation on GPUs (GPGPU) has been applied to a wide range of problems,

two examples being physically based rendering [PBMH02, PDC+03] and image registration [Fab06].

Support for the automatic translation of general purpose code into graphics API calls and shaders

has aided such e�orts by hiding some of the complexity [BFH+04].

A step is being taken now in which CPUs and GPUs converge on manycore computing with very

large numbers of simple processing cores operating in parallel.

14

2.2. Manycore Computing

Device Host

Data

Data

Control Processing
Core

PC PC

PCPCPC

PC

RAM

PC

PCPC

PCPC

PC

RAM

Figure 2.1.: High level view of CUDA: The host initiates memory transfers and invokes kernels. These
execute inside the device on an array of highly parallel processing cores.

The Cell Broadband Engine Architecture [IST07] features 8 simpli�ed parallel processing cores with

4-wide SIMD, thus operating on 32 data items in parallel. A traditional CPU core handles overall

control �ow and work distribution. Intel Larrabee [SCS+08] uses 10 simpli�ed cores with 16-wide

SIMD. Highlighting the convergence, Larrabee employs CPU cores but acts as a GPU, incorporating

GPU features such as texturing units. While no longer pursued as a stand-alone architecture, the

�rst products incorporating this technology and more than 50 cores have been announced [Int10].

GPU evolution has led to the NVIDIA CUDA [NVI10b] platform with up to 512 processing cores

in the current generation. Groups of 32 cores run in lock-step, executing the same instruction for

parallel threads. Termed single instruction multiple thread (SIMT), this is akin to 16 cores with 32-

wide SIMD. Competing AMD Stream [Adv09] features a current maximum of 1600 cores arranged in a

25 core 64-wide SIMT layout. Implemented on GPUs, both platforms provide access to texturing units

and require a CPU for control �ow and work distribution. The emergence of the vendor independent

OpenCL API [Mun10] highlights their similarities.

At the time of this writing, the fastest consumer GPU chips are found in the NVIDIA GTX 480

with 480 processing cores, 1:35 TFLOP/s theoretical peak processing power and 177:4 GB/s peak

main memory bandwidth and the AMD Radeon 5870 with 1600 processing cores, 2:72 TFLOP/s

and 153:6 GB/s memory bandwidth. Linking multiple GPU chips adds another level of parallelism,

providing additional performance.

The GPU used throughout this thesis is an NVIDIA GTX 280 with 240 processing cores executing

instructions in a 30 core, 32-wide SIMT layout every four cycles, 933 GFLOP/s and 141:7 GB/s.

2.2.2. CUDA Programming Model

CUDA is the �rst manycore platform to reach wide availability. It illustrates the concept of manycore

computing but also the compromises required in an actual implementation. The CUDA programming

model is an abstraction that maps to commodity NVIDIA GPU hardware. Figure 2.1 shows a

high level view of the model. For every computation, a large number of threads are launched,

each executing an identical kernel. Conceptually, all threads operate in parallel with very limited

synchronization and communication. This data parallel view of the GPU as a general purpose stream

processing device e�ciently scales across several generations of hardware. Threads are executed on the

physically available cores in any order until all have terminated and the kernel launch is completed.

Kernels are invoked by a host computer. Once launched, all threads run to completion, accessing

only resources resident on the GPU device. Threads cannot allocate further resources, spawn new

threads or otherwise in�uence each other except through the use of prede�ned synchronization prim-

itives. All responsibility for memory allocation, memory transfer and kernel invocation lies with the

15

2. Background

CTACTA

Warp

WarpWarp

Warp

Thread
(0,0)

Thread
(1,0)

Thread
(1,1)(0,1)

Thread
(14,1)
Thread Thread

(15,1)

Thread
(15,0)

Thread
(14,0)

(1,1)
Thread

(14,0)
Thread Thread

(15,0)

Thread
(15,1)(14,1)

Thread

Thread
(0,0)

Thread
(1,1)(0,1)

Thread

Thread
(14,0)

Thread
(0,1)

Thread
(1,0)

Thread
(0,0) (14,0)

Thread Thread
(15,0)

Thread
(15,1)(14,1)

Thread

Global Memory

Thread
(1,0)

Thread
(0,0)

Thread
(0,1)

Thread
(1,0)

(1,1)
Thread

Shared Memory Shared Memory

Thread
(15,0)

Thread
(15,1)(14,1)

Thread

Texture Memory

Constant Memory

Figure 2.2.: CUDA thread and memory hierarchy: Warps of 32 threads each execute in lock-step,
cooperative thread arrays (CTAs) of up to 512 threads cooperate via shared memory and
synchronization primitives. All threads can access constant, texture and global memory.

host. A CUDA application consists of a host program and kernels spawned by it on the device.

CUDA kernels are written in a dialect of C++ with minor extensions to accommodate device mem-

ory and thread layouts. The nvcc utility decomposes source code into host and device components,

passes these to separate compilers and links the results into a single binary.

2.2.2.1. Thread and Memory Hierarchy

To facilitate e�cient implementation on actual hardware, threads and memory are hierarchically

organized in CUDA. Threads further from each other in the hierarchy have looser synchronization

and fewer cooperation options. Memory higher in the hierarchy is larger but has higher latency and

lower bandwidth. The thread and memory layouts are interlinked as illustrated in �gure 2.2.

Warps of 32 threads each form the �rst hierarchy level. These threads run in lock-step on neigh-

boring processing cores, simultaneously executing the same instruction. When threads within a warp

take di�erent code paths, a divergent branch results. Execution is serialized by running both branches

one after the other with inactive threads masked o�. After the divergent section has completed, the

entire warp continues in lock-step. Terminated threads are similarly masked o� until an entire warp

has �nished. Warps do not communicate directly but can invoke a voting instruction to determine

16

2.2. Manycore Computing

whether a predicate is ful�lled by all or any of the 32 threads.

The next hierarchy level is the cooperative thread array (CTA) of up to 512 threads. Warps

belonging to a single CTA are scheduled onto the same processing cores in a nondeterministic order.

Their locality on the hardware allows for inexpensive communication and synchronization. A CTA

has access to a small private pool of fast shared memory. Values written by one thread can be read

by all others. Since warps are scheduled in nondeterministic order, information exchange between

them requires the use of a CTA synchronization instruction. All warps in the CTA execute until this

instruction, memory is synchronized and execution continues in nondeterministic order.

At the top level of the hierarchy, a kernel invocation may contain any number of CTAs. Among

these, no guarantees of execution order or synchronization exist. Threads from all CTAs can access

constant, global and texture memory. Constant memory can be written to by the host only and

provides cached access to a small number of run-time constants. Global memory is the GPU main

memory. It is the largest memory space with read-write access but without caching. By accessing

parts of it as read-only texture memory, the caches present in GPU texturing units can be used.

For convenience, CTAs and the threads within them may be addressed as one-, two- or three-

dimensional arrays.

2.2.2.2. Shared Resources

Processing power increases with the number of available cores. Memory performance does not scale

in the same way and is therefore an important bottleneck. With the limited caches available, the core

mechanism for latency hiding in CUDA is hardware multi-threading. Processing cores are equipped

with large register banks that can hold the state of several warps at once. When a warp stalls on a

memory access or synchronization instruction, execution seamlessly continues with another warp. To

enable this mechanism, the number of registers and the amount of shared memory required by each

CTA should be kept low. Signi�cantly more warps should also be launched than can execute at one

time, allowing each core to keep a high occupancy of resident warps.

There are no preemption or memory protection mechanisms. The programmer must ensure threads

do not deadlock by waiting for each other or overwrite important results. Atomic instructions may

be used to safely implement global job queues and memory pools but by enforcing serialized access,

limit scalability. As texture memory is an alias for a subset of the global memory space, textures can

be modi�ed by writing to the corresponding global memory locations. However, texture caches are

not synchronized. Only when a kernel has completed and control returns to the host is it ensured

that all memory writes become visible. For complex algorithms, this requires a multi-pass approach

where global synchronization is achieved by launching consecutive kernels.

Resources may be shared between CUDA and a graphics API [SA10]. This allows results to be

visualized without having to copy them to host memory �rst. Since all other screen updates stall

while CUDA is occupying the GPU, a watchdog timer permits an execution time of at most �ve

seconds per kernel for a GPU shared by CUDA with the desktop environment.

2.2.3. CUDA Hardware Implementation

As of this writing, three generations of CUDA hardware exist. The following discussion focuses on the

GTX 280 used in the thesis and its second generation GT200 chip. Advances in the third generation

are addressed in section 2.2.3.3.

17

2. Background

Texture Processor Cluster

Streaming MultiprocessorStreaming Multiprocessor Streaming Multiprocessor

SP

SPSP

SPSP

SPSP

SP

Register Bank

Shared Memory

SP

SPSP

SPSP

SPSP

SP

Register Bank

Shared Memory

SP

SPSP

SPSP

SPSP

SP

Register Bank

Shared Memory

Scheduler Scheduler

SFU DPUSFUSFU DPUSFUSFU DPUSFU

Scheduler

Texturing Units

Figure 2.3.: CUDA texture processor cluster on the GT200 chip: A streaming multiprocessor (SM)
comprising execution units, scheduler, register banks and shared memory executes warps
in lock-step. Three SMs sharing texturing units form a thread processor cluster.

Figure 2.3 provides an overview of the functional unit arrangement on a GT200 chip. Eight general

purpose processing cores, the streaming processors (SPs), form a streaming multiprocessor (SM). They

share an instruction scheduler and run in lock-step, executing one instruction for a warp of 32 threads

every four cycles. Two special function units (SFUs) compute transcendentals and divisions, a double

precision unit (DPU) handles double precision numbers. Complex instructions using the SFUs or

DFU or taking more cycles to complete have lower throughput than simple arithmetic. Texturing

units and their caches are shared by thread processor clusters (TPCs) of three SMs each. A GTX 280

has 10 TPCs, 30 SMs and 240 SPs.

2.2.3.1. Memory

Each SM distributes 16; 384 32-bit registers and 16 kB of shared memory among the warps resident

on it. A maximum occupancy of 32 resident warps is reached when resource usage does not exceed 16

registers and 16 bytes of shared memory per thread. Higher requirements reduce occupancy, lowering

the e�ectiveness of latency hiding by hardware multi-threading. A single thread can use at most 128

registers, an entire CTA may occupy all 16; 384 registers and 16 kB of shared memory.

Shared memory has latency and bandwidth comparable to the register banks, allowing very e�-

cient exchange of information between the threads of a CTA. It is physically composed of 16 banks.

Maximum throughput is achieved if the addresses simultaneously requested lie in di�erent banks. A

bank con�ict requires serialization of accesses, increasing latency and reducing bandwidth.

Global memory has a size of 1 GB on the GTX 280. It is located o�-chip, has signi�cantly higher

latency and lower bandwidth. Main memory accesses are identi�ed as the most important bottleneck

by the CUDA documentation [NVI10a]. When several threads in a 16-thread half-warp address

locations that can be serviced by a single 32, 64 or 128 byte transaction, their requests are coalesced,

improving latency and bandwidth. Despite not being cached, main memory has variable latency.

This is explained by the presence of translation lookaside bu�ers (TLBs), revealed through micro-

18

2.2. Manycore Computing

benchmarking [VD08, WPSAM10]. Memory working sets of up to 8 MB are covered by an L1 TLB,

incurring a latency of 436 to 443 cycles on hit. L2 TLB hits yield latencies of 487 cycles for working

sets of up to 32 MB. L2 TLB misses result in latencies of 698 cycles.

Read-only accesses to global memory can be made through the GPU texturing units which provide

caching. Details are again revealed by micro-benchmarking. The cache sizes are 5 kB L1 and 256 kB

L2. An L1 hit has a latency of 261 cycles, an L2 hit 371 cycles. Cache misses require global memory

reads. TLBs with working set sizes of 8 MB and 16 MB are used, producing latencies of 497 cycles on

L1 TLB hit, 544 on L2 TLB hit and 753 on TLB miss. Besides caching, the texturing units provide

optional linear interpolation of neighboring values and normalization to a range of (�1; 1) or (0; 1).
Disadvantages of the texturing include smaller TLB working sets, high latencies for cache misses and

the lack of coalescing. Texturing units are con�gured by the host. Each texture may be one-, two-

or three-dimensional with elements consisting of either one, two or four 32-bit values.

A 64 kB constant memory space is provided through which the host can pass run-time parameters

to kernels. This has three cache levels with sizes 2 kB, 8 kB and 32 kB and latencies of 8, 81 and 220

for hits and 476 for a miss. Instructions are cached in a similar hierarchy, sharing L2 and L3 with

the constants. L1 caches are located in the SMs, L2 in the TPCs and the L3 cache is global.

Local memory is used for automatic variables that the compiler is unable to place in registers. This

occurs for large structures and arrays addressed by an index. Local memory aliases a region of global

memory and thus carries its access characteristics.

All memory management occurs on the host. Shared memory is allocated at compile or run-time.

Texturing units must be reserved during compilation but texture sizes and parameters are speci�ed

at run-time. Independent memory transfers and kernel executions may be placed in di�erent CUDA

streams. Each stream is processed in order but the kernel execution from one and a memory transfer

from another may overlap if non-pageable pinned memory is used on the host.

2.2.3.2. Instructions

CUDA device code is written in a dialect of C++ lacking some advanced features such as virtual

functions or multiple inheritance. A kernel is expressed as a single, serial control �ow. Parallelization

automatically occurs when the same kernel is simultaneously executed by a large number of threads.

No call stack exists on the device. All function calls are inlined and recursion is not permitted. The

thread hierarchy is speci�ed when invoking the kernel from the host.

The threads of a warp cooperate via voting instructions that determine whether a given predicate

holds for any or all of them. Cooperation on the CTA level occurs through shared memory. A syn-

chronization instruction lets all warps advance to the same point in the code, ensuring prior memory

writes become mutually visible. Memory fence instructions can extend this visibility assurance across

all CTAs but do not imply any synchronization. To maximize performance, lock-step execution in

warps should be taken into account, avoiding divergent branches, uncoalesced global memory accesses

and shared memory bank con�icts. Each thread can determine its position in the thread hierarchy

by querying the threadIdx and blockIdx variables.

Variables are explicitly placed in the shared, global and constant memory spaces at compile time.

They may be accessed directly in a kernel with the compiler generating appropriate instructions. For

atomic operations and texture memory reads, library functions are provided. Convenience packed

data types group two, three or four integers or �oating point values. Aliasing instructions allow a

32-bit �oating point number to be stored in a 32-bit integer variable and vice versa.

19

2. Background

Floating point support follows the IEEE 754 standard [IEE08] with minor deviations. Signaling

NaNs, dynamically con�gurable rounding modes and denormalized numbers are not supported. Sim-

ple arithmetic instructions execute on the SPs. For maximal throughput, the compiler combines

multiplications and additions into multiply-add instructions. Complex operations may expand into

long sequences of instructions and require the SFUs.

Intrinsics provide faster but lower precision variants of transcendentals and division. A reciprocal is

faster than a general division. Square root is implemented as the reciprocal of an inverse square root,

the latter of which may directly be accessed with an intrinsic. SPs are optimized for 32-bit �oating

point arithmetic with 24-bit mantissa. Multiplication of two 32-bit integers therefore requires several

operations and an intrinsic provides faster 24-bit multiplication. Calculations in double precision are

performed by the DPU, providing only 1
8 the throughput of single precision.

The compiler is able to optimize short loops by unrolling and short sections of conditional code by

predication, issuing instructions that are always executed but masked o� in inactive threads.

2.2.3.3. Extensions

Acompute capability summarizes the GPU feature set. First generation G80 chips have capability 1:0

or 1:1, second generation GT200 1:2 or 1:3 and third generation GF100, 2:0. The description above

is based on a GTX 280 GPU with compute capability 1:3.

Capability 2:0 extends the hardware and programming models. Graphics processor clusters (GPCs)

of four SMs each replace the TPCs. Every SM has two schedulers, 32 processing cores and four SFUs.

Simple integer and single precision instructions are emitted by both schedulers simultaneously for two

di�erent warps. Instead of a designated DFU, double precision instructions are executed by pairs

of standard cores, increasing double precision throughput to 1
2 that of single precision. Fast 32-bit

integer multiplication and denormalized �oating point numbers are supported.

The maximal CTA size is increased to 1024 threads. Each SM has 32; 768 registers and 64 kB fast

memory organized in 32 banks. If their resource requirements permit, up to 48 warps from one or

more kernels can be resident on an SM. This allows di�erent kernel executions to overlap. Memory

transfers between host and device in both directions can also happen simultaneously. SMs can be

con�gured to provide either 16 kB or 48 kB of shared memory. The remaining fast memory serves as

a global memory cache. Global memory accesses are further coalesced across entire warps.

Instruction support is also extended. Call stacks exist, enabling function calls and C++ classes.

The synchronization instruction can evaluate a predicate across all threads in a CTA, reporting

whether it holds for any or all of them. Warp voting is enhanced to return individual results for the

32 threads of a warp in a bitmask. A printf utility function aids debugging.

2.2.3.4. Challenges

CUDA provides unprecedented potential processing power but its e�cient use poses a number of

challenges. An important aspect is a general opaqueness of the platform. Hardware details are left

undocumented and only partially uncovered through reverse engineering. Source code is compiled to

the open PTX intermediate format but then transformed into binary device code by an undocumented

process. Bugs exist in this stage that cannot be worked around. CUDA is also an evolving platform.

Not only bug �xes but new features and instructions are provided with each software release. Two

APIs exist, the lower level device and higher level runtime API. Only in the most recent CUDA

20

2.2. Manycore Computing

revisions have these been made compatible. No CUDA version provides a linker for device code,

always requiring full recompilation.

Published peak performance �gures include calculations made by texture addressing units and

cannot be fully reached in realistic scenarios. General optimization guidelines exist [NVI10a] but with

hardware details undisclosed, benchmarking is required to choose between di�erent thread layouts

and alternative implementations. Some apparent optimizations may actually reduce performance.

For example, the use of texturing units provides caching but precludes coalescing. A new hardware

generation requires complete reevaluation of all optimizations.

Tool support is limited. The CUDA pro�ler only reports aggregate values for an entire TPC. A

debugger exists in recent CUDA versions but cannot be used on systems with a single GPU shared by

CUDA and the desktop environment. Despite a watchdog timer terminating kernels after �ve seconds,

GPU crashes or deadlocks may render a system unresponsive. Emulation mode allows kernels to be

cross-compiled into native host instructions but has been deprecated as it is of little help in debugging

problems that occur on actual hardware. A GPU simulator that executes PTX code directly [CDP09]

is currently limited to emulating the �rst generation G80 chip only.

Other challenges are inherent to the hardware platform. Nondeterministic scheduling order requires

careful algorithm design and an implementation that avoids unde�ned reads or deadlocks. Complex

algorithms must be split into consecutive kernels due to the lack of global synchronization. Texturing

units have limited �exibility by operating on prede�ned data types only. The scheduler that assigns

warps to SMs is optimized for uniform workloads. In other scenarios, it should be circumvented by

using an explicit job queue [AL09].

An important consideration for all parallel architectures is Amdahl's law [Amd67]. With 0 � rp � 1

the parallelizable fraction of an algorithm, the speedup s achieved by using n processing cores is

s =
1

(1� rp) +
rp
n

:

Speedup thus crucially depends on the removal of parallelization bottlenecks, increasing rp.

2.2.4. Algorithmic Building Blocks

Algorithm design for manycore architectures can be simpli�ed and accelerated by employing reusable

building blocks that e�ciently parallelize common operations. Several important building blocks

follow from the concept of a parallel scan.

2.2.4.1. Scan and Prescan

The scan or inclusive pre�x sum transforms a vector ~a such that the i-th component is the combination

of all aj with j � i via an associative binary operator �. A prescan or exclusive pre�x sum does the

same for j < i. With I the identity element of operator �,

scan(~a;�) = (a0; (a0 � a1) ; : : : ; (a0 � : : :� an�2) ; (a0 � : : :� an�1)) ; (2.23)

prescan(~a;�) = (I; a0; (a0 � a1) ; : : : ; (a0 � : : :� an�2)) : (2.24)

A trivial implementation that loops over the input in O (n) time cannot be parallelized as each

iteration requires previous results to be known. The alternative illustrated in �gure 2.4 arranges

21

2. Background

Up-Sweep

Down-Sweep

CTA 0 CTA 1

CTA 1CTA 0

CTA 0

a6 a4:::7

a2 a3a0 a1 a4 a5 a6 a7

a2 a23a0 a01 a4 a45 a6 a67

Step 2

Step 1

~a

prescan(~a;�)

��

�
a0:::3

�
a2 Ia0 a01 a45 a6

a0:::5a0 I a2 a01

a01a0I a0:::6

a4

��
a0:::3 a6

a0:::4 a0:::5a0:::2

a4

a0:::3

Step 3

Step 2

�
a4 a45 a6 Ia2a0 a01 a0:::3

Step 1

��

�

� �

�

a2 a0:::3a0 a01 a4 a45

Figure 2.4.: Parallel prescan in CUDA: The computation is decomposed into log2 n � 1 down-sweep
and log2 n up-sweep steps, each fully parallelizable. By assigning subsets of operations
to CTAs, they can be executed using shared memory and fast synchronization.

computations in O (log n) steps [Ble90]. A down-sweep phase performs a logarithmic reduction. Each

of log2 n� 1 steps applies operator � half as many times as the previous step. The last component is

replaced with identity I and an up-sweep phase follows. log2 n steps are taken, doubling the number

of copy operations and applications of � with each.

The operations within a step are independent and may run in parallel. Although total complexity

remains O (n), work can now be distributed across parallel processing units. At the end of each step,

synchronization between the processing units is required to ensure all computations have completed

and results are mutually visible. This global synchronization is expensive in CUDA as it occurs only

when all threads terminate and a new kernel is launched by the host.

By distributing the work to CTAs as shown in �gure 2.4, each can perform part of the down-sweep

or up-sweep independently, bene�ting from shared memory and fast CTA synchronization [SHZO07].

The amount of work per CTA is limited by its thread count and shared memory size. For large inputs,

the same kernel is repeatedly executed with progressively more (up-sweep, pictured) or fewer (down-

sweep) CTAs. Within a warp, 32 threads execute the same instruction in lock-step. By rearranging

22

2.2. Manycore Computing

a2 a3a0 a1 a10 a11a8 a9a4 a5 a6 a7

a3 a5a0 a1 a9 a10

0 11 1 1 00 10 1 0 0

2 31 10 118 94 5 6 70

compact(~a;~b)

i

~b

~a

(a) The components of ~a whose corresponding �ags in ~b are set are copied to the output.

4prescan(~b;+) 2 20 1 5 64 43 3 4

(b) A prescan of ~b using the addition operator yields the target indexes for all ai.

Figure 2.5.: Parallel stream compaction: The index at which a component ai should be stored in the
output vector is computed by a parallel prescan of ~b.

operations on the warp level to maximize the number of threads in which instructions do useful work,

some redundant computations are introduced but total instruction count is reduced [SHG08].

As is evident by comparing equations 2.23 and 2.24, applying operator � one more time at the end

results in a parallel scan. Extension to input sizes that are not powers of two is trivially possible by

padding with the identity element I. Another extension is the segmented scan. Here, an array ~b of

Boolean �ags partitions ~a into segments and operator � is applied to each segment independently.

E�cient implementations in CUDA follow a similar parallelization pattern [SHZO07, SHG08].

2.2.4.2. Compaction

Given a vector ~b of Boolean �ags, stream compaction extracts from a vector ~a the components ai
for which bi = 1, preserving their order (see �gure 2.5(a)). This is an important operation for job

queues, removing terminated jobs so that only active ones are scheduled. To determine the output

position at which ai should be stored, the number of preceding bj = 1 in the input must be counted.

As shown in �gure 2.5(b), a prescan of ~b with the addition operator provides this information.

A parallel compaction building block is thus obtained by applying a parallel scan to ~b and then

copying all ai with bi = 1 to their target positions in parallel. In CUDA, this can be further improved

on [BOA09]. By counting the number of bi = 1 for an entire input range in each warp and applying

the prescan only to these totals, prescan input size is signi�cantly reduced. During the copy phase,

better coalescing is achieved when the threads of a warp read consecutive ai and bi in parallel, compact

these into shared memory and then write the result to global memory in parallel again.

2.2.4.3. Split

The split operation takes input identical to that of compaction but returns a vector containing all

components of ~a, rearranged such that those with bi = 0 are followed by those with bi = 1, preserving

original order in each group (see �gure 2.6). Target indexes can again be computed using a parallel

prescan(~b;+). With ni the number of preceding bj = 1 and n0 the total number of all bi = 1, the

target for a component with bi = 0 is i� ni and that for a component with bj = 1 is n� n0 + ni.

23

2. Background

a2 a3a0 a1 a10a8 a9a4 a5 a6 a7

0 11 1 1 00 10 1 0 0

2 31 10 118 94 5 6 70i

~b

~a a11

a3 a5a0 a1 a9 a10a11a8a2 a4 a7a6split(~a;~b)

Figure 2.6.: Split: The components of ~a are rearranged in the output such that those with bi = 0 are
followed by those with bi = 1, preserving original order in each group.

Group

CTA

0

1

2m � 1

43210 p� 1

Figure 2.7.: Parallel prescan order for CUDA radix sort: Sizes are added across CTAs, then groups.

2.2.4.4. Radix Sort

A sequence of parallel splits can be used to e�ciently sort integer numbers [Ble90]. The �rst split

arranges numbers according to their least signi�cant bit. The next split rearranges them according to

their second-least signi�cant bit, preserving the already established order within each group. When

sorting k-bit numbers, a total of k splits are required.

The bottleneck of this algorithm is the bandwidth required to transfer numbers to and from global

memory for every split. A more e�cient implementation is again possible in CUDA [SHG09]. Utilizing

fast shared memory, each CTA applies the split operation to a subset of the data. A parallel prescan

adds the sizes of the groups produced by all CTAs, revealing where each must be placed in global

memory to concatenate them. E�ciency further improves when each CTA performsm split operations

in shared memory before concatenating results, producing 2m groups. Figure 2.7 illustrates the logical

order in which the group sizes are then processed by a prescan to ensure concatenation into 2m groups

equivalent to the result of applying m splits to the entire input.

Several libraries implementing these algorithmic building blocks exist [BOA10, HOS+10].

24

3. Related Work

Physically based rendering aims to calculate the radiance reaching a virtual camera by simulating light

transport in a scene. What constitutes a successful rendering algorithm varies with application area.

An o�ine technique may take hours to synthesize a single, high quality image. Interactive algorithms

operate on signi�cantly reduced time budgets, must be computationally e�cient and might reproduce

subsets of physical phenomena only. The following chapter provides a survey of related research with

a focus on physically based rendering and its acceleration to interactive frame rates.

3.1. Ray Tracing

Equation 2.9 de�nes the equilibrium radiance distribution in a scene. Central to the equation is a

helper function r (~x; ~!) that locates the nearest surface seen from a point ~x in a direction ~!. This is

the visibility problem. Its e�cient solution is crucial for fast physically based rendering. When a large

number of directions are queried from a single point, rasterization is a viable solution. An example is

the search for the surfaces visible at each screen pixel from a virtual camera. All surfaces are drawn

into a screen-sized bu�er, keeping track of the depth value z at each pixel. Only when a surface is

nearer than that currently stored at the pixel is it drawn and the z value updated [Cat74].

A more �exible and general technique is ray casting. Whenever the function r is invoked, a ray

equation with parameter t � 0 is constructed,

~z (t) = ~x+ t ~!: (3.1)

This ray can now be tested for intersection with all surfaces in the scene. Each intersection yields

a hit point ~zhit = ~z (thit). The nearest surface seen is that with the lowest thit value.

3.1.1. Recursion

First proposed as a method for solving the visibility problem from a virtual camera [App68], ray

casting can also be used in the opposite direction, simulating light transport from its sources. A com-

prehensive simulation requires rays to be cast recursively as light repeatedly interacts with surfaces

and the atmosphere. This extends ray casting to ray tracing, both a name for the general concept of

recursive casting and a rendering algorithm in itself [Whi80].

The rays emitted by a virtual camera or light source are primary rays. These are highly coherent,

often sharing a common origin and having similar directions. At interactions with surfaces or the

atmosphere, secondary rays are spawned. When distinct surfaces or points are designated as light

sources, direct illumination is computed by casting shadow rays. A shadow ray answers the binary

query whether a light source is visible or occluded. Since neither the actual occluding surface nor the

distance to it are of interest, an early out exists. Whenever any surface with thit < tlight is located,

the source is occluded and the search terminates. Secondary rays become less coherent with deeper

25

3. Related Work

recursion as their origins and directions spread over the entire scene. Shadow rays toward a point

light source are an exception as these have a common origin when followed from the light.

Due to the limited precision of �oating point arithmetic, intersection calculations are not perfectly

accurate. Small o�sets � are used throughout ray tracing to account for this imprecision. Shadow

rays, for example, only report a light source as occluded when thit + � < tlight.

3.1.2. Footprints

Recursion extends the concept of an isolated ray to include successors after an interaction. Another

conceptual extension is the consideration of neighboring rays forming a wavefront. By keeping track

of their convergence or divergence, a footprint is obtained for each ray, corresponding to the wavefront

patch it represents. For rays traced from a light source, this allows �ux to be spread over variable areas,

accounting for specular re�ections [Col94, SFES07], traversal of a participating medium [IZT+07] or

the full range of all interactions [Sch09]. For rays emitted by a virtual camera, footprints are useful

when choosing a �lter size for texture mapping [Ige99], a geometry tessellation level [CLF+03] or the

area from which previously stored �ux is retrieved [CB04].

3.1.2.1. Neighbor Tracking

Footprints can be calculated by linking the hit points of rays originating as neighbors [Col94]. This is

e�cient for caustics after a specular re�ection [IDN02, UPSK08] but when rays diverge strongly, the

hit points can become too distant for a meaningful interpretation. Subdividing divergent patches and

discarding those that converge to below a threshold size is one solution [IZT+07]. Tracing two paraxial

neighbors with each ray [Col95] is another option but triples the number of ray casting operations.

3.1.2.2. Ray Di�erentials

An alternative approach that avoids the need to link multiple rays arises from di�erential calculus.

In the ray di�erentials framework [Ige99], the recursive path taken by a ray is modeled as a series

of functions fi modifying its position and direction. If the initial position and direction depend on

parameters p1, p2 and no further parameters are introduced during light transport, this yields

(~z; ~!) (p1; p2) = fn � fn�1 � : : : � f1 (p1; p2) : (3.2)

Using the derivatives of this composite function, the distances between a ray and its neighbors can

be estimated by �rst order Taylor approximation. If neighbors are removed in parameter space by

�p1, �p2 on emission, the vectors spanning a footprint at an interaction are

~�1 (p1; p2) = ~z (p1 +�p1; p2)� ~z (p1; p2) � �p1
@~z

@p1
(p1; p2) ; (3.3)

~�2 (p1; p2) = ~z (p1; p2 +�p2)� ~z (p1; p2) � �p2
@~z

@p2
(p1; p2) : (3.4)

To avoid the computational cost of having to di�erentiate a complex function at every hit point,

partial derivatives of its position and direction are tracked with each ray. Whenever a function fi

is applied, the derivatives are updated according to the chain rule. For rays emitted by a virtual

camera, p1; p2 denote screen coordinates. With ~zc the camera position and ~u;~v; ~w the normal, right

26

3.1. Ray Tracing

and up vectors of its view plane, the ray origins and directions at emission are

~z (p1; p2) = ~zc; ~! (p1; p2) =
�

~u+ p1 ~v + p2 ~w:

Di�erentiation of these equations yields four partial derivatives, the initial ray di�erentials

@~z

@p1
(p1; p2) = ~0;

@~!

@p1
(p1; p2) =

~v � (~! � ~v) ~!
k~u+ p1 ~v + p2 ~wk ; (3.5)

@~z

@p2
(p1; p2) = ~0;

@~!

@p2
(p1; p2) =

~w � (~! � ~w) ~!
k~u+ p1 ~w + p2 ~wk : (3.6)

3.1.2.3. Propagation

The �rst operation applied to a ray is propagation through space until the nearest hit point,

~z0 (p1; p2) = ~z (p1; p2) + thit (p1; p2) ~! (p1; p2) ; ~!0 (p1; p2) = ~! (p1; p2) :

With p either of the two parameters, the partial derivatives are

@~z0

@p
(p1; p2) =

@~z

@p
(p1; p2)| {z }

old di�erential

+ thit (p1; p2)| {z }
hit distance

@~!

@p
(p1; p2)| {z }

old di�erential

+
@thit
@p

(p1; p2) ~! (p1; p2)| {z }
old direction

; (3.7)

@~!0

@p
(p1; p2) =

@~!

@p
(p1; p2)| {z }

old di�erential

: (3.8)

For a planar surface given by ~z � ~n � d = 0, the missing partial derivative of thit is calculated by

inserting the ray equation for ~z, di�erentiating and expressing the result in terms of thit, yielding

@thit
@p

(p1; p2) = �

�
@~z

@p
(p1; p2)| {z }

old di�erential

+ thit (p1; p2)| {z }
hit distance

@~!

@p
(p1; p2)| {z }

old di�erential

�
� ~n

~! (p1; p2)| {z }
old direction

�~n : (3.9)

This result holds for non-planar surfaces as well [Ige99]. Using equations 3.7 to 3.9, the di�erentials

from equations 3.5 and 3.6 can be updated whenever a ray is propagated through space.

3.1.2.4. Specular Re�ection

When a ray encounters a specular re�ector, it is mirrored about the surface normal,

~z0 (p1; p2) = ~z (p1; p2) ; ~!0 (p1; p2) = ~! (p1; p2)� 2 (~! (p1; p2) � ~n (p1; p2)) ~n (p1; p2) :

As the normal may vary with hit point, it also is a function of p1, p2, leading to

@~z0

@p
(p1; p2) =

@~z

@p
(p1; p2)| {z }

old di�erential

; (3.10)

27

3. Related Work

@~!0

@p
(p1; p2) =

@~!

@p
(p1; p2)| {z }

old di�erential

�2

(~! (p1; p2)| {z }
old direction

�~n (p1; p2)) @~n
@p

(p1; p2)

+

�
@~z

@p
(p1; p2)| {z }

old di�erential

�~n (p1; p2) + ~! (p1; p2)| {z }
old direction

�@~n
@p

(p1; p2)

�
~n (p1; p2)

!
:

(3.11)

Rendering algorithms and graphics APIs typically model all surfaces as triangle meshes [SA10]. For

planar triangles, the normal derivative is zero and equation 3.11 can be evaluated directly. However,

di�erent normals are frequently assigned to the triangle vertices and interpolated [Pho75] to better

approximate curved surfaces. A point on a triangle is parameterized using barycentric coordinates

u; v; w as a weighted sum of the vertices ~v0, ~v1, ~v2 such that ~z = w~v0 + u~v1 + v ~v2 with u � 0, v � 0

and w = 1�u� v � 0. The interpolated normal at the point then is ~n (u; v; w) =
�

w~n0 + u~n1 + v ~n2.

Partial derivatives are obtained by expressing the barycentric coordinates in terms of p1, p2 and

di�erentiating ~n (p1; p2). In the original ray di�erentials framework, a solution is derived which

requires three plane equations to be stored with each triangle that describe its edges. We address the

issue of this signi�cant memory overhead in section 5.1.2, showing how the derivative can e�ciently

be computed without any additional storage.

3.1.2.5. Other Interactions

Refraction can be di�erentiated analogously to specular re�ection [Ige99]. For any other interaction,

the in�uence of additional parameters must be considered. Path di�erentials account for derivatives

of equation 3.2 with respect to any number m of parameters [SW01]. Di�erentials are initialized for

p1, p2 on emission and more added as interactions with additional parameters occur.

At a hit point, the footprint is then the Minkowski sum of m di�erence vectors. To calculate these,

the distances �pi in parameter space between neighboring rays must be determined. When one ray

spawns multiple secondary rays, their distances can directly be used as local deltas. If each ray is

traced independently, its nearest neighbors are unknown. Global deltas are proposed for this case.

With nrays the total number of rays emitted, the distance to the nearest neighbor is estimated as

�pi �
�

m
p
nrays

��1
for each parameter on a unit scale, presuming a uniform distribution throughout

m-dimensional parameter space.

Path di�erentials require incrementally growing storage and complex calculations. For interactive

rendering, inexpensive approximations using �xed storage only are more desirable. We propose and

evaluate such methods in chapters 5 and 7. Concurrently to some of our work, a similar technique

has been introduced [Sch09]. Only di�erentials with respect to p1, p2 are computed. Additional

parameters are accounted for by scaling the footprint at each interaction according to the inverse ray

density in the chosen direction, generating larger footprints where fewer rays are sent and vice versa.

If only a single specular interaction were to be simulated, the need to store any di�erentials could be

eliminated by calculating a footprint on the �y [WS03].

3.1.3. Surface Intersection

A ray must be tested for intersection with surfaces in the scene to locate its hit point. For the simple

example of a sphere with center ~xc and radius r, an analytic solution exists. Ray equation 3.1 is

inserted into k~z � ~xck = r and the result solved for t. A quadratic expression emerges as the ray may

28

3.1. Ray Tracing

enter and leave the sphere again, producing two hit points. In the application to photon mapping,

the point at which the ray passes closest to the sphere center ~xc is also interesting. This can be found

by computing ~� = ~xc � ~x and projecting it onto the ray, obtaining tclosest = ~� � ~!. The distance from
~z (tclosest) to ~xc is d = k~� � tclosest ~!k.
Intersections with other surface types require specialized code paths for each and can be arbitrarily

di�cult to compute. Modeling all surfaces as triangle meshes avoids this complexity. Only the

intersection test between a ray and a triangle is then required.

3.1.3.1. Möller-Trumbore Triangle Intersection

The Möller-Trumbore algorithm [MT97] e�ciently tests a ray and a triangle for intersection. If a

hit point exists, the corresponding ray parameter thit and barycentric coordinates u, v are returned.

Conceptually, the algorithm uses a transformation matrix M that maps 4 (~v0; ~v1; ~v2) to 4(~0;~i;~j)
and the ray direction ~! to ~k with ~i, ~j, ~k the unit coordinate axes. The hit point coordinates are then

(u; v; t)
T
= M ~x. These are obtained by Cramer's rule, following algorithm 3.1. Two triangle edges

are required. For e�ciency, these may be precalculated, storing ~v0, ~e1, ~e2 instead of ~v0, ~v1, ~v2 to

represent a triangle. Early outs exist whenever a coordinate is found to lie outside its valid range.

In the form presented here, u, v are both calculated �rst and then jointly tested in line 6. If the hit

point lies inside the triangle, its ray parameter t is computed on line 9. The test in line 10 determines

whether the hit point is located between a given minimum distance tmin and the nearest intersection

found so far at thit. If so, line 13 updates the nearest hit information.

Algorithm 3.1 Möller-Trumbore intersection test for triangle 4 (~v0; ~v1; ~v2) and ray ~z (t) = ~x+ t ~!

1: (~e1; ~e2) (~v1 � ~v0; ~v2 � ~v0)
2: ~� ~x� ~v0
3: (~p; ~q) (~! � ~e2; ~� � ~e1)
4: det�1 (~e1 � ~p)�1
5: (u; v) det�1(~� � ~p; ~! � ~q)
6: if u < 0 or v < 0 or u+ v > 1 then
7: return false

8: end if

9: t det�1 (~e2 � ~q)
10: if t < tmin or t > thit then
11: return false

12: end if

13: (uhit; vhit; thit) (u; v; t)
14: return true

3.1.3.2. Wald Triangle Intersection

Applying more precalculation allows for further e�ciency gains. The Wald intersection test [Wal04]

is based on the observation that hit point barycentric coordinates do not change when a triangle is

projected onto a plane. By performing the projection as a precalculation, the intersection problem

reduces to two dimensions. The precalculation steps are given by algorithm 3.2.

To minimize numerical error, each triangle is projected onto the coordinate plane on which it has

maximal area. The coordinate axes spanning this plane and the axis normal to it are referenced by

zero-based indexes i, j, k. ~n0 compactly encodes the triangle plane ~z � ~n = ~v0 � ~n, scaled such that

29

3. Related Work

Algorithm 3.2 Precalculation for Wald triangle intersection test
1: k argmax j~nij
2: (i; j) (k + 1; k + 2) mod 3

3: ~n0 ~n�1k (ni; nj ; ~v0 � ~n)T
4: ~e01 (�e1j ; e1i; det (~e1ji; ~v0ji))T det�1 (~e1ij ; ~e2ij)
5: ~e02 (e2j ;�e2i; det (~e2ij ; ~v0ij))T det�1 (~e1ij ; ~e2ij)

the third component of its normal is one and does not need to be stored. Vectors ~e01, ~e
0
2 encode the

edges ~e1, ~e2 projected onto the chosen plane, prescaled to reduce divisions. In total, nine �oating

point values and an integer k 2 f0; 1; 2g are precalculated per triangle.

Algorithm 3.3 illustrates the intersection test. First, indexes i and j are reconstructed from k.

Subsequent steps reference the i-th, j-th and k-th components of ~x and ~!. Reordering these into

vectors ~x0 and ~!0 places them at constant memory locations. An intersection test between the ray

and the triangle plane is performed next, enabling an early out if t < tmin or t > thit. Lines 7 and 8

compute barycentric hit point coordinates u, v using the two-dimensional projections ~e01 and ~e02. If

all coordinates are within their valid ranges, line 12 updates the nearest hit information.

Algorithm 3.3 Wald intersection test for a triangle represented by k; ~n0; ~e01; ~e
0
2 and ray ~z (t) = ~x+ t ~!

1: (i; j) (k + 1; k + 2) mod 3
2: (~x0; ~!0) (~x; ~!)ijk

3: t �
!0z + ~n0xy � ~!0xy

��1 �
n0z � x0z � ~n0xy � ~x0xy

�
4: if t < tmin or t > thit then
5: return false

6: end if

7: ~h ~x0xy + t ~!0xy
8: (u; v) (~e02xy � ~h+ e02z; ~e

0
1xy � ~h+ e01z)

9: if u < 0 or v < 0 or u+ v > 1 then
10: return false

11: end if

12: (uhit; vhit; thit) (u; v; t)
13: return true

Relative to algorithm 3.1, the advantages are a lower instruction count and an early out before ~e01
and ~e02 have been loaded from potentially slow memory. These come at the cost of more expensive

precalculation. On architectures with a swizzling operation, line 2 requires no branching and both

algorithms have identical branch counts. One di�erence between their variants presented here is that

the Möller-Trumbore test considers only one side of a triangle while the Wald test is double-sided.

3.2. Spatial Indexing

Testing all n surfaces for intersection has complexity O (n) and does not scale to large scenes. This

is addressed by organizing surfaces in the nodes of a spatial index. Whenever the ray misses a node,

any surfaces referenced by it can be safely ignored. In a hierarchical index, the nodes form a tree

data structure. Surfaces are typically referenced by leaf nodes only. When the ray misses an inner

node, the entire hierarchy rooted in it is culled, reducing average case complexity to O (log n). An

actual acceleration is obtained if traversal is fast and eliminates large subsets of data.

30

3.2. Spatial Indexing

In this thesis, spatial indexes over scene surfaces but also over photon interactions are used. Both

are jointly referred to as primitives here to unify the discussion.

3.2.1. Space Partitioning

One indexing approach is the subdivision of scene space into disjoint regions with each leaf node

referencing all primitives that intersect it. The simplest space partitioning is a uniform grid [FTI86].

A hierarchical grid [JW89] improves the indexing of uneven primitive distributions by recursively

embedding �ner grids where primitive density is high. Both data structures result in large storage

overheads for sparsely populated regions.

An octree [FTYK83] reduces overheads. Every inner node is evenly divided into eight children, e�ec-

tively embedding very low resolution grids inside each other. Further acceleration can be achieved by

constructing separate octrees for clusters of primitives and grouping these into a hierarchy [RAA+03].

Conceptually, each octree node subdivides its parent using three orthogonal planes. Performing only

one such subdivision per node, the binary space partitioning (BSP) tree [FKN80] is obtained whose

inner nodes consist of a single splitting plane and two child references.

The most popular space partitioning today [WMH+07] is the kd-tree [Ben75], a BSP-tree variant

in which each splitting plane is coplanar with one of the three coordinate planes. Nodes are highly

compact as a splitting plane can be encoded using one �oating point value for its distance from the

origin and an integer k 2 f0; 1; 2g for the normal direction. The two bits required for k may be stolen

from one of the child references and if sibling nodes are stored in pairs, the second reference dropped.

Using 32-bit �oating point values and child references, 8 bytes of storage are needed per node. In a

left-balanced kd-tree, nodes are arranged in heap order to implicitly encode the hierarchy, eliminating

the need for any child references [Jen01].

Separate kd-trees may be constructed for di�erent objects. When an object is a�nely transformed,

its kd-tree can then be retained [Wal04], transforming rays into the local coordinate frame during

traversal. Using two splitting planes per node allows more empty space to be cut o� [Hav00] at the

expense of higher storage requirements. Quantizing splitting plane coordinates [HMHB06] reduces

storage size but introduces a reconstruction overhead. Marking nodes entirely inside a watertight

object as opaque allows for faster detection of occluded shadow rays [DKH09].

3.2.2. Primitive Partitioning

Another approach is the subdivision of primitives into disjoint sets with each primitive referenced by

exactly one leaf. Since sibling nodes are no longer separated by a plane and may overlap, a bounding

volume must be stored for each that allows rays to be tested for intersection with it. While more

storage is required per node, fewer nodes are su�cient and duplicate references to primitives avoided,

yielding a lower total size than that of a kd-tree [GPSS07].

Proposed �rst are bounding volume hierarchies (BVHs) of oriented bounding boxes (OBBs) [RW80].

Many other bounding volume types are subsequently suggested [WHG84] with the slab, consisting of

two parallel planes [KK86], among the simplest. Today, BVHs are virtually synonymous with binary

hierarchies of axis-aligned bounding boxes (AABBs) [WMH+07]. When higher branching factors are

used, these follow from collapsing multiple levels of a binary hierarchy [DHK08]. In the following, a

binary AABB hierarchy is always meant when the term BVH is used unless speci�cally noted.

31

3. Related Work

A naïve node representation requires six �oating point values to encode bounds as signed distances

from the coordinate planes plus two child references in an inner node or a reference to the �rst

primitive and a primitive count in a leaf. Using 32-bit �oating point values and references, this leads

to 32 bytes per node. Memory requirements can be reduced in several ways. Reordering nodes to

implicitly encode the hierarchy eliminates some [Smi98] or all [CSE06] child references. If leaves

contain only few primitives, their bounding planes may be omitted, testing all primitives when their

parent is visited [FM86]. Replacing the bounds with quantized values allows for a further reduction

in node size to 20 [Ter01] or just 12 bytes [Mah05] at the expense of a reconstruction overhead during

traversal. Further savings are possible by applying a compression algorithm to the BVH [KMKY09],

allowing very large scenes to be processed but incurring a decompression cost.

Hybrid data structures aim to combine the simpler traversal of kd-trees with the lower memory

requirements of BVHs. H-trees [HHS06], Bounding interval hierarchies (BIHs) [WK06] and B-kd-

trees [WMS06] follow the same idea: Instead of storing the full bounding box of each child, only the

bounding planes for a single splitting axis are recorded. The main disadvantage are looser bounds.

H-trees improve tightness with interspersed AABB nodes cutting o� excessive empty space. Nodes

occupy 16 or 32 bytes each. B-kd-tree and BIH record child bounds in the parent node. A B-kd-tree

node is 16 bytes in size, bounding each child by two planes with 22 bit precision. BIH nodes occupy

12 bytes, storing one plane per child. The single slab hierarchy [EWM08] similarly bounds each node

with a single plane, using 8 bytes per node. Ray-strips [LYM07] and ReduceM [LYTM08] employ

tightly �tting BVHs over triangle strips and more lightweight BIHs inside the strips.

We address further potential for removing redundant information in section 6.2.

3.2.3. Construction

The spatial index provides acceleration when few of its nodes are visited and many primitives culled.

Manual construction of a high quality index [RW80] is only feasible for small, static scenes. In general,

an algorithm is required that automatically recursively subdivides the n primitives.

3.2.3.1. SAH

Simple strategies yielding binary hierarchies split each node at its primitive or spatial median [KK86].

Heuristic construction promises higher acceleration by choosing the pair of children L, R for each

node P that minimizes expected ray tracing cost. With pP , pL, pR the probabilities of nodes being

visited by a ray, CT the traversal cost for an inner node, CI the cost of a single primitive intersection

test and nP , nL, nR the numbers of primitives in each node, the cost metric is [Hav00]

CP (L;R) = pP CT + pL nL CI + pR nR CI : (3.12)

The method for estimating pP , pL, pR that yields the highest ray tracing acceleration currently

known is the surface area heuristic (SAH) [MB90]. With S the scene bounding box, the SAH makes

three assumptions:

� Ray origins are uniformly distributed in space outside S.

� Ray directions are uniformly distributed on the sphere of directions.

� No ray hits any primitives.

32

3.2. Spatial Indexing

Under these conditions, the probability that a ray intersecting S also intersects a node N is given

by the ratio of SA (N) and SA (S), their surface areas [KM63],

pN =
SA (N)

SA (S)
: (3.13)

Inserting the above into equation 3.12 gives the cost of each candidate split. When constructing a

kd-tree, O (nP) potential splitting planes lie at the starting and ending points of primitive AABBs

along the three coordinate axes [Hav00]. For a BVH, O (2nP) distributions of primitives to the two

children are possible. In practice, primitives are sorted by their centroids along the three axes and the

O (nP) partitions of these lists considered only [Wal07]. By sorting and then progressively splitting

candidate lists, the construction process reaches optimal O (n log n) complexity [WH06]. Recursion

terminates when the expected cost of a leaf is lower than that of any subdivision. This may be

detected locally at each node or globally for the entire hierarchy [HB02].

The SAH is able to shave o� primitives coplanar with the coordinate planes, producing nodes of

zero volume [WH06]. A number of modi�cations further improve acceleration. Biasing the heuristic

to favor cutting o� empty space is bene�cial [HKRS02]. When repeated intersection tests with

primitives referenced by several nodes are avoided by mailboxing [AW87], an adjusted cost metric

applies [Hun08]. Tightening AABBs after each step ensures they bound only the parts of primitives

not cut o� by splitting planes [HB02]. In a BVH, primitives are never cut and large outliers can

reduce acceleration. This is alleviated by representing a single primitive as multiple smaller AABBs,

built either before [EG07, DK08] or during BVH construction [PGDS09, SFD09].

While the SAH is highly successful, its assumptions are unrealistic. This motivates us to investigate

an alternative set of assumptions and the resulting ray tracing acceleration in section 4.1.

3.2.3.2. Faster Construction

In dynamically changing scenes, the spatial index needs to be updated every frame. A BVH can

be re�t by shrinking or expanding node bounds [LAM05, WBS07]. Complete reconstruction is still

required to ensure acceleration when cumulative changes degrade BVH quality [LYT06]. For a kd-tree,

only reconstruction is possible because sibling nodes must always remain spatially disjoint.

A complete reconstruction is expensive as the SAHmust be evaluated numerous times and sequential

since each node depends on its parent. Collecting primitives in small numbers of bins leads to reduced

cost by considering splits among these only [HKRS02] or using linear [PGSS06] or quadratic [HMS06]

interpolation of the SAH between bins. Clustering primitives in a preprocessing step similarly reduces

the number of candidate splits [Gar09]. Deeper in the hierarchy, primitive counts are lower and exact

SAH evaluation is possible again [HMS06, PGSS06]. If a new spatial index is constructed in each

frame, a cost metric biased toward the current virtual camera position may be used [Hav00].

If the top levels are covered in breadth-�rst search (BFS) order �rst, parallel construction of sub-

hierarchies is possible [PGSS06]. At the top, parallelization over primitives is demonstrated for both

BVHs [Wal07] and kd-trees [CKL+10]. Simpler primitive [SSK07] or spatial median splits [ZHWG08]

can be combined with the SAH deeper in the tree. The exact opposite is also advocated [PL10].

Constructing all nodes in BFS order [ZHWG08] maximizes parallelism but has large temporary

storage requirements for pending sub-hierarchies. Dynamically switching from BFS processing of

the entire hierarchy to a phase that completes un�nished sub-hierarchies [HSZ+10] reduces these.

Uniform grids �nally o�er simple reconstruction as no hierarchical dependencies exist [LD08, KS09].

33

3. Related Work

3.2.3.3. Linear BVH

A particularly fast and highly parallel BVH construction is possible using spatial median splits.

Given a set of points in space, their linear positions along a Morton curve can be independently

computed. The key insight is that sorting by these positions arranges the points in the depth-�rst

search (DFS) traversal order of a binary spatial median split hierarchy. This observation enables

fast octree construction for point clouds [AGCA08, ZGHG08] and leads to a highly parallel BVH

construction algorithm for the CUDA platform [LGS+09].

Regularly subdividing the scene AABB k times along each coordinate axis yields a grid of 23k cells.

The Morton curve traverses this grid in spatially coherent order such that cells close in space are

likely to be close on the curve. For a grid cell with k-bit coordinates x, y, z, its Morton curve position

is obtained by permuting the bits into z0y0x0z1y1x1 : : : zk�1yk�1zk�1 order, beginning with the most

signi�cant. This 3k-bit Morton code corresponds to the path from the root of a binary hierarchy to

the cell, each bit selecting one of two children. Every node is subdivided at its spatial median along

a coordinate axis that cyclically changes with hierarchy level. Combining three bits to indicate one

of eight children, the path through an octree is obtained [WvG92].

Linear BVH (LBVH) construction begins by creating a reference list. A key-value pair is output

for each of the n primitives in parallel, containing the Morton code of its centroid and a pointer to

the primitive. These references are sorted by Morton code using a parallel radix sort, resulting in

an implicit representation of the node hierarchy. The subsequent hierarchy construction is not fully

described but using recently published information [PL10], can be largely reconstructed.

For each pair of neighboring primitive references, a split list is created. If the most signi�cant bit

position at which their Morton codes di�er is m, the primitives have common ancestors on levels 0 to

m. Splits are output for levels m+ 1 to 3k (�gure 3.1(a)). A split is as a key-value pair of reference

index and hierarchy level. These are generated for all references in parallel, using a parallel prescan of

the split counts to concatenate them into a compacted list. This split list is then sorted by hierarchy

level, using parallel radix sort again (�gure 3.1(b)).

On each level, the interval of all reference indexes [0; n� 1] is subdivided into nodes by the splits

(�gure 3.1(c)). As a parent and its left child start with the same index, left children can be located

by processing the splits in levels and keeping track of the most recently constructed node starting at

each index. All splits on the same level may be handled in parallel.

To locate right children, additional steps are taken. A parent node and its right child end with the

same index. Sorting all nodes by their last index thus turns all parents and their right children into

neighbors, allowing them to be linked in parallel. After this, chains of singleton nodes referencing

only one child must be removed (�gure 3.1(c), levels 1 and 2). This is done by walking up from the

leaves in parallel and collapsing singleton nodes with their children. The �nal step turns the centroid

hierarchy into an actual BVH. An AABB is computed for each primitive. Child AABBs are then

combined by walking up the tree, processing all nodes on the same level in parallel.

We investigate the use of this algorithm to construct a spatial index over photon interactions in

section 6.1 and remove several of its ine�ciencies. A recent LBVH variant [PL10] also targets higher

e�ciency. To exploit spatial coherence, consecutive primitives are clustered by parallel compression

whenever the 3l most signi�cant bits of their Morton codes match. After a parallel radix sort of the

clusters, primitive references are extracted, using a parallel prescan of the cluster sizes to obtain their

positions in a compacted list. The references in each cluster are sorted by the remaining 3k� 3l bits

using only shared memory due to the smaller input sizes.

34

3.2. Spatial Indexing

0

1

1

0

1

01

1

0

0

0

1

C

EB

D

F

ALevel 2

Level 1

3210

Level 3

Index

(a) Four primitive references arranged in the order of their Morton codes 001, 011,
100, 101 and the splits generated between them, labeled with letters.

C A D B E F

(b) Splits sorted by hierarchy level.

0; 3Level 0

3210

0 B 1 2E 3FLevel 3

Index

0 A 2; 3D1Level 2

0; 1 2; 3CLevel 1

(c) On each level, the interval [0; 3] is subdivided by the splits into nodes. Left child
pointers are constructed with the nodes, right child pointers afterward. Singleton
nodes on levels 1 and 2 must be collapsed with their children.

Figure 3.1.: Linear BVH construction: Primitives are sorted in Morton curve order, splits generated
between them and traversed to construct a hierarchy of nodes.

Instead of creating and sorting a split list, multiple passes over the primitive references are made,

in each pass constructing p levels of nodes. Starting with the root, up to 2p � 1 subdivisions are

possible in the �rst pass. All primitive references are compared to their neighbors in parallel and

subdivisions collected in a temporary array. Nodes are constructed and the next pass commences,

repeating the process for the primitive references in each node on the p-th level. A parallel prescan

of all subdivision counts allows new nodes to be output in parallel. Data structures are maintained

that link each primitive to the most recent node which contains it, allowing parents and children to

be connected immediately. A parallel scan after each pass updates this data.

3.2.4. Traversal

During ray tracing, the spatial index is traversed from its root and any primitives encountered in the

leaves are tested for intersection. Should both children of a node be intersected by the ray, traversal

branches, requiring a recursion stack or an alternative method of returning to unvisited nodes.

A ray is de�ned by equation 3.1 and a parameter interval t 2 [tmin; tmax] with tmax � 1 the ray

length and tmin � 0 the minimal permitted hit point distance. Setting tmin = � > 0 allows spurious

intersections with the surface from which a ray originates to be ignored.

35

3. Related Work

3.2.4.1. kd-Tree

Each kd-tree inner node contains a splitting plane ~z � ~n � d = 0 separating its two children with

~n one of the unit coordinate axes. If ~n is the k-th axis, the ray intersects the splitting plane at

ts = (d� xk) !
�1
k . Child nodes are classi�ed as near and far according to their order along the ray.

For !k > 0, the left child is near and the right far, vice versa for !k < 0.

Three cases are possible. If ts > tmax, the ray intersects only the near child and traversal continues

with it. ts < tmin is the analog case for the far child. When neither is true, the ray straddles the

splitting plane and both children need to be visited. In the near child, the ray has parameter interval

[tmin; ts] and in the far, [ts; tmax]. Traversal continues with one of the children. The other child and

its parameter interval are pushed onto the stack. While children may be visited in any order, starting

with the �rst is more e�cient: If a hit is found, the ray is truncated at thit < ts and any nodes still

on the stack no longer need to be visited.

Upon reaching a leaf, its primitive references are processed. When a hit is found, the remaining

primitives in the current leaf must still be tested for intersection as there may be an even nearer hit.

Only for a shadow ray does the search immediately terminate since occlusion has been established.

If all primitives in a leaf have been tested and no hit was found, the top entry is popped o� the stack

and traversal continues with it. An empty stack indicates that the ray misses all primitives.

Whenever a parameter interval is popped, its start is identical to the end of the interval considered

until then. Rather than pushing the entire interval onto the stack, it is thus su�cient to store only its

end. The start is reconstructed by setting tmin tmax immediately before popping. A stack entry

thus holds one �oating-point value and one integer reference, a total of 8 bytes.

The properties of �oating-point arithmetic [IEE08] allow singularities to be handled without special

case treatment. By carefully arranging the conditional statements, !k = 0 or a node with zero volume

shortening the interval to a single point do not corrupt traversal [Wal04]. In the latter case and for any

primitive coincident with the bounds of its node, thit may lie slightly outside the parameter interval

due to imprecision. The interval should therefore be expanded by �� during leaf node traversal.

Photon mapping uses a kd-tree over photon interactions [Jen96]. A query consists of a point ~x

for which the primitives lying within a distance hmax of it are sought. The signed distance to the

splitting plane is � = xk � d, classifying the children as left near, right far if � < 0 and left far, right

near otherwise. If j�j > hmax, the near child is traversed only. For j�j � hmax, both children are

visited, pushing the far one onto the stack. Traversal ends when the stack is empty.

3.2.4.2. BVH

A BVH node is traversed using the slabs test [KK86]. For each coordinate axis, two node bounding

planes enclose a parameter interval [ta;k; tb;k] on the ray. The intersection [ta; tb] of these intervals

indicates the part of the ray intersecting the node (�gure 3.2(a)). When the intervals are disjoint

and their intersection is empty, the node is missed (�gure 3.2(b)). To account for ray start and end

distances, the interval is additionally intersected with [tmin; tmax].

The test is shown in algorithm 3.4. Vectors ~m and ~M encode front and back bounding planes as

signed distances from the coordinate planes. Where the ray direction has negative sign, these must

be swapped. Using the minimum and maximum of t1, t2 does so without branching (lines 6�7).

As each node bounds only itself, both children must be visited when [ta; tb] 6= ;. Without explicitly

loading the children, their order along the ray is unknown. A simple heuristic is to store the coordinate

36

3.2. Spatial Indexing

(a) An overlap indicates which part of the ray
intersects a node.

(b) Disjoint intervals imply a node missed by
the ray.

Figure 3.2.: Two-dimensional slabs test: Node bounding planes enclose ray parameter intervals on
both axes. The intervals overlap where the ray intersects a node.

Algorithm 3.4 Slabs test for node (~m; ~M) and ray ~z (t) = ~x+ t ~!

1: ta tmin

2: tb tmax

3: for k 2 fx; y; zg do
4: t1 (mk � xk)!

�1
k

5: t2 (Mk � xk)!
�1
k

6: ta max (ta;min (t1; t2))
7: tb min (tb ;max (t1; t2))
8: end for

9: if ta � tb then
10: visit children
11: end if

axis on which the node was originally split during construction and use the sign bit of the ray direction

for that axis to choose traversal order [Mah05].

When an AABB is stored for each node, the interval [ta; tb] can be calculated directly. Only a node

reference needs to be pushed onto the stack, occupying 4 bytes. Quantized BVH representations

use relative child bounds and require the parent AABB to be pushed as well. If only a subset

of bounding planes is stored, the parameter interval is pushed and progressively shortened during

traversal, analogously to a kd-tree. The BIH and B-kd-tree store child bounding planes at their

parent, obtaining intervals for both children simultaneously. This allows children to be visited in

their actual order along the ray and missed nodes to be skipped. By performing the slabs test for

pairs of sibling nodes together, the same is possible for BVHs [AL09].

For photon mapping, a BVH over photon interactions is of interest. During node traversal, the

position of a query point ~x relative to the six bounding planes is computed (algorithm 3.5). Both

children are visited if ~x is found to lie inside the node AABB.

Algorithm 3.5 Photon map test for node (~m; ~M) and point ~x
1: if mx < xx and my < xy and mz < xz and

Mx > xx and My > xy and Mz > xz then
2: visit children
3: end if

37

3. Related Work

3.2.4.3. Faster Traversal

On old hardware with slow �oating point units, determining the relevant planes �rst can be bene�cial.

If only the entry point into a BVH node is sought, the three back-facing bounding planes may be

ignored [Woo90]. Bounds coincident with those of a parent are similarly uninteresting [ST94].

The challenge on modern SIMD computer architectures is providing each instruction with multiple

data items to operate on. Grouping rays into packets allows a node or primitive to be tested against

these rays in parallel. First proposed for CPUs with 4-wide SIMD [WSBW01], packetization is also

applicable to custom hardware [SWS02] and CUDA with 32-wide SIMT [GPSS07]. Its limitation is

low SIMD utilization when incoherent secondary rays take di�erent paths and rays must be masked

o�. Even if all common traversal steps are extracted [Res06], SIMD utilization remains low.

Proposed techniques for improving coherence spawn shadow rays in packets targeting the same

light source [BWS03], separate shadow and re�ection rays [BEL+07], spawn packets of rays with

similar directions [SF07b] or combine these criteria [SCL05, SCL08]. Constructing a �ve-dimensional

tree over origins and directions allows any secondary rays to be reordered into coherent packets

instead [CHH02]. Directional bins provide a simpler reordering of rays by direction [HHS05]. While

reordering improves SIMD utilization, its overheads may not be recouped in practice [MMAM07].

An alternative parallelization approach is to test individual rays against multiple child nodes and

primitives at once, using a spatial index whose branching factor matches the SIMD width [EG08,

DHK08, WBB08]. Performance is gained for incoherent rays but lost in the coherent case [WBB08].

Another alternative is breadth �rst ray tracing [Han86]. By extracting only the rays visiting a node via

parallel compaction [WGBK05, BWB08, GR08, ORM08], any coherence between rays is automatically

found. The combination of both concepts leads to an algorithm that adaptively switches between

parallelization over rays and nodes [Tsa09]. Queuing rays at prede�ned points in the spatial index

extracts coherence in a similar manner [NFLM07].

When operating on a cluster of independent nodes, work may be distributed between these by

assigning each a subset of rays, as proposed for CPUs [WSBW01], custom hardware [SWS02] and

GPUs [STK08], or by allocating each to a spatial region [DS84]. Orthogonal to these techniques,

multiple intersection tests against the same primitive can be avoided by mailboxing [AW87], recording

for each primitive which ray it has been last tested against.

3.2.4.4. GPU Traversal

GPU ray tracing follows the rapid hardware evolution. The �rst approaches represent rays as pixels

and require a quad to be drawn for each primitive to trigger intersection tests. Which primitives to

test is determined by the CPU, either using a spatial index [CHH02] or not [PBMH02].

Traversal of a kd-tree on the GPU is added next. As graphics APIs expose no read-write memory

suitable for a stack, stackless traversal is used. The kd-restart algorithm resumes traversal from the

root with the ray shortened to begin at the current tmax whenever no intersection is found in a leaf.

kd-backtrack follows parent links placed in the tree during construction [FS05]. Adding packetization,

a short stack held in registers and pushing the restart point deeper into the tree whenever possible

removes most redundant traversals [HSHH07]. Stackless traversal in CUDA is demonstrated with

ropes pointing to adjacent nodes, threads representing individual rays and warp-sized packets making

coherent branching decisions for kd-trees [PGSS07] and BVHs [TMG09].

For a node with zero volume, restarting at the root leads to an in�nite loop as tmax has the same

38

3.3. Monte Carlo Rendering

value both before and after its traversal. Parent pointers or ropes incur signi�cant storage overheads.

We propose an algorithm in section 4.2 that ensures correct kd-tree traversal order using a single

register to hold additional information. Similar solutions have recently been applied to kd-trees with

parent pointers [HL09] and stackless BVH traversal [Lai10]. Testing the ray against a node yields the

decision to visit both, one or none of its children. The �rst case requires a single bit per hierarchy

level to remember whether the �rst child needs to be visited again when returning via parent pointers

or resuming from the root. In the other two cases, no additional storage is needed.

The more �exible CUDA programming model allows stacks for packets of rays to be placed in

shared memory [GPSS07]. Letting rays traverse nodes in optimal order without packetization further

increases performance [BAGJ08, ZHWG08] as threads executing the same instruction automatically

fall into lock-step, regardless of whether they are considering the same node or not. A simple kernel

that alternates between node traversal and primitive intersection achieves the highest performance by

allowing both phases to execute in lock-step [AL09]. Persistent threads read rays from a job queue,

circumventing the CTA scheduler optimized for uniform workloads. Stacks are located in slower local

memory as their total size exceeds shared memory capacity. In section 4.3, we explore the use of now

dormant shared memory as explicitly managed caches. Caching the stack top in fast memory has

recently similarly been proposed for a hypothetical manycore architecture [AK10].

A combination of breadth �rst ray tracing, higher spatial index branching factor and packetization

is also e�cient in CUDA [GL10]. Rays are sorted by hash values into coherent packets. These are

traced through a BVH in BFS order, constructing a compact job queue of node and packet pairs after

each level using a parallel prescan. Persistent threads are bene�cial again. Extending their concept

further, rays can be collected at prede�ned points in the spatial index to generate jobs that traverse

parts of the hierarchy together, reducing bandwidth requirements [AK10]. For the general problem

of scheduling nonuniform jobs in CUDA, multiple queues with task stealing or sharing are found to

perform best [CT08, TPO10].

NVIDIA OptiX [PBD+10] provides a commercial, binary only implementation of the currently

fastest ray tracing algorithms for CUDA.

3.3. Monte Carlo Rendering

The radiance reaching a virtual camera through any point in an image is given by equation 2.9.

Evaluating this recursive integral over hemispheres of directions naïvely would require an in�nite

number of rays to be traced for each pixel and is clearly impossible.

Ray tracing [Whi80] decomposes radiance into its direct and indirect components �rst. Only point

light sources are used, reducing direct illumination from an integral to a sum of contributions. A

shadow ray is cast for each light and equation 2.13 evaluated if no occlusion occurs. The indirect

component is computed for specular interactions only, following at most a single re�ection and a

single refraction ray per interaction. Rendering algorithms using Monte Carlo quadrature improve on

ray tracing, e�ciently simulating wide ranges of light paths.

3.3.1. Monte Carlo Quadrature

Let I be the integral of a function f over domain X. Monte Carlo quadrature [RK07] estimates

the value of I by drawing n random samples xi from X. With samples distributed according to a

39

3. Related Work

probability density function p, the estimator ~I is

I =

Z
X

f (x) dx =

Z
X

p (x)
f (x)

p (x)
dx = E

�
f (x)

p (x)

�
� 1

n

nX
i=1

f (xi)

p (xi)
=: ~I: (3.14)

Its variance �2 is given by

�2 =
1

n

Z
X

�
f (xi)

p (xi)
� I

�2

p (xi) dx:

Applying equation 3.14 to physically based rendering, any integral can be replaced with a weighted

sum of n rays cast into randomized directions. This is possible both for rays emitted by a virtual

camera and those traced in the opposite direction, from the light sources.

3.3.2. Rendering Algorithms

Distribution ray tracing [CPC84] extends the original ray tracing algorithm to randomly sampled ray

directions, simulating di�use and glossy interactions, area light sources, depth of �eld and motion

blur. Path tracing [Kaj86] spawns a single randomized re�ection or refraction ray and one shadow

ray at each interaction, eliminating branching during recursion.

By tracing rays from a virtual camera, these algorithms gather light. Only light paths of the form

LD (SjD)
�
E can be e�ciently simulated this way. At a specular interaction, illumination from a

single incident direction is relevant. If the last surface encountered was specular, the probability

of �nding a light source in the relevant incident direction would be limited by occlusion for area

lights and zero for point lights. Shooting light from the sources instead allows paths of the form

L (SjD)
�
DE to be simulated, again ending in a di�use interaction. Bidirectional algorithms have

two passes, in the �rst shooting light and in the second gathering the stored information.

Early techniques store information on surfaces. In backward ray tracing [Arv86], each ray carries

a fraction of the total light source �ux and splats it into a texture map on the �rst di�use surface

seen after a specular interaction. Subsequently, splatting into texture maps with adaptive resolution

even without a prior specular interaction is suggested [Hec90], storing global instead of only indirect

illumination. The radiosity algorithm [GTGB84] calculates indirect illumination by solving a system

of linear equations encoding links between surface patches. Only di�use interactions are considered,

calculating irradiance due to emittance on other surfaces. Bidirectional ray tracing treats illumi-

nated surfaces as secondary light sources [CF87]. Common to these algorithms are the storage of

accumulated directionless quantities and aliasing artifacts due to limited resolution.

Bidirectional path tracing [VG94] connects the endpoints of paths traced in both directions and

accounts for all L (SjD)
�
E light path types. Its downside is high variance in the Monte Carlo

estimates, requiring very large numbers of samples. Metropolis light transport [VG97] begins with

paths generated by bidirectional path tracing. These undergo repeated mutations by the Metropolis-

Hastings algorithm, accepting or rejecting each new path with conditional probability so that their

distribution approaches that in an ideal image. All paths have identical contributions and are splat

into the image. The di�culty lies in designing mutation strategies that explore the entire space of

paths through the scene while providing a high acceptance probability, reducing the computational

overhead of generating candidate paths that are subsequently discarded.

40

3.3. Monte Carlo Rendering

3.3.3. Sampling

Although the estimator ~I in equation 3.14 is unbiased for n � 1 and any density function p with

f (x) 6= 0) p (x) > 0, the choices of n and p have in�uence on its variance and thus, image noise.

Increasing n reduces variance but also raises computational cost as more rays need to be traced.

Optimizing the sampling strategy reduces variance without requiring additional samples.

3.3.3.1. Importance Sampling

If the integrand has constant sign, p / jf j yields zero variance. This optimal choice is unattainable in

practice as its de�nition p (x) = f (x) I�1 depends on the unknown integral I. Importance sampling

approximates the optimum by adjusting p to resemble f based on available information. Following

equation 2.9, re�ected radiance is an integral of the BRDF f , incident radiance L and an inclination

factor cos �i. With L typically unknown until a ray has actually been traced, BRDF-weighted sampling

using p / f cos �i is common [Whi80]. If photons are traced from the lights in a preprocessing pass and

their interactions with the scene recorded, L can be approximatively importance-sampled by locating

nearby interactions [Jen95]. Analogous information is obtained for the photons by prepending another

pass in which importons are traced from the virtual camera [PP98]. The theoretical basis for these

techniques is an adjoint relationship between light and importance [Chr03].

When not limited to point lights, shadow rays need to be distributed over light source areas.

Importance sampling of the radiance emanating from a light source is shown for area lights [KK02]

and environment map illumination [ARBJ03]. In both cases, strati�ed sampling is used, dividing the

integration domain into strata and drawing a prede�ned number of samples from each. For complex

distributions, resampled importance sampling [TCE05] improves e�ciency by �rst drawing several

candidates from a simpler distribution and then choosing a sample xi among these to approximate

the desired distribution.

3.3.3.2. Quasi-Random Sampling

Avoiding a clumping of random samples in parts of the integration domain further reduces variance.

Jittered sampling divides X into n equally sized strata and places one sample in each [Coo86]. Latin

hypercube sampling [MBC79] evenly divides X into n intervals on each coordinate, drawing samples

such that every interval contains exactly one. Quasi-random sampling guarantees an even distribution

by replacing randomization with deterministic low-discrepancy sequences of samples. Although a

variance reduction is proven for integrands of �nite variation only, applications to the rendering

equation also bene�t, despite in�nite variation at surface boundaries [SKP99].

The quasi-random Halton sequence [Hal60] consists of elements xi =
Pj

k=1 ikm
�k with ik the k-th

least signi�cant bit of i and m a prime number. These j-bit samples regularly �ll the interval [0; 1]

with increasing density. Multidimensional samples are obtained by combining xi for di�erent m. The

Sobol' sequence [Sob67] consists of xi = i1v1 � i2v2 � : : :� ijvj where � is the exclusive-or operation

and the vk are precalculated direction numbers. These samples �ll the range
�
0; 2j � 1

�
with the

desirable properties of jittered and Latin hypercube sampling and lower regularity than a Halton

sequence. Multidimensional samples are obtained by combining xi for di�erent direction numbers.

Quasi-random sampling is deterministic and introduces bias in the form of structured noise. This is

addressed by randomized scrambling for both the Halton [Sch08] and Sobol' [KK02] sequences.

41

3. Related Work

3.3.3.3. Adaptive Sampling

With adaptive sampling, samples are placed in parts of the integration domain for which convergence

has not been reached yet. The established method for primary rays emitted by a virtual camera is to

recursively subdivide the image, casting more rays where the di�erence in radiance between neighbors

exceeds a threshold [Whi80]. When tracing in the opposite direction, suggested subdivision criteria

are neighboring hit points too distant in space [Hec90] or lying on di�erent surfaces [Col95]. If the

samples represent complete paths through the scene, comparing the radiance returned by neighbors

is proposed [HJW+08]. For shadow rays, arranging light sources in the order of expected contribution

allows sampling to be halted when a radiance threshold is reached [ARBJ03]. An alternative to such

empirical criteria is nonextensive Tsallis entropy [XSXZ07]. After estimating the correlation between

neighboring samples from a pilot pass, sampling proceeds until entropy falls below a threshold.

Control variates are another variance reduction technique. By approximating I based on nearby

samples �rst and then drawing samples only to adjust this approximation, an estimator with lower

variance is obtained [PWP08, PBSP08]. The number of samples is again adaptively decided.

3.4. Photon Mapping

Algorithms storing illumination on surfaces cannot reproduce all light path types. Those connecting

paths traced from both directions su�er from high variance. Photon mapping [Jen96] provides an

alternative to both. In the �rst pass, photons carrying �ux are traced from the light sources and their

interactions with surfaces stored in a spatial data structure independent of scene geometry.

The second pass traces rays from a virtual camera. At di�use and glossy surfaces, illumination

is reconstructed by density estimation. Photon interactions located nearby are assumed to lie on a

planar surface with constant BRDF around the query point ~x. Their �uxes �i;j are re�ected by the

BRDF f and divided by the area A from which the interactions have been collected, yielding an

estimate of the re�ected radiance for query direction ~!. Combined with re�ection rays at specular

interactions and shadow rays for direct illumination, all light path types are simulated.

Photon mapping is a biased rendering algorithm: Estimating illumination from an area around

the query point leads to blurring; treating the underlying surface as locally �at disregards curvature

and discontinuities at silhouettes. Collecting interactions from a smaller area reduces bias but in-

creases variance. An automatic tradeo� is achieved by locating a �xed number k of nearest photon

interactions and setting the area A to the cross section of their bounding sphere around ~x. Bias is

low in regions of dense illumination but allowed to increase where interactions are sparse, countering

the higher variance. Photon interactions after LS+D paths are stored in the caustic photon map, all

others in the global photon map, separating sharp caustics from slowly varying global illumination.

The image is synthesized using a combination of techniques. Shadow and re�ection rays handle

direct illumination and specular interactions. Optional shadow photons traced through surfaces allow

shadow rays to be omitted where light source visibility can be interpolated. Density estimation in the

caustic photon map provides caustics. For other indirect illumination, �nal gather rays are spawned,

performing density estimation in the global photon map at their hit points. This additional level

of indirection turns reconstructed global illumination into indirect illumination. An alternative is to

store the second and later interactions of each photon only, directly recording indirect illumination

and eliminating the need for computationally expensive �nal gather.

42

3.4. Photon Mapping

3.4.1. Photon Tracing

Photons are traced identically to rays originating at a virtual camera, using the same spatial index and

traversal algorithms. Importance-sampling light source area [Jen95] or area and intensity [LP03] on

emission generates photons with equal �ux, minimizing variance. If importons have been traced from

the virtual camera in a preprocessing pass, the relevance of emission points and directions to the image

is estimated from these and also importance-sampled [PP98]. Projecting object bounding volumes

onto a texture map around an emission point allows directions to be ignored in which no objects are

present [JC95]. Following pilot photons is more e�cient [GMSJ03] but carries the risk of missing

small objects. For caustic photons, emission toward specular objects only is analogously possible by

using projection [Jen96] or pilot photons [GWS04]. Instead of separating global and caustic photons

at emission, a photon map can be chosen for each based on its most recent interaction [KW00].

Distributing photon emission in time enables the simulation of motion blur [CJ02].

Photon di�erentials [SFES07] apply the concept of ray di�erentials to photon mapping, assigning

each photon interaction an individual footprint. We show in section 5.1.1 how to initialize di�erentials

so that the distances between photons in parameter space do not need to be tracked.

An interaction is stored whenever a photon encounters a di�use or glossy surface. At each surface

hit, Russian roulette [AK90] decides between onward tracing and termination. Importance-sampling

re�ectivity �, a sample y 2 [0; 1] is uniformly drawn. If y < �, a new direction is chosen by BRDF-

weighted sampling, combined with the relevance of directions to the image if importons have been

traced [PP98]. If y � �, the path ends. This technique decides between specular interaction, di�use

interaction and termination in an unbiased way and allows �ux to remain unchanged [Jen96]. When

using multiple color bands, Russian roulette is based on the average re�ectivity and the �ux of a

surviving photon must be scaled by �i�
�1
average for the i-th color band. A separate Russian roulette

for each color [LP03] is an alternative. In section 5.1.4, we show how to update photon di�erentials

to approximatively take Russian roulette into account.

3.4.1.1. Selective Storage

Nearby importons allow the relevance of a photon interaction to be estimated. Importance-sampling

a corresponding storage probability leads to more interactions being recorded where their relevance

to the image is high [KW00]. A storage probability can alternatively be derived from the ratio of

desired and current interaction density. Desired densities based on importons for global photons and

constant for caustic photons are proposed [SW00]. Storing all photon interactions �rst and then

eliminating those too dense achieves a similar e�ect without requiring importons [HHS05]. Total �ux

is maintained by scaling the �ux of stored interactions by the inverse storage probability [KW00] or

distributing that of rejected interactions to others stored nearby [SW00, HHS05].

Superimposing a uniform grid on the scene allows regions of high and low interaction density to be

separated [TMS04a]. Interactions are recorded in a low energy global photon map until their number

in a cell exceeds a threshold. Subsequent interactions falling into the same cell are directed to a high

energy map, forming concentrated clusters that can be approximated as secondary light sources.

3.4.1.2. Selective Tracing

Unless importons have been used in their construction, photon maps are view independent. Photons

need to be retraced and photon maps reconstructed only when light sources or scene geometry change.

43

3. Related Work

The cost of doing so is amortized by exploiting coherence between frames. Retracing after all changes

have completed [PDC+03] is simplest but leads to outdated illumination in intermediate frames. The

quasi-random Halton sequence allows photon paths to be sampled in coherent groups. A priority can

be computed for each group from its estimated visual importance and the number of pilot photons

encountering dynamic objects. This enables progressive updates by retracing the highest priority

groups in each frame. Obsolete interactions are removed by following the original paths with negative

�ux [DBMS02]. More aggressive retracing invalidates any group for which a single pilot photon

deviates from its previous path [LC04]. When no changes occur in the scene, photon interactions may

be accumulated over multiple frames, exploiting coherence to increase photon map quality [GWS04].

3.4.1.3. Participating Media

The photon mapping algorithm is readily extended to the simulation of light transport in participating

media [JC98]. In addition to the caustic and global photon maps, a volume photon map is constructed

that stores extinction events of photons passing through the medium.

A fraction �a (t) of photons is absorbed and a fraction �s (t) scattered by the participating medium

per unit distance traveled. With �e (t) = �a (t)+�s (t) the extinction coe�cient, the total di�erential

change in the number of photons m following a path ~z (t) = ~x+ t ~! thus is

dm

dt
(t) = ��e (t)m (t) :

Under the boundary condition m (0) = 1 for a single photon, this di�erential equation yields

m (t) = e�
R
t

0
�e(s) ds: (3.15)

An individual photon is extinguished at exactly one distance te, found by importance-sampling the

cumulative distribution function 1�m (t). Ray marching locates the extinction distance by advancing

through the medium in small steps �t. The conditional probability that a photon is extinguished

within an interval [t; t+�t] after passing through [0; t] before is approximated as

P (te 2 [t; t+�t] j te =2 [0; t]) =
m (t)�m (t+�t)

m (t)
= 1� e�

R
t+�t
t

�e(s) ds � 1� e��t�e(t+�t):

This probability is sampled by Russian roulette, taking another step or reporting an extinction.

For homogeneous media, equation 3.15 simpli�es to

m (t) = e��et:

1� e��et can be importance-sampled without ray marching by drawing a uniform sample y 2 (0; 1]

and transforming it to te = ���1e log y. For inhomogeneous media, using �t = ���1e (t) log y adapts

the ray marching step size to local extinction. Adaptation by comparing medium properties at ~z (t)

and ~z (t+�t) is another possibility [Jen01]. Curved paths through a medium with inhomogeneous

index of refraction are simulated by adjusting the direction after each step [GMSJ03]. Its piecewise

constant approximation of the extinction coe�cient makes ray marching biased. A provably unbiased

alternative [Col68] is to take steps of size �t = ���1e;max log y with �e;max an upper bound on the

extinction coe�cient and decide after each step with probability 1 � �e (t+�t) ��1e;max whether to

44

3.4. Photon Mapping

take another step or report an extinction [WMHL65]. Regardless of sampling scheme, if a surface is

reached before extinction occurs, the photon interacts with the surface.

Each extinction is stored in the volume photon map �rst. Then, Russian roulette decides between

absorption and scattering. If the photon is scattered, a new direction is chosen by importance-

sampling the phase function. Adding a second Russian roulette that decides about re-emission after

absorption and importance-sampling the quantum e�ciency function extends the method to inelastic

scattering between wavelengths [GMAS05], allowing light transport in complex atmospheric models

to be simulated [GSMA08]. In section 7.2, we show how photon di�erentials can be updated to

approximatively take into account extinction, absorption and scattering. Concurrent work [Sch09] is

limited to approximating the last two e�ects only.

3.4.2. Density Estimation

Photon maps allow re�ected radiance to be estimated. Originally based on both mathematical trans-

formations and intuition [Jen96], the estimator can be derived in a more rigorous way.

The relationship between re�ected radiance Lr leaving a surface at a point ~x in direction ~! and

that Li incident from the hemisphere
i above it is given by the rendering equation 2.8 as

Lr (~x; ~!) =

Z

i

f (~x; ~!i; ~!)Li (~x; ~!i) j~n � ~!ij d
i:

Inserting the de�nition of radiance from equation 2.2 yields

Lr (~x; ~!) =

Z

i

f (~x; ~!i; ~!)
d2�i

dAd
i

(~x; ~!i) d
i:

Assuming the surface is planar with constant BRDF, neither
i nor f vary with position ~x, allowing

di�erentiation with respect to area A and integration over
i to be exchanged,

Lr (~x; ~!) � d

dA

�Z

i

f (~!i; ~!)
d�i

d
i

(~!i) d
i

�
(~x) :

This expresses re�ected radiance as the density of re�ected intensity per unit area, providing the

basis for weighted kernel density estimation [Par62]. When n samples of the intensity at positions ~xj
are known, re�ected radiance at ~x can be estimated as the sum of their values weighted by a smoothing

kernel K with bandwidth h centered around each,

Lr (~x; ~!) �
nX
j=1

1

h2
K

�
~x� ~xj
h

��Z

i

f (~!i; ~!)
d�i

d
i

(!i) d
i

�
(~xj) :

Individual samples are computed from photon interactions. Each interaction expresses the incidence

of a �ux �i;j at a position ~xj from a direction ~!i;j . As the �ux is incident from a single direction,

the BRDF can be moved outside the integral, leading to

Lr (~x; ~!) �
nX
j=1

1

h2
K

�
~x� ~xj
h

�
f (~!i;j ; ~!)

�Z

i

d�i

d
i

(!i) d
i

�
(~xj) ;

45

3. Related Work

Lr (~x; ~!) �
nX
j=1

1

h2
K

�
~x� ~xj
h

�
f (~!i;j ; ~!) �i;j : (3.16)

The smoothing kernel must integrate to one [Par62]. Photon mapping adds the requirements of

radial symmetry, K(~d) = K(k~dk), and local support, k~dk � 1) K(~d) = 0. The latter ensures the

kernel is nonzero only within a radius h of query point ~x, allowing photon interactions outside it to

be ignored. Initially proposed are the uniform and cone kernels [Jen96]. The �rst is constant, the

second decays linearly with distance according to a parameter c � 1. Quadratic decay provided by

the Epanechnikov kernel [Epa69] has superior statistical properties. For k~dk < 1, these kernels are

Ku(~d) =
1

�
; Kc(~d) =

c� k~dk�
c� 2

3

�
�
; Ke(~d) =

1� k~dk2
1
2�

:

Photon interactions are collected from a sphere with radius h around the query point ~x. Any h > 0

introduces proximity bias, blurring as the illumination estimate at a point is based on information from

a region. Other forms of bias arise when the assumption that all interactions lie on the same planar

surface is violated. If the surface is curved, its area is underestimated, resulting in topological bias.

Where the surface ends at a silhouette, its area is overestimated, yielding boundary bias. Collecting

interactions from within a sphere and assuming they lie on one surface additionally introduces the

risk of capturing interactions with other nearby surfaces, leading to illumination bleeding.

3.4.2.1. k-th Nearest Neighbor

Using a smaller bandwidth reduces bias but increases variance. Automatic balancing of variance and

bias is achieved by locating the k interactions nearest to the query point ~x and setting the bandwidth

to h = k~x� ~xkk [LQ65]. This yields the k-th nearest neighbor density estimator

Lr (~x; ~!) � 1

k~x� ~xkk2
kX

j=1

K

�
~x� ~xj
k~x� ~xkk

�
f (~!i;j ; ~!) �i;j :

Di�erential checking allows the value of k to also automatically be chosen. For each ~x, k is increased

until a systematic change in the estimate occurs, indicating an illumination boundary at the current

bandwidth [Jen01]. The di�culty of detecting systematic changes in practice is addressed by assuming

that an initial estimate based on the kmin nearest interactions is unbiased and then performing a

binary search in [kmin; kmax] for the nearest illumination boundary, using the central limit theorem

to di�erentiate between variance and bias [Sch03].

Topological and boundary bias are reduced by explicitly locating nearby surfaces and calculating

a separate kernel support area for each interaction [HP01]. Using a spatial index lowers the cost

of this method [HP02a]. Constructing separate photon maps for groups of surfaces and collecting

interactions only from the photon map corresponding to the surface on which ~x lies counters light

leaking [LC03]. A more uniform distribution of interactions can be ensured by applying a di�usion

process to their positions, constraining motion to avoid crossing illumination boundaries [SJ09].

Progressive photon mapping [HOJ08] reformulates density estimation such that �ux is accumulated

at each query point with continuously shrinking bandwidth while photons are being traced. This

removes the need to construct and store photon maps. Follow-up work [HJ09] computes density

estimates for query areas instead of points, simulating depth of �eld.

46

3.4. Photon Mapping

Motion blur is simulated by collecting the photon interactions nearest in space and time. The

kernel support becomes the product of a disc in space and an interval in time [CJ02].

Storing photon rays instead of the interactions at their ends and collecting all rays that intersect a

planar kernel of �xed bandwidth around ~x eliminates boundary bias. Extending rays so that occlusion

by the surface containing ~x is ignored reduces topological bias. Query coherence is exploited by

maintaining a hierarchy of bounding spheres. During retrieval, the smallest sphere enclosing ~x is

located and the hierarchy rooted in it reconstructed, retrieving only the rays relevant within that

sphere [LURM02]. A combination of photon rays and k-th nearest neighbor density estimation is

obtained by retrieving the k rays passing nearest to ~x, using the maximum of the distance to a ray

and to its intersection with the tangential plane at ~x as distance metric [HBHS05].

Collecting the k nearest photon interactions or rays is expensive as it requires a set of candidates

to be retrieved from a region around the query point and a priority queue to be constructed that

identi�es those nearest [Jen01]. For small k, storing more than k interactions per photon map leaf

allows a tight upper bound on h = k~x� ~xkk to be computed after visiting a single leaf, immediately

culling all nodes outside it [VBS99]. Coherence between queries is exploited by �nding photon map

nodes relevant to ~x and a small region around it. If the next query point falls into the region, the set

of nodes is reused without traversal [HBHS05]. Alternatives that eliminate the need to retrieve and

classify candidate interactions are bandwidth selection based on path di�erentials originating at the

virtual camera [SW01] and on ray di�erentials tracked with �nal gather rays [CLF+03].

3.4.2.2. Histogram

A simpler form of density estimation is histogramming. Instead of centering a kernel around each,

contributions are collected in prede�ned bins. Final gather rays importance-sample directions by

accumulating the �ux of the k nearest photon interactions re�ected by the BRDF in directional

bins [Jen95]. The relevance of directions to the image is computed analogously from the re�ected

contributions of the k nearest importons [PP98].

3.4.2.3. Variable Kernels

Selecting a bandwidth per photon interaction instead of per query point leads to variable kernel density

estimation [BMP77]. The estimator obtained from equation 3.16 by inserting variable bandwidths is

Lr (~x; ~!) �
nX
j=1

1

h2j
K

�
~x� ~xj
hj

�
f (~!i;j ; ~!) �i;j : (3.17)

This method computes the contributions of all photon interactions independently while retaining

the ability to balance variance and bias by varying the bandwidths hj . Given an upper bound h

on hj , only photon interactions within a radius h around query point ~x are relevant. These may be

collected by traversing a photon map or by splatting a kernel for each.

An early technique [SWH+95] subsequently adopted for splatting on a GPU [SB97] computes a

bandwidth per surface from its area and the number of photon interactions. Iterative re�nement per

interaction is added by estimating variance and bias from the number of splats contributing to each

pixel and reducing bandwidths where variance permits [LP03]. Clipping kernel support areas against

the surfaces they are splat on further reduces boundary bias. An alternative with better balancing of

variance and bias is bandwidth selection by least-squares cross-validation on the interactions [LP02].

47

3. Related Work

Additional boundary bias reduction results from extended triangles around surface silhouettes that

store interactions without in�uencing photon paths, tracing beyond interactions in corners and clip-

ping kernel support areas against the plane from which photons are emitted. A simpler option is to

base bandwidths on the distances between interactions and the virtual camera [KBW06].

Keeping track of neighboring photons allows splatting of joint kernels with anisotropic support

regions as spanned by the photon rays [IDN02] or interactions [UPSK08]. Alternatively, a bandwidth

may be extracted for each photon from the footprint spanned by neighboring interactions [Wym08]. In

a geometrically simple scenario, the footprint can be estimated directly [WD06]. Photon di�erentials

provide more general and robust footprint calculation [SFES07]. Combined with the surface normal,

a kernel support region in the form of a skewed ellipsoid stretching along illumination boundaries is

obtained. Originally applicable to specular interactions only, a subsequent extension [Sch09] approx-

imatively takes di�use interactions and Russian roulette into account. In chapter 5, we describe our

extension that o�ers alternative solutions for these e�ects.

Using inverse photon path probabilities to compute bandwidths is proposed when splatting photon

rays to �nal gather points. The probabilities are estimated from the spreading of paths during

propagation and the sample distributions at surface interactions. A dampened adaptation of kernel

support areas to the probabilities avoids excessive bandwidths [HHK+07]. We use these ideas in

chapter 5 when extending photon di�erentials and computing anisotropic kernel support regions for

photon interactions. Other applications to bandwidth selection at photon interactions combine the

concept with compressing kernels along the normal to reduce light leaking and topological bias [ML09]

or bandwidths calculated per surface [YWC+10].

Reverse photon mapping [HHS05] constructs a kd-tree over photon interactions and calculates

bandwidths from the interaction densities in its leaves. Another kd-tree is then constructed over

�nal gather points and traversed by the kernels, splatting their contributions. An implementation

in custom hardware exists [SF07a]. This reformulation provides an algorithmic improvement during

kd-tree traversal as the number of photon interactions is signi�cantly lower than that of �nal gather

points. However, a subsequent analysis [SF07b] reveals that the main bandwidth cost occurs during

kd-tree construction, making reverse photon mapping algorithmically slower overall.

When importance-sampling �nal gather ray directions, variable kernel density estimation is possible

by centering a kernel on the hemisphere of directions around each nearby photon interaction [HP02b].

3.4.2.4. Participating Media

Photon mapping assumes radiance is invariant along straight lines. When a participating medium is

present in the scene, radiance transfer follows equations 2.18 and 2.19 instead, becoming subject to

extinction, in-scattering and medium emission.

Shadow rays are a�ected by extinction only. With transmittance � accumulating the e�ects of

extinction along a ray, the radiance returned by a shadow ray for an unoccluded light source is

Li (~x;�~!) = � (0; tmax)Le (~r (~x;�~!) ; ~!) :

The transmittance of a homogeneous medium � (0; tmax) = e��etmax is evaluated directly. For an

inhomogeneous medium, ray marching is used. Taking smax steps, the medium is approximated as

locally homogeneous in each. The s-th step advances from parameter value ts to ts+1 with step size

�ts = ts+1 � ts. Given starting point t1 = 0, the transmittance is approximated as

48

3.4. Photon Mapping

� (0; tmax) = e�
R
tmax
0

�e(t) dt � e�
Psmax

s=1 �ts�e(ts) =

smaxY
s=1

e��ts�e(ts): (3.18)

Any other rays are subject to the full range of e�ects modeled by equations 2.18 and 2.19,

Li(~x;�~!) = � (0; tmax)Lo (~r (~x;�~!) ; ~!)

+

Z tmax

0

� (0; t)

�
�s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i + � (t; ~!)

�
dt:

(3.19)

Ray marching is used again. Approximating the medium as homogeneous and the incident radiance

�eld as constant in every step and using the approximation of transmittance from equation 3.18,

Li(~x;�~!) �
smaxY
s=1

e��ts�e(ts)Lo (~r (~x;�~!) ; ~!)

+

smaxX
s=1

�ts

s�1Y
r=1

e��tr�e(tr)
�
�s (ts)

Z

4�

p (ts; ~!i; ~!)L (~z (ts) ; ~!i) d
i + � (ts; ~!)

�
:

(3.20)

The �rst term is evaluated by computing Lo at the nearest surface seen using the original photon

mapping algorithm, then attenuating it by marching along the ray to accumulate transmittance. For

the second term, radiance in-scattered from a sphere of directions
4� must be gathered after each

ray marching step. The problem is converted to one of density estimation. Section 2.1.4 provides

the relationship
�
dL
dt

(~z (t) ; ~!)
�
extinction

= ��e (~z (t))L (~z (t) ; ~!) between radiance and its di�erential

change due to extinction by absorption and out-scattering, allowing the radiance in the integrand to

be expressed in terms of extinction on a ray traveling through ~z (ts) in direction ~!i with parameter ti.

Combined with the de�nition of radiance from equation 2.1, an identity is obtained,

� �e (ts)L (~z (ts) ; ~!i) =

�
dL

dti

�
(~z (ts) ; ~!i)

extinction

=

�
d3�

dti dA?i d
i

�
(~z (ts) ; ~!i)

extinction

=

�
d2�

dV d
i

�
(~z (ts) ; ~!i)

extinction

:

(3.21)

After dividing by��e (ts), this identity is inserted for L (~z (ts) ; ~!i) in equation 3.20. Approximation

as a locally homogeneous medium with constant radiance �eld allows di�erentiation with respect to

volume V and integration to be swapped. Coe�cients �s and ��1e further combine into albedo �

according to equation 2.20 and the second term in equation 3.20 becomes

smaxX
s=1

�ts

s�1Y
r=1

e��tr�e(tr)

� (ts)

d

dV

 Z

4�

p (~!i; ~!)

�
� d�

d
i

(~!i)

�
d
i

extinction

!
(~z (ts)) + � (ts; ~!)

!
:

In-scattered radiance is now expressed as the density of in-scattered intensity per unit volume,

enabling weighted kernel density estimation. Each of the n extinction events in the volume photon

map corresponds to a change in �ux by ��i;j on a ray traveling in direction ~!i;j at a position ~zj

due to extinction in the participating medium. A sample of in-scattered intensity is obtained from

it analogously to section 3.4.2 by exploiting the single incident direction to move the phase function

outside the integral, then integrating the �ux to ��i;j , yielding

�
smaxX
s=1

�ts

s�1Y
r=1

e��tr�e(tr)

0
@� (ts) nX

j=1

1

h3
K

�
~z (ts)� ~zj

h

�
p (~!i;j ; ~!) �i;j + � (ts; ~!)

1
A : (3.22)

49

3. Related Work

This equation is evaluated by ray marching and kernel density estimation [JC98]. Starting at the

end of the ray, in each ray marching step radiance accumulated so far is attenuated by the next term

of equation 3.18, in-scattered radiance is computed by k-th nearest neighbor density estimation and

the radiance emitted by the medium is added. Similarly to section 3.4.2.1, the k nearest extinction

events are found and a symmetric kernel with bandwidth h = k~z (tc)� ~xkk is centered around each.

A simple uniform kernel is proposed with K(~d) = 3
4� for k~dk < 1 and zero otherwise. Only the second

and later extinction event are stored for each photon, representing multiple scattering. Radiance in-

scattered directly from the light sources is computed separately by casting shadow rays from ~z (ts)

toward the lights after every ray marching step.

Ray marching backwards through the medium and updating the accumulated radiance corresponds

to a numerical integration of the radiative transfer equation 2.17 underlying equation 3.19. Higher

order methods increase precision so that Euler integration [GMSJ03] is outperformed by Dormand-

Prince [GMAS05]. Extending density estimation to evaluate the contributions of an extinction event

to all simulated wavelengths via the quantum e�ciency function improves quality when simulating

inelastic scattering in a complex atmospheric model [GSMA08].

The beam radiance estimate [JZJ08a] is a more e�cient reformulation of volumetric photon map-

ping. A bandwidth is calculated for each extinction event from the estimated distance to its k-th-

nearest neighbor. Rays then traverse the photon map and gather in-scattered radiance using the

variable kernel method. All extinction events whose kernel is intersected by a ray are collected in a

single query, eliminating the need for ray marching other than to accumulate transmittance. Density

estimation occurs over the two-dimensional area orthogonal to the ray with a planar kernel centered

around each event. Although a mathematical derivation is provided, the resulting physical units are

incorrect. We rederive the beam radiance estimate with correct units in chapter 7 and show how to

eliminate its k-th nearest neighbor preprocessing pass by using photon di�erentials.

3.4.3. Photon Map

Interactions are scattered throughout the scene. A photon map organizes them in the nodes of a

spatial index, accelerating their retrieval during density estimation.

3.4.3.1. kd-Tree

The spatial index initially proposed [Jen95] is a left-balanced kd-tree storing one photon interaction

per node. This corresponds to primitive median splits with splitting planes shifted to the right such

that the left child contains a complete tree. As the kd-tree has no holes, its nodes can be laid out

in heap order to implicitly encode the hierarchy. Separate kd-trees are constructed for caustic and

global photons [Jen96]. Importons are indexed by an additional kd-tree [PP98, SW00]. For photons

distributed in space and time, a kd-tree subdividing either space or space-time can be used [CJ02].

Storing AABBs at all nodes and placing photon interactions in hash tables at the leaves improves

node culling [VBS99]. Partitioning surfaces yields a smaller kd-tree over the interactions with each

subset. Automatic division into connected groups of triangles with smoothly varying normals is used

to reduce light leaking [LC03]. Manual partitioning into groups of surfaces [LC04] or objects [CB04]

ensures that the kd-trees do not exceed memory limits.

Removing the balancing requirement makes child pointers necessary but enables �exible placement

of splitting planes. Photon interactions can progressively be inserted as they occur [SW00]. Splitting

50

3.4. Photon Mapping

at the spatial median accelerates construction while also improving retrieval performance [GWS04].

Reverse photon mapping uses sliding-midpoint subdivision, shifting the spatial median splitting plane

to the nearest interaction if one of the child nodes would be empty otherwise. Interactions are stored

at leaves only [HHS05] or at all nodes [SF07a].

Heuristic construction analogous to section 3.2.3.1 further accelerates retrieval. At each node P ,

the pair of children L, R is chosen that minimizes expected retrieval cost. When storing an interaction

at every node, the cost CT of traversing a node and that CI of testing a primitive are identical. With

CT = CI , this value has no in�uence on the optimization and equation 3.12 simpli�es to

CP (L;R) = pP + pL nL + pR nR: (3.23)

The probabilities pP , pL, pR of nodes being visited are estimated by the voxel volume heuristic

(VVH) [WGS04]. During density estimation, candidate interactions within a maximum distance hmax

of query point ~x are initially retrieved. After k have been found, the search radius is progressively

reduced to the distance of the currently k-th nearest interaction. The probability that a node must

be visited is therefore bounded above by and can be approximated as the probability of ~x falling

either inside the node or within a distance hmax of its bounds. This region is further approximated

as the node AABB extended by hmax on each side. Assuming a uniform distribution of query points

throughout the scene, the probability is proportional to the volume of the region. With S the scene

bounding box and V�hmax
the volume of an AABB extended by hmax on every side, the probability

that a node N has to be visited is thus approximated as

pN � V�hmax
(N)

V�hmax
(S)

: (3.24)

A candidate splitting plane passes through each interaction on every axis. As in section 3.2.3.1,

optimal O (n log n) construction complexity is achieved by progressively splitting sorted candidate

lists. Recursion terminates and a leaf is constructed whenever a single primitive is reached. E�cient

construction of a kd-tree with approximated VVH in CUDA is demonstrated by modifying a method

approximating the SAH [ZHWG08].

We adapt the VVH from kd-trees to BVHs in section 6.1 and show that retrieval performance does

not signi�cantly exceed that obtained by applying faster LBVH construction to photon interactions.

3.4.3.2. Alternatives and Extensions

A uniform grid is simpler to construct and traverse than a kd-tree [WKB+02]. However, a study

of photon map cache e�ciency [SCL05, SCL08] shows it to perform worst among di�erent data

structures. For small cache lines, a kd-tree is best and for large cache lines, a kdB-tree [Rob81]. A

reordering of �nal gather points to increase their coherence is also analyzed and found to have higher

impact overall than the choice of data structure. Sorting along a spatial Hilbert curve yields the

greatest acceleration. Partial reordering [SF07b] stops the sorting process when further overheads

are not likely to be recouped.

For photon rays, a kd-tree is constructed by spatial median subdivision with each leaf referencing

the rays that intersect it [HBHS05]. To add directional culling, interspersed nodes separate rays

facing forward and backward of a surface. Rays for surfaces with similar normals are included in

each child, extending the culling to these. Construction is lazy with nodes subdivided on query and

51

3. Related Work

collapsed when a memory limit is reached. The bounding sphere hierarchy used to exploit coherence

between queries [LURM02] is a similarly lazily constructed data structure.

While k-th nearest neighbor density estimation operates on point data, the variable kernel method

uses kernels with known bandwidths. This allows a tight AABB to be computed around each kernel

and motivates our investigation of a BVH photon map in chapter 6, replacing space partitioning with

primitive partitioning. Since there is no need to calculate separate bandwidths from the k nearest

caustic and global interactions, a single photon map is used for both.

3.4.3.3. Participating Media

Extinction events in a participating medium are indexed by an additional left-balanced kd-tree [JC98].

The beam radiance estimate employs this kd-tree as a temporary data structure. For each extinction

event, a kernel bandwidth is calculated by retrieving the m � k nearest events and estimating the

distance to the k-th nearest from these. A BVH is subsequently constructed over the kernels, reusing

the hierarchical structure of the kd-tree by adding AABBs to its nodes [JZJ08a].

In chapter 7, we show how to derive bandwidths for extinction events from photon di�erentials.

No temporary kd-tree or approximative k-th nearest neighbor retrieval is required. Instead of being

an additional data structure, our BVH replaces the kd-tree.

3.5. Simpli�cation

The cost of physically based rendering is successfully reduced by e�cient ray tracing and density

estimation. Reordering visible surface points so that those sharing a BRDF and thus having common

processing steps are considered together realizes additional coherence bene�ts [HLJH09]. Simulating

light transport remains computationally demanding, however. When interactive frame rates are a

priority, the focus may be shifted from physical accuracy to plausibility, synthesizing visually pleasing

simpli�cations of the most signi�cant optical phenomena. Simpli�cation is not a goal of this thesis but

provides the important context of alternative approaches to interactive physically based rendering.

Current GPUs are optimized for rasterization [SA10]. This is equivalent to the tracing of primary

rays with a common origin and deterministic, uniform directions [HSHH07]. Combined with shadow

maps [Wil78] or shadow volumes [Cro77], rasterization computes direct illumination and provides a

baseline for adding simpli�cations of other e�ects.

Indirect illumination arriving from di�use surfaces varies smoothly. This enables the simpli�cation

of sampling it more sparsely, either by synthesizing and upsampling a lower resolution image or by

permitting higher variance and interpolating between pixels. A discontinuity bu�er [Kel97b] receiving

information about the surface seen at each pixel prevents interpolation across silhouettes and sharp

edges. Interleaved sampling [KH01] formalizes the concept by tiling an irregular sampling pattern

over the image that partitions it into interleaved grids of identically sampled pixels. Interpolation over

a neighborhood e�ectively reconstructs the complete pattern at each pixel. Reordering operations so

that the pixels of a grid are processed together yields coherent sampling [SIMP06].

3.5.1. Virtual Point Lights

Point lights are the simplest light source type. By approximating complex illumination with point

light sources, its computation is simpli�ed and accelerated.

52

3.5. Simpli�cation

3.5.1.1. Instant Radiosity

The instant radiosity algorithm [Kel97a] simulates indirect illumination by distributing virtual point

lights (VPLs) on surfaces. A small number of paths are traced from the light sources, placing VPLs at

the surface hit points. Di�use surfaces yield isotropic VPLs, glossy surfaces spot VPLs. Illumination

is gathered by blending images lit by the VPLs. Plausible color bleeding results but the small number

of VPLs blurs illumination boundaries. When only light sources change, images lit by VPLs can be

reused across frames [SSSK04]. The validity of each VPL in the current frame is determined by

tracing a ray from the updated light source position to the �rst interaction on its path. If no occluder

is found, the image lit by the VPL is reweighted by its current �ux and reused.

For computation on a cluster of CPUs, the original rasterization with shadow volumes is replaced by

ray tracing with shadow rays toward the VPLs [WKB+02]. Interleaved sampling reduces the number

of shadow rays required. Follow-up work improves coherence by distributing image tiles instead of

interleaved pixel grids to the cluster nodes [BWS03] and adds a preprocessing pass to estimate light

source importance, assigning each light a corresponding number of VPLs and omitting shadow rays

where importance is low [WBS03].

The visual signi�cance of illumination diminishes with bounce depth, the number of interactions

between light and surface. Concentrating on single-bounce indirect illumination is therefore a plausible

simpli�cation [TL04]. Re�ective shadow maps (RSMs) [DS05] accelerate VPL construction in this

case. Shadow map texels sampled by a precalculated pattern are directly interpreted as VPLs. A

simple shader gathers their illumination without detecting occlusion. Follow-up work uses splatting

instead [DS06]. VPLs are placed at a subset of RSM texels by importance-sampling the product

of �ux, BRDF and relevance to the image, the latter estimated by ambient occlusion [Lan02] from

nearby surfaces. An ellipsoid bounding the region of signi�cant contribution is rasterized for each

VPL and illumination is again computed in a shader that ignores occlusion.

Sampling the scene from the virtual camera to distribute additional VPLs and assigning these

negative �ux that cancels extraneous illumination approximates the e�ect of VPL occlusion [CS07].

Ambient occlusion in image space [SA07] provides a fast approximation of nearby occluding faces.

Interpreting these surface samples as VPLs, single-bounce indirect illumination is estimated [RGS09].

False occlusion is reduced by using additional information about surfaces not seen from the virtual

camera, obtained by depth peeling [Eve01] or from images synthesized for other virtual camera

positions. Taking multiple samples in the same direction counters missed occlusion.

The splatting of VPL illumination is accelerated by iteratively subdividing a single large splat at

surface and illumination discontinuities to construct a hierarchy of smaller splats with approximatively

uniform contributions. These are rasterized into a multiresolution bu�er such that each splat covers

only a single pixel, reducing bandwidth cost [NW09]. The results are upsampled and blended. Follow-

up work [NSW09] replaces iterative subdivision with a single step in which splats at all resolutions

are found. A single quad is rasterized, culling nonexistent splats using the GPU stencil bu�er and

gathering illumination in a shader. VPLs are distributed by similarly subdividing an RSM at surface

discontinuities. In subsequent work [NW10], alternative splat subdivision criteria are suggested that

better detect discontinuities.

Distributing VPLs by the Metropolis-Hastings algorithm is an alternative to both tracing paths

and sampling RSMs [SIP07]. Virtual pinhole cameras are similar in concept to VPLs but approximate

caustics due to a single specular interaction instead. The cameras are placed by uniformly sampling

specular surfaces. Their contributions are computed in a shader that re�ects the query direction and

53

3. Related Work

looks up incident illumination in an environment map. A footprint for the look-up is calculated from

the partial derivatives of the re�ected direction, similarly to ray di�erentials [WS03].

3.5.1.2. Clustering

In the lightcuts algorithm [WFA+05], all illumination is approximated by a large number of VPLs. A

hierarchy of VPL clusters is constructed with a representative VPL chosen for each by importance-

sampling �ux. At a query point, a cut through this light tree is iteratively re�ned, replacing any

node whose approximation by the representative VPL introduces error above a perceptual masking

threshold with its children. Only the contributions of the representative VPLs in this cut are then

evaluated. Precalculating cuts at the corners of image tiles accelerates the process. Follow-up work

adds an analogous hierarchy of query points [WABG06]. A single cut through the cross product of

light tree and query point tree is found. Motion blur is simulated by distributing VPLs and query

points in time, scattering in a homogeneous participating medium by placing them in the medium at

distances proportional to its density.

Coherence between the frames of a prede�ned animation is exploited by clustering both VPLs and

frames [HVAPB08]. One image of the scene is rasterized per cluster, illuminated by its representative

VPL in the representative frame. The pixels are then reweighted and reprojected to all frames

spanned by the cluster. Clustering VPLs into virtual area lights allows their visibility to be e�ciently

estimated by soft shadow mapping [DGR+09].

3.5.2. Photon Mapping

A simpli�ed photon mapping algorithm that focuses on the phenomenon of sharp caustics is obtained

by emitting caustic photons only. As instant radiosity approximates smoothly varying indirect il-

lumination, the two algorithms are complementary and their results can be combined [WKB+02].

Further simpli�cation potential exists in approximating photon mapping calculations.

3.5.2.1. Ray and Photon Tracing

Simpli�ed surface representations improve ray tracing and thus also photon mapping e�ciency. A

volumetric representation records which cells of a uniform grid are intersected by surfaces. Re�ection

and refraction of viewing rays are approximated by mapping slices of the grid onto a mesh and

displacing its vertices [IDN02]. Geometry images store the vertices of a triangle mesh in texture

map color channels [GGH02]. GPU ray tracing is demonstrated with stackless traversal of a BVH

constructed by recursively combining four texels into a parent [CHCH06]. Simplifying surfaces by

reducing the tessellation level is suggested where ray di�erentials span a large footprint [CLF+03]

or when computing indirect illumination in general [TL04]. A point based surface representation

accelerates �nal gather [REG+09]. Each point corresponds to a small disc on a surface. A hierarchy

of point clusters with larger discs as representatives is constructed. To gather illumination, a cut

through the hierarchy is found and rendered into a micro-bu�er such that each disc projects to a

single pixel. A warped perspective provides BRDF importance sampling.

For caustic photons that propagate through a small part of the scene only, approximative tracing

in image space is possible. After rasterizing di�use surfaces as seen from the light into a texture map,

a specular object is rasterized in the same perspective, each pixel corresponding to the emission of

one photon. Specular interactions are computed in a shader and the subsequent hit points found by

54

3.5. Simpli�cation

iterative search in the texture map of di�use surfaces [SKP07]. Rasterizing the front and back surfaces

of a specular object into separate texture maps allows refraction at its back to also be approximated,

either in a single step [Wym05] or iteratively for higher precision [LWL06]. Adaptive emission reduces

the number of photons by subdividing the view of the scene from a light until the photons emitted

either all miss the specular object or su�ciently converge [WN09].

Another method for image space tracing iteratively searches environment maps of the surrounding

di�use and specular surfaces rasterized from the center of a specular object [SKALP05]. Environment

maps around multiple points distributed in the scene extend this technique to interactions with

occluded surfaces and to global photon mapping [YWC+10]. One more approach uses depth peeling

to obtain information about occluded surfaces, tracing rays by rasterizing lines that cover all pixels

with potential hit points and searching for the hits in a shader [KBW06]. A recent survey [SKUP+09]

provides an overview of such approximative techniques.

3.5.2.2. Density Estimation

Retrieving an approximate candidate set from a hashed photon map [MM02] yields a simpli�cation of

k-th nearest neighbor density estimation. A uniform grid photon map leads to further simpli�cation

as its cells can be traversed in distance order, collecting an approximation of the k nearest interactions

without constructing a candidate set �rst [PDC+03]. Ranged search also removes the need to classify

candidates, approximating the bandwidth h by binning nearby interactions into distance ranges and

iteratively subdividing the range that contains the k-th nearest instead [ZHWG08]. When splatting

kernels, rasterizing them into a multiresolution bu�er at several prede�ned bandwidths allows k-th

nearest neighbor density estimation to be approximated. For each query point, the bu�er resolution

is read at which approximately k splats contribute [WD06].

The use of a �xed bandwidth [WKB+02] simpli�es variable kernel density estimation by forgoing

any automatic balancing of variance and bias at di�erent query points. On a GPU, storing interactions

in texture maps allows a simple shader to collect those within a �xed bandwidth in image space [LC04]

or texture space [CSKSN05]. Splatting kernels into the image [KBW06] or texture maps [SKP07]

achieves equivalent results. For variable bandwidths, combining convergent interactions into a single

splat and rasterizing larger splats at coarser levels of a multiresolution bu�er reduces the memory

bandwidth required [Wym08].

3.5.2.3. Photon Map

An approximative alternative to the kd-tree are multiple hash tables with randomized hash bucket

boundaries that index blocks of interactions [MM02]. A di�erent insertion order in each table and

displacement of the most frequently referenced block on collision reduce the risk of blocks becoming

unreferenced. When constructing photon maps on a GPU, early models with limited programmabil-

ity permit only simple data structures. A uniform grid of �xed capacity cells is proposed [PDC+03].

Should a cell become full, the �ux of subsequent interactions falling into it is redistributed to those al-

ready stored. Even simpler is a texture map with capacity for a single interaction per texel [CSKSN05].

If multiple photon interactions fall onto the same texel, �ux is accumulated or one of the interactions

chosen as a representative.

When splatting kernels, no retrieval of nearby photon interactions is required and no spatial index

needs to be constructed over these.

55

3. Related Work

3.5.3. Object Space Interpolation

Employed in object space, the simpli�cation of sparsely sampling and interpolating slowly varying

illumination accelerates its computation at scene surfaces.

3.5.3.1. Caching

A caching scheme lazily samples illumination. For each query point ~x, interpolation from cache records

valid at ~x is attempted �rst. Only if an insu�cient number are found is a sample computed and stored

in a new cache record. First proposed is irradiance caching [WRC88] for di�use surfaces. Validity

regions and interpolation weights are calculated from local surface complexity and changes in normal

direction, concentrating records along edges and in corners where illumination discontinuities exist.

Estimating rotational and translational gradients enables higher order interpolation [WH92]. This

technique is used in the original photon mapping algorithm [Jen96]. Modi�cations of the validity

increase it in corners [TL04] or reduce it where the query point is closer to the virtual camera

than the cache record [SCL08]. Transforming cache records with the dynamic objects they lie on

allows approximative reuse across frames [TMS04b]. Irradiance contributions are stored for individual

sampling strata and a subset selected by importance-sampling age is updated per frame.

If the BRDF at a query point is not di�use, the entire incident radiance �eld is required to compute

outgoing illumination. Radiance caching [KGPB05] records incident radiance in spherical or hemi-

spherical harmonics [GKPB04] with 9 harmonic coe�cients known to be su�cient for slowly varying

illumination [RH01]. Cache records are rotated into the local coordinate frame at ~x, removing the need

for rotational gradients. Strati�cation of the samples used to generate records is added in follow-up

work [KGBP05] and the precision of gradients improved. When reusing cache records across frames,

estimating temporal validity and gradients increases interpolation quality [GBP07]. Storing quadtrees

of directional contributions at the records allows directions to also lazily be sampled [GK09]. The

BRDF at a query point is importance-sampled and the decision whether to interpolate or compute a

new sample made for each direction separately.

Splatting cache records is more amenable to a GPU. New records are generated after splatting

where accumulated interpolation weights lie below a threshold [GKBP05]. Reducing the validity of

existing records where perceptible discontinuities are detected improves quality [KBP�06]. Validity is

furthermore reduced when gradients are large or local geometric complexity is higher at neighboring

records. Reducing validity only across discontinuities preserves interpolation along these [HMS09].

The lightcuts algorithm is used in this work with separate caches for direct and indirect illumination.

When simulating light transport in hair, a separate cache per strand is suggested [MM06].

Radiance caching for participating media [JDZJ08] separately caches single scattering from lights,

from other surfaces and multiple scattering. Illumination is gathered by ray marching, interpolating

after each step with exponential weights that approximate attenuation. Validity is computed from

relative gradient magnitudes. Follow-up work [JZJ08b] provides translational gradients for irradiance

caching at surfaces in a participating medium, taking into account the in�uence of the medium.

When using control variates to reduce sampling variance, incident radiance and its di�erence from

a prior estimate are cached in directional bins. At a query point, this information is interpolated and

new samples are used to improve the resulting estimate only [PBSP08]. In follow-up work [PWP08],

the idea is applied to participating media, caching in-scattered radiance.

56

3.5. Simpli�cation

3.5.3.2. Precalculation

Sampling illumination a priori decouples sampling and interpolation but requires precalculation points

to be selected by another method. Mesh vertices [Gou71], surface patches [GTGB84] and texture

map texels [Arv86] are simple choices. Using the vertices of a mesh with independent tessellation

enables re�nement over consecutive frames. Surfaces selected by importance-sampling the age of and

di�erence between the samples at their vertices are updated by tessellating further or recomputing

the samples [TPWG02]. Depending on the BRDF, outgoing radiance toward the virtual camera or

irradiance is precalculated. Reuse across frames is proposed for texture maps of irradiance obtained

by photon mapping [LC04]. The update order is chosen by estimating accumulated illumination

changes since the last update from photon interactions.

Final gather for photon mapping is accelerated by precalculating irradiance at photon interactions

and retrieving it at �nal gather points from the nearest interaction with similar surface normal [Chr99].

No normal comparison is required when groups of surfaces with smoothly varying normals have

separate photon maps [LC03]. A hierarchy over the interactions with interpolated irradiance at inner

nodes allows retrieval by footprints obtained from ray di�erentials [CB04]. Precalculating irradiance

only for a cut through a hierarchy chosen such that its nodes do not span illumination discontinuities

reduces cost [WWZ+09]. Final gather is further performed at the centers of query point clusters only,

using these as precalculation points of incident radiance expressed in spherical harmonics.

The latter is also proposed for �nal gather from radiosity patches [AFO05]. Slowly varying radiance

incident from distant surfaces is precalculated at query point clusters. Radiance incident from nearby

surfaces is computed per query point, ignoring mutual occlusion and approximating the occlusion of

distant surfaces. Classifying each patch individually [SSS02] ensures that irradiance is precalculated

for those with slowly varying contributions only. Precalculation points are arranged in a perspective

grid covering the view frustum. Instant radiosity is accelerated by omitting shadow rays where VPL

visibility precalculated for randomized surface regions is uniform [GWS05].

Precalculating irradiance in directional bins at grid points allows interpolation also for small objects

subsequently added to the scene [GSHG98]. A uniform grid is used with �ner grids embedded where

objects exist. When only the virtual camera changes, incident radiance precalculated in directional

bins can be reused [Wal05]. Precalculation points randomly distributed on surfaces are proposed. If

light sources may change as well, indirect illumination can e�ciently be updated and splat into the

image by precalculating a matrix of direct-to-indirect transfer coe�cients for a hierarchy of random

surface points [LZT+08].

3.5.3.3. Iterative Propagation

When illumination is to be sampled at selected precalculation points, propagating radiance between

these only applies the same simpli�cation to light transport. The original radiosity algorithm solves

a system of linear equations encoding links between di�use surface patches [GTGB84]. Progressive

radiosity [CCWG88] obtains the solution iteratively by propagating the exitance of the patch with

the largest remaining �ux in each iteration. Adding photons emitted along the links allows paths

with specular interactions to also be simulated [GDW00]. Propagation along links between mesh

vertices is analogous to that between surface patches [STK08]. Asynchronous updates are suggested,

rasterizing the most recent complete solution in each frame. Rasterizing the scene from a patch and

computing its contributions to other patches in a shader requires no explicit link calculation [CHL04].

57

3. Related Work

For a uniform grid of precalculation points, rasterizing environment maps around these computes

links [NPG03]. Incident radiance expressed in spherical harmonics at the grid points is propagated

iteratively. Embedding �ner grids around the virtual camera concentrates samples nearby [KD10].

Intensity and a coarse representation of nearby geometry are stored in spherical harmonics. During

iterative propagation to neighboring grid cells, the simpli�ed surface representation yields a rough

approximation of the fractional occlusion between them.

Outgoing radiance in directional bins at glossy surface patches is iteratively propagated on a GPU

by rasterizing the patches in precalculated order for each direction [MKS07]. A reformulation of the

rendering equation with implicit visibility iteratively propagates incident radiance and antiradiance to

directional bins at all surfaces on its path. Occlusion is accounted for by the antiradiance [DSDD07].

3.5.4. Participating Media

Several algorithms address light transport in participating media by focusing on speci�c scenarios.

Accumulating emitted and in-scattered radiance by recursive ray marching from the virtual camera is

viable for �re and smoke as low albedo leads to shallow recursion [NFJ02]. Focusing on attenuation

due to absorption, the e�ect of a participating medium reduces to occlusion. This is simulated by

splatting the medium density into a shadow map [YFSZ06]. A recent representative of the cloud

rendering scenario [BNM+08] is based on the concept of most probable paths [PARN04]. For each

point on the rasterized cloud surface, a shader iteratively re�nes an estimate of the collector area

through which 95% of the radiance reaching this point enters the cloud. Propagation in the cloud is

precalculated. Separate collector areas are found for di�erent scattering depths.

3.5.4.1. Single Scattering

A plausible simpli�cation for participating media with low albedo is the simulation of single scattering

only, eliminating recursion. Marching through the medium by rasterizing sampling planes orthogonal

to the viewing direction accumulates in-scattered radiance for the entire image in parallel [DYN00]

with occlusion modeled by a shadow map. Follow-up work [DYN02] uses sub-planes to more densely

sample the shadow map and light source intensity. Ray marching with uniform step size in light space

is proposed to better sample a texture map expressing its intensity distribution [GMF09]. Interleaved

sampling reduces computational cost [TU09]. When the medium is inhomogeneous, rasterizing planes

orthogonal to the viewing and light source directions in parallel accumulates the attenuation of in-

scattered radiance as well [ZC03]. Convolution with a smoothing kernel approximates a blurring of

the attenuation due to multiple scattering.

Precalculating in-scattered radiance with gradients at points iteratively distributed in space where

discontinuities exist [RZLG08] replaces gathering with splatting into a three-dimensional texture map

subsequently rasterized in slices. Precalculation points distributed in image space instead are obtained

by adaptively re�ning a sampling along the rays emanating from a light source [ED10]. Radiance is

interpolated at the majority of the precalculation points and from these to the image.

The e�ect of refraction at participating medium boundaries on incident radiance can be simulated

with refracted shadow rays [WZHB09]. Radiance in-scattered to the medium and incident on the

surfaces embedded in it is gathered by ray tracing. Refracted shadow rays are computed for a query

point by a shader that iteratively re�nes the rays passing through each triangle forming part of the

medium boundary. A spatial index reduces the number of triangles searched.

58

3.5. Simpli�cation

3.5.4.2. Airlight Integral

Ray marching to gather in-scattered radiance solves the airlight integral. An e�cient approximation

of the integral value for single scattering in an isotropic, homogeneous medium exists as a closed-form

expression with precalculated components stored in look-up tables [SRNN05]. A point spread function

is additionally derived that can be convolved with an environment map to approximate the e�ect of

single scattering on it. Follow-up work extends the method to anisotropic scattering [HHC+06]. A

more accurate approximation subsequently devised [PP09b] is then further improved to a closed-form

solution without approximation or precalculation [PSP10].

These methods compute in-scattered radiance for an unoccluded ray. To account for occlusion,

shadow volumes, the bounding planes of occluded scene regions, are rasterized and the integral values

for ray segments passing through unoccluded regions accumulated only [BAM06]. A less accurate

approximation of the airlight integral is used but may be replaced with the originally proposed

expression [WR08]. The shadow volumes can be obtained by extrusion of a shadow map [BSA10].

A classi�cation of scene regions into occluded, unoccluded and uncertain instead follows from object

bounding volumes [Nil08]. With these, ray marching is required where occlusion is uncertain.

An extension of the concept to an inhomogeneous medium whose density is modeled as sum of

Gaussians exists [ZHG+07]. In-scattered radiance is accumulated by splatting the Gaussians and

evaluating the contribution to the integral value for each.

3.5.4.3. Discretization

Using a grid of precalculation points for radiance storage and propagation simpli�es computations. An

early cloud rendering method [Bli82] employs a two-dimensional grid, simulating single scattering only.

Later work [KvH84] uses a three-dimensional grid to precalculate radiance subsequently gathered by

ray marching. If the albedo is high, multiple scattering is simulated with radiance stored in spherical

harmonics and propagation between grid points via links encoded in a matrix. The discrete ordinates

method for radiative transfer simulation [Cha50] discretizes directions as well, limiting storage to

directional bins at grid points and propagation to their central directions. An application to computer

graphics reduces discretization artifacts by propagating exitance from each bin to all bins covering

its solid angle [Max94]. A �ner subdivision of directional bins during propagation similarly reduces

artifacts [Fat09]. Both methods sweep through the medium for iterative propagation.

Precalculation points at randomly distributed particles are an alternative to a grid [SKSU05]. The

links between neighboring particles in randomly sampled directions and their radiance are stored

in texture maps. A quad is rasterized to iteratively propagate radiance from all particles to their

neighbors in a shader. The particles are then splat to the image.

Rasterizing the participating medium in slices, single scattering is simulated by accumulating in-

scattered radiance attenuated according to transmittance precalculated at grid points. This accounts

for the most probable paths from light to virtual camera [PARN04]. Blurring according to a point

spread function approximates the e�ect of neighboring paths contributing multiple scattering and

is e�ciently possible by look-up in a coarser version of the precalculation grid. Di�usion theory

allows for another approximation of multiple scattering [SKLUT09]. Radiance is decomposed into

�uence and vector irradiance. Both are propagated by ray marching from the light source. Assuming

concentric layers of the participating medium are homogeneous, the di�usion equations simplify to

allow for e�cient approximation of multiple scattering then stored in a concentric grid.

59

3. Related Work

For a medium with inhomogeneous index of refraction, propagation occurs by adjusting direction

after each ray marching step [IZT+07]. Four neighboring rays are traced together, forming a wavefront

patch. Irradiance and wavefront direction are stored at the grid points encountered. The irradiance

follows from patch �ux and area. With a volumetric surface representation also stored in the grid,

gathering by ray marching obtains in-scattered radiance and that re�ected by surfaces.

3.5.4.4. Photon Mapping

A number of simpli�cations target volumetric photon mapping. For density estimation by splatting

with a kernel preintegrated along the viewing direction, transmittance to the virtual camera and

phase function are approximated by evaluating these at the center of each splat only [BPPP05].

An approximation of crepuscular rays is obtained by rasterizing a line along the path through the

participating medium taken by each caustic photon [KBW06]. Applying these methods to underwater

caustics and crepuscular rays, a kernel bandwidth is chosen according to the distance of a splat from

the virtual camera [PP09a]. Blurring of the resulting images counters aliasing artifacts. A more

comprehensive approximation of di�erent light paths is obtained by combining the splatting of caustic

photons onto surfaces, rasterization of crepuscular rays and an airlight integral technique computing

further in-scattered radiance [HDI+10].

Two photon mapping variants for �re and smoke focus on artistic control over physical accuracy.

Photons are emitted within the medium, storing their extinction events and surface interactions. In

the �rst method [KIB05], �ash photons are added that provide a bright �ash around the participating

medium. When propagating outside the medium, a �ash photon stores �ux along its path in a �ash

photon map until eventual extinction. Density estimation for �ash photons is simpli�ed as the �ux

stored is constant. The second method [Min06] stores extinction events in a three-dimensional grid.

Positions are discretized to a sub-grid. Density estimation occurs by collecting all extinction events

within a constant bandwidth of a ray.

60

4. Ray and Photon Tracing

Photon mapping traces photons from the light sources, rays from the virtual camera and shadow rays

from the light sources again. Each is an instance of ray tracing. Ensuring that this key operation

achieves high performance on the CUDA manycore platform is the subject of this chapter.

Ray tracing is inherently scalable by processing rays in parallel. Our e�orts thus concentrate on

reducing computational cost per ray. With nT the number of nodes traversed in the spatial index,

nI the number of surfaces tested for intersection and CT , CI the costs of these operations, total

cost is nT CT + nI CI . nI and nT are minimized by constructing a kd-tree that optimizes expected

ray tracing cost. A low CI results from modeling all surfaces as triangle meshes and employing the

e�cient Wald intersection test. CT depends on the e�ciency of kd-tree traversal.

Our �rst contribution is SIROH, a novel heuristic for estimating expected ray tracing cost yielding

kd-trees with lower nT , nI and higher ray tracing performance than the best currently known heuristic,

the SAH, for many scenes. SIROH is the result of a cooperation with Colin Fowler.

We then address traversal. Motivated by earlier GPU work [FS05, HSHH07], we look at stackless

kd-tree traversal and propose an extension that allows it to work with nodes of zero volume. We then

investigate stack-based traversal, showing its higher performance in CUDA and exploring the use of

fast shared memory and registers as explicitly managed caches to further reduce CT . Our work is

motivated by photon mapping but also applies to other rendering algorithms that use ray tracing.

4.1. kd-Tree Construction

The cost of traversing a spatial index node is CT , that of testing the nN surfaces referenced by a

leaf for intersection, nN CI . The expected ray tracing cost for a given spatial index is the sum of

these values over all nodes, weighted by the probabilities of being visited by a ray. A construction

process minimizing expected cost is outlined in section 3.2.3.1. Starting with all n surfaces at the

root, recursive subdivision of a parent node P into child nodes L, R is applied. With pP , pL, pR their

probabilities of being visited by a ray and nP , nL, nR the numbers of primitives they represent, the

expected cost of each candidate subdivision is estimated using the metric of equation 3.12,

CP (L;R) = pP CT + pL nL CI + pR nR CI : (4.1)

Choosing the candidate subdivision that minimizes this expression greedily optimizes expected cost,

approximating the children as leaves without further subdivision. No traversal cost is counted for the

leaves as signi�cant overheads occur only when the path through the spatial index branches at inner

nodes. Leaves are either less expensive to traverse or not stored and traversed at all, referencing a

list of surfaces directly from their parent instead. Possible criteria for terminating the recursion are

nP falling below a threshold, recursion depth exceeding a threshold or minCP (L;R) > pP nP CI ,

indicating that a single leaf has lower expected ray tracing cost than the optimal pair of children.

61

4. Ray and Photon Tracing

For BVH and kd-tree, nodes take the shape of AABBs and are subdivided by choosing a splitting

plane coplanar with one of the three coordinate axes. In the case of a BVH, every surface is assigned

to the child containing its centroid, enlarging the AABB when a surface straddles the splitting plane.

For a kd-tree, the surface is assigned to both children instead, leaving child AABBs unchanged.

4.1.1. Geometric Probability

Minimizing equation 4.1 requires a method for computing the probability that a node is visited by a

ray. This probability depends on the distributions of ray origins, ray directions and occluding scene

surfaces, the �rst two unknown and the third di�cult to express. The SAH simpli�es the problem

by making three assumptions as shown in section 3.2.3.1. With S the scene AABB, these are:

1. Ray origins are uniformly distributed in space outside S.

2. Ray directions are uniformly distributed on the sphere of directions.

3. No ray hits any surfaces.

The �rst two assumptions treat the unknown distributions of ray origins and directions as uniform.

With the third assumption, occlusion by scene surfaces is eliminated, making all rays in�nitely long.

Under these assumptions, the probability pN that a ray intersecting S also visits a node N is given

by equation 3.13 as the ratio of their surface areas,

pN =
SA (N)

SA (S)
: (4.2)

Inserting equation 4.2 into equation 4.1 yields a complete cost metric whose greedy minimization

provides the highest ray tracing acceleration currently available. However, the question arises whether

making more accurate assumptions could produce even better results.

We leave the second and third assumptions about ray directions and occlusion by scene surfaces

unchanged. Regarding the �rst assumption, we make the observation that any re�ected or refracted

rays always originate at surfaces within S. For indoor scenes, virtual camera and light sources are

also generally located inside the AABB. The actual distribution of ray origins remains unknown and

we continue to assume that it is uniform. However, we expect these origins to lie inside, not outside

S. Our set of assumptions thus is:

1. Ray origins are uniformly distributed in space inside S.

2. Ray directions are uniformly distributed on the sphere of directions.

3. No ray hits any surfaces.

Under the revised �rst assumption, a ray can visit node N by originating inside it or by originating

elsewhere in the scene and subsequently entering N . Due to the assumptions of uniformly distributed

ray directions and no occlusion, the probability of entering N from a potential ray origin ~x 2 S nN is

the fraction of directions around ~x in which N is encountered. This is the ratio of the solid angle
~x
subtended by N and the total solid angle 4� (�gure 4.1(a)). With ray origins uniformly distributed

in S, their probability density function is the reciprocal of the scene volume V (S) so that

pN =

Z
N

1

V (S)
d~x+

Z
SnN

1

V (S)

~x
4�

d~x (4.3)

62

4.1. kd-Tree Construction

=
V (N)

V (S)
+

1

V (S)

Z
SnN

~x
4�

d~x: (4.4)

The solid angle
~x is obtained by projecting the sides of N facing ~x onto the unit sphere around

it and computing the area covered. Unfortunately, inserting this expression into equation 4.4 leads

to an elliptic integral for which no closed-form solution exists.

4.1.2. Numerical Approximation

While no closed-form solution to equation 4.4 is available, numerical approximations can be derived.

Cutting the scene space S nN around node N along the planes of its six sides Nj yields twenty-six

regions Ri that group potential ray origins ~x by the sets of Nj facing them, such as R17 containing

all ~x faced by N4 only and R10 those ~x faced by both N1 and N4 (�gure 4.1(b)). We approximate

the solid angle subtended by each set of Nj as uniform throughout the corresponding region Ri and

equal to that
i at its center, obtaining the numerical approximation

pN � V (N)

V (S)
+

1

V (S)

26X
i=1

V (Ri)

i

4�
: (4.5)

To calculate
i, every Nj is decomposed into two triangles �rst. With vertices ~xa, ~xb, ~xc expressed

in a coordinate system whose origin is the center of Ri, the solid angle subtended by each of the

triangles then is [vOS83]

~xa;~xb;~xc = 2arctan
~xa � (~xb � ~xc)

k~xak k~xbk k~xck+ k~xak (~xb � ~xc) + k~xbk (~xa � ~xc) + k~xck (~xa � ~xb) :

4.1.3. SIROH

Although equation 4.5 can be inserted into equation 4.1, the resulting cost metric is signi�cantly more

expensive to evaluate than the SAH. We therefore introduce the scene-interior ray origin heuristic

(SIROH), a further approximation with computational cost similar to the SAH.

Cutting SnN along the plane of each side Ni separately yields six overlapping regions R0i containing

all potential origins ~x faced by one of theNi (�gure 4.1(c)). Points faced by more than one side become

part of multiple regions, such as all ~x 2 R10 now lying in the overlap of regions R01 and R
0
4. The solid

angle subtended by Ni is again approximated as uniform throughout R0i and equal to that
0i at its

center.
0i=4� is the fraction of directions in which Ni is encountered. The complete bounds of R0i
fully surround its center and are encountered in every direction.
0i=4� thus is the ratio of the solid

angles subtended by Ni and R0i, de�ned as the surface areas of their projections onto the unit sphere.

To eliminate the need for any trigonometric functions, we omit the projection and obtain

0i =

(Ni)

 (R0i)
� SA (Ni)

SA (R0i)
:

This approximation is justi�ed by its low computational cost and experimental results indicating

ray tracing performance comparable to that achieved with the more expensive equation 4.5 for many

scenes. Applying the approximation to each of the six regions, the SIROH estimate for pN is obtained,

63

4. Ray and Photon Tracing

N

S

~x

~x

(a) For a ray originating at any ~x 2 S n N , the probability of visiting node N
is the fractional solid angle
~x=4� subtended by N at ~x.

S

R12 R13

R17

R14

R16

10

R10

N4

N2

R11 R15N N3N1

17

(b) Cutting the scene space around N along the planes of its six sides Nj yields
twenty-six regions Ri, eight of which are visible in the two-dimensional cut.
Each Ri groups all ~x 2 S nN faced by a particular set of Nj .

S

N4

N2

N N3N1

01

R01

(c) Cutting along each side Ni separately yields six overlapping regions R0

i, each
grouping all ~x 2 S nN faced by the corresponding Ni.

Figure 4.1.: Probability pN that a node N is visited by a ray originating in S nN : Cutting the space
surrounding node N inside the scene AABB S along the bounding planes of N allows
di�erent approximations to be derived.

64

4.1. kd-Tree Construction

S

L2

P2

L4

P4

l

p

S3L1 L3LP1 P3

P

R

R03

r

Figure 4.2.: Information reuse in SIROH: Multiple candidate subdivisions of node P into children
L, R are evaluated that di�er in the values of l and r only, allowing constants to be
precalculated that accelerate the evaluation of pL;SIROH , pR;SIROH .

pN � pN;SIROH =
V (N)

V (S)
+

1

V (S)

6X
i=1

V (R0i)
SA (Ni)

SA (R0i)
= pN;0 +

6X
i=1

pN;i: (4.6)

SIROH requires only basic arithmetic operations, most of which can furthermore be eliminated by

reusing information during recursive kd-tree construction. Figure 4.2 illustrates the subdivision of a

parent node P into children L, R. Multiple candidate subdivisions need to be evaluated that di�er

in the position of the splitting plane and thus the values of l and r only.

Equation 4.6 decomposes into the sum of the probabilities pN;0 that a ray originates inside N and

pN;i that one enters through a sideNi. For node L, probability pL;1 is identical to pP;1 and can directly

be reused from the parent. pL;0, pL;2, pL;4, pL;5, pL;6 are proportional to l and can be computed as

pL;i =
l
p
pP;i. Only pL3 requires calculation according to equation 4.6. With C (S3) the circumference

of scene AABB side S3, the surface area of region R03 is SA (R03) = 2 SA (S3) + rC (S3) while its

volume is V (R03) = r SA (S3). Using these identities, the probability pL;SIROH is transformed into

pL;SIROH =pP;1 +
l

p
(pP;0 + pP;2 + pP;4 + pP;5 + pP;6) +

1

V (S)
r SA (S3)

SA (L3)

2 SA (S3) + rC (S3)

= pP;1|{z}
c1

+l
1

p
(pP;0 + pP;2 + pP;4 + pP;5 + pP;6)| {z }

c2

+
r

2
V (S)

SA (L3)| {z }
c3

+r
V (S) C (S3)

SA (S3) SA (L3)| {z }
c4

=c1 + c2l +
r

c3 + c4r

After computing the constants ci, pL;SIROH can be evaluated for each candidate splitting plane

using three additions, two multiplications and one division. pR;SIROH is calculated analogously.

4.1.4. Results and Discussion

We evaluate the numerical approximation from section 4.1.2 and SIROH against the SAH using the

benchmark environments and scenes described in appendix A. All kd-tree construction parameters

65

4. Ray and Photon Tracing

Scene
Code Base I Code Base II

SAH 4.1.2 SIROH SAH SIROH

Scene 6 382:2 +7:5% +7:0% 341:8 +14:9%
Sponza 99:6 +1:9% �0:0% 215:6 �0:8%
Sibenik 101:0 +2:0% +2:1% 189:4 +2:7%
Fairy 75:9 +1:3% +2:7% 144:1 +3:4%
Conference 71:9 +5:1% +4:2% 171:0 +0:5%

Average +3:5% +3:2% +4:1%
Std. Dev. 2:7% 2:6% 6:2%

Table 4.1.: Ray tracing frame rates with the numerical approximation from section 4.1.2 and SIROH
for two CUDA benchmark environments, relative to the SAH

are tuned for maximal performance with the SAH and used identically throughout (CT = 1, CI = 3,

recursive subdivision while nP > 4 and minCP (L;R) � pP nP CI). Since the SAH bene�ts from

biasing the cost metric to favor cutting o� empty space [HKRS02], the same bias is applied to all

heuristics: If either child has a volume greater than 30% that of the parent and contains no surfaces,

the cost estimate for this candidate subdivision is reduced by 20%.

Performance is assessed by tracing a combination of primary, re�ection and shadow rays in CUDA,

using a straightforward stack-based traversal of the kd-tree. Images are synthesized into a bu�er,

omitting its subsequent visualization as this constant overhead per frame is unrelated to ray tracing.

Table 4.1 lists average frame rates for a �ight through each scene. The original evaluation uses bench-

mark code base I of section A.1.1. With a kd-tree constructed using the more expensive numerical

approximation, a speedup over the SAH is achieved in all scenes, averaging 3:5%. SIROH attains

comparable results, averaging 3:2%. Only in the Sponza Atrium is the SAH frame rate not exceeded.

For this scene, the more aggressive approximation of pN by SIROH appears not to follow its more

expensive counterpart with su�cient accuracy.

In order to ensure bene�ts are not speci�c to a particular ray tracing implementation, a reevaluation

of SIROH using code base II of section A.1.2 is included in table 4.1. This ray tracer has di�erent

performance characteristics and signi�cantly higher absolute frame rates. SIROH proves bene�cial

for it as well with an average speedup over the SAH of 4:1%. In the problematic Sponza Atrium, a

slowdown by 0:8% is observed. A further reevaluation using the RT2 ray tracer [FC07] written by the

coauthor of SIROH and static views of the benchmark scenes is presented in table 4.2(a). A speedup

averaging 2:9% and a slowdown in the Sponza Atrium are consistent with previous results.

The Radius-CUDA ray tracer [Seg08] renders frame 160 of the Fairy Forest animation with a static

virtual camera and an animated point light source. Average frame rates are given in table 4.2(b).

When tracing only primary rays, SIROH yields a speedup over the SAH of 2:5%. Shadow rays lead to

a slowdown. This is because the light source is located outside the scene, violating the assumptions

underlying SIROH. After moving the light source inside the scene, a speedup is obtained again.

For further analysis, the number nT of inner node traversals and nI of triangle intersection tests

in the original evaluation are listed in table 4.3. As algorithm 3.3 has an early out after intersecting

the triangle plane, intersections with planes and barycentric coordinate calculations are counted

separately. Both the more expensive numerical approximation and SIROH reduce the numbers of

traversals and intersections in most cases, closely following each other. Only in the Sponza Atrium

does SIROH lead to signi�cantly more plane intersections, corresponding to the slowdowns seen.

66

4.1. kd-Tree Construction

Scene SAH SIROH

Scene 6 115:9 +8:5%
Sponza 64:5 �3:9%
Sibenik 63:1 +4:2%
Fairy 21:6 +0:4%
Conference 46:4 +5:1%

Average +2:9%
Std. Dev. 4:8%

(a) RT2 ray tracer [FC07]

Setting SAH SIROH

Unshaded 43:5 +2:4%
Unshadowed 43:3 +2:5%
Light outside 15:1 �3:8%
Light inside 14:0 +1:7%

(b) Radius-CUDA ray tracer [Seg08]

Table 4.2.: Ray tracing frame rates with SIROH for two other ray tracers, relative to the SAH

Scene
Traversals Plane Intersections Triangle Intersections

SAH 4.1.2 SIROH SAH 4.1.2 SIROH SAH 4.1.2 SIROH

Scene 6 9:68 �24:9% �25:2% 7:59 �15:3% �14:3% 1:10 �7:3% �3:0%
Sponza 30:83 �0:5% �4:3% 7:95 +1:1% +25:5% 3:06 �12:3% �13:7%
Sibenik 40:44 �5:8% �5:6% 5:06 �11:0% �10:5% 2:04 �7:2% �4:0%
Fairy 41:30 +5:5% �1:1% 8:09 �5:7% �3:9% 2:35 �2:8% �6:5%
Conference 23:56 �13:0% �18:6% 12:99 �21:4% �17:4% 2:29 �6:1% +1:4%

Average �7:7% �11:0% �10:4% �4:1% �7:1% �5:2%
Std. Dev. 11:8% 10:4% 8:7% 17:3% 3:4% 5:6%

Table 4.3.: Inner node traversals, triangle plane intersections and barycentric coordinate calculations
with the numerical approximation from section 4.1.2 and SIROH, relative to the SAH

Scene
CPU I (s) CPU II (s) Inner Nodes Surface References

SAH SIROH SAH SIROH SAH SIROH SAH SIROH

Scene 6 0:01 +7:4% 0:003 +11:4% 2801 +1:5% 4038 +1:6%
Sponza 0:91 +5:8% 0:644 +6:2% 207425 �1:0% 346767 �0:5%
Sibenik 0:95 +2:3% 0:667 �11:5% 192667 �0:3% 317533 �0:3%
Fairy 3:41 +13:0% 2:239 +27:7% 788603 +1:2% 1587203 +1:2%
Conference 3:25 +7:6% 3:232 +4:5% 611297 �0:0% 2155935 �0:7%
Average +7:2% +7:7% +0:3% +0:3%
Std. Dev. 3:9% 14:1% 1:0% 1:1%

Table 4.4.: Construction timings and kd-tree statistics with SIROH, relative to the SAH

Construction of a kd-tree with the more expensive numerical approximation is on the order of

minutes. No exact numbers are given as our implementation is naïve and serves to assess ray tracing

performance only. Even with aggressive optimizations, it would remain slow due to the trigonometric

functions required. Results for SIROH are presented in table 4.4. Construction is timed on an Intel

Pentium D 965 (CPU I) and an Intel Core2 Quad Q9450 (CPU II). In both cases, SIROH construction

is competitive with the SAH, taking only 7:2% respectively 7:7% longer on average. Also given are

kd-tree statistics, showing that the trees obtained with SIROH and the SAH are of very similar size,

di�ering in the number of inner nodes and surface references at leaves by only 0:3% on average.

In summary, the numerical approximation from section 4.1.2 shows that the assumption of ray

origins distributed uniformly inside the scene can improve ray tracing performance over the SAH for

67

4. Ray and Photon Tracing

all benchmarked scenes, albeit at the cost of more expensive kd-tree construction. SIROH is successful

in achieving similar speedups for many scenes with construction cost comparable to the SAH. As with

any heuristic, cases can be found where a slowdown results. The Sponza Atrium proves problematic

for SIROH. The large increase in plane intersections indicates that many surfaces referenced by the

leaves may in fact lie outside or only skim these. Tightening surface AABBs after each subdivision

would ensure that only the parts not cut o� by previous splitting planes are considered [HB02] but

this would also increase construction cost. We use SIROH in its current form.

4.2. Stackless kd-Tree Traversal

The kd-tree is traversed from its root for each ray ~z (t) = ~x + t ~!, t 2 [tmin; tmax] as described in

section 3.2.4.1. At every inner node visited, the children are classi�ed as near and far according to

their order along the ray and the parameter value ts is computed for which the ray intersects the

splitting plane. If ts > tmax, only the near child is intersected by the ray and traversal continues

with it. ts < tmin is the analogous case for the far child. When tmin � ts � tmax, traversal branches,

continuing with the near child and the parameter interval [tmin; ts] for which the ray intersects it �rst

and returning to the far child with parameter interval [ts; tmax] later.

Upon reaching a leaf, all surfaces referenced by it are tested for intersection. Traversing the near

child of every branching point �rst ensures that leaves are visited in their order along the ray. If a

hit is found in the current leaf, traversal thus terminates as no nearer hit can exist in any remaining

leaves. Otherwise, traversal continues with the far child of the most recent branching point.

Pushing the far children of branching points onto a stack is simplest but not always possible or

e�cient. GPUs accessed through graphics APIs expose no suitable read-write memory. Fast shared

memory is available in CUDA but limited to 16 kB per SM. Placing stacks in it requires packetization,

limited occupancy or the construction of shallow trees, all detrimental to performance. Local memory

is larger but slow. We therefore investigate stackless traversal as introduced in section 3.2.4.4. Adding

parent pointers to the kd-tree enables returns to branching points by upward traversal but incurs

storage overheads. Stackless traversal of an unmodi�ed kd-tree is achieved by shifting the start of the

ray so that it begins beyond the end of the parameter interval [ta; tb] at the current leaf and restarting

from the root. The result is an identical traversal path until the most recent branching point. Here,

the near child is now missed and the far child traversed instead [FS05].

4.2.1. Zero Volume Nodes

Care must be taken when shifting the start of the ray to ensure correct traversal order. Changing the

parameter interval from [tmin; tmax] to [tb; tmax] is not su�cient as the previous leaf is still intersected

for [tb; tb], causing it to be visited after every restart in an in�nite loop. Using open intervals prevents

in�nite looping, as illustrated by the stackless traversal of an example kd-tree in �gure 4.3(a)�(c).

However, nodes with zero volume are missed. This is shown in �gure 4.3(d). The splitting plane at

the root yields a parameter interval (tmin; ts;P) in the left child. This child in turn has a splitting

plane coplanar with its left bound so that ts;L = tmin and the parameter interval in the left child is

(tmin; tmin) = ;, causing traversal to continue with the right child only.

A node with zero volume is not a defect but a desirable feature. It shaves o� surfaces coplanar

with the bounds of its parent, separating them from the geometry inside and allowing both to be

68

4.2. Stackless kd-Tree Traversal

(tmin; tmax) (tmin; ts;P) (tmin; ts;L)

(a) Traversal with t 2 (tmin; tmax) visits the leaf intersected for
�
tmin; ts;L

�
.

(ts;L; tmax) (ts;L; ts;P)(ts;L; ts;P)

(b) Restart with t 2
�
ts;L; tmax

�
visits the leaf intersected for

�
ts;L; ts;P

�
.

(ts;P ; tmax) (ts;P ; tmax) (ts;P ; tmax)

(c) Restart with t 2
�
ts;P ; tmax

�
visits the leaf intersected for

�
ts;P ; tmax

�
.

(tmin; tmax) (tmin; ts;P)(tmin; ts;P)

(d) Traversal with t 2 (tmin; tmax) misses the red leaf intersected for [tmin; tmin].

[tmin; tmax] [tmin; ts;P] [tmin; ts;L]

(e) Traversal with t 2 [tmin; tmax] visits the leaf intersected for
�
tmin; ts;L

�
.

[ts;L + �; tmax] [ts;L + �; tmax] [ts;L + �; tmax]

(f) Restart with t 2
�
ts;L + �; tmax

�
misses the red leaf intersected for

�
ts;L; ts;P

�
.

Figure 4.3.: Stackless kd-tree traversal by restarting at the root with shifted ray start: The algorithm
is successful when all nodes have nonzero volume. Otherwise, nodes are missed.

69

4. Ray and Photon Tracing

indexed optimally [WH06]. Using closed intervals but shifting the start of the ray by an additional

small o�set � > 0 prevents in�nite looping while allowing nodes with zero volume to be visited.

However, correct traversal cannot be guaranteed. If � is too small, numerical imprecision can still

lead to an in�nite loop. If it is too large, nodes within (tb; tb + �) are missed. This is illustrated by a

repeat of the traversal from �gure 4.3(a)�(c). The initial traversal path from the root is unchanged,

visiting the correct leaf (�gure 4.3(e)). After restarting with an additional o�set �, the path deviates

(�gure 4.3(f)), missing the leaf previously visited in �gure 4.3(b) and skipping to that of �gure 4.3(c)

instead. The problem is compounded by the presence of multiple nodes coplanar with each other.

No adjustment of the parameter interval can guarantee correct traversal in this general case.

4.2.2. Traversal Algorithm

Instead of provoking a change in traversal path by modifying the parameter interval, we propose to

store a �ag for each branching point on the path that indicates whether the near or far child should

be traversed next. Traversal can then be restarted with the original parameter interval [tmin; tmax]

after toggling the �ag for the most recent branching point. As branching may occur on every level

of the tree, one bit of storage space is required per tree level. We use a single 32-bit flags register,

allowing for stackless traversal of trees up to 32 levels deep.

The �ags are initialized to zero. When a branching point is reached during traversal from the root,

the �ag for the current level is tested, continuing with the near child if the �ag is zero and with the

far child otherwise. Upon reaching a leaf, the �ag at the most recent branching point must be toggled

to one before restarting traversal. In order to e�ciently do so, �ags at the levels without branching

are set to one during traversal. The simple addition of a one at the level above the leaf then ripples

through the �ags register, toggling the �ags for levels without branching back to zero until the most

recent branching point is reached and its zero �ag is toggled to one.

Algorithm 4.1 illustrates the complete process. Traversal begins by setting the parameter interval

to [tmin; tmax], node to the root and initializing a helper register flag with the �ag bit for the current

depth in the tree which is the most signi�cant bit for the root.

The loop in lines 7 to 24 traverses inner nodes by descending to a child and updating the current

parameter interval [ta; tb]. If ts < ta or ts > tb, only one child is intersected. The current node

is replaced by this child in line 10 or 13 and the flags bit for the current level is set by bitwise

conjunction with the helper register flag.

If both children are intersected, the flags bit for the current level is tested in line 15. When the

bit is not set, lines 19�20 replace node with the near child and the parameter interval with [ta; ts].

Lines 16�17 analogously descend to the far child with [ts; tb] if the bit is set. The �nal step in line 23

shifts the flag register to the right so that it contains the �ag bit for the next level.

When a leaf is reached, line 25 adds the �ag bit for its parent to flags. This addition toggles

the bits above it up to and including the �rst zero by means of elementary binary arithmetic. After

visiting the leaf, traversal restarts at the root by looping back to line 3. The termination criterion

flags = 0 on line 27 is met if the last addition cleared the �ags for all levels, indicating that no

branching point remains whose right child needs to be traversed. If a hit point is found while visiting

the leaf in line 26, flags is also set to zero, causing an early termination of the traversal.

The stackless traversal of an example kd-tree including a zero volume node is shown in �gure 4.4(a)

and (b). During the initial traversal from the root, flags is zero. Both children are intersected at the

70

4.2. Stackless kd-Tree Traversal

Algorithm 4.1 Stackless kd-tree traversal (�, _, ^ are bitwise shift, conjunction and disjunction)
1: flags 0
2: repeat

3: ta tmin

4: tb tmax

5: node 0
6: flag 1� 31
7: while node is inner do
8: if ts < ta then
9: flags flags _ flag
10: node far
11: else if t > tb then
12: flags flag _ flag
13: node near
14: else

15: if flags ^ flag then
16: ta ts
17: node far
18: else

19: tb ts
20: node near
21: end if

22: end if

23: flag flag � 1
24: end while

25: flags flags+ (flag � 1)
26: visit leaf
27: until flags = 0

root node P , causing traversal of the near child, L. Both children are intersected here again and the

near leaf A is visited with flags still zero. Adding the �ag bit for the parent of A yields flags = 012

and traversal restarts. The �ag bit at the root is still zero and near child L is traversed again. Here,

the set �ag bit changes the traversal path, visiting the far leaf B. The �ag bit for its parent is added

again, resulting in flags = 012 + 012 = 102 and traversal restarts. The �ag bit for the root is now

set and its far child R is traversed. The ray misses its splitting plane and intersects the far leaf only.

The �ag bit for the second tree level is thus set, resulting in flags = 112, before continuing to the far

leaf D. Adding the �ag bit for its parent over�ows the flags register to zero, terminating traversal.

4.2.3. Extensions

Restarting from the root leads to redundancy as the same nodes are traversed again to reach the

most recent branching point. Two extensions reducing such redundant traversals are push-down and

short-stack [HSHH07]. Both are readily integrated into our traversal algorithm.

Push-down is based on the observation that the traversal path changes only at branching points.

As the path from the root to the �rst branching point cannot change, the restart point may be pushed

down to it. After the traversal of the near child at this branching point completes, subsequent restarts

always lead to the traversal of its far child, allowing for further push-down. In general, the restart

point can be pushed down after every restart to the �rst branching point whose children still both

need to be traversed. The addition of push-down is illustrated in algorithm 4.2 using blue color.

71

4. Ray and Photon Tracing

Algorithm 4.2 Stackless kd-tree traversal with push-down (blue) and short-stack (red) extensions
(�, _, ^ are bitwise shift, conjunction and disjunction)
1: stack:front 0
2: stack:size 0
3: restart 0
4: restart:flag 1� 31
5: flags 0
6: repeat

7: if stack:size > 0 then
8: ta tb
9: pop (node; flag; tb)
10: else

11: ta tmin

12: tb tmax

13: node restart
14: flag restart:flag
15: push true

16: end if

17: while node is inner do
18: if t < ta then
19: flags flags _ flag
20: node far
21: else if t > tb then
22: flags flags _ flag
23: node near
24: else

25: if flags ^ flag then
26: ta t
27: node far
28: else

29: if push then
30: tmin ta
31: tmax tb
32: restart node
33: restart:flag flag
34: push false

35: end if

36: push (far; flag � 1; tb)
37: tb t
38: node near
39: end if

40: end if

41: flag flag � 1
42: end while

43: flags flags+ (flag � 1)
44: visit leaf
45: until flags = 0

72

4.2. Stackless kd-Tree Traversal

P

L R

A B C D

(a) The ray given should visit the leaves of this kd-tree in the order A, B, D.

0

0 P

L

A

R

DCB

1

0

0

0 P

L

A

R

DCB

0

1

1

0 P

L

A

R

DCB

1

1

0

0

flags flags flags flags flags flags flags

Restart RestartStart Termination

+1 +1 +1

(b) A flags register controls traversal decisions at branching points during traversal from the root. By toggling the
�ag for the most recent branching point before each restart, leaves are visited in correct order.

Figure 4.4.: Stackless kd-tree traversal by restarting at the root with �ags register: The �ags guar-
antee correct traversal order despite the presence of zero volume node A.

The restart node initially is the root, restart:flag contains its �ag bit and the parameter interval

[tmin; tmax] spans the entire ray. Each traversal begins by resetting node, flag and [ta; tb] to these

values in lines 11�14. A push �ag is additionally set in line 15. Traversal then follows the original

algorithm. When the �rst branching point is reached at which both children still need to be traversed,

the restart point is pushed down to it in lines 30�33 by recording the current node, flag and the

parameter interval [ta; tb] for which the ray intersects the node. The push �ag is then cleared to avoid

further push-down until the next restart.

Where push-down makes restarts more e�cient, short-stack aims to eliminate them. If available,

fast memory is used as a limited capacity stack onto which the far children of branching points are

pushed during traversal. Should the stack become full, each additional push displaces the oldest

entry. After visiting a leaf, traversal continues with the node popped o� the top of the stack. Due to

the limited capacity, branching points may exist whose far child still needs to be traversed but whose

stack entry has been displaced. To ensure these are not missed, a restart is performed when the stack

is empty. The short-stack extension is shown in algorithm 4.2 using red color.

73

4. Ray and Photon Tracing

Scene Stack-based

Stackless

push-down short-stack
push-down
short-stack

Scene 6 7:31 +35:7% +21:1% �0:0% �0:0%
Sponza 29:81 +136:7% +97:1% +0:3% +0:2%
Sibenik 37:63 +151:5% +107:2% +0:8% +0:8%
Fairy 37:43 +182:7% +98:2% +0:6% +0:6%
Conference 19:57 +108:1% +59:4% +0:3% +0:3%

Average +122:9% +76:6% +0:4% +0:4%
Std. Dev. 55:7% 36:0% 0:3% 0:3%

Table 4.5.: Inner node traversals per ray with stackless traversal, relative to a stack-based traversal

Line 36 pushes the far child onto the stack whenever traversal reaches a branching point and

continues with its near child. Popping in line 9 then replaces the restart in lines 11�15 if at least one

entry is present on the stack. The start of the parameter interval ta is equal to its end tb in the leaf

just visited, allowing ta to be set by line 8 without storing it on the stack.

We implement the stack as a round-robin bu�er. To push an entry, it is stored at the bu�er position

(stack:front+ stack:size) mod stack:capacity. If stack:size < stack:capacity, the stack is not full

yet and stack:size is incremented. Otherwise, stack:front is incremented. To pop the top, stack:size

is decremented and the entry at position (stack:front+ stack:size) mod stack:capacity read.

4.2.4. Results and Discussion

Our stackless traversal algorithm is evaluated using the benchmark environment and scenes from

appendix A. The more e�cient code base II of section A.1.2 is employed, tracing up to four rays

per pixel as described in the appendix. The kd-tree for each scene is constructed using the SIROH

heuristic with the same parameters as in section 4.1.4. Ray tracing and radiance computation are

implemented as a single CUDA kernel using 54 registers, allowing 256 threads to be resident per SM.

For the short-stack extension, four stack entries per thread are placed in shared memory. Each entry

consists of three 32-bit values for a total size of 48 bytes per short-stack or 12 kB per SM.

Stack-based and stackless traversal visit leaves in the same order, di�ering only in the processing of

inner nodes. The former requires stack operations in local memory, the latter redundant traversals.

Table 4.5 lists the average number nT of inner nodes traversed per ray during a �ight through each

scene. Compared to stack-based traversal, restarting at the root leads to an average of 122:9%

additional inner node traversals. The push-down extension reduces this �gure to 76:6%. Short-stack,

whether combined with push-down or not, eliminates almost all redundancy, requiring only 0:4%

more inner nodes to be traversed than during a stack-based traversal.

By removing the need for a stack in local memory and introducing only minimal redundancy,

stackless traversal with the short-stack extension requires fewer global memory accesses overall than

a stack-based traversal. Despite this, its performance is worse, as evidenced by the average frame

rates for a �ight through each scene given in table 4.6. Compared to a straightforward stack-based

traversal implementation, our stackless algorithm without any extensions yields 29:1% lower frame

rates on average. The push-down extension reduces this slowdown to 22:0%, short-stack to 7:3% and

the combination of both extensions to 10:1%.

74

4.2. Stackless kd-Tree Traversal

Scene Stack-based

Stackless

push-down short-stack
push-down
short-stack

Scene 6 392:6 �5:3% �2:6% �1:3% �2:5%
Sponza 213:7 �37:1% �30:6% �8:7% �12:2%
Sibenik 194:6 �43:5% �35:8% �10:2% �13:8%
Fairy 149:0 �41:6% �29:8% �11:6% �14:9%
Conference 172:0 �18:1% �11:4% �4:6% �7:2%
Average �29:1% �22:0% �7:3% �10:1%
Std. Dev. 16:7% 14:3% 4:2% 5:2%

Table 4.6.: Ray tracing frame rates with stackless traversal, relative to a stack-based traversal

Scene Stack-based

Stackless

push-down short-stack
push-down
short-stack

Scene 6 674:2 +18:4% +14:6% +13:6% +16:8%
Sponza 2249:9 +75:1% +61:5% +24:0% +29:8%
Sibenik 2294:9 +96:0% +74:8% +27:4% +34:0%
Fairy 3129:6 +90:5% +59:9% +28:8% +35:3%
Conference 2246:2 +42:0% +29:6% +16:5% +20:3%

Average +64:4% +48:1% +22:1% +27:2%
Std. Dev. 33:2% 25:0% 6:7% 8:3%

Table 4.7.: Instructions per ray with stackless traversal, relative to a stack-based traversal

The CUDA documentation [NVI10b] and optimization guidelines [NVI10a] identify global memory

accesses and computational cost due to warp divergence or expensive arithmetic as the bottlenecks

that should be addressed during algorithm design. As noted in section 3.2.4.4, ray tracing performance

is maximized by not explicitly controlling warp divergence, tracing rays independently and letting

threads executing the same instruction automatically fall into lock-step. Stackless traversal introduces

no expensive arithmetic and, when extended by short-stack, reduces the number of global memory

accesses. Its lower performance must thus be due to an e�ect not covered by the documentation.

We �nd that focusing on global memory accesses, warp divergence and the use of SFUs or DFUs for

expensive arithmetic operations overlooks the possibility that kernels may become compute bound by

simple instructions executing on the SPs. Table 4.7 lists the average number of instructions required

to trace a ray. The lower performance of stack-based traversal with short-stack is explained by it

being compute bound and requiring 22:1% more instructions on average than stack-based traversal.

Combining push-down and short-stack yields an almost identical number of global memory accesses

but requires additional operations to update the restart point, resulting in an instruction count

27:2% higher than stack-based traversal and a corresponding reduction in frame rates. For the other

stackless traversal variants, the e�ects of further redundant traversals and higher instruction counts

are compounded, resulting in the observed slowdowns.

In summary, we propose a stackless algorithm that guarantees correct traversal of arbitrary kd-

trees. With the short-stack extension, this algorithm more closely follows the CUDA optimization

guidelines than stack-based traversal but nevertheless experiences a slowdown. We �nd the source

75

4. Ray and Photon Tracing

of its lower performance in an e�ect whose importance is overlooked by the CUDA documentation:

In addition to the documented potential bottlenecks, a kernel becoming compute bound by simple

instructions proves to be a realistic possibility that should be taken into account.

Two other stackless traversal algorithms also use one bit of storage space per spatial index hierarchy

level. kd-jump [HL09] achieves stackless operation not by restarting but by upward traversal. Using

an implicit kd-tree representation [WFM+05] in which the index of a parent node can be computed

from that of a child, the �ag bits indicate how many levels of upward traversal are required. This

work is signi�cantly di�erent from ours, targeting volumetric surface representations, using spatial

median splits only and resulting in an overall di�erent algorithm.

Closer to our work is a solution concurrently proposed for stackless BVH traversal [Lai10]. Its restart

trail serves the same purpose as our flags register and is updated by the same bitwise operations.

Di�erences exist in other parts of the algorithm. With a BVH, restarts can occur both at leaves and

inner nodes. Traversal cannot terminate immediately after �nding a hit as other leaves may contain

nearer hit points. When using the short-stack extension, the ray parameter interval is not stored

on the stack as it can be reconstructed by clipping the ray against the AABB of the popped node.

The authors also do not store the value of flag on the stack, reconstructing it from the lowest �ag

bit set after popping instead. A sentinel bit on the restart trail signals the end of traversal while

our algorithm over�ows the flags register to zero for this purpose. The addition of push-down is

not explored. Overall, the authors �nd similar numbers of redundant traversals. They also note a

slowdown relative to stack-based traversal for ray tracing on the CUDA platform but do not quantify

or analyze it in detail.

4.3. Stack-Based kd-Tree Traversal

Having established that straightforward stack-based kd-tree traversal yields faster ray tracing than

its stackless variants, we adopt this approach and investigate opportunities for accelerating it further.

Section 3.2.4.4 shows that the best practice of grouping rays into packets on SIMD architectures

does not transfer to the SIMT manycore processing model underlying CUDA, requiring di�erent

acceleration techniques to be devised. With section 4.2.4 illustrating the risk of ray tracing becoming

compute bound, these should be simple and computationally inexpensive.

As described in section 2.2.3.3, the next generation of CUDA hardware accelerates global memory

accesses with caches located in additional shared memory. This motivates us to explore the use of

shared memory, otherwise dormant during stack-based traversal, and registers as caches. Transparent

caching requires hardware support not present on the GTX 280 but explicitly managed caches can

be realized. One possibility is to preload data to which multiple accesses are expected into shared

memory. This technique is also suggested by the CUDA optimization guidelines [NVI10a]. Another

option is to store temporary data in shared memory or registers, accessing global memory only when

temporary storage is exceeded. Since these caches must be managed entirely in kernel code, strategies

with minimal management overhead are required.

4.3.1. Node Caching

The �rst caching target are kd-tree nodes. Whenever a node is traversed by multiple rays, placing it

in a cache eliminates global memory accesses. Loading kd-tree nodes through the hardware texturing

76

4.3. Stack-Based kd-Tree Traversal

units provides transparent caching and is used by all our ray tracing kernels. However, following

section 2.2.3.1, shared memory is signi�cantly faster than texture caches and preloading nodes into

it promises further acceleration. Ensuring that rays traverse the scene coherently so that relevant

parts of the kd-tree can be preloaded would require explicit synchronization. Since CUDA performs

best when rays are traced independently, such synchronization is undesirable. We therefore propose

to preload the part of the kd-tree that each ray is guaranteed to traverse instead: its top. To simplify

preloading, the top of the kd-tree is padded into a complete binary tree by �lling any holes due to

nonexistent nodes with zero bytes. No such padding is applied to the uncached deeper levels of the

kd-tree, thus introducing no signi�cant storage overhead.

Applying the concept of persistent threads [AL09], a single CTA is resident on each SM, tracing

rays by processing jobs from a queue. The cost of preloading nodes is thus amortized in several ways.

First, each node needs to be preloaded only once per CTA as its threads access the same shared

memory. Second, nodes preloaded at CTA launch remain in shared memory and are used for all rays

processed by the CTA via the job queue. Third, all CTAs preload the same nodes. The texturing

unit through which these are loaded therefore only needs to transfer each node from global memory

once, serving the requests by multiple CTAs from its cache.

Every thread of a CTA preloads an equal number of nodes. The threads then synchronize to ensure

their writes are mutually visible and proceed to trace rays independently, accessing the cache without

requiring further synchronization.

4.3.1.1. Node Cache I

In section 3.2.1, the minimal size of a kd-tree node is established as 8 bytes, consisting of a 32-bit

�oating point value encoding the distance of its splitting plane from the origin, two bits expressing

the normal direction of the plane and a 30-bit index referencing a pair of child nodes. While the 16 kB

of shared memory per SM could theoretically hold the top 11 levels of the kd-tree with 211�1 nodes,

some of the memory is used for internal purposes by CUDA. We therefore cache the top 10 kd-tree

levels, containing 210 � 1 nodes and occupying 8 kB of shared memory. Each of the 256 threads in a

CTA preloads 4 nodes.

During kd-tree traversal, a node is loaded from shared memory if its index is less than 210 and

from global memory via the texturing unit otherwise.

4.3.1.2. Node Cache II

Stack-based kd-tree traversal requires the node index and end of parameter interval to be pushed

onto the stack for the far child whenever traversal branches. During BVH traversal, only the node

index has to be pushed as the parameter interval can be reconstructed after popping by clipping

the ray against the node AABB. This serves as an inspiration for an alternative cache variant which

additionally stores the AABB of each cached kd-tree node. An AABB consists of six 32-bit �oating

point values, increasing the storage requirements per cached node to 32 bytes. The top 8 levels of

the kd-tree are cached, containing 28 � 1 nodes and occupying 8 kB of shared memory. Each thread

preloads a single node and its AABB.

The stack used during kd-tree traversal is split into two parts as detailed in the next section. For

nodes with an index lower than 28, only the node index is pushed onto the stack. For all other nodes,

the index and the end of the parameter interval must be stored.

77

4. Ray and Photon Tracing

4.3.2. Stack Caching

Pushing onto the stack and popping its top require local memory accesses. Local memory is a

dedicated region of global memory not subject to any form of caching on the GTX 280. Stack entries

are therefore our second target for explicitly managed caching, modifying traversal to store part of

the stack in shared memory or registers.

4.3.2.1. Stack Cache I

The short-stack extension for stackless traversal described in section 4.2.3 places a limited capacity

stack in fast memory. Applying this idea to stack-based traversal, a short-stack in fast memory can

be used to cache the most recent stack entries. Since shared memory is to serve as a kd-tree node

cache, we place the short-stack in registers. A single stack entry is cached in the registers head:node

and head:tb, initialized with head:node 0 to mark the cache as empty. The push operation is

illustrated in algorithm 4.3. If head:node > 0, an entry is currently cached and must be �ushed by

pushing it onto the local memory stack. After �ushing or when the cache is currently empty, node

and tb are stored in the register pair.

Algorithm 4.3 Push operation with stack cache I
1: if head:node > 0 then
2: pushlocal (head:node; head:tb)
3: end if

4: (head:node; head:tb) (node; tb)

Algorithm 4.4 shows the pop operation. The start of the ray parameter interval ta after popping is

equal to the previous end of the interval tb and is set in line 1. If the cache is currently empty, node

and tb are then popped from local memory. When the cache does contain an entry, node and tb are

obtained from it and the cache is marked as empty by setting head:node 0.

Algorithm 4.4 Pop operation with stack cache I
1: ta tb
2: if head:node = 0 then
3: poplocal (node; tb)
4: else

5: (node; tb) (head:node; head:tb)
6: head:node 0
7: end if

4.3.2.2. Stack Cache II

In section 4.3.1.2, a cache for kd-tree nodes is proposed that also stores their AABBs. When pushing

a cached node onto the stack, only its index needs to be stored as the ray parameter interval can be

reconstructed from the AABB. The stack is split into two parts. AABBs are cached for the top 8

levels of the kd-tree. Since only one branching point can lie on the traversal path per kd-tree level,

at most eight of these nodes are simultaneously present on the stack. Each has an index in the range

0 � node � 28 � 1, requiring eight bits of stack space per entry and 64 bits in total. The stack for

nodes on the top 8 levels of the kd-tree can therefore compactly be stored in a single 64-bit register.

Whenever a node is pushed onto it, the register is shifted left by eight bits and node is written to

78

4.3. Stack-Based kd-Tree Traversal

its least signi�cant bits. To pop the stack top, all but its eight least signi�cant bits are masked o�,

obtaining node. The parameter interval [ta; tb] is then computed by clipping the ray against its AABB

and the register is shifted right by eight bits. For nodes lying deeper in the kd-tree, node and tb are

stored in a conventional stack located in local memory.

Since the CUDA platform is a 32-bit architecture, our actual implementation splits the stack over

two 32-bit registers, top1 and top2. Both are initialized to zero. Algorithm 4.5 illustrates the push

operation. If node < 28, it is stored in a register. The �rst four entries are placed in top1, subsequent

entries in top2. The test in line 2 relies on every node pushed onto the stack being nonzero. This is

the case as only far children are pushed during traversal, never the root with node = 0. When the

node lies deeper in the kd-tree, line 8 pushes node and tb onto the local memory stack.

Algorithm 4.5 Push operation with stack cache II (�, _ are bitwise shift and conjunction)

1: if node < 28 then
2: if top1 < 224 then
3: top1 (top1 � 8) _ node
4: else

5: top2 (top2 � 8) _ node
6: end if

7: else

8: pushlocal (node; tb)
9: end if

The pop operation follows algorithm 4.6. Nodes are pushed onto the stack in their order along a

traversal path from the root and must be returned in reverse order, beginning with the node deepest

in the tree. The local memory stack storing nodes beyond the top 8 levels of the kd-tree is therefore

consulted �rst. If stack:size > 0, at least one entry is present on it and the stack top is popped in

lines 2�3. When the local memory stack is empty, registers top1 and top2 are tested in line 4. If these

are also empty, traversal terminates. Otherwise, the least signi�cant eight bits are copied into node,

returning entries from top2 �rst to obtain the reverse of the order in which they are pushed. Shifting

the register right by eight bits then removes the popped entry. Line 12 computes the parameter

interval [ta; tb] by clipping the ray against the node AABB obtained from the kd-tree node cache.

Only the end of the parameter interval has to be clipped. Its start can be obtained as in line 2 by

setting ta tb before updating tb.

Algorithm 4.6 Pop operation with stack cache II (�, ^ are bitwise shift and disjunction)
1: if stack:size > 0 then
2: ta tb
3: poplocal (node; tb)
4: else if top1 > 0 or top2 > 0 then
5: if top2 > 0 then
6: node top2 ^ 255
7: top2 top2 � 8
8: else

9: node top1 ^ 255
10: top1 top1 � 8
11: end if

12: [ta; tb] [tb; tmax]
T
AABB (node)

13: end if

79

4. Ray and Photon Tracing

4.3.2.3. Stack Cache III

A third modi�cation caches not far children pushed onto the stack but leaves reached during traversal,

postponing their visits. Upon reaching a leaf, node and ta are stored in registers leaf:node and leaf:ta
and traversal continues by popping the top of the stack. Only when a second leaf is reached are the

postponed and current leaves visited with parameter intervals [leaf:ta; ta] and [ta; tb]. If no hit is

found in either, traversal continues by clearing the cache and popping the stack top.

Postponing leads to speculative inner node traversal as the ray may actually terminate at a hit in the

leaf, making further traversal unnecessary. The motivation is to extract more common instructions

and increase parallel processing unit utilization, reducing overall computational cost. If one thread

must traverse m inner nodes to reach a leaf and n to reach another while the remainder of the warp

needs n and m traversals, the entire warp executes max (m;n) traversals before each leaf visit with

some of the execution units masked o� after the �rst min (m;n). By postponing, onlym+n traversals

are executed to reach both leaves with all threads operating in lock-step.

In its original form [AL09], speculative inner node traversal stops when all threads of a warp have

postponed a leaf. This allows postponed leaves to be visited sooner and avoids traversal until each

thread reaches a second leaf, increasing processing unit utilization when threads require di�erent

numbers of traversals in total and some must be masked o�. However, the need for threads within a

warp to communicate is introduced. While warp voting is inexpensive in CUDA, the entire warp must

execute the voting instruction. When ray tracing is used as part of a more complex rendering kernel,

only a subset of the threads may be tracing rays at the same time, thus following di�erent code paths

within each warp and precluding the use of voting. This is exempli�ed by our implementation with

primary, re�ection and shadow rays in a single kernel.

4.3.3. Results and Discussion

Bar the last, all caching methods target global memory accesses, the key bottleneck of the CUDA

platform. As our �ndings from section 4.2.4 caution that even a small increase in computational cost

may negate bene�ts, we evaluate the impact on memory accesses, instruction counts and resulting

frame rates for di�erent combinations of the proposed caching methods. The benchmark environment

and settings are identical to those used in section 4.2.4. A kd-tree is constructed for each scene from

section A.2.1 with the SIROH heuristic and traversed by the CUDA ray tracing kernel of code base II

from section A.1.2. The baseline is traversal with a stack in local memory and no explicitly managed

caches. Results are given as averages over a �ight through each scene.

Table 4.8(a) shows the number of inner nodes loaded via the texturing unit per ray. Stack caching

has no in�uence on it (column 3) with the exception of stack cache III which loads 13:2% more nodes

on average due to speculative traversal (column 4). The node caches are very successful at eliminating

loads via the texturing unit by delivering nodes from shared memory. Relative to the baseline, node

cache II reduces the number of loads by an average of 60:7% (column 6). Node cache I covers a larger

part of the kd-tree and removes 72:3% of the loads (columns 2, 5). With speculative traversal, the

average number of loads lies 63:6% below the baseline (column 7).

Accesses to the local memory stack are counted in table 4.8(b). Since node caching does not a�ect

these, several columns show identical results. With stack cache I, an average 71:1% of the stack

operations (push and pop) no longer access local memory. This shows that most nodes pushed onto

the stack are popped o� again before further branching and a cache with capacity for a single entry is

80

4.3. Stack-Based kd-Tree Traversal

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 7:31 �96:4% �0:0% +16:0% �96:4% �93:2% �94:3%
Sponza 29:81 �63:8% �0:0% +13:6% �63:8% �49:9% �52:0%
Sibenik 37:63 �60:9% �0:0% +11:1% �60:9% �43:8% �49:1%
Fairy 37:43 �62:6% �0:0% +13:0% �62:6% �52:5% �53:4%
Conference 19:57 �77:7% �0:0% +12:5% �77:7% �64:3% �68:9%
Average �72:3% �0:0% +13:2% �72:3% �60:7% �63:6%
Std. Dev. 15:0% 0:0% 1:8% 15:0% 19:6% 18:8%

(a) Inner nodes loaded via the texturing unit per ray

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 2:01 �0:0% �88:7% +2:2% �88:7% �88:1% +2:2%
Sponza 12:31 �0:0% �63:7% +8:9% �63:7% �48:1% +8:9%
Sibenik 14:46 �0:0% �60:4% +5:0% �60:4% �37:1% +5:0%
Fairy 16:96 �0:0% �68:6% +4:1% �68:6% �48:7% +4:1%
Conference 6:69 �0:0% �74:1% +5:8% �74:1% �59:7% +5:8%

Average �0:0% �71:1% +5:2% �71:1% �56:4% +5:2%
Std. Dev. 0:0% 11:1% 2:5% 11:1% 19:4% 2:5%

(b) Stack entries accessed in local memory per ray

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 97:2% �0:3% +0:4% +0:1% �0:3% �0:4% �0:4%
Sponza 90:8% �1:6% +0:4% �0:4% �1:4% �1:6% �2:1%
Sibenik 90:1% �3:1% +0:3% +0:1% �2:6% �2:3% �2:5%
Fairy 86:3% �4:1% �0:1% �1:4% �4:0% �4:1% �5:6%
Conference 90:7% �2:0% �0:3% �1:2% �1:7% �2:1% �3:4%
Average 91:0% �2:2% +0:1% �0:6% �2:0% �2:1% �2:8%
Std. Dev. 3:9% 1:5% 0:3% 0:7% 1:4% 1:3% 1:9%

(c) Texture cache hit ratios

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 74:51 �75:6% �19:1% +13:0% �94:7% �92:1% �73:5%
Sponza 336:95 �45:2% �18:6% +12:2% �63:8% �49:4% �34:2%
Sibenik 416:72 �44:0% �16:8% +9:4% �60:8% �41:9% �34:1%
Fairy 435:06 �43:1% �21:4% +10:2% �64:5% �51:3% �35:5%
Conference 210:03 �57:9% �18:9% +10:8% �76:8% �63:2% �49:9%
Average �53:2% �19:0% +11:1% �72:1% �59:6% �45:4%
Std. Dev. 13:9% 1:7% 1:5% 14:1% 19:7% 17:1%

(d) Global memory bytes accessed per ray in (a) and (b) with a simpli�ed memory subsystem

Table 4.8.: Global memory accesses during inner node traversal with explicitly managed caches, rel-
ative to baseline without

81

4. Ray and Photon Tracing

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 674:2 +7:7% +2:4% +11:8% +8:7% +17:1% +18:8%
Sponza 2249:9 +12:8% +4:1% +44:2% +14:7% +23:3% +58:3%
Sibenik 2294:9 +15:2% +4:6% +39:6% +17:2% +26:1% +55:7%
Fairy 3129:6 +13:5% +4:6% +91:5% +15:9% +25:8% +110:7%
Conference 2246:2 +8:5% +2:5% +53:6% +9:3% +17:3% +63:4%

Average +11:6% +3:6% +48:1% +13:2% +21:9% +61:4%
Std. Dev. 3:3% 1:1% 28:8% 3:9% 4:5% 32:7%

Table 4.9.: Instructions per ray with explicitly managed caches, relative to baseline without

su�cient to serve the majority of operations (columns 3, 5). Stack cache II moves the stack for the top

8 levels of the kd-tree into registers. A considerable reduction in accesses to the local memory stack

is again achieved, averaging 56:4% (column 6). With stack cache III, speculative traversal causes the

average number of accesses to increase by 5:2% instead (columns 4, 7).

Table 4.8(c) lists texture cache hit ratios. These are a�ected by nodes loaded via the texturing

unit and in turn a�ect the performance of such loads. While hit ratios are available for the �rst

TPC only, thus varying between experiments as rays are nondeterministically assigned to processing

units, the conclusion can be drawn that they do not signi�cantly change with stack or node caching.

As described in section 2.2.3.1, the remainder of the complex CUDA memory subsystem is largely

undocumented. The actual performance impact of changes in memory accesses is thus di�cult to

predict, depending on which nodes are cached and which local stack accesses are coalesced.

A qualitative assessment of the impact is possible with a simpli�ed memory subsystem model that

serves every access independently, avoiding the unpredictable in�uences of caching and coalescing.

With inner nodes and stack entries occupying 8 bytes each, tables 4.8(a) and (b) combine to 4.8(d).

Node cache I is seen to signi�cantly reduce the global memory bandwidth required (column 2). Stack

cache I results in a smaller reduction (column 3), both of which add when the caches are combined

(column 5). Stack and node cache II combine to a somewhat smaller reduction (column 6). The

speculative traversal of stack cache III increases bandwidth requirements (column 4) but a reduction

below the baseline results when combined with node cache I (column 7). Populating node caches

requires only 240 kB of bandwidth per kernel as 30 CTAs are launched and preload 8 kB each.

Computational cost is illustrated by table 4.9 as the number of instructions required to trace a ray.

Stack cache I adds 3:6% (column 3), node cache I 11:6% (column 2) instructions to the baseline on

average. Combining both approximately sums their overheads (column 5). Stack and node cache II

together add an average of 21:9% instructions due to the more complex stack representation and ray

clipping against node AABBs (column 6). Stack cache III proves to have the opposite of its intended

e�ect. Each instruction executed by a warp is counted for all its threads, whether participating or

masked o�. Extracting common instructions should thus decrease the measured instruction count.

Instead, the overheads of additional traversals and cache management dominate, leading to an average

increase by 48:1% (column 4) or 61:4% if node cache I is also used (column 7).

The resulting frame rates are presented in table 4.10. Stack cache III requires more global memory

accesses and instructions, leading to a slowdown averaging 31:3% (column 4). Adding node cache I

reduces global memory accesses but increases instruction count further, making the kernel compute

82

4.3. Stack-Based kd-Tree Traversal

1 2 3 4 5 6 7

Node Cache
Baseline

I None None I II I
Stack Cache None I III I II III

Scene 6 392:6 +2:4% +3:8% �6:2% +6:1% +2:5% �3:2%
Sponza 213:7 �0:3% +1:3% �29:2% +2:3% �4:3% �29:1%
Sibenik 194:6 �1:0% +1:2% �27:1% +1:8% �6:0% �27:2%
Fairy 149:0 �1:5% +1:5% �51:7% +1:0% �5:9% �52:5%
Conference 172:0 �0:1% +0:4% �42:1% +0:8% �2:9% �42:0%
Average �0:1% +1:7% �31:3% +2:4% �3:3% �30:8%
Std. Dev. 1:5% 1:3% 17:2% 2:2% 3:5% 18:5%

Table 4.10.: Ray tracing frame rates with explicitly managed caches, relative to baseline without

bound with a slowdown of 30:8% on average (column 7). The combination of stack and node cache II

also appears compute bound. Despite a considerable reduction in global memory accesses, the higher

instruction count leads to a slowdown for all but the simplest scene, averaging 3:3% (column 6).

Stack cache I con�rms the motivation behind our work. Despite a small increase in instruction

count, the reduction in global memory accesses with this method proves bene�cial and yields a

speedup averaging 1:7% (column 3). Node cache I o�ers larger memory access reduction at higher

computational cost, making the kernel compute bound and leading to a slowdown for all but the

simplest scene (column 2). Both methods combined provide an average speedup of 2:4% (column 5).

This appears to contradict the conclusion that node cache I alone makes ray tracing compute bound

as instruction count and performance are both higher when the caches are combined. The explanation

lies in the complexity of the CUDA platform. Actual performance is di�cult to predict not only for

the memory subsystem but also for the processing units. Changes in the number of instructions serve

as an indication but benchmarks are required to measure actual performance.

Recent work [AK10] evaluates explicitly managed caches for ray tracing on a hypothetical manycore

architecture. Rays are enqueued at prede�ned points in the spatial index, coherently traversing sets

of nodes preloaded into shared memory. This approach requires a reorganization of the entire ray

tracing process and an intricate job scheduler. Stack caching inspired by short-stack is also proposed.

Four entries are held in registers, storing only node indexes as a BVH is used. The authors report

signi�cant bandwidth reductions. However, computational cost, identi�ed as an important bottleneck

in our results, is not considered.

In summary, we �nd that explicitly managed caches in shared memory and registers can further

improve the performance of ray tracing with stack-based kd-tree traversal in CUDA. The complexity

of the CUDA platform and lack of documentation make it impossible to predict actual performance

as memory access and execution patterns change, emphasizing the need for benchmark evaluation.

Although the average speedup of our best caching method is only 2:4%, the baseline already is a high

performance ray tracer for which large gains are unlikely. We also �nd that speculative traversal,

yielding a speedup with warp voting [AL09], leads to slowdowns when warp voting is not possible.

83

5. Density Estimation

Photon mapping links photons traced from the light sources and rays traced from the virtual camera

by weighted kernel density estimation. Radiance re�ected at query point ~x into query direction ~! is

estimated as the density of re�ected intensity per unit area. A sample of the intensity can be obtained

at every nearby photon interaction by re�ecting its �ux �i;j from the incident direction ~!i;j via the

BRDF f . The density per area is estimated by centering a smoothing kernel K with bandwidth h

around each interaction and summing their weighted contributions.

Using k-th nearest neighbor density estimation as originally proposed adapts the bandwidth to the

local interaction density, automatically balancing variance and bias. However, this approach requires

candidate interactions to be retrieved and placed in a priority queue to identify those k nearest ~x.

On the CUDA platform, the priority queues exceed available shared memory and must be placed in

local memory, leading to a large overhead of slow memory accesses.

Variable kernel density estimation avoids this ine�ciency by assigning each photon interaction an

individual bandwidth hj and summing the independent contributions of those whose kernel support

regions overlap ~x. The challenge lies in determining bandwidths adaptive to the local illumination.

Existing techniques as listed in section 3.4.2.3 either reintroduce the need to locate nearby interactions

when computing hj or adapt to a subset of the factors a�ecting illumination only.

Photon di�erentials adapt to the in�uences of sampling at emission, propagation through space

and specular interactions. In this chapter, we extend the adaptation to di�use re�ections and Russian

roulette while reducing storage and bandwidth requirements. We then describe how an anisotropic

kernel support region is derived and the kernel e�ciently evaluated for it. An adaptation dampening

is �nally introduced that approximates the in�uence of illumination arriving via di�erent paths.

5.1. Photon Di�erentials

The photon di�erentials approach uses the concept of ray di�erentials. Each photon path is modeled

as a series of functions modifying position and direction. Di�erentials, the partial derivatives of the

composite function, are tracked with every photon. These allow the positions of neighboring photons

to be estimated by �rst order Taylor approximation, spanning a footprint at each interaction that

de�nes an anisotropic kernel support region adaptive to the local interaction density.

Equations for initializing and updating di�erentials are provided in section 3.1.2.2. These assume

that the path is a function of two parameters p1, p2 sampled at emission. Propagation and specular

interactions conform to this model. Interactions with other surface types or Russian roulette do not

as each of these introduces additional parameters. While path di�erentials do provide an extension

to higher parameter counts, they incur the overheads of growing storage and complex calculations.

For interactive rendering, less expensive solutions with �xed storage are desirable. We show how to

approximatively account for di�use re�ection and Russian roulette while tracking di�erentials with

respect to two parameters only for every photon.

85

5. Density Estimation

5.1.1. Initialization

Di�erential initialization is described in section 3.1.2.2 for deterministic ray emission from a virtual

camera only. Stochastic photon emission from a light source therefore requires a rederivation of the

initial di�erentials and the distances in parameter space between neighbors. With ~zl the position of a

point light, R a matrix expressing its rotation and p1 2 [0; �], p2 2 [0; 2�) the inclination and azimuth

in its local coordinate frame, the initial position and direction of a photon can be parameterized as

~z (p1; p2) = ~zl; ~! (p1; p2) = R

0
B@cos p2 sin p1

sin p2 sin p1

cos p1

1
CA : (5.1)

Initial photon di�erentials are obtained by di�erentiating these equations,

@~z

@p1
(p1; p2) = ~0;

@~!

@p1
(p1; p2) = R

0
B@cos p2 cos p1

sin p2 cos p1

� sin p1

1
CA ; (5.2)

@~z

@p2
(p1; p2) = ~0;

@~!

@p2
(p1; p2) = R

0
B@� sin p2 sin p1

cos p2 sin p1

0

1
CA : (5.3)

The distances �p1, �p2 in parameter space between a photon and its neighbors depend on the

sampling of directions. As noted in section 3.4.1, variance is minimized when all photons have equal

�ux. This is ensured at emission by importance-sampling light source intensity. In the simplest case

of an isotropic source, �ux is emitted evenly into the sphere of directions. This readily generalizes

to a spotlight emitting �ux evenly into a cone of directions around the zenith of its local coordinate

frame with apex angle 2� 2 [0; 2�]. The solid angle into which �ux is emitted becomes the area on

the unit sphere corresponding to p1 2 [0; �], p2 2 [0; 2�). Due to the distortion in the mapping from

spherical coordinates to sphere surface, the area element is sin p1 dp2 dp1 and the solid angle

� =

Z �

0

Z 2�

0

sin p1 dp2 dp1 = 2� (1� cos�) :

Even �ux distribution corresponds to a constant intensity I (~!) = �
2�(1�cos�) throughout this solid

angle. As a function of p1, p2, it is subject to the distorted mapping so that I (p1; p2) = � sin p1
2�(1�cos�) .

The probability density function importance-sampling intensity thus is

p (p1; p2) =

8><
>:

sin p1
2� (1� cos�)

if p1 � �,

0 else.

Computing the marginal probability density functions shows that p (p1; p2) is separable and p1, p2
may be sampled independently,

p (p1) =

Z 2�

0

sin p1
2� (1� cos�)

dp2 =
sin p1

1� cos�
; (5.4)

p (p2) =

Z �

0

sin p1
2� (1� cos�)

dp1 =
1

2�
: (5.5)

86

5.1. Photon Di�erentials

Parameters distributed according to equations 5.4 and 5.5 are obtained by transforming uniformly

distributed samples y1 2 [cos�; 1], y2 2 [0; 2�) via their inverted cumulative distribution functions to

p1 = arccos y1, p2 = y2, as noted for spheres [Sea96] and recently for cones of directions [Ken07].

With stochastic sampling, the actual neighboring photons are unknown until all have been emitted.

Additionally, each neighbor is likely to di�er in p1 and p2. This is addressed by setting �p1, �p2
to the expected distances between a photon and neighbors di�ering in p1 or p2 only. Using �rst-

order Taylor approximation, the directions of these are estimated as ~! (p1; p2) + �p1
@~!
@p1

(p1; p2) and

~! (p1; p2) + �p2
@~!
@p2

(p1; p2). With uniformly distributed photon directions, the expected lengths of

the di�erence vectors between these and ~! (p1; p2) are equal. As n photons are emitted into a solid

angle of 2� (1� cos�), they are furthermore expected to span a solid angle of 2�(1�cos�)
n

so that

E

��p1 @~!@p1 (p1; p2)

�
= E

��p2 @~!@p2 (p1; p2)

�
=

r
2� (1� cos�)

n
: (5.6)

The lengths of the initial di�erentials in equations 5.2 and 5.3 are @~!@p1 (p1; p2)
 = 1;

 @~!@p2 (p1; p2)
 = sin p1: (5.7)

Combining equations 5.6 and 5.7, the expected distances between neighboring photons are

�p1 � E [�p1] =
r

2� (1� cos�)

n
; �p2 � E [�p2] =

r
2� (1� cos�)

n

1

sin p1
:

In total, four di�erentials and two distances in parameter space are tracked with each photon,

allowing its footprint spanning vectors to be computed according to equations 3.3 and 3.4 as

~�1 (p1; p2) � �p1
@~z

@p1
(p1; p2) ; ~�2 (p1; p2) � �p2

@~z

@p2
(p1; p2) : (5.8)

We observe that the equations from section 3.1.2.2 for updating di�erentials preserve a scaling

applied to the di�erentials with respect to a parameter p. The corresponding distance in parameter

space remains constant and therefore also preserves any scaling. If the initial di�erentials with

respect to p1, p2 are scaled by c1, c2 and the distances in parameter space by c�11 , c�12 , the footprint

spanning vectors in equation 5.8 thus remain unchanged. This can be exploited to reduce storage

requirements. At emission, initial di�erentials with respect to p1 are scaled by
p
2�1 (1� cos�) and

those with respect to p2 by
p
2�1 (1� cos�) sin�1 p1, yielding

@~z

@p1
(p1; p2) = ~0;

@~!

@p1
(p1; p2) =

r
1

2
(1� cos�)R

0
B@cos p2 cos p1

sin p2 cos p1

� sin p1

1
CA ; (5.9)

@~z

@p2
(p1; p2) = ~0;

@~!

@p2
(p1; p2) =

r
1

2
(1� cos�)R

0
B@� sin p2

cos p2

0

1
CA : (5.10)

The distances in parameter space are scaled by the inverses of these factors and become

�p1 = �p2 =

r
4�

n
: (5.11)

87

5. Density Estimation

Photon di�erentials initialized according to equations 5.9 and 5.10 must be tracked with each

photon and updated as it is traced through the scene. The distances in parameter space, however,

are now replaced by a global constant. Not having to track these with each photon reduces the

storage and bandwidth requirements during photon tracing.

5.1.2. Specular Re�ection

Equations for updating di�erentials upon specular re�ection are provided in section 3.1.2.4. These

require the partial derivatives of the surface normal ~n (p1; p2) to be computed. A method is proposed

in the original ray di�erentials framework [Ige99] which requires three planes to be stored for each

triangle that describe its edges. Storage overhead and a corresponding bandwidth cost are incurred.

We derive an alternative solution that allows the partial derivatives to be computed without the need

for any additional storage or bandwidth.

According to section 3.1.2.4, the normal is interpolated as ~n (u; v; w) =
�

w~n0 + u~n1 + v ~n2 where

u; v; w are the barycentric coordinates of hit point ~z (p1; p2). Since w = 1� u� v, a coordinate pair
~� = (u; v) is su�cient, allowing the normal to be interpolated as ~n(~�) =

~n0 + u~n01 + v ~n02 from vectors

~n0, ~n01 = ~n1 � ~n0, ~n02 = ~n2 � ~n0 stored for each triangle. The partial derivative of the normal with

respect to either parameter p thus decomposes by the chain rule into

@~n

@p
(p1; p2) =

@~n

@p
(~� (~z (p1; p2))) =

@~n

@~�
(~� (~z (p1; p2)))

@~�

@~z
(~z (p1; p2))

@~z

@p
(p1; p2) : (5.12)

The normal ~n(~�) is the product of the unnormalized interpolation result ~n0(~�) = ~n0 + u~n01 + v ~n02
and the inverse of its length, k~n0(~�)k�1. Di�erentiating this product with respect to the components

of ~� yields the �rst term of equation 5.12,

@~n

@~�
(~�) =

~n01 � (~n01 � ~n(~�))~n(~�)

k~n0(~�)k
;
~n02 � (~n02 � ~n(~�))~n(~�)

k~n0(~�)k

!
: (5.13)

Equation 5.13 is a combination of intermediary results computed during normal interpolation that

requires no additional storage, bandwidth or expensive calculations. To obtain the second term of

equation 5.12, the relationship between the barycentric ~� and Cartesian ~z hit point coordinates must

be analyzed. For the e�cient Wald intersection test of section 3.1.3.2, this follows from algorithms 3.2

and 3.3. The relevant components of these are

k = argmax j~nij ; algorithm 3.2, line 1 (5.14)

(i; j) = (k + 1; k + 2) mod 3; algorithm 3.2, line 2 (5.15)

~e01 = (�e1j ; e1i; det (~e1ji; ~v0ji))T det�1 (~e1ij ; ~e2ij) ; algorithm 3.2, line 4 (5.16)

~e02 = (e2j ;�e2i; det (~e2ij ; ~v0ij))T det�1 (~e1ij ; ~e2ij) ; algorithm 3.2, line 5 (5.17)

(~x0; ~!0) = (~x; ~!)ijk ; algorithm 3.3, line 2 (5.18)

~h = ~x0xy + t ~!0xy; algorithm 3.3, line 7 (5.19)

(u; v) = (~e02xy � ~h+ e02z; ~e
0
1xy � ~h+ e01z): algorithm 3.3, line 8 (5.20)

In equations 5.14 and 5.15, i, j, k are de�ned as a permutation of coordinate axis indexes (0; 1; 2).

Equations 5.18 and 5.19 thus extract two of the three Cartesian hit point coordinates ~z = ~x + t ~!

88

5.1. Photon Di�erentials

such that ~h = ~zij and equation 5.20 uses the precalculated values from equations 5.16 and 5.17 to

compute the barycentric hit point coordinates as

~� (~z) =

~e02xy � ~zij + ~e02z
~e01xy � ~zij + ~e01z

!
:

Taking the derivatives with respect to the components of ~z in their permuted i, j, k order yields

@~�

@~zijk
(~z) =

e02x e02y 0

e01x e01y 0

!
:

A derivative with respect to ~z is obtained by undoing the permutation,

@~�

@~z
(~z) =

8>>>>>>>>>><
>>>>>>>>>>:

0 e02x e02y
0 e01x e01y

!
if k = 0,

e02y 0 e02x
e01y 0 e01x

!
if k = 1,

e02x e02y 0

e01x e01y 0

!
if k = 2.

(5.21)

Equation 5.21 provides the second term of equation 5.12 by permuting data loaded during hit point

computation, requiring no additional storage, bandwidth or calculations. The �nal term needed to

evaluate equation 5.12 is the current di�erential @~z
@p

(p1; p2). By multiplying equations 5.13, 5.21 and

this di�erential, the partial derivative @~n
@p

(p1; p2) of the surface normal is thus e�ciently obtained. To

update di�erentials during specular re�ection, partial derivatives with respect to both parameters are

required. Since equations 5.13 and 5.21 are independent of p, their product can be reused, reducing

the computation for the second parameter further.

5.1.3. Di�use Re�ection

Upon encountering a di�use surface, �ux is redistributed into the entire hemisphere above it, regard-

less of incident direction. The photon path thus becomes the function of two additional parameters

p01, p
0
2 sampled to choose a new photon direction. With R (p1; p2) a matrix expressing the surface

orientation at hit point ~z (p1; p2) and p01 2
�
0; �2

�
, p02 2 [0; 2�) the inclination and azimuth in the local

coordinate frame, the photon position and direction after di�use re�ection are

~z0 (p1; p2; p01; p
0
2) = ~z (p1; p2) ; ~! (p1; p2; p

0
1; p

0
2) = R (p1; p2)

0
B@cos p02 sin p

0
1

sin p02 sin p
0
1

cos p01

1
CA :

We avoid the overhead of having to track more di�erentials with each di�use re�ection by treating

it as an absorption and a reemission. The photon is thus considered to originate at the hit point on

the di�use surface with parameters p01, p
0
2 only so that

~z0 (p01; p
0
2) = ~z (p1; p2) ; ~! (p01; p

0
2) = R (p1; p2)

0
B@cos p02 sin p

0
1

sin p02 sin p
0
1

cos p01

1
CA :

89

5. Density Estimation

Di�erentials identical to equations 5.2 and 5.3 with p01, p
0
2 substituted for p1, p2 result. However,

the distances �p01, �p
0
2 in parameter space must be rederived due to a di�erent sampling of photon

directions. A di�use surface redirects radiance evenly into the hemisphere of directions. Intensity is

proportional to radiance projected onto the surface so that I (~!0) / j~!0 � ~nj. In spherical coordinates,

j~!0 � ~nj = cos p01 and with the distorted mapping to the hemisphere, I (p01; p
0
2) / cos p01 sin p

0
1. The

probability density function importance-sampling intensity thus is

p (p01; p
0
2) =

cos p01 sin p
0
1

�
:

Marginal probability density functions show that p01, p
0
2 may be sampled independently,

p (p01) =
Z 2�

0

cos p01 sin p
0
1

�
dp02 = 2 cos p01 sin p

0
1; (5.22)

p (p02) =
Z �

2

0

cos p01 sin p
0
1

�
dp01 =

1

2�
: (5.23)

The cumulative distribution functions are F (p02) = (2�)
�1

p02 and

F (p01) =
Z p01

0

2 cos p sin p dp = 1� cos2 p01:

Parameters distributed according to equations 5.22 and 5.23 are obtained by drawing uniformly

distributed samples y01 2 [0; 1], y02 2 [0; 2�) and transforming these into p01 = arccos
p
1� y01, p

0
2 = y02

via the inverted cumulative distribution functions.

Since each photon is traced independently, no neighbors at the same remission point exist. This

is addressed by using global deltas [SW01] as described in section 3.1.2.5. With n photons traced in

total, the distances to neighbors are computed by assuming all sample the same parameter space.

As in section 5.1.1, �p01, �p
0
2 are additionally set to expected values due to stochastic sampling.

The di�erence vectors between the photon direction and those of its neighbors are again estimated

using �rst-order Taylor approximation as �p01
@~!0

@p01
(p01; p

0
2) and �p02

@~!0

@p02
(p01; p

0
2). With the hemisphere

of directions sampled proportional to I (~!0) / j~!0 � ~nj = cos p01, the expected solid angle spanned by

neighboring photon directions is c cos�1 p01, proportional to the inverse. All n photons together are

expected to cover the entire hemisphere from which the proportionality constant c follows,

E

�
n

c

cos p01

�
= 2� , c =

�

n
:

Approximating the distribution of photon directions as locally uniform, the expected lengths of

both di�erence vectors are equal so that

E

��p01 @~!0@p01
(p01; p

0
2)

�
= E

��p02 @~!0@p02
(p01; p

0
2)

�
=

r
�

n cos p01
: (5.24)

Since the di�erentials are identical to equations 5.2 and 5.3, their lengths follow equation 5.7.

Combining these with equation 5.24, the expected distances between neighboring photons are

�p01 � E [�p01] =
r

�

n cos p01
; �p02 � E [�p02] =

r
�

n cos p01

1

sin p01
:

90

5.1. Photon Di�erentials

The need to track distances in parameter space can be eliminated analogously to section 5.1.1.

Di�erentials are scaled by
q
(4 cos p01)

�1 respectively
q
(4 cos p01)

�1
sin�1 p01 to obtain

@~z0

@p01
(p01; p

0
2) = ~0;

@~!0

@p01
(p01; p

0
2) =

s
1

4 cos p01
R (p1; p2)

0
B@cos p02 cos p

0
1

sin p02 cos p
0
1

� sin p1

1
CA ; (5.25)

@~z0

@p02
(p01; p

0
2) = ~0;

@~!0

@p02
(p01; p

0
2) =

s
1

4 cos p01
R (p1; p2)

0
B@� sin p02

cos p02
0

1
CA : (5.26)

Scaled by the inverses of these factors, the distances in parameter space become identical to those

of equation 5.11, allowing the same global constant to be used for all photons,

�p01 = �p02 =

r
4�

n
: (5.27)

Treating di�use re�ection as an absorption and reemission from the hit point with new parameters

has the disadvantage that any prior footprint adaptation is discarded. To approximatively preserve

it, we derive an o�set tv (p1; p2) from this footprint. The photon is then reemitted with di�erentials

as given by equations 5.25 and 5.26 not at ~z (p1; p2) but at

~z0v (p
0
1; p

0
2) = ~z (p1; p2)� tv (p1; p2) ~!

0 (p01; p
0
2) :

Having traveled a distance tv (p1; p2) since reemission, the photon reaches the actual hit point again

at ~z00 (p01; p
0
2) = ~z0v (p

0
1; p

0
2) + tv (p1; p2) ~! (p01; p

0
2) = ~z (p1; p2) with its di�erentials now

@~z00

@p01
(p01; p

0
2) = tv (p1; p2)

@~!0

@p01
(p01; p

0
2) ;

@~!00

@p01
(p01; p

0
2) =

@~!0

@p01
(p01; p

0
2) ; (5.28)

@~z00

@p02
(p01; p

0
2) = tv (p1; p2)

@~!0

@p02
(p01; p

0
2) ;

@~!00

@p02
(p01; p

0
2) =

@~!0

@p02
(p01; p

0
2) : (5.29)

O�setting thus does not a�ect the direction ~!0 or its di�erentials but leads to the photon having a

nonzero footprint at ~z (p1; p2) after re�ection. The footprint area is

A0 (p01; p
0
2) =

�p01 @~z00@p01
(p01; p

0
2)��p02

@~z00

@p02
(p01; p

0
2)

 :
Inserting �p01, �p

0
2 from equation 5.27, di�erentials from equations 5.28, 5.29 and 5.25, 5.26 yields

A0 (p01; p
0
2) = t2v (p1; p2)

�

n cos p01
: (5.30)

The footprint area before re�ection is

A (p1; p2) =

�p1 @~z@p1 (p1; p2)��p2
@~z

@p2
(p1; p2)

 = 4�

n

 @~z@p1 (p1; p2)� @~z

@p2
(p1; p2)

 :
With directions sampled proportional to I (~!0) / cos p01, the expected value of the footprint area af-

ter re�ection follows from equation 5.30 as E [A0 (p01; p
0
2)] = t2v (p1; p2)

2�
n
. Adaptation before re�ection

is approximatively preserved by computing the o�set tv (p1; p2) so that E [A0 (p01; p
0
2)] = A (p1; p2),

91

5. Density Estimation

E [A0 (p01; p
0
2)] = A (p1; p2)

, t2v (p1; p2)
2�

n
=

4�

n

 @~z@p1 (p1; p2)� @~z

@p2
(p1; p2)

) tv (p1; p2) =

s
2

 @~z@p1 (p1; p2)� @~z

@p2
(p1; p2)

:
In summary, when a photon hits a di�use surface, an o�set tv (p1; p2) is calculated from the cross

product of its current position di�erentials. The photon is then absorbed and reemitted with a new

direction chosen by sampling parameters p01, p
0
2 and di�erentials as given in equations 5.25 and 5.26.

Footprint area, representing any prior scaling and adaptation of the di�erentials, is approximatively

preserved by o�setting the reemission point. Since o�setting serves the purpose of modifying di�er-

entials only, it is su�cient to virtually o�set the reemission point, continuing to trace from the actual

hit point but with the di�erentials from equations 5.28 and 5.29. The parameter count and distances

between neighboring photons for these remain unchanged. No distinction between parameters before

and after di�use re�ection thus needs to be made, allowing symbols p1, p2 to always be used for the

current parameters of a photon.

5.1.4. Russian Roulette

At each surface hit, Russian roulette samples another parameter to decide between re�ection and

absorption. As �rst described in the context of path di�erentials [SW01], the need for additional

di�erentials can be avoided by assuming other photons encounter surfaces with equal re�ectivity �.

Russian roulette then reduces the number of photons by factor � while leaving their distribution in

parameter space unchanged. It can thus approximatively be accounted for by increasing the expected

distances in parameter space for each photon undergoing Russian roulette.

Di�erentials are scaled during emission from a light source and reemission from a di�use surface

so that the expected distances in parameter space become equal to the same global constant for all

photons. Irrespective of the actual sample distributions, Russian roulette therefore increases both

expected distances for a photon by factor ��
1
2 . As noted in section 5.1.1, increasing the lengths of

the di�erentials by ��
1
2 instead has the same e�ect while leaving the distances in parameter space

globally constant and avoiding the need to track them with each photon.

5.2. Bandwidth Selection

Variable kernel density estimation for photon mapping follows equation 3.17. The �ux �i;j of a photon

interaction at ~zj = ~z (p1; p2) is weighted for each query point ~x by the BRDF f , a radially symmetric

smoothing kernel K with local support and the Jacobian determinant of the transformation to its

local coordinate frame. Although the kernel is planar, a three-dimensional support region is used.

This enables contribution to nearby points also on curved surfaces since for each ~x, a cut through the

support region containing ~x and ~zj can serve as kernel support area. Selecting a single bandwidth hj
is simplest, leading to a spherical kernel support region around ~zj with radius hj and circular cuts

through it. However, a more complex shape could also be chosen.

92

5.2. Bandwidth Selection

�

~x
~m1

~m2

~M

~m

~� �

~zj

(a) The area of any cut through the kernel support region is approximated
by that containing the photon footprint (yellow).

~d
~i

~j

~0

~k

(b) The kernel is evaluated after trans-
forming the region to a unit sphere.

Figure 5.1.: Kernel support region de�ned by photon di�erentials: Photon interaction position ~zj and
semiprincipal axes ~M , ~m1, ~m2 yield a skewed ellipsoid.

5.2.1. Anisotropic Kernel Support Region

Photon di�erentials yield footprint spanning vectors adaptive to the local interaction density at ~zj .

An anisotropic kernel support region aligned with these is therefore desirable, providing an automatic

tradeo� between variance and bias for two distinct directions. We scale the two spanning vectors by

a manually chosen spread factor s, obtaining the vectors

~M = argmax
�
ks ~�0

1 (p1; p2) k; ks ~�0
2 (p1; p2) k

�
;

~m1 = argmin
�
ks ~�0

1 (p1; p2) k; ks ~�0
2 (p1; p2) k

�
:

These serve as the semimajor and semiminor axes of an ellipse, skewed if the angle between them

is � 6= �
2 . Adding another semiprincipal axis ~m2 of the same length as ~m1 aligned with the surface

normal ~nj = ~n (p1; p2), a skewed ellipsoid adaptive to the local interaction density at ~zj is obtained

(�gure 5.1(a)). ~m1 is reoriented so that ~M , ~m1, ~m2 form a right-handed coordinate system.

With this anisotropic kernel support region around ~zj , the contribution at any ~x is weighted by

transforming ~x from a cut containing ~x and ~zj to the local coordinate frame of the kernel, evaluating

K and computing the Jacobian determinant. If the transformation is a�ne, the Jacobian determinant

is the ratio of the cut area to that of the unit circle on which the kernel is de�ned. Following the

original work on photon di�erentials [SFES07], we approximate the area for any orientation by that

containing the photon footprint (�gure 5.1(a), yellow), A = � k ~M � ~m1k. This allows the Jacobian

determinant to be accounted for by storing �ux weighted by it, �0i;j = �A�1�i;j .

The skewed ellipsoid can be a�nely transformed to a unit sphere at the origin, mapping each ~x to a

point ~d (�gure 5.1(b)). Since K is radially symmetric, its value then depends on k~dk only, regardless
of cut orientation. With ~� = ~x � ~zj , the transformation is ~d = M ~�. Its inverse maps the three unit

coordinate axes to the semiprincipal axes of the skewed ellipsoid so that M�1 = (~M; ~m1; ~m2) and

M = h ~M; ~m1; ~m2i�1(~m1 � ~m2; ~m2 � ~M; ~M � ~m1)
T :

93

5. Density Estimation

In the original photon di�erentials technique, storing M or reconstructing it from the footprint

spanning vectors and surface normal during density estimation is proposed. In both cases, twelve

�oating point values must be loaded to obtain ~zj and M . We show how k~dk can be computed from ~x

using nine values, reducing storage and bandwidth requirements. The de�nition expands to

k~dk2 = kM ~�k2 = h ~M; ~m1; ~m2i�2
�
h~m1; ~m2; ~�i2 + h~m2; ~M;~�i2 + h ~M; ~m1; ~�i2

�
:

Dependencies on ~m1 and ~m2 can be removed by exploiting the facts that ~m�2
1 = ~m�2

2 and the two

are orthogonal so that c21 ~m
2
1 + c22 ~m

2
2 = (c1 ~m1 + c2 ~m2)

2. With ~m = ~m1 � ~m2,

k~dk2 =(~m � ~M)�2
�
(~m � ~�)2 + ~m�2

1 ~m2
1 h~m2; ~M;~�i2 + ~m�2

2 ~m2
2 h ~M; ~m1; ~�i2

�
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1 (~m � ~M)�2
�
~m1 h~m2; ~M;~�i+ ~m2 h ~M; ~m1; ~�i

�2
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1 (~m � ~M)�2
�
~m1 h~m2; ~M;~�i � ~m2 h~m1; ~M;~�i

�2
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1 (~m � ~M)�2
�
(~M � ~�)� (~m1 � ~m2)

�2
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1 (~m � ~M)�2
�
~m� (~M � ~�)

�2
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1 (~m � ~M)�2
�
~M (~m � ~�)� ~� (~m � ~M)

�2
=(~m � ~�)2(~m � ~M)�2 + ~m�2

1

�
(~m � ~�)(~m � ~M)�1 ~M � ~�

�2
:

With ~m0 = k~m1k ~̂m, the identity ~m02 = ~m2
1 holds and

k~dk2 = (~m0 � ~�)2(~m0 � ~M)�2 + ~m0�2
�
(~m � ~�)(~m0 � ~M)�1 ~M � ~�

�2
:

To evaluate this expression for a query point ~x, only the nine �oating point values ~zj , ~m0, ~M are

needed. If k~dk2 < 1, the query point lies within the kernel support region and the weight K(k~dk) is
computed. Contributions to back-facing surfaces are avoided by comparing the normals at ~x and ~zj .

No additional storage or bandwidth is required for ~nj as ~nj =
�

~m0 � ~M .

All evaluation may be omitted when ~x lies outside an AABB of the kernel support region. This

is de�ned by six bounding planes, each spanned by a pair of unit coordinate axes ~ui, ~vi and o�set

from ~zj by ci along the normal ~wi = ~ui � ~vi. Planes tangential to the kernel support region are the

tightest. These can be found by a�nely transforming the plane equations with the skewed ellipsoid.

For each, position vector ~pi = ciM ~wi and spanning vectors M ~ui, M ~vi result, yielding the normal

~w0i = (M ~ui)� (M ~vi) = detMM�T (~ui � ~vi) = detMM�T ~wi:

The plane is tangential to the unit sphere at the origin when its distance from the origin is one,

��� ~̂w0i � ~pi��� =
���� detMM�T ~wi
k detMM�T ~wik � (ciM ~wi)

���� = ��ci (M�T ~wi) � (M ~wi)
�� kM�T ~wik�1 !

= 1: (5.31)

Rewriting the dot product reduces it to

(M�T ~wi) � (M ~wi) = (~wT
i M

�1)T � (M ~wi) = (~wT
i M

�1) (M ~wi) = ~wT
i M

�1M ~wi = ~w2
i = 1: (5.32)

94

5.2. Bandwidth Selection

Inserting equation 5.32 into equation 5.31 yields

jcij kM�T ~wik�1 = 1, ci = �kM�T ~wik�1:

The tightest bounding planes having a unit coordinate axis ~wi as normal are thus o�set from ~zj

by �kM�T ~wik�1, leading to the AABB�
~zj �

�
kM�T ~ik; kM�T ~jk; kM�T ~kk

�T
; ~zj +

�
kM�T ~ik; kM�T ~jk; kM�T ~kk

�T�
:

5.2.2. Dampened Adaptation

Using photon di�erentials, a kernel support region adaptive to the local interaction density of photons

neighboring in parameter space and thus following similar paths is obtained. This provides the

desirable separation of interaction densities for di�erently focused or colored illumination arriving

from di�erent parts of the scene. However, when similar illumination reaches a surface via di�erent

paths, interaction densities could be combined to reduce kernel support regions.

Finding the interactions of di�erent paths that contribute similar illumination is computationally

expensive. The need to locate nearby interactions after photon tracing would be reintroduced and

a classi�cation of these as either similar or not required. We propose an inexpensive heuristic for

interactive rendering instead. As the kernel support region grows, the probability increases that

di�erent paths lead to similar interactions inside it, indicating that the region should be reduced.

The overall result is approximated by dampening the adaptation. We are motivated by a method

that adapts kernel support areas to inverse photon path probabilities [HHK+07], using an exponent

e < 1 to dampen the adaptation. With p the parameter for which the longer position di�erential

results at ~zj , its length is scaled so that

@~z0

@p
(p1; p2) =

@~z@p (p1; p2)

1
4
�

@~z

@p
(p1; p2) :

The di�erential for the other parameter p0 is scaled by the same factor, resulting in

@~z0

@p0
(p1; p2) =

 @~z
@p0

(p1; p2)
@~z@p (p1; p2)
�

@~z

@p0
(p1; p2) :

Construction of the kernel support region then follows section 5.2.1. By scaling both di�erentials

with the same factor, the footprint shape and therefore also that of the support region are una�ected

by the adaptation dampening. Only the ranges of their sizes are compressed. To guarantee that no

excessively large kernel support regions result despite the damping, the lengths of all skewed ellipsoid

semiprincipal axes are further limited to hmax.

Another potential di�culty in practice are degenerate interactions whose footprint parallelogram

has a height vanishing against the base. We address this issue by discarding a photon interaction if

the footprint height is less than a small threshold fraction f of its base, @~z@p0 (p1; p2)
 jsin�j < f

@~z@p (p1; p2)
 : (5.33)

95

5. Density Estimation

Scene
Photon Tracing Density Estimation

Emissions Interactions Discarded Spread s Clamped kV K kkNN

Scene 6 131072 163286 0:15% 20 0:00% 337:6 301
Sponza 262144 300339 0:15% 40 2:94% 199:1 155
Sibenik 524288 417649 0:16% 55 7:19% 192:2 201
Fairy 131072 9478 0:86% 25 2:83% 36:0 75
Conference 131072 83003 0:16% 25 0:22% 256:9 201
Passage 131072 69201 0:17% 15 0:00% 459:6 451
Ring 131072 75876 0:46% 10 0:00% 186:6 51

Average 0:30% 1:88%
Std. Dev. 0:27% 2:70%

Table 5.1.: Photon tracing and density estimation statistics

5.2.3. Results and Discussion

We evaluate the proposed methods on the seven benchmark scenes from section A.2. All parameters

are adjusted to balance computational cost and image quality. The number of photons emitted is set

to 218 for the Sponza Atrium, 219 for the Sibenik Cathedral due to their large sizes and 217 for all other

scenes. Photons are traced from an isotropic point light source until their third surface interaction.

Since the �rst interaction represents direct illumination e�ciently accounted for by shadow rays, only

the second and third interactions are stored, corresponding to two-bounce indirect illumination. All

sampling is controlled by pregenerated true random numbers.

Statistics are provided in table 5.1. The decision whether to store a photon interaction is made

according to equation 5.33. Using threshold f = 1
20 , on average 0:30% of the interactions are deemed

to have degenerate footprints and are discarded. For those remaining, kernel support regions are

computed. We �nd that a spread factor s following the scene size best balances variance and bias. To

eliminate excessively large support regions with detrimental impact on performance, all semiprincipal

axis lengths are limited to hmax = 1. This clamping a�ects 1:88% of the stored interactions on average.

The anisotropy of the kernel support regions is illustrated in �gure 5.2, showing that the major ~M

and minor ~m1, ~m2 semiprincipal axis lengths follow di�erent distributions.

Figure 5.3 illustrates rendering results for an example view of each scene. All images are rendered

using the benchmark environment from section A.1 with up to four rays traced per pixel. Photon

mapping additionally performs density estimation at the primary and re�ection ray hit points. The

average number of photon interactions contributing per query point ~x for a �ight through each scene is

listed as kV K in table 5.1. We �nd that k-th nearest neighbor density estimation achieves comparable

image quality when the kkNN � kV K nearest interactions are used.

In the Fairy Forest, illumination is primarily direct with most photons escaping before their second

interaction. For all other scenes, the indirect illumination computed by photon mapping is a signi�cant

addition to the rendering result. Previously shadowed walls and ceilings become illuminated in the

Sponza Atrium. The same is true of the ceiling in Scene 6. Color bleeding e�ects are seen in many

scenes, from the blue �oor onto the walls and ceiling in Scene 6, between the stone walls emphasizing

their color in the Sibenik Cathedral and from the brown table top onto the ceiling in the Conference

Room. The most pronounced color bleeding occurs for the Passage as indirect illumination reaches

the walls of a previously shadowed white room after re�ection on those of a red room, giving these

a red tint. While anisotropic kernel support regions can better follow illumination boundaries, k-th

96

5.2. Bandwidth Selection

Scene 6

Sponza Atrium

Sibenik Cathedral

Fairy Forest

Conference Room

Passage

Ring

1:00:90:80:70:60:50:40:30:20:10:0

1:00:90:80:70:60:50:40:30:20:10:0

Figure 5.2.: Distribution of major (k ~Mk, top) and minor (k~m1k = k~m2k, bottom) skewed ellipsoid
semiprincipal axis lengths.

nearest neighbor density estimation reduces the risk of outliers with excessively large or small kernel

bandwidths. The overall e�ect is comparable image quality.

Disparate image quality is observed for the Ring. Photon di�erentials yield separate adaptation

to the local interaction density for photons following di�erent paths, resulting in a sharp caustic and

smooth di�use illumination on the same surface. The anisotropic kernel support regions furthermore

align with the illumination boundary along the edge of the caustic. As the caustic is curved, support

regions become tangential to it, leading to a streaking artifact. Using the Epanechnikov smoothing

kernel instead of a simpler uniform kernel reduces the visual impact and improves image quality. With

k-th nearest neighbor density estimation, kernel support regions are spherical and thus unable to

follow the sharp illumination boundary. Computing a single bandwidth from all nearby interactions

also does not distinguish between di�use and specular illumination. Separate global and caustic

photon maps would address the latter issue but also incur additional overheads.

In summary, the methods for computing anisotropic kernel support regions proposed in this chap-

ter lead to image quality matching or exceeding that of k-th nearest neighbor density estimation,

successfully eliminating the need for this costly operation.

97

5. Density Estimation

(a) Ray tracing

(b) Variable kernel density estimation

(c) k-th nearest neighbor density estimation

Figure 5.3.: Images rendered by ray tracing, photon mapping with variable kernel density estimation
and with k-th nearest neighbor density estimation: Scene 6, Sponza Atrium

98

5.2. Bandwidth Selection

(d) Ray tracing

(e) Variable kernel density estimation

(f) k-th nearest neighbor density estimation

Figure 5.3.: Images rendered by ray tracing, photon mapping with variable kernel density estimation
and with k-th nearest neighbor density estimation: Sibenik Cathedral and Fairy Forest

99

5. Density Estimation

(g) Ray tracing

(h) Variable kernel density estimation

(i) k-th nearest neighbor density estimation

Figure 5.3.: Images rendered by ray tracing, photon mapping with variable kernel density estimation
and with k-th nearest neighbor density estimation: Conference Room and Passage

100

5.2. Bandwidth Selection

(j) Ray tracing (k) k-th nearest neighbor density estimation

(l) Variable kernel density estimation, uniform kernel (left), Epanechnikov kernel (right)

Figure 5.3.: Images rendered by ray tracing, photon mapping with variable kernel density estimation
and with k-th nearest neighbor density estimation: Ring

101

6. Photon Map

Density estimation requires that all photon interactions contributing at a query point ~x be retrieved.

This is accelerated by constructing a photon map, a spatial index over the interactions. Analogously

to ray tracing, a hierarchical index reduces average case complexity from O (n) to O (log n).

Use of a kd-tree is proposed in the original photon mapping algorithm. Based on space partitioning,

this subdivides the scene into disjoint regions and requires that each interaction be referenced by those

regions it intersects. In the case of k-th nearest neighbor density estimation, interactions represent

point data with zero spatial extent. Each is therefore referenced exactly once. For variable kernel

density estimation, interactions are assigned kernel support regions and have nonzero spatial extent.

This leads to an unpredictable number of references per interaction. Memory management overhead

is incurred as storage requirements incrementally grow while the photon map is being constructed.

During density estimation, multiple references to the same interaction may be encountered and care

must be taken to count its contribution only once.

We avoid these issues by replacing the kd-tree with a BVH. Based on primitive partitioning, a

BVH references each interaction from a single leaf. Storage requirements are reduced and construc-

tion is simpli�ed. Multiple references to the same interaction are never encountered during density

estimation, allowing contributions to be accumulated without further precautions.

Our �rst contribution is an adaptation of the voxel volume heuristic from a kd-tree to a BVH photon

map. Heuristic construction provides high retrieval acceleration but it is computationally expensive.

Since dynamically changing illumination requires a new photon map in each frame, we investigate the

use of faster LBVH construction instead. Our contributions are the removal of several ine�ciencies

in this algorithm and the addition of a new termination criterion. We benchmark density estimation

performance with photon maps constructed using the VVH and LBVH approaches, showing that

the acceleration provided by the former does not signi�cantly exceed that by the latter. We then

address photon map storage, introducing a novel compact BVH representation that reduces storage

requirements and the bandwidth used during density estimation.

Having addressed all constituent components, we demonstrate that the resulting photon mapping

algorithm achieves interactive frame rates on the CUDA manycore platform for all benchmark scenes

with dynamic illumination.

6.1. BVH Construction

The performance of variable kernel density estimation depends on the number nT of nodes traversed

in the photon map and the number nI of interactions retrieved from it. Adapting the voxel volume

heuristic allows a BVH photon map to be constructed that minimizes nT and nI . LBVH construction

uses spatial median splits, leading to higher nT and nI . Comparing density estimation performance

with both methods benchmarks LBVH construction against a high standard and allows its suitability

for photon mapping to be determined.

103

6. Photon Map

6.1.1. Voxel Volume Heuristic

Heuristic photon map construction begins with all n interactions at the root, repeatedly subdividing

a parent node P into the pair of children L, R that minimizes expected density estimation cost.

The method originally proposed constructs a kd-tree referencing a single interaction from each node,

removing the need to consider the costs of traversal and retrieval separately.

For each candidate subdivision, cost is greedily approximated by assuming that if a child is visited,

so is the entire hierarchy rooted in it, regardless of actual further subdivision. With pP , pL, pR the

probabilities that P , L, R are visited and nP , nL, nR the numbers of interactions they represent, this

yields the cost metric of equation 3.23,

CP (L;R) = pP + pL nL + pR nR: (6.1)

When k-th nearest neighbor density estimation is used, the probability pN that a node N is

visited can be approximated by the voxel volume heuristic from section 3.4.3.1. Given query point ~x,

candidate interactions are initially retrieved from within a distance hmax of it. After the �rst k are

found, this distance is progressively reduced. The probability of visiting a node N is thus bounded

above by and can be approximated as the probability that ~x falls either inside N or within a distance

hmax of its bounds. This region is further approximated as the node AABB with each bounding

plane shifted outward by hmax and a volume of V�hmax
(N).

All query points are known to lie on surfaces within the scene AABB S. Under the simplifying

assumption that surfaces are uniformly distributed throughout scene space, so are the query points.

The probability pN can thus be approximated using equation 3.24 as

pN � V�hmax
(N)

V�hmax
(S)

:

With a BVH photon map, the cost metric of equation 6.1 changes. A variable number of interactions

is now referenced from each leaf, leading to separate costs CT of traversing a node and CI for retrieving

an interaction. Our BVH representation stores child nodes in pairs. When visiting their parent, the

traversal cost 2CT for both children is therefore incurred, leading to the cost metric

CP (L;R) = pP 2CT + pL nL CI + pR nR CI : (6.2)

The computation of probability pN is a�ected by the change from k-th nearest neighbor to variable

kernel density estimation. All interactions whose kernel support region contains query point ~x must

now be retrieved. Thus, precisely the nodes containing ~x are visited. Retaining the assumption of

query points uniformly distributed throughout the scene, pN is then given by the ratio of volumes

pN =
V (N)

V (S)
: (6.3)

Equations 6.2 and 6.3 yield an adaptation of the voxel volume heuristic to a BVH photon map.

The construction process itself is identical to that of a BVH over scene surfaces, achieving O (n log n)

complexity by sorting and then progressively splitting lists of candidate splitting planes as described

in section 3.2.3.1. The same termination criteria as in section 4.1 may be used, stopping subdivision

when nP falls below a threshold, recursion depth exceeds a threshold or minCP (L;R) > pP nP CI .

104

6.1. BVH Construction

6.1.2. Linear BVH

The LBVH construction described in section 3.2.3.3 is a faster alternative to heuristic construction.

It is based on the observation that sorting primitives by their linear positions along a Morton curve

traversing the scene AABB S arranges them in the DFS traversal order of a binary spatial median

split hierarchy. Inner nodes are then constructed in parallel for each level of the hierarchy wherever

the traversal paths from the root to two neighboring primitives di�er. After removing singleton nodes

referencing a single child, a BVH is obtained. While the technique is proposed for BVH construction

over scene surfaces, it can identically be applied to photon interactions.

When traversing a BVH, paths from the root to the leaves split at inner nodes. Considered in

the opposite direction, paths from the leaves to the root merge at the same points. We exploit this

duality to improve e�ciency, avoiding the construction of singleton nodes or the need for additional

steps to compute node AABBs as required in the original algorithm.

The linear position of a primitive along the Morton curve is obtained by permuting the three k-bit

coordinates of its centroid within the scene AABB. This yields a 3k-bit Morton code corresponding to

the path from the root to the primitive, each bit indicating whether the left or right child is traversed.

The root represents the interval [0; n� 1] of all primitives. With each hierarchy level, this interval

is recursively subdivided as the paths for groups of primitives deviate. A dual process thus begins

with subintervals representing groups of primitives having identical Morton codes and progressively

merges these into larger intervals while constructing the corresponding BVH nodes.

As in the original algorithm, references are generated for all primitives in parallel, each containing

a pointer to a primitive and its Morton code. These are arranged in Morton curve order by parallel

radix sort. Intervals of neighboring references with identical Morton codes are merged �rst. This can

e�ciently be implemented as a parallel segmented scan. For all other neighboring references, the most

signi�cant bit position at which their Morton codes di�er indicates the hierarchy level at which the

intervals containing these should be merged. Merge points are generated in parallel, each containing

a reference index and the level at which it should be merged with its right neighbor (�gure 6.1(a)).

These are then arranged by hierarchy level using another parallel radix sort (�gure 6.1(b)).

Merge points on the same hierarchy level can all be processed in parallel. For each, the bounds of

its two subintervals must be found to determine those of the merged interval. This information can

e�ciently be tracked during the construction process. An array holding interval sizes is initialized

to S (i) = 1 for all n references �rst. When merging an interval [j; k] of references with identical

Morton codes, the interval sizes at its �rst and last index are updated to S (j) = S (k) = k � j + 1.

To process a merge point with reference index i, the intervals ending at i and starting at i + 1 are

merged. Their sizes are read from S (i) and S (i+ 1), yielding the subinterval bounds [i� S (i) + 1; i]

and [i+ 1; i+ S (i+ 1)]. The size of the merged interval is then stored at its �rst and last indexes,

i�S (i)+1 and i+S (i+ 1) (�gure 6.1(c)). With this arrangement, interval sizes are read and written

at two array positions per merge point, allowing it to be processed in O (1).

Information about the AABBs and nodes corresponding to the intervals can be tracked in the same

way, enabling node construction in O (1). The information is held in two additional arrays, initialized

for the i-th reference by setting N (i) = 0 and AABB (i) to the AABB of its primitive. When merging

an interval [j; k] of references with identical Morton codes, AABB (j) is updated to the union of their

AABBs. During the subsequent processing of a merge point with reference index i, the AABBs of

both subintervals are read from AABB (i� S (i) + 1) and AABB (i+ 1). Their union is then stored

at the �rst index of the merged interval, i� S (i) + 1.

105

6. Photon Map

C

2 3

0

1

0

1

0

1

0

1

0

1

0

1

1

B

A

Level 1

Level 3

Level 4

Level 2

Index

0

0

1

0

0

E

5

1

0

0

1

1

1

0

1

6

D

4

0

1

1

0

(a) Seven primitive references arranged in the order of their Morton codes 0010, 0011, 0101, 0101, 0110, 1001,
1101 (yellow), the six intervals with identical Morton codes they form (blue) and the merge points generated
between these (orange).

DA C B E

(b) Merge points sorted by hierarchy level.

D

0 1 2 3 4 5 6

A

0; 1

C

2; 4

B E

D

0; 4 5; 6

0; 6

2; 31 4 5 6

2

1

7

5

2

0 1

1

1

7

2

1

6

1

1

2

2

1

5

1

1

5

5

3

4

2

2

2

2

2

3

2

2

3

3

3

2

2

1

2

2

2

A

C

B E

0

(c) Each merge point concatenates subintervals of [0; 6] into nodes. As intervals are concatenated on the left,
information about their sizes is updated on the right.

Figure 6.1.: E�cient linear BVH construction: Primitives are sorted in Morton curve order, merge
points generated between the subintervals having identical Morton codes and processed
to construct a hierarchy of BVH nodes.

106

6.1. BVH Construction

Pointers to the BVH nodes corresponding to these subintervals are read from N (i� S (i) + 1) and

N (i+ 1). An inner node with these as children is constructed and a pointer to it stored at index

i� S (i) + 1. Since the array is initialized to zero, a null pointer may be read for either subinterval.

This indicates that no corresponding node yet exists and causes a leaf to be constructed before the

inner node for the merged interval. If both subintervals yield null pointers, two leaves are constructed.

Alternatively, the two subintervals may be merged while leaving N (i� S (i) + 1) = 0. In this way,

a leaf is subsequently constructed for a larger interval higher in the hierarchy. During recursive

subdivision, the choice of when to construct a leaf is made by a termination criterion. Our dual

construction process allows the same choice, thus enabling the use of termination criteria such as

those listed in the previous section.

6.1.3. Termination Criterion

In addition to existing termination criteria, a minimal leaf size threshold nauto speci�c to BVH photon

map construction can be derived. Recursive subdivision is then terminated and a leaf constructed

when nP � nauto at a node. For the dual construction by merging intervals, an inner node is �rst

constructed when S (i) + S (i+ 1) > nauto at a merge point.

The simplifying assumption is made that kernel support areas and query points ~x are uniformly

distributed over the scene surfaces. The expected number of interactions contributing at any ~x is then

given by the ratio of the total kernel support areas to the total surface area. Following section 5.2.1,

the area of any cut through an anisotropic kernel support region is approximated as � k ~M � ~m1k.
This value is computed while constructing each support region and can e�ciently be accumulated for

all ni photon interactions by a parallel prescan. The area of the scene surfaces is precalculated during

spatial index construction by summing the areas A (Ti) of all nt triangles. With c a proportionality

constant, a leaf size threshold is then set to

nauto = c

Pni�1
i=0 � k ~Mi � ~mi;1kPnt�1

i=0 A (Ti)
:

Using this threshold, large leaves are constructed when many interactions are expected to contribute

per query point, allowing these to be retrieved with few inner node traversals. If few contributions

are expected, leaves become small, reducing the retrieval of extraneous interactions.

The proportionality constant is empirically determined as c = 8. To avoid excessively small

leaves, nauto is furthermore clamped so that nauto � 5. During VVH construction, the criterion

minCP (L;R) > pP nP CI and a maximal recursion depth of 64 are additionally used.

6.1.4. Results and Discussion

We use the seven benchmark scenes from section A.2 for evaluation. Photon interactions and kernel

support regions follow section 5.2.3. To cover a wider range of image quality settings, two further

benchmark scenarios are added, the �rst Scene 6 with 218 photons emitted and spread s = 28, the

second the Conference Room with 219 photons emitted and spread s = 50.

VVH construction is implemented as a serial process with empirically determined CT = 0, CI = 1.

LBVH construction uses a series of CUDA kernels and 30-bit Morton codes. All rendering occurs in

a single CUDA kernel following benchmark code base I from section A.1.1. Up to four rays are traced

per pixel as speci�ed in section A.1 with variable kernel density estimation at primary and re�ection

107

6. Photon Map

FPS
nauto

Leaf Size 1 2 4 8 16 32 64 128 nauto

Scene 6 2:60 3:27 3:49 3:71 3:74 3:68 3:55 3:28 3:74 �0:1% 21
1:14 1:34 1:49 1:58 1:65 1:68 1:66 1:61 1:67 �0:4% 40

Sponza 5:70 6:54 6:98 7:05 6:75 6:26 5:68 4:95 7:13 +1:1% 5
Sibenik 4:99 5:70 6:06 6:08 5:88 5:52 5:00 4:42 6:12 +0:7% 5
Fairy 31:54 32:50 33:33 33:85 33:23 31:62 28:71 25:17 33:58 �0:8% 5
Conference 5:06 6:02 6:11 6:11 5:88 5:47 5:01 4:50 6:11 �0:0% 8

0:79 0:93 1:04 1:10 1:13 1:11 1:06 1:00 1:11 �1:8% 31
Passage 4:78 5:17 5:39 5:58 5:69 5:72 5:54 5:28 5:67 �0:8% 40
Ring 8:88 9:01 9:25 9:41 9:28 8:75 8:19 7:49 9:40 �0:1% 7

Average �0:3%
Std. Dev. 0:9%

(a) VVH construction

FPS
nauto

Leaf Size 1 2 4 8 16 32 64 128 nauto

Scene 6 2:56 2:91 3:23 3:50 3:56 3:55 3:35 3:14 3:59 +0:9% 21
1:05 1:19 1:34 1:45 1:53 1:58 1:59 1:57 1:58 �0:8% 40

Sponza 5:46 6:08 6:38 6:47 6:21 5:78 5:26 4:59 6:53 +0:9% 5
Sibenik 4:23 4:61 5:25 5:37 5:28 5:01 4:74 4:21 5:34 �0:5% 5
Fairy 29:88 30:45 31:06 31:30 30:61 28:36 23:58 19:72 31:11 �0:6% 5
Conference 4:93 5:43 5:63 5:64 5:40 4:95 4:65 4:20 5:64 �0:0% 8

0:73 0:81 0:90 0:96 1:00 1:00 0:97 0:92 1:00 �0:5% 31
Passage 4:46 4:73 4:95 5:19 5:28 5:21 5:01 4:52 5:22 �1:0% 40
Ring 7:79 7:87 8:09 8:18 8:37 7:90 7:61 6:73 8:20 �2:0% 7

Average �0:4%
Std. Dev. 0:9%

(b) LBVH construction

Table 6.1.: Rendering frame rates with di�erent minimal photon map leaf size thresholds

ray hit points. Results are averaged over a �ight through each scene. Since it is unrelated to density

estimation, the overhead of visualizing results by copying them to the screen is omitted.

The termination criterion is evaluated �rst. Table 6.1 lists the average frame rates obtained with

di�erent minimal photon map leaf size thresholds. The optimal threshold can be seen to depend

on both scene and photon interactions. Using the proposed termination criterion, a threshold nauto

close to the optimum is computed in all cases. Frame rates with nauto are only 0:3% (VVH) re-

spectively 0:4% (LBVH) lower on average than those achieved by selecting between eight di�erent

thresholds through expensive benchmarking. For dynamically changing illumination, nauto has the

further advantage of adjusting to the photon interactions in each individual frame.

Statistics for VVH and LBVH construction with nauto are given in table 6.2. The photon maps

obtained using the two approaches are of very similar size, di�ering in the number of nodes by

an average of only 1:8%. VVH construction is on the order of seconds and therefore not suitable

for an interactive setting. LBVH construction e�ciently utilizes the CUDA manycore platform,

taking from 2:67 ms for the 8911 photon interactions in the Fairy Forest to 26:02 ms for the 413316

interactions in the Sibenik Cathedral. Density estimation performance is compared in table 6.3. In

108

6.2. BVH Storage

Scene Interactions
Nodes Construction

(ms)VVH LBVH

Scene 6 160298 23313 �5:8% 10:68
319997 24839 �7:0% 19:27

Sponza 292551 166635 +2:8% 18:13
Sibenik 413316 236247 +3:3% 26:02
Fairy 8911 5345 +5:2% 2:67
Conference 97911 36557 �1:4% 7:31

390223 39411 �4:3% 24:53
Passage 70256 5477 �7:7% 6:06
Ring 74101 31081 �1:1% 6:28

Average �1:8%
Std. Dev. 4:7%

Table 6.2.: Photon map node counts, relative to the VVH, and construction timings with LBVH

Scene Interactions
nT nI FPS

VVH LBVH VVH LBVH VVH LBVH

Scene 6 160298 288:4 +4:3% 1163:8 +8:9% 3:74 �3:9%
319997 334:7 +2:7% 2636:1 +9:1% 1:67 �5:8%

Sponza 292551 401:4 +14:1% 386:4 +8:7% 7:13 �8:4%
Sibenik 413316 461:9 +13:3% 466:5 +8:6% 6:12 �12:8%
Fairy 8911 114:2 +29:5% 89:9 +6:1% 33:58 �7:4%
Conference 97911 392:6 +13:5% 596:3 +10:3% 6:11 �7:7%

390223 587:1 +9:7% 3494:4 +12:3% 1:11 �10:2%
Passage 70256 211:3 +11:8% 1683:6 +7:2% 5:67 �7:9%
Ring 74101 369:9 +21:0% 481:9 +13:1% 9:40 �12:7%
Average +13:3% +9:4% �8:5%
Std. Dev. 8:1% 2:2% 3:0%

Table 6.3.: Photon map node traversals, interaction retrievals per query point and rendering frame
rates with LBVH construction, relative to the VVH

line with predictions, LBVH photon map construction leads to an average of 13:3% more inner nodes

being traversed and 9:4% more photon interactions being retrieved per query point. The impact on

rendering frame rates is a reduction by 8:5% on average.

In summary, LBVH construction leads to a moderate slowdown during rendering because of higher

nT , nI . In return, photon map construction is accelerated from several seconds to less than 30 ms.

This provides a tradeo� between construction cost and retrieval acceleration amenable to photon

mapping with dynamically changing illumination.

6.2. BVH Storage

A BVH is de�ned by its node bounds, child references at the inner nodes and primitive references at

the leaves. Following section 3.2.2, the need to store child references can be eliminated by rearranging

nodes to implicitly encode the hierarchy. Storage requirements for the bounds may be reduced by

quantizing them at all nodes or omitting those at the leaves. However, by discarding information,

109

6. Photon Map

(a) Two new planes per child (b) One and three new planes

(c) Zero and four new planes (d) One new plane per child

Figure 6.2.: BVH bounding plane inheritance: In two dimensions, a pair of sibling nodes (orange,
purple) has a total eight bounding planes. Only up to four of these are new (bold), the
remainder being inherited from the parent (dashed).

these techniques lower the bounding tightness. We show how to eliminate redundant information

only, reducing storage requirements while leaving bounding tightness una�ected.

6.2.1. Compact Representation

Each BVH node has six bounding planes, corresponding to its minimum and maximum extents along

the three coordinate axes. Whenever a plane is coincident with that of its parent, explicit storage

is redundant and a single bit marking the plane as inherited su�cient instead. Per coordinate axis,

a node may inherit the minimum bounding plane, maximum bounding plane, both or neither. The

number of new bounding planes that are not inherited and must still explicitly be stored thus varies

unpredictably from zero to six for each node.

Given a pair of sibling nodes, however, whenever one node introduces a new bounding plane, the

other must inherit the corresponding plane from the parent. If this were not the case, either would

the second node extend outside the parent or both would be entirely interior to it, the parent thus

not providing the tightest possible AABB around its children. Neither is allowed in a BVH. Two-

dimensional examples are provided in �gure 6.2. Each pair of sibling nodes has eight bounding planes

of which only up to four are new. In the extension to three dimensions, a sibling node pair has twelve

bounding planes with at most six of these new.

110

6.2. BVH Storage

A complete BVH representation requires six �oating point values per node that express its bounds as

signed distances from the coordinate planes. Unless the nodes form a complete binary tree implicitly

encoding the hierarchy, at least one reference to a pair of children is also needed. With 32-bit �oating

point values and references, 28 bytes of storage are used per node.

Omitting inherited bounding planes allows for a more compact BVH representation. Sibling nodes

are stored in pairs. Per pair, six 32-bit �oating point values (~m, ~M) encode the new minimum and

maximum bounding planes for the three coordinate axes. Two 3-bit masks (~l, ~L) assign these to

either the left or right node. A pair of 28-bit indexes holds the child references for the two nodes and

a �nal 2 bits distinguish inner nodes from leaves. In case of a leaf, the 28-bit index references its �rst

primitive. No primitive count is stored, using a �ag bit on the last primitive to mark the end of a

leaf instead. If both nodes inherit a bounding plane, the number of new planes is further reduced.

To maintain constant storage size per pair and avoid the need for special case handling, the parent

plane is replicated and assigned to the left node in this case.

In total, 32 bytes are used per pair of sibling nodes, reducing BVH storage requirements by 42:9%.

As only redundant information is eliminated, bounding tightness is maintained. The construction

process is una�ected and no additional cost is incurred in its course.

6.2.2. Ray Tracing Traversal

Although introduced here in the context of a photon map, the compact BVH representation is valid

for other spatial indexes as well. For reference, its application to a BVH over scene surfaces used in

ray tracing acceleration is described �rst. Node traversal with a complete BVH representation follows

the slabs test from algorithm 3.4. For each coordinate axis, the parameter interval [ta;k; tb;k] enclosed

on the ray by two bounding planes is computed. The intersection of these three intervals indicates

the part of the ray intersecting the node. When using the compact BVH representation, inherited

planes are not readily available. The slabs test must thus be modi�ed, accounting for this and also

simultaneously computing intervals [ta;l; tb;l], [ta;r; tb;r] for two sibling nodes.

The compact BVH representation stores only a subset of the node bounding planes. As described

in section 3.2.4.2, this requires that when pushing onto the stack, the current parameter interval

[ta; tb] also be placed on it. Traversal of a sibling node pair then follows algorithm 6.1. Parameter

intervals [ta;l; tb;l], [ta;r; tb;r] for both nodes are initialized to the parent interval [ta; tb]. If this was

popped o� the stack, the intervals are further clamped against the current ray end distance tmax.

For each of the three coordinate axes, the interval bounds t1, t2 are computed from the two new

bounding planes as in the original slabs test, then distributed to the two nodes by lines 7�8. When

lk = 1, the minimum bounding plane belongs to the left node and t1;l is set to t1. The corresponding

bound t1;r for the right node is set to �t3. If the plane belongs to the right node, t1 and �t3 are

exchanged. The interval bound t2 is analogously distributed to either t2;l or t2;r, using t3 for the other

node. [ta;l; tb;l], [ta;r; tb;r] are then updated by intersection with the resulting intervals. Calculated in

line 6, t3 has the e�ect of producing an unbounded interval where an inherited bounding plane would

have been. Inherited planes are thus e�ectively ignored. This is permissible as the parent interval

[ta; tb] already is bounded by any inherited planes.

The resulting parameter intervals are assessed from line 14 onward, visiting the child pair of a node

if its parameter interval is not empty. Should the children of both be visited, the nodes are classi�ed

as near and far according to the order of their entry points ta;l, ta;r along the ray �rst. Traversal

111

6. Photon Map

Algorithm 6.1 Slabs test for sibling nodes encoded as ~m, ~M , ~l, ~L and ray ~z (t) = ~x+ t ~! with parent
interval t 2 [ta; tb]

1: ta;l; ta;r ta
2: tb;l ; tb;r min (tb; tmax)
3: for k 2 fx; y; zg do
4: t1 (mk � xk)!

�1
k

5: t2 (Mk � xk)!
�1
k

6: t3 1!�1k
7: (t1;l; t1;r) if lk = 1 then (t1;�t3) else (�t3; t1)
8: (t2;l; t2;r) if Lk = 1 then (t2; t3) else (t3; t2)
9: ta;l max (ta;l ;min (t1;l ; t2;l))
10: tb;l min (tb;l ;max (t1;l ; t2;l))
11: ta;r max (ta;r;min (t1;r; t2;r))
12: tb;r min (tb;r ;max (t1;r; t2;r))
13: end for

14: if ta;l � tb;l and ta;r � tb;r then
15: visit children of both nodes
16: else if ta;l � tb;l then
17: visit children of left node
18: else if ta;r � tb;r then
19: visit children of right node
20: end if

then continues with the child pair of the near node while that of the far node is pushed onto the stack

along with its parameter interval.

After popping a node pair and a parameter interval [ta; tb] o� the stack, a check whether ta > tmax

is performed. If so, a hit nearer than the entry point has already been found, allowing the traversal

of the node pair to be omitted. The conditional statements in lines 7�8 can be expressed using the

ternary operator and executed without branching on hardware supporting predicated instructions.

6.2.3. Photon Mapping Traversal

For a photon map, node traversal with a complete BVH representation follows algorithm 3.5. The

query point ~x is tested against the six bounding planes of the node, determining whether it is located

inside or outside the half-space bounded by each. If ~x is on the outside of any bounding plane, the

node is missed. Otherwise, both of its children are visited.

When using the compact BVH representation, a pair of sibling nodes is traversed by algorithm 6.2.

The query point is known to lie inside all inherited bounding planes. If it were not to, the current

node pair would not have been reached. Only new planes must thus be considered. A bitmask miss

is constructed, indicating for which of the six new bounding planes ~x is located on the outside. Cast

to an integer, the result of testing ~x against a plane is 0 or 1. The bitmask can thus be obtained by

shifting the six results into place, requiring no branching. By concatenating ~l and ~L, a corresponding

bitmask left is then assembled that expresses which node each bounding plane belongs to.

If miss contains only zeroes, neither of the nodes is missed and the child pairs of both must be

visited. Otherwise, the query point lies outside at least one node. The bitwise disjunction of left

and miss indicates the bounding planes of the left node that ~x lies outside. If none of the bits are

set, the node is not missed and its child pair is visited. The analogous test for the right node uses

the bitwise complement of left.

112

6.2. BVH Storage

Algorithm 6.2 Photon map test for sibling nodes encoded as ~m, ~M , ~l, ~L and point ~x (�, _, ^, :
are bitwise shift, conjunction, disjunction and negation)
1: miss ((mx � xx)� 5) _ ((my � xy)� 4) _ ((mz � xz)� 3)_

((Mx � xx)� 2) _ ((My � xy)� 1) _ (Mz � xz)

2: left (~l� 3) _ ~L
3: if not miss then
4: visit children of both nodes
5: else if not left ^miss then
6: visit children of left node
7: else if not :left ^miss then
8: visit children of right node
9: end if

When both child pairs are to be visited, traversal continues with one while the other is pushed

onto the stack. Since no early out exists, the simple choice of always pushing the left child pair

and traversing the right �rst can be made. Contrary to ray tracing traversal, the compact BVH

representation does not require any additional information to be stored on the stack.

6.2.4. Results and Discussion

The compact representation of the BVH photon map is evaluated on the seven benchmark scenes from

section A.2. Photon interactions and kernel support regions follow section 5.2.3, LBVH photon map

construction and CUDA rendering kernel section 6.1.4. The baseline is a complete representation of

the BVH photon map, using 32 bytes per node to encode its bounding planes and child or primitive

references as described in section 3.2.2. With the compact BVH representation, 32 bytes are su�cient

for a sibling node pair, thus reducing photon map storage requirements by 50%.

Statistics for a �ight through each scene are provided in table 6.4. The number and order of nodes

traversed is identical for both photon map representations. Using the baseline, whenever the query

point ~x lies inside a node, traversal continues with one of its children while the other is pushed onto the

stack. With the compact BVH representation, a sibling node pair is traversed together. Pushing onto

the stack is only necessary if ~x lies inside both nodes. This reduces the number of stack operations by

an average of 72:0%. With 64 respectively 32 bytes used to store a node pair and 4 bytes for a stack

entry, the total global memory bandwidth required per query point during photon map traversal can

be estimated using the simpli�ed memory subsystem introduced in section 4.3.3. The compact BVH

representation yields a reduction in bandwidth by 54:0%. The number of instructions executed per

query point is reduced by 7:4% on average. As a result, the rendering kernel attains a speedup of

15:8%. The overhead of copying results to the screen for visualization is omitted.

We also evaluate the application of the compact BVH representation to ray tracing acceleration

using the �ve benchmark scenes from section A.2.1. A BVH over the scene surfaces is constructed

o�ine for each scene, employing the SAH with parameters tuned for maximal performance (CT = 1,

CI = 3, recursive subdivision while nP > 5 and minCP (L;R) � pP nP CI). Large primitives

are represented by multiple smaller AABBs [EG07]. The baseline is provided by a complete BVH

representation recently proposed for ray tracing acceleration in CUDA [AL09] with sibling nodes

stored in pairs. For each pair, 56 bytes are used to encode its twelve bounding planes and two child

or primitive references. The compact BVH representation needs 32 bytes per pair, thus reducing

storage requirements for BVH nodes by 42:9%.

113

6. Photon Map

Scene nT
Stack Accesses Byte Accesses Instructions FPS

B C B C B C B C

Scene 6 300:7 300:7 �68:5% 10826 �52:1% 228263 �5:0% 3:28 +8:0%
Sponza 457:8 457:8 �72:7% 16482 �52:5% 113632 �9:4% 4:99 +28:7%
Sibenik 523:4 523:4 �72:6% 18844 �52:5% 136347 �9:0% 4:11 +27:8%
Fairy 147:9 147:9 �77:3% 5323 �53:0% 16732 �8:9% 28:31 +11:9%
Conference 445:6 445:6 �71:4% 16042 �71:4% 152826 �7:2% 4:88 +14:9%
Passage 236:3 236:3 �68:4% 8505 �52:0% 196525 �5:2% 4:65 +6:2%
Ring 447:7 447:7 �72:5% 16119 �52:5% 89435 �7:5% 6:49 +14:7%
Ring Ep. 447:7 447:7 �72:5% 16119 �52:5% 90809 �7:4% 6:45 +14:2%

Average �72:0% �54:0% �7:4% +15:8%
Std. Dev. 2:8% 7:4% 1:6% 8:3%

Table 6.4.: Global memory accesses during node traversal, instructions per query point and rendering
frame rates with compact BVH photon map (C), relative to complete BVH (B)

Our original evaluation uses an older variant of benchmark code base II from section A.1.2. Images

are rendered at 1024 � 1024 resolution, tracing one primary ray and, if a surface is hit, one shadow

ray per pixel. With the compact BVH representation, the parameter interval [ta; tb] is stored on the

stack. This allows the traversal of a node pair to be omitted when ta > tmax, indicating that a nearer

hit than its entry point has already been found. Storing the entry point ta on the stack enables the

same check for primary ray traversal in the baseline, yielding a slight speedup. The size of a stack

entry becomes 8 bytes for primary rays, 4 bytes for shadow rays in the baseline and 12 bytes for all

rays with the compact BVH representation.

The average number of nodes traversed, stack operations performed and bytes accessed in global

memory for these per ray are listed in table 6.5(a) for a �ight through each scene. With the compact

BVH representation, global memory bandwidth requirements are reduced by an average of 33:8%.

Although the computationally more expensive traversal algorithm increases the average number of

instructions executed by 20:8%, the rendering kernel proves memory bound, bene�ting from the lower

bandwidth cost and attaining a speedup of 0:8% on average.

A reevaluation for the current code base II is presented in table 6.5(b). Images are rendered at

512�512 resolution with up to four rays per pixel as speci�ed in section A.1. The average number of

nodes traversed per ray is listed for the baseline. Only node pairs are pushed onto the stack for it as

storing entry points yields a slowdown. This reduces the entry size from 8 to 4 bytes but makes the

check whether ta > tmax impossible. Using the compact BVH representation, the check is retained

and 2:39% fewer nodes are traversed on average. The number of stack accesses is identical for both

representations. With the simpli�ed memory model, the compact BVH representation has 31:3%

lower global memory bandwidth requirements on average.

The rendering kernel uses 61 registers in the baseline and 67 for the compact BVH representation.

An increase over the threshold of 64 registers reduces occupancy. To avoid it, we force the register

count to 64, spilling some information into slow local memory instead. Combined with the execution of

35:5% more instructions on average than the baseline, this reverses the previously observed speedup,

leading to an average slowdown by 7:5% instead.

In summary, the compact BVH representation successfully reduces storage and global memory

bandwidth requirements. Applied to the photon map, traversal becomes more e�cient and a speedup

114

6.3. Combined Results

Scene Nodes
Accesses Byte Accesses Instructions FPS

Node Stack B C B C B C

Scene 6 582 17:41 4:39 534:6 �30:3% 1386:4 +16:1% 88:0 +0:1%
Sponza 46942 50:36 10:09 1488:2 �35:4% 3065:9 +22:3% 43:7 +0:4%
Sibenik 56870 67:50 13:14 1999:9 �35:0% 3942:6 +22:8% 33:9 +1:9%
Fairy 97086 49:14 8:73 1459:9 �34:7% 3166:0 +21:1% 42:2 +0:5%
Conference 149352 41:85 8:09 1251:4 �33:8% 2618:7 +21:7% 49:8 +1:3%

Average �33:8% +20:8% +0:8%
Std. Dev. 2:1% 2:7% 0:8%

(a) Older code base, 1024� 1024 resolution, primary and shadow rays

Scene Nodes
Accesses Byte Accesses Instructions FPS

Node Stack B C B C B C

Scene 6 582 16:99 4:04 508:2 �27:5% 1213:2 +36:4% 242:5 �9:1%
Sponza 46942 53:10 10:10 1567:5 �32:9% 3242:0 +33:6% 163:1 �6:2%
Sibenik 56870 70:66 13:28 2084:8 �32:1% 4276:5 +37:1% 111:9 �6:5%
Fairy 97086 51:83 8:91 1522:4 �32:7% 3573:5 +34:1% 145:4 �9:2%
Conference 149352 43:45 8:25 1282:7 �31:3% 2843:7 +35:4% 172:4 �6:6%
Average �31:3% +35:3% �7:5%
Std. Dev. 2:2% 1:4% 1:5%

(b) Current code base, 512� 512 resolution, primary, re�ection and shadow rays

Table 6.5.: Global memory accesses during node traversal, instructions per ray and frame rates with
compact BVH (C), relative to complete BVH (B)

over a complete BVH representation is achieved. While a similar reduction in storage and global

memory bandwidth is possible for ray tracing, the more complex traversal algorithm may lead to a

slowdown instead, depending on the speci�c benchmark environment used.

6.3. Combined Results

By combining the techniques from chapters 4 to 6, a complete photon mapping algorithm is obtained

that e�ciently operates on the CUDA manycore platform. A kd-tree is constructed over the scene

surfaces �rst, using SIROH as described in section 4.1. Photons are then traced in CUDA, tracking

di�erentials with each by following section 5.1 and computing anisotropic kernel support regions at

their hit points as described in section 5.2. A BVH photon map is constructed over these in CUDA

using the e�cient LBVH algorithm from section 6.1.2. To synthesize an image, the CUDA kernel

from code base I in section A.1.2 is used. Tracing up to four rays per pixel and invoking density

estimation at the primary and re�ection ray hit points, global illumination is rendered into a bu�er.

This is �nally visualized by rasterizing a quad with the bu�er as a texture in OpenGL.

The image quality obtained is demonstrated in section 5.2.3. Table 6.6 shows that with the same

settings, interactive frame rates are possible when illumination dynamically changes and all photons

are retraced in each frame. Results are given as averages over a �ight through each scene as before.

The light source is now also animated, however, dynamically changing illumination. Frame rates

are measured for the complete rendering algorithm, including visualization by OpenGL. Interactive

rendering with at least three frames per second results for all benchmark scenes from section A.2.

115

6. Photon Map

Scene Interactions k
Time (ms)

FPS
Trace LBVH Render

Scene 6 163038 337:6 10:53 10:75 264:77 3:50
Sponza 299895 199:1 55:95 18:29 201:51 3:63
Sibenik 416996 192:2 102:47 26:24 197:08 3:07
Fairy 9478 36:0 14:93 2:63 34:27 19:30
Conference 82867 256:9 29:14 6:38 228:89 3:78
Passage 69083 459:6 3:98 5:84 208:63 4:58
Ring 75525 186:6 7:29 6:46 156:45 5:88
Ring Ep. 75525 186:6 7:29 6:46 158:11 5:82

Table 6.6.: Photon interactions, contributions per query, times per frame for photon tracing, LBVH
photon map construction, rendering and frame rates with dynamic illumination

A breakdown of the time per frame into the components photon tracing, photon map construction

and rendering shows that the last step is the most expensive for all scenes. This is in line with the

fact that the rendering kernel performs the majority of operations, tracing rays, traversing the BVH

photon map and accumulating the contributions of the retrieved photon interactions.

116

7. Participating Media

The photon mapping algorithm extends to volumetric photon mapping for simulating light transport

in participating media. Following section 3.4.1.3, each photon is propagated until it either encounters

a surface or is extinguished by a particle suspended in the atmosphere. An extinction event is stored

in the latter case and Russian roulette used to decide between absorption or scattering into a new

direction. During image synthesis, radiance in-scattered to a ray passing through the medium is then

reconstructed from nearby extinction events by density estimation as described in section 3.4.2.4. A

volume photon map accelerates extinction event retrieval.

In this chapter, the e�cient photon mapping components introduced in the preceding three chapters

are adapted to volumetric photon mapping. Our �rst contribution is a rederivation of the beam

radiance estimate. This reformulation of volumetric photon mapping replaces ray marching plus

density estimation after each step with a more e�cient single density estimation per ray. However,

its derivation su�ers from incorrect physical units. We show that the equations proposed are in fact

correct and only their relationship to photon �ux requires adjustment.

The beam radiance estimate employs variable kernel density estimation. A kernel bandwidth hj is

obtained for each extinction event by locating the k nearest events in a preprocessing pass. We extend

photon di�erentials to adapt to the in�uence of the participating medium instead, eliminating the

use of any o�ine preprocessing. Due to the high computational cost of volumetric photon mapping,

no anisotropic kernel support region but a single bandwidth hj is computed from the di�erentials.

The adaptation dampening that approximatively accounts for the e�ect of illumination arriving via

di�erent paths is adapted for volumetric photon mapping.

We then focus on the rendering component. By splitting it into multiple CUDA kernels, a di�erent

arrangement of computations in each step is possible. While known to be detrimental to ray tracing,

we show that packetization is bene�cial for density estimation. Di�erent methods of arranging rays

into packets are explored. Combining all components, we demonstrate interactive frame rates with

volumetric photon mapping and dynamically changing illumination.

7.1. Beam Radiance Estimate

Radiance arriving at a point ~x from a direction ~! in the presence of a participating medium is given

by equation 3.19,

Li(~x;�~!) = � (0; tmax)Lo (~r (~x;�~!) ; ~!)

+

Z tmax

0

� (0; t)

�
�s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i + � (t; ~!)

�
dt

= � (0; tmax)Lo (~r (~x;�~!) ; ~!)

+

Z tmax

0

� (0; t)�s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i dt+

Z tmax

0

� (0; t) � (t; ~!) dt:

117

7. Participating Media

For the �rst term, the radiance Lo emanating from the nearest surface seen is computed using the

original photon mapping algorithm and attenuated by the transmittance of the medium. Following

section 3.4.2.4, transmittance is calculated directly in a homogeneous medium and accumulated by

ray marching otherwise. The last term is the radiance � emitted by the medium, accumulated and

attenuated by ray marching. Volumetric photon mapping is concerned with the central term, in-

scattered radiance, Z tmax

0

� (0; t)�s (t)

Z

4�

p (t; ~!i; ~!)L (~z (t) ; ~!i) d
i dt:

Inserting the relationship between radiance and the di�erential change in �ux from equation 3.21,

=

Z tmax

0

� (0; t)� (t)

Z

4�

p (t; ~!i; ~!)

�
� d2�

dV d
i

�
(~z (t) ; ~!i)

extinction

d
i dt:

Decomposing the di�erential volume into dV = dt dA?, the medium is approximated as homoge-

neous and the incident radiance �eld as constant for any plane orthogonal to the ray ~z (t) = ~x+ t ~!.

Di�erentiation with respect to dA? and integration can then be swapped, yielding

� d

dA?

 Z tmax

0

� (0; t)� (t)

Z

4�

p (t; ~!i; ~!)

�
� d2�

dt d
i

�
(~z (t) ; ~!i) d
i dt

extinction

!
(~x) :

In-scattered radiance is now expressed as the density of in-scattered intensity per unit area in the

tangential plane at the ray origin, enabling weighted kernel density estimation. Given n intensity

samples for parallel rays with origins ~xj in the tangential plane, the estimator is

�
nX
j=1

1

h2
K

�
~xj � ~x

h

� Z tmax

0

� (0; t)� (t)

Z

4�

p (t; ~!i; ~!)

�
� d2�

dt d
i

�
(~zj (t) ; ~!i) d
i dt

extinction

!
(~xj) :

Each of the n extinction events in the volume photon map corresponds to a change in �ux by

��i;j at a position ~zj for a ray traveling in direction ~!i;j due to extinction in the participating

medium. Parameterizing the position as one along a ray with direction ~! and an origin ~xj in the

tangential plane, ~zj = ~zj (tj) = ~xj + tj ~!, a sample of re�ected intensity is obtained analogously to

section 3.4.2 by exploiting the single incident direction and single incident ray parameter to move the

transmittance, absorption coe�cient and phase functions outside the integrals,

=
nX
j=1

1

h2
K

�
~xj � ~x

h

�
� (0; tj)� (tj) p (tj ; ~!i;j ; ~!)

 Z tmax

0

Z

4�

�
� d2�

dt d
i

�
(t; ~!i) d
i dt

extinction

!
(~xj) :

The extinguished �ux integrates to ��i;j so that

=
nX
j=1

1

h2
K

�
~xj � ~x

h

�
� (0; tj)� (tj) p (tj ; ~!i;j ; ~!) �i;j : (7.1)

Expressed in the same notation, the original beam radiance estimate [JZJ08a] is

nX
j=1

1

h2
K

�
~xj � ~x

h

�
� (0; tj)�s (tj) p (tj ; ~!i;j ; ~!) �i;j : (7.2)

118

7.2. Photon Di�erentials

Comparing equations 7.1 and 7.2, it is apparent that what is referred to as photon power �i;j with

unit W in the original derivation of the beam radiance estimate is in fact the quotient of �ux �i;j

and extinction coe�cient �e (tj) with unit Wm. After applying this correction, equation 7.2 becomes

identical to equation 7.1. Variable kernel density estimation is enabled by assigning each extinction

event an individual kernel bandwidth hj . In-scattered radiance is then estimated as

nX
j=1

1

h2j
K

�
~xj � ~x

hj

�
� (0; tj)� (tj) p (tj ; ~!i;j ; ~!) �i;j : (7.3)

Only the length of ~xj�~x is relevant for a radially symmetric kernel. This is the distance between the

projection of an extinction event position ~zj onto the tangential plane at the ray origin ~x and the ray

origin itself. Equivalently, it is the shortest distance at which the ray passes ~zj . All extinction events

must thus be retrieved and their contributions evaluated whose kernel support region is intersected

by the ray, the ray thus passing within a distance less than hj of ~zj . The ray parameter for which

this closest distance results is equal to the distance tj between ~zj and the tangential plane. Following

section 3.1.3, it is given by tj = (~zj � ~x) � ~!.

7.2. Photon Di�erentials

Use of equation 7.3 to estimate in-scattered radiance requires that a bandwidth hj be chosen at each

extinction event. The method from chapter 5 based on photon di�erentials can be extended for this

purpose. Initialization of the photon di�erentials at emission from a light source and their update

upon interaction with a surface follow section 5.1. Additional in�uences that should be accounted

for are photon extinction during propagation, sampling of photon directions when scattering occurs

in the medium and Russian roulette deciding between absorption and scattering.

7.2.1. Propagation

A photon is propagated through a participating medium until it either encounters a surface or is

extinguished. The distance to the nearest surface hit point thit (p1; p2) can be found by ray tracing.

To determine the distance to an extinction event, its cumulative distribution function F (te) must be

importance-sampled, introducing an additional parameter p3. A parameterization of the extinction

distance is te (p3) = F�1 (p3) with uniformly distributed p3 2 [0; 1).

The cumulative distribution function is derived in section 3.4.1.3 as F (te) = 1 � � (0; te) with

� (0; te) = e�
R
te
0

�e(s) ds the transmittance of the medium. For a homogeneous medium, inverting the

cumulative distribution function allows a uniformly distributed sample y 2 [0; 1) to be transformed

into te = ���1e log (1� y). In the case of an inhomogeneous medium, no closed-form solution exists

but an e�cient and unbiased sampling method is provided.

7.2.1.1. Until Surface Interaction

With probability 1 � F (thit (p1; p2)) = � (0; thit (p1; p2)), the distances satisfy thit (p1; p2) � te (p3)

so that the photon encounters a surface at distance thit (p1; p2) before becoming extinguished. Its

position and di�erentials are updated as described in section 3.1.2.3. Analogously to the handling

of Russian roulette in section 5.1.4, the assumption is made that other photons reach a surface

119

7. Participating Media

with equal probability. The e�ect of extinction in the participating medium then matches that of

Russian roulette, reducing the number of photons to a fraction � (0; thit (p1; p2)) without a�ecting their

distribution. It can thus be handled in the same way, scaling di�erentials with ��
1
2 (0; thit (p1; p2)) and

avoiding the need to track di�erentials with respect to an additional parameter. After propagation,

the photon interacts with the surface as described in chapter 5.

7.2.1.2. Until Extinction Event

If thit (p1; p2) > te (p3), the photon is extinguished in the participating medium after propagation by

distance te (p3). Its position and direction thus become

~z0 (p1; p2; p3) = ~z (p1; p2) + te (p3) ~! (p1; p2) ; ~!0 (p1; p2; p3) = ~! (p1; p2) :

Di�erentiation with respect to the now three parameters yields six di�erentials,

@~z0

@p1
(p1; p2; p3) =

@~z

@p1
(p1; p2)| {z }

old di�erential

+ te (p3)| {z }
extinction

distance

@~!

@p1
(p1; p2)| {z }

old di�erential

;
@~!0

@p1
(p1; p2; p3) =

@~!

@p1
(p1; p2)| {z }

old di�erential

; (7.4)

@~z0

@p2
(p1; p2; p3) =

@~z

@p2
(p1; p2)| {z }

old di�erential

+ te (p3)| {z }
extinction

distance

@~!

@p2
(p1; p2)| {z }

old di�erential

;
@~!0

@p2
(p1; p2; p3) =

@~!

@p2
(p1; p2)| {z }

old di�erential

; (7.5)

@~z0

@p3
(p1; p2; p3) =

@te
@p3

(p3) ~! (p1; p2)| {z }
old direction

;
@~!0

@p3
(p1; p2; p3) = ~0: (7.6)

Only the derivative of the extinction distance te (p3) with respect to p3 is unknown. To compute

it, the inverse p3 (te) = F (te) of te (p3) = F�1 (p3) is di�erentiated �rst

@p3
@te

(te) =
@ (1� � (0; t))

@t
(te) =

@(1� e�
R
t

0
�e(s) ds)

@t
(te) = �e (te) e

� R te
0

�e(s) ds = �e (te) � (0; te) :

The reciprocal yields the required derivative of te (p3),

@te
@p3

(p3) =
1

�e (te (p3)) � (0; te (p3))
: (7.7)

Inserting equation 7.7 into equation 7.6 allows photon di�erentials to be updated after propagation.

Following section 5.1, the di�erentials with respect to p1, p2 are scaled such that the expected distances

between the photon and its neighbors in two-dimensional parameter space are � =
p
4�n�1 for both.

Scaling them by the additional factor
p
4� then leads to expected distances �0 =

p
n�1. As described

in section 3.1.2.5, this corresponds to a uniform distribution of n photons throughout two-dimensional

parameter space with unit scale for each parameter. Since p3 is also uniformly sampled on a unit

scale, p1, p2, p3 together uniformly sample a three-dimensional unit parameter space. The expected

distance for each then becomes �00 = 3
p
n�1. With this, three footprint spanning vectors can be

computed by �rst order Taylor approximation,

~�1 (p1; p2; p3) =
3

r
1

n

p
4�

@~z0

@p1
(p1; p2; p3) ; (7.8)

120

7.2. Photon Di�erentials

~�2 (p1; p2; p3) =
3

r
1

n

p
4�

@~z0

@p2
(p1; p2; p3) ; (7.9)

~�3 (p1; p2; p3) =
3

r
1

n

@~z0

@p3
(p1; p2; p3) : (7.10)

These three vectors span a parallelepiped, yielding a three-dimensional footprint. An undesirable

e�ect is a growth in computational cost and storage space due to the two additional di�erentials with

respect to p3. However, six photon di�erentials are a temporary state. The footprint is processed to

compute a single kernel bandwidth hj at the extinction event. If the photon is scattered, the number

of parameters and thus di�erentials is reduced as described in the following section.

7.2.2. Scattering

When a photon is scattered after extinction, two additional parameters p01, p
0
2 must be sampled to

choose a new direction. As with di�use re�ection in section 5.1.3, we treat scattering as an absorption

and a reemission with parameters p01, p
0
2 only. The three parameters p1, p2, p3 after propagation are

thus replaced with p01, p
0
2, reducing their number to two again.

Scattering follows a phase function p modeling the redirection of radiance into the sphere of direc-

tions. Since the scattering occurs at a point in the participating medium, radiance is not projected

onto any surface, making intensity and radiance proportional. A new photon direction is thus chosen

by importance-sampling the phase function. For an isotropic medium, this is given by equation 2.21,

p (cos �) =
1

4�
: (7.11)

Anisotropic scattering is modeled by the Schlick phase function from equation 2.22 with k 2 (�1; 1),

p (cos �) =
1� k2

4� (1� k cos �)
2 : (7.12)

Equation 7.12 simpli�es to equation 7.11 for k = 0. Only anisotropic scattering is thus discussed

further, including isotropic scattering as a special case. The phase angle � is the inclination of the

new photon direction in a local coordinate frame with ~! (p1; p2; p3) as zenith. Since cos � is strictly

monotonic for � 2 [0; �], a change of variable is possible to

p (�) = p (cos �)

����d cos �d�

���� =
�
1� k2

�
sin �

4� (1� k cos �)
2 : (7.13)

Using p01 2 [0; �], p02 2 [0; 2�) to denote inclination and azimuth in this local coordinate frame and

a rotation matrix R (p1; p2; p3) to encode its orientation, the photon is considered to originate at the

scattering point with parameters p01, p
0
2 only so that

~z0 (p01; p
0
2) = ~z (p1; p2; p3) ; ~!0 (p01; p

0
2) = R (p1; p2; p3)

0
B@cos p02 sin p

0
1

sin p02 sin p
0
1

cos p01

1
CA : (7.14)

This parameterization using spherical coordinates is equal to that employed during emission from

a point light source. The corresponding di�erentials are therefore identical to equations 5.2 and 5.3

with parameters p01, p
0
2 substituted for p1, p2. To importance-sample equation 7.13 and determine a

121

7. Participating Media

new photon direction, the marginal probability density functions are computed for the two parameters

�rst, yielding

p (p01) =
Z 2�

0

�
1� k2

�
sin p01

4� (1� k cos p01)
2 dp

0
2 =

�
1� k2

�
sin p01

2 (1� k cos p01)
2 ; (7.15)

p (p02) =
Z �

0

�
1� k2

�
sin p01

4� (1� k cos p01)
2 dp

0
1 =

1

2�
: (7.16)

Integration leads to the cumulative distribution functions

F (p01) =
Z p01

0

�
1� k2

�
sin p

2 (1� k cos p)
2 dp =

k2 � 1

2k (1� k cos p01)
� k2 � 1

2k (1� k)
;

F (p02) =
Z p02

0

1

2�
dp =

1

2�
p02:

Parameters distributed according to equations 7.15 and 7.16 are obtained by transforming uniformly

distributed samples y01 2 [0; 2], y02 2 [0; 2�) via the inverted cumulative distribution functions into

p01 = arccos
y01+k�1
ky01�k+1 , p

0
2 = y02. The expected distances �p01, �p

0
2 to neighboring photons are derived

by following the same steps as for di�use re�ection in section 5.1.3. With n photons traced in

total, the distances to neighbors are computed by assuming all sample the same parameter space.

Di�erence vectors between the photon direction and those of its neighbors are estimated using �rst-

order Taylor approximation as �p01
@~!0

@p01
(p01; p

0
2) and �p02

@~!0

@p02
(p01; p

0
2). The expected solid angle spanned

by neighboring photon directions is proportional to the inverse of p (~!0). With spherical coordinates

sampled according to the probability density function in equation 7.13 and their distorted mapping

to the sphere of directions, the expected solid angle thus is

c

p (~!0)
=

c

p (p01; p
0
2)

1
sin p01

= c
4� (1� k cos p01)

2

1� k2
:

The proportionality constant c follows from the expectation that all n photons together cover the

entire sphere of directions,

E

"
nc

4� (1� k cos p01)
2

1� k2

#
= 4� , c =

1

n
:

Approximating the distribution of photon directions as locally uniform, the expected lengths of

both di�erence vectors are equal so that

E

��p01 @~!0@p01
(p01; p

0
2)

�
= E

��p02 @~!0@p02
(p01; p

0
2)

�
=

s
4� (1� k cos p01)

2

n (1� k2)
: (7.17)

Since di�erentials after reemission at the scattering point are identical to equations 5.2 and 5.3,

their lengths follow equation 5.7. Combining these with equation 7.17, the expected distances in

parameter space between neighboring photons are

�p01 � E [�p01] =
s

4� (1� k cos p01)
2

n (1� k2)
; �p02 � E [�p02] =

s
4� (1� k cos p01)

2

n (1� k2)

1

sin p01
:

122

7.2. Photon Di�erentials

The need to track these with each photon is eliminated analogously to emission and di�use re�ec-

tion. The di�erentials are scaled by j1�k cos p
0

1jp
1�k2 respectively j1�k cos p

0

1jp
1�k2 sin�1 p01, obtaining

@~z0

@p01
(p01; p

0
2) = ~0;

@~!0

@p01
(p01; p

0
2) =

j1� k cos p01jp
1� k2

R (p1; p2; p3)

0
B@cos p02 cos p

0
1

sin p02 cos p
0
1

� sin p1

1
CA ; (7.18)

@~z0

@p02
(p01; p

0
2) = ~0;

@~!0

@p02
(p01; p

0
2) =

j1� k cos p01jp
1� k2

R (p1; p2; p3)

0
B@� sin p02

cos p02
0

1
CA : (7.19)

Scaled by the inverses of these factors, the distances in parameter space become identical to those

of equation 5.11, allowing the same global constant to be used for all photons,

�p01 = �p02 =

r
4�

n
:

Treating scattering as an absorption and a reemission has the disadvantage of discarding any

prior footprint adaptation. To approximatively preserve it, the reemission point is virtually o�set to

~z0 (p01; p
0
2) � tv (p1; p2; p3) ~!

0 (p01; p
0
2), analogously to section 5.1.3. Since the o�setting is virtual, the

photon always reaches the actual scattering point at ~z00 (p01; p
0
2) = ~z (p1; p2; p3) without being a�ected

by the participating medium. Its direction ~!00 (p01; p
0
2) = ~!0 (p01; p

0
2) is unchanged, the di�erentials are

@~z00

@p01
(p01; p

0
2) = tv (p1; p2; p3)

@~!0

@p01
(p01; p

0
2) ;

@~!00

@p01
(p01; p

0
2) =

@~!0

@p01
(p01; p

0
2) ; (7.20)

@~z00

@p02
(p01; p

0
2) = tv (p1; p2; p3)

@~!0

@p02
(p01; p

0
2) ;

@~!00

@p02
(p01; p

0
2) =

@~!0

@p02
(p01; p

0
2) : (7.21)

Parameters p1, p2, p3 lead to a three-dimensional footprint before scattering. The adaptation is

approximatively preserved by maintaining its volume. Since scattering yields parameters p01, p
0
2 only,

the assumption of a subsequent propagation by zero distance is made to obtain a three-dimensional

footprint after scattering also. This corresponds to p03 = 0 since te (0) = 0. The photon position

~z000 (p01; p
0
2; 0) = ~z (p1; p2; p3) and direction ~!000 (p01; p

0
2) = ~!0 (p01; p

0
2) remain unchanged. Inserting the

zero propagation distance te (0) = 0 into equations 7.4 and 7.5 shows that the position di�erentials

with respect to parameters p01, p
0
2 also do not change,

@~z000

@p01
(p01; p

0
2; 0) =

@~z00

@p01
(p01; p

0
2) + te (0)

@~!00

@p01
(p01; p

0
2) =

@~z00

@p01
(p01; p

0
2) ; (7.22)

@~z000

@p02
(p01; p

0
2; 0) =

@~z00

@p02
(p01; p

0
2) + te (0)

@~!00

@p02
(p01; p

0
2) =

@~z00

@p02
(p01; p

0
2) : (7.23)

An additional position di�erential with respect to parameter p03 is given by equation 7.7. Inserting

equation 7.6 and noting that � (0; 0) = 1, the di�erential is

@~z000

@p03
(p01; p

0
2; 0) =

@te
@p03

(0) ~!00 (p01; p
0
2) =

1

�e (te (0)) � (0; te (0))
~!00 (p01; p

0
2) =

1

�e (0)
~!00 (p01; p

0
2) : (7.24)

The three corresponding footprint spanning vectors are computed by inserting the di�erentials from

equations 7.22 to 7.24 into equations 7.8 to 7.10, yielding a footprint volume after scattering of

123

7. Participating Media

V 0 (p01; p
0
2) =

D~�0
1 (p

0
1; p

0
2; 0) ; ~�

0
2 (p

0
1; p

0
2; 0) ; ~�

0
2 (p

0
1; p

0
2; 0)

E
=

4�

n�e (0)

�
@~z00

@p01
(p01; p

0
2) ;

@~z00

@p02
(p01; p

0
2) ; ~!

00 (p01; p
0
2)

� :
Inserting equations 7.20, 7.21 and ~!00 (p01; p

0
2) = ~!0 (p01; p

0
2), this becomes

V 0 (p01; p
0
2) =

4�

n�e (0)
t2v (p1; p2; p3)

�
@~!0

@p01
(p01; p

0
2) ;

@~!0

@p02
(p01; p

0
2) ; ~!

0 (p01; p
0
2)

� :
With the photon direction from equation 7.14 and its di�erentials from equations 7.18 and 7.19,

the expression evaluates to

V 0 (p01; p
0
2) =

4�

n�e (0)
t2v (p1; p2; p3)

(1� k cos p01)
2

1� k2
: (7.25)

The footprint volume before scattering follows from equations 7.8 to 7.10 as

V (p1; p2; p3) =
D~�1 (p1; p2; p3) ; ~�2 (p1; p2; p3) ; ~�2 (p1; p2; p3)

E
=

4�

n

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

@~z

@p3
(p1; p2; p3)

� : (7.26)

Prior adaptation is approximatively preserved by ensuring that the expected value of equation 7.25

is identical to equation 7.26. For photon directions sampled according to equations 7.15 and 7.16,

this expected value is

E [V 0 (p01; p
0
2)] =

4�

n�e (0)
t2v (p1; p2; p3) :

The o�set required to preserve adaptation follows as

E [V 0 (p01; p
0
2)] = V (p1; p2; p3)

, 4�

n�e (0)
t2v (p1; p2; p3) =

4�

n

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

@~z

@p3
(p1; p2; p3)

�
) tv (p1; p2; p3) =

s
�e (0)

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

@~z

@p3
(p1; p2; p3)

�:
Virtual o�setting is handled analogously to di�use re�ection by computing tv (p1; p2; p3) and then

initializing the di�erentials after scattering according to equations 7.20 and 7.21.

7.2.3. Russian Roulette

An additional use of Russian roulette in volumetric photon mapping is the decision between absorption

and scattering after extinction. The probability of a photon being scattered into a new direction is

given by the medium albedo � (te) at the extinction point. Assuming that other photons are scattered

with equal probability, the same argumentation as for Russian roulette at a surface in section 5.1.4

holds. Russian roulette then reduces the number of photons by a fraction � (te) without a�ecting

their distribution. It is thus accounted for by increasing the lengths of the photon di�erentials with

respect to the three parameters by factor ��
1
3 (te) each upon scattering.

124

7.3. Bandwidth Selection

7.3. Bandwidth Selection

The beam radiance estimate from equation 7.3 uses variable kernel density estimation to reconstruct

in-scattered radiance. This requires that a kernel support region be chosen for each extinction event.

7.3.1. Isotropic Kernel Support Region

Extinction is preceded by propagation to the extinction point. Following section 7.2.1.2, the photon

thus has three parameters and a three-dimensional footprint. The footprint spanning vectors given by

equations 7.4 to 7.6 adapt to the in�uence of scene surfaces and participating medium on the distances

between neighboring extinction events. A kernel support region aligned with these is thus desirable.

Due to the high computational cost of volumetric photon mapping, we propose that instead of an

anisotropic kernel support as in section 5.2.1, a simple single bandwidth hj be used. The bandwidth is

computed so that the volume of the resulting spherical kernel support region around ~zj = ~z (p1; p2; p3)

follows that of the footprint from equation 7.26,

V (p1; p2; p3) =
4�

n

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

@~z

@p3
(p1; p2; p3)

� : (7.27)

The di�erential with respect to p3 can be separated into its constant and variable components.

We model the participating medium as made up of a single substance with only the density varying

spatially in the inhomogeneous case. The extinction coe�cient at any point then is the product of

an upper bound �e and the local medium density, �e (~z) = � (~z) �e. Inserting equation 7.7 and this

identity into equation 7.6, the di�erential becomes

@~z

@p3
(p1; p2; p3) =

1

�e (te (p3)) � (0; te (p3))
~! (p1; p2) =

1

�e

~! (p1; p2)

� (te (p3)) � (0; te (p3))
:

After inserting this into equation 7.27, all constants can be collected outside the triple product,

V (p1; p2; p3) =
4�

n�e

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

~! (p1; p2)

� (te (p3)) � (0; te (p3))

� :
The bandwidth hj is the cubic root of this volume, scaled by a manually chosen spread factor s,

hj = s 3

s
4�

n�e

�
@~z

@p1
(p1; p2; p3) ;

@~z

@p2
(p1; p2; p3) ;

~! (p1; p2)

� (te (p3)) � (0; te (p3))

�: (7.28)

7.3.2. Dampened Adaptation

Adaptation dampening is proposed in section 5.2.2 to approximatively account for the in�uence of

illumination arriving via di�erent paths on the local interaction density. The same considerations

apply to the extinction event density in volumetric photon mapping. An e�cient dampening method

is provided by the log1pf function in CUDA, implementing the operation x0 = log (1 + x). Scaling

the result by a constant d > 0 and x by its inverse, the amount of dampening can be controlled. This

dampening is applied to the variable component of equation 7.28, resulting in the kernel bandwidth

h0j = s d 3

r
4�

n�e
log

1 +

1

d
3

s
�
@~z

@p1
(p1; p2; p3) ;

@~z

@p1
(p1; p2; p3) ;

~! (p1; p2)

� (te (p3)) � (0; te (p3))

�
!
:

125

7. Participating Media

7.3.3. Spectral Considerations

Re�ectivity � at a surface interaction and albedo � at an extinction event are importance-sampled

using Russian roulette. As described in section 3.4.1, the probability of onward tracing is an average

across all color bands. This requires that the photon �ux in the i-th color band be scaled by the ratio

of the probability for this band and the average, �i��1average respectively �i�
�1
average.

When importance-sampling the extinction distance in section 7.2.1, we use the maximum of the

extinction coe�cients from all color bands, samples thus following the band for which the participating

medium is densest. The probability that the photon reaches a surface in section 7.2.1.1 then is

e�
R thit(p1;p2)
0 �e;i(s) ds for the i-th color band and e�

R thit(p1;p2)
0 �e;max(s) ds for the actual photon. Flux

must again be scaled by their ratio. For a homogeneous medium, this follows directly as

e�
R thit(p1;p2)
0 �e;i(s)��e;max(s) ds = e(�e;max��e;i)thit(p1;p2): (7.29)

In the case of an inhomogeneous medium, ray marching is used analogously to equation 3.18. When

only the density is spatially varying, the required ratio becomes

e�
R thit(p1;p2)
0 �e;i(s)��e;max(s) ds � e�

Psmax
s=1 �ts�(ts)(�e;i��e;max) = e(�e;max��e;i)

Psmax
s=1 �ts�(ts): (7.30)

For a photon propagated until an extinction event in section 7.2.1.2, the distance te (p3) is sampled

according to the probability density function p (te) = �e;maxe
� R t

0
�e;max(s) ds. The corresponding

function for the i-th color band is p (te) = �e;ie
� R t

0
�e;i(s) ds. The ratio of these expressions is identical

to equations 7.29 and 7.30 with only an additional factor �e;i��1e;max.

7.3.4. Results and Discussion

We use nine combinations of scene and participating medium as benchmark scenarios. Ring, Sponza

Atrium and Sibenik Cathedral are chosen as a representative subset of the scenes from section A.2.

The Ring is smallest and simplest. In the variant employed, the ring is lifted o� the ground plane,

allowing a volume caustic to form. The level of detail is slightly increased, yielding 522 triangles.

Virtual camera and light source position are adjusted to visualize the caustic. The Sponza Atrium

represents moderate size and complexity. Demonstrating the possibility of a bounded participating

medium, this scene is only partially �lled and the virtual camera position adjusted to better visualize

the medium. The Sibenik Cathedral serves as an example of a large scene.

Three scenarios are evaluated per scene. As shown in table 7.1, these illustrate the in�uence of

di�erent parameters. For the Ring, the light source is varied from an isotropic point light to a spot

with apex angle � = 0:5 �rst. Participating medium properties are then adjusted, changing from

neutral to colored by reducing the scattering in the green and blue color bands. The participating

medium in the Sponza Atrium exhibits lower albedo. Absorption in the red color band is reduced to

color it �rst and a spatially varying density then encoded in a three-dimensional texture map to add

inhomogeneity. The absorption and scattering coe�cients listed are averages, showing a match with

the previous homogeneous medium. Anisotropy is demonstrated in the Sibenik Cathedral, varying

from k = 0:5 for forward scattering to k = �0:5 for backward scattering.

All sampling decisions are controlled by a quasi-random Sobol' sequence, minimizing variance.

The number of photons emitted is 220 for the �rst two scenes and 218 for the last due to higher

computational cost experienced with it. In-scattered radiance is reconstructed by the beam radiance

126

7.3. Bandwidth Selection

Scene
Omni-

directional

�a �s Homo-
geneous

k
R G B R G B

Ring Yes 0:01 0:01 0:01 0:50 0:50 0:50 Yes 0:0
No 0:01 0:01 0:01 0:50 0:50 0:50 Yes 0:0
No 0:01 0:01 0:01 0:50 0:01 0:01 Yes 0:0

Sponza Yes 0:30 0:30 0:30 0:10 0:10 0:10 Yes 0:0
Yes 0:05 0:30 0:30 0:10 0:10 0:10 Yes 0:0
Yes 0:05 0:30 0:30 0:10 0:10 0:10 No 0:0

Sibenik Yes 0:05 0:05 0:05 0:15 0:15 0:15 Yes 0:5
Yes 0:05 0:05 0:05 0:15 0:15 0:15 Yes 0:0
Yes 0:05 0:05 0:05 0:15 0:15 0:15 Yes �0:5

Table 7.1.: Light source type, absorption and scattering coe�cients, homogeneity and anisotropy of
the participating medium for nine benchmark scenarios

Scene Bounce 1 Bounce 0, 1 Bounce 1, 2

Ring 2:5 2:5 1:5
10:0 10:0 2:5
10:0 10:0 2:5

Sponza 6:0 3:0 3:0
6:0 3:0 3:0
10:0 5:0 5:0

Sibenik 7:0 4:0 3:0
5:0 3:0 2:5
5:0 3:0 2:5

Table 7.2.: Adaptation dampening for di�erent bounce depths and benchmark scenarios

estimate. Baseline kernel bandwidths are given by the distances from the extinction events to their

85th-nearest neighbors. Bandwidths based on photon di�erentials are computed with spread s = 3

and dampening factor d tuned so that image quality and bandwidth distribution are comparable to

the baseline. The number of times a photon is re�ected or scattered before an extinction event is

measured by its bounce depth. Table 7.2 lists the dampening factors d obtained when events are

stored at di�erent bounce depths. A smaller d leads to stronger dampening.

Bounce depth 0 is single-scattered radiance. If only this is simulated, all in-scattered illumination

arrives from the light source directly and no adaptation dampening is necessary. As extinction events

for more and higher bounce depths are stored, the probability of di�erent paths reaching the same

region increases and the amount of dampening required to match the baseline grows. For the Ring,

a spot light leads to less overlap between di�erent paths and thus less dampening. The Sponza

Atrium is larger and has a participating medium with lower albedo. Fewer paths thus overlap and

less dampening is needed under the same illumination conditions. This e�ect is even more apparent

with an inhomogeneous medium. The Sibenik Cathedral is larger but has higher albedo, leading to a

similar amount of dampening. When the medium is strongly forward scattering, di�erent paths are

less likely to overlap, thus needing less dampening than with isotropic or backward scattering.

All further evaluation is based on bounce depths 0 and 1, simulating single and multiple scattering.

Photon tracing and density estimation statistics are provided in table 7.3. Extinction events are

identical for the baseline and photon di�erentials. The maximal bandwidth hmax is set for each

scene so that only excessive bandwidths are removed. On average, 0:10% of the extinction events are

127

7. Participating Media

Scene
Photon Tracing Density Estimation

Emissions Extinctions hmax ClampedB ClampedPD kB kPD

Ring 1048576 816605 1 0:00% 0:00% 766:87 +37:95%
1048576 894416 1 0:00% 0:00% 645:28 +18:56%
1048576 818157 1 0:00% 0:00% 599:85 +11:59%

Sponza 1048576 255811 2 0:11% 0:00% 1124:68 �15:21%
1048576 269959 2 0:11% 0:00% 1145:64 �12:23%
1048576 258533 2 0:12% 0:02% 728:14 +22:30%

Sibenik 262144 355852 3 0:19% 0:00% 1298:92 +3:97%
262144 362540 3 0:18% 0:00% 1290:03 �7:75%
262144 369746 3 0:18% 0:00% 1287:44 �3:51%

Average 0:10% 0:00% +6:19%
Std.Dev. 0:08% 0:01% 17:82%

Table 7.3.: Photon tracing and density estimation statistics with kernel bandwidths obtained by the
baseline (B) and photon di�erentials (PD) methods

a�ected by clamping in the baseline. With photon di�erentials, clamping occurs in a single benchmark

scenario only, a�ecting 0:02% of the events.

Images are rendered using the benchmark environment from section A.1 with up to four rays traced

per pixel. Radiance is attenuated by the medium transmittance for each ray and the radiance in-

scattered to primary and re�ection rays added by the beam radiance estimate. No surface interactions

are stored, focusing on volumetric photon mapping only. A simple tone mapping operator allows a

higher dynamic range to be reproduced by transforming radiance L reaching the virtual camera to

L0 = L
L+1W m�2 sr�1

. Figure 7.1 presents the rendering results for an example view of each benchmark

scenario. As shown in table 7.3, the number of extinction events contributing per ray during a �ight

through a scenario is similar to the baseline, di�ering from it by 6:19% on average.

A volume caustic arises in �gure 7.1(a) and (b) due to illumination focusing by the red specular

ring. The same caustic is present in �gure 7.1(c) albeit less prominent due to the red color of the

participating medium. Caustic sharpness is improved over the baseline. For the Sponza Atrium, a

reduction in variance relative to the baseline is observed in �gure 7.1(d)�(f). The same is true of

the Sibenik Cathedral with overall variance increasing as scattering shifts from primarily forward in

�gure 7.1(g) to primarily backward in �gure 7.1(i).

Work concurrent to ours [Sch09] also extends photon di�erentials to volumetric photon mapping.

The rendering of a volume caustic with anisotropic kernel support regions is demonstrated. However,

the in�uences of extinction and illumination arriving via di�erent paths are not accounted for. Since

no analysis of kernel bandwidths or performance is provided, a direct comparison is not possible.

7.4. Stream Processing

The CUDA programming model exposes a GPU as a general purpose stream processing device.

Each kernel transforms an input data stream into one or more output streams. Other kernels may

be applied to these output streams, chaining their execution. The data in an input stream thus

corresponds to jobs processed by the threads of a kernel. This execution model is made explicit with

persistent threads [AL09], reading a block of jobs from a queue for each warp, processing these and

reading the next block until the queue is exhausted.

128

7.4. Stream Processing

(a) Ring, omnidirectional light, neutral participating medium

(b) Ring, spot light, neutral participating medium

(c) Ring, spot light, colored participating medium

Figure 7.1.: Images rendered by volumetric photon mapping: Kernel bandwidths derived from k-th
nearest neighbors on the left, from photon di�erentials on the right.

129

7. Participating Media

(d) Sponza Atrium, homogeneous, neutral participating medium

(e) Sponza Atrium, homogeneous, colored participating medium

(f) Sponza Atrium, inhomogeneous, colored participating medium

Figure 7.1.: Images rendered by volumetric photon mapping: Kernel bandwidths derived from k-th
nearest neighbors on the left, from photon di�erentials on the right.

130

7.4. Stream Processing

(g) Sibenik Cathedral, backward scattering participating medium

(h) Sibenik Cathedral, isotropically scattering participating medium

(i) Sibenik Cathedral, forward scattering participating medium

Figure 7.1.: Images rendered by volumetric photon mapping: Kernel bandwidths derived from k-th
nearest neighbors on the left, from photon di�erentials on the right.

131

7. Participating Media

Bounce 1

QD
0

KR
0

QS
0

KD
0

KS
0

QR
1

QD
1

KR
1

QS
1

KD
1

KS
1

Density Estimation

Recursive Rays

Shadow Rays

Bounce 0

QR
0

Figure 7.2.: Rendering by stream processing: Kernels (K, yellow) processes jobs from corresponding
queues (Q, orange). Recursive rays (R), shadow rays (S) an density estimation (D) are
handled by separate kernels.

Benchmark code base II from section A.1.2 decomposes rendering into six CUDA kernels. Their

arrangement and that of the corresponding job queues is illustrated in �gure 7.2. Kernel KR;0 traces

primary rays from job queue QR;0. For each ray passing through the participating medium, a density

estimation job is output into queue QD;0. If a surface is hit, a shadow ray job is placed in QS;0 and

if the surface has a specular BRDF component, additionally a re�ection ray job in QR;1. The queues

are processed by the corresponding kernels KD;0, KS;0, KR;1. The last of these traces re�ection rays,

outputting additional density estimation and shadow ray jobs into queues QD;1, QS;1 to be processed

by kernels KD;1, KS;1. A job is speci�ed by its ray parameters, attenuation accumulated along the

path and the image pixel it refers to. Radiance contributions by all kernels are accumulated in each

image pixel and then tone-mapped by a simple postprocessing kernel, generating an image.

This decomposition incurs the overheads of multiple kernel launches and job queue management. Its

advantages are smaller kernels with lower register counts and the possibility to vary the arrangement

of jobs and computations between these.

7.4.1. Job Queuing

One primary ray is traced for each of the 512 � 512 = 262144 image pixels. No explicit job queue

is required for these. The �rst thread in a warp uses an atomic instruction to increment a global

counter, assigning a block of 32 consecutive primary ray indexes to the threads of the warp. Rays

are traced and the next block is assigned to the threads until the counter reaches 262144. All other

queues are explicitly populated by kernels KR;0, KR;1, placing from 0 to 262144 jobs in each.

7.4.1.1. Queue Type I

The simplest queue type uses a one-to-one mapping between jobs and primary rays. Jobs due to the

primary ray with index i are output at position i in other queues as well. Where no job exists, a

�ag marking the queue position as empty is set instead. This queue type has the least management

overhead. To process jobs, blocks of consecutive indexes are assigned to threads as during primary

ray tracing. Where no job exists, the thread is masked o� as inactive. High parallel processing unit

utilization thus cannot be guaranteed.

132

7.4. Stream Processing

7.4.1.2. Queue Type II

A second queue type improves processing unit utilization. Job queues are populated identically but

then preprocessed by stream compaction to extract existent jobs only. The downsides of this approach

are a compaction overhead and a potential loss in coherence as jobs corresponding to pixels from more

distant parts of the image are assigned to the threads of a warp.

7.4.1.3. Queue Type III

The third queue type eliminates the compaction overhead. Each warp maintains a local queue with

capacity for 7�32 jobs. Threads output jobs at consecutive positions in this queue, using an e�cient

shared memory atomic to increment a local counter. The �rst thread in a warp �ushes its local to

a global queue when less than 32 available positions remain. The global job queue thus consists of

large compacted blocks. When processing jobs, the �rst thread of a warp increments a global counter

to obtain an entire block. This is handled by the warp looping, processing 32 jobs at a time. Only

for the last iteration may not all threads be active, requiring a subset to be masked o�. Blocks are

processed until the queue is exhausted.

7.4.2. Packetization

Computations may be arranged in each kernel either so that threads process jobs independently or act

as a packet. Ray tracing, as noted in section 3.2.4.4, performs best if rays are traced independently.

We show that the opposite is true for the beam radiance estimate. Packetization is achieved by

a single master thread per warp making BVH photon map traversal decisions and maintaining a

traversal stack in shared memory. The child nodes that must be visited for at least one of the threads

in the packet are e�ciently determined by warp voting.

For queue types II and III, the �rst thread in a warp is always active and acts as the master. With

queue type I, an unpredictable subset of the threads is masked o�. A master is therefore elected. All

active threads concurrently write their IDs to the same shared memory location. The thread whose

ID persists after the write becomes the master.

7.4.3. Results and Discussion

We use �ights through the nine benchmark scenarios from section 7.3.4 for evaluation. A BVH photon

map is constructed over the extinction events by the LBVH algorithm from section 6.1.2. Since the

compact BVH representation of section 6.2 does not provide a signi�cant performance bene�t when

queried by a ray, a complete BVH representation with sibling nodes stored in pairs is used instead.

A minimal leaf size threshold of 16 is empirically determined for all scenarios.

The choice of job queue type and that between independent threads or packets lead to di�erent

memory accesses and execution patterns. Table 7.4 illustrates resulting computational cost, measured

as the average number of instructions required by kernels KD
0 , KD

1 to perform density estimation

per ray. Queue type I with independent threads serves as the baseline. The other queue types add

2:9% and 2:0% instructions to the baseline on average. This indicates that any improvements due to

higher utilization of the parallel processing units are negated by lower coherence.

In CUDA, threads executing the same instruction automatically fall into lock-step. When part

of a warp traverses photon map nodes and another visits extinction events, however, the threads

133

7. Participating Media

Scene Extinctions
Independent Packet

Queue I Queue II Queue III Queue I Queue II Queue III

Ring 816605 437786 +8:6% +5:7% �62:7% �55:0% �60:0%
894416 313319 +5:9% +4:0% �61:7% �55:1% �58:8%
818157 278936 +4:9% +3:1% �61:7% �54:8% �59:0%

Sponza 255811 419273 +2:3% +1:3% �63:2% �60:4% �61:7%
269959 440520 +2:3% +1:6% �63:6% �60:7% �62:4%
258533 504986 +2:2% +0:9% �66:3% �63:8% �65:0%

Sibenik 355852 595010 �0:3% +0:5% �64:1% �64:0% �63:8%
362540 419524 +0:5% +0:3% �60:8% �60:5% �60:6%
369746 503910 �0:4% +0:3% �64:3% �64:2% �64:1%

Average +2:9% +2:0% �63:1% �59:8% �61:7%
Std. Dev. 3:0% 1:9% 1:7% 4:0% 2:3%

Table 7.4.: Density estimation instructions per ray with di�erent job queue types and packetization

follow two di�erent code paths that must be serialized. This increases the total instruction count.

Packetization ensures lock-step operation by traversing each node and visiting each extinction event

relevant to any of the threads in a warp with the entire warp in parallel. This proves to signi�cantly

lower the instruction count for density estimation. The least number of instructions is needed with

queue type I and packetization, lying 63:1% below the baseline on average.

Traversal stacks are located in local memory for independent threads and in shared memory for

packets. Any other changes in memory access patterns are di�cult to measure. With packetization,

an entire warp accesses the same node or extinction event. For independent threads, accesses are not

coordinated but are served via the texturing unit caches. Table 7.5 shows the total time required for

density estimation per frame. Except for queue type III, the di�erences between the columns follow

the di�erences in instruction count. Density estimation is thus compute bound, making memory

accesses a secondary in�uence whose detailed analysis is not essential.

Queue type I performs best. With queue type II, a slight slowdown results. Queue type III leads

to a larger slowdown. Since the instruction count is not higher, this slowdown is due to a more

complex change in the execution pattern or a shift in memory accesses. Packetization, in line with

reducing instruction counts, signi�cantly improves timings. The highest performance is achieved for

all benchmark scenarios with queue type I and packetization.

7.5. Combined Results

The techniques introduced in this chapter extend the e�cient photon mapping algorithm for the

CUDA manycore platform from section 6.3 to volumetric photon mapping. Table 7.6 shows that

interactive frame rates are achieved for the benchmark scenarios from section 7.3.4 with dynamically

changing illumination and all photons retraced in each frame. Results are given as averages over a

�ight through each scene with an animated light source. Frame rates are measured for the complete

algorithm. The overhead of copying images to the screen is included in the ray tracing time. Photon

tracing and density estimation are the most expensive components for all scenes. Despite a signi�-

cantly higher number of contributions per query than in section 6.3, density estimation performance

is comparable due to decomposition into multiple kernels and the use of packetization.

134

7.5. Combined Results

Scene Extinctions
Independent (ms) Packet (ms)

Queue I Queue II Queue III Queue I Queue II Queue III

Ring 816605 1055:2 +3:1% +24:1% �74:7% �71:3% �67:4%
894416 704:0 +4:2% +23:0% �74:5% �68:7% �66:7%
818157 599:3 +4:1% +24:5% �72:8% �67:0% �64:7%

Sponza 255811 321:1 +2:0% +34:7% �68:4% �65:8% �61:3%
269959 336:0 +1:9% +36:6% �68:6% �66:0% �61:8%
258533 499:5 +2:7% +38:2% �77:1% �75:5% �71:5%

Sibenik 355852 1156:0 +0:5% +22:6% �70:9% �70:3% �69:9%
362540 817:7 +0:3% +19:6% �68:0% �67:5% �67:1%
369746 1009:9 +0:3% +21:7% �71:9% �71:4% �71:1%

Average +2:1% +27:2% �74:7% �69:3% �66:8%
Std. Dev. 1:5% 7:1% 3:2% 3:2% 3:7%

Table 7.5.: Density estimation times per frame with di�erent job queue types and packetization

Scene Extinctions k
Time (ms)

FPS
Trace LBVH RT DE

Ring 892776 1156:3 49:83 20:37 10:44 263:25 2:91
1012995 903:5 49:60 23:04 9:96 203:52 3:50
922823 791:6 46:89 21:17 9:96 182:69 3:84

Sponza 310189 1091:1 109:03 8:27 11:74 119:31 4:03
327471 1152:6 110:22 8:67 11:74 123:93 3:93
311908 1010:3 169:94 8:23 12:12 132:55 3:10

Sibenik 351797 1305:7 26:31 9:76 11:96 322:11 2:70
358297 1151:8 26:25 9:63 11:94 249:37 3:36
365337 1194:7 26:50 10:64 11:89 269:88 3:14

Table 7.6.: Photon extinction events, contributions per query, times per frame for photon tracing,
LBVH photon map construction, ray tracing (RT), density estimation (DE) and frame
rates with dynamic illumination

135

8. Conclusions and Future Work

This �nal chapter of the thesis provides a summary discussion of its �ndings and an outlook at

directions for future research.

8.1. Conclusions

Photon mapping is a state of the art algorithm for physically based global illumination rendering.

It simulates the full range L (SjD)
�
E of paths from light source to virtual camera in a conceptu-

ally simple and elegant manner. However, fast and e�cient operation is di�cult to achieve. Our

investigation provides e�cient techniques for each component of the algorithm. These combine to

enable photon mapping with dynamically changing illumination at interactive frame rates on current

consumer hardware. The extension to volumetric photon mapping for participating media is also

addressed and interactive frame rates are once again achieved.

The presentation of our work is preceded by an introduction of the required background knowledge

and a review of related work in the �eld. Rendering algorithms targeting plausible, visually pleasing

images need not be concerned with the details of light transport. Physically based rendering on the

other hand aims to follow physical principles as accurately as possible under the given memory and

time constraints. Chapter 2 therefore provides a description of the physics behind light transport.

Physical terms and quantities are used consistently throughout this thesis, ensuring that the link

between the rendering algorithm and the principles of light transport is maintained.

Manycore computing is also introduced in the chapter. As this is an emerging trend in computer

architecture, new hardware designs based on this paradigm are constantly being developed while

those in existence evolve further. The choice of CUDA is motivated by the fact that it is the �rst

manycore platform to reach wide availability as it is implemented on inexpensive commodity NVIDIA

GPU hardware. Details speci�c to CUDA are described but the manycore paradigm is general and

all algorithmic building blocks presented are universal so that parallel algorithms constructed from

these are widely applicable to emerging and future platforms.

A systematic investigation of the three major components making up the photon mapping algorithm

(ray and photon tracing, density estimation, photon map construction and traversal) in chapters 4

to 6 leads to techniques for all of these that ensure e�cient operation. The results combine into an

e�cient rendering algorithm that operates at interactive frame rates. Our �ndings are also useful

on their own, however, providing improvements to generic components employed by other rendering

algorithms as well. Insights into opaque aspects of the CUDA platform are additionally gained.

SIROH is introduced in chapter 4. This heuristic yields spatial indexes for ray tracing acceleration

with higher traversal performance than the current state of the art, the SAH. Rather than modifying

the existing heuristic, we change the underlying assumptions and derive a new heuristic from these.

The speedup observed validates this approach, showing that although the SAH produces high quality

spatial indexes, revisiting the fundamental assumptions it is based on can lead to even better results.

137

8. Conclusions and Future Work

The investigation of stackless traversal in the same chapter illustrates the development of GPU

hardware and programming models. Stack-based traversal is not possible on older GPUs accessed

via graphics APIs due to lack of suitable read-write memory. With a current GPU and CUDA, not

only is stack-based traversal enabled but also high performance achieved. Our results for explicitly

managed caches lead to the important observation that when optimizing memory accesses, CUDA

kernels may become compute bound and ultimately less e�cient. This is an unexpected �nding as

the CUDA documentation and optimization guidelines are highly focused on memory accesses and

speci�c expensive operations only. The result of this investigation thus provides a valuable insight

for algorithm design on the CUDA platform in general.

Chapter 5 focuses on density estimation. We show that variable kernel density estimation is a viable

alternative to the k-th nearest neighbor density estimation originally used in photon mapping. An

extension of the photon di�erentials framework from emission, propagation and specular interactions

to di�use re�ections and Russian roulette proves successful in choosing anisotropic kernel support

regions adaptive to the local photon interaction density. Handling di�use re�ection as an absorption

and a reemission yields constant storage requirements for the di�erentials during photon tracing.

Separate adaptation results for illumination arriving via di�erent paths. This can be detrimental

or bene�cial. When the illumination from di�erent directions is similar, an adaptation to the joint

interaction density would yield smaller kernel support regions with less bias and higher performance.

However, the required information about the global distribution of photon paths can fundamentally

never be derived from what is tracked with an individual photon. The adaptation dampening we

propose reduces excessive bandwidths but is only a heuristic approximation. It nevertheless leads to

image quality on par with k-th nearest neighbor density estimation.

When the illumination from di�erent directions does vary, separate adaptation is highly desirable.

A sharp caustic on a di�usely illuminated surface is reproduced without the need to explicitly divide

photons into caustic and global. This example also illustrates a limitation of the technique. Kernel

support regions are adaptive to the illumination conditions at the interaction positions only. If the

illumination undergoes complex changes, the support regions may not follow it accurately. Streaking

artifacts result for a curved caustic as kernels align with its tangent. More �exible kernel support

regions than the skewed ellipsoids used could address the issue but would require more storage space

and complex computations.

Photon map construction, storage and traversal are investigated in chapter 6. Replacing the kd-tree

originally used with a BVH, variable kernel density estimation is simpli�ed as no photon interaction

can be retrieved more than once. The use of highly parallel LBVH construction is also enabled. As

initially published, this algorithm is not fully described. Additional details recently provided allow it

to be largely reconstructed and show its ine�ciencies. We derive alternatives to the ine�cient steps.

Although our focus is on the construction of a photon map, our improvements to the algorithm are

general and applicable anywhere LBVH construction is used. The novel compact BVH representation

proposed in this chapter can similarly be applied to a BVH in any context. However, while storage and

bandwidth requirements are always reduced, performance may be lower, depending on application.

This is in line with our observation that CUDA kernels may become compute bound when optimizing

memory accesses and experience a slowdown due to additional instructions required.

An evaluation of the complete photon mapping algorithm at the end of chapter 6 demonstrates

interactive performance for a range of benchmark scenes with dynamically changing illumination.

The breakdown into individual components identi�es density estimation as the main bottleneck that

138

8.2. Future Work

dominates timings. This motivates an investigation of further improvements to it in chapter 7 when

extending the algorithm to volumetric photon mapping. A rederivation of the beam radiance estimate

provides the basis for e�cient variable kernel density estimation. Kernel bandwidths are computed by

a further extension of the photon di�erentials framework to extinction and scattering. Our choice of

isotropic kernel support regions is owed to the higher number of contributions per density estimation,

countering the increased computational cost.

We �nd that density estimation is signi�cantly accelerated by decomposing rendering into multiple

CUDA kernels and using packetization for this step. This result again demonstrates the opaqueness

of the CUDA platform and the need for benchmarking to �nd the approach that performs best. The

complete algorithm achieves interactive frame rates for a range of benchmark scenarios. Image quality

is comparable to that of the original beam radiance estimate method with an o�ine preprocessing

step in which bandwidths are determined by k-th nearest neighbor searches.

In summary, we show that by addressing the e�ciency of its constituent components, photon

mapping at interactive frame rates is possible on the CUDA manycore platform. As CUDA is only

one early example of the emerging trend toward manycore computing, our techniques can be expected

to provide bene�ts on future computer architectures as well. Where results do not transfer directly,

a starting point for further investigation is given.

8.2. Future Work

Our work is based on an NVIDIA GTX 280 GPU. The next generation of NVIDIA hardware with

higher computational power and more memory is now reaching wide availability. Without changes to

the algorithm, higher frame rates can be expected. Increasing the number of photons emitted would

exploit the additional resources to improve image quality instead. Further gains are likely possible

by adjusting the algorithm to changed performance characteristics. Due to the lack of detailed

documentation, a reevaluation of the choices made during algorithm design by benchmarking is

required to identify the adjustments necessary for e�cient operation.

With the emergence of manycore computing as a general trend in computer architecture, competing

platforms o�ering similar performance to CUDA are becoming available. OpenCL, a vendor neutral

API, is especially promising as it introduces a wider standardization. Our work provides a starting

point for an investigation of interactive photon mapping on this and any other manycore platform.

Benchmarking can again identify which choices made for the CUDA platform transfer directly and

where new algorithms are required. Should a su�cient increase in computational power become

available, the addition of �nal gather would signi�cantly enhance image quality, bringing the algorithm

in line with production quality o�ine rendering.

Photon di�erentials adapt kernel bandwidths to the interaction densities of photons arriving via

di�erent paths separately. k-th nearest neighbor density estimation uses the joint distribution of all

paths. A hybrid of both techniques would further enhance image quality by considering the paths

contributing similar illumination. Photon di�erentials themselves can be further improved. We reduce

storage requirements and computational costs by approximating several in�uences on the distribution

of photon paths. If more resources are available, more accurate solutions should be investigated. The

scene representation we use is limited to a single point light source, di�use and specular surfaces.

Adding support for more complex light sources and BRDFs by extending photon di�erentials to these

is another interesting direction for future work.

139

8. Conclusions and Future Work

An improvement orthogonal to the light transport simulation is support for dynamically changing

scene geometry. Techniques for e�ciently reconstructing the spatial index over the scene surfaces

per frame exist. By combining these with the rendering algorithm from this thesis, a solution can

be derived that allows every aspect of the scene to change interactively. This has applications from

games through artistic use to architectural design.

Our work on SIROH shows that ray tracing, a constituent component of photon mapping but also

of many other physically based rendering algorithms, can be accelerated by revisiting established best

practices and modifying the underlying assumptions. SIROH can likely be outperformed by further

improving the assumptions made during spatial index construction and deriving heuristics that more

accurately model expected ray tracing cost.

140

A. Benchmarks

All algorithms are evaluated on the NVIDIA CUDA manycore platform.

A.1. Benchmark Environment

The CUDA device used is an NVIDIA GTX 280. Summarizing from section 2.2.3, this GPU has 240

parallel processing units grouped into 30 SMs that execute warps of threads in 32-wide SIMT. 1 GB

global memory with 141:7 GB/s bandwidth and 16 kB fast shared memory per SM are available.

Taking into account all processing units, including the SFUs, DFUs and address calculations by

texturing units, theoretical peak performance is 933 GFLOP/s.

Scene and spatial index are preloaded into global memory by a host computer. This o�ine step is

implemented in single threaded C++ code for ease of maintenance. The host runs Arch Linux on an

Intel Pentium D 965 3:73 GHz initially and on an Intel Core2 Quad Q9450 2:66 GHz after hardware

failure. Triangle meshes are read either from a Wavefront OBJ �le [Ali95b] with MTL �les [Ali95a]

specifying surface properties or as raw lists of triangles and properties. The OBJ and MTL formats

are popular and simple but lack physical units. Scaling factors are therefore separately speci�ed for

each scene that ensure physically plausible surface sizes and BRDF parameters.

Algorithms are evaluated within a physically based renderer executing on the device. As the host is

responsible for launching kernels and initiating memory transfers only, its performance is not critical

and single threaded C++ code is used again. Synthesized images are visualized on the same GPU by

transferring them to an OpenGL texture map via a shared bu�er and rasterizing a textured quad.

Images are rendered at 512 � 512 resolution, for each pixel tracing a ray emitted by the virtual

camera, a re�ection ray if the surface seen is specular and shadow rays from a point light source

toward the hit points of both. Photon mapping adds a photon tracing pass, photon map construction

on the device and density estimation at every di�use surface seen during image synthesis. Volumetric

photon mapping performs density estimation for each viewing ray.

A.1.1. Code Base I

A thread is spawned for each ray and photon emitted, relying on the GPU scheduler for successive

execution. Photon tracing is iterative with one kernel invoked per recursion depth. Ray tracing from

the virtual camera and density estimation occur in a single kernel. The parallel algorithm building

blocks described in section 2.2.4 are manually implemented whenever required.

A.1.2. Code Base II

Several performance improvements are realized in a reimplementation of the original benchmark

environment. Applying the concept of persistent threads [AL09], photons and rays are traced by

spawning only as many threads as can be resident at one time and processing jobs from a queue. Ray

141

A. Benchmarks

tracing from the virtual camera and density estimation are decomposed into separate kernels, enabling

packetization for density estimation as proposed in section 7.4. Algorithmic building blocks are

replaced with optimized implementations provided by the CUDPP [HOS+10] and chag::pp [BOA10]

libraries. Since scenes and hardware are unchanged, all performance gains are due to more e�cient

use of the manycore architecture.

A.2. Benchmark Scenes

Five scenes are commonly used for evaluation, complemented by two additional scenes for photon

mapping. Figures A.1 and A.2 provide ray traced example views. Performance for di�erent parts of

a scene is assessed by averaging results over a �ight through it. Starting with the example view on

the right, the virtual camera advances by 10 cm and turns right by 0:25° after each frame. The light

source optionally moves 3 cm along each coordinate axis. 50 frames are used for the common scenes

and 10 frames for the smaller photon mapping scenes.

A.2.1. Common Scenes

The scenes are selected to cover a wide range of rendering scenarios. Their properties are summarized

in table A.1. Scene size a�ects the number of photons required to simulate indirect illumination. The

number of triangles is a measure of surface complexity, a�ecting ray tracing cost. Texture maps occupy

global memory, reducing the amount available to the rendering algorithm. As CUDA requires the

number of texture maps to be speci�ed at compile time, all are stacked into a single three-dimensional

texture map. The scenes are:

Scene 6 Courtesy of Peter Shirley. This simple scene serves to assess correct scene traversal and

maximal frame rates. One wall is a specular mirror.

Sponza Atrium Courtesy of Marko Dabrovic. A classic benchmark for physically based rendering,

the scene has moderate complexity with texture maps approximating further details, typical of

interactive scenarios. Di�erent copies of the scene exist, all exhibiting some form of corruption.

The variant used here is manually corrected by Colin Fowler.

Sibenik Cathedral Courtesy of Marko Dabrovic. The large size of the cathedral requires a high

number of photons to be traced when simulating indirect illumination. Glass surfaces and the

�oor blend a specular and a di�use BRDF.

Fairy Forest Courtesy of Ingo Wald. This static scene is the �rst frame of an animation in which a

faerie dances around a glade. The number of triangles is more than twice that of the previous

scenes and large high resolution texture maps occupy half the available global memory.

Conference Room Courtesy of Greg Ward. A classic ray tracing benchmark, the scene is originally

an MGF �le [War96] containing triangle meshes and smooth surfaces. Di�erent copies of the

scene with smooth surfaces tessellated into triangle meshes exist, varying by tessellation level

and the corruption introduced. A manually corrected variant with �ne tessellation is used.

A.2.2. Photon Mapping Scenes

Additional scenes are used to illustrate prominent indirect illumination e�ects missing from ray traced

images such as those of �gure A.2 and added by photon mapping:

142

A.2. Benchmark Scenes

(a) Scene 6

(b) Sponza Atrium

(c) Sibenik Cathedral

Figure A.1.: Ray traced views of the benchmark scenes for algorithm evaluation: Overview on the
left, �rst frame of a �ight through the scene on the right.

143

A. Benchmarks

Scene
Size (m)

Triangles
Texture

Maps (MB)L W H

Scene 6 6:0 6:0 3:0 804 0
Sponza 34:8 15:6 16:6 76107 64
Sibenik 126:0 80:0 32:6 76643 16
Fairy 12:5 12:5 3:2 174117 512
Conference 11:3 7:2 2:7 282755 0

Passage 2:0 1:0 1:0 30 0
Ring 4:0 4:0 2:0 138 0

Table A.1.: Properties of the benchmark scenes used for algorithm evaluation

(d) Fairy Forest

(e) Conference Room

Figure A.1.: Ray traced views of the benchmark scenes for algorithm evaluation: Overview on the
left, �rst frame of a �ight through the scene on the right.

144

A.2. Benchmark Scenes

(a) Passage

(b) Ring

Figure A.2.: Ray traced views of the additional benchmark scenes for photon mapping evaluation:
Overview on the left, �rst frame of a �ight through the scene on the right.

Passage This scene exhibits strong color bleeding. Two rooms, one painted red and the other white,

are connected by a narrow passage. The red room contains a white light source. Illumination

in the other room is primarily indirect, arriving via re�ections on the red walls.

Ring The specular ring focuses light onto a di�use surface, causing a cardioid caustic.

145

Bibliography

[Adv09] Advanced Micro Devices Incorporated. Technical Overview ATI Stream Computing,

2009.

[AFO05] O. Arikan, D.A. Forsyth, and J.F. O'Brien. Fast and detailed approximate global

illumination by irradiance decomposition. In ACM SIGGRAPH 2005, pages 1108�1114,

2005.

[AGCA08] P. Ajmera, R. Goradia, S. Chandran, and S. Aluru. Fast, parallel, GPU-based con-

struction of space �lling curves and octrees. In i3D 2008 Posters, page 10, 2008.

[AK90] J. Arvo and D. Kirk. Particle transport and image synthesis. In ACM SIGGRAPH

1990, pages 63�66, 1990.

[AK10] T. Aila and T. Karras. Architecture considerations for tracing incoherent rays. In HPG

2010, pages 113�122, 2010.

[AL09] T. Aila and S. Laine. Understanding the e�ciency of ray traversal on GPUs. In HPG

2009, pages 145�149, 2009.

[Ali95a] Alias|Wavefront. Advanced Visualizer File Formats, 4.2 edition, 1995.

[Ali95b] Alias|Wavefront. Advanced Visualizer User's Guide, 4.2 edition, 1995.

[Amd67] G.M. Amdahl. Validity of the single processor approach to achieving large scale com-

puting capabilities. In AFIPS Spring Joint Computer Conference 1967, pages 483�485,

1967.

[App68] A. Appel. Some techniques for shading machine renderings of solids. In AFIPS Spring

Joint Computer Conference 1968, pages 37�45, 1968.

[ARBJ03] S. Agarwal, R. Ramamoorthi, S. Belongie, and H.W. Jensen. Structured importance

sampling of environment maps. In ACM SIGGRAPH 2003, pages 605�612, 2003.

[Arv86] J. Arvo. Backward ray tracing. In ACM SIGGRAPH 1986 Courses, pages 12:259�

12:263, 1986.

[AW87] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In Euro-

graphics 1987, pages 3�10, 1987.

[BAGJ08] B.C. Budge, J.C. Anderson, C. Garth, and K.I. Joy. A straightforward CUDA imple-

mentation for interactive ray-tracing. In RT 2008 Posters, page 178, 2008.

[BAM06] V. Biri, D. Arquès, and S. Michelin. Real time rendering of atmospheric scattering and

volumetric shadows. In WSCG 2006, pages 65�72, 2006.

147

Bibliography

[BEL+07] S. Boulos, D. Edwards, J.D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and I. Wald.

Packet-based whitted and distribution ray tracing. In Graphics Interface 2007, pages

177�184, 2007.

[Ben75] J.L. Bentley. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM, 18(9):509�517, 1975.

[BFH+04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.

Brook for GPUs: Stream computing on graphics hardware. In ACM SIGGRAPH 2004,

pages 777�786, 2004.

[Ble90] G.E. Blelloch. Pre�x sums and their applications. Technical Report CMU-CS-90-190,

Carnegie Mellon University, Pittsburgh, PA, USA, 1990.

[Bli82] J.F. Blinn. Light re�ection functions for simulation of clouds and dusty surfaces. In

ACM SIGGRAPH 1982, pages 21�29, 1982.

[BLS93] P. Blasi, B. Le Saëc, and C. Schlick. A rendering algorithm for discrete volume density

objects. In Eurographics 1993, pages 21�29, 1993.

[BMP77] L. Breiman, W. Meisel, and E. Purcell. Variable kernel estimates of multivariate den-

sities. Technometrics, 19(2):135�144, 1977.

[BNM+08] A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. Interactive multiple

anisotropic scattering in clouds. In i3D 2008, pages 173�182, 2008.

[BOA09] M. Billeter, O. Olsson, and U. Assarsson. E�cient stream compaction on wide SIMD

many-core architectures. In HPG 2009, pages 159�166, 2009.

[BOA10] M. Billeter, O. Olsson, and U. Assarsson. chag::pp. http://www.cse.chalmers.se/

~billeter/pub/pp/, 2010.

[BPPP05] A. Boudet, P. Pitot, D. Pratmarty, and M. Paulin. Photon splatting for participating

media. In GRAPHITE 2005, pages 197�204, 2005.

[BSA10] M. Billeter, E. Sintorn, and U. Assarsson. Real time volumetric shadows using polygonal

light volumes. In HPG 2010, pages 39�45, 2010.

[BW99] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation,

Interference and Di�raction of Light. Cambridge University Press, seventh edition,

1999.

[BWB08] S. Boulos, I. Wald, and C. Benthin. Adaptive ray packet reordering. In RT 2008, pages

131�138, 2008.

[BWS03] C. Benthin, I. Wald, and P. Slusallek. A scalable approach to interactive global illumi-

nation. In Eurographics 2003, pages 621�630, 2003.

[Cat74] E.E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD

thesis, University of Utah, Salt Lake City, UT, USA, 1974.

148

http://www.cse.chalmers.se/~billeter/pub/pp/
http://www.cse.chalmers.se/~billeter/pub/pp/

Bibliography

[CB04] P.H. Christensen and D. Batali. An irradiance atlas for global illumination in complex

production scenes. In EGSR 2004, pages 133�141, 2004.

[CCWG88] M.F. Cohen, S.E. Chen, J.R. Wallace, and D.P. Greenberg. A progressive re�nement

approach to fast radiosity image generation. In ACM SIGGRAPH 1988, pages 75�84,

1988.

[CDP09] S. Collange, D. Defour, and D. Parello. Barra, a modular functional GPU simulator for

GPGPU. Technical Report hal-00359342, Centre pour la Communication Scienti�que

Directe, Villeurbanne, France, 2009.

[CF87] S. Chattopadhyay and A. Fujimoto. Bi-directional ray tracing. In CGI 1987, pages

335�343, 1987.

[Cha50] S. Chandrasekhar. Radiative Transfer. Clarendon Press, 1950.

[CHCH06] N.A. Carr, J. Hoberock, K. Crane, and J.C. Hart. Fast GPU ray tracing of dynamic

meshes using geometry images. In Graphics Interface 2006, pages 203�209, 2006.

[CHH02] N.A. Carr, J.D. Hall, and J.C. Hart. The ray engine. In Graphics Hardware 2002, pages

37�46, 2002.

[CHL04] G. Coombe, M.J. Harris, and A. Lastra. Radiosity on graphics hardware. In Graphics

Interface 2004, pages 161�168, 2004.

[Chr99] P.H. Christensen. Faster photon map global illumination. Graphics Tools, 4(3):1�10,

1999.

[Chr03] P.H. Christensen. Adjoints and importance in rendering: An overview. IEEE Transac-

tions on Visualization and Computer Graphics, 9(3):329�340, 2003.

[CJ02] M. Cammarano and H.W. Jensen. Time dependent photon mapping. In EGWR 2002,

pages 135�144, 2002.

[CKL+10] B. Choi, R. Komuravelli, V. Lu, H. Sung, R.L. Bocchino, S.V. Adve, and J.C. Hart.

Parallel SAH k-d tree construction. In HPG 2010, pages 77�86, 2010.

[CLF+03] P.H. Christensen, D.M. Laur, J. Fong, W.L. Wooten, and D. Batali. Ray di�erentials

and multiresolution geometry caching for distribution ray tracing in complex scenes. In

Eurographics 2003, pages 543�552, 2003.

[Col68] W.A. Coleman. Mathematical veri�cation of a certain Monte Carlo sampling technique

and applications of the technique to radiation transport problems. Nuclear Science and

Engineering, 32:76�81, 1968.

[Col94] S. Collins. Adaptive splatting for specular to di�use light transport. In EGWR 1994,

pages 119�135, 1994.

[Col95] S. Collins. Reconstruction of illumination from area luminaires. In EGWR 1995, pages

274�283, 1995.

149

Bibliography

[Coo86] R.L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics,

5(1):51�72, 1986.

[CPC84] R.L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In ACM SIGGRAPH

1984, pages 137�145, 1984.

[Cro77] F.C. Crow. Shadow algorithms for computer graphics. In ACM SIGGRAPH 1977,

pages 242�248, 1977.

[CS07] R. Cochran and J. Steele. Second-order illumination in real-time (student paper). In

ACM Southeast 2007, pages 13�18, 2007.

[CSE06] D. Cline, K. Steele, and P. Egbert. Lightweight bounding volumes for ray tracing.

Journal of Graphics Tools, 11(4):61�71, 2006.

[CSKSN05] S. Czuczor, L. Szirmay-Kalos, L. Szécsi, and L. Neumann. Photon map gathering on

the GPU. In Eurographics 2005 Short Papers, pages 117�120, 2005.

[CT08] D. Cederman and P. Tsigas. On dynamic load balancing on graphics processors. In

Graphics Hardware 2008, pages 57�64, 2008.

[DBB06] P. Dutré, K. Bala, and P. Bekaert. Advanced Global Illumination. AK Peters, second

edition, 2006.

[DBMS02] K. Dmitriev, S. Brabec, K. Myszkowski, and H.-P. Seidel. Interactive global illumination

using selective photon tracing. In EGWR 2002, pages 21�34, 2002.

[DGR+09] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel. Real-time indirect illu-

mination with clustered visibility. In Vision, Modeling, and Visualization 2009, pages

187�196, 2009.

[DHK08] H. Dammertz, J. Hanika, and A. Keller. Shallow bounding volume hierarchies for fast

SIMD ray tracing of incoherent rays. In EGSR 2008, pages 1225�1233, 2008.

[DK08] H. Dammertz and A. Keller. The edge volume heuristic - robust triangle subdivision

for improved BVH performance. In RT 2008, pages 155�158, 2008.

[DKH09] P. Djeu, S. Keely, and W. Hunt. Accelerating shadow rays using volumetric occluders

and modi�ed kd-tree traversal. In HPG 2009, pages 69�76, 2009.

[DS84] M. Dippé and J. Swensen. An adaptive subdivision algorithm and parallel architecture

for realistic image synthesis. In ACM SIGGRAPH 1984, pages 149�158, 1984.

[DS05] C. Dachsbacher and M. Stamminger. Re�ective shadow maps. In i3D 2005, pages

203�231, 2005.

[DS06] C. Dachsbacher and M. Stamminger. Splatting indirect illumination. In i3D 2006,

pages 93�100, 2006.

[DSDD07] C. Dachsbacher, M. Stamminger, G. Drettakis, and F. Durand. Implicit visibility and

antiradiance for interactive global illumination. In ACM SIGGRAPH 2007, pages 61:1�

61:10, 2007.

150

Bibliography

[DYN00] Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering method for displaying

shafts of light. In Paci�c Graphics 2000, pages 31�37, 2000.

[DYN02] Y. Dobashi, T. Yamamoto, and T. Nishita. Interactive rendering of atmospheric scat-

tering e�ects using graphics hardware. In Graphics Hardware 2002, pages 99�108, 2002.

[ED10] T. Engelhardt and C. Dachsbacher. Epipolar sampling for shadows and crepuscular

rays in participating media with single scattering. In i3D 2010, pages 119�125, 2010.

[EG07] M. Ernst and G. Greiner. Early split clipping for bounding volume hierarchies. In RT

2007, pages 73�78, 2007.

[EG08] M. Ernst and G. Greiner. Multi bounding volume hierarchies. In RT 2008, pages 35�40,

2008.

[Epa69] V.A. Epanechnikov. Non-parametric estimation of a multivariate probability density.

Theory of Probability and its Applications, 14(1):153�158, 1969.

[Eve01] C. Everitt. Interactive order-independent transparency, 2001.

[EWM08] M. Eisemann, C. Woizischke, and M. Magnor. Ray tracing with the single slab hierarchy.

In Vision, Modeling, and Visualization 2008, pages 373�381, 2008.

[Fab06] B. Fabianowski. E�cient GPU-based multi-modal medical volume registration. Mas-

ter's thesis, Universität Dortmund, Dortmund, Germany, 2006.

[Fat09] R. Fattal. Participating media illumination using light propagation maps. ACM Trans-

actions on Graphics, 28(1):7:1�7:11, 2009.

[FC07] C. Fowler and S. Collins. Implementing the RT2 real-time ray-tracing system. In

Eurographics Ireland 2007, pages 1�8, 2007.

[FD09a] B. Fabianowski and J. Dingliana. Compact BVH storage for ray tracing and photon

mapping. In Eurographics Ireland 2009, pages 1�8, 2009.

[FD09b] B. Fabianowski and J. Dingliana. Interactive global photon mapping. Computer Graph-

ics Forum, 28(4):1151�1159, 2009.

[FFD09] B. Fabianowski, C. Flower, and J. Dingliana. A cost metric for scene-interior ray origins.

In Eurographics 2009 Short Papers, pages 49�52, 2009.

[FKN80] H. Fuchs, Z.M. Kedem, and B.F. Naylor. On visible surface generation by a priori tree

structures. In ACM SIGGRAPH 1980, pages 124�133, 1980.

[Fly72] M.J. Flynn. Some computer organizations and their e�ectiveness. IEEE Transactions

on Computers, 21(9):948�960, 1972.

[FM86] F. Fabbrini and C. Montani. Autumnal quadtrees. The Computer Journal, 29(5):472�

474, 1986.

[FS05] T. Foley and J. Sugerman. Kd-tree acceleration structures for a GPU raytracer. In

Graphics Hardware 2005, pages 15�22, 2005.

151

Bibliography

[FTI86] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated ray-tracing system. IEEE

Computer Graphics and Applications, 6(4):16�26, 1986.

[FTYK83] K. Fujimura, H. Toriya, K. Yamaguchi, and T.L. Kunii. An enhanced oct-tree data

structure, operations for solid modeling. In NASA Symposium on Computer-Aided

Geometry Modeling 1983, pages 279�288, 1983.

[Gar09] K. Garanzha. The use of precomputed triangle clusters for accelerated ray tracing in

dynamic scenes. In EGSR 2009, pages 1199�1206, 2009.

[GBP07] P. Gautron, K. Bouatouch, and S. Pattanaik. Temporal radiance caching. IEEE Trans-

actions on Visualization and Computer Graphics, 13(5):891�901, 2007.

[GDW00] X. Granier, G. Drettakis, and B. Walter. Fast global illumination including specular

e�ects. In EGWR 2000, pages 47�58, 2000.

[GGH02] X. Gu, S.J. Gortler, and H. Hoppe. Geometry images. In ACM SIGGRAPH 2002,

pages 355�361, 2002.

[GK09] V. Gassenbauer and J. K°ivánek. Spatial directional radiance caching. In EGSR 2009,

pages 1189�1198, 2009.

[GKBP05] P. Gautron, J. K°ivánek, K. Bouatouch, and S. Pattanaik. Radiance cache splatting:

A GPU-friendly global illumination algorithm. In EGSR 2005, pages 55�64, 2005.

[GKPB04] P. Gautron, J. K°ivánek, S. Pattanaik, and K. Bouatouch. A novel hemispherical basis

for accurate and e�cient rendering. In EGSR 2004, pages 321�330, 2004.

[GL10] K. Garanzha and C. Loop. Fast ray sorting and breadth-�rst packet traversal for GPU

ray tracing. In Eurographics 2010, pages 289�298, 2010.

[GMAS05] D. Gutierrez, A. Muñoz, O. Anson, and F.J. Seron. Non-linear volume photon mapping.

In EGSR 2005, pages 291�300, 2005.

[GMF09] P. Gautron, J.-E. Marvie, and G. François. Volumetric shadow mapping. In ACM

SIGGRAPH 2009 Sketches, page 49, 2009.

[GMSJ03] D. Gutierrez, A. Muñoz, F.J. Seron, and E. Jimenez. Global illumination in inhomoge-

neous media based on curved photon mapping. In Visualization, Imaging, and Image

Processing 2003, 2003.

[Gou71] H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers,

C-20(6):623�628, 1971.

[GPSS07] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek. Realtime ray tracing on GPU with

BVH-based packet traversal. In RT 2007, pages 113�118, 2007.

[GR08] C.P. Gribble and K. Ramani. Coherent ray tracing via stream �ltering. In RT 2008,

pages 59�66, 2008.

[GSHG98] G. Greger, P. Shirley, P.M. Hubbard, and D.P. Greenberg. The irradiance volume.

IEEE Computer Graphics and Applications, 18(2):32�43, 1998.

152

Bibliography

[GSMA08] D. Gutierrez, F.J. Seron, A. Muñoz, and O. Anson. Visualizing underwater ocean

optics. In Eurographics 2008, pages 547�556, 2008.

[GTGB84] C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile. Modeling the interaction

of light between di�use surfaces. In ACM SIGGRAPH 1984, pages 213�222, 1984.

[GWS04] J. Günther, I. Wald, and P. Slusallek. Realtime caustics using distributed photon

mapping. In EGSR 2004, pages 111�121, 2004.

[GWS05] J. Günther, I. Wald, and H.-P. Seidel. Precomputed light sets for fast high quality

global illumination. In ACM SIGGRAPH 2005 Sketches, page 108, 2005.

[Hal60] J.H. Halton. On the e�ciency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals. Numerische Mathematik, 2:84�90, 1960.

[Han86] P. Hanrahan. Using caching and breadth-�rst search to speed up ray-tracing. In Graph-

ics Interface 1986, pages 56�61, 1986.

[Hav00] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, �eské vysoké u£ení tech-

nické v Praze, Prague, Czech Republic, 2000.

[HB02] V. Havran and J. Bittner. On improving kd-trees for ray shooting. In WSCG 2002,

pages 209�217, 2002.

[HBHS05] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray maps for global illumination.

In EGSR 2005, pages 43�54, 2005.

[HDI+10] W. Hu, Z. Dong, I. Ihrke, T. Grosch, G. Yuan, and H.-P. Seidel. Interactive volume

caustics in single-scattering media. In i3D 2010, pages 109�117, 2010.

[Hec90] P.S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In ACM SIG-

GRAPH 1990, pages 145�154, 1990.

[HHC+06] R. Hong, T.-C. Ho, J.-H. Chuang, R-M. Shiu, and R. Kuo. A real-time analytic lighting

model for anisotropic scattering. In Computer Graphics Workshop 2006, 2006.

[HHK+07] R. Herzog, V. Havran, S. Kinuwaki, K. Myszkowski, and H.-P. Seidel. Global illumina-

tion using photon ray splatting. In Eurographics 2007, pages 503�513, 2007.

[HHS05] V. Havran, R. Herzog, and H.-P. Seidel. Fast �nal gathering via reverse photon mapping.

In Eurographics 2005, pages 323�333, 2005.

[HHS06] V. Havran, R. Herzog, and H.-P. Seidel. On the fast construction of spatial hierarchies

for ray tracing. In RT 2006, pages 71�80, 2006.

[HJ09] T. Hachisuka and H.W. Jensen. Stochastic progressive photon mapping. In SIGGRAPH

Asia 2009, pages 141:1�141:8, 2009.

[HJW+08] T. Hachisuka, W. Jarosz, R.P. Weistro�er, K. Dale, G. Humphreys, M. Zwicker, and

H.W. Jensen. Multidimensional adaptive sampling and reconstruction for ray tracing.

In ACM SIGGRAPH 2008, pages 33:1�33:10, 2008.

153

Bibliography

[HKRS02] J. Hurley, A. Kapustin, A. Reshetov, and A. Soupikov. Fast ray tracing for modern

general purpose CPU. In Graphicon 2002, 2002.

[HL09] D.M. Hughes and I.S. Lim. Kd-jump: A path-preserving stackless traversal for faster

isosurface raytracing on GPUs. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1555�1562, 2009.

[HLJH09] J. Hoberock, V. Lu, Y. Jia, and J.C. Hart. Stream compaction for deferred shading. In

HPG 2009, pages 173�180, 2009.

[HMHB06] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The quantized kd-tree: E�cient ray

tracing of compressed point clouds. In RT 2006, pages 105�113, 2006.

[HMS06] W.A. Hunt, W.R. Mark, and G. Stoll. Fast kd-tree construction with an adaptive

error-bounded heuristic. In RT 2006, pages 81�88, 2006.

[HMS09] R. Herzog, K. Myszkowski, and H.-P. Seidel. Anisotropic radiance-cache splatting for

e�ciently computing high-quality global illumination with lightcuts. In Eurographics

2009, pages 259�268, 2009.

[HOJ08] T. Hachisuka, S. Ogaki, and H.W. Jensen. Progressive photon mapping. In SIGGRAPH

Asia 2008, pages 130:1�130:8, 2008.

[HOS+10] M. Harris, J.D. Owens, S. Sengupta, S. Tseng, Y. Zhang, and A. Davidson N. Satish.

CUDPP. http://gpgpu.org/developer/cudpp/, 2010.

[HP01] H. Hey and W. Purgathofer. Global illumination with photon map compensation.

Technical Report TR-186-2-01-04, Technische Universität Wien, Wien, Austria, 2001.

[HP02a] H. Hey and W. Purgathofer. Advanced radiance estimation for photon map global

illumination. In Eurographics 2002, pages 541�545, 2002.

[HP02b] H. Hey and W. Purgathofer. Importance sampling with hemispherical particle foot-

prints. In SCCG 2002, pages 107�114, 2002.

[HSHH07] D.R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-d tree GPU

raytracing. In i3D 2007, pages 167�174, 2007.

[HSZ+10] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha, and B. Guo. Memory-scalable

GPU spatial hierarchy construction. IEEE Transactions on Visualization and Computer

Graphics, 2010. to appear.

[Hun08] W.A. Hunt. Corrections to the surface area metric with respect to mail-boxing. In RT

2008, pages 77�80, 2008.

[HVAPB08] M. Ha²an, E. Velázquez-Armendáriz, F. Pellacini, and K. Bala. Tensor clustering for

rendering many-light animations. In EGSR 2008, pages 1105�1114, 2008.

[IDN02] K. Iwasaki, Y. Dobashi, and T. Nishita. A fast rendering method for refractive and

re�ective caustics due to water surfaces. In Eurographics 2002, pages 601�609, 2002.

[IEE08] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic, 2008.

154

http://gpgpu.org/developer/cudpp/

Bibliography

[Ige99] H. Igehy. Tracing ray di�erentials. In ACM SIGGRAPH 1999, pages 179�186, 1999.

[Int09] Intel Corporation. Introduction to Intel's 32nm Process Technology, 2009.

[Int10] Intel Corporation. Intel unveils new product plans for high-performance computing.

Press Release, 2010.

[IST07] International Business Machines Corporation, Sony Computer Entertainment Incorpo-

rated, and Toshiba Corporation. Cell Broadband Engine Architecture, 1.02 edition,

2007.

[IZT+07] I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and H.-P. Seidel. Eikonal

rendering: E�cient light transport in refractive objects. In ACM SIGGRAPH 2007,

pages 59:1�59:9, 2007.

[JC95] H.W. Jensen and N.J. Christensen. Photon maps in bidirectional Monte Carlo ray

tracing of complex objects. Computers & Graphics, 19(2):215�224, 1995.

[JC98] H.W. Jensen and P.H. Christensen. E�cient simulation of light transport in scences

with participating media using photon maps. In ACM SIGGRAPH 1998, pages 311�

320, 1998.

[JDZJ08] W. Jarosz, C. Donner, M. Zwicker, and H.W. Jensen. Radiance caching for participating

media. ACM Transactions on Graphics, 27(1):7:1�7:11, 2008.

[Jen95] H.W. Jensen. Importance driven path tracing using the photon map. In EGWR 1995,

pages 326�335, 1995.

[Jen96] H.W. Jensen. Global illumination using photon maps. In EGWR 1996, pages 21�30,

1996.

[Jen01] H.W. Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.

[JW89] D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing. In Graphics

Interface 1989, pages 164�172, 1989.

[JZJ08a] W. Jarosz, M. Zwicker, and H.W. Jensen. The beam radiance estimate for volumetric

photon mapping. In Eurographics 2008, pages 557�566, 2008.

[JZJ08b] W. Jarosz, M. Zwicker, and H.W. Jensen. Irradiance gradients in the presence of

participating media and occlusions. In EGSR 2008, pages 1087 � 1096, 2008.

[Kaj86] J.T. Kajiya. The rendering equation. In ACM SIGGRAPH 1986, pages 143�150, 1986.

[KBP�06] J. K°ivánek, K. Bouatouch, S. Pattanaik, and J. �ára. Making radiance and irradiance

caching practical: Adaptive caching and neighbor clamping. In EGSR 2006, pages

127�138, 2006.

[KBW06] J. Krüger, K. Bürger, and R. Westermann. Interactive screen-space accurate photon

tracing on GPUs. In EGSR 2006, pages 319�329, 2006.

[KD10] A. Kaplanyan and C. Dachsbacher. Cascaded light propagation volumes for real-time

indirect illumination. In i3D 2010, pages 99�108, 2010.

155

Bibliography

[Kel97a] A. Keller. Instant radiosity. In ACM SIGGRAPH 1997, pages 49�56, 1997.

[Kel97b] A. Keller. Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. PhD thesis,

Technische Universität Kaiserslautern, Kaiserslautern, Germany, 1997.

[Ken07] A. Kensler. Comments on uniform sampling and cones. Ray Tracing News, 20(1), 2007.

[KGBP05] J. K°ivánek, P. Gautron, K. Bouatouch, and S. Pattanaik. Improved radiance gradient

computation. In SCCG 2005, pages 155�159, 2005.

[KGPB05] J. K°ivánek, P. Gautron, S. Pattanaik, and K. Bouatouch. Radiance caching for e�cient

global illumination computation. IEEE Transactions on Visualization and Computer

Graphics, 11(5):550�561, 2005.

[KH01] A. Keller and W. Heidrich. Interleaved sampling. In EGWR 2001, pages 269�276, 2001.

[KIB05] B. Kang, I. Ihm, and C. Bajaj. Extending the photon mapping method for realistic

rendering of hot gaseous �uids. Journal of Visualization and Computer Animation,

16(3�4):353�363, 2005.

[KK86] T.L. Kay and J.T. Kajiya. Ray tracing complex scenes. In ACM SIGGRAPH 1986,

pages 269�278, 1986.

[KK02] T. Kollig and A. Keller. E�cient multidimensional sampling. In Eurographics 2002,

pages 557�564, 2002.

[KM63] M.G. Kendall and P.A.P. Moran. Geometrical Probability. Charles Gri�n & Company,

1963.

[KMKY09] T.-J. Kim, B. Moon, D. Kim, and S.-E. Yoon. RACBVHs: Random-accessible com-

pressed bounding volume hierarchies. IEEE Transactions on Visualization and Com-

puter Graphics, 15(6), 2009.

[KS09] J. Kalojanov and P. Slusallek. A parallel algorithm for construction of uniform grids.

In HPG 2009, pages 23�28, 2009.

[KvH84] J.T. Kajiya and B.P. von Herzen. Ray tracing volume densities. In ACM SIGGRAPH

1984, pages 165�174, 1984.

[KW00] A. Keller and I. Wald. E�cient importance sampling techniques for the photon map.

In Vision, Modeling, and Visualization 2000, pages 271�279, 2000.

[Lai10] S. Laine. Restart trail for stackless BVH traversal. In HPG 2010, pages 107�111, 2010.

[LAM05] T. Larsson and T. Akenine-Möller. A dynamic bounding volume hierarchy for general-

ized collision detection. In VRIPHYS 2005, pages 91�100, 2005.

[Lan02] H. Landis. Production-ready global illumination. In ACM SIGGRAPH 2002 Courses,

pages 16:87�16:102, 2002.

[LC03] B.D. Larsen and N.J. Christensen. Optimizing photon mapping using multiple photon

maps for irradiance estimates. In WSCG 2003 Posters, pages 77�80, 2003.

156

Bibliography

[LC04] B.D. Larsen and N.J. Christensen. Simulating photon mapping for real-time applica-

tions. In EGSR 2004, pages 123�131, 2004.

[LD08] A. Lagae and P. Dutré. Compact, fast and robust grids for ray tracing. In EGSR 2008,

2008.

[LGS+09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH

construction on GPUs. In Eurographics 2009, pages 375�384, 2009.

[LKM01] E. Lindholm, M.J. Kilgard, and H. Moreton. A user-programmable vertex engine. In

ACM SIGGRAPH 2001, pages 149�158, 2001.

[LP02] F. Lavignotte and M. Paulin. A new approach of density estimation for global illumi-

nation. In WSCG 2002, pages 263�270, 2002.

[LP03] F. Lavignotte and M. Paulin. Scalable photon splatting for global illumination. In

GRAPHITE 2003, pages 203�210, 2003.

[LQ65] D.O. Loftsgaarden and C.P. Quesenberry. A nonparametric estimate of a multivariate

density function. Annals of Mathematical Statistics, 36(3):1049�1051, 1965.

[LURM02] M. Lastra, C. Ureña, J. Revelles, and R. Montes. A particle-path based method for

Monte Carlo density estimation. In EGWR 2002 Posters, pages 33�40, 2002.

[LW94] E.P. Lafortune and Y.D. Willems. Using the modi�ed Phong re�ectance model for

physically based rendering. Technical Report CW 197, Katholieke Universiteit Leuven,

Leuven, Belgium, 1994.

[LWL06] B. Liu, E. Wu, and X. Liu. Interactively rendering dynamic caustics on GPU. In CGI

2006, pages 136�147, 2006.

[LYM07] C. Lauterbach, S.-E. Yoon, and D. Manocha. Ray-strips: A compact mesh representa-

tion for interactive ray tracing. In RT 2007, pages 19�26, 2007.

[LYT06] C. Lauterbach, S.-E. Yoon, and D. Tuft. RT-DEFORM: Interactive ray tracing of

dynamic scenes using BVHs. In RT 2006, pages 39�46, 2006.

[LYTM08] C. Lauterbach, S.-E. Yoon, M. Tang, and D. Manocha. ReduceM: Interactive and

memory e�cient ray tracing of large models. In EGSR 2008, pages 1313�1321, 2008.

[LZT+08] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F.X. Sillion, and T. Aila.

A meshless hierarchical representation for light transport. In ACM SIGGRAPH 2008,

pages 37:1�37:9, 2008.

[Mah05] J.A. Mahovsky. Ray Tracing with Reduced-Precision Bounding Volume Hierarchies.

PhD thesis, University of Calgary, Calgary, AB, Canada, 2005.

[Max94] N. Max. E�cient light propagation for multiple anisotropic volume scattering. In

EGWR 1994, pages 87�104, 1994.

[MB90] J.D. MacDonald and K.S. Booth. Heuristics for ray tracing using space subdivision.

The Visual Computer, 6(3):153�166, 1990.

157

Bibliography

[MBC79] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code.

Technometrics, 21(2):239�245, 1979.

[McC94] W.R. McCluney. Introduction to Radiometry and Photometry. Artech House, 1994.

[Min06] K. Min. An e�cient photon mapping algorithm for rendering light-emitting �uids. In

International Symposium on Visual Computing 2006, pages 850�859, 2006.

[MKS07] J. Mortensen, P. Khanna, and M. Slater. Light �eld propagation and rendering on the

GPU. In AFRIGRAPH 2007, pages 15�23, 2007.

[ML09] M. McGuire and D. Luebke. Hardware-accelerated global illumination by image space

photon mapping. In HPG 2009, pages 77�90, 2009.

[MM02] V.C.H. Ma and M.D. McCool. Low latency photon mapping using block hashing. In

Graphics Hardware 2002, pages 1�11, 2002.

[MM06] J.T. Moon and S.R. Marschner. Simulating multiple scattering in hair using a photon

mapping approach. In ACM SIGGRAPH 2006, pages 1067�1074, 2006.

[MMAM07] E. Månsson, J. Munkberg, and T. Akenine-Möller. Deep coherent ray tracing. In RT

2007, pages 79�85, 2007.

[Moo65] G.E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114�117, 1965.

[MT97] T. Möller and B. Trumbore. Fast, minimum storage ray/triangle intersection. Journal

of Graphics Tools, 2(2):25�30, 1997.

[Mun10] A. Munshi. The OpenCL Speci�cation, 1.1 edition, 2010.

[NFJ02] D.Q. Nguyen, R. Fedkiw, and H.W. Jensen. Physically based modeling and animation

of �re. In ACM SIGGRAPH 2002, pages 721�728, 2002.

[NFLM07] P.A. Navrátil, D.S. Fussell, C. Lin, and W.R. Mark. Dynamic ray scheduling to improve

ray coherence and bandwidth utilization. In RT 2007, pages 95�104, 2007.

[Nic65] F.E. Nicodemus. Directional re�ectance and emissivity of an opaque surface. Applied

Optics, 4(7):767�775, 1965.

[Nil08] A. Nilsson. Two hybrid methods of volumetric lighting. Master's thesis, Lunds Univer-

sitet, Lund, Sweden, 2008.

[NPG03] M. Nijasure, S. Pattanaik, and V. Goel. Interactive global illumination in dynamic

environments using commodity graphics hardware. In Paci�c Graphics 2003, pages

450�454, 2003.

[NRH77] F.E. Nicodemus, J.C. Richmond, and J.J. Hsia. Geometrical Considerations and

Nomenclature for Re�ectance, 1977.

[NSW09] G. Nichols, J. Shopf, and C. Wyman. Hierarchical image-space radiosity for interactive

global illumination. In EGSR 2009, pages 1141�1149, 2009.

158

Bibliography

[NVI10a] NVIDIA Corporation. NVIDIA CUDA�Best Practices Guide, 3.1 edition, 2010.

[NVI10b] NVIDIA Corporation. NVIDIA CUDA�Programming Guide, 3.1 edition, 2010.

[NW09] G. Nichols and C. Wyman. Multiresolution splatting for indirect illumination. In i3D

2009, pages 83�90, 2009.

[NW10] G. Nichols and C. Wyman. Interactive indirect illumination using adaptive multiresolu-

tion splatting. IEEE Transactions on Visualization and Computer Graphics, 16(5):729�

741, 2010.

[ORM08] R. Overbeck, R. Ramamoorthi, and W.R. Mark. Large ray packets for real-time whitted

ray tracing. In RT 2008, pages 41�48, 2008.

[Par62] E. Parzen. On estimation of a probability density function and mode. Annals of

Mathematical Statistics, 33(3):1065�1076, 1962.

[PARN04] S. Premoºe, M. Ashikhmin, R. Ramamoorthi, and S. Nayar. Practical rendering of

multiple scattering e�ects in participating media. In EGSR 2004, pages 363�374, 2004.

[PBD+10] S.G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister,

M. McGuire, K. Morley, A. Robison, and M. Stich. OptiX: A general purpose ray tracing

engine. In ACM SIGGRAPH 2010, pages 66:1�66:13, 2010.

[PBMH02] T.J. Purcell, I. Buck, W.R. Mark, and Hanrahan. Ray tracing on programmable graph-

ics hardware. In ACM SIGGRAPH 2002, pages 703�712, 2002.

[PBSP08] V. Pegoraro, C. Brownlee, P.S. Shirley, and S.G. Parker. Towards interactive global

illumination e�ects via sequential Monte Carlo adaptation. In RT 2008, pages 107�114,

2008.

[PDC+03] T.J. Purcell, C. Donner, M. Cammarano, H.W. Jensen, and P. Hanrahan. Photon

mapping on programmable graphics hardware. In Graphics Hardware 2003, pages 41�

50, 2003.

[PGDS09] S. Popov, I. Georgiev, R. Dimov, and P. Slusallek. Object partitioning considered

harmful: Space subdivision for BVHs. In HPG 2009, pages 15�22, 2009.

[PGSS06] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Experiences with streaming con-

struction of SAH kd-trees. In RT 2006, pages 89�94, 2006.

[PGSS07] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Stackless kd-tree traversal for high

performance GPU ray tracing. In Eurographics 2007, pages 415�424, 2007.

[Pho75] B.T. Phong. Illumination for computer generated pictures. Communications of the

ACM, 18(6):311�317, 1975.

[PL10] J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH construction for real-time

ray tracing of dynamic geometry. In HPG 2010, pages 87�95, 2010.

[Pla00] M. Planck. Entropy and temperature of radiant heat. Annalen der Physik, 1(4):719�737,

1900.

159

Bibliography

[PP98] I. Peter and G. Pietrek. Importance driven construction of photon maps. In EGWR

1998, pages 269�280, 1998.

[PP09a] C. Papadopoulos and G. Papaioannou. Realistic real-time underwater caustics and

godrays. In GraphiCon 2009, pages 89�95, 2009.

[PP09b] V. Pegoraro and S.G. Parker. An analytical solution to single scattering in homogeneous

participating media. In Eurographics 2009, pages 329�335, 2009.

[PSP10] V. Pegoraro, M. Schott, and S.G. Parker. A closed-form solution to single scattering

for general phase functions and light distributions. In EGSR 2010, pages 1365�1374,

2010.

[PWP08] V. Pegoraro, I. Wald, and S.G. Parker. Sequential Monte Carlo adaptation in low-

anisotropy participating media. In EGSR 2008, pages 1097�1104, 2008.

[RAA+03] J. Revelles, N. Aguilera, J. Aguado, M. Lastra, R. García, and R. Montes. A spa-

tial representation for ray-scene intersection test improvement in complex scenes. In

Eurographics 2003 Posters, pages 97�100, 2003.

[RCC+06] R.M. Ramanathan, R. Curry, S. Chennupaty, R.L. Cross, S. Kuo, and M.J. Buxton.

Extending the World's Most Popular Processor Architecture, 2006.

[REG+09] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachsbacher.

Micro-rendering for scalable, parallel �nal gathering. In SIGGRAPH Asia 2009, pages

132:1�132:8, 2009.

[Res06] A. Reshetov. Omnidirectional ray tracing traversal algorithm for kd-trees. In RT 2006,

pages 57�60, 2006.

[RGS09] T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic global illumination

in image space. In i3D 2009, pages 75�82, 2009.

[RH01] R. Ramamoorthi and P. Hanrahan. An e�cient representation for irradiance environ-

ment maps. In ACM SIGGRAPH 2001, pages 497�500, 2001.

[RK07] R.Y. Rubinstein and D.P. Kroese. Simulation and the Monte Carlo Method. Wiley

Series in Probability and Statistics. Wiley-Interscience, second edition, 2007.

[Rob81] J.T. Robinson. The k-d-B-tree: A search structure for large multidimensional dynamic

indexes. In SIGMOD, pages 10�18, 1981.

[RW80] S.M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of

complex scenes. In ACM SIGGRAPH 1980, pages 110�116, 1980.

[RZLG08] Z. Ren, K. Zhou, S. Lin, and B. Guo. Gradient-based interpolation and sampling

for real-time rendering of inhomogeneous, single-scattering media. In Paci�c Graphics

2008, pages 1945�1953, 2008.

[SA07] P. Shanmugam and O. Arikan. Hardware accelerated ambient occlusion techniques on

GPUs. In i3D 2007, pages 73�80, 2007.

160

Bibliography

[SA10] M. Segal and K. Akeley. The OpenGL®Graphics System: A Speci�cation, 4.1 (core

pro�le) edition, 2010.

[SB97] W. Stürzlinger and R. Bastos. Interactive rendering of globally illuminated glossy

scenes. In EGWR 1997, pages 93�102, 1997.

[Sch03] R. Schregle. Bias compensation for photon maps. Computer Graphics Forum, 22(4):729�

742, 2003.

[Sch08] C. Schlier. On scrambled halton sequences. Applied Numerical Mathematics,

58(10):1467�1478, 2008.

[Sch09] L. Schjøth. Anisotropic Density Estimation in Global Illumination. PhD thesis, Køben-

havns Universitet, København, Denmark, 2009.

[SCL05] J. Steinhurst, G. Coombe, and A. Lastra. Reordering for cache conscious photon map-

ping. In Graphics Interface 2005, pages 97�104, 2005.

[SCL08] J. Steinhurst, G. Coombe, and A. Lastra. Reducing photon-mapping bandwidth

by query reordering. IEEE Transactions on Visualization and Computer Graphics,

14(1):13�24, 2008.

[SCS+08] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.

Larrabee: A many-core x86 architecture for visual computing. In ACM SIGGRAPH

2008, pages 18:1�18:15, 2008.

[Sea96] D. Seaman. Re: N-dim spherical random number drawing. news:wmEgVDG00VUtMEhUwg@

andrew.cmu.edu, 1996.

[Seg08] B. Segovia. Radius-CUDA. http://www710.univ-lyon1.fr/~bsegovia/demos/

radius-cuda.zip, 2008.

[SF07a] S. Singh and P. Faloutsos. The photon pipeline revisited. The Visual Computer,

23(7):479�492, 2007.

[SF07b] S. Singh and P. Faloutsos. SIMD packet techniques for photon mapping. In RT 2007,

pages 87�94, 2007.

[SFD09] M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding volume hierarchies.

In HPG 2009, pages 7�13, 2009.

[SFES07] L. Schjøth, J.R. Frisvad, K. Erleben, and J. Sporring. Photon di�erentials. In

GRAPHITE 2007, pages 179�186, 2007.

[SHG08] S. Sengupta, M. Harris, and M. Garland. E�cient parallel scan algorithms for GPUs.

Technical Report NVR-2008-003, NVIDIA Corporation, 2008.

[SHG09] N. Satish, M. Harris, and M. Garland. Designing e�cient sorting algorithms for many-

core GPUs. In IEEE International Parallel & Distributed Processing Symposium 2009,

pages 1�10, 2009.

161

news:wmEgVDG00VUtMEhUwg@andrew.cmu.edu
news:wmEgVDG00VUtMEhUwg@andrew.cmu.edu
http://www710.univ-lyon1.fr/~bsegovia/demos/radius-cuda.zip
http://www710.univ-lyon1.fr/~bsegovia/demos/radius-cuda.zip

Bibliography

[SHZO07] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens. Scan primitives for GPU computing.

In Graphics Hardware 2007, pages 97�106, 2007.

[SIMP06] B. Segovia, J.C. Iehl, R. Mitanchey, and B. Péroche. Non-interleaved deferred shading

of interleaved sample patterns. In Graphics Hardware 2006, pages 53�60, 2006.

[SIP07] B. Segovia, J.C. Iehl, and B. Péroche. Metropolis instant radiosity. In Eurographics

2007, pages 425�434, 2007.

[SJ09] B. Spencer and M.W. Jones. Into the blue: Better caustics through photon relaxation.

In Eurographics 2009, pages 319�328, 2009.

[SKALP05] L. Szirmay-Kalos, B. Aszódi, I. Lazányi, and M. Premecz. Approximate ray-tracing on

the GPU with distance impostors. In Eurographics 2005, pages 695�704, 2005.

[SKLUT09] L. Szirmay-Kalos, G. Liktor, T. Umenho�er, and B. Tóth. Fast approximation of

multiple scattering in inhomogeneous participating media. In Eurographics 2009 Short

Papers, pages 53�56, 2009.

[SKP99] L. Szirmay-Kalos and W. Purgathofer. Analysis of the quasi-Monte Carlo integration

of the rendering equation. In WSCG 1999, pages 281�288, 1999.

[SKP07] M. Shah, J. Konttinen, and S. Pattanaik. Caustics mapping: An image-space technique

for real-time caustics. IEEE Transactions on Visualization and Computer Graphics,

13(2):272�280, 2007.

[SKSU05] L. Szirmay-Kalos, M. Sbert, and T. Umenho�er. Real-time multiple scattering in par-

ticipating media with illumination networks. In EGSR 2005, pages 277�282, 2005.

[SKUP+09] L. Szirmay-Kalos, T. Umenho�er, G. Patow, L. Szécsi, and M. Sbert. Specular e�ects

on the GPU: State of the art. Computer Graphics Forum, 28(6):1586�1617, 2009.

[Smi98] B. Smits. E�ciency issues for ray tracing. Journal of Graphics Tools, 3(2):1�14, 1998.

[Sob67] I.M. Sobol'. On the distribution of points in a cube and the approximate evaluation of

integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86�112,

1967.

[SRNN05] B. Sun, R. Ramamoorthi, S.G. Narasimhan, and S.K. Nayar. A practical analytic single

scattering model for real time rendering. In ACM SIGGRAPH 2005, pages 1040�1049,

2005.

[SSK07] M. Shevtsov, A. Soupikov, and A. Kapustin. Highly parallel fast kd-tree construction

for interactive ray tracing of dynamic scenes. In Eurographics 2007, pages 395�404,

2007.

[SSS02] A. Scheel, M. Stamminger, and H.-P. Seidel. Grid based �nal gather for radiosity on

complex clustered scenes. In Eurographics 2002, pages 547�556, 2002.

[SSSK04] M. Sbert, L. Szécsi, and L. Szirmay-Kalos. Real-time light animation. In Eurographics

2004, pages 291�300, 2004.

162

Bibliography

[ST94] W. Stürzlinger and R.F. Tobler. Two optimization methods for raytracing. In SCCG

1994, pages 104�107, 1994.

[STK08] A. Schmitz, M. Tavenrath, and L. Kobbelt. Interactive global illumination for de-

formable geometry in CUDA. In Paci�c Graphics 2008, pages 1979�1986, 2008.

[SW00] F. Suykens and Y.D. Willems. Density control for photon maps. In EGWR 2000, pages

23�34, 2000.

[SW01] F. Suykens and Y.D. Willems. Path di�erentials and applications. In EGWR 2001,

pages 257�268, 2001.

[SWH+95] P. Shirley, B. Wade, P.M. Hubbard, D. Zareski, B. Walter, and D.P. Greenberg. Global

illumination via density-estimation. In EGWR 1995, pages 187�199, 1995.

[SWS02] J. Schmittler, I. Wald, and P. Slusallek. SaarCOR � a hardware architecture for ray

tracing. In Graphics Hardware 2002, pages 27�36, 2002.

[TCE05] J. Talbot, D. Cline, and P. Egbert. Importance resampling for global illumination. In

EGSR 2005, pages 139�146, 2005.

[TDJ+02] J.M. Tendler, J.S. Dodson, J.S. Fields Junior, H. Le, and B. Sinharoy. POWER4 system

microarchitecture. IBM Journal of Research and Development, 26(1):5�25, 2002.

[Ter01] P. Terdiman. Memory-optimized bounding-volume hierarchies, 2001.

[TL04] E. Tabellion and A. Lamorlette. An approximate global illumination system for com-

puter generated �lms. In ACM SIGGRAPH 2004, pages 469�476, 2004.

[TMG09] R. Torres, P.J. Martín, and A. Gavilanes. Ray casting using a roped BVH with CUDA.

In SCCG 2009, pages 107�114, 2009.

[TMS04a] T. Tawara, K. Myszkowski, and H.-P. Seidel. E�cient rendering of strong secondary

lighting in photon mapping algorithm. In Theory and Practice of Computer Graphics

2004, pages 174�178, 2004.

[TMS04b] T. Tawara, K. Myszkowski, and H.-P. Seidel. Exploiting temporal coherence in �nal

gathering for dynamic scenes. In CGI 2004, pages 110�119, 2004.

[TPO10] S. Tzeng, A. Patney, and J.D. Owens. Task management for irregular-parallel workloads

on the GPU. In HPG 2010, pages 29�37, 2010.

[TPWG02] P. Tole, F. Pellacini, B. Walter, and D.P. Greenberg. Interactive global illumination in

dynamic scenes. In ACM SIGGRAPH 2002, pages 537�546, 2002.

[Tsa09] J.A. Tsakok. Faster incoherent rays: Multi-BVH ray stream tracing. In HPG 2009,

pages 151�158, 2009.

[TU09] B. Tóth and T. Umenho�er. Real-time volumetric lighting in participating media. In

Eurographics 2009 Short Papers, pages 57�60, 2009.

[UPSK08] T. Umenho�er, G. Patow, and L. Szirmay-Kalos. Caustic triangles on the GPU. In

CGI 2008, pages 222�228, 2008.

163

Bibliography

[VBS99] M. Vanco, G. Brunnett, and T. Schreiber. A hashing strategy for e�cient k-nearest

neighbors computation. In CGI 1999, pages 120�128, 1999.

[VD08] V. Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear algebra. In

Supercomputing 2008, pages 31:1�31:11, 2008.

[Vea96] E. Veach. Non-symmetric scattering in light transport algorithms. In EGWR 1996,

pages 82�91, 1996.

[VG94] E. Veach and L. Guibas. Bidirectional estimators for light transport. In EGWR 1994,

pages 147�162, 1994.

[VG97] E. Veach and L.J. Guibas. Metropolis light transport. In ACM SIGGRAPH 1997, pages

65�76, 1997.

[vH67] H. von Helmholtz. Handbuch der Physiologischen Optik, volume 9 of Allgemeine En-

cyklopädie der Physik. Leopold Voss, 1867.

[vOS83] A. van Oosterom and J. Strackee. The solid angle of a plane triangle. IEEE Transactions

on Biomedical Engineering, BME-30(2):125�126, 1983.

[WABG06] B. Walter, A. Arbree, K. Bala, and D.P. Greenberg. Multidimensional lightcuts. In

ACM SIGGRAPH 2006, pages 1081�1088, 2006.

[Wal04] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Uni-

versität des Saarlandes, Saarbrücken, Germany, 2004.

[Wal05] I. Wald. DIRmaps: Discretized incident radiance maps for high-quality global illu-

mination walkthroughs in complex environments. Technical Report UUSCI-2005-010,

University of Utah, Salt Lake City, UT, USA, 2005.

[Wal07] I. Wald. On fast construction of SAH-based bounding volume hierarchies. In RT 2007,

pages 33�40, 2007.

[War96] G.J. Ward. The Materials and Geometry Format, 1.1 edition, 1996.

[WBB08] I. Wald, C. Benthin, and S. Boulos. Getting rid of packets - e�cient SIMD single-ray

traversal using multi-branching BVHs -. In RT 2008, pages 49�57, 2008.

[WBS03] I. Wald, C. Benthin, and P. Slusallek. Interactive global illumination in complex and

highly occluded environments. In EGSR 2003, pages 74�81, 2003.

[WBS07] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic bound-

ing volume hierarchies. ACM Transactions on Graphics, 26(1):6:1�6:18, 2007.

[WD06] C. Wyman and C. Dachsbacher. Improving image-space caustics via variable-sized

splatting. Technical Report UICS-06-02, University of Utah, Salt Lake City, UT, USA,

2006.

[WFA+05] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D.P. Greenberg. Light-

cuts: A scalable approach to illumination. In ACM SIGGRAPH 2005, pages 1098�1107,

2005.

164

Bibliography

[WFM+05] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster isosurface

ray tracing using implicit kd-trees. IEEE Transactions on Visualization and Computer

Graphics, 11(5):562�572, 2005.

[WGBK05] I. Wald, C. Gribble, S. Boulos, and A. Kensler. SIMD ray stream tracing - SIMD ray

traversal with generalized ray packets and on-the-�y re-ordering -. Technical Report

UUSCI-2005-010, University of Utah, Salt Lake City, UT, USA, 2005.

[WGS04] I. Wald, J. Günther, and P. Slusallek. Balancing considered harmful � faster photon

mapping using the voxel volume heuristic �. In Eurographics 2004, pages 595�603, 2004.

[WH92] G.J. Ward and P.S. Heckbert. Irradiance gradients. In EGWR 1992, pages 85�98, 1992.

[WH06] I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing that in

O(n log n). In RT 2006, pages 61�69, 2006.

[WHG84] H. Weghorst, G. Hooper, and D.P. Greenberg. Improved computational methods for

ray tracing. ACM Transactions on Graphics, 3(1):52�69, 1984.

[Whi80] T. Whitted. An improved illumination model for shaded display. Communications of

the ACM, 23(6):343�349, 1980.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In ACM SIGGRAPH

1978, pages 270�274, 1978.

[WK06] C. Wächter and A. Keller. Instant ray tracing: The bounding interval hierarchy. In

EGSR 2006, pages 139�149, 2006.

[WKB+02] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interactive global illumina-

tion using fast ray tracing. In EGWR 2002, pages 15�24, 2002.

[WMH+07] I. Wald, W.R. Mark, W. Hunt, J. Günther, S.G. Parker, S. Boulos, P. Shirley, and

T. Ize. State of the art in ray tracing animated scenes. In Eurographics 2007 State of

the Art Reports, pages 89�116, 2007.

[WMHL65] E. Woodcock, T. Murphy, P. Hemmings, and S. Longworth. Techniques used in the

GEM code for Monte Carlo neutronics calculations in reactors and other systems of

complex geometry. In Conference on the Application of Computing Methods to Reactor

Problems 1965, pages 557�579, 1965.

[WMS06] S. Woop, G. Marmitt, and P. Slusallek. B-kd trees for hardware accelerated ray tracing

of dynamic scenes. In Graphics Hardware 2006, pages 67�77, 2006.

[WN09] C. Wyman and G. Nichols. Adaptive caustic maps using deferred shading. In Euro-

graphics 2009, pages 309�318, 2009.

[Woo90] A. Woo. Graphics Gems, chapter Fast Ray-Box Intersection, pages 395�396. Academic

Press, 1990.

[WPSAM10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying

GPUmicroarchitecture through microbenchmarking. In IEEE International Symposium

on Performance Analysis of Systems and Software 2010, pages 235�246, 2010.

165

Bibliography

[WR08] C. Wyman and S. Ramsey. Interactive volumetric shadows in participating media with

single-scattering. In RT 2008, pages 87�92, 2008.

[WRC88] G.J. Ward, F.M. Rubinstein, and R.D. Clear. A ray tracing solution for di�use inter-

re�ection. In ACM SIGGRAPH 1988, pages 85�92, 1988.

[WS03] M. Wand and W. Straÿer. Real-time caustics. In Eurographics 2003, pages 611�620,

2003.

[WSBW01] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering with coherent

ray tracing. In Eurographics 2001, pages 153�164, 2001.

[WSE04] D. Weiskopf, T. Schafhitzel, and T. Ertl. GPU-based nonlinear ray tracing. In Euro-

graphics 2004, pages 625�633, 2004.

[WvG92] J. Wilhelms and A. van Gelder. Octrees for faster isosurface generation. ACM Trans-

actions on Graphics, 11(3):201�227, 1992.

[WWZ+09] R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao. An e�cient GPU-based approach

for interactive global illumination. In ACM SIGGRAPH 2009, pages 91:1�91:8, 2009.

[Wym05] C. Wyman. An approximate image-space approach for interactive refraction. In ACM

SIGGRAPH 2005, pages 1050�1053, 2005.

[Wym08] C. Wyman. Hierarchical caustic maps. In i3D 2008, pages 163�171, 2008.

[WZHB09] B. Walter, S. Zhao, N. Holzschuch, and K. Bala. Single scattering in refractive media

with triangle mesh boundaries. In ACM SIGGRAPH 2009, pages 92:1�92:8, 2009.

[XSXZ07] Q. Xu, M. Sbert, L. Xing, and J. Zhang. A novel adaptive sampling by Tsallis entropy.

In CGIV 2007, pages 5�10, 2007.

[YFSZ06] M. Yang, G. Fei, M. Shi, and Y. Zhan. A simple, e�cient method for real-time simula-

tion of smoke shadow. In International Conference on Arti�cial Reality and Telexistence

2006, pages 633�642, 2006.

[YWC+10] C. Yao, B. Wang, B. Chan, J. Yong, and J.-C. Paul. Multi-image based photon tracing

for interactive global illumination of dynamic scenes. In EGSR 2010, pages 1315�1324,

2010.

[ZC03] C. Zhang and R. Craw�s. Shadows and soft shadows with participating media using

splatting. IEEE Transactions on Visualization and Computer Graphics, 9(2):139�149,

2003.

[ZGHG08] K. Zhou, M. Gong, X. Huang, and B. Guo. Highly parallel surface reconstruction.

Technical Report MSR-TR-2008-53, Microsoft Research, 2008.

[ZHG+07] K. Zhou, Q. Hou, M. Gong, J. Snyder, B. Guo, and H.-Y. Shum. Fogshop: Real-time

design and rendering of inhomogeneous, single-scattering media. In Paci�c Graphics

2007, pages 116�128, 2007.

[ZHWG08] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics

hardware. In SIGGRAPH Asia 2008, pages 126:1�126:11, 2008.

166

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Photon Mapping
	Manycore Computing

	Scope and Limitations
	Contributions
	Peer Reviewed Publications

	Thesis Overview

	Background
	Light Transport
	Radiometry
	Rendering Equation
	Reflection
	Participating Media

	Manycore Computing
	CPU-GPU Convergence
	CUDA Programming Model
	CUDA Hardware Implementation
	Algorithmic Building Blocks

	Related Work
	Ray Tracing
	Recursion
	Footprints
	Surface Intersection

	Spatial Indexing
	Space Partitioning
	Primitive Partitioning
	Construction
	Traversal

	Monte Carlo Rendering
	Monte Carlo Quadrature
	Rendering Algorithms
	Sampling

	Photon Mapping
	Photon Tracing
	Density Estimation
	Photon Map

	Simplification
	Virtual Point Lights
	Photon Mapping
	Object Space Interpolation
	Participating Media

	Ray and Photon Tracing
	kd-Tree Construction
	Geometric Probability
	Numerical Approximation
	SIROH
	Results and Discussion

	Stackless kd-Tree Traversal
	Zero Volume Nodes
	Traversal Algorithm
	Extensions
	Results and Discussion

	Stack-Based kd-Tree Traversal
	Node Caching
	Stack Caching
	Results and Discussion

	Density Estimation
	Photon Differentials
	Initialization
	Specular Reflection
	Diffuse Reflection
	Russian Roulette

	Bandwidth Selection
	Anisotropic Kernel Support Region
	Dampened Adaptation
	Results and Discussion

	Photon Map
	BVH Construction
	Voxel Volume Heuristic
	Linear BVH
	Termination Criterion
	Results and Discussion

	BVH Storage
	Compact Representation
	Ray Tracing Traversal
	Photon Mapping Traversal
	Results and Discussion

	Combined Results

	Participating Media
	Beam Radiance Estimate
	Photon Differentials
	Propagation
	Scattering
	Russian Roulette

	Bandwidth Selection
	Isotropic Kernel Support Region
	Dampened Adaptation
	Spectral Considerations
	Results and Discussion

	Stream Processing
	Job Queuing
	Packetization
	Results and Discussion

	Combined Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Benchmarks
	Benchmark Environment
	Code Base I
	Code Base II

	Benchmark Scenes
	Common Scenes
	Photon Mapping Scenes

	Bibliography

