
Deentralized Optimization of Flutuating Urban Tra� UsingReinforement Learning
As'ad Salkham

A thesis submitted to the University of Dublin, Trinity Collegein ful�llment of the requirements for the degree ofDotor of Philosophy (Computer Siene)
June 2010



Delaration
I, the undersigned, delare that this work has not previously been submitted to this or any otherUniversity, and that unless otherwise stated, it is entirely my own work.

As'ad SalkhamDated: June 2010



Permission to Lend and/or Copy
I, the undersigned, agree that Trinity College Library may lend or opy this thesis upon request.

As'ad SalkhamDated: June 2010



AknowledgementsI would like to thank my supervisor Prof. Vinny Cahill for his support and guidane throughout thePh.D. proess.This thesis would not have reahed its stage now without the mentorship of Dr. Raymond Cun-ningham. He has shown a great deal of patiene and sienti� professionalism in advising and helpingme. A big thank you to Ivana Duspari who has shared the same frustrations of tra� simulationsand the jolly feelings when one see agents learning ! I appreiate a lot her witty proofreading manyof my hapters and her sense of humour that kept us both from edging insanity.I would like to thank every member of DSG, old and new ones. The exhaustive list might take apage length and if the a�liated people are added then it is going to be two pages ! So, thank youall for your support and friendship. However, speial ones have to be mentioned, Marin Karpi«ski,Maªgorzata Jaksik, Bartek and Ilona Biskupski, Serena Fritsh and Sanad Ghgaraibeh...many thanks.There are no words that ould show my love and appreiation for my family, their sari�es forme and their patiene. My parents have always stressed on the higher priority for eduation and theywere right. They have raised me with the best they an a�ord and for that I am deeply grateful. Mylove and gratitude to my three sisters and ousins for standing beside me for all these years.
As'ad SalkhamUniversity of Dublin, Trinity CollegeJune 2010

iv



AbstratInreasing tra� ongestion levels are ausing high worldwide eonomi, environmental and soialosts. E�ient urban tra� ontrol (UTC) is part of the solution to the tra� ongestion problem.However, UTC optimization is a hallenging task. Urban tra� is haraterized by onstantly �utu-ating tra� patterns. Daily variations in tra� volume and diretion, driver behaviour, unexpetedemergeny situations and tra� aidents all result in tra� �utuations. Consequently, urban tra�networks exhibit non-stationary behaviour and UTC systems are omplex. Furthermore, any loaltra� ontrol deisions arried out at a given signalized juntion ontroller may a�et both upstreamand downstream juntions. Hene, unoordinated or poor loal deisions an negatively impat on thetra� network. Modelling UTC as an optimization problem is also ompliated by the heterogeneousinterlinked layouts of signalized juntions and the sale of the system.UTC has been a widely studied problem for a long time. Numerous systems and methodolo-gies have been proposed to address it over the last four deades. Classial UTC systems are eitherontrolled by a dediated entral server or in a distributed manner. The majority rely on omplexmathematial and preditive models to optimize spei� settings of a given tra� ontroller. Withthe inreasing osts of ongestion, the performane of these systems, whih are still in servie in themajor ities of the world, have prompted questions onerning their e�etiveness and adaptivenessin saturated tra� onditions. Other approahes range from rule-based systems and those modelledusing fuzzy/heuristi and dynami optimization tehniques, to evolutionary game theory and genetiprogramming based approahes. However, these approahes are still hallenged to provide salableand yet real-time adaptive and responsive performane. In addition, reinforement learning (RL) andnumerous deentralized RL methods are being inreasingly studied for UTC optimization. The natureof RL as an unsupervised learning approah, and partiularly Q-Learning, as a model-free learningstrategy, allows for inomplex problem modelling and ontrol of the exploration proess towards anear optimal solution. Suh harateristis are advantageous for developing a real-time adaptive andresponsive UTC solution. v



The unertainty present in UTC environments makes the optimization task more hallenging. Oneof the major soures of that unertainty is the non-stationary nature of tra�. An RL approah toUTC optimization must be designed in a manner through whih it is �rstly apable of distinguishingbetween stable situations and seondly able to e�iently optimize for eah. Moreover, the perfor-mane of existing RL-based UTC approahes is often evaluated using simpli�ed grid-like maps. Someapproahes use model-based RL and partially observable markov deision proesses (POMDPs) thatadd unjusti�able omplexity. When trying to handle the non-stationary nature of tra� while usingRL, strit assumptions are needed, e.g., that a small number of stationary tra� onditions reur,that tra� patterns hange infrequently and the independene of suh hanges from tra� ontrollerdeisions. In addition, some of these approahes presume the availability of knowledge that is key totheir operation but impratial to obtain from the real world.Our ontribution is a deentralized multi-agent RL UTC strategy that models heterogeneous sig-nalized juntions and optimizes UTC in an adaptive and responsive manner. It is motivated bythe lak of a model-free deentralized RL approah for UTC optimization that an deal e�ientlywith the non-stationary nature of tra� without limiting assumptions and the possibility of tak-ing advantage of the inreasing availability of �oating vehile data (FVD). The growing adoption ofvehile-to-vehile/infrastruture ommuniation and the pervasiveness of di�erent positioning systemsboth motivate the onsideration of FVD as a means of providing a rih view of loal tra� ondi-tions. We have designed a UTC optimization sheme based on RL that deploys an adaptive roundrobin ontroller agent paired with a non-parametri tra�-pattern hange-detetion mehanism persignalized juntion, namely, a Soilse agent. The Soilse agent optimizes phase timings using RL in anon-ollaborative manner. The agent is referred to as SoilseC when it also ollaborates with neigh-bours. It adapts to loal tra� onditions and responds to di�erent tra� patterns when required. Inorder to provide for suh responsiveness, it quanti�es the degree of hange per juntion using informa-tion about loal tra� on inoming lanes and its loal performane. Essentially, our design allows foragents to relearn upon deteting a persistent loal tra� pattern hange. The relearning parametersare mainly based on an average sample of the relevant degree of pattern hange. An evaluation ofour approah shows its e�etiveness against a non-adaptive �xed-time UTC system and a satura-tion balaning algorithm that emulates the Sydney Coordinated Adaptive Tra� System (SCATS).The evaluation is based on simulations of real Dublin maps of di�erent sale and near-realisti tra�volumes and �utuations dedued from publiations by the National Roads Authority in Ireland.
vi
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Chapter 1
Introdution
This thesis presents a new deentralized approah to online optimization of urban tra� ontrol (UTC)using Reinforement Learning (RL). In our approah, eah RL agent learns to ontrol a spei�signalized juntion through environmental feedbak and potential ollaboration with neighbouringagents. Agents adapt to loal tra� onditions by learning a sequene of tra� light phases to beused. They respond to �utuating tra� patterns or unsatisfatory performane by relearning basedon a loal non-parametri tra�-pattern hange-detetion mehanism. The novelty of our approahstems from its online deentralized UTC optimization sheme using RL without a priori knowledge oftra� models in an adaptive and responsive manner that deals with �utuating tra�. Essentially, byproviding suh an adaptive and responsive UTC sheme we aim to redue ongestion in urban areas.This hapter introdues RL inluding entralized and deentralized RL shemes. It also provides ahistorial bakground onerning UTC and introdues the relevant fats and hallenges in the domain.An emerging soure of data for UTC optimization namely, �oating vehile data (FVD) is introdued aswell as the ommon UTC onepts and urrent trends in UTC optimization. Furthermore, we presentour hypothesis whih is based on a number of arguments onerning the deentralization of UTC onlineoptimization using RL and on the viability of loal non-parametri tra�-pattern hange-detetion.We also present our ontribution that provides a sheme for UTC optimization using RL while dealingwith �utuating urban tra� in a deentralized and online manner. Finally, the organization of therest of this thesis is presented. 1



1.1. Reinforement Learning1.1 Reinforement LearningThe essene of RL an be traed to the manner by whih nature's intelligent elements an learn byinterating with the surrounding environment. Sutton & Barto (1998) de�ne RL as �learning howto map situations to ations so as to maximise a numerial reward signal�. RL is an unsupervisedlearning approah in the sense that an agent does not rely on a knowledgeable master that might havespei� domain knowledge. On the ontrary, agents explore their environment by sensing di�erentsituations stimuli and then exeuting some seleted ation(s) whih result in a feedbak in the formof a reward.Any RL solution is based on two basi elements, namely, a reward funtion and a value funtion.Optionally, some RL solutions make use of a model of the environment to predit the reward and nextstate after taking an ation in a given state. The reward funtion is meant to provide an immediategoodness measure for a ertain ation in a given state. The value funtion, as opposed to the rewardfuntion, tries to indiate the long-run goodness of a given ation, i.e., the expeted rewards that anbe aumulated over the future starting from the urrent state. Interation with the environmenteventually provides the RL agent with a poliy, i.e., a mapping between all states and their respetivebest ations at any given time. Moreover, ation seletion an our using exploratory strategies, (e.g.,
ǫ-greedy or Boltzmann (Sutton & Barto, 1998)) or non-exploratory strategies, (e.g., greedy). Findingthe limit to whih exploration should last is known as the exploration versus exploitation dilemma.Exploitation is the phase during whih the agent puts the previously learnt poliy into ontrol. Theessene of the dilemma is in the fat that an agent annot run purely on exploration or exploitationotherwise it will be learning forever without atually putting the learnt poliy into ontrol or it willallow a given poliy to ontrol forever, hene a balane is needed. Q-Learning (Watkins & Dayan,1992) is a well-established model-free o�-poliy (explained below) RL strategy based on the oneptof disounted expeted rewards. An RL agent that uses Q-Learning usually learns with a spei� rate
α : 0 ≤ α < 1 and a ertain disount rate γ : 0 ≤ γ < 1 through a Markov Deision Proess (MDP)representation of the environment. It is a model-free approah in the sense that it does not requiresome a priori likelihood model for the ations that ould be exeuted on the environment. Q-Learningis onsidered an o�-poliy strategy as it learns and updates the agent's knowledge even while takingations that ould prove to be non-optimal in the future (Abdulhai et al., 2003). Being an o�-poliylearning strategy, as well as allowing for short period knowledge updating per ation taken, Q-Learningis an ideal andidate for UTC optimization given the non-stationary nature of tra� (Abdulhai et al.,2003). 2



Chapter 1. Introdution1.1.1 Deentralized Reinforement LearningClassial RL is a entralized optimization approah. This makes problem modelling more di�ult asthe system's omplexity inreases due to the inrease in the number of system's states that need tobe represented whih ould be also aompanied by an inrease in the number of deisions/ations.The UTC problem, for example, deals with numerous interonneted signalized juntions with someof a heterogeneous road layout. For a relatively small ity like Dublin, the ity entre has roughly ∼250signalized juntions that need to be simultaneously ontrolled. A distributed/deentralized versionof RL an be useful (Abdulhai & Pringle, 2003) for suh a system while a lassial (entralized)RL view poses problem modelling omplexity as the network of signalized juntions inreases insize. Many deentralized RL approahes where no single RL agent models and ontrols the globalproblem have been proposed. They provide optimization approahes of a distributed manner thatbreaks the global optimization problem into manageable sub-problems. Eah RL agent deals withits assigned sub-problem loally with the possibility of ollaboration, (i.e., knowledge exhange) withother agents. This ould be seen as a speialized Multi-Agent System (MAS) where agents use RLfor optimization (Bu³oniu et al., 2008; Panait & Luke, 2005). Furthermore, several ollaborative RLapproahes (Dowling et al., 2006; Kok & Vlassis, 2006; Hoen et al., 2006; Goldman & Zilberstein,2004; Tesauro, 2003; Guestrin et al., 2002; Ahmadabadi et al., 2001; Abul et al., 2000; Tan, 1998; Hu& Wellman, 1998; Claus & Boutilier, 1997; Littman, 1994) have been proposed and we will disussthem later in Chapter 2. Dowling et al. (2006) they use the term CRL to refer to a spei� form ofCollaborative Reinforement Learning. We adopt the term CRL only in desribing our frameworkimplementation in Chapter 4, however, our CRL view is di�erent than theirs. We use the term CRLto refer to a sheme where RL agents an ollaborate, i.e., exhange knowledge of any nature that anbe used in updating the agent's loal knowledge besides the use of its loal rewards.1.2 Urban Tra� ControlThe history of tra� management arguably extends bak to the Roman era. It is interesting to notethat the proverb �all roads lead to Rome� is based on the fat that a referene point, in the form of agolden milestone, was positioned in the Forum in the anient ity of Rome. Road builders in Rome,in their turn, used milestones as a form of primitive means to inform road users about their relativeloation to the golden milestone in Rome (Mueller, 1970). These distributed milestones worked asindiators or signals of reassurane for road users that they were on the right route towards Rome.Although they were stati, they were su�ient for road users of that era. Sine then, the means to3



1.2. Urban Tra� Control

Figure 1.1: Sketh of the world's �rst tra� signal that was installed on the juntion of George andBridge streets in London in 1868 (Mueller, 1970)inform and even ontrol tra� reated by the inreasing number of road users have indeed hangeddramatially.As roads beame wider and tra� grew heavier, the need to manage movement within ities andthe inreasing number of road fatalities beame an urgent issue with whih to deal. It was in theBritish parliament in the late eighteenth entury that it was �rst suggested to borrow a methoddeployed in railways to be used in ontrolling tra� on roads. A tra� superintendent from thesouth eastern British railway named J. P. Knight had suggested to Earl Granville that the oneptof a railway semaphore signal ould be ported onto the road network to allow for tra� ontrol(Ishaque & Noland, 2006). The British parliament agreed to Earl Granville's suggestion and installedthe world's �rst tra� signal (see Figure 1.1) on Deember 1868 on a juntion near the Houses ofParliament in London. That tra� signal was paradoxially put in plae to ease road aess formembers of parliament rather than improve pedestrians' safety. The tra� signal funtioned in a waythat ombined red and green gas lights with semaphore arms. The arms extended horizontally todenote a stop signal and on a 45o angle to denote aution. At night, the stop sign was aompaniedby a red light on the top while the aution signal was aompanied by a green one. The reader isreferred to (Mueller, 1970) for a more in depth history of tra� signals. Heneforth, the terms �tra�signal� and �tra� light� are used interhangeably.Early tra� signals were ontrolled by poliemen whih beame inreasingly impratial as widerdeployment took plae in di�erent ities. A greater number of juntions had to be ontrolled ina manner that was intended to provide better tra� �ow within ities. The ultimate goal would4



Chapter 1. Introdutionbe to provide what is known as a �green wave� or a series of go signals along a desired path ofontrolled juntions. Advanes in eletronis and omputer siene have made it possible to deviseomputerized UTC systems that an manage tra�, in terms of e�ient automated operation andperformane optimization, on a larger number of ontrolled juntions, i.e., signalized juntions. Suha system was �rst deployed in Toronto in 1959 using an IBM 650 omputer to ontrol nine signalizedjuntions (Gazis, 1971). Early UTC systems were entrally ontrolled and relied on detetors suhas magneti loops, radar and sonar. The main funtionalities provided by the ontrol software wereeletrial atuation of juntion ontrollers, tra�-light state monitoring and detetor data proessing.The latter data was typially stored for potential o�ine analysis while some seleted data was usedfor better online ontrol strategies. Suh ontrol strategies were mainly based on the onept ofsynhronizing a line of juntions, usually an arterial road, in order to allow for vehiles to travel ata onstant speed with minimal stops. However, those strategies were �xed for ertain situations andonstrained by the number of ontrolled juntions. Moreover, with the inreasing number of vehiles onroads and the growing sale of urban road networks, the UTC problem has beome more hallenging.Consequently, the need for more sophistiated and oordinated UTC systems to provide e�ient tra�ontrol strategies has arisen. The ultimate goal for suh omputerized UTC systems is to provide ane�ient tra� ontrol strategy that runs in an optimal manner in order to minimize road ongestion.This optimality is diretly related to ahieving minimum vehile delay, less-interrupted tra� �ow ora minimum number of vehile stops and inreased vehile veloity. Details on the progression of earlyUTC systems an be found in (Gazis, 1971).1.2.1 UTC Fats and ChallengesUrban tra� is an evolving problem losely related to population growth and world eonomi fators.Many ountries are seeing an inrease in vehiles per apita with eah passing year. As far as theOrganisation for Eonomi Co-operation and Development (OECD) ountries are onerned, roadmotor vehiles per thousand inhabitants have inreased over the period from 1990 until 2006 in allstudied ountries exept the United States (OECD, 2008) for no lear reason but possibly due to itsmature status and inreasing environmental publi awareness programs. Considerable inreases werenotied in ountries like Portugal, Ieland, Greee and Poland (see Figure 1.2).As urbanization is inreasing, road networks in di�erent ountries are expanding as well. Forexample, in the European Union (EU), more than 60% of the population are living in urban areasharaterized by many more than 10, 000 residents (European Commission, 2007b). The rate at whihroad networks are expanding varies from one ountry to another given that some ountries already5



1.2. Urban Tra� Control
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CountryFigure 1.2: Road motor vehiles per thousand inhabitants in seleted OECD ountries (OECD,2008)have mature road networks. The annual growth in road network size an vary from 6% in ountrieslike Korea, Poland, Portugal, Ireland and Greee to a lower rate of 2% in ountries with matureroad networks like the United States, Germany, Canada, the Russian Federation and the Netherlands(OECD, 2008).As the network of signalized juntions grew along with the inreasing number of vehiles on roads,the problem of providing an e�ient UTC system beame naturally more omplex. Evidently, theproblem has not yet been solved, for instane, the United States has roughly 330, 000 tra� signals ofwhih 75% an be adjusted to be made more e�ient using, but not exlusively, di�erent timing plans(United States DOT, 2007). However, the sale is not the sole issue, road users also exhibit di�erenttravelling routines while unexpeted emergeny and aident situations make tra� networks non-stationary in nature. Suh tra� harateristis inrease the UTC optimization hallenge. Anothermodelling and ontrol hallenge that faes UTC systems is the heterogeneous struture of interlinkedsignalized juntions. The e�ets of ontroller deisions arried out at one juntion will propagate inthe road network a�eting the performane of others, espeially, their immediate neighbours. Conse-quently, the need for a well-designed ollaboration sheme is vital in providing e�ient UTC systems(Bazzan, 2004).The negative impat of poor UTC systems is massive and an be essentially summed up in oneword �ongestion�. It is true that better and more e�ient UTC systems annot alone solve thisinreasing problem but they an surely help to redue it (European Commission, 2007a; United StatesDOT, 2007). Congestion auses worldwide environmental, eonomi and soial problems. In the EUalone, ongestion annually osts around 1% of the member ountries' Gross Domesti Produt (GDP)(European Commission, 2007b) and an estimated ∼AU$20.4 billion by 2020 in Australia (Cosgrove6



Chapter 1. Introdution& Gargett, 2007). In 2007, ongestion ost the United States ∼US$87.2 billion in 439 urban areasalulated based on wasted time and fuel (Shrank & Lomax, 2009). As far as the environment isonerned, ongestion is a major ause of air and noise pollution. Urban mobility in the EU ontributes
40% of the overall CO2 emissions aused by road transportation while this perentage inreases to
70% of all other pollutants (European Commission, 2007a). These onsiderable perentages are due toinreasing tra� growth and to the stop-go nature of driving in ities despite the advanes in vehileemission redution tehnologies (European Commission, 2007b). Furthermore, a reent survey by theDepartment of Transportation in the United States has shown that 47% of Amerians agree that delayaused by tra� ongestion is a top ommunity onern (United States FHWA, 2001).Part of the solution to tra� ongestion is evidently better and more e�iently responsive UTCsystems (European Commission, 2007b,a; United States DOT, 2007). Adaptive and responsive UTCsystems have proved to be promising in many ases in the United States. Compared to previouslydeployed systems, aording to (United States DOT, 2007) for example, a new Texas Light Synhro-nization program managed to redue tra� delay by 24.6%, fuel onsumption by 9.1% and the numberof vehile stops by 14.2%, all through signal timing optimization and equipment update. In Califor-nia, a new fuel-e�ient tra� signal management program managed to redue fuel onsumption by
8%. Los Angeles' Adaptive Tra� Control System (ATCS) whih operates as the ity's main tra�ontrol system, managed to diminish average delay by 21.4% and vehile average number of stopsby 31% through real-time response (signal timing adjustment) to tra� demands. The results aboveenouraged further researh in providing more e�ient UTC systems in the US through dediatedFederal and State funding programs (United States DOT, 2007). The above advanes might havebeen the result of a long awaited improvement in the poor performane of legay UTC systems. Re-ently, new approahes are being onsidered to ome up with �smarter� UTC solutions to deal withthe inreasing ongestion problems, for instane, a reent 2009 governmental report on �Australia'sDigital Eonomy: Future Diretions� has identi�ed the use of Arti�ial Intelligene (AI) and moreadvaned tra� sensor tehnologies for developing better UTC systems as a strategi researh goal(Commonwealth of Australia, 2009).The enabling tehnologies to design and deploy an e�ient UTC system that takles these hal-lenges are inreasingly beoming pervasive. The domain that enompasses suh tehnologies is referredto as Intelligent Transportation Systems (ITS) where information proessing and ommuniation teh-nologies are being applied to the transportation domain (Yang & Wang, 2007). This ranges fromdevising better UTC optimization shemes to navigation systems and real-time tra� monitoring. Animportant driver of ITS appliations is �oating vehile/ar data (FVD/FCD) and its ommuniation7



1.2. Urban Tra� Controlmeans. They provide a rih real-time view of tra� status in ities that an be exploited for severalappliations inluding UTC optimization.In summary, it is lear that tra� ongestion is a worldwide problem that has been learly aus-ing eonomi, environmental and soial problems (see statistis above). This problem is worseningwith the inrease in urbanization, vehile numbers, population and the possible ine�ieny of legayUTC systems. Di�erent e�orts are being exerted to develop more e�ient UTC systems that aremore adaptive and responsive to tra� hanges. However, innovative and �smart� UTC optimizationshemes that make use of progressive tra� management tehnologies like FVD and AI have onlyreently ame into fous.1.2.2 Floating Vehile DataThe ore idea behind FVD (European Commission, 2003) is to provide di�erent means to ommuniatevarious data assoiated with vehiles in a more pervasive and ost-e�etive manner using vehile-to-infrastruture (V2I) or vehile-to-vehile (V2V) ommuniation. Suh data is usually spatio-temporal,for example, the loation of an anonymous (or possibly known) vehile at a given point of time onthe road network. Furthermore, with the inreasing availability of in-vehile sensors, data ouldrange from air pressure levels in tires to fuel onsumption and aurate speed data at a given time.Standardization e�orts are also playing a major role in helping the spread and adoption of FVD-based tehnologies and solutions. The International Standards Organization (ISO) and the EuropeanCommittee for Standardization (CEN) are leading the e�orts in providing standards for V2V and V2Iommuniation tehnologies. Most notably, the Dediated Short Range Communiations (DSRC) (Bai& Krishnan, 2006) and the Continuous Air-interfae, Long and Medium Range (CALM) (Williams,2004) standards that make use of the wireless aess in vehiular environments (WAVE) enabling IEEEprotool, namely, IEEE 802.11p (Eihler, 2007). The latter aims at providing a wide platform of di�er-ent ommuniation tehnologies working seamlessly together inluding, for example, DSRC, GeneralPaket Radio Servie (GPRS), Global System for Mobile ommuniations (GSM) and InternationalMobile Teleommuniations-2000 (IMT-2000) or 3G.Traditionally, tra� demand data is gathered through sensors embedded in the road infrastruturesuh as indutive loop detetors or ameras. With the standardization of FVD tehnologies and theinreasing pervasiveness of wireless positioning systems, e.g., Global Position System (GPS), as wellas the onsiderable investments in V2I and V2V ommuniation tehnologies; it is now possible toestablish a FVD enrihed environment with a signi�antly lower ost ompared to the traditionalapproahes (European Commission, 2003). Moreover, e�orts at better positioning systems suh as8



Chapter 1. Introdutionthose of the European Union, have resulted in a promising satellite positioning projet namely, Galileo(European Commission, 2001), whih is expeted to be more aurate than urrent GPS tehnology.This will potentially have a positive impat on tra� management solutions (Kuhne, 2003).Moreover, there has been a reent fous on enrihing the set of typial FVD information, e.g.,position, speed and time (Messelodi et al., 2009). Through dealing with vehiles as moving sensors,e.g., ameras and tra� level analyzers, typial FVD is enrihed with information resulting fromvehile surroundings analysis, e.g., road onstrution noti�ation and tra� level. The reader isreferred to the survey by (Luo & Hubaux, 2004) for more information on FVD.1.2.3 Common UTC ConeptsThere are a number of onepts that are used in desribing the funtionality within a UTC system.An introdution to some ommon UTC onepts is provided in this subsetion.� Signalized juntion: a juntion that is ontrolled by a tra� light.� Phase: a phase is haraterized by the exlusive set of tra� diretions allowed to proeed at agiven signalized juntion from ertain approahes at a given time. Only one phase an be ativeat a time where all its approahes have a green signal to go.� O�set (time): the time di�erene between the start of some phase on a given signalized juntionand the start of a di�erent phase on an adjaent signalized juntion. Typially relevant whenadjaent juntions need to oordinate their phase ativation that may a�et onneting links.� Cyle (time): the time needed to omplete a sequene of phases on a given signalized juntioninluding o�sets.� Split: the proportioned green time alloated per phase for all phases in a yle.� Oversaturation: a situation where links onneting signalized juntions reah their maximumapaity in terms of number of vehiles.Certain lassial UTC systems, as disussed in Chapter 2, base their optimization methodology ontuning signalized juntions timing parameters suh as the o�set, the yle time and the split. Somenon-lassial approahes, however, follow di�erent optimization methodologies based on phase ativa-tion deisions and split alulation. 9



1.3. Hypothesis1.2.4 UTC Optimization TrendsSeveral UTC systems have been proposed over the past four deades. Spei�ally, two systems, theSydney Coordinated Adaptive Tra� System (SCATS) (Sims & Dobinson, 1980; Lowrie, 1982) and theSplit Cyle O�set Optimisation Tehnique (SCOOT) (Hunt et al., 1982) have been deployed in manymajor ities. These systems are based on omplex mathematial models to optimize spei� timingsettings of a tra� ontroller, namely, the o�set, split and yle time. However, tra� ontrol strategiesin suh systems are either entrally or hierarhially formulated. Numerous other approahes havebeen proposed as omputational problem solving methodologies have evolved. Suh approahes mainlyuse Dynami Programming, evolutionary game theory and geneti programming or a ombination ofthose. Others simply use fuzzy/heuristi models and rule-based methods with possible integration withevolutionary approahes. However, RL has emerged as a promising approah for UTC optimizationin whih true adaptiveness an be ahieved (Abdulhai & Pringle, 2003; Abdulhai et al., 2003). Weonentrate on deentralized RL that spei�ally uses Q-Learning for UTC optimization given itssalability and appliability to online (re)learning that allows for the adaptiveness and responsivenessneeded by UTC.1.3 HypothesisOur hypothesis is based on the following arguments onerning an e�ient UTC system:� Loal tra� signals ontrolled by RL agents that an adapt and respond to hanging tra� areadvantageous ompared to �xed-time and SCATS-inspired tra� light ontrollers.� Designing an RL agent using an adaptive round-robin sheme based on phases to ontrol a giventra� signal is possible.� Deentralization through assigning a ontrolling RL agent per signalized juntion that ollabo-rates with neighbouring agents an ahieve better global performane.� Deteting tra� hanges as they our is possible based on tra� �ltering per lane and theperformane of the assigned RL agent without a priori tra� models.� Responsiveness an be ahieved by relearning based on a quanti�ed loal degree of tra� hange.� The proposed design does not presume spei� soures of sensor information but rather exposesa generi interfae. 10



Chapter 1. IntrodutionWe evaluate our ombined hypothesis using a mirosopi simulator that takes as inputs varyingtra� patterns simulated on di�erent real maps of Dublin ity. The evaluation inludes di�erentsenarios haraterized by map sale, hanging tra� and ollaboration. Comparisons are madeagainst senarios using �xed-time ontrollers and against a SCATS-inspired algorithm, namely, SAT(Rihter, 2006).1.4 Prinipal ContributionThis thesis provides a deentralized UTC optimization approah using RL and ollaboration shemes,that is e�ient, adaptive and yet responsive to the non-stationary nature of urban tra�. Ourprinipal ontribution is a salable sheme in whih eah signalized juntion is ontrolled by an RLagent that is autonomously apable of deteting unsatisfatory performane and loal tra�-patternhange to whih it responds by relearning based on the degree of hange observed. The RL agentan potentially ollaborate with neighbouring agents in order to provide better global performane.With all their harateristis, we name our agents as �Soilse� whih means tra� lights in the Irishlanguage. Heneforth, a Soilse agent is RL-based where a SoilseC agent uses RL and ollaborates withits neighbours. Furthermore, the approah does not assume any domain knowledge nor prede�nedmodels of tra�.1.5 Thesis OrganizationThe remaining hapters of this thesis are organized as follows. Chapter 2 presents the state-of-the-art in UTC inluding lassial widely deployed de fato systems, as well as RL and non-RLapproahes. The hapter also disusses RL and deentralized RL inluding the main learning andation seletion strategies. In Chapter 3 we detail the design of our UTC optimization agents, namely,Soilse and SoilseC inluding the pattern hange detetion mehanism and the relearning strategy. InChapter 4 we present our implementation using a CRL framework that we built as a C++ libraryand we desribe the interation between the UTC simulator and the Soilse and SoilseC instanes ofthat framework. Chapter 5 presents our evaluation results based on di�erent axises suh as sale,ollaboration, responsiveness and ation seletion strategies. We �nally onlude and disuss futurework in Chapter 6.
11



Chapter 2
State of the ArtThe thesis merges between signi�antly wide domains, i.e., reinforement learning (RL) and urbantra� ontrol (UTC) optimization. This thesis addresses RL-based optimization of UTC, therefore inthis hapter we introdue the bakground neessary for understanding our approah as well as relatedwork to position our ontribution and distinguish our approah from existing approahes. In thishapter, we introdue Markov Deision Proesses (MDPs) and disuss the essentials of RL and mostpopular learning and ation seletion strategies. We also disuss the deentralization of RL. As well,we review di�erent lassial, (i.e., urrently deployed and de fato) approahes to UTC along with therelated work in non-RL-based and RL-based UTC optimization tehniques.2.1 Reinforement LearningIn this setion we introdue RL. We begin by desribing MDPs given their lose relation to modellingRL problems. We also introdue some well-known approahes to solving MDPs in the sense of seekingan optimal poliy.2.1.1 Markov Deision ProessesOften, RL problems are modelled using MDPs. An agent or any entity that pereives and ats withinan environment ould ause a new underlying state. Suh a state ould be the diret result of theagent's ations or due to other fators suh as other agents' ations or the natural dynamis of theenvironment, e.g., the popular prey and predator or multiple predators problem (Kok & Vlassis, 2004).An MDP allows for the modelling of an agent's view of the environment and its interation with it12



Chapter 2. State of the Artthrough:� S : a disrete set of states representing the possible environmental settings� A : a disrete set of ations available to the agent� R(st, at) : a reward funtion that returns a reward for taking ation a in state s at time t� T (st, at, st+1) : a transition probability model known a priori that provides the probability
p(st+1| st, at) of transiting to state st+1 if ation at is taken from state stAny problem modelled as an MDP must naturally satisfy the Markov property, i.e., the future be-haviour depends on the urrent state st but not on the past states. Suh a property ensures that agiven state aptures the e�et of a previously taken hain of ations, whih allows simpler rules to solvethe MDP's optimal poliy π∗, where π∗ is a mapping from the states to the best ations. It is possiblein this ase to write one-step formulas that an be, in some form, iterated upon in order to disover

π∗. An immediate reward rt+1 gives a goodness measure for the ation at exeuted in state st. It anbe alulated based on the reward funtion R(st, at) or sometimes using R(st) whih returns a rewardfor being in st. Suh a reward, however, might be insu�ient to apture the expeted future e�et orthe long-term usefulness of taking a given ation unless it is ombined with future rewards. Hene,the onept of future disounted rewards emerges. Naturally an agent will not be likely to wait foreverin order to aquire a very high reward, however, it makes sense for it to inlude future rewards whiledereasing their importane as they our further away in time. Suh a behaviour an be ahievedusing a dereasing disount rate known as γ ∈ [0...1]. The Bellman optimality equation (2.1) isa well-known optimality equation based on the onept of disounted rewards and states' expetedutility. It is used to �nd the optimal utility U∗ for all states whih in many ases is referred to as
V ∗ as well. The Bellman equation aims at optimizing the value-funtion V / U that gives a goodnessmeasure for being in a ertain state, or alternatively, the state-ation value-funtion Q(st, at) whihprovides suh a measure per ation per state.

U∗(st) = R(st) + γ maxa∈A(st+1)

∑

st+1

T (st, at, st+1)U∗(st+1) (2.1)Several lassial methods have been proposed to solve MDPs. The majority are onsidered tofall into the Dynami Programming (DP) paradigm (Sutton & Barto, 1998). Two well-known DPmethods for solving MDPs are the value and poliy iteration methods. Although the DP paradigmassumes a perfet world model as in MDPs, it is an important basis for understanding RL whih doesnot require suh a rigorous assumption. 13



2.1. Reinforement Learning2.1.1.1 Value IterationAs the name implies, this method iterates through eah state in an MDP using the Bellman optimalityequation (2.1) as an update rule in order to reah an optimal poliy. The stopping rule for suh aniteration is usually based on the maximum di�erene between subsequent state utility approximations.If that di�erene is less than ǫ(1−γ)/γ then it is guaranteed that the error is less than some value of ǫ.Suh an approah relies on an MDP with learly prede�ned transition model and state rewards. Themethod returns the �nal optimal utility for all states U∗. An algorithm desribing the value iterationmethod is shown in Algorithm (1).Algorithm 1 The value iteration DP methodV_I(S,A,T,R,γ,ǫ)
Ut ← 0Do
λ← 0For s ∈ S

Ut+1(s)← R(st) + γ maxa

∑
st+1

T (st, at, st+1)Ut(st+1)

λ← max(|Ut+1(s)− Ut(s)|, λ)EndUntil λ < (ǫ (1− γ)/γ)Return U∗The optimal utility for all states U∗ an then be used to devise an optimal poliy π∗ by seletingthe ation with the maximum expeted utility for eah state, denoted as Q∗(s, a), based on equation(2.2).
Q∗(st, at) = R(st) + γ

∑

st+1

T (st, at, st+1)U∗(st+1) (2.2)
π∗(s) = argmaxa∈A(s)Q

∗(s, a) (2.3)The optimal poliy π∗ an hene be formulated by �nding the set of ations of maximum utilityfor all states, see equation (2.3). 14



Chapter 2. State of the Art2.1.1.2 Poliy IterationThe poliy iteration method onsists of two parts through whih an agent �rstly produes a givenpoliy using the Bellman update equation (2.1) and seondly tries to ameliorate that poliy if possible.In essene, the method runs as a sequene of produing poliies and testing their stability until anoptimal stable poliy is found. An algorithm desribing the poliy iteration method is shown inAlgorithm (2).Algorithm 2 The poliy iteration DP methodP_I(S,A,T,R,γ,ǫ)Initialize U, π

1Do
λ← 0For s ∈ S

Ut+1(s)← R(s) + γ
∑

T (st, at, st+1)Ut(st+1)

λ← max(|Ut+1(s)− Ut(s)|, λ)EndUntil (λ < (ǫ (1− γ)/γ))For s ∈ S

temp← π(s)

π(s)← argmaxa∈A(s) [R(st) + γ
∑

T (st, at, st+1)U(st+1)]If temp 6= π(s)Then goto 1EndReturn π∗

The value iteration method is a ompat version of the poliy iteration method. The latter it-eratively heks the stability of the resulting poliy after a number of value funtion updates on allstates seeking exat onvergene. On the other hand, the value iteration method ignores suh a ruleand ats greedily on the value funtion updates without seeking exat onvergene but still resultingin an optimal poliy. 15



2.1. Reinforement Learning2.1.1.3 Partially Observable MDPsIn ertain situations an agent may not be able to determine the state whih it is urrently in. Suha ase is often the result of dealing with an unertain environment where sensor inputs, fusion andinferene tehniques are unable to dedue a given state with ertainty. Consequently, MDPs anbe extended in order to enompass a belief model that an provide a probability distribution overthe possible set of agent states, namely Partially Observable MDPs (POMDPs) (Kaelbling et al.,1998). For example, an agent an potentially be in three states with a belief state distributionof < B(s0) = 0.5, B(s1) = 0, B(s2) = 0.5 >, meaning that the agent an never be in s1 buthas an equal hane of being in either s0 or s2 at a given time. As the agent interats with theunertain environment, it will naturally need to update its belief model, hene an observation model
O(s, o) is used to inform the agent about the probability of an expeted observation in a givenstate. Consequently, the belief model an be determined aording to equation (2.4) where α is anormalization fator.

∀st+1Bt+1(st+1) = αO(st+1, o)
∑

s

T (s, a, st+1)B(st) (2.4)Regardless of the inde�nite number of states resulting from the ontinuous values in the beliefmodel and the intratability of �nding an optimal solution in suh a ase, some approahes have beenproposed under assumed onstraints in order to provide approximate solutions (Murphy, 1999). .2.1.2 Reinforement Learning StrutureReinforement Learning (Sutton & Barto, 1998; Kaelbling et al., 1996) is an extensively studiedapproah to solving a wide range of optimization problems. RL is an unsupervised learning approahthat aims at arriving to a setting through whih states are optimally mapped to ations, i.e., in amanner that maximizes the long-term expeted rewards reeived after exeuting a ertain ation in agiven state at a given time. Suh a setting ahieved by an RL agent onstitutes the agent's optimalpoliy. An RL agent typially disovers its environment through interation, more spei�ally, by trialand error. Hene, the learning proess through whih an RL agent eventually tries to reah an optimalpoliy, ours by exeuting an ation in a given environmental state and onsequently evaluating theutility assoiated with that ation in that state using the reeived reward and next state information.Suh an RL approah is normally referred to as a model-free approah in the sense that it has no apriori environmental model that spei�es the probability distribution on the set of ations allowed in16



Chapter 2. State of the Arteah state, i.e., a transition model. The ontrary is naturally referred to as a model-based approah,whih in ertain ases predits/estimates the outome, in terms of new state and reward. A typialRL agent, see Figure (2.1), represents its loal environment through a state-ation spae in the formof an MDP.
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Figure 2.1: A typial RL agent interating with the underlying environments : state, r : reward, a : ationThe reward model in RL an be disrete or ontinuous. One ould design a disretized rewardmodel where a onstant value is returned based on some goodness onditions. For example, in agrid-world problem, an agent is required to navigate a grid to reah a goal state/square by takinga series of ations from a set of ations Agrid = {Left, Right, North, South}. The agent reeivesa high positive reward rgoal = 100 when an ation a ∈ Agrid leads to the goal state. On the otherhand, any other ation a that does not lead to the goal state reeives a negative reward r = −1. AnRL agent trying to �nd all optimal paths leading to the goal state will try to maximize the expetedfuture rewards in order to ahieve its task. Indeed, the agent an reeive hints (positive rewards)on the way to its goal square if the problem was modelled in suh a way as to hasten ahieving anoptimal poliy. That model will allow for squares positioned one ation away from the goal state toreturn a high positive reward but relatively lower than the goal reward, r = 50 per example. Otherreward models an be ontinuous in the sense that they an fall in a given range of values. Forinstane, an RL-based tra� light ontroller that tries to arrive to an optimal ontrol poliy, whihallows for the maximum number of vehiles to pass through, ould have a reward model suh that
r = number of vehicles passed through after a given lights setting. In that ase, the range of r isrelative to the inoming tra� volume. Deiding on whether to use a disrete or a ontinuous rewardmodel is a domain spei� design hoie whih depends on the nature of the optimization problem.17



2.1. Reinforement LearningEssentially an RL agent would model the underlying environment as an MDP. However, in omplexdynami problems suh as UTC, it is often very di�ult to obtain a de�nite probabilisti transitionmodel for the MDP to be solved assuming that the resulting state is based on tra� for instane.The same argument applies to obtaining a reward predition model. However, it is possible to designa reward model that translates environmental feedbak. Q-Learning is one of the learning strategiesthat allows an RL agent, through its value funtion, to arrive to an optimal poliy without the needfor a transition model or a reward predition model.For an RL agent to funtion, it relies on a learning strategy, an ation seletion strategy, a rewardmodel and, vitally, a representation of the underlying environment. We disussed reward models andMDPs as the environmental representation. Onwards we disuss di�erent learning and ation seletionstrategies.2.1.2.1 Learning StrategiesA learning strategy allows the RL agent to gradually build its knowledge on how to optimally dealwith the surrounding environment. That knowledge is umulatively built through inorporating sensorinformation in a manner that a�ets the RL agent's view on the environment. Inorporation is mainlydone through a value or a state-ation value funtion update rule of some form.Q-LearningQ-Learning was �rst introdued in the 1989 in Watkins' Ph.D. thesis (Watkins, 1989). Sine then,it has been gaining more popularity as a model-free RL tehnique. Q-Learning falls in the ategoryof o�-poliy Temporal Di�erene (TD) learning strategies (Sutton & Barto, 1998). Those strategiesare model-free and an update a ertain RL agent's poliy estimate based on the estimates of otherelements in the poliy as well as on the inoming rewards. Convergene is assured regardless of theation seletion strategy or exploration tehnique as long as updating all state-ation value pairs isontinuous. Q-Learning typially behaves in an o�-poliy manner, whih means that it learns evenwhile taking ations that might prove to be non-optimal in the future.Q-Learning ontrols the RL agent's learning pae through a learning rate variable α : (0 ≤ α < 1)and the level by whih it disounts future rewards through a disount rate variable γ : (0 ≤ γ < 1).The Q-Learning update equation is presented in (2.5).
Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)] (2.5)18



Chapter 2. State of the Art
rt+1 : reward received after executing atA high learning rate implies that the agent is more eager to adopt ongoing hanges denoted by rt+1and the future e�ets of ation at denoted by maxaQ(st+1, a) in its updated poliy. The RL agentbeomes more near-sighted the lower its disount rate is by minimizing the future e�et of ation atdenoted by maxaQ(st+1, a).Algorithm 3 Generi Q-LearningInitialize lookup table ∀Q(s, a)QL(S,A,α,γ)Forall episodes

st ← sinitialFor eah step in the episode DoSelet_Exeute at : at ∈ A(st) using some ation seletion strategyReeive st+1, rt+t

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)]

st ← st+1Until st == sterminalEndAn RL agent using Q-Learning normally keeps a lookup table for all possible ombinations ofstate-ation pairs based on the MDP representation of its environment. Its MDP is built without atransition model for ation ourrene likelihood nor a reward predition model. Suh a transitionmodel is essentially learnt through interation with the environment and an be dedued from thestate-ation values lookup table using some ation seletion strategy. A generi Q-Learning algorithmis presented in (3). An episode, for example, in a grid-world senario, ould last until the agentarrives to a prede�ned goal state/square after starting from a di�erent state. The number of learningepisodes needed naturally depend on some form of onvergene test where the agent terminates if theresult of that test is satisfatory. However, in an in�nite horizon problem, i.e., a problem that has nospei� goal/terminal state, the notion of an episode disappears. In suh a ase, it is more likely touse a gradually dereasing learning rate paired with a biased ation seletion strategy that balanesbetween exploration and exploitation, e.g., ǫ-greedy or Boltzmann (see Setion (2.1.2.2)).19



2.1. Reinforement LearningSARSAThe SARSA RL algorithm gets its name from the knowledge update manner it follows as an on-poliy approah. Learning progresses in SARSA from a given state-ation pair to another state-ationpair and hene the name SARSA, i.e., State-Ation Reward State-Ation. The learning update rulein SARSA depends on seleting the next ation at+1 for the next state st+1 using a ommon ationseletion strategy. In ontrary, Q-Learning uses the best next ation in st+1. A generi SARSAalgorithm is presented in (4).Algorithm 4 Generi SARSAInitialize lookup table ∀Q(s, a)SARSA(S,A,α,γ)Forall episodes
st ← sinitialChoose at : at ∈ A(st) using some ation seletion strategyFor eah step in the episode DoExeute atReeive st+1, rt+tChoose at+1 : at+1 ∈ A(st+1) using some ation seletion strategy

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ Q(st+1, at+1)−Qt(st, at)]

st ← st+1 , at ← at+1Until st == sterminalEndSARSA tends to be a more safe approah as opposed to Q-Learning in the sense that it selets thenext ation based on a given strategy while Q-Learning risks it by taking ations that might not beoptimal but still learns. As a result, Q-Learning is possibly able to reah the optimal poliy with lessaumulated rewards while SARSA will onverge to a near optimal one (Takadama & Fujita, 2005;Sutton & Barto, 1998). Indeed, the design of the reward model is essential in that ase.2.1.2.2 Ation Seletion StrategiesThe RL yle annot be omplete without a�eting the underlying environment through seletedations. For an RL agent to learn by reeiving a possibly new environmental state and a reward, it20



Chapter 2. State of the Arthas to e�iently explore, (i.e., visit di�erent states and try di�erent ations) the spae-ation spae,i.e., the MDP. Naturally, and often in the ase of an in�nite optimization problem, an RL agent shouldbe able to gradually swith from exploring for an (optimal) poliy to exploiting that poliy. The role ofa biased, (i.e., allows for ontrolling the exploration period) ation seletion strategy, (e.g., Boltzmannand ǫ-greedy) hene beomes essential.Greedy & ǫ-GreedyThe most natural short-sighted strategy that an agent an be following is to always selet theation with the maximum positive outome. Suh a strategy is referred to as being greedy given itsontinuous preferene for ations with maximum estimated goodness. However, this type of a strategyalone is problemati for e�ient exploration in RL as other possibly less favourable urrent ationsould result in better performane in the long run. To overome that problem, a randomly greedyation seletion strategy was devised, namely, ǫ-greedy. In suh a strategy, the urrent best ation isonly seleted with a probability (1− ǫ) where ǫ : 0 ≤ ǫ ≤ 1. The greediness of the RL agent is henede�ned by the value of ǫ. Moreover, this strategy is independent from the state-ation value estimates
Q(s, a) in terms of the probability distribution used for seleting the ations.BoltzmannThe Boltzmann ation seletion strategy is a ustomization of the softmax approah (Sutton &Barto, 1998) where the Boltzmann (also known as Gibbs) probability distribution is used to modelthe ation seletion strategy. Ations are seleted based on a Boltzmann probability distribution builtusing their Q(s, a) values, see equation (2.6).

P (a) =
eQ(a)/τ

∑
forall b∈A eQ(b)/τ

(2.6)The extent of Boltzmann exploration is ontrolled by the temperature parameter τ : 0 < τ . Thehigher the value of τ is, the more explorative the RL agent is, i.e., ations tend to have nearly equalhanes of being seleted. As the temperature ools down, the shift towards exploitation beomesgreater and the RL agent beomes more greedy. However, deiding on the best initial value of τ isnot a straightforward task and ould be more of a human intuition.21



2.1. Reinforement Learning2.1.3 Deentralized Reinforement LearningAs optimization problems beome more omplex in terms of sale, problem modelling in a lassialentralized RL manner beomes more di�ult and the solution might beome intratable. Hene,the need for RL deentralization emerged. Suh a deentralization is partially realized through theMulti-Agent RL (MARL) realm. The latter has resulted in a onsiderable amount of literature.An important lassial di�erentiation between MARL implementations is presented in (Claus &Boutilier, 1997) between what they refer to as independent learners, where agents learn based ontheir pure interation with the environment without realizing the existene of other agents, and jointation learners, where an agent learns a so-alled joint ation by observing other agents ations andinterpreting their loal e�ets. Moreover, an interesting lassial study by (Tan, 1998) shows thatooperation among RL agents, if done intelligently, may result in better performane than indepen-dent learning. Cooperation there inludes ommuniating agent's loal information suh as, learningepisodes, poliies, seleted ations, rewards and sensor information. The views presented by (Claus &Boutilier, 1997; Tan, 1998) form the foundations of modern RL deentralization where the single RLagent world has been transformed into a world of RL agents either trying to ompete or ollaborate.Conentrating on ompetitive behaviour, the minimax-Q-Learning algorithm (Littman, 1994),where an agent learns to win as a result of other agent's loss has emerged. An extension to thatapproah is presented in (Hu & Wellman, 1998). A MARL sheme where oordination among agentsis based on having a notion of other agents inorporated in the loal state desriptions is presentedin (Abul et al., 2000). They onentrate on problems with large state-ation spaes where they usegeneralization and funtion approximation (Sutton & Barto, 1998). In a oordinated RL sheme(Guestrin et al., 2002), oordination among RL agents is based on oordination graphs where agentsselet an optimal joint ation with one-hop neighbours without searhing the large joint ation spae.A similar Q-Learning spei� approah is presented in (Kok & Vlassis, 2006, 2004). Following theidea of learning from the best, a ooperative learning approah for agents using Q-Learning withweighted agent expertness is desribed in (Ahmadabadi & Asadpour, 2002; Ahmadabadi et al., 2001).Furthermore, a distributed value funtion learning sheme is presented in (Je� Shneider, 1999) wherean RL agent exhanges its value funtion estimations with neighbouring agents. An agent in thatsheme an learn a value funtion based on the sum of all other agents' disounted expeted rewards.Cooperation through sharing rewards among RL agents is rationalized in (Miyazaki & Kobayashi,1999) where they provide a minimum preondition to preserve that rationality. On the other hand,an alternative approah to inorporating other agents' rewards or Q-values is presented in (Tesauro,2003). They present �Hyper-Q� through whih an RL agent using Q-Learning an form mixed strate-22



Chapter 2. State of the Artgies and predit other agents' strategies through Bayesian inferene (Berger, 1993). In a partiallyobservable problem, Goldman & Zilberstein (2004) propose a group of NEXP and P problems whereagents share a ommon deentralized POMDP and try to maximize a global goal through di�erentommuniation manners.
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Figure 2.2: A deentralized RL strutureWe see the deentralization of RL as a means to break down a global problem into manageableloal RL problems. As a result, loal RL agents try to at (ollaboratively) towards a (near) optimalsolution for the ommon global problem, see Figure (2.2). In (Hoen et al., 2006) a study of thedi�erent behaviours (ooperative vs ompetitive) of learning agents in a multi-agent system (MAS) isprovided. As far as the latter study is onerned, we are interested in what they de�ne as onurrentlearning where eah agent learns using a dediated learning proess. Overall, we refer the reader tothree surveys (Bu³oniu et al., 2008; Yang & Gu, 2005; Panait & Luke, 2005) that ould provide awider view on multi-agent (reinforement) learning approahes.2.2 Unertainty in UTCThe nature of a UTC system is omplex and often hard to predit. Numerous fators ould shapethe unpreditability in a UTC system. Humans' varying behavioural patterns, equipment wearingout and ommuniation noise ould all be seen as soures of unertainty in UTC systems. Consider�utuating ity tra� over di�erent periods of time and the resulting di�ulty in adapting ontroldeisions. Suh deisions might not only have instantaneous e�ets but also long-term ones makingpreditability harder. If we hypothesise the possibility of obtaining 100% aurate ommuniationand tra� information we would still however be unsure about prediting hanges in tra� mainly23



2.2. Unertainty in UTCdue to humans, aidents, road works and nature. Interestingly, (Satyanarayanan, 2003) elaborateson unertainty holistially as in; �it is ironi that in today's all-digital world, unertainty reappears asa major onern at a higher level of representation�. In (Viti, 2006), a thorough study is provided onthe unertainty and dynamis of road users' travelling and delay times. It is argued that unertaintyin a transportation network originates from the variability in supply and demand (Viti, 2006). Thisould be of a yli nature or sporadi, (e.g., hosting world football hampionship or possibly railwayworkers strike).As far as unertainty is onerned, we are mainly interested in �utuating urban tra� and themeans to generially detet tra� hanges online and respond adequately using deentralized RL.2.2.1 Tra� PatternsAs (Visser & Molenkamp, 2004) put it when disussing the identi�ation of tra� patterns:�Determining the daily and weekly patterns is a bit of an art, more than a siene: results are partlydependent on every individual's own frame of referene (e.g., Is the Thursday before Easter a regularweekday as far as tra� is onerned?).�Most ommon approahes to determining tra� patterns are o�ine approahes that require theanalysis of massive historial data and engineering expertise (Venkatanarayana et al., 2007). Further-more, a question arises onerning the onstituents of a tra� pattern. Volume and diretionalityould be intuitively seen as important harateristis of a given tra� pattern. Several approahesinluding inident and tra� pattern or state detetion have been proposed upon the introdutionof Floating Vehile Data (FVD) tehnologies (Kerner et al., 2005; Kamran & Haas, 2007; Matshke,2004; Chen et al., 2007). Most of these approahes entrally proess ommuniated FVD suh as traveltime and veloity in order to provide a global image of tra� status, or in ertain ase, tra� aidents(Kamran & Haas, 2007). Also, they mainly rely on road segmentation where spei� segments of theroad network are individually assigned spei� harateristis. In (Matshke, 2004) however, tra�state is estimated using data fusion at the juntion level from existing infrastruture soures, (e.g.,indutive loop detetors) and signal timings where FVD is only used to help orret suh estimations.Another dimension being explored for general tra� state information gathering is not based onFVD but rather �oating phone data (FPD) (Ramm & Shwieger, 2007). Their argument is based onthe availability of the GSM infrastruture and on the undesired introdution of additional osts. Theyrely on mathing mobile phones signal strength to signal strength maps provided by GSM networkproviders. However, we are interested in online tra� pattern hange detetion that runs loally24



Chapter 2. State of the Artwithout relying on a priori models of tra�.2.3 Classial UTC ApproahesIn this setion we present lassial UTC approahes. By lassial we mean de fato adaptive UTCsystems that have been widely deployed over the last four deades in major ities in the world. Miller(1963) was arguably the �rst to introdue the notion of adaptive tra� ontrol (Bernhard, 2002). Thenotion of adaptability there was based on basi models to alulate wins and losses from delayingdeisions to swith among di�erent tra� light phases. We present two well-known (Klein, 2001)adaptive UTC systems that are still in servie in a number of major ities worldwide, namely, SCATS(deentralized) and SCOOT (entralized).2.3.1 SCATSSCATS was introdued in the late 1970s after it had been developed by the New South Wales roadsand tra� authority in Sydney, Australia (Sims & Dobinson, 1980; Lowrie, 1982). The system was anurgently needed response to the inreasing ongestion osts in Sydney during that time. Results fromits initial deployment showed signi�ant improvement of 35− 39% in performane onerning journeytime ompared to optimized �xed-time signal plans (Sims & Dobinson, 1980). SCATS runs in manymajor Asian and Australasian ities, suh as Sydney, Melbourne, Aukland, Hong Kong, Singapore,Tehran, Doha and Shanghai, as well as, in Amerian ities suh as Detroit, Las Vegas, Delaware andMinneapolis. However, it has only been onservatively adopted in Europe, for instane, in Dublin andother ities in Ireland and in Rzeszów in Poland.SCATS follows a hierarhial hardware ontrol arhiteture omposed of:� Loal ontrollers: these are miroomputers situated at eah signalized juntion in order toollet and proess data gathered from loal sensors, (e.g., loop detetors, usually 5 meters long,or ameras) on every lane per approah. Data proessing inludes the alulation of headwaytime, loop oupany time, spae time between vehiles and speed. See Figure (2.3) for a visualexplanation of the alulated information. Spae time is key to the loal ontroller funtionalityas it haraterizes urrent tra� �ow.� They are responsible for the tatial ontrol part in the system. Suh ontrol takes deisionsto adjust split timings based on analysed data from loal sensors but still maintains thesame yle length at eah ontroller. 25



2.3. Classial UTC Approahes� Regional masters: eah is a omputer that ontrols a network of independent subsystems. Asubsystem an be omposed of one up to ten loal juntion ontrollers. On the software level,the regional omputer sees the subsystems grouped into several systems.� They are responsible for the strategi ontrol part in system. Suh ontrol take deisions tooptimize subsystems' di�erent parameters inluding, yle time, splits and o�sets in orderto respond to existing tra� demand.� Control entre: the supervisor entral omputer that onnets all regional master omputers. Itallows for overall tra� monitoring inluding systems, subsystems and loal ontrollers, as wellas, data storage and image bakups of regional omputers. Also, it allows tra� engineers tomanually tune or override system settings.
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Figure 2.3: SCATS loal ontroller data (Sims & Dobinson, 1980)Very few algorithmi details are available about SCATS (Head & Sheppard, 1992). However, it isunderstood that the algorithm mainly relies on the degree of saturation (DS) metri on whih it basesadjustment deisions for di�erent yle, o�set and split timings. The DS is based on the e�ienyof using the green time at a spei� phase. It is alulated by determining the ratio of e�etivelyused green time to the available green time at a given approah. Aording to (Klein, 2001), �thee�etively used green time is the length of green that is just su�ient to pass the platoon of vehilesat the approah had they been travelling at optimum headways under saturation �ow onditions.�The di�erene between the e�etively used green time and the available one is dedued from thesum of no-load instanes on sensors during the green time period ompared to that under saturatedtra� onditions. Typially, the goal of SCATS is to try to keep the DS to near 90% on the lanewith the maximum saturation level. Furthermore, depending on tra� onditions, SCATS allows for26



Chapter 2. State of the Artneighbouring subsystems enountering similar or near similar yle times to unite and form biggersystems or one large system. When the opposite ours and united subsystems start to enounterdi�erent DS levels, they onsequently disengage (Head & Sheppard, 1992).The performane of SCATS is however poor under saturated tra� onditions (Wolshon & Taylor,1999; United States FHWA, 2008). In a small-sale study in South Lyon ity, the overall waiting time,(i.e., delay) in the system was redued more e�iently under low tra� onditions than under hightra� onditions. Compared to simulated �xed-time ontrol, SCATS average delay per signalizedjuntion was higher under saturated tra� onditions (Klein, 2001).2.3.2 SCOOTSCOOT is a entralized UTC system that was developed at the British Transport and Road ResearhLaboratory (TRRL) (Robertson & Bretherton, 1991). Early prototypes of SCOOT were initially triedin the late seventies in Glasgow and Coventry. Compared against �xed-time plans generated by theTra� Network Study Tool (TRANSYT) (Robertson, 1969), results have shown an approximate 11%and 16% improvements in terms of delay time under peak and o�-peak situations respetively (Klein,2001). The main di�erene between TRANSYT and SCOOT is that the �rst produes optimized �xed-time ontrol plans through o�ine software simulations while the latter is the hardware realization ofa real-time UTC optimization version of TRANSYT (Klein, 2001). SCOOT has been deployed onvarious sales in numerous ities worldwide. In the UK, it is used for instane, in London, Bristol,Southampton and Edinburgh. It has also been in use in Madrid and in Cyprus. SCOOT has aonsiderable share of Northern and Southern Amerian deployed UTC systems suh as in, Toronto,Santiago and Sao Paulo. Other ities in the world like, Beijing, Dubai, Bahrain, Cape Town andBangkok also use SCOOT of various sales.SCOOT uses loop detetors situated upstream from a given juntion stop line, normally justdownstream from the previous juntion. SCOOT bases its performane on three optimization riteria,namely, bandwidth of green waves, average queues and vehile stops. Green waves are haraterized bya series of green signals on a given route where a platoon of vehiles an pass through interonnetedjuntions without stopping. SCOOT's goal is mainly minimizing the average sum of vehile queuesin a given area and the number of times vehiles need to stop. Consequently, it maintains an on-linemodel for vehile queues that is updated periodially in order to determine optimization deisionsneeded for adjusting split, yle and o�set timings.SCOOT's optimization routine (Robertson & Bretherton, 1991) is as follows. Shortly before ev-ery phase hange, the split optimizer deides whether this hange should be advaned or postponed27



2.4. Non-RL UTC Approahesby four seonds or otherwise left to our without alteration. The o�set optimizer is invoked everyyle to evaluate the general performane at a given juntion. Similar to the split adjustment, o�setoptimization deisions ditate four seonds addition or dedution from the urrent o�set or its unal-teration. Usually, every �ve minutes the yle optimizer deides whether to alter the urrent yletime by a few seonds or not. However, SCOOT was reported to degrade in performane under thesaturated tra� onditions (Papageorgiou et al., 2003).2.4 Non-RL UTC ApproahesThis setion disusses UTC optimization approahes that do not follow the RL sheme. These ap-proahes are grouped aording to the design of their ontrol arhiteture, i.e., entralized, hierarhialand deentralized. The literature available on non-RL UTC is vast, however, we try to over a sampleof representative approahes. An analysis is provided at the end. Furthermore, in Katwijk (2008),a taxonomy is provided of a number of UTC systems based on their arhiteture, deision makingproess (e.g., online/o�ine), tra� predition model, optimization frequeny and their horizon. Onthe other hand, in (Lin, 1999), UTC systems are disussed based on whether they use o�ine or onlineoptimization. We disuss non-RL UTC systems grouped by their arhiteture.We brie�y introdue evolutionary geneti algorithms (Mithell, 1998) as they are mentioned whiledisussing some of the systems below. A geneti algorithm is a programming tehnique that mim-is biologial evolution as a problem-solving strategy. In general, these algorithms onsist of ylesof initializing the population of possible solutions, evaluating eah solution aording to a �tnessfuntion, reombining seleted solutions, mutating them and �nally evaluating new solutions. Thisapproah enables evolutionary geneti algorithms to seek global optimal performane by tuning theirown parameters and adapting to hanging irumstanes in omplex environments.2.4.1 CentralizedIn this setion we review entralized UTC approahes, i.e., those where all information proessing andgeneration of timings for signal settings for all tra� light ontrollers is performed at a single entralsystem point.2.4.1.1 TUCOne of the main and relatively reent entralized UTC approahes is the tra�-responsive urbanontrol (TUC) strategy (Dinopoulou et al., 2006; Diakaki et al., February 2002; Bielefeldt et al.,28



Chapter 2. State of the Art2001). It aims at dealing with saturated tra� onditions in real-time. TUC is based on a store-and-forward model for an urban tra� network that is represented as a direted graph. Essentially, in suha model, vehiles exhibit �xed travel times and are stored at the end of a given link if the inomingtra� is higher than the outgoing tra�. Depending on the signal ontrol deisions, vehiles areforwarded to the next link. TUC's model allows for the use of di�erent programming approahes suhas, linear, quadrati and nonlinear programming in order to optimize yle, o�set and split timingsper juntion. TUC translates the store-and-forward UTC model into a linear-quadrati optimizationproblem that aims at avoiding tra� spill-bak in oversaturated onditions through split tuning. Italso tries to maintain a high apaity per juntion through yle time alteration deisions based ona saturation level feedbak loop. The o�set ontrol deisions in TUC aims ultimately at providinggreen-waves along arterial roads.2.4.1.2 DISCOThe Dynami Intersetion Signal Control Optimization (DISCO) (Lo et al., 2001) approah uses aentralized evolutionary geneti algorithm to solve a ell-transmission model (CTM) of the tra�network in an o�ine manner. The CTM is based on the hydrodynami theory whih models therelationships between density, �ow and speed on a marosopi level.2.4.1.3 MOTIONMOTION (Bush & Kruse, 2001) is a entralized UTC optimization approah built by Siemens AG,Munih. It optimizes for di�erent signal timings as well as providing inident detetion and publitransport prioritization. Its optimization algorithm is a multi-step one that �rstly gathers tra�volumes and oupany data, seondly, it models that data on the network level. The third andfourth step are onerned with loal juntion optimized signal timings and with determining if thesetimings ould serve the global aim of minimizing stops and delays. If found suitable, a slow transitionto the new timings is performed. MOTION is proprietary hene details are sare about the atualoptimization algorithm.2.4.1.4 OthersA entralized UTC approah that models the tra� network using hybrid petri nets (HPNs omposedof disrete and ontinuous PNs) is presented by (Di Febbraro et al., 2004). They propose a ontrolstruture through whih a supervisor modelled as a HPN oordinates all signalized juntions. Eahsignalized juntion is omposed of two ontrollers, namely, a loal and a priority ontroller. The latter29



2.4. Non-RL UTC Approahesdeals with situations where emergeny or publi tra� is to be prioritized while the �rst operates undernormal tra� onditions. The loal ontroller aims at minimizing the number of waiting vehiles at agiven juntion and at equalizing all queue lengths. Moreover, the priority ontroller at a downstreamjuntion reevaluates its phase timings depending on ost heuristi funtions upon being noti�ed byan inoming emergeny or a publi transport vehile.2.4.2 HierarhialIn this setion we review hierarhial UTC approahes, i.e., systems where tra� information proessingand deision on tra� signal timings is performed on several hierarhial layers, e.g., on loal ontrollers,regional managers and single entral system point.2.4.2.1 RHODES/COPThe Real-time, Hierarhial, Optimized, Distributed and E�etive System (RHODES) is one of themain hierarhial UTC systems that purely relies on DP algorithms (Mirhandani & Head, Deember2001). RHODES has a three-level ontrol arhiteture; network load ontrol, network �ow ontroland, at the bottom, juntion ontrol. A parallel three level data arhiteture feeds eah ontrol levelwith network load preditions, (e.g., apaities, travel times, disruptions), network �ow preditions,(e.g, platoon �ow) and juntion �ow preditions, (e.g, vehile �ow). RHODES is able to use dataprovided by loop detetors, or any form of similar sensors, loated upstream from the stop line. It isoptionally possible to use data provided by stop-line sensors if available for better queue estimations.The network load ontroller passes its estimated hanges in tra� load to the network �ow ontrollerwhih determines the target signal timings (based on optimization for minimal stops and/or delay)per juntion ontroller. The latter is integral to RHODES funtionality and it uses the ControlledOptimization of Phases (COP) (Sen & Head, 1997) model for loal juntion ontrol optimization.COP is a DP-based algorithm that tries to optimize a sequene of phase timings.2.4.2.2 UTOPIAThe Urban Tra� OPtimization by Integrated Automation (UTOPIA) (Mauro, 1990) is an ItalianUTC system developed at FIAT's researh entre in the early 1980s. UTOPIA uses the rolling horizonoptimization sheme at the loal juntion level ontroller. The loal ontroller keeps a mirosopimodel of loal tra� onditions that allows for an optimization based on di�erent weighted osts forvehiles waiting time, number of stops and queues. Publi tra� an also be prioritized using thatsheme. On the area level ontrol, groups of signalized juntions are assigned ommon stage spei�s.30



Chapter 2. State of the Art2.4.2.3 PRODYN-HPRODYN-H (Farges, et al., 1983) stands for the Frenh �programmation dynamique� in its hierarhialversion. PRODYN-H is omposed of two ontrol levels that use an improved forward DP algorithm forminimizing delays based on predited demand. Limited details are available onerning the hierarhialversion but more on its deentralized version is disussed later.2.4.2.4 OthersNot proposing diretly a UTC system but motivated by the inreasing number of di�erent tra��instruments� and espeially in the Netherlands, (Katwijk R., Otober 2002) propose a layered arhi-teture through whih tra� instruments are modelled as intelligent agents. These agents oordinateon di�erent levels to form a ontroller supervision arhiteture. This arhiteture omprises a groupof network agents on the highest level, followed by route agents and �nally a group of measurementagents.2.4.3 DeentralizedIn this setion we review deentralized UTC approahes, i.e., systems where tra� information pro-essing and deision on tra� signal timings is distributed on individual tra� ontrollers and thatdoes not involve entralized elements.2.4.3.1 PRODYN-DThe deentralized version of PRODYN is referred to as PRODYN-D (Farges, et al., 1983). It usesa rolling horizon optimization approah using an improved forward DP. The horizon is typiallysegmented into �ve seond setions known as sample time. PRODYN-D makes use of two loopdetetors on the upstream and near the stop line in order to gather information onerning vehiles'arrival and queue estimation. This information is used to optimize timings for a given signalizedjuntion for the next seventy-�ve seonds (horizon duration). The main optimization riterion isminimizing the sum of delays over the horizon. Moreover, neighbouring signalized juntions (usuallyseparated by no more than 200 meters of distane) exhibit oordination by sending ontrol informationgathered over the horizon from upstream juntions to downstream juntions. The latter use thisinformation in order to have better vehile arrival foreasts and hene better optimization of signaltimings. 31



2.4. Non-RL UTC Approahes2.4.3.2 ALLONS-DThe Adaptive Limited Lookahead Optimization of Network Signals - Deentralized (ALLONS-D)(Porhe & Lafortune, 1997) uses a rolling horizon DP method to optimize for minimum delay persignalized juntion. It uses vehile arrival information gathered from upstream loop detetors in orderto hoose the suitable phase to be green with prede�ned limits on maximum and minimum green timefor any phase. For instane, a signalized juntion that has two phases has a deision spae in the formof a binary tree. ALLONS-D assumes the existene of impliit oordination between its ontrolledjuntions given the loation of its loop detetors on the upstream and the rolling horizon DP design.However, it provides also a hierarhial arhiteture version of two levels. The �rst level is the networklevel that expliitly ommuniates ertain oordination requirements to the loal ontrol. A similarapproah to ALLONS-D is the Optimized Poliies for Adaptive Control (OPAC) (Gartner, Transp.Res. Reord 906, 1983) where the latter uses a di�erent delay alulation model for its optimizationsheme.2.4.3.3 SuRJEA simulation based approah that uses swarm intelligene for modelling tra� dynamis, i.e., repre-senting vehiles as ants, is presented in (Hoar et al., 2002). This simulation environment is knownas SuRJE. In SuRJE, ommuniation among vehiles is done through stigmergy where eah vehileleaves a trae of sents known as pheromones that gradually disappear as time passes. Vehile speedan hene be determined aording to the density of sent traes. Other types of sent traes oulddenote a deelerating or hanging lanes vehile. Eah tra� light in SuRJE uses an evolutionary ge-neti algorithm to optimize for the minimum umulative waiting time relative to the urrent journeytime for all ars.2.4.3.4 OthersAn adaptive tra� light sheme that bene�ts from V2V ommuniation through vehiular ad-honetworks (VANETs) is presented in (Gradinesu et al., 2007). The adaptive tra� light uses vehiledemand information gathered through ommuniation with vehiles. The loal goal is then set tominimize delay by alloating the minimum theoretial optimum yle time, omputed using Webster'sequation (Gradinesu et al., 2007). Consequently, the green splits for eah phase are alulated in away that allows for equal saturation levels on all of a juntion's approahes.A reservation-based system for UTC is presented in (Dresner & Stone, 2004). The system assumeseah vehile to be ontrolled independently by a rule-based driver agent and eah tra� light with a32



Chapter 2. State of the Artontroller agent. Hene, the tra� light ontroller reeives vehile requests that omprise informationonerning vehile arrival veloity (inluding minimum and maximum veloity limits), arrival time,diretion and vehile dimensions. Aordingly, the tra� light ontroller simulates a given vehile'sjourney and deides whether to aept or rejet the vehile's request. This deision depends on theavailability of slots in the ontroller's reservation system. The ultimate goal in suh a system is tominimize delay. Furthermore, an improved version of the tra� ontrol part is presented in (Dresner& Stone, 2005) and a study for possible multi-agent learning is provided in (Dresner & Stone, 2006).A distributed game theory-based approah for oordination between tra� light ontroller agentsis presented in (Bazzan, 2004). Controller agents are modelled as �individually-motivated� agents thattry to balane between their loal interest and the global one. Eah agent is assigned a set of prede�nedstrategies with whih to play the game. Furthermore, the approah is applied to an arterial road often signalized juntion agents. A omparison of their distributed oordination approah against aentralized synhronization plan shows better performane in ertain senarios of nearly equal tra�in di�erent diretions.A deentralized logi programming based approah for tra� ontrol is presented in (Felii et al.,2006). This approah uses a logi programming solver, namely, the Leibniz System (Ortega & Planas-Bielsa, 2004) in order to �e�iently� solve the logi problem per signalized juntion. A transition graphis used to present the sequene of phases per juntion. Transitions are triggered by logial rules thatevaluate prediates of ongestion levels and phase maximum time per signalized juntion. Moreover,in (De Shutter, 1999) a single juntion ontroller is designed to provide near optimal swithing shemeby solving a heuristially de�ned model for the evolution of queue lengths as ontinuous variables.2.4.4 SummaryEssentially, entralized approahes to the inreasingly omplex UTC problem are often of a limitedsuess, espeially as providing a salable responsive UTC behaviour is vital (Bazzan, 2004; Bielliet al., 1994). The general trend is towards the distribution of UTC systems in a hierarhial butinreasingly towards a fully deentralized manner. Furthermore, hierarhial UTC systems tend torely on a DP sheme that uses the rolling horizon tehnique. Suh systems ould have limitationswhen applied on a larger sale given the inreasing omputational omplexity while running in real-time for more than one juntion (Cai et al., 2009). As deentralization of UTC is more likely tosale up performane, however, loal algorithms need to ensure that better global performane an beahieved, possibly through ollaboration. Some of the studied deentralized UTC approahes still relyon the rolling horizon DP whih poses questions onerning their e�ieny in responding to tra�33



2.5. RL-Based UTC Approaheshanges in real-time given the loal miroproessor limitations. Others are in�exible when it omesto the soure of information needed for optimization. Some also assume the availability of ertaininformation that might be unrealisti to obtain aurately. Moreover, ertain designs of juntionontrollers using rule-based heuristis and logial programming seem to require human expertise ona juntion level. Indeed, suh designs have a room for error and their performane ompared to thebest performane that ould be possibly ahieved in a given real life senario is unertain.2.5 RL-Based UTC ApproahesThis setion presents and disusses relevant approahes to UTC that use RL in some form. A num-ber of these approahes use hybrid modelling tehniques suh as the use of geneti programming orfuzzy neural networks along with RL while others are purely RL-based. In a reent survey (Bazzan,2009), UTC approahes were lassi�ed into three ategories; lassial (e.g., SCATS), atuated (traf-� responsive) and new tehnologies (e.g., autonomous guided vehiles). Most of the deentralizedlearning-based UTC approahes where lassi�ed as tra� responsive depending on their sale, (i.e., anisolated intersetion or more than two intersetions) and their support for oordinated optimization.We present several RL-based UTC approahes lassi�ed based on the type of tehnology used.We brie�y introdue fuzzy neural networks (Fullér, 2000) as they are mentioned while disussingsome of the systems below. These networks are naturally the result of ombining fuzzy systems andneural networks. A fuzzy system is typially a set of parameterized fuzzy rules that are used asan inferene engine through interating with a given knowledge base. On the other hand, a neuralnetwork is implemented based on harateristis of biologial neurons in order to apply their problemsolving tehniques to omputer learning problems. Neural networks are adaptive, as they learn howto do tasks and reate their own onnetions based on input in a learning phase. Neural networksan be trained using various adaptation and learning algorithms. Hene, a fuzzy neural network isoriginally a fuzzy system that has been enabled to learn using an algorithm based on neural networktheory to determine the parameters of its fuzzy rules by proessing a set of observations.2.5.1 Q-Learning-Based ApproahesIn (Abdulhai et al., 2003), whose authors are strong advoates of using Q-Learning for UTC optimiza-tion (Abdulhai & Pringle, 2003), results from using Q-Learning for an isolated tra� light ontrollerare shown to outperform a pre-timed sheme by 38− 44% for variable tra� �ows. Q-Learning eitherslightly outperformed or was equal to the pre-timed ontrol sheme when tra� �ows were uniform34



Chapter 2. State of the Artor onstant. The reward model used is based on penalization of inreasing delay proportional to thequeue lengths on all approahes. The juntion states are identi�ed through di�erent queue lengthsand elapsed phase time. Moreover, an ation is haraterized by the deision on the length of thenext phase time, within pratial limits. Notieably, they do not model the optimization problem asan MDP, instead they use a version of the Cerebellar Model Artiulation Controller (CMAC) (Albus,1975). CMAC is similar to a neural network representation where sensor inputs are mapped to so-alled assoiation ells (states) with varying weights. Q-values are used as weights for the state-ationpairs and any update on a given pair's Q-value results in an update to the nearby pairs' Q-values.The use of some version of CMAC ould be problemati e�ieny-wise as juntion size and numberof states inreases. Moreover, no results have been reported about larger sale experiments usingmulti-agent shemes. A similar approah has been used, in an extended work, for ontrolling so-alled�variable message signs� for the purpose of better ramp metering on a freeway orridor (Jaob &Abdulhai, 2005).A simple pair of onneted tra� light juntions eah running a Q-Learning-based agent is pre-sented in (Camponogara & Werner, 2003) where they model and ontrol a small tra� network usinga stohasti game sheme. Their results showed that Q-Learning outperformed random and best-e�ortpoliies. The reward model is a penalty based on the number of vehiles waiting at a given juntion.Moreover, the average number of waiting vehiles was redued by 30% when both agents were usingQ-learning as opposed to it being used by one agent at a time.Pendrith (2000) proposes a distributed Q-Learning sheme in whih an o�ine optimization aimsat ontrolling vehile speed. The basi model used is a 3×3 grid of mobile vehiles where the learningagent (vehile) is positioned in the middle. Vehiles are presumed to be equipped with radar sensorsthat enable a given vehile to determine the states of the surrounding vehiles if any. No tra� ontrolstrategy was proposed there and the assumption of pervasive radar sensors is quite unrealisti.More omplex RL tehniques were used in (Rihter et al., 2007). They exploited the NaturalAtor-Criti (NAC) (Peters et al., 2005) algorithm that is based on four di�erent RL methods, i.e.,poliy gradient, value estimation, natural gradient and least-squares temporal di�erene Q-Learning.In their simpli�ed simulation they had �ve senarios and every juntion on the grid had four phases.NAC managed to outperform a SCATS inspired tehnique (namely, SAT) in a 10× 10 juntion gridsimulation while optimizing for vehile average travel time. However, NAC needed approximatelythree days of real world time in order to be on par with SAT.35



2.5. RL-Based UTC Approahes2.5.2 Evolutionary Programing & RLA ombination of evolutionary geneti programing and a Learning Classi�er System (LCS) is used inthe so-alled Organi Tra� Control (OTC) (Prothmann et al., 2008) approah. We onsider OTCin this setion given the lose similarity of LCS to RL. In LCS, a rule-based system omposed oflassi�ers, i.e., a set of (ondition, ation, value) triplets is used. The system learns by reeivingrewards from the environment. A group of lassi�ers whose onditions math a given environmentalstimulus form what is referred to as a �math set�. The average values of similar ations are alulatedand the ation with the maximum average value is exeuted. Consequently, the reward reeived fromthe environment is used in updating the values of mathing lassi�ers omprising the exeuted ation.Furthermore, The OTC arhiteture per juntion is omposed of three layers. The top layer uses anevolutionary algorithm in an o�ine manner that interats with a given simulator in order to providenew lassi�ers. The latter ould be some genetially enhaned o�spring lassi�ers or those that suitnew tra� onditions. The middle layer omprises an LCS that makes tra� ontrol deisions and anobserver that feeds the LCS with tra� �ows, all in an online manner. The bottom layer is a tunabletra� light ontroller that an relay tra� sensor data to the upper layer. As far as their evaluation isonerned, they have simulated two signalized juntions of di�erent sizes with a �ow of tra� of onepeak on three di�erent days. The referene baseline they ompare against is a �xed-time ontroller.Their results show 10− 12% improvement in average delay distributed among the three days for thebigger juntion while it was 6 − 8% for the smaller juntion. However, on the smaller juntion, asigni�ant di�erene was only notieable during the peak period. The opposite was true on the biggerjuntion. Furthermore, it transpires (Rohner et al., 2006) that the OTC arhiteture top layer usesan o�ine model-based mirosopi simulation. Given the inurred omputational omplexity andinfeasibility of installation per juntion, it was suggested to be deployed in a hierarhial manner fora group of juntions. As an extension of the OTC work, oordination among OTC ontrollers wasadded (Tomforde et al., 2008). Interestingly, there was no signi�ant improvement onerning averagetravel time and delay while the number of vehile stops was redued. Their simulated experimentswere based on an arterial road of �ve three-phased juntions and on a Manhattan-like grid of six four-phased juntions. Moreover, a ommon ritique of the OTC approah and its oordinated versionwould be the use of a model-based simulation as a key layer that ould a�et responsiveness. Suh ahoie might result in a salability problem and possible omplex oordination shemes. Given theirsmall sale experiments that problem might not have been disovered yet. In addition, it is not learhow the atual learning is happening in the LCS layer. Furthermore, (Cao et al., 1999) also proposea form of RL lassi�er system to build a distributed learning ontrol sheme for tra� light juntions.36



Chapter 2. State of the ArtThere was no signi�ant improvement in their approah against a random tra� ontrol sheme in asmall four-juntion senario.In order to provide �intelligent� ooperation shemes among RL-based tra� ontrol agents, di�er-ent forms of RL shemes have been oupled with entrally exeuted geneti algorithms in several ases(Mikami & Kakazu, 1994) (Yang et al., 2005). The geneti algorithms are used to tune the learningparameters of loal ontrollers in order to provide better global performane where RL is used at theloal level. However, the experimental senarios used were based on a small-sale simulation of fourto �ve juntions.2.5.3 Fuzzy Neural Networks & RLA ombination of fuzzy neural networks and a form of RL is used to build the hierarhial real-timetra� ontrol arhiteture presented in (Choy et al., 2003). The arhiteture is divided into juntionontroller agents, zone ontroller agents and regional ontroller agents. Information �ows in a bottom-up manner where juntion ontroller agents pass on tra� state, loal signal poliy and somethingreferred to as a �ooperative fator�. The latter determines the level of ollaboration needed basedon loal tra� onditions. Zone ontroller agents pass on similar types of information as the lowerlevels to the regional ontroller. The zone ontroller fuzzy-neural model determines the signal poliyand the ooperative fator based on an assigned inferene engine. These inferene engines translate adisretized ombination of oupany, tra� �ow, rate of tra� hange and loal ooperative fatorsthrough multiple �ltering layers of disretized tra� load and ooperation levels into a �nal zone signalpoliy and ooperation fator. All proessing layers' outomes (or neurons' outomes) are assignedvarying weights. An RL module built using a similar fuzzy-neural approah runs in a multistageonline manner. This module estimates the state of tra� using some delay estimates and alulates areward based on urrent, next and best state. Aording to the bak-propagated reward, neurons altertheir output weights using a ertain topologial update formula, and all agents adapt their learningrates. This work has simulated a tra� network based on a setion of Singapore's business distritomprising twenty-�ve ontrolled juntions. They have reported good results in terms of averagestoppage and delay time in two senarios of single and dual peak(s). Further similar work is presentedin (Srinivasan et al., 2006; Srinivasan & Choy, 2006). However, the RL approah they follow is ofpartial signi�ane and dependant on the nature of the fuzzy neural network representation, whihis a omplex one in that ase. In the typial sense of RL, they do not follow a lear learning nor anation seletion strategy, nor do they model RL as an MDP.37



2.5. RL-Based UTC Approahes2.5.4 Model-Based Vehile-Centri RLIn a vehile-entri approah, (Wiering, 2000; Wiering et al., 2004) researhed the bene�ts of usingmulti-agent model-based RL for tra� ontrol. Their approah is vehile-entri in the sense thateah ar estimates its waiting time and ommuniates it to the nearest tra� light. The tra�-lightontrollers are RL-based agents that implement a value-iteration DP algorithm. The approah isbased on maintaining probability estimates of waiting time per vehile's destination, and its plae atevery tra� light ontroller inluding the state of that tra� light (green or red). More probabilityestimates are maintained for the status of eah tra� light given a vehile waiting to go to a partiulardestination at a given plae on the signalized juntion. The ultimate goal is to minimize the waitingtime for vehiles at all juntions. These probability estimates are used in the tra� light's agentvalue iteration algorithm to update the value funtion for expeted waiting time. Moreover, theyexperiment with di�erent loal and global ommuniation senarios where tra� light agents anexhange knowledge for better deision making. In (Steingröver et al., 2005), a very similar approahis presented, where they take into aount ongestion levels at neighbouring juntions in the loaldeision making proess. It is notieable, that the last two approahes disussed plae some seriousassumptions on the type of information that is needed and might not be possible to aquire realistially,espeially, if tra� patterns are hanging.2.5.5 Spei� RL-Based UTC Approahes for Non-Stationary Environ-mentsWe disuss the most signi�ant work in RL that diretly addresses the non-stationary nature of tra�from a purely RL perspetive. In (Oliveira, et al., 2006), an RL approah to optimizing UTC whileresponding to tra� volume hange and driver behaviour, (i.e., deeleration) is presented. They followa mirosopi simulation approah given that it provides more ontrol of individual driver behaviourwhih allows the introdution of additional dynamiity in tra�. The driver behaviour model usedfollows the Nagel-Shrekenberg model (Nagel & Shrekenberg, 1992) that allows for aelerationand probabilisti deeleration (whih ould hint at overreation in breaking) on roads broken intoells of �ve meters length in an urban setting. The main design is divided into two stages, �rstly,learning for a given tra� pattern and, seondly, deteting hanges in tra� patterns. For learning,they assume that every stationary situation an be de�ned by a so alled �partial model�. In suh amodel, two funtions are de�ned; a transition funtion that estimates the transition probabilities anda reward funtion for reward estimation. These two funtions are updated for a given partial model38



Chapter 2. State of the Artbased on the number of times n some ation a was arried out in state s. Hene, a trunated n isanalogous to the learning rate for the transition and reward funtions. Any typial model-based RLan be used to loally optimize for a given partial model, suh as Prioritized Sweeping (PS) (Sutton& Barto, 1998). The detetion of hanges in tra� is based on how well a given partial model anrepresent the urrent tra� ondition. Hene, an error value is alulated for eah partial model thatdetermines its suitability for the urrent situation. This error value is updated proportionally to n andto the disounted transition and reward funtions values for the relevant partial model. Consequently,a group of predition error estimates are updated for eah partial model based on the prealulatederror values. An ative partial model is delared unsuitable for the urrent situation if its preditederror estimate beomes higher than a preset threshold. As a result of suh a situation, the partialmodel with the lowest predited error estimate than the given threshold is ativated, otherwise a newpartial model is reated for that situation.The experimental setup in (Oliveira, et al., 2006) is based on a 3 × 3 Manhattan road networkof varying link speed limits (54, 36, 18 km/h) where di�erent types of tra� patterns are inserted.An agent is assigned to ontrol eah of the nine signalized juntions in the network. Dependingon a disretized set of tra� volumes, eah agent has nine states showing an empty, regular orfull tra� onditions on two inoming approahes. Eah agent an selet between three prede�nedsignal plans that determines �xed phase timings for tra� travelling spei�ally from east to westand north to south. They have experimented with senarios of varying deeleration probabilities;
[zero, 0.1, 0.2, 0.3] where the number of stopped vehiles throughout the experiment duration wasused as a metri. As omparison baselines, they have used �xed-signal plans, greedy ontrollers, andQ-Learning and PS RL methods. Only in one single senario, (i.e., where deeleration probabilitywas set to 0.1) their approah outperformed the baselines. In the senario where the deelerationprobability was set to zero, their approah performed on a par with most of the baselines. In the twosenarios with deeleration probability 0.2 and 0.3, their approah failed against the greedy baseline. Itappears that there is a major issue with their approah's responsiveness to hanging tra� situations.They argue that on higher deeleration probabilities, learning agents would only be able to reognizeone state and hene the poor performane. If we assume the latter was true, then one would wonderwhy their approah failed to outperform the baselines under a zero deeleration probability (theirideal senario). Moreover, regardless of the simplisti simulation sale onduted and the use ofan advantageous Manhattan road layout, results on how e�ient their approah was in suessfullydeteting tra� pattern hanges were not provided and other metris suh as vehile average waitingand travelling times were not measured. 39



2.6. Summary2.6 SummaryThis hapter provided the bakground required for understanding our approah and related work. Itpresented RL and its di�erent onstituents inluding popular learning and ation seletion strategies.Also, the deentralization of RL was disussed. Moreover, we disussed the unertainty in UTC andidenti�ed tra� �utuations as a main soure of unertainty in UTC, therefore identifying the needto provide a tra� pattern hange detetion mehanism. We believe, this mehanism should not relyon a priori tra� models and should detet hanges in tra� patterns in an online manner.Two lassial UTC systems, i.e., SCATS and SCOOT were presented. Although these systemsare deployed in many ities, they have also shown ertain limitations in their performane. SCATSperforms poorly under saturated tra� onditions (Wolshon & Taylor, 1999; United States FHWA,2008) despite its adaptive nature, while SCOOT was reported to degrade in performane under thesame onditions as well (Papageorgiou et al., 2003).Various non-RL-based UTC approahes ategorized by their arhiteture, i.e., entralized, hierarhialand deentralized, were disussed. Given the inreasing problem modelling omplexity, the suess ofentralized UTC approahes is limited. Several deentralized and hierarhial UTC approahes thatuse DP were also disussed. These approahes mainly use the rolling horizon DP approah. The latterposes limitations when used in a deentralized manner as loal miroproessors might not be able toope in real-time with �utuating tra�, espeially using the rolling horizon DP (Cai et al., 2009).Moreover, ertain approahes using rule-based heuristis and logial programming seem to requirehigh expertise and it is not lear how that an sale.A number of hybrid modelling tehniques that ombine RL with, for example, geneti programmingor fuzzy neural networks were presented. UTC approahes using Q-Learning have shown promisingresults in terms of reduing vehile waiting time. More omplex RL-based approah, i.e., NAC,needed approximately three days of real world time in order to be on a par with a SCATS-inspiredalgorithm, whih poses a problem for providing real-time adaptiveness in UTC. Some of the otherRL-based approahes assumed the pervasiveness of unrealisti soures of sensor information whileothers did not use real life maps but rather small-sale simulation of a limited number of juntions.Other model-based UTC approahes that use RL do not take into aount the fat that using a prioritra� models given the unertain behaviour of urban tra� is a strong assumption (Spall, 2003).A ommon ritique for most of the RL-based, whether hybrid or not, approahes is that they donot show signi�antly better performane that is based on real life maps and do not support onlineUTC optimization under �utuating urban tra� onditions. An approah that diretly addresses the�utuating (non-stationary) tra� nature was presented in (Oliveira, et al., 2006) whih we disussed40



Chapter 2. State of the Artearlier. Mainly, the approah is model-based and it does not show signi�ant performane improvementon the baselines they used even on a simple Manhattan-like road network while also not evaluatingfor basi metris suh as vehile waiting time.After reviewing the related work, it appears that there is a gap/need for model-free deentralizedRL approahes for UTC optimization that ould respond to tra� �utuations and adapt to newtra� onditions e�iently. We present the Soilse approah in the following hapter.
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Chapter 3
Soilse
This hapter desribes the Soilse approah to optimization of urban tra� ontrol (UTC). The Soilseapproah models individual tra� light ontrollers as adaptive RL agents apable of responding tohanging tra� patterns that might adversely impat their performane. These agents an makeuse of ollaboration with their neighbours to improve performane. In ontrast to previous workon Reinforement Learning (RL) in UTC (see Setion (2.5)), Soilse provides a �exible RL agentdesign that supports optimization for di�erent tra� patterns using a pattern hange detetion (PCD)mehanism that auses an agent to relearn based on the degree of pattern hange deteted. Ina non-ollaborative setting, eah signalized juntion is ontrolled by a dediated Soilse agent thatoperates independently. However, in a ollaborative setting eah signalized juntion is ontrolled by adediated agent, whih we refer to as a SoilseC agent, that operates in ollaboration with neighbouringSoilseC agents. Both Soilse and SoilseC agents make use of a loal PCD mehanism to provide forresponsiveness in the fae of �utuating tra� patterns. A version of Soilse that did not supportpattern hange detetion was published in (Salkham et al., 2008).The hapter is organized as follows. First, we desribe a set of requirements that should besatis�ed by an e�ient RL-based UTC optimization sheme. We then provide the motivations for andan overview of the overall design. The PCD mehanism is desribed inluding the quanti�ed degree ofpattern hange (DPC) used as a metri for hange. We then desribe the signalized juntion phasesused in the overall design. Finally, the design of the Soilse and SoilseC agents are presented alongwith the relearning strategy used. 42



Chapter 3. Soilse3.1 RequirementsAs a onsequene to the state-of-the-art disussion, a set of four requirements are identi�ed that serveas guidelines toward the design of our RL-based UTC approah. While some approahes are designedto support a ertain requirement they ompromise on other essentials. An e�ient RL-based UTCsystem must address ertain design requirements simultaneously. However, the objetives used toassess the performane of suh a system are identi�ed and evaluated in Chapter (5). The identi�eddesign requirements are as follows.Requirement 1 (Req1): responsiveness; an e�ient RL-based UTC system has to be responsive tohanging tra� onditions in a reasonable duration. This requires an ability to analyse tra�patterns in real-time while assessing their impat on performane and onsequently adapting ifneeded.Requirement 2 (Req2): adaptiveness; in order to respond to some deteted hange in tra� pat-tern that is adversely a�eting overall performane, an e�ient RL-based UTC system must beadaptive. This adaptiveness is haraterized by the availability of a �exible ontrol model thatan be reon�gured to meet the demands of the new tra� situation.Requirement 3 (Req3): openness, an e�ient RL-based UTC system should provide a degree ofopenness when it omes to the soure of tra� sensor information. Depending exlusively onloop detetors or ameras as sensor inputs for deision making is unneessarily limited. Emerg-ing FVD tehnologies suh as global positioning systems and vehile-to-vehile/infrastrutureommuniation may provide a more detailed loal view of the tra� situation that ould beemployed for better RL-based UTC optimization.Requirement 4 (Req4): ollaborative; an e�ient RL-based UTC system should support ollabo-ration among signalized juntion ontrollers. Carefully designed ollaboration shemes in RL-based UTC systems have shown promising results as opposed to operating without ollaborationin terms of providing better system-wide (global) performane (Duspari & Cahill, 2009a).The aforementioned requirements will be referred to individually as we address eah in the designpresented in the rest of this hapter. This inludes the design of the PCD mehanism, as well as thedesign of the Soilse and SoilseC agents. 43



3.2. Overview and Motivations3.2 Overview and MotivationsThe approah to UTC optimization that we follow is an RL-based one. A number of RL-based UTCoptimization approahes were disussed in Setion (2.5). Originally, the hoie of using RL for UTCoptimization stems from its support for model-free learning that also provides o�-poliy learningstrategies like Q-Learning. The latter has been proved to be bene�ial for the optimization of UTC(Abdulhai et al., 2003). Hene, an RL-based approah should learn a near-optimal mapping of statesto ations, as opposed to having an a priori model for that mapping, through feedbak and interationwith the environment. This is advantageous in suh a omplex problem as UTC given the non-stationary behaviour of tra�. This aligns with what Spall (2003) argues in relation to providing atra� ontrol sheme based on models of tra� �ow: �whih, given the highly nonlinear and unertainaspets of human behaviour, is a virtually hopeless task in omplex multiple-intersetion networks.�An approah to RL-based optimization of UTC in a non-stationary environment is provided in(Oliveira et al., 2006) and was disussed in Setion (2.5.5). The approah that they provide triesto optimize for a given stationary tra� situation using a model-based RL approah based on whatthey refer to as �partial models�. The latter are haraterized by a transition-probability and reward-estimation funtion for a given stationary tra� situation. The manner (referred to as hange dete-tion) through whih they try to handle the non-stationary behaviour of tra� is by swithing amonglearnt partial models depending on a suitability test that is based on their model error alulation.However, even in small-sale simulations on a simple Manhattan road network, it is not lear thattheir approah outperformed the baselines used. Essentially, the approah that they provide is amodel-based one with a hange detetion mehanism interleaved with what they refer to as partialmodels. In addition, their approah responds to hanges in tra� in an abrupt manner that replaesa given partial model by another. In ontrast, the approah that we follow is a model-free one thatminimizes funtional interdependeny between loal UTC optimization and tra� PCD. In addition,our approah responds to deteted hanges in a ontinuous learning manner that does not requirestoring or swithing between learnt models.In order to provide an e�ient RL-based UTC system that addresses all of the requirements pre-sented in Setion (3.1) we divided the signalized juntion ontrol problem into two main onstituents,an RL-based UTC optimization agent and a separate PCD mehanism, see Figure (3.1). In the restof this setion an RL-based UTC optimization agent is referred to as an agent.Both onstituents ombined satisfy all the requirements presented in Setion (3.1). Partiularly, aPCD mehanism ontributes to the satisfation of the responsiveness requirement (Req1) by providingthe means of deteting loal tra� hanges that adversely a�et the performane of the ontroller agent44



Chapter 3. Soilse

Figure 3.1: Design overviewat some signalized juntion. The PCD should quantify the hange as it ours in a way that allows theagent to respond adequately by adapting to the new tra� situation and hene satisfy Req2. The PCDmehanism should operate using various soures of sensor information that desribes the underlyingtra� situation as spei�ed in Req3. It also should not rely on a priori models of tra� as thismay limit its online/real-time responsiveness. Given these harateristis, an online nonparametrihange detetion mehanism that quanti�es the degree of tra� pattern hange a�eting the agent'sperformane an be used. Suh a mehanism is nonparametri in the sense that it does not rely ona spei� distribution (distribution-less) for inoming tra� on a given signalized juntion. Variousnonparametri statistial tests were assessed in this ase, e.g., Kolmogorov-Smirnov and Cramér-vonMises (Shumaher, 1984). These tests work in way that ompares two given samples of data andprodue a value, namely, 0 ≤ P_value ≤ 1 that determines the aeptane or rejetion of the nullhypothesis when ompared against some signi�ane level. The null hypothesis typially suggests thatthe two samples are drawn from the same distribution. However, after assessing the aforementionednonparametri statistial tests, it appeared that they were not suitable for the online representationof loal tra� pattern hanges. They have also shown to be sensitive loally espeially given thenature of urban tra� data. Consequently, we refoussed our attention towards an analogous (tosome extent) area to urban tra� that is omputer network tra� and espeially anomaly detetion(attaks or intrusions of a ertain type) (Thottan & Ji, 2003) in omputer networks. This suggesteda tehnique for PCD that is based on sequential analysis of data series, namely, umulative sum ofsquares (CUSUM) (Oh et al., 2005) that an identify hange points in data variane (σ2). CUSUM isa nonparametri hange detetion tehnique that has been shown to be aurate in helping to detet45



3.2. Overview and Motivations�ooding attaks in a short duration (Thottan & Ji, 2003; Wang et al., 2002; Siris & Papagalou, 2006).Flooding attaks represent a hange in the network tra� pattern where, for example, an unusualnumber of requests an be direted to a given server. This is seen as analogous to hange in tra� onroad networks. We hene adopted CUSUM in developing our PCD.The agent has to satisfy all of the requirements spei�ed in Setion (3.1) in onjuntion with PCD.Espeially, in order to provide for the adaptiveness spei�ed in Req2, the agent, being RL-based,must be designed in a way that allows it to adapt to a new tra� situation. This normally happensafter the PCD initiates a need to respond when some tra� hange that is adversely a�eting theagent's performane is deteted. A natural fair design we follow is based on an adaptive round-robinthat learns a sequene of phases of di�erent durations suitable for the new tra� situation. Theadaptiveness is enhaned by allowing agents to learn to skip unneessary phases whih saves thewasted time as opposed to SCATS, for instane, that has to give all phases a ertain durations. Also,by avoiding free phase seletion from a group of phases in no partiular order, we minimize the riskof starvation.A ruial part needed for adaptiveness is the ability of the agent to relearn and hene adopt adi�erent ontrol poliy given a new tra� situation. As relearning is naturally expensive, ontrollingthe extent and duration of the agent's relearning is important. Given that the agent is RL-based,this an be done through its learning and ation seletion strategies, e.g., Q-Learning and ǫ-greedyrespetively, whose parameters an then be ontrolled in a manner that spei�es the relearning/ex-ploration duration and their initial exploration related parameter values, e.g., learning rate α and ǫof the ǫ-greedy. In addition, PCD provides a degree that quanti�es the tra� pattern hange alongwith the agent's performane. The agent an then use this degree to alulate new exploration-relatedparameters, relevant to the learning and ation seletion strategies in use, in order to initiate relearn-ing. Being responsive and adaptive on the loal level is important however, in order to satisfy Req4,ollaboration is needed. Hene, the agent supports exhanging knowledge with neighbours and allowsfor its loal inorporation. Both PCD and the agent expose generi interfaes for reeiving sensorinformation about tra� hene satisfying openness needed by Req3. Regardless of the manner sensorinformation is gathered or atuation is done, these interfaes guarantee that the agent will ontinueto funtion as long as they are implemented. 46
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������Figure 3.2: Example - CUSUM samples3.3 Pattern Change DetetionThis setion presents PCD mehanism that helps satisfy Req1 for an e�ient RL-based UTC. Themotivations behind the design hoies were disussed in the previous setion. The proposed PCDmehanism is used to detet variane (σ2) hange points on eah lanes' inoming tra� (data) usingCUSUM and also inorporates knowledge of the agent's performane with that hange at eah signal-ized juntion. We hoose juntion lanes as the level of granularity at whih to identify hanges sinelanes represent not only the tra� load but also its presumed diretionality. Therefore, this approahaptures not only hanges in tra� load but also hanges in tra� diretionality. The performaneof an RL agent ontroller an be naturally assessed based on its reent rewards as they represent thegoodness of its loal behaviour. Hene, we use reent rewards history to provide a metri for theoverall near past agent performane.3.3.1 DesignThe design is based on multistage lane-entri �ltering, see Figure (3.3). The inoming tra� ountper lane on a given juntion is sampled and �ltered using a moving average �lter in order to produea smoother input (sine we assume a �ne-grained initial input as low as a reading per seond over aminute time) for the seond stage. The output is then passed to the CUSUM (Oh et al., 2005) �lterthat identi�es hanges in tra� variane (σ2) on a given lane. CUSUM is a well-known sequentialanalysis tehnique that an indiate hange points in data variane, see Equation (3.1). CUSUM isadvantageous in this ase as it is a nonparametri sequential hange detetion tehnique that does notrequire a prede�ned tra� model.
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|; for 1 ≤ k < n (3.1)The time series Tcounts = {Xa 1, Xa 2, ..., Xa n} is formed from the outputs of the �rst �lteringstage, i.e., a series of size n of smoothed tra� ounts for lane a. The value of k represents the laggingsample size, see Figure (3.2). Essentially, CUSUM works by omparing the sum of squares of a portion47



3.3. Pattern Change Detetion
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Figure 3.3: Juntion PCD high-level shemeof a given sample against the sum of squares of the whole sample. This allows it to �gure out whatis the proportional relevane of the smaller sample of size k on the whole sample of size n. Thistehnique has proven to be aurate in identifying hange points in data variane (Oh et al., 2005).Another moving average �lter is applied on the CUSUM �lter outputs and the mean of these is thenalulated as the �nal representation of the degree of pattern hange (DPC) in inoming tra� for agiven juntion.The DPC at this level does not inlude a notion of how the possible hange is a�eting theontroller agent performane at a given juntion. Therefore, as we are interested in hanges thata�et the agent's performane, we need to inorporate the ontroller agent's performane in the DPC,whih an be then used in the reparameterization proess of the agent for relearning. Consequently,this will allow for agent responsiveness (see Req1). A natural metri for the agent performane is themoving average of rewards (MAR) over a given time window. As rewards are an intrinsi indiatorof RL agents performane in the �rst plae, we bene�t from their availability without introduingan extra arti�ial metri of performane. In order to produe a �nal ombined hange degree thatinorporates the agent performane as well as the pattern hange degree, the produt (MAR × DPC)is used. Furthermore, in order to on�ne (squash) that degree to a known range we apply a sigmoidfuntion, see Equation (3.2), that has a known range of [−1, 1].
DPCsquashed = tanh((MAR × DPC)/ PerFactor) (3.2)48



Chapter 3. SoilseParameter DesriptionCUSUM: n The size of the full CUSUM sample of tra� ounts per lane.CUSUM: k The size of the sub-sample whose sum of squares is ompared against that of the omplete sample of size n.Tra� ounts sample size First layer of sensitivity ontrol in the PCD on the raw data, i.e., the moving average of tra� ounts per lane.CUSUM output sample size Seond level of sensitivity ontrol in the PCD, i.e., on the CUSUM output per lane.
MAR sample size Determines the PCD's sensitivity to the agent's performane.

P erF actor Sales down the input data for the DPC's sigmoid funtion. Relative to the range of (MAR × DP C).JCT Holds the threshold value used in deteting hanges in the tra� pattern.Persistene sample size Determines how sensitive the PCD is to the genuineness of a given hange.Table 3.1: PCD parametersWe use DPC to refer to DPCsquashed for simpliity. PerFactor is used to sale down the sigmoidfuntion (tanh()) input data in order for the funtion to give sensible output, i.e., that represents theombined hange degree on the range of [−1, 1]. Determining PerFactor is dependant on the rangeof performane to be measured for the ontroller agent. We are only onerned when the �nal DPCis negative, i.e., the agent is not performing well while the loal tra� pattern is hanging. This isbeause an agent should not relearn unless its performane is adversely a�eted by the possible tra�pattern hange. At this stage, DPC will have a negative value only if the inorporated MAR wasnegative as the result of CUSUM is always positive. Hene, we hose the �nal DPC value to be inthe range of [0, 1] where DPC = 1 − abs(DPC[−1,0]). Moreover, the loser DPC is to 0, the moresevere the negative hange is, given the original (MAR × DPC) value. At a later stage, we detet aso alled genuine hange upon a situation where a sample of DPCs are persistently rossing a givenjuntion hange threshold (JCT) �xed for all signalized juntions. The sampling of DPC starts whena single DPC value rosses the JCT and ontinues until the so alled persistene sample is ready,(i.e., its size is met). That sample's mean is then ompared against the JCT where a genuine patternhange is deteted if this sample mean rosses the JCT, however, this is dependent of the thresholdingtehnique used.3.3.2 Sensitivity and ParametersThe sensitivity of any hange detetion mehanism, i.e., how representative of the hange it is andwhat onstitutes a hange for it, an naturally be ontrolled through di�erent means. In PCD, anumber of deisions determine the overall sensitivity, see Table (3.1). These are divided into twogroups; the �ltering parameters group and the squashing and thresholding group.A given moving average �lter is haraterized by the sample size s. The larger s is, the less sensitivethe output of that �lter beomes to the input. We use three moving average �lters that require a49



3.3. Pattern Change Detetion
Fixed threshold value

Possible change

Time

DPC

Figure 3.4: Fixed thresholding tehniquepreset sample size for tra� ounts per lane, CUSUM �lter outputs and agent rewards. In addition,the CUSUM �lter requires preset k and n where k is the smaller moving sample size and n is the sizeof the whole moving sample. The values of k and n determine the sensitivity of the CUSUM �lterand are typially determined empirially (explained below) as the hoie depends on the nature of theinput data.On the other hand, PerFactor and the JCT are the two parameters that are losely related todetermining the atual PCD sensitivity. PerFactor is �xed based on the range of data fed to thesigmoid funtion in order to help the funtion produe a representative output data on the sigmoidrange [−1, 1]. In order to detet a genuine hange, a given JCT is needed to determine the DPCthat is onsidered the beginning of a possible hange (disussed later). Moreover, the preset valuesof all the above mentioned sensitivity parameters an be determined empirially as they are domaindependant espeially given the granularity of the original inputs.A ertain thresholding tehnique should be used in PCD. Figure (3.4) shows a �xed thresholdingtehnique, whih is a lassial way were a de�ned threshold value remains stati throughout the proessof hange monitoring. Other thresholding tehniques an be used in PCD, for instane, dynamiallyhanging thresholds but this is disussed as future work.Regardless of the thresholding tehnique used, the notion of persistene is introdued as the rite-rion to distinguishing a genuine hange. The latter is determined by omparing the mean of a DPCsample of a preset size (persistene sample size), olleted after a single DPC value rosses the �xedJCT, against the JCT value. If the DPC sample's mean is lower than the JCT value, the hange isdelared genuine. The persistene sample size is also onsidered relevant to the sensitivity; the largerthe sample the less sensitive the design is and vie versa.By empirially in this setion it is meant that a small sale simulation study, typially on singlesignalized juntion, was arried out for the sole purpose of hoosing suitable parameter values. A set50



Chapter 3. Soilseof andidate PCD parameter values, mainly for the �rst six parameters in Table (3.1), were evaluatedand the resulting DPC is monitored throughout the simulation that inludes di�erent tra� patterns.The JCT and the persistene sample size parameters were onsequently determined after analyzingthe series of DPC values throughout the simulation.3.3.3 AlgorithmThe PCD proess runs ontinuously as long as the agent is running. The main task for it is todetermine if the agent needs to relearn upon the detetion of a persistent hange. The di�erentsample sizes, Perfactor and the JCT needed for the PCD proess have to be determined empiriallyand are then initialized as ommon values for all signalized juntions. For a given juntion, the PCDproess an be desribed as in Algorithm (6). It ontinuously invokes the DPC alulation proess(see Algorithm (5)) while deteting genuine hanges.The DPC alulation proess updates the di�erent samples needed by PCD and alulates a DPCvalue. By updating a sample, it is meant that a new reading is added to the sample whih is in asliding window form, so whenever the sample is full the oldest reading is removed and a new one isadded. The DPC alulation proess starts by updating the samples of tra� ounts per lane andalulates the moving average for all. These averages are used to update the samples fed as inputto the CUSUM �lter. The CUSUM values are then alulated for all inputs and are used to updatethe CUSUM output samples. These samples are then passed to �nal moving average �lter that storesthe resulting sample average per lane identi�er, (e.g., MA_CUSUM[Lane_ID℄). At the same time,the agent reward sample is updated and its moving average is stored in MAR. In order to alulatethe �nal DPC, steps 5a and 5b in Algorithm (5) that were disussed earlier in the design setion areexeuted.The PCD proess starts by initializing the sizes of samples needed and other parameters suh as
PerFactor and JCT. A boolean variable that determines when the PCD proess is olleting a DPCsample after a given DPC has rossed the �xed JCT (DPC sampling for persistene status) is alsoinitialized. The PCD then tries to obtain a DPC value, if it did, it heks whether this DPC rossesthe JCT. If so, the DPC sampling for persistene status beomes true on the ondition that the agentis not already learning. Consequently, while the DPC sampling for persistene status is true, the DPCsample for persistene is ontinuously updated until it meets the required sample size. The mean ofthat sample is then ompared against the JCT and the agent is asked to relearn if the mean is equalto or less than the �xed JCT. In that ase, the DPC sampling for persistene status beomes falseand the DPC sample for persistene is leared. If the agent is asked to relearn, it is passed the mean51



3.3. Pattern Change Detetion
Algorithm 5 PCD - alulate DPC1. calcDPC = false2. Update SamplesofT rafficCountsPerLane3. If (SamplesofT rafficCountsPerLane are full⋆)(a) Update CUSUM_InputSamplesPerLane usingCalulateMovingAVG(SamplesofT rafficCountsPerLane)(b) If (CUSUM_InputSamplesPerLane are full)i. Update CUSUM_OutputSamplesPerLane usingCalulateCUSUM(CUSUM_InputSamplesPerLane) eq(3.1)ii. If (CUSUM_OutputSamplesPerLane are full)A. MA_CUSUM [Lane_ID]←CalulateMovingAVG(CUSUM_OutputSamplesPerLane)B. Update AgentRewardSample by querying for the last agent rewardC. If (AgentRewardSample is full)

MAR←CalulateMovingAVG(AgentRewardSample)
calcDPC = trueD. EndIfiii. EndIf() EndIf4. EndIf5. If (calcDPC)(a) DPC ← tanh((MAR × mean(MA_CUSUM))/ PerFactor)(b) DPC ← (1 − abs(DPC[−1,0]))6. EndIf

⋆By �full� it is meant that all the slots in the sample are oupied
52



Chapter 3. Soilse
Algorithm 6 The PCD proess for a single signalized juntion1. Initialize(a) Sizes of all samples required, Perfactor and JCT(b) SamplingDPCforPersistence = false() DPC_PersistenceSample.clear()(d) DPC = null2. DPC ←Algorithm (5)3. While ( agent is running ) do(a) If (FixedThresholding && (DPC ≤ JCT )&& Agent.isNotLearning())i. If (! SamplingDPCforPersistence) SamplingDPCforPersistence = true(b) EndIf() If (SamplingDPCforPersistence && DPC_PersistenceSample is not full⋆)i. Update DPC_PersistenceSampleii. If (DPC_PersistenceSample is full&& (mean(DPC_PersistenceSample) ≤

JCT ))A. SamplingDPCforPersistence = falseB. Agent.relearn(true, mean(DPC_PersistenceSample))C. DPC_PersistenceSample.clear()iii. EndIf(d) EndIf(e) DPC ←Algorithm (5)4. EndWhile
⋆By �full� it is meant that all the slots in the sample are oupied
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3.4. Phases
Phase A Phase BFigure 3.5: Two phases of a four-approah signalized juntion

Phase A Phase B Phase C Phase DFigure 3.6: Complete set of phases for a T-shaped juntionof the DPC sample that determined the existene of a genuine hange. Agent relearning is desribedin the Soilse and SoilseC design setions later in this hapter where new learning and ation-seletionparameter alulations based on the DPC sample mean are also presented.3.4 PhasesAn integral part of the ontrol of a signalized juntion is the spei�ation of the available tra�phases. Phases an vary in their number and harateristis depending on the signalized juntion'slayout (i.e., geometry), pedestrian priority and other pure tra� engineering deisions. A given phaseallows tra� on spei�ed approahes to ross the juntion towards permissible outgoing links. Phasesare mutually exlusive in the sense that a given juntion will only have a single phase ative at agiven time in order to avoid on�iting tra�. Here, we present some possible phase design hoiesand then speify how we de�ne the set of phases we adopted in the Soilse approah.A design omprising two phases for a four-approah signalized juntion is presented in Figure (3.5).In this design, turning tra� (dotted arrows) is assumed to be infrequent and of less importane.Hene, turning tra� an wait for the opportunity to proeed when the absene of opposing tra�permits. Although this a straightforward design hoie, it has lear safety issues given that thepotentially risky hoie of turning in any diretion is solely the driver's responsibility.Now onsider a simpler T-shaped juntion. A omplete set of phases an be de�ned as the setof all phases representing all non-on�iting tra� diretions at a given time, see Figure (3.6). This54



Chapter 3. Soilse
Phase A Phase B Phase CFigure 3.7: Simplisti set of phases for a T-shaped juntion
Phase A Phase B Phase CFigure 3.8: Conise set of phases for a T-shaped juntiondesign results in a large number of phases per signalized juntion, whih is an unfavoured result bytra� engineers.On the other hand, a simplisti design would be to allow tra� only for a single approah to rossper phase, see Figure (3.7). However, this design hoie misses the natural opportunity of letting non-on�iting tra� to ross. As a ompromise, a phase design hoie should result in a small numberof phases and also serve non-on�iting tra�. This design hoie eliminates ertain phases from theomplete set of phases by ross mathing with the simplisti set, i.e., only phases in the ompleteset that inlude a simplisti phase are onsidered. This results in a so alled onise set of phases,see Figure (3.8). The onise set hene omprises fewer phases than the omplete set and still allowless restritive phases ompared to the simplisti set. Usually, tra� engineers favour seleting theminimum number of phases spei�ally engineered for better tra� �ow on juntions. Consequently,we use the onise set of phases with our approah.3.5 Signalized Juntion Model - Soilse and SoilseCHaving desribed the PCD mehanism in Setion (3.3), we now desribe the design of both Soilse andSoilseC signalized-juntion ontroller agents and show how PCD �ts into the overall design. A Soilseagent is de�ned as an independent agent that ontrols a signalized juntion using a poliy reahedby RL-based optimization in a responsive (see Req1) and adaptive (see Req2) manner. A SoilseCagent is de�ned as an agent that ontrols a signalized juntion using a poliy reahed by RL-based55



3.5. Signalized Juntion Model - Soilse and SoilseC
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Figure 3.9: Soilse agent strutureoptimization in ollaboration (see Req4) with neighbouring SoilseC agents also in a responsive (see
Req1) and adaptive (see Req2) manner. The responsiveness of both Soilse and SoilseC agents issupported by a PCD mehanism that detets genuine tra� pattern hanges that adversely a�et theagent's performane.3.5.1 SoilseA Soilse agent, see Figure (3.9), is omposed of an RL agent and a PCD module. The RL agentomprises a representation of the environment, i.e., a state-ation spae, strategies for ation seletionand learning as well as a reward model. Atuation and sensing are provided through generi interfaes(see Req3).The PCD module interats with the RL agent by enquiring about the agent's performane, (i.e.,rewards) as well as triggering relearning when required. It periodially polls the sensing interfae fortra� ounts per lane on the given juntion in order to arry out the PCD proess. If a genuine tra�pattern hange is deteted, the PCD mehanism passes the resulting DPC value to the RL agent. TheDPC is used by the RL agent to alulate new learning parameters inluding both the learning andation seletion strategies (assuming that the ation seletion strategy is not pure greedy).Through the sensing interfae, the RL agent is able to reeive information about the environmen-tal situation. Suh information ould be, but is not exlusively, the amount of tra� that rossedthe juntion during a given phase as well as the urrent tra� ounts on a given phase's inomingapproahes. The soure of that information an vary from lassial tra� ameras or indutive loopsto reent FVD tehnologies. Consequently, the RL agent knows its urrent state and is able to selet56
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Figure 3.10: Soilse agent state-ation spae for a signalized juntion with three phasesthe next ation using its ation seletion strategy, alulate a reward using a given reward model afterthe ation is exeuted, update its poliy using its learning strategy and, �nally, update its new state.Moreover, the RL agent an hange its environment through the atuation interfae that allows, forinstane, hanging of the signalized juntion's phase setting.The learning strategy that is used in Soilse is a Q-Learning one. The hoie of using Q-Learningstems from it being a well-established model-free o�-poliy RL strategy. It is a model-free approahin the sense that it does not require some a priori likelihood model for the ations that an beexeuted on the environment. It is also an o�-poliy RL strategy as it learns and updates the agent'sknowledge even while taking ations that might prove to be non-optimal in the future (Abdulhaiet al., 2003). Being an model-free o�-poliy learning strategy, as well as allowing for short periodknowledge updating per ation taken, Q-Learning is an ideal andidate for UTC optimization giventhe non-stationary nature of tra� (Abdulhai et al., 2003; Abdulhai & Pringle, 2003).In terms of ation seletion, Boltzmann, ǫ-greedy and greedy are supported. The state-ation spaerepresentation is based on an adaptive round-robin design of all onise phases and their possibledi�erent timings (see Setion (3.2)). The state-ation spae varies in size depending on the numberof phases available per signalized juntion. Figure (3.10) depits the state-ation spae of a signalizedjuntion with three phases available.In a Soilse agent, a given signalized juntion's state-ation spae is modelled based on everyavailable phase and its status, (i.e., busy/not busy). A given phase's status depends on all the inoming57



3.5. Signalized Juntion Model - Soilse and SoilseC
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�����������������������������������Figure 3.11: Phase tra� ount - used to determine phase statusapproahes of that phase, see Figure (3.11). A pair of a phase and its status is onsidered a state,(e.g., sy =⇒ (Phasex is busy)) in the model, see Figure (3.10). A given phase's status is determinedby omparing the total number of vehiles within queueing range on its inoming approahes against aspei� threshold value. A Soilse agent provides a number of ations, (i.e., andidate phase durationsinluding a zero-seond duration ation) that ould possibly be hosen in a given state. Given that wefollow a round-robin style over n phases, after any ation we take in any state of phase Pi, the nextation will be in a state of phase P(i+1) mod n depending on loal tra� onditions. The availability ofa zero-seond duration ation allows the Soilse agent to skip unneessary phases while exploring forpoliy optimization.3.5.1.1 Loal Reward ModelThe design of any RL agent ruially relies on the reward model. The loal reward model de�nes theoptimization riteria pursued by a signalized juntion. These riteria ould be to minimize overallvehile waiting time or number of stops, or to maximize throughput. However, in UTC the interrelationof metris is inevitable, for example, reduing vehile waiting time a�ets the number of stops andvie versa. Also, optimizing for inreased throughput ould a�et both vehile waiting time andnumber of stops. Consequently, the loal reward model needs to be fair in apturing the e�et of anexeuted ation, for example, in apturing the number of waiting vehiles after a given ation as wellas the number of vehiles that have rossed the juntion due to that ation. Moreover, better loalthroughput should naturally lower vehile waiting time as it enourages vehile movement as well aslower the number of stops that vehiles su�er en-route to their destinations. As a result, we provide58



Chapter 3. Soilsea design for the loal reward model that we refer to as R1 as follows:R1: this reward model aims at apturing the tra� that has rossed the juntion during a givenphase duration and the remaining waiting tra� on all approahes on the juntion. The rewardwill result in a negative reinforement if a given ation (timing) on a given phase results in moretra� waiting on the juntion as a whole ompared to the tra� that has rossed. Otherwise, itis a positive reinforement. Consequently, this reward model optimizes for fair loal throughput,whih aims at enhaning loal performane in terms of vehile waiting time and number ofvehile stops.
R1 = (number of vehicles crossed − number of vehicleswaiting on the junction )R1 is motivated by the ontinuous (as opposed to disrete) form of reinforements it naturally provideswhile apturing the possible negative e�et that a given ation might ause on the juntion as a whole.Besides being fair to waiting vehiles, it also reinfores ations resulting in better tra� �ow. R1'sontinuous nature is more informative to the learning proess as opposed to a disrete nature, (e.g,positive reinforement = 1 , negative reinforement = -1) given the omplex nature of the UTCoptimization problem.3.5.1.2 RelearningThe need for relearning stems from the requirements of responsiveness and adaptiveness (see Req1, 2).Under a non-stationary urban tra� environment, an RL agent with a sole poliy learnt for a giventra� pattern annot be expeted to ope with new tra� patterns unless it relearns for eah. Henethe need arises for relearning.We propose an agent relearning strategy that is based on the DPC value passed from the PCDmodule when a genuine tra� pattern hange is deteted. The relearning proedure allows for respon-siveness in the Soilse and SoilseC design. Based on that DPC value, new learning and ation seletionstrategy parameters are alulated as follows:Learning rate (α): given that the lower the DPC value, the more severe is the tra� pattern hangethat is adversely a�eting the agent performane, a higher learning rate is needed in these asesin order to ope with the severe hange. Sine DPC has a range of [0, 1] the mapping beomessimpler.

αnew = (1 −DPC) (3.3)59



3.5. Signalized Juntion Model - Soilse and SoilseCEpsilon in ǫ-greedy: like the new learning rate alulation, the need for higher exploration in aseof a lower DPC value is needed. The epsilon in ǫ-greedy needs to be higher for the ationseletion to be more exploratory.
ǫnew = (1 −DPC) (3.4)Boltzmann temperature (τ): the temperature degree in a Boltzmann ation seletion strategydetermines the degree of exploration and is proportional to the latter. The higher τ is, themore exploratory the agent using a Boltzmann ation seletion is. Hene, a new τ is alulatedproportionally to the poliy model size (number of state-ation pairs) and the DPC value. Theproportional relation an also be ontrolled using a so-alled exploration fator (ExpFactor).The higher is the ExpFactor, the more weight is given to the poliy model size relative to theDPC value.

τnew = (PolicyModelSize/DPC)× ExpFactor (3.5)For example, if a state-ation spae has two states where eah has two ations, the PolicyModelSizefor that state-ation spae would be (1× 2) + (1× 2) = 4.In order to determine the duration of the relearning, a deay rate needs to be alulated per relearningparameter. The deay should be exponential using a generi formula (3.6) as we need the relearningparameters to deay in a manner that is proportional to their value but that redues explorationgradually.
valuenew = (e−(valuedecay rate)×time step)× valueinitial (3.6)A natural logarithmi funtion is then used to alulate deay rates that are proportional to theDPC, (i.e., the higher is DPC value the faster the relearning/exploration should �nish) but inverselyproportional to the PolicyModelSize and the ExpFactor, (i.e., the larger the PolicyModelSize andthe ExpFactor the slower the relearning/exploration should �nish). The alulation is arried out asfollows:Under ǫ-greedy: when using ǫ-greedy as an ation seletion strategy, the deay rate for α and ǫ isommon given their ommon relearning initial value, i.e., (1−DPC) .
αdecay rate = ǫdecay rate =

loge(1/(1−DPC))

PolicyModelSize× ExpFactor
(3.7)Under Boltzmann: when using Boltzmann as an ation seletion strategy, a ommon deay ratebased on αdecay rate and τdecay rate is used.

τdecay rate =
|loge(1/τInitial)|

PolicyModelSize× ExpFactor60



Chapter 3. SoilseAlgorithm 7 Soilse initializationInitialize α, αdecay rate, γ, policy ∀Q(s, a), PCD.JCT, PCD.PersistenceSampleSizeSet Initial State/Ation st ∈ S : {all agent states}, at ∈ At : {all actions for st}Set Ation Seletion AS ∈ [Boltzmann, ǫ− greedy, greedy]Initialize ((τ, τdecay rate, commondecay rate) or (ǫ, ǫdecay rate)) depending on ASSet Loal Reward Model Rx ∈ Local Rewards

commondecay rate = (αdecay rate + τdecay rate)/2 (3.8)The αdecay rate in equation (3.8) is alulated as in the situation under ǫ-greedy. The commondecay rateis hene used for the deay of both τ and α in the Boltzmann ase. The value of the ExpFactor isdetermined empirially (desribed in Setion (3.3.2)).3.5.1.3 Soilse AlgorithmThe Soilse agent uses Q-Learning as its learning strategy and an hoose the ation seletion strategyto be Boltzmann, ǫ-greedy or greedy. All Soilse agents in a given deployment use the same ationseletion type. In Algorithm (8) the Soilse proess is presented.The Soilse agent starts by initializing the needed parameters relevant to its PCD, learning andation seletion strategies (see Algorithm (7)). The agent then exeutes an ation, reeives its nextstate and alulates its loal reward. The agent then uses its loal reward for its poliy update usingQ-Learning and selets a next ation using a given ation seletion strategy. The agent then updatesits state and the ation to take. Furthermore, the agent heks whether it was asked to relearn byits PCD, if so, it reparameterizes itself using the DPC value passed by the PCD. Naturally, the agentdeays its learning and ation-seletion related parameters as long as it is exploring. The Soilse agentwill ontinue exploration as long as its learning parameters have not reahed their preset minimumvalues where exploitation then begins. The preset minimum values are when τ = 1 and α ≈ ǫ ≈ 0.3.5.2 SoilseCHaving detailed the design of a Soilse agent that operates independently, the ollaborative version isnow desribed. A SoilseC agent has the same design of a Soilse agent with an added element thatallows for ollaboration, i.e., an advertisement strategy, see Figure (3.12). In addition, a ollaborativereward model is used as opposed to the loal reward model in Soilse agents. That ollaborative reward61



3.5. Signalized Juntion Model - Soilse and SoilseCAlgorithm 8 Soilse proessInitialize Soilse Algorithm (7)While (Soilse is running)Exeute at ; Reeive st+1Calulate Reward rt+1 based on Rx

Qt+1(st, at)← Qt(st, at) + α [rt+1 + γ maxaQ(st+1, a)−Qt(st, at)]Selet at+1 ∈ At+1 : {all actions for st+1} using AS

st ← st+1 , at ← at+1If (relearn) #Relearn status is updated by PCD Algorithm (6) where it passes the DPC tobe used in reparameterizationReparameterize(AS, DPC) #Algorithm (9)EndIfIf (Soilse.exploration == true)Deay α and (τ or ǫ depending on AS) using eq(3.6)EndIfEndWhile
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Figure 3.12: SoilseC agent struturemodel inludes an impliit loal reward model similar to the Soilse agent design but also allows forthe inorporation of exhanged information.The advertisement strategy determines the ollaboration mode for eah SoilseC agent. The modedesribes whih other SoilseC agent(s) to send and reeive to/from. Exhanged information provides62



Chapter 3. Soilse

Algorithm 9 Reparameterize per ation seletion strategySwith(AS)ase(Boltzmann):{
τ ← eq(3.5); α← eq(3.3)
αdecay rate ← τdecay rate ← commondecay rate eq(3.8)}breakase(ǫ-greedy):{
α← (3.3); ǫ← eq(3.4)
αdecay rate ← ǫdecay rate ← eq(3.7)}breakase(greedy):{
α← eq(3.3)
αdecay rate ← eq(3.7)}breakEndSwith
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3.5. Signalized Juntion Model - Soilse and SoilseC
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Figure 3.13: NPV examplea metri for the sending agent's reent performane. Suh information inludes a series of rewardsordered by age. The older the reward value is, the less important it is. Exhanging information oursat a prede�ned frequeny for all ollaborating SoilseC agents (CollFreq > 0). The exhanged rewardsare disounted using a Net Present Value (NPV) (Lin & Nagalingam, 2000) inspired Equation (3.9)that is a well-known method used in eonomis for disounting a series of values based on age. TheNPV equation diminishes the signi�ane of older rewards based on a given disc_rate value. An rtis the reward obtained at index t in the exhanged reward vetor. The most reent reward has thehighest t value while the �rst has t = 0, hene, 0 ≤ t < rv_size and rv_size is the reward vetorsize. See Figure (3.13) for an NPV example with two di�erent disc_rate values.
NPV (rt) =

rt

(1 + disc_rate)(rv_size=(t+1))
(3.9)The ollaborative reward model (desribed in subsetion (3.5.2.2)) is able to use the ahed, (i.e.,simply stored) exhanged rewards and disount them aording to the proposed proedure from theadvertisement strategy, i.e., the NPV in this ase. Determining the values of the CollFreq and theNPV's disc_rate parameters is a matter of design hoie that is diretly related to the nature of theollaboration sought. The more frequent the ollaboration is, the less reward history is exhanged andvie versa. Hene, a value is needed that depends on to the ation durations available to the agentsas a reward is reeived after eah ation. For example, if the maximum ation duration available is

40 seconds, then a ollaboration frequeny of 240 seconds would guarantee at least a reward historyof size 6 if the agent would hoose to exeute the maximum duration ation ontinuously.64
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�	���Figure 3.14: Neighbours example3.5.2.1 NeighboursThe set of neighbours for any SoilseC agent omprises all one-hop SoilseC agents whether upstreamor downstream ignoring any non-signalized juntions in the way. Consequently, the advertisementstrategy suggests three possible modes of ollaboration.Mode one allows for a given SoilseC agent to reeive information only from upstream neighboursand send information only to the downstream ones.Mode two allows for a given SoilseC agent to reeive information only from downstream neighboursand send information only to the upstream ones.Mode three allows for a given SoilseC agent to send and reeive information from upstream anddownstream neighbours.For example, onsider the tra� network layout in Figure (3.14). The neighbourhood of SoilseC agentsould be desribed as in Table (3.2). Depending on the the mode of ollaboration, a given SoilseCagent selets other SoilseC agents from its neighbourhood whih it sends to, reeives from informationor both. In the SoilseC design, information about the distane between signalized juntions is notmodelled in the agents given that RL, by its nature, is an unsupervised learning approah. Addingsuh information is onsidered a form of supervision while SoilseC agents are expeted to learn thedynamis of the shared environment through information exhange and loal interation.65



3.5. Signalized Juntion Model - Soilse and SoilseCNeighbours/SoilseC agent A B C DUpstream B,D A,C - A,BDownstream B,D A,D B -Table 3.2: SoilseC neighbourhood3.5.2.2 Collaborative Reward ModelThe ollaborative reward model is formed from the ombination of a loal reward model and exhangedinformation. Suh a model makes use of the advertisement strategy by aessing reeived information.Assuming that the reeived information is a vetor of rewards per sender, the ollaborative rewardmodel uses the NPV method in the advertisement strategy in order to disount the reeived/ahedrewards by age. A normalization proedure follows per number of senders and the size of rewardvetors for eah.
CollStatus =

∑
∀n∈sending neighbours

Pt=rv_sizen−1

t=0 NPVn(rt)
rv_sizen

number of sending neighbours
(3.10)

rcoll ← (rlocal + CollStatus) (3.11)Consequently, a single value (CollStatus, see Equation (3.10)) denoting the overall reent per-formane of all sending SoilseC agents is alulated. The inorporation step is ahieved by adding
CollStatus to the urrent loal reward value, see Equation (3.11).3.5.2.3 SoilseC AlgorithmThe SoilseC algorithm is similar to the non-ollaborative Soilse algorithm with the addition of infor-mation exhange depending on the mode and the inorporation of this information loally. Algorithm(11) desribes the SoilseC proess.The SoilseC agent starts by initializing the required parameters relevant to its PCD, learning andation seletion strategies (see Algorithm (10)). The agent then exeutes an ation, reeives its nextstate and alulates its loal reward. The latter is added to its loal reward history whih is usedfor its performane information exhange. If it is time for ollaboration (depending on a prede�nedfrequeny) and the loal reward history is not empty, the agent advertises its loal reward history toa prede�ned set of neighbours. The agent then alulates its ollaborative reward, whih is used forits poliy update using Q-Learning. It then selets the next ation using the given ation seletionstrategy and updates its state and the ation to take. Furthermore, the agent heks whether it66



Chapter 3. SoilseAlgorithm 10 SoilseC initializationInitialize
CollFreq, NPV.disc_rate, LocalRewardsHist, α, αdecay rate, γ, policy ∀Q(s, a)

PCD.JCT, PCD.PersistenceSampleSizeSet Initial State/Ation st ∈ S : {all agent states}, at ∈ At : {all actions for st}Set Ation Seletion AS ∈ [Boltzmann, ǫ− greedy, greedy]Initialize ((τ, τdecay rate, commondecay rate) or (ǫ, ǫdecay rate)) depending on ASSet Collaborative Reward Model CRx #Impliitly assigns a loal reward modelChoose Collaboration Mode CM #See Subsetion (3.5.2.1)Build Neighbourhood N : {SendToN} ∪ {ReceiveFromN} given CMwas asked to relearn by its PCD, if so, it reparameterizes itself using the DPC value passed by thePCD. Naturally, the agent deays its learning and ation-seletion related parameters as long as it isexploring. The SoilseC agent will ontinue exploration while its learning parameters have not reahedtheir preset minimum values where exploitation then begins. The preset minimum values are when
τ = 1 and α ≈ ǫ ≈ 0.3.6 SummaryThis hapter desribes the design for a non-parametri PCD tehnique that an be deployed loally.The PCD presented does not rely on any a priori tra� model but rather detets hanges in tra�and quanti�es the hange, i.e., the DPC. Two types of RL-based UTC agents were presented, Soilseand SoilseC, where the latter is ollaborative. These agents make use of the DPC value upon a givenhange in order to alulate their relearning parameters. Ourrenes of suh a hange are determineddepending on a �xed thresholding tehnique.Both the Soilse and SoilseC agent designs follow an adaptive round-robin RL optimization shemein the ore. This allows for a near optimal setting of a onise set of phases to be reahed whereunsuitable phases for a given tra� pattern an be skipped and others an be assigned adequatetimings. Soilse and SoilseC agents are able to use di�erent reward models, however, a reward modelthat balanes between inreasing loal throughput and the number of waiting vehiles is provided.They use Q-learning as the learning strategy and ould run using either Boltzmann, ǫ-greedy or greedyas an ation seletion strategy. The three di�erent types of ation seletion strategies are assessed67



3.6. Summary
Algorithm 11 SoilseC proessInitialize SoilseC Algorithm (10)While (SoilseC is running)Exeute at ; Reeive st+1Calulate Loal Reward rlocal ← CRx.CalcLocalReward();LoalRewardsHist.push_bak(rlocal)If ((((t + 1)modCollFreq) == 0)&& (LocalRewardsHist.empty() 6= true))Advertise (LoalRewardsHist, SendToN)LoalRewardsHist.lear()EndIf

CollStatus← eq(sending neighbours← ReceiveFromN)(3.10)
rcoll ← (rlocal + CollStatus) #eq(3.11)
Qt+1(st, at)← Qt(st, at) + α [rcoll + γ maxaQ(st+1, a)−Qt(st, at)]Selet at+1 ∈ At+1 : {all actions for st+1} using AS

st ← st+1 , at ← at+1If (relearn) #Relearn status is updated by PCD Algorithm (6) where it passes the DPC tobe used in reparameterizationReparameterize(AS, DPC) #Algorithm (9)EndIfIf (SoilseC.exploration == true)Deay α and (τ or ǫ depending on AS) using eq(3.6)EndIfEndWhile
68



Chapter 3. Soilsein the evaluation Chapter (5) where also their suitability for UTC optimization under non-stationaryurban tra� is disussed. In a SoilseC setting, neighbouring agents an ollaborate following a ommonadvertisement strategy and depending on one of the three supported modes whih de�ne senders andreeivers (see Req4). Suh a ollaboration has shown promising results in terms of better globalperformane by taking into aount neighbours' performane (Salkham et al., 2008). A ollaborativereward model in the SoilseC agent uses the advertisement strategy to alulate a metri for sendingneighbours status through disounting and normalizing ommuniated rewards.Moreover, this hapter provided a deentralized RL sheme through whih adaptive and responsiveRL-based UTC agents an be deployed. Adaptiveness (see Req2) is provided through learning in a fairround-robin state-ation spae design that is based on a onise set of phases per RL agent. Conisephases and their timing are used as the means to ontrol the setting of a tra� light given theiroarse granularity that allows for a more ompat state-ation spae. Responsiveness (see Req1) issupported through relearning based on new parameters alulated relative to the DPC value resultingfrom the non-parametri PCD tehnique upon a genuine loal tra� pattern hange. Moreover,Soilse and SoilseC inluding the PCD satisfy Req3 by not relying on a spei� soure of tra� sensorinformation but rather exposing generi sensing and atuation interfaes.
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Chapter 4
ImplementationThis hapter desribes the implementation of our Collaborative Reinforement Learning (CRL) frame-work whih is a generi C++ framework that allows for the instantiation of CRL-based appliations.It also desribes the AgentsGenerator library that is used to reate a Soilse or a SoilseC agent foreah signalized juntion and de�ne the interfae with the UTC simulator. The latter is desribed inChapter (5).4.1 The CRL frameworkThe use of a framework enables us to experiment with di�erent appliation designs in a more struturedand �exible manner. The CRL framework is a C++ library that provides the programmer with allthe omponents needed to build an RL appliation, e.g., agents, learning strategies, ation seletionstrategies, states, ations, Markov Deision Proess (MDP) representation and model. By model inthe CRL framework we mean the struture in whih the learnt values are stored and indexed by somekey, for instane, a key in our implementation takes the form of (state_ID, action_ID) if we areusing Q-Learning. A KeyV aluePair is desribed as in the struture pair < Key∗, Key_V alue >. Ahigh-level lass diagram for the CRL framework is presented in Figure (4.1).The framework also supports ollaborative appliation development by providing, in addition to theommon RL appliation needs, a feedbak or an advertisement strategy, neighbourhood managementand ahing. In that ase, the model used has ahing support for the information ommuniatedfrom neighbouring agents. A ertain advertisement strategy followed by every CRL agent supportsagents in updating their loal knowledge from their neighbours and deides on what informationshould be ommuniated to them. The remainder of this setion desribes the onstituents of the70
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Figure 4.1: The CRL framework high-level lass diagram
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4.1. The CRL framework

Boltzmann

+ MIN_BOLTEMP : double
- init_temp : double
- c_temperature : double
- BOL_TempDecayRate : double
- step : int
+ Boltzmann()
+ ~ Boltzmann()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*
+ setTemperature(tmp : double)
+ getTemperature() : double
+ setInitTemperature(init_tmp : double)
+ getInitTemperature() : double
+ setBOL_TempDecayRate( : double)
+ getBOL_TempDecayRate() : double
+ decayBOLTemp((* funTempDecay)( double , double , double ) : double)
+ getExplStep() : int
- probSum(v_k_v_p : vector< KeyValuePair * >, probs : double*) : double

Greedy

+ Greedy()
+ ~ Greedy()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

ActionSelection

+ ActionSelection()
+ ~ ActionSelection()
+ selectNextAction(mdp : MDP*) : AbstractAction*
# calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

EpsilonGreedy

- m_epsilon : double
- m_initepsilon : double
- m_epsilonDecayR : double
- m_minepsilon : double
- step : int
+ EpsilonGreedy( : double)
+ ~ EpsilonGreedy()
+ calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*
+ getEpsilon() : double
+ getEpsilonDecayRate() : double
+ getMinEpsilon() : double
+ getInitEpsilon() : double
+ setEpsilon(E : double)
+ setInitEpsilon(E : double)
+ setEpsilonDecayRate(edr : double)
+ decayEpsilon((* funTempDecay)( double , double , double ) : double)
+ getExplStep() : int

QLearning

+ MIN_ALPHA : double
- alpha : double
- gamma : double
- AlphaDecayRate : double
- init_alpha : double
- step : int
+ QLearning()
+ ~ QLearning()
+ setAlpha( : double)
+ setGamma( : double)
+ setInitAlpha( : double)
+ setAlphaDecayRate( : double)
+ getAlpha() : double
+ getGamma() : double
+ getInitAlpha() : double
+ getAlphaDecayRate() : double
+ getExplStep() : int
+ update(mdp : MDP*, r_v : Reward_Value)
+ decayAlpha((* funTempDecay)( double , double , double ) : double)
- maxQV(kv_v : vector< KeyValuePair * >, max_Qvalue : double&)

LearningStrategy

+ LearningStrategy()
+ ~ LearningStrategy()
+ update( : MDP*, : Reward_Value)

Figure 4.2: LearningStrategy and AtionSeletion lassesCRL framework.4.1.1 LearningStrategyThe LearningStrategy lass provides the interfae to whih any learning strategy must implement. AQ-learning implementation is provided in the CRL framework but it is possible to add other strategiesas needed, e.g., SARSA. The LearningStrategy lass, see Figure (4.2), mainly spei�es that anyimplementation of a given learning strategy must provide an update funtion whih updates the agentpoliy.The QLearning lass inherits from the LearningStrategy lass and implements the update purevirtual funtion exposed by the LearningStrategy lass to suit the Q-learning logi, see Listing (4.1).It also has a number of additional funtions and variables needed for its operation as an be seen inFigure (4.2). 72
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void QLearning : : update (MDP* mdp, Reward_Value r ) {State * urrent_State = mdp−>getCurrentState ( ) ;State * next_State = mdp−>getNextState ( ) ;AbstratAtion * urrent_Ation = mdp−>getCurrentAtion ( ) ;Model * urrent_Model = mdp−>getModel ( ) ;double max_Qvalue = 0 . 0 ;/*Find the maximum Q−va lue ( over the po s s i b l e at ions ) for the next s t a t e */vetor<KeyValuePair*> ns_a_qvalue = mdp−>onstrutKeyValuePair s ( next_State ) ;i f ( ! ns_a_qvalue . empty ( ) ) {/*Get the maximum Q−va lue*/maxQV(ns_a_qvalue , max_Qvalue ) ;vetor<Key*> s_a_key ;/*Only needs one pair to be re t r i eved */Key s_a_k ( urrent_State , urrent_Ation ) ;s_a_key . push_bak(&s_a_k ) ;vetor<KeyValuePair*> urrent_s_a_qvalue = urrent_Model−>getValues ( s_a_key ) ;/*Main update ru l e*/urrent_s_a_qvalue [0℄−>seond +=( alpha * ( r + (gamma*max_Qvalue) − urrent_s_a_qvalue [0℄−>seond ) ) ;}} Listing 4.1: Q-learning update funtion4.1.2 AtionSeletionAnalogous to the LearningStrategy lass, the AtionSeletion lass provides the interfae, see Figure(4.2), with whih any implemented ation seletion strategy should onform. Three types of ationseletion strategies are provided by the CRL framework, i.e., Boltzmann, greedy and ǫ-greedy. Thelatter is a speial ase of the greedy ation seletion and hene is a sublass of greedy.The Boltzmann lass implements the calculateNextAction pure virtual funtion exposed by theAtionSeletion lass. The selectNextAction funtion typially alls the calculateNextAction for thenext set state. The Boltzmann calculateNextAction implementation is shown in Listing (4.2) as itshows the vital funtional part of any ation seletion strategy.73
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AbstratAtion * Boltzmann : : a lu lateNextAt ion ( vetor<KeyValuePair*> v_k_v_p){double * p = new double [ ( int )v_k_v_p. s i z e ( ) ℄ ;double sum = probSum (v_k_v_p, p ) ;double ran_num = ((double ) rand ( ) / RAND_MAX) ;double normalised_p = 0 .0 ;for ( int i = 0 ; i < ( int )v_k_v_p. s i z e ( ) ; ++i ) {/*Normalise and aumulate the p r o ba b i l i t i e s */normalised_p += (p [ i ℄ / sum ) ;i f ( normalised_p >= ran_num) {delete [ ℄ p ;return (v_k_v_p[ i ℄−> f i r s t −>getAt ion ( ) ) ;}}/* Return some at ion as a d e f au l t behaviour*/return ( (v_k_v_p. bak())−> f i r s t −>getAt ion ( ) ) ;}double Boltzmann : : probSum ( vetor<KeyValuePair*> v_k_v_p, double * p) {int p_size = ( int )v_k_v_p. s i z e ( ) ;double q = 0 .0 , sum = 0 . 0 ;for ( int i = 0 ; i < p_size ; ++i ) {q = v_k_v_p[ i ℄−>seond ;/*Calu late Boltzmann ' s f a to r */p [ i ℄ = exp ( q / _temperature ) ;sum += p [ i ℄ ;}return sum ;} Listing 4.2: Boltzmann alulateNextAtion
The Greedy and EpsilonGreedy lasses also implement the calculateNextAction funtion, seeListing (4.3). 74
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AbstratAtion * Greedy : : a lu lateNextAt ion (vetor<KeyValuePair*> v_k_v_p){double max_q_value = 0 . 0 ;int max_q_index = 0 ;int p_size = ( int )v_k_v_p. s i z e ( ) ;for ( int i = 0 ; i < p_size ; ++i ) {i f ( i == 0 ) {max_q_index = i ;max_q_value = v_k_v_p[ i ℄−>seond ;} else i f ( max_q_value < v_k_v_p[ i ℄−>seond ) {max_q_index = i ;max_q_value = v_k_v_p[ i ℄−>seond ;}}return (v_k_v_p[max_q_index℄−> f i r s t −>getAt ion ( ) ) ;}AbstratAtion * Epsi lonGreedy : : a lu lateNextAt ion (vetor<KeyValuePair*> v_k_v_p){double r = ( (double ) rand ( ) / RAND_MAX) ;int index = 0 ;int s i z e = 0 ;i f ( r >= getEps i l on ( ) ) {return Greedy : : a lu lateNextAt ion ( v_k_v_p ) ;}else { s i z e = ( int )v_k_v_p. s i z e ( ) ;index = rand ( ) % s i z e ;return (v_k_v_p[ index℄−> f i r s t −>getAt ion ( ) ) ;}} Listing 4.3: Greedy and EpsilonGreedy alulateNextAtion4.1.3 RLAgentThe most basi omposition that an be instantiated from the framework is an RLAgent, see Figure(4.4). It ombines the needed elements in order to have a funtional RL agent that uses some ationseletion and learning strategies inluding a Model and an MDP representation of the environment. Itis also assoiated with a RewardModel for a given optimization riteria. The RLAgent lass implements75



4.1. The CRL framework
RLAgent MDP ActionSelection AbstractActionLearningStrategy

setNextState(State*)
receiveSR(State_ID, Reward_Value, MDP_ID)

selectNextAction(MDP*)

AbstractAction*

setNextAction(AbstractAction*)

update(MDP*, Reward_Value)

stateTransition()

execute()

Figure 4.3: RLAgent reeiveSR funtion sequene diagram

an Agent interfae that de�nes the basi struture of an agent. The Agent lass requires that a virtual
receiveSR funtion is implemented where it also allows for the reward model and the learning andation seletion strategies to be set. See Figure (4.3) for a typial receiveSR behaviour.

The RLAgent annot funtion until its implementer builds an MDP for its environment and ini-tializes its Model as well as ustomizes a given RewardModel. The MDP lass provides a stru-ture (see Listing (4.4)) to store the desired state-ation spae and exposes a pure virtual funtion
constructStateActionSpace() that has to be implemented in order to instantiate a given MDP. It alsokeeps trak of the urrent ation and state as well as the next ones given that they are needed for thelearning proess. 76
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State_Action_Space

RLAgent
# mdp : MDP*
+ RLAgent( : Agent_ID)
+ ~ RLAgent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setMDP( : MDP*)
+ getMDP() : MDP*

Model
# model_kv_p : M_kv_p
+ Model()
+ ~ Model()
+ getValues( : vector< Key * >) : vector< KeyValuePair * >
+ getAllValues() : vector< KeyValuePair * >
+ setValue( : KeyValuePair*)
+ updateExistingValue( : KeyValuePair*)
+ write_Model(location : string, agent_ID : Agent_ID)
+ read_Model(location : string, agent_ID : Agent_ID)
+ reset_Model()
+ size() : int

Agent
# a_LearningStrategy : LearningStrategy*
# a_ActionSelection : ActionSelection*
# a_Reward : RewardModel*
# agent_ID : Agent_ID
+ Agent( : Agent_ID)
+ ~ Agent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setLearningStrategy( : LearningStrategy*)
+ setActionSelection( : ActionSelection*)
+ setReward(r_m : RewardModel*)
+ getLearningStrategy() : LearningStrategy*
+ getActionSelection() : ActionSelection*
+ getReward() : RewardModel*
+ getID() : Agent_ID
# setID( : Agent_ID)

Agent::ActionSelection

+ ActionSelection()
+ ~ ActionSelection()
+ selectNextAction(mdp : MDP*) : AbstractAction*
# calculateNextAction( : vector< KeyValuePair * >) : AbstractAction*

LearningStrategy

+ LearningStrategy()
+ ~ LearningStrategy()
+ update( : MDP*, : Reward_Value)

RewardModel
# reward : Reward_Value
+ Reward()
+ ~ Reward()
+ setReward( : Reward_Value)
+ calcReward()
+ getReward() : Reward_Value

0..1#mdp

#s_a_space

1

#model

MDP

# mdp_ID : MDP_ID
# current_State : State*
# next_State : State*
# start_state : State*
# current_Action : AbstractAction*
# next_Action : AbstractAction*
# s_a_space : State_Action_Space
# model : Model*
+ MDP(mdp_ID : MDP_ID)
+ MDP(mdp_ID : MDP_ID, : ModelType)
+ ~ MDP()
+ setNextAction(n_action : AbstractAction*)
+ setNextState(n_state : State*)
+ setCurrentState(s : State*)
+ setCurrentAction(c_action : AbstractAction*)
+ getID() : MDP_ID
+ getModel() : Model*
+ setModel( : Model*)
+ getCurrentState() : State*
+ getCurrentAction() : AbstractAction*
+ getNextState() : State*
+ getNextAction() : AbstractAction*
+ getState(s : State_ID) : State*
+ getAvailableActions(s : State*) : vector< AbstractAction * >
+ constructKeyValuePairs(s : State*) : vector< KeyValuePair * >
+ addToStateSpace(s : State*, aa : AbstractAction*, ns : State*)
+ removeActions(v_A : vector< AbstractAction * >)
+ addAction(s : State*, aa : AbstractAction*, ns : State*)
+ stateTransition()
+ setStartState(s_s : State*)
+ getStartState() : State*
+ terminate()
+ constructStateActionSpace()

Figure 4.4: RLAgent lass diagram
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s t ru  t ompare_states {bool operator ( ) ( State * s1 , State * s2 ) onst{ return ( s1−>getID ( ) < s2−>getID ( ) ) ;}} ;s t ru  t ompare_AA {bool operator ( ) ( AbstratAtion * aa1 , AbstratAtion * aa2 ) onst{ return ( aa1−>getAtionID ( ) < aa2−>getAtionID ( ) ) ;}} ;typede f map< State * , map< AbstratAtion * , vetor<State *>, ompare_AA >,ompare_states > State_Ation_Spae ;Listing 4.4: State-ation spae struture in the MDP lassThe Model lass provides a struture to hold the values assoiated with all possible state-ationspae keys. The sublass implementing an RLAgent has the responsibility to build/instantiate itsModel. It also has to provide an implementation for the pure virtual funtion calcReward(). Theimplementation determines the reward alulation logi depending on a ertain optimization riteria.4.1.4 CRLAgentThe basi CRLAgent is similar in struture to the RLAgent with the addition of a neighbourhoodmanagement lass, namely, Neighbours, an AdvertisementStrategy lass and a Model with a Cahe,namely, the CRLModel. Figure (4.5) represents the CRLAgent lass and its relation to the otheronstituents.The main funtion that the CRLAgent implements is the reeiveSR where it spei�es the stepstaken upon reeiving a new state and a given reward value. The sequene diagram in Figure (4.6)lari�es the proess.The Cahe lass supporting the CRLModel holds ommuniated information per neighbouringagent. This information will typially be the CRLModel ontents of neighbours but ould be any otherkind of information sent from those neighbours. This is true as long as the information sent is in theform of a vetor of KeyV aluePair strutures. For example, a neighbour an send a group of its reentreward values with a key representing their order in time. Furthermore, the AdvertisementStrategylass provides the basi sending and reeiving funtionality. It also allows for the ustomization of the78



Chapter 4. Implementation
Agent

# a_LearningStrategy : LearningStrategy*
# a_ActionSelection : ActionSelection*
# a_Reward : RewardModel*
# agent_ID : Agent_ID
+ Agent( : Agent_ID)
+ ~ Agent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ setLearningStrategy( : LearningStrategy*)
+ setActionSelection( : ActionSelection*)
+ setReward(r_m : RewardModel*)
+ getLearningStrategy() : LearningStrategy*
+ getActionSelection() : ActionSelection*
+ getReward() : RewardModel*
+ getID() : Agent_ID
# setID( : Agent_ID)

Neighbours
# send_to_neighbours : vector< Neighbour * >
# receive_from_neighbours : vector< Neighbour * >
# parent_Agent : Agent*
+ Neighbours(p_agent : Agent*)
+ ~ Neighbours()
+ removeNeighbour( : Neighbour_ID, n_cat : N_CAT) : bool
+ isNeighbour( : Agent*, n_cat : N_CAT) : Neighbour*
+ addNeighbour( : Neighbour*, : vector< KeyValuePair * >, n_cat : N_CAT)
+ getNeighbours(n_cat : N_CAT) : vector< Neighbour * >*
+ setParentAgent( : Agent*)
+ getParentAgent() : Agent*

#neighbours

#mdp #s_a_space
State_Action_Space

CRLModel
- crl_cache : Cache*
+ CRLModel()
+ ~ CRLModel()
+ removeCachedValues( : Neighbour_ID, : vector< Key * >)
+ updateCachedValues( : Neighbour_ID, : vector< KeyValuePair * >)
+ setCache( : Cache*)
+ getCache() : Cache*

CRLAgent
# mdp : MDP *
# c_AdvertismentStrategy : AdvertisementStrategy*
# neighbours : Neighbours*
- coll_freq : int
+ CRLAgent( : Agent_ID)
+ ~ CRLAgent()
+ receiveSR( : State_ID, : Reward_Value, mdp_ID : MDP_ID)
+ neighbourHood() : Neighbours*
+ setAdvertisementStrategy( : AdvertisementStrategy*)
+ getAdvertisementStrategy() : AdvertisementStrategy*
+ setMDP(mdp : MDP*)
+ getMDP() : MDP*

Neighbour
- n_id : Neighbour_ID
- active_agent : Agent*
+ Neighbour( : Agent*)
+ ~ Neighbour()
+ setNeighbourID( : Neighbour_ID)
+ getNeighbourID() : Neighbour_ID
+ setAgent( : Agent*)
+ getAgent() : Agent*

-crl_cache

Cache
- cached_n_kv_p : cache
- decay_thrs : int
- decay_rate : double
+ Cache()
+ ~ Cache()
+ updateValues( : Neighbour_ID, : vector< KeyValuePair * >)
+ removeValue( : Neighbour_ID, : Key*)
+ getValues( : Neighbour_ID) : vector< KeyValuePair * >
+ deleteNeighbour( : Neighbour_ID)
+ addNeighbour( : Neighbour_ID, : vector< KeyValuePair * >)
+ decayCache()
+ setDecayThrs( : int)
+ getDecayThrs() : int
+ setDecayRate( : double)
+ getDecayRate() : double
+ getCacheMap() : cache*
+ size() : int

MDP

AdvertisementStrategy
- local_agent : CRLAgent*
+ AdvertisementStrategy( : CRLAgent*)
+ ~ AdvertisementStrategy()
+ receiveAdvert( : CRLAgent*, : vector< KeyValuePair >)
+ sendAdvert()
+ constructKeys( : CRLModel*) : vector< KeyValuePair * >
+ setLocalAgent( : CRLAgent*)
+ getLocalAgent() : CRLAgent*

Model

-local_agent

Figure 4.5: CRLAgent lass diagram
CRLAgent MDP ActionSelection AbstractActionLearningStrategy

setNextState(State*)
receiveSR(State_ID, Reward_Value, MDP_ID)

selectNextAction(MDP*)

AbstractAction*

setNextAction(AbstractAction*)

update(MDP*, Reward_Value)

stateTransition()

execute()

Advert ismentStrategy

getAdvert isementStrategy()->sendAdvert()

Depending on coll_freq (collaboration frequency) Figure 4.6: CRLAgent reeiveSR funtion sequene diagram79



4.2. Soilse and SoilseC Agent Generator
constructKeys virtual funtion in order to determine what should be ommuniated to the neighbours.The default constructKeys implementation sends the entire ahe ontents unaltered.
4.2 Soilse and SoilseC Agent GeneratorThe Soilse and SoilseC agent-generator is a ustomized instane of the CRL framework with theaddition of the PCD tehnique. It ontains a set of lasses that inherit and implement from di�erentCRL framework lasses. It also provides an interfae lass that ats as the onneting layer betweenthe generated agents and the UTC simulator, i.e., the Sim_ENV lass. Figure (4.7) presents the lassdiagram of the Soilse and SoilseC agents generator.Although it is not expliitly shown in the agent-generator lass diagram that ertain lasses inheritfrom the CRL framework, the relation is presented in Figure (4.8).The high-level relation between the Soilse and SoilseC agent-generator, the UTC simulator and theCRL framework is depited in Figure (4.9). The agent-generator instantiates a Soilse or a SoilseC agent(depending on the type of the agent-generator) for eah signalized juntion. These agent sublassesare an implementation for the RLAgent and CRLAgent lasses in the CRL framework. The agent-generator enquires about the signalized juntions and their phases through the Sim_ENV lass inorder to use this information in the instantiation of Soilse or SoilseC agents. It also uses the providedlearning and ation seletion strategies from the CRL framework in order to reate suh for eahSoilse or SoilseC agent. One the Soilse or SoilseC agents are reated they an then interat with thesimulator diretly through the Sim_ENV interfae.4.2.1 PCDThe PCD implementation is enapsulated in a lass that keeps trak of the samples needed for itsdetetion mehanism funtionality. It provides the assoiated Soilse or SoilseC agent with a funtionto monitor the DPC. This funtion, namely, monitorPatternChange() tests the urrent DPC againsta prede�ned threshold and heks its persistene if it rosses that threshold. Upon detetion of apersistent DPC, the monitoring funtion returns a newly alulated DPC to the Soilse or SoilseCagent that is used to determine its relearning parameters. Listing (4.5) presents the monitoringfuntion. 80



Chapter 4. Implementation
AgentsGenerator

map

map_phases

AgentsGenerator()

~AgentsGenerator()

getJunctions()

getPhasesVector()

getSimENV()

create_ActionSel_LearningStr()

The constructor determines

whether Cache for the Model

is needed or not depending

on the agent type, i.e.,

Soilse or SoilseC

PCD

basic_PCD_movAvgSampleSize

basic_PCD_SamplePerLane

CUSUMsqr_InputSample_nSize

CUSUMsqr_InputSamplePerLane

CUSUMsqr_outputSamplePerLane

CUSUMsqr_movAvgSampleSize

Rewards_Sample

Rewards_movAvgSampleSize

perFactor

persistence

changeThreshold

PCD()

~PCD()

updateVehsCountPerLane()

updateCUSUMsqr()

updateRewardsSample()

calcJunctionDPC()

monitorPatternChange()

setPerFactor()

setPersistence()

Soilse_Action

phases

m_Xs

Soilse_Action()

~Soilse_Action()

execute()

setSoilse_Agent()

Soilse_Reward

mdp

Soilse_Reward()

Soilse_Reward()

~Soilse_Reward()

setJunctionID()

setMDP()

getJunctionID()

getMDP()

calcReward()

Soilse_Reward_1

Soilse_Reward_1()

~Soilse_Reward_1()

calcReward()

calcReward()

SoilseC_Reward_1

crl_agent

SoilseC_Reward_1()

~SoilseC_Reward_1()

calcLocalReward()

calcReward()

getMDP()

Soilse_AgentsGenerator

m_seconds

Soilse_AgentsGenerator()

~Soilse_AgentsGenerator()

buildAgents()

SoilseC_AdvStrategy_1

discount_rate

SoilseC_AdvStrategy_1()

~SoilseC_AdvStrategy_1()

receiveAdvert()

getNormalisedCacheValue()

sendAdvert()

constructKeys()

SoilseC_CRLAgent

SoilseC_CRLAgent()

~SoilseC_CRLAgent()

wakeup()

Soilse_RLAgent

Soilse_RLAgent()

~Soilse_RLAgent()

wakeup()

SoilseC_AdvStrategy

interimRseq

SoilseC_AdvStrategy()

~SoilseC_AdvStrategy()

addInterimReward()

resetInterimRs()

SoilseC_AgentsGenerator

m_seconds

SoilseC_AgentsGenerator()

~SoilseC_AgentsGenerator()

buildAgents()

linkNeighbours()

addINCs()

addOUTs()
sim_env

sim_env

mdp

sim_env

m_agent

sim_env

Sim_ENV

map

map_phases

State_Threshold

Sim_ENV()

~Sim_ENV()

getVehiclesCount()

getVehsOnJunc()

getVehsOnPhase()

getVehsPerLane()

getWTimeVehsOnPhase()

getWTimeVehsJunc()

getAllVehsCountOnLanes()

getAllPhases()

getNumofTLJunctions()

getVehiclesCountOnPhase()

getVehiclesCrossedCount()

getMap()

getJunctionCurrentPhase()

switchPhase()

scheduleAgentWakeUp()

determineJuncState()

setPhaseThreshold()

Soilse_MDP

m_junction

phases_v

seconds

m_states

m_congestion_thresholds

Soilse_MDP()

~Soilse_MDP()

getJunction()

constructStateActionSpace()

buildModel()

terminate()

getActions()

Soilse_Agent

wakeup_in

pcd

Soilse_Agent()

~Soilse_Agent()

wakeup()

setSimENV()

getSimENV()

Relearn()

isLearning()

updatePCDsamples()

Figure 4.7: Soilse and SoilseC agents generator lass diagram
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4.2. Soilse and SoilseC Agent Generator
AbstractAction

AbstractAction()

getActionID()

~AbstractAction()

execute()

MDP

MDP()

MDP()

~MDP()

setNextAction()

setNextState()

setCurrentState()

setCurrentAction()

getID()

getModel()

setModel()

getCurrentState()

getCurrentAction()

getNextState()

getNextAction()

getState()

getAvailableActions()

constructKeyValuePairs()

addToStateSpace()

removeActions()

addAction()

stateTransition()

setStartState()

getStartState()

terminate()

constructStateActionSpace()

Reward

Reward()

~Reward()

setReward()

calcReward()

getReward()

CRLAgent

CRLAgent()

~CRLAgent()

getAllDOPs()

receiveSR()

neighbourHood()

setAdvertisementStrategy()

getAdvertisementStrategy()

addDOP()

getDOP()

setActiveDOP_ID()

getActiveDOP_ID()

AdvertisementStrategy

AdvertisementStrategy()

~AdvertisementStrategy()

receiveAdvert()

sendAdvert()

constructKeys()

setLocalAgent()

getLocalAgent()

RLAgent

RLAgent()

~RLAgent()

receiveSR()

setDOP()

getDOP()

Soilse_Action

phases

m_Xs

Soilse_Action()

~Soilse_Action()

execute()

setSoilse_Agent()

SoilseC_CRLAgent

SoilseC_CRLAgent()

~SoilseC_CRLAgent()

wakeup()

Soilse_Reward

mdp

Soilse_Reward()

Soilse_Reward()

~Soilse_Reward()

setJunctionID()

setMDP()

getJunctionID()

getMDP()

calcReward()

SoilseC_AdvStrategy

interimRseq

SoilseC_AdvStrategy()

~SoilseC_AdvStrategy()

addInterimReward()

resetInterimRs()

Soilse_RLAgent

Soilse_RLAgent()

~Soilse_RLAgent()

wakeup()

Soilse_MDP

m_junction

phases_v

seconds

m_states

m_congestion_thresholds

Soilse_MDP()

~Soilse_MDP()

getJunction()

constructStateActionSpace()

buildModel()

terminate()

getActions()

Figure 4.8: Soilse and SoilseC lasses relation to the CRL framework lasses
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Chapter 4. Implementation
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bool monitorPatternChange (double& new_DPC) {stat i int s t ep s = 0 ;stat i bool sampling = fa l se ;stat i double sum_pd = 0 ;double DPC = alJuntionDPC ( ) ;i f ( (DPC <= hangeThreshold ) && ! sampling )sampling = true ;i f ( sampling && ( s t ep s < p e r s i s t e n  e ) ) {sum_dp += DPC;s t ep s++;i f ( s t ep s == pe r s i s t e n  e ) {s t ep s = 0 ;i f ( ( sum_dp / p e r s i s t e n  e ) <= hangeThreshold ) {// New DPC based on DPC sample averagenew_DPC = (sum_dp / p e r s i s t e n  e ) ;sum_dp = 0 ;sampling = fa l se ;return true ; // Per s i s t en t hange}sum_dp = 0 ;sampling = fa l se ; // I t was a non−p e r s i s t e n t hange}}return fa lse ;} Listing 4.5: PCD - monitor pattern hange funtionUpdating the samples needed to alulate the DPC is done through a dediated funtion. The
updateV ehsCountPerLane() funtion updates the basi sample per lane whih onsists of vehileounts. Consequently, the updateCUSUMsqr() updates the input samples needed to alulate theCUSUM of squares using the moving average of basi samples (vehiles ounts per lane). The samefuntion updates the CUSUM of squares output sample per lane after the required alulations. Sim-83



4.3. Summaryilarly, the updateRewardsSample() updates the rewards sample. All the update funtions mentionedare invoked by the assoiated Soilse or SoilseC agent through a single funtion, updatePCDsamples().In order to alulate the �nal DPC, a dediated funtion, calcJunctionDPC() alulates both, themean of all lane moving averages from the CUSUMsqr_outputSamplePerLane and the moving aver-age of the Rewards_Sample. Furthermore, any sample size must meet the prede�ned orrespondingsample size to arry out any alulation on the sample. The DPC alulation proess was detailed inSetion (3.3).4.2.2 RelearnUpon the wakeup() funtion of a given Soilse or SoilseC agent being alled, the funtion invokes pd ->monitorPatternChange() and the isLearning() funtions. If the agent was not in a learning status anda new DPC is returned as a result of a persistent pattern hange, it alls the Relearn() funtion. Thisfuntion is haraterized by the alulation of new learning and ation seletion parameters suitablefor the deteted hange and based on the returned DPC value. The latter is passed to the Relearn()funtion whih, depending on the learning and ation seletion strategies types, sets new learningand ation seletion parameters. The alulation of these parameters was desribed in Subsetion(3.5.1.2).4.3 SummaryThis hapter presented the implementation of our approah in terms of the CRL framework developedto provide the basi onstituents needed for building Soilse and SoilseC agents. Indeed, our CRLframework an be used to build other optimization approahes as it is generi in nature. For instane,our CRL framework was extended and used to build a multi-poliy optimization sheme for large-saleautonomi systems in (Duspari & Cahill, 2009a). Both, a Soilse or SoilseC agent-generator ustomizesand instantiates the CRL framework as well as inludes PCD support for all reated agents. It alsoprovided an interfae that allows for ommuniation with the UTC simulator. The latter is desribedin the evaluation hapter.
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Chapter 5
EvaluationThis hapter details the evaluation of our RL-based approah to optimization of UTC by meansof simulation. Our simulations are based on a UTC simulator that was built in the DistributedSystems Group at Trinity College Dublin (TCD). We brie�y introdue the possible approahes toUTC simulation and introdue the UTC simulator that we use. We desribe the experimental setupin terms of the maps and tra� patterns used, the Soilse and SoilseC learning and ation seletionsettings used as well as the baselines for omparison. The performane metris we use to evaluateour approah in terms of average vehile waiting time and average number of vehile stops are alsopresented. We experiment with two senarios of di�erent sale; the �rst uses a map of TCD and itssurroundings and the seond, uses a larger map of Dublin inner ity entre. We analyse the resultsobtained from these senarios and ompare them against results from the best-performing baselines.We also evaluate how Soilse and SoilseC sale.5.1 UTC SimulationApproahes to tra� simulation have evolved to mainly use one of three models, i.e., mirosopi,marosopi and mesosopi (Hoogendoorn & Bovy, 2001). The main di�erene among these modelsis in the level of granularity at whih the tra� dynamis are modelled. We brie�y introdue thesemodels:Mirosopi: in this model, the granularity is very �ne through assigning every vehile a spei�model of interation. Usually, a group of vehiles of a given type, e.g., ars, follow the samemodel. Suh a model spei�es the vehile's behaviour in terms of aeleration, deeleration,85



5.1. UTC Simulationar-following, lane-hanging and possibly other aspets.Marosopi: in this model, the granularity is oarse where tra� �ow is modelled based on oneptsinspired by �uid dynamis. It deals with vehiles olletively and on homogeneous basis, i.e.,does not di�erentiate between di�erent vehile types. A group of vehiles are seen as one entitythat an be haraterized by a given �ow-rate, veloity or density.Mesosopi: this model bridges the mirosopi and marosopi models. It does not di�erentiatebetween di�erent vehiles but rather spei�es their behaviour usually probabilistially. Tra�is modelled as small groups of vehiles of given harateristis suh as density. Driving relateddeisions of a given vehile are relatively a�eted by the small group of vehiles it belongs to.The oarse nature of the marosopi model makes it di�ult to represent real-life situations and ratheronentrates on providing a less omputationally demanding model. On the other hand, mirosopiand mesosopi models seem to be more aurate in desribing the low-level dynamis of tra� whihmakes them more representative of real-life situations. Consequently, we use a mirosopi urbantra� simulator.5.1.1 The UTC SimulatorThe UTC simulator (Reynolds et al., 2006) that we use follows a mirosopi model. Its input is aset of XML �les desribing the road network to be simulated and the valid phases for eah signalizedjuntion. This inludes the number of lanes per road, the maximum allowed speed on a given road,and the distanes between onneted juntions. Moreover, tra� an be generated between spei�juntions or among user-de�ned zones where the soure/destination juntions are seleted randomlywithin the soure/destination zones. The resulting tra� data is represented in a trae �le fed to thesimulator whih inludes all vehiles insertion times along with eah vehile's respetive path, i.e., thesequene of juntion identi�ers to ross. A snapshot of the UTC simulator's viewer is presented inFigure (5.1).The tra� data generated by the tools available in the UTC simulator does not provide variabilityin the tra� trae, i.e., the same input data is produed given the same tra� duration and spei�vehile paths. This an be seen as an evaluation limitation. However, we examine, but not statistially,the e�et of varying di�erent parameters suh as the ExpFator and the ollaboration frequenywhere other parameters are automatially omputed by the Soilse and SoilseC algorithms. The onlyunertainty in Soilse and SoilseC originates from the randomness in the RL ation seletion strategiesused with the exeption of pure greedy ation seletion.86



Chapter 5. Evaluation

Figure 5.1: UTC simulator - viewer snapshotIn the UTC simulator, vehiles exhibit di�erent behaviours suh as ar-following, aeleration,deeleration and lane-swithing. They also abide by the speed limits on the di�erent roads they travelon. Throughout simulation, the UTC simulator logs vehiles' waiting time and total number of stopsand it also provides the throughput at the end represented by the number of vehiles that arrived attheir destinations. The UTC simulator was also used in (Duspari & Cahill, 2009b,a) for evaluatingmulti-poliy optimization shemes in deentralized autonomi systems.5.2 Experimental SetupThis setion spei�es the ommon experimental setup used in the two evaluation senarios based onthe Trinity map and the Dublin inner ity entre map. We desribe the maps used for eah senarioand the tra� patterns used for eah. We also present the learning and ation seletion parametersfor Soilse and SoilseC. The baselines we use to ompare Soilse and SoilseC against are also presentedas well as the metris used to evaluate the performane.5.2.1 Maps and Tra� PatternsTwo di�erent maps are used for the two di�erent senarios. Eah senario also uses a di�erent seriesof tra� patterns. The tra� patterns used are based on tra� ounts dedued from the Dublin87



5.2. Experimental Setup
���������	
���

Figure 5.2: Trinity mapFrom To ULP Tra� MPP Tra� UHP Tra� EPP Tra�F A 100 2000 1050 xF I 100 500 1050 500H C 100 500 1050 500H G 100 500 1050 500J K 100 500 1050 500B I 100 500 1050 1500I A 100 1500 1050 500F C 100 500 1050 500E G 100 1500 1050 xD A 100 500 1050 500H A x 500 x 500E A x 500 x 500E I x 500 x 500B F x x x 2000H E x x x 1500Table 5.1: Trinity senario tra� patternsTransportation O�e Road Users Monitoring Report (Dublin Transportation O�e, 2008).Trinity senario: this senario uses a map (see Figure (5.2)) that represents the real road network ofTCD and its surroundings (Trinity map). It onsists of 104 juntions, 30 of whih are signalizedjuntions that need to be ontrolled. The overall tra� duration is ∼ 19 hours omprising fourdi�erent patterns:Uniform low pattern (ULP): tra� is generated over ∼ 4 hours following a uniform pattern88



Chapter 5. Evaluationof low tra� load onsisting of 1000 vehiles. It is uniform in the sense that tra� isgenerated in equal proportions from all possible soures (see the From olumn in Table(5.1)) to all possible exits (see the To olumn in Table (5.1)). Cases where a given soureis also an exit are avoided. See Table (5.1).Morning peak pattern (MPP): tra� is generated over ∼ 4 hours following a pattern thatre�ets high tra� loads on main roads omprising 10, 000 vehiles. See Table (5.1).Uniform high pattern (UHP): tra� is generated over ∼ 7 hours following a uniform pat-tern of high tra� tra� load onsisting of 10, 500 vehiles. See Table (5.1).Evening peak pattern (EPP): tra� is generated over ∼ 4 hours following a pattern thatre�ets high tra� loads on main roads onsisting of 10, 000 vehiles but generally opposingin diretion to the morning peak pattern. See Table (5.1).Dublin inner ity entre senario: this senario uses a map (see Figure (5.3)) that represents thereal road network of a onsiderable portion of Dublin ity entre. In this senario, 62 signalizedjuntions need to be ontrolled out of the overall total of 270 juntions. This size is omparableto a ity entre, ∼ 62.6% of the size of Cork ity entre, whih has 99 signalized juntionsontrolled by SCOOT (personal ommuniation). The overall tra� duration is ∼ 19 hoursomprising four di�erent patterns:ULP: tra� is generated over∼ 4 hours following a uniform pattern of low tra� load onsistingof 2000 vehiles. Indeed, ases where a given soure is also an exit are avoided.MPP: tra� is generated over ∼ 4 hours following a pattern that re�ets high tra� loads onmain roads onsisting of 20, 000 vehiles.UHP: tra� is generated over ∼ 7 hours following a uniform pattern of low tra� load on-sisting of 21, 000 vehiles.EPP: tra� generated over ∼ 4 hours following a pattern that re�ets high tra� loads onmain roads onsisting of 20, 000 vehiles but generally opposite in diretion to the morningpeak pattern.Tra� patterns used for the Dublin inner ity entre senario are analogous to those used for theTrinity senario. However, muh higher tra� volumes are used and parking spae areas are in-trodued (see Figure (5.3)) in order to be used for generating morning and evening peak patterns.These parking spae areas are hosen in realisti loations around Dublin inner ity entre. For theULP and UHP tra� patterns for the Dublin inner ity entre senario, tra� is generated in both89
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Figure 5.3: Dublin inner ity entre mapdiretions from all opposing edges of the map uniformly. To larify, tra� inoming from di�erentsoures in zones {A, B, C, D} is destined for di�erent exits on zones {I, K, L, J} and vie versa.Also, tra� inoming from di�erent soures in zones {A, E, G, I} is destined for di�erent exits on
zones {D, F, H, J} and vie versa. The di�erene between ULP and UHP is only in the tra� loadand in the pattern duration. For the MPP tra� pattern in Dublin inner ity entre senario, twotypes of tra� are generated, the �rst is heavy tra� destined for the di�erent parking spaes andthe seond is light uniform tra� similar to the ULP. Inoming heavy tra� in that ase arrives to agiven parking spae from all remote zones, for example, parking space A would reeive heavy tra�from all zones exept near zone E (as vehiles will arrive almost immediately) and so on. Suh heavytra� amounts to nearly 6324 vehiles per parking spae area over the MPP duration. The oppositehappens in the EPP where heavy tra� leaves form the parking spae areas to all remote zones.Tra� loads leaving the parking spaes are similar in load to those in the MPP. As well, light uniformtra� similar to the ULP is generated simultaneously.Both senarios presented are simulated with the ombined set of their respetive patterns. Tolarify, the Trinity senario would run for the joint series of its patterns, i.e., ULP → MPP →

UHP → EPP for a duration slightly more than 19 hours to allow for the most reent tra� to learthe map. The same is the ase for Dublin inner ity entre senario using its respetive patterns.Spei�ally, ULP starts the simulation, MPP follows at ∼ 14400sec, then UHP follows at ∼ 2900secand �nally EPP follows at ∼ 54000sec in the simulation.90



Chapter 5. Evaluation5.2.2 Soilse and SoilseC Spei�sPivotal onstituents of the Soilse and SoilseC agents are the learning and ation seletion strategies aswell as the Pattern Change Detetion (PCD) mehanism. In our senarios, Soilse and SoilseC agentsshare the following ommon learning, ation seletion, and PCD spei�s (listed also in Table (5.2)):Learning strategy: Q-learning is used as the learning strategy with α (learning rate) initially setto a high 0.99 and gradually dereasing based on an initial αdecay rate = 0.03. This allows αto reah the minimum value of 0.001 after ∼ 115 minutes. Two disount fators (γ) are �xedto either 0.3 or 0.7 throughout the senario simulation whih are representative of mid-low andmid-high γ values respetively.Ation seletion strategy: three strategies an be used; ǫ−greedy, greedy or Boltzmann. Conern-ing ǫ−greedy, its initial ǫ value is set to a high 0.99 and gradually dereases based on an initial
ǫdecay rate = 0.03. Analogous to Q-learning's α, ǫ reahes the minimum value of 0.001 after
∼ 115 minutes. In ase of Boltzmann, the initial temperature τ is set to 1000 and it graduallyools down to the minimum value of 1 based on a temperature deay rate τdecay rate = 0.03 after
∼ 115 minutes. In ase of using greedy ation seletion strategy, only Q-learning's α is a�eted.PCD: Conerning the sample size needed for the CUSUM of squares on a lane, n = 30 and k = 15are used. The moving average �lter on eah lane's tra� has a moving sample size of 60 tra�ounts olleted every seond. Conerning the smoothing moving average �lter on the CUSUMof squares output, a sample size of 10 is used. Also, the reward moving average �lter uses amoving sample of 10 rewards. A �xed thresholding tehnique is used with a juntion hangethreshold set to 0.85. A PerFactor of 10 is used to squash the resulting Degree of PatternChange (DPC) while the persistene sample has a size of 10. See Setion (3.3.2) for details onhow these values are seleted.In both Soilse and SoilseC, relearning is evaluated with three values of ExpFactor (exploration fator,see Setion (3.5.1.2)) ∈ {1, 2, 5}. The latter set of ExpFactor values was hosen as agents wouldspend a long time when relearning if the ExpFactor exeeds the value 5, whih onsequently makesthem unresponsive to possible genuine hanges in tra�. Given that the ExpFactor value a�ets therelearning period, a set of values (≤ 5) were alulated to assess its e�et on the overall performane.The threshold used to determine a phase's busy status is set to 1. The ation set used is omposedof 0, 20 and 30 seond available for eah state in the Soilse or SoilseC state-ation spae. A Soilseagent uses R1 (see Equation (5.1), refer to Setion (3.5.1.1) for details) while a SoilseC agent uses91



5.2. Experimental SetupParameter Value(s)Initial α, ǫ 0.99Initial αdecay rate, ǫdecay rate, τdecay rate 0.03

γ {0.3, 0.7}Initial τ 1000CUSUM k, n 30, 15CUSUM (input, output) sample sizes (60, 10)Juntion hange threshold 0.85PerFator 10Persistene sample size 10Rewards history length 10ExpFator {1, 2, 5}Durations of the three ations used (0, 20, 30)secPhase threshold 1NPV disount rate 0.1Collaboration frequeny {120, 240}secTable 5.2: Experimental parametersa ollaborative reward model that inorporates R1 as loal reward model (see Equation (3.10) andSetion (3.5.2.2) for details).
R1 = (number of vehicles crossed − number of vehicleswaiting on the junction ) (5.1)Every SoilseC agent follows an advertisement strategy of Net Pro�t Value (NPV) disount rate 0.1while we experiment with two ollaboration frequenies of 120 or 240 seonds (see Setion (3.5.2) fordetails on how these values are seleted). We also evaluate the three modes of ollaboration formingthe neighbours to send to and those to reeive rewards from as desribed in Setion (3.5.2.1). Thetype of phases eah signalized juntion uses are onise phases and are desribed in Setion (3.4).Finally, all agents' initial learning ours on the ULP where this learning lasts for ∼ 115 minutes.5.2.3 Baselines for ComparisonWe use two baselines for omparison to ompare Soilse and SoilseC performane against:Round robin (RR): this baseline simply allows every signalized juntion ontroller to yle throughthe available phases while giving an equal amount of time to eah. We use 20, 30 and 40 seondsin our senarios. For example, RR20s running on a signalized juntion of 3 phases would havea yle time of 3× 20 seonds. This means that the time given to eah phase is �xed and heneRR represents a �xed-time UTC plan. 92



Chapter 5. EvaluationSAT: an algorithm (Rihter, 2006) that emulates the behaviour of SCATS by trying to ahieve a
90% saturation level at signalized juntions. The saturation level in this sense depends on thee�ieny of using the available green time. We set the minimum phase time to 20 seonds andthe SAT ontrollers determine the maximum yle length based on [minimum phase time ×

max_cycleL_factor × number of phases]. The max_cycleL_factor we hoose for our se-narios are 1.1 and 1.5 and the number of phases depends on the juntion being ontrolled.The SAT ontrollers try to adapt aording to the saturation level by inrementing or dere-menting phase durations at the beginning of eah yle depending on information from theprevious yle. The derement or inrement amount is a �xed number (DIM). We hooseto experiment with 2 and 5 seonds in that ase whih were found to provide better perfor-mane in SAT ompared to other tried values. Heneforth, a SAT ontroller is desribed as in
SAT_{DIM}_{max_cycleL_factor}, e.g., SAT_2_1.5.The above baselines are representative of two UTC shemes, namely, RR's �xed-time ontrol andSAT's adaptive ontrol. Both present reasonable ompetitiveness depending on the senario on whihthey are deployed as the results disussed further on will show.5.2.4 Performane MetrisWe rely on two metris to assess the performane of Soilse and SoilseC against the baselines in thetwo senarios desribed before.Waiting time: for a given vehile, the waiting time (also known as delay) represents the amount oftime that the vehile is motionless throughout the journey to a given destination. Intuitively,UTC optimization aims at reduing that time.Number of vehile stops: for a given vehile, the number of stops represents the instanes at whihits veloity reahed zero throughout the journey to a given destination. Intuitively, UTC opti-mization aims at reduing the number of stops per vehile.As we are dealing with tra� onsisting of many vehiles, we need a olletive metri. Hene, theaverage waiting time (AWT) and the average number of vehile stops (AvgStops) per arrived vehileare used as olletive metris. As metris for the ongoing performane, we monitor the (aumulated)total number of stopped vehiles and the (aumulated) total waiting time of all vehiles present at agiven time throughout a given simulation senario. The number of arrived vehiles is also presentedwhih represents the overall throughput. 93



5.2. Experimental SetupBetter performane in terms of the aforementioned metris is ruial to UTC performane. Theyonvey the degree to whih the ultimate goal of dereasing ongestion is met. They are also ommonmetris in the UTC optimization literature. As argued in (Klein, 2001), vehile delay or waitingtime and the number of stops vehiles su�er are important measures of tra� ongestion and tra��ow. Partiularly, they are important for studying the environmental e�et of tra� suh as fuelonsumption and emissions.We use, Soilse or SoilseC to refer to a deployment where every signalized juntion in a givensenario is ontrolled by a Soilse or a SoilseC agent respetively, unless there is an expliit use ofSoilse agent(s) or SoilseC agent(s). Performane results are presented with the pre�x (∼ −) or (∼ +)to indiate an approximate lower or higher value respetively, for example, if a given Soilse deploymentoutperforms the RR20s baseline by ∼ −x% in terms of AWT, this implies that Soilse provides ∼ x%lower AWT than RR20s.Plots and graphs showing AWT, AvgStops and the ongoing performane based on total waitingtime and total number of stops do not inlude a measure of unertainty suh as standard deviation.The reason is due to a limitation in the UTC simulator (see Setion (5.1.1)) whih does not supportthe variability of input data for same tra� patterns that an be used for di�erent runs.5.2.5 Evaluation ObjetivesThe evaluation that we arried out addresses whether our approah meets the following objetives.Objetive one (Obj1): assess the bene�ts of relearning in our approah against a situation whereinitial learning is only used. In addition to assessing the performane of our approah using theavailable ation seletion strategies.Objetive two (Obj2): assess the relearning behaviour in our approah.Objetive three (Obj3): assess the viability of our approah for UTC by omparing Soilse andSoilseC performane against the baselines performane.Objetive four (Obj4): assess how ollaboration using SoilseC an provide better global perfor-mane against non-ollaborative Soilse. In addition to assessing available ollaboration modes.Objetive �ve (Obj5): assess how our approah sales in terms of map size and tra� loads.We refer to the above objetives individually as we address eah in the evaluation of our approahusing two senarios of di�erent sales. In addition, the same objetives are addressed in both senarios.94



Chapter 5. Evaluation
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Figure 5.4: Trinity - RR total vehile waiting time throughout the simulation time5.3 Trinity SenarioThe map used for this senario and the series of ombined patterns were desribed in Setion (5.2.1).First we introdue the results from the baselines evaluation and then ompare their performane inorder to obtain the best performing baseline settings. The latter's performane are used for furtheromparison against the performane of Soilse and SoilseC agents. Also, Soilse is ompared againsta situation where an initial learning is only used. For this senario, we also provide di�erent levelsof omparison between di�erent parameters of Soilse and SoilseC. Spei�ally, we study the e�et ofusing di�erent exploration fators on the relearning behaviour. The latter is also disussed for Soilseand SoilseC. Furthermore, we study the e�et of the ollaboration mode in use as well as the frequenyat whih SoilseC agents ollaborate. Finally, we ompare the results of the best performing baselinesettings against the best Soilse and SoilseC performane.5.3.1 Baseline PerformaneWe present the performane of the di�erent baselines as a basis for seleting the best performingbaselines for further omparison against Soilse and SoilseC.Figures (5.4) and (5.5) show the total waiting time for all vehiles in the simulation at a given timefor all RR and SAT settings respetively. It is evident that RR20s outperforms RR30s and RR40sin terms of total vehile waiting time throughout the simulation time. Given the in�exibility of RRin terms of hanging phase timings or avoiding ertain unneessary phases for a given tra� pattern,it appears that for high phase times suh as 30 or 40 seonds, a onsiderable portion of the phase95



5.3. Trinity Senario
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Figure 5.5: Trinity - SAT total vehile waiting time throughout the simulation timetime is wasted. This auses vehile queues to build up on ertain busy lanes as they are obliged towait for their turn (phase) in order to be allowed to ross after the previous phase time elapses. Ifa lane is served by a given phase at a signalized juntion with 3 phases that runs RR40s, it wouldneed to wait 2 × 40 seonds for its turn to be served. Given that RR20s allows for yling phasesto end relatively faster, it allows vehiles on more approahes to ross more frequently resulting inbetter performane than RR30s and RR40s in this senario. As far as SAT is onerned, di�erent SATsettings, namely, SAT_2_1.1, SAT_2_1.5, SAT_5_1.1 and SAT_5_1.5 perform approximately ona par in terms of total vehile waiting time throughout the simulation time. In omparison to RRperformane, Figure (5.6) shows the AWT results for di�erent RR and SAT settings. In terms of AWT,RR20s (∼ 34s) slightly outperforms the best performing SAT, i.e., SAT_2_1.5 (∼ 37.88s). RR30sand RR40s perform the worst in terms of AWT. Conerning the performane in terms of AvgStops(see Figure (5.7)), most of SAT experiments perform nearly on par with the best performing RR20s(AvgStops =∼ 4.78) with the exeption of SAT_2_1.1.As far as the number of vehiles that arrived over the simulation duration is onerned, Figure(5.8) shows the performane of all baselines with their di�erent settings. SAT_2_1.5 performs bestby allowing 30, 162 vehiles to arrive as opposed to the best performing RR, i.e., RR20s that allowedonly 29, 128 vehiles to do so. This represents ∼ 3.2% better performane is terms of the number ofarrived vehiles.Based on these results, RR20s and SAT_2_1.5 represent the best performing baselines. The di�er-ene between the seleted baselines for this senario in terms of total vehile waiting time throughoutthe simulation time is presented in Figure (5.9). It shows that both seleted baselines perform simi-96
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Figure 5.8: Trinity - RR (20s, 30s, 40s) vs. SAT (2_1.1, 2_1.5, 5_1.1, 5_1.5) - number of arrivedvehiles
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Figure 5.10: Trinity - RR20s vs SAT_2_1.5 - aumulated total vehile waiting time
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5.3. Trinity SenarioAWT %⋆ RR20s SAT_2_1.5RR 30s -42% -36%RR 40s -59% -55%SAT_2_1.1 -11% -1%SAT_5_1.1 -12% -2%SAT_5_1.5 -14% -4%SAT_2_1.5 -10% x
⋆The negative sign (-) implies lower AWTTable 5.3: Trinity - seleted baselines AWT performane omparison - Trinity mapand all others.It is lear that in terms of AWT, RR20s outperforms all SAT experiments while the best performingSAT_2_1.5 outperforms all other SAT as well as RR30s and RR40s.5.3.2 SoilseIn this setion we evaluate the performane results of Soilse deployment in the Trinity senario wherea dediated Soilse agent is assigned to ontrol every signalized juntion. We analyse the e�et ofdi�erent ation seletion strategies in Soilse. Moreover, we analyse the e�et of the ExpFactor onthe relearning. In addition to omparing the performane of Soilse against the performane of theseleted baselines, we also ompare the performane of Soilse against the performane of SoilseInitthat is a situation where initial learning without relearning is only used. This is done in order to showthe validity of relearning as a means to provide for responsiveness and adaptiveness in Soilse. It isworth mentioning that all metri results for AWT and AvgStops provided for Soilse are based on thesimulation period only after the initial learning has �nished and on the averaged results of three runs.The variability in these runs originates solely from the random funtions used in the deployed ationseletion strategy apart from pure greedy (see Setion (5.1.1)). Plots of (aumulated) total vehilewaiting time and number of stopped vehiles throughout the simulation period are based on the bestrun from the three runs.5.3.2.1 Initial Learning vs. RelearningWe �rst ompare the performane of Soilse using di�erent ation seletion strategies against theorresponding SoilseInit (see Obj1). Table (5.5) shows the best performane of Soilse in terms ofAWT for eah ation seletion strategy against SoilseInit. We �rst disuss the results from Soilseusing di�erent ation seletion strategies. 100



Chapter 5. Evaluation SoilseInit Soilse Soilse Performane∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

ǫ-greedy 35.606 29422 4.38 30.484 30152 4.37 -14.38% +2.42% -0.228%Greedy 36.603 29540 4.47 33.345 29651 4.47 -8.90% +0.37% 0%Boltzmann 47.812 29297 5.97 44.864 29448 5.74 -6.16% +0.51% -3.69%
⋆Numbers are in seonds.Table 5.4: Trinity - Soilse vs. SoilseInit based on best AWT performane per ation seletion strategySoilse ǫ-greedyPerformane∓ ∼AWT% ∼AvgStops% ∼#AV%Greedy -8.57% -2.23% +1.66%Boltzmann -32.05% -23.86% +2.33%
∓The negative sign (-) indiates lower AWT, AvgStops or #Arrived Vehiles (AV), otherwise (+) is used.Table 5.5: Trinity - best AWT Soilse performane per ation seletion strategyFrom the results presented in Table (5.5), it transpires that Soilse using ǫ-greedy ation seletionstrategy outperforms Soilse using Boltzmann and Soilse using greedy by ∼ −32.05% and ∼ −8.57%respetively in terms of AWT. Furthermore, results in terms of AvgStops show that using ǫ-greedy inSoilse also results in better performane ompared to using Boltzmann and greedy by ∼ −23.86% and
∼ −2.23% respetively. Conerning the number of vehiles that arrived at their destinations, Soilseusing ǫ-greedy has marginally outperformed both Soilse using Boltzmann and Soilse using greedy byallowing ∼ +2.33% and ∼ +1.66% more vehiles to arrive respetively.Furthermore, addressing Obj1 in terms of relearning bene�ts, results based on best AWT perfor-mane for Soilse against SoilseInit presented in Table (5.4) show that in all the ases Soilse, by relearn-ing when a genuine tra� pattern hange ours, performed better espeially in terms of AWT againstSoilseInit. In terms of AWT, Soilse outperformed SoilseInit by providing ∼ −14.38%, ∼ −8.90% and
∼ −6.16% better performane in ases where ǫ-greedy, greedy and Boltzmann were used respetively.Figures (5.12)(5.13) rea�rm the results onerning the di�erent ation seletion strategies used inSoilse in terms of AWT. Using Boltzmann in Soilse resulted in poor vehile waiting time performane inthis senarios as opposed to using ǫ-greedy or greedy. This is lear in the previous �gures as Soilse usingBoltzmann does not manage to learn or relearn better poliies ompared to Soilse using ǫ-greedy andgreedy. It is also notieable in Figure (5.12) that surges in the total waiting time our as some Soilseagents relearn. This ours in all ation seletion strategies, on di�erent signalized juntions and atdi�erent levels of relearning, (i.e., due to di�erent reparameterization). Monitoring the aumulation of101
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Figure 5.13: Trinity - Soilse using Boltzmann vs. (ǫ-)greedy - aumulated total waiting timethroughout the simulation time
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5.3. Trinity SenarioExpFator 1 ExpFator 2 ExpFator 5
∼AWT⋆ ∼AvgStops ∼AWT⋆ ∼AvgStops ∼AWT⋆ ∼AvgStops

ǫ-greedy 32.364 4.33 31.765 4.17 30.484 4.37Greedy 35.151 4.67 33.345 4.47 33.963 4.58Boltzmann 45.401 5.63 45.204 5.76 44.864 5.74
⋆Numbers are in seondsTable 5.6: Trinity - best AWT Soilse performane per exploration fator (ExpFator)greedy. Furthermore, Soilse using greedy performs better than using Boltzmann in terms of AWTand AvgStops but does not outperform Soilse using ǫ-greedy. This is due to the exploration ontrolparameter(s) whih in the ase of Soilse using greedy is only α while in ǫ-greedy, ǫ whih determinesthe randomness of ation seletion has shown to be bene�ial. Upon the detetion of a tra� patternhange, Soilse using greedy would only relearn based on the sole greedy ation seleted. The latter'sreward value is used to update the poliy only to the extent de�ned by the newly alulated butdeaying α. On the other hand, ǫ-greedy allows for non-greedy but randomly (to a ertain ǫ degree)seleted ations to be explored, whih often results in better overall performane in the near futureduring the emerging tra� pattern than seleting pure greedy ations during exploration.5.3.2.2 Relearning BehaviourSoilse's relearning behaviour is analysed here in order to address Obj2. The e�et of the explorationfator value on relearning as well as relearning ourrenes and the ratio of relearning time to thesimulation time are disussed. Table (5.6) presents the best performing Soilse results in terms of AWTper ExpFactor and ation seletion strategy. It also inludes the orresponding AvgStops results.Di�erent ExpFactor values a�et Soilse's performane in terms of AWT and AvgStops under allation seletion strategies to di�erent extents. Soilse using greedy under ExpFactor 2 performed
∼ −2.41% and ∼ −4.28% moderately better in terms of AvgStops than under ExpFactor 5 and
ExpFactor 1 respetively. The suitability of ExpFactor 2 in that ase is due to a relearning behaviourthat balaned between the relearning ost and overall performane. Consequently, Soilse using greedyunder ExpFactor 2 provided ∼ −1.81% and ∼ −5.13% lower AWT than under ExpFactor 5 and
ExpFactor 1 respetively. On the other hand, Soilse using ǫ-greedy and Boltzmann showed a steadyimprovement in AWT performane as the ExpFactor value inreased. For example, a ∼ −5.80% lowerAWT resulted from Soilse using ǫ-greedy at ExpFactor 5 as opposed to the ase at ExpFactor 1. Itwas notieable that an improvement in AWT was not always aompanied by an improvement inAvgStops. Soilse using ǫ-greedy and Boltzmann performed best at ExpFactor 2 and ExpFactor 1104



Chapter 5. Evaluationrespetively in terms of AvgStops. However, Soilse using greedy performed best at ExpFactor 2 interms of both AWT and AvgStops. It transpires that there is no guarantee of obtaining simultaneousbest performane in terms of AWT and AvgStops under all ExpFactor values for Soilse in this senario.This may be due to the nature in whih relearning ours at di�erent signalized juntions espeiallywith di�erent DPCs and no ollaboration.We seleted signalized juntion #1226 (Pearse street and Lombard/Westland Row street rossing)to show the relearning periods for Soilse using ǫ-greedy under di�erent ExpFactor values. Figure(5.15) presents the progress of loal tra� pattern hange on that signalized juntion depited asvarying DPC values, whih also inorporate the loal Soilse agent's performane. As a response togenuine persistent hanges in the DPC value, relearning periods are initiated as seen in Figure (5.16)that represents the hanges in ǫ of the Soilse agent at juntion #1226. Q-learning's α uses the sameinitial value and deay rate as ǫ during relearning and hene is not plotted.Based on Figures (5.16) and (5.15), it is lear that the Soilse agent on juntion #1226 detetedthe emergene of all patterns under all ExpFactor values exept for ExpFactor 5 as it had a longerrelearning period for the MPP, whih aused it to miss the emergene of UHP. Naturally, the new
ǫ value deayed at di�erent rates depending on the ExpFactor value and the DPC of every hange.Moreover, using ExpFactor 1 aused the Soilse agent to relearn twie more after the initial relearningwas ompleted for the MPP and the start of the relearning period aused by the emergene of UHP.This is due to the agent's poor performane after the initial relearning period given ExpFactor 1,whih aused a further need to relearn. This was aused by persistent low DPC values. The situationunder ExpFactor 2 appears to be good sine relearning ourred as the Soilse agent responded ateah tra� pattern emergene, however, this might not have been a good situation for other agents.The use of ExpFactor 2 for this spei� Soilse agent resulted in relatively stable high DPC valuesduring the MPP. Under ExpFactor 5, the Soilse agent relearnt for longer periods per genuine tra�pattern hange. The �rst relearning task lasted long enough to miss the hane to relearn for thenext emerging pattern UHP. However, the poliy that was reahed, whih might have been a�etedby parts of the emerging UHP on a low exploratory rate, did not severely a�et the loal Soilse agentperformane under UHP and hene there was no further relearning until a new genuine hange wasdeteted due to the emergene of the EPP.Furthermore, ertain signalized juntions (eah ontrolled by a Soilse agent) have relearnt duringthe simulation time. Figure (5.17) shows the start and end times of relearning periods for all Soilseagents inluding the initial learning period (please note from now on that juntion ID 50 orrespondsto juntion#1226 presented earlier). It an be observed that all Soilse agents have started and ended105
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ExpFactor plays an important role in determining the behaviour, i.e., relearning period and the deayrate, by whih loal Soilse agents respond upon deteting genuine tra� pattern hanges. This diretlya�ets the overall performane of Soilse in terms of AWT and AvgStops where best performane of the�rst does not guarantee a orresponding best performane of the latter. In addition, it is observed that107
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Chapter 5. Evaluation Soilse SoilseC SoilseC Performane∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

e-greedy 30.484 30152 4.37 30.009 30347 3.91 -1.58% +0.64% -10.5%Greedy 33.345 29651 4.47 32.287 29570 4.75 -3.17% -0.27% +5.89%Boltzmann 44.864 29448 5.74 42.719 29466 5.47 -4.78% +0.06% -4.70%Table 5.7: Trinity - SoilseC vs. Soilse for best performane based on AWTSoilse SoilseC SoilseC Performane∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

e-greedy 31.765 29597 4.17 30.009 30347 3.91 -5.52% +2.47% -6.23%Greedy 33.345 29651 4.47 33.712 30128 4.41 +1.08% +1.58% -1.34%Boltzmann 45.369 29285 5.59 43.725 29384 5.44 -3.62% +0.33% -2.68%
⋆Results are in seonds.
∓The negative sign (-) indiates lower AWT, AvgStops or #Arrived Vehiles (AV) , otherwise (+) is used.Table 5.8: Trinity - SoilseC vs. Soilse for best performane based on AvgStopsanalogous to the Soilse situation, SoilseC using Boltzmann regardless of its enhaned performanethrough ollaboration, did not provide ompetitive AWT performane against SoilseC using otheration seletion strategies. Furthermore, SoilseC using ǫ-greedy and greedy provide ∼ −1.58% and
∼ −3.17% better performane in terms of AWT as opposed to their Soilse ounterparts. These AWTperformane results are not notable, however, the e�et of ollaboration was lear in terms of theAvgStops metri in the ase of the best performing SoilseC using ǫ-greedy, spei�ally, ∼ −10.52%better performane in terms of AvgStops as opposed to Soilse using ǫ-greedy. The overall di�erenein terms of the number of arrived vehiles was minimal in all SoilseC ases ompared to Soilse.Table (5.8) summarizes the best performane of SoilseC vs. Soilse in terms of AvgStops. It isnotieable that the best AvgStops performane for SoilseC using ǫ-greedy is also the best performanein terms of AWT. Collaboration has resulted in a balane between SoilseC's performane in termsof both metris as opposed to Soilse using ǫ-greedy ase. As far as the best performane of SoilseCusing ǫ-greedy is onerned, a ∼ −5.52% and ∼ −6.23% better performane in terms of AWT andAvgStops results respetively ompared to Soilse. Moreover, an adverse e�et of ollaboration for thebest AvgStops performane for SoilseC using greedy in terms of AWT is notied, i.e., ∼ +1.08% higherAWT than in the ase of Soilse. Similar adverse e�et of ollaboration an be notied in SoilseC usinggreedy in terms of AvgStops as it resulted in ∼ +5.89% more AvgStops that the ounterpart aseof Soilse. It appears that in both ases of best performing SoilseC using greedy, eah ase providesbetter performane than the respetive Soilse solely on one main metri (AvgStops or AWT) at a time.This implies that SoilseC using greedy annot balane between ahieving best performane in terms109



5.3. Trinity SenarioBest AvgStops Performane Best AWT PerformaneExpFator γ ExpFator γ

e-greedy 2 0.7 5 0.7Greedy 2 0.3 2 0.3Boltzmann 2 0.7 5 0.3Table 5.9: Trinity - key parameters of best performing SoilseBest AvgStops Performane Best AWT PerformaneExpFator CollFreq (seonds) CM⋆ γ ExpFator CollFreq (seonds) CM⋆ γ

e-greedy 2 240 Three 0.3 2 240 Three 0.3Greedy 2 240 Two 0.7 2 240 Tow 0.3Boltzmann 2 120 Three 0.7 2 240 Tow 0.3
⋆Collaboration Mode Table 5.10: Trinity - key parameters of best performing SoilseCof AWT and AvgStops simultaneously.Table (5.9) provides key parameters for the experimental setup of Soilse's best performane. Itappears that the AvgStops performane is diretly a�eted by the amount of exploration in Soilse as itperforms best in terms of that metri under ExpFactor 2 for all ation seletion strategies. We believethis is due to the sensitivity of that metri (due to breaking propagation to following vehiles) where itis more adversely a�eted (as opposed to AWT) by exploratory ations taken over longer explorationdurations. On the other hand, Soilse using ǫ-greedy, whih has the best AWT performane, requiredmore exploration, i.e., ExpFactor 5 in order to perform best. Soilse using Boltzmann had also a similarsituation. However, Soilse using greedy, having a non-exploratory ation seletion (only Q-learning's
α ontrols the exploration) performed best in terms of AWT and AvgStops under ExpFactor 2 and
γ = 0.3. In terms of γ, Soilse using ǫ-greedy performed best by being more farsighted under γ = 0.7while in the ase of greedy, as expeted, nearsightedness using γ = 0.3 performed best.Conerning SoilseC, Table (5.10) provides key parameters for SoilseC's best performane experi-mental setup. It is notieable that best SoilseC performane in terms of AWT and AvgStops usingdi�erent ation seletion strategies required lower exploration periods given ExpFactor 2. This high-lights the advantage of ollaboration in SoilseC in terms of less required relearning durations in itsoutperformane of Soilse (see Figures (5.18)(5.23)). Furthermore, given that the best performane interms of AWT and AvgStops was for the same SoilseC using ǫ-greedy, naturally the same parametersare shared. The majority of SoilseC using di�erent ation seletion strategies performed best undera ollaboration frequeny of 240s as opposed to more frequent 120s. This is due to more informative(longer) exhanged history using CollFreq = 240s.110
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5.3. Trinity SenarioGraphs presented in Figure (5.19) rea�rm SoilseC using ǫ-greedy's generally better performane interms of AWT and AvgStops against Soilse as disussed earlier. It appears that SoilseC in that ase hadertain expensive relearning tasks during the MPP that resulted in a relatively lower performane interms of total vehile waiting time during the seond half of the MPP. However, SoilseC onsiderablyoutperformed Soilse during the EPP in terms of AWT and AvgStops as it exhibited an e�ientrelearning manner that reahed a better poliy than Soilse's. The aumulation of total waiting timein SoilseC against Soilse on�rms that observation as Soilse's aumulated total waiting time surgesbeyond SoilseC's at the beginning of the EPP.As far as SoilseC using Boltzmann is onerned, the graphs presented in Figure (5.20) on�rm itsoverall better performane against Soilse using Boltzmann in terms of AWT and AvgStops. SoilseCmaintained a lower total waiting time and lower relearning ost (haraterized by the absene of severesurges in total waiting time) than Soilse in the EPP. This is rea�rmed through the lower aumulationof total vehile waiting time. Conerning the number of stopped vehiles throughout the simulation,SoilseC maintained a lower number of stopped vehiles espeially during the MPP and the EPP.Observing the graphs of SoilseC using greedy against the orresponding Soilse do not reveal majordi�erenes in performane as presented in Figure (5.21). This rea�rms the omparison between theirbest AWT and AvgStops results that was disussed earlier. However, it appears that SoilseC performedbetter in terms of the number of stopped vehiles espeially during the EPP.In summary, the performane of SoilseC versus Soilse performane was assessed (see Obj4). SoilseCusing ǫ-greedy (under best AWT performane) learly outperformed the Soilse ounterpart in termsof AvgStops while this was the ase in both terms of AWT and AvgStops under the best AvgStopsperformane. On the other hand, SoilseC using Boltzmann outperformed the Soilse ounterpart inall ases while generally there was no improvement in SoilseC using greedy performane against theSoilse ounterpart. Essentially, the e�et of ollaboration on SoilseC's performane against Soilse wasmoderate given this senario's sale.5.3.3.2 Collaboration ModeHere we study the e�et of the ollaboration mode (CM) on SoilseC's performane (see Obj4). Wehoose SoilseC using ǫ-greedy to ompare among its best AWT performane per ollaboration mode,see Table (5.11).The best performing SoilseC deployments under all ollaboration modes used a ollaboration fre-queny of 240 seonds while the ExpFactor value varied to 1 in CM one, 5 in CM two and 2 inCM three. It appears that CM three performed best in terms of AWT, AvgStops and the number of112



Chapter 5. Evaluation

0 1 2 3 4 5 6 7

x 10
7

0

1

2

3

4

5

6
x 10

11

Simulation Time − Milliseconds

A
c
c
u
m

u
la

te
d
 T

o
ta

l 
V

e
h
ic

le
 W

a
it
in

g
 T

im
e
 −

 M
ill

is
e
c
o
n
d
s

Trinity − Soilse vs. SoilseC using Boltzmann − Accumulated Total Vehicle Waiting Time

 

 

Best_SoilseC_BOL

Best_Soilse_BOL

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07

T
o

ta
l 
W

a
it
in

g
 T

im
e

 -
 M

ill
is

e
c
o

n
d

s

Simulation Time - Milliseconds (plot every 1000 reading)

Trinity - Soilse vs. SoilseC using Boltzmann

Best_SoilseC_BOL
Best_Soilse_BOL

 0

 10

 20

 30

 40

 50

 60

 70

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07

N
u

m
b

e
r 

o
f 

S
to

p
p

e
d

 V
e

h
ic

le
s

Simulation Time - Milliseconds (plot every 1000 reading)

Trinity - Soilse vs. SoilseC using Boltzmann

Best_SoilseC_BOL
Best_Soilse_BOL

Figure 5.20: Trinity - Soilse vs. SoilseC using Boltzmann - aumulated total vehile waiting time,total vehile waiting and number of stopped vehiles throughout the simulation time - best AWTperformane
113



5.3. Trinity Senario

0 1 2 3 4 5 6 7

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

11

Simulation Time − Milliseconds

A
c
c
u
m

u
la

te
d
 T

o
ta

l 
V

e
h
ic

le
 W

a
it
in

g
 T

im
e
 −

 M
ill

is
e
c
o
n
d
s

Trinity − Soilse vs. SoilseC using Greedy − Accumulated Total Vehicle Waiting Time

 

 

Best_SoilseC_GR

Best_Soilse_GR

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07

T
o

ta
l 
W

a
it
in

g
 T

im
e

 -
 M

ill
is

e
c
o

n
d

s

Simulation Time - Milliseconds (plot every 1000 reading)

Trinity - Soilse vs. SoilseC using Greedy

Best_SoilseC_GR
Best_Soilse_GR

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1e+07  2e+07  3e+07  4e+07  5e+07  6e+07  7e+07

N
u

m
b

e
r 

o
f 

S
to

p
p

e
d

 V
e

h
ic

le
s

Simulation Time - Milliseconds (plot every 1000 reading)

Trinity - Soilse vs. SoilseC using Greedy

Best_SoilseC_GR
Best_Soilse_GR

Figure 5.21: Trinity - Soilse vs. SoilseC using greedy - aumulated total vehile waiting time, totalvehile waiting time and number of stopped vehiles throughout the simulation time - best AWTperformane
114



Chapter 5. Evaluation
ǫ-greedy / Collaboration Mode ∼AWT (seonds) #Arrived Vehiles ∼AvgStopsOne 30.338 29574 4.07Two 31.038 30076 4.27Three 30.009 30347 3.91Performane % Collaboration Mode Three

∼AWT% ∼#Arrived Vehiles% ∼AvgStops%Collaboration Mode One -1.08% +2.54% -3.93%Collaboration Mode Two -3.31% +0.89% -8.43%Table 5.11: Trinity - SoilseC best AWT performane per ollaboration mode - ǫ-greedyvehiles arrived. Its approah of allowing all neighbours, regardless of being upstream of downstream,to share their reent performane with a given SoilseC agent appears bene�ial in this senario. Itperformed better against CM two in terms of AvgStops by providing ∼ −8.43% less AvgStops. How-ever, in terms of AWT the di�erene between CM three and CM two was a moderate ∼ −3.31% lowerAWT from the CM three side. The latter performed also moderately better against CM one in termsof AWT and AvgStops by providing ∼ −1.08% and ∼ −3.93% better performane respetively. Interms of the number of arrived vehiles, CM three provided ∼ +2.54% more vehiles against CM onewhile the di�erene was minimal against CM two.In summary, the e�et of the ollaboration mode on SoilseC was assessed given this senario's saleas required in Obj4. In addition, it is di�ult at this stage given the urrent senario's sale to seea notieable di�erene in the overall performane of di�erent CMs. However, CM one and CM threeappeared to have a lose performane.5.3.3.3 Relearning BehaviourThis setion addresses Obj2 onerning relearning in SoilseC. The best performing SoilseC using ǫ-greedy is onsidered. The ratio of the relearning time to the simulation time (see Figure (5.23)) andrelearning ourrenes (see Figure (5.22)) are presented.It an be observed that only two SoilseC agents ontrolling signalized juntions ID 50 and ID160 have relearnt. Bearing in mind that this SoilseC best performane is at ExpFactor = 2 , therelearning periods are relatively shorter than the ones seen in the Soilse ase where ExpFactor = 5.It is lear that SoilseC at juntion ID 50 was ontinuously a�eted by genuine tra� pattern hangesduring the MPP and towards the beginning of the UHP. On the other hand, SoilseC at juntion ID160 was a�eted during the MPP and during the EPP. Moreover, SoilseC agents at juntions ID 50and ID 160 have spent ∼ 17% and ∼ 25% of the simulation time relearning respetively. In summary,115
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Chapter 5. Evaluation Soilse⋆ SoilseC⋆ RR20s SAT_2_1.5
e-greedy Greedy Boltzmann e-greedy Greedy Boltzmann

∼AWT (seonds) 30.484 33.338 44.864 30.009 32.287 42.719 34.031 37.885#Arrived Vehiles 30152 29561 29448 30347 29570 29466 29128 30162
∼AvgStops 4.37 4.42 5.74 3.91 4.75 5.47 4.78 4.9Performane% Soilse⋆Against (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehiles% ∼AvgStops%

e-greedy (-10.42%, -19.53%) (+3.39%, -0.03%) (-8.57%, -10.81%)Greedy (-2.03%, -12.00%) (+1.76%, -1.99%) (-7.53%, -9.79%)Boltzmann (+24.14%, +15.55%) (+1.08%, -2.36%) (+16.72%, +14.63%)Performane% SoilseC⋆Against (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehiles% ∼AvgStops%
e-greedy (-11.81%, -20.78%) (+4.01%, +0.60%) (-18.20%, -20.20%)Greedy (-5.12%, -14.77%) (+1.49%, -1.96%) (-0.627%, -3.061%)Boltzmann (+20.33%, +11.31%) (+1.14%, -2.30%) (+12.61%, +10.42%)

⋆Soilse and SoilseC results are alulated after the initial learning has elapsed.(Best Soilse and SoilseC results are in bold font.)Table 5.12: Trinity - best AWT performane of Soilse and SoilseC against the seleted baselinesthese are onsiderably lower ratios in omparison to the Soilse ase and yet SoilseC outperformedSoilse in terms of AWT and AvgStops. In addition, two SoilseC agents experiened relearning periodsas opposed to four in the Soilse ase.5.3.4 Comparison Against BaselinesThis setion presents a omparison between the best performing Soilse and SoilseC using eah ationseletion strategies for the Trinity senario against the previously seleted baselines, i.e., RR20s andSAT_2_1.5. This aims at addressing Obj3. The performane omparison is presented in Table (5.12).Results show that best performing Soilse and SoilseC using ǫ-greedy learly outperform both base-lines. While Soilse provides ∼ −10.42% and ∼ −19.53% better performane in terms of AWT againstRR20s and SAT_2_1.5 respetively, SoilseC exeeds this performane by providing ∼ −11.81% and
∼ −20.78% lower AWT as opposed to RR20s and SAT_2_1.5 respetively. In terms of AvgStopsperformane, Soilse outperforms RR20s and SAT_2_1.5 by ∼ −8.57% and ∼ −10.81% less AvgStopsrespetively. On the other hand, SoilseC performane in terms of AvgStops is approximately twiemore notable than Soilse's performane against the baselines, i.e., ∼ −18.20% and ∼ −20.20% lessAvgStops against RR20s and SAT_2_1.5 respetively. Furthermore, Soilse and SoilseC performanein terms of the number of arrived vehiles was not lear against SAT_2_1.5 (bear in mind that the117



5.3. Trinity Senariometri is based on the number of vehiles inserted after the initial learning has �nished). However,against RR20s, Soilse allowed ∼ +3.39% more vehiles to arrive while SoilseC allowed ∼ +4.01% morevehiles to do so.Conerning Soilse and SoilseC using greedy, their overall performane in terms of AWT andAvgStops was not as good when ompared to the ases where both used ǫ-greedy. Soilse using greedyredued the AWT and AvgStops by ∼ −2.03% and ∼ −7.53% respetively against RR20s. However,its performane was better against SAT_2_1.5 as it redued the AWT and AvgStops by ∼ −12.00%and ∼ −9.79% respetively. The di�erene in the number of arrived vehiles between Soilse usinggreedy and both baselines was marginal but better against RR20s. As far as SoilseC using greedy isonerned, it outperformed its Soilse ounterpart in terms of AWT against RR20s and SAT_2_1.5,i.e., ∼ −5.12% and ∼ −14.77% respetively. However, SoilseC's performane using greedy in termsof AvgStops was poorer than its Soilse ounterpart against both baselines. Similar to Soilse's per-formane, the di�erene in the number of arrived vehiles between SoilseC using greedy and bothbaselines was marginal but better against RR20s.Soilse and SoilseC using Boltzmann as an ation seletion strategy in this senario did not outper-form the baselines. However, SoilseC using Boltzmann provided better performane than its Soilseounterpart in general but still remained insu�ient against the baselines. Both Soilse and SoilseCusing Boltzmann only managed to provide a marginally better performane in terms of the numberof arrived vehiles against RR20s. It appears that Boltzmann did not manage to relearn given theperiod of time determined by some pattern hange a suitable poliy for the emerging pattern. This isbelieved to be due to the demanding nature of Boltzmann when it omes to the amount or explorationrequired to ahieve a near optimal poliy and to its seemingly expensive ost of relearning. In addition,this stems from the nature of Boltzmann that selets its ations based on a probability model builtusing the underlying poliy. As a result, upon a pattern hange detetion, the ation seletion proessis adversely a�eted by the existing poliy until it is gradually overridden. This situation does notour while using ǫ-greedy or greedy, given that the latter uses a �xed non-exploratory greedy ationseletion while ǫ-greedy follows a random ation seletion upon relearning relative to its newly set ǫvalue. Also, ǫ-greedy's relearning ost is not as a�eted by the existing poliy as Boltzmann giventhat it only selets a greedy ation based on the probability of 1 − ǫ whih is independent from theexisting poliy.Soilse and SoilseC using ǫ-greedy are seleted, given their best overall performane against thebaselines, for further omparison in terms of the ongoing (aumulated) total vehile waiting timeand the (aumulated) number of stopped vehiles against the baselines. Figure (5.24) learly shows118
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Figure 5.25: Trinity - Soilse ǫ-greedy vs. (RR20s and SAT_2_1.5) - total vehile waiting timethroughout the simulation time - best AWT performane
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Figure 5.27: Trinity - SoilseC ǫ-greedy vs. (RR20s and SAT_2_1.5) - (aumulated) number ofstopped vehiles throughout the simulation time - best AWT performane
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Figure 5.28: Trinity - Soilse ǫ-greedy vs. (RR20s and SAT_2_1.5) - (aumulated) number ofstopped vehiles throughout the simulation time - best AWT performaneof stopped vehiles throughout the simulation time against both baselines in addition to the graphsof the aumulated number of stopped vehiles. It appears that Soilse maintains a onsistently lowtrend against SAT_2_1.5 as far as the aumulation of the number of stopped vehiles is onernednearly all the time. However, Soilse against RR20s maintains a lower trend given the aumulatednumber of stopped vehiles, but appears to deteriorate in performane in that regard during the EPPas it approahes RR20s performane towards the end. This is due to an expensive relearning period(notie surges towards the end in the number of stopped vehiles in Figure (5.28)) that Soilse initiatesnear the simulation end (without prospets of exploitation) as a response to the fading away of EPP.This situation is reminisent of Soilse's performane in terms of the aumulated vehile waiting timedisussed earlier.In summary, Soilse and SoilseC using ǫ-greedy as an ation seletion strategy have outperformedboth RR20s and SAT_2_1.5 in terms of AWT and AvgStops hene satisfying Obj3. Notably, SoilseC122



Chapter 5. Evaluationusing ǫ-greedy provided approximately twie as good performane in terms of AvgStops as opposedto Soilse when ompared to both baselines' performane (see Obj4). Soilse using greedy provided abetter performane against SAT_2_1.5 in terms of AWT and AvgStops as opposed to its performaneagainst RR20s. However, SoilseC using greedy outperformed the Soilse ounterpart in terms of AWTagainst both baselines. Conerning the number of arrived vehiles, Soilse and SoilseC using ǫ-greedyprovided a better performane against RR20s. However, the di�erenes in other ases were marginalin that respet. In addition, SoilseC and Soilse using Boltzmann as an ation seletion strategy didnot outperform both baselines in this senario. However, SoilseC provided better performane thanSoilse in that ase in general but still remained insu�ient against the baselines. The reason behind,as we explained earlier, is mainly due to the nature of the ation seletion proess in Boltzmann thatwas adverse under the onditions of this senario.5.3.5 SummaryWe presented and analysed the performane results from the Trinity senario. The latter used a realworld map of the surroundings of Trinity College Dublin and onsisted of 30 signalized juntions. Thesimulation was based on ∼ 19 hours of tra� representing four di�erent tra� patterns representingtwo uniform tra� situations of di�erent loads and two peak situations for the morning the eveningrush hours. Conerning the baselines for omparison, we seleted the two best performing RR andSAT settings, namely, RR20s and SAT_2_1.5.Firstly, Soilse's performane given its relearning behaviour was ompared against a situation wereonly an initial learning was used (see Obj1). In addition, Soilse's performane was disussed where anevaluation for Soilse using di�erent ation seletion strategies was presented (see Obj1). It was learthat Soilse using ǫ-greedy outperformed the ases where Boltzmann or greedy were used. We lari�edthe reasons for that whih are mainly due to the e�ient nature ǫ-greedy exhibits in relearning betterpoliies. We also lari�ed the e�et of the ExpFactor value and the overall relearning behaviour andpresented details of suh on a seleted signalized juntion (see Obj2). Furthermore, Soilse's perfor-mane was ompared against SoilseC's where the latter had an overall better performane espeiallywhile using ǫ-greedy in terms of the AvgStops (see Obj4). Interestingly, while Soilse did not manageto provide a simultaneous best performane in terms of AWT and AvgStops, SoilseC was suessfulin doing so as it balaned its best performane for both metris (see Obj4). The parameters for thebest performane were also presented and disussed. The e�et of the ollaboration mode on SoilseC'sbest performing ǫ-greedy was presented where CM three performed best but losely to CM one (seeObj4). 123



5.4. Dublin Inner City Centre SenarioFinally, a omparison between the best performing Soilse and SoilseC against the seleted baselineswas presented (see Obj3). It transpires that Soilse and SoilseC using ǫ-greedy as an ation seletionstrategy have learly outperformed both RR20s and SAT_2_1.5 by in terms of AWT and AvgStops.Soilse using ǫ-greedy provided ∼ −10.42% and ∼ −19.53% better performane in terms of AWTagainst RR20s and SAT_2_1.5 respetively. While SoilseC provided ∼ −11.81% and ∼ −20.78% bet-ter performane in terms of AWT against RR20s and SAT_2_1.5 respetively. In terms of AvgStops,Soilse and SoilseC outperformed RR20s by ∼ −8.57% and ∼ −18.20% respetively. When omparedto SAT_2_1.5 in terms of AvgStops, Soilse and SoilseC provided ∼ −10.81% and ∼ −20.20% betterperformane respetively. On the other hand, Soilse using greedy as an ation seletion strategy per-formed well in ertain ases espeially against SAT_2_1.5 while the SoilseC ounterpart outperformedthat performane in terms of AWT against both baselines. Results from both Soilse and SoilseC usingBoltzmann against the baselines were poor in this senario. The reasons behind suh a performanein this senario were disussed earlier.5.4 Dublin Inner City Centre SenarioThis setion evaluates the performane of Soilse, SoilseC and the baselines in the Dublin Inner CityCentre Senario (DublinICC) senario. This senario is of a bigger sale than the Trinity senarioand we aim at assessing how Soilse and SoilseC an sale while maintaining better performanethan the baselines (see Obj5). We �rst present the performane of the baselines in order to seletthe best performing baselines for further omparison against the best performing Soilse and SoilseCdeployments. We disuss the e�et of relearning on the performane of Soilse by omparing it againsta situation where an initial learning was only used. The relearning behaviour in Soilse and SoilseCis disussed as well. We also disuss SoilseC's performane per ollaboration mode. In addition, weonentrate on the performane of exploratory ation seletion strategies hene the performane ofSoilse and SoilseC using greedy are not disussed in this senario.5.4.1 Baselines PerformaneSAT and RR are used as the baselines in this senario as well. Table (5.13) shows their performaneunder di�erent settings in terms of AWT, AvgStops and the number of arrived vehiles.RR using all settings (20s, 30s, 40s) provides learly poor performane ompared to all SATperformane. It is evident that RR does not ope with the sale and the tra� loads this senarioexhibits. RR20s appeared to perform the best against RR30s and RR40s. However, SAT_2_1.5124



Chapter 5. Evaluation RRSeonds ∼AWT⋆ #Arrived Vehiles ∼AvgStops20s 622.736 47895 151.5330s 1396.943 41940 208.4940s 1821.550 34110 226.04 SAT
∼AWT⋆ #Arrived Vehiles ∼AvgStops2_1.5 111.889 56337 28.242_1.1 112.554 55374 40.355_1.5 114.253 56601 31.085_1.1 149.586 53976 64.03

⋆Results are in seonds(Best performane results are in bold font)Table 5.13: DublinICC - baselines performane - RR and SATSoilseInit Soilse Soilse Performane∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% #AV% ∼AvgStops%

ǫ-greedy 130.190 55043 38.95 71.918 56385 16.94 -44.75% +2.38% -56.50%Boltzmann 153.202 54576 46.86 106.141 55519 28.25 -30.71% +1.69% -39.71%
⋆ Numbers are in seonds
∓The negative sign (-) indiates lower AWT, AvgStops or #Arrived Vehiles (AV), otherwise (+) is used.Table 5.14: DublinICC - SoilseInit vs. Soilse - best AWT performanebeing the best performing SAT deployment in terms of AWT and AvgStops, outperformed RR20s by
∼ −82.03% and ∼ −81.36% in terms of AWT and AvgStops respetively. This is due to the fatthat RR laks any form of adaptiveness and responsiveness whih has learly resulted in learly poorperformane at this larger sale. On the other hand, SAT in its di�erent settings proved to be amore ompetitive baseline espeially SAT_2_1.5. Hene, we selet RR20s and SAT_2_1.5 to be thebaselines for further omparisons against Soilse and SoilseC.5.4.2 Initial Learning vs. RelearningHere we address Obj1 by omparing against Soilse that naturally relearns and a situation wherean initial learning is only used (SoilseInit). Table (5.14) presents a omparison between Soilse andSoilseInit.It is learly observed that Soilse by relearning in both ases using ǫ-greedy and Boltzmann havenotably outperformed the SoilseInit ounterparts in terms of AWT and AvgStops. The di�erene interms of the number of arrived vehiles was marginal however Soilse performed better in that senseas well. Soilse using ǫ-greedy has remarkably outperformed its SoilseInit ounterpart by ∼ −44.75%and ∼ −56.50% lower AWT and AvgStops respetively. A similar ase is with Soilse using Boltzmannwhere ∼ −30.71% and ∼ −39.71% lower AWT and AvgStops resulted respetively in omparison toits SoilseInit ounterpart. Consequently, Obj1 is strongly satis�ed in this senario.125
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Figure 5.29: DublinICC - Soilse using ǫ-greedy (re)learning start and end times - best AWT perfor-mane5.4.3 Relearning BehaviourThis setion addresses Obj2 of analysing the relearning behaviour in the DublinICC senario. Weonentrate on disussing relearning ourrenes and the ratio of relearning time to the simulationtime. Both Soilse and SoilseC using ǫ-greedy are onsidered in their best AWT performane.As far as Soilse is onerned, Figure (5.29) depits the start and end times of learning and relearningperiods for all Soilse agents ontrolling all signalized juntions. Two Soilse agents were more a�etedthat the others in terms of relearning, namely, those ontrolling juntions ID 180 and ID 330. Theyneeded to relearn on di�erent points throughout the simulation period and during di�erent tra�patterns. All of the a�eted Soilse agents appear to start relearning at the beginning of the MPP,however, only some (juntions IDs 180, 330 and 400) start relearning for the EPP and others (juntionsIDs 180, 330 and 30) for the UHP. It an be notied as well that some Soilse agents also relearn126
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Figure 5.30: DublinICC - Soilse using ǫ-greedy ratio of relearning time to simulation time - bestAWT performane
during some tra� patterns espeially the Soilse agents at juntions IDs 180 and 330. This is due toontinuous hanges in their performane given their loal tra� patterns. In Figure (5.30), the ratioof the relearning time to the simulation time for the eight a�eted Soilse agents is presented. It anbe notied that Soilse agents at juntions ID 330 and ID 180 have spent a onsiderable amount oftime relearning relative to the simulation time, i.e., ∼ 53% and ∼ 46% respetively. However, it isworth mentioning again that relearning periods are not purely for exploration so the aforementionedrelearning ratios indeed inlude an inreasing exploitation by time.As far as SoilseC is onerned, Figure (5.31) depits the start and end times of learning andrelearning periods for all Soilse agents ontrolling all signalized juntions. It is notieable that moreSoilseC agents were a�eted as opposed to the number of a�eted Soilse agents. However, theseSoilseC agents appear to relearn less frequently, whih may be due to ollaboration that providedthem with better poliies resulting in better performane (see Setion (5.4.4)). Figure (5.32) presentsthe ratio of relearning time to the simulation time per a�eted SoilseC agent. Thirteen SoilseC agentshave experiened some relearning at di�erent times. SoilseC agents at juntion IDs 330, 180, 410and 50 have relearnt the most showing ∼ 41%, ∼ 28%, ∼ 28% and ∼ 19% ratios of relearning timeto simulation time respetively. These are overall onsiderably lower ratios when ompared to thesituation under Soilse. 127
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Figure 5.32: DublinICC - SoilseC using ǫ-greedy ratio of relearning time to simulation time - bestAWT performane Soilse SoilseC SoilseC Performane∓
∼AWT⋆ #AV ∼AvgStops ∼AWT⋆ #AV ∼AvgStops ∼AWT% ∼#AV% ∼AvgStops%

e-greedy 71.918 56385 16.94 63.471 56470 12.83 -11.74% +0.15% -24.26%Boltzmann 106.141 55519 28.25 94.045 54853 24.91 -11.39% -1.19% -11.82%
⋆Results are in seonds.
∓The negative sign (-) indiates lower AWT, AvgStops or #Arrived Vehiles (AV) , otherwise (+) is used.Table 5.15: DublinICC - SoilseC vs. Soilse best performane5.4.4 Soilse and SoilseC vs. BaselinesWe �rst disuss the performane of SoilseC against Soilse (see Obj4) by providing a omparison interms of the AWT, AvgStops and the number of arrived vehiles. Table (5.15) presents the results ofthe best performing Soilse and SoilseC in this regard.In this senario, it was observed that both the Soilse and SoilseC that performed best in termsof AWT also performed the best in terms of AvgStops. Hene, the results presented in this senariofor both Soilse and SoilseC re�et best performane in both AWT and AvgStops terms. It appearsthat SoilseC maintains a better overall performane than Soilse in both ases of the ation seletionstrategies. SoilseC using ǫ-greedy learly outperforms the Soilse ounterpart by providing ∼ 11.74%and ∼ −24.26% lower AWT and AvgStops respetively. As far as SoilseC using Boltzmann as an ationseletion strategy is onerned, it provided ∼ 11.39% and ∼ −11.82% lower AWT and AvgStops asopposed to its Soilse ounterpart respetively. Furthermore, that the di�erene in performane interms of the number of arrived vehiles between SoilseC and Soilse is marginal. SoilseC reahed129



5.4. Dublin Inner City Centre SenarioPerformane% SoilseAgainst (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehiles% ∼AvgStops%
e-greedy (-88.45%, -35.72%) (+15.05%, +0.08%) (-88.82%, -40.01%)Boltzmann (-82.95%, -5.13%) (+13.73%, -1.45%) (-81.53%, -0.035%)Performane% SoilseCAgainst (RR20s, SAT_2_1.5) ∼AWT% ∼#Arrived Vehiles% ∼AvgStops%
e-greedy (-89.80%, -43.27%) (+15.18%, +0.23%) (-91.53%, -54.56%)Boltzmann (-84.89%, -15.94%) (+12.68%, -2.63%) (-83.56%, -11.79%)Table 5.16: DublinICC - Soilse and SoilseC best performane against baselines' best performanebetter poliies (hene the better performane) on the larger sale as opposed to Soilse omparedto the performane of SoilseC against Soilse in the smaller sale Trinity senario. This shows thebene�ts of ollaboration as the sale grow larger where the positive e�et of ollaboration beomesmore notable.A performane omparison of Soilse and SoilseC against the seleted best performing baselines (seeObj3) is presented in Table (5.16). Soilse and SoilseC has notably outperformed RR20s on this largersale senario in terms of all metris. Soilse using ǫ-greedy provided a learly ∼ −88.45% lower AWTwhere SoilseC in that ase provided ∼ −89.80% against RR20s. Similarly, Soilse and SoilseC usingBoltzmann provided ∼ 82.95% and ∼ −84.89% lower AWT against RR20s respetively. Soilse andSoilseC using ǫ-greedy also provided a notably better performane against RR20s in terms of AvgStops,i.e., ∼ −88.82% and ∼ −91.53% respetively. Similarly, Soilse and SoilseC using Boltzmann provided

∼ −81.53% and ∼ −83.56% lower AWT against RR20s respetively. In terms of the number ofarrived vehiles, Soilse and SoilseC allowed more vehiles to arrive to their destinations in omparisonto RR20s. Spei�ally, Soilse and SoilseC using ǫ-greedy allowed ∼ +15.05% and ∼ +15.18% morevehiles to arrive to their destinations respetively when ompared to RR20s. When it omes to Soilseand SoilseC using Boltzmann in that regard, they allowed ∼ +13.73% and ∼ +12.68% more vehilesto arrive to their destinations respetively when ompared to RR20s.The best-performing SAT deployment, i.e., SAT_2_1.5 provided a more ompetitive baselinethan RR20s. However, Soilse and SoilseC also outperformed SAT_2_1.5 learly in terms of bothAWT and AvgStops but di�erenes in the number of arrived vehiles were generally marginal againstSAT_2_1.5. Soilse using ǫ-greedy and Boltzmann provided ∼ −35.72% and ∼ −5.13% lower AWTas opposed to SAT_2_1.5 respetively. On the other hand, SoilseC using ǫ-greedy and Boltzmannprovided ∼ −43.27% and ∼ −15.94% lower AWT as opposed to SAT_2_1.5 respetively. Further-more, Soilse's performane in terms of AvgStops was more lear in the ǫ-greedy ase, i.e., ∼ −40.01%130
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Figure 5.35: DublinICC - Soilse and SoilseC best performane vs. SAT - aumulated total vehilewaiting time and aumulated total number of stopped vehiles throughout the simulation timedo not reah a poliy that allows them to perform notably better than SAT_2_1.5 during the EPPin terms of the total waiting time. This is in ontrary to the ases where Soilse and SoilseC eah use
ǫ-greedy.For a learer view on the di�erent performane throughout the simulation time, Figure (5.35)presents omparison graphs for the aumulated total vehile waiting time and the aumulated totalnumber of stopped vehiles regarding the best performing Soilse and SoilseC using ǫ-greedy againstSAT_2_1.5. It is lear that SoilseC, regardless of the ation seletion strategy used, always maintainslower aumulated total vehile waiting time and total number of stopped vehiles. Also, it an benotied that the di�erene in both aumulations between SoilseC using ǫ-greedy against SAT_2_1.5is bigger to the advantage of SoilseC than in the ase where SoilseC uses Boltzmann. Conerning Soilseusing ǫ-greedy, the relearning ost in terms of total vehile waiting time that was exhibited in Figure133



5.4. Dublin Inner City Centre Senario
ǫ-greedy / Collaboration Mode ∼AWT (seonds) #Arrived Vehiles ∼AvgStopsOne 63.471 56470 12.83Two 81.000 56419 22.60Three 76.137 56450 18.81Performane % Collaboration Mode One

∼AWT% ∼#Arrived Vehiles% ∼AvgStops%Collaboration Mode Two -21.64% +0.09% -43.23%Collaboration Mode Three -16.63% +0.03% -31.79%Table 5.17: DublinICC - SoilseC best performane per ollaboration mode - ǫ-greedy(5.34) is also learly re�eted on the aumulated total vehile waiting time. On the other hand,SoilseC showed a more stable relearning, (i.e., without ausing severe surges) in both total vehilewaiting time and total number of stopped vehiles aumulation. Moreover, as far as the performaneof Soilse using Boltzmann in terms of AWT and AvgStops is onerned, it appears that it maintaineda lose aumulation trend to SAT_2_1.5 in terms of total vehile waiting time and total number ofstopped vehiles.In summary, Soilse and SoilseC, both in ases of using ǫ-greedy and Boltzmann, have notably out-performed RR20s whih performed poorly under this larger sale senario. This result was expetedgiven the in�exibility of RR to sale up and its lak of adaptiveness and responsiveness. On the otherhand, best performing SAT, i.e., SAT_2_1.5 provided a more ompetitive baseline performane om-pared to RR20s. However, Soilse and SoilseC espeially using ǫ-greedy as an ation seletion strategyhave notably outperformed SAT_2_1.5 in all measured terms. Moreover, the overall performaneof Soilse using Boltzmann against SAT_2_1.5 did not provide a notable di�erene. In addition, thedi�erenes between di�erent Soilse and SoilseC performane in terms of the number of arrived vehilesagainst SAT_2_1.5 were marginal however notable against RR20s.5.4.4.1 SoilseC's Collaboration ModeThe e�et of the ollaboration mode (CM) on SoilseC's performane using ǫ-greedy is assessed (seeObj4). Table (5.17) presents a performane omparison for SoilseC using di�erent CMs. All best-performing SoilseC using ǫ-greedy and di�erent CMs were using a ollaboration frequeny CollFreq =

240s. This appears to be a suitable frequeny given the larger depth of performane history informationexhanged as opposed to the ase where CollFreq = 120s.It appears that the best SoilseC performane is for SoilseC using CM one where a given SoilseCagent only sends its reent performane history to its downstream neighbours and reeives suh infor-134



Chapter 5. Evaluationmation from the upstream ones. This is a logial way of ollaboration given the tra� �ow diretionfrom the upstream juntion towards the downstream juntion that aligns with the logi of CM one.Suh a logi serves as an early noti�er to downstream juntions of a di�erent possible patterns ofinoming tra� through performane information sent from the upstream juntion. The results fromSoilseC using CM one are likely to be due to the extensive one-way streets system followed withinDublin inner ity entre whih aligns with the nature of CM one. Moreover, SoilseC using CM oneoutperformed SoilseC using CMs two and three by providing ∼ −21.64% and ∼ −16.63% lower AWTrespetively. In terms of AvgStops, SoilseC using CM one outperformed SoilseC using CMs two andthree by providing ∼ −43.23% and ∼ −31.79% lower AvgStops respetively.Essentially, the underlying road network and the nature of tra� a�et the performane resultingfrom the use of di�erent CMs in SoilseC. In this senario, it was lear that CM one performed best,while in the smaller sale senario, i.e., Trinity senario, it was not learly evident.5.4.5 SummaryThis senario presented results and omparisons onerning the performane of Soilse and SoilseCon the sale of Dublin inner ity entre (see Obj5). A real map was used omprising 62 signalizedjuntions from an overall 270 juntions. The size of this map is omparable to the size of a ity entre
∼ 62.6% the size of Cork ity entre.Baselines performane analysis showed that RR20s and SAT_2_1.5 perform best among the dif-ferent baselines settings. However, RR20s failed notably to sale up in this senario as an be learlyseen in Figure (5.33). In addition, SAT_2_1.5 provided learly better performane in all measuredterms against RR20s and hene was used in omparison graphs against Soilse and SoilseC. Soilseby relearning has learly outperformed SoilseInit hene satisfying Obj1. For example, Soilse using
ǫ-greedy has remarkably outperformed its SoilseInit ounterpart by ∼ −44.75% and ∼ −56.50% lowerAWT and less AvgStops respetively. In addition, the relearning behaviour under Soilse and SoilseCwas analysed (see Obj2).Results from best performing Soilse and SoilseC from both ation seletion strategies have learlyoutperformed both RR20s and SAT_2_1.5 in terms of AWT and AvgStops with the single exeptionof Soilse using Boltzmann in terms of AvgStops against SAT_2_1.5 (see Obj3). For example, SoilseCusing ǫ-greedy outperformed RR20s in terms of AvgStops by ∼ −91.53% and SAT_2_1.5 by ∼
−54.56% hene satisfying Obj3. Moreover, Soilse and SoilseC using Boltzmann have generally provideda learly better performane as opposed to the seleted baselines in ontrary to the situation under theTrinity senario (taking into aount the single exeption mentioned earlier). In terms of the number135



5.5. Summaryof arrived vehiles, performane di�erenes between Soilse and SoilseC using both ation seletionstrategies against SAT_2_1.5 were marginal however lear against RR20s.Furthermore, a performane omparison among the di�erent ollaboration modes used in SoilseCwas provided (see Obj4). It is notied that the ollaboration mode performane depends on the saleand nature of the senario and its spei�s. Collaboration mode one transpires to perform best underthis senario as it is believed to align with the extensive one-way streets nature of Dublin inner ityentre.Essentially, results from this higher sale senario showed how both Soilse and Soilse sale andprovide notably better performane against the baselines when ompared to the smaller sale Trinitysenario and hene satisfying Obj5.5.5 SummaryIn this hapter we provided an evaluation based on two senarios of di�erent sales, Trinity CollegeDublin and the surroundings and Dublin inner ity entre through whih all the objetives mentionedin Setion (5.2.5) were addressed individually. All signalized juntions in both senarios used eitherSoilse or SoilseC agents at a time. For eah senario, two best performing baselines were seleted tobe ompared against Soilse and SoilseC performane. These baselines were RR20s and SAT_2_1.5 inboth senarios. Performane results showed that Soilse and SoilseC sale while also providing notablybetter performane in terms of AWT and AvgStops when ompared to best performing baselines.An exeption to that was Soilse using Boltzmann in the Trinity senario. Di�erenes in terms ofthe number of arrived vehiles from Soilse and SoilseC in the both senarios against the baselineswere generally marginal, however, they were lear against RR20s in the DublinICC senario. In bothsenarios, SoilseC performed better than Soilse in terms of AWT and AvgStops and notably so in theDublinICC senario were it exhibited a lower relearning ost as well.Essentially, the use of Soilse and SoilseC has proved to provide an adaptive and responsive opti-mization sheme for UTC in a deentralized manner. In addition, a better global performane wasahieved through ollaboration as an be seen from SoilseC's results when ompared against Soilse.Both Soilse and SoilseC were responsive by deteting genuine hanges in the loal tra� pattern thatonsequently initiate a relative relearning proess. Also, Soilse and SoilseC were adaptive by relearninga di�erent poliy to optimize for a new tra� pattern.
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Chapter 6
Conlusions and Future WorkIn this hapter we �rst summarize ontributions of this thesis work and then disuss possible futurework.6.1 Thesis ContributionThis thesis desribes a deentralized approah to urban tra� ontrol (UTC) optimization usingReinforement Learning (RL) and agent ollaboration, that is e�ient, adaptive and yet responsiveto the non-stationary nature of urban tra�.Chapter (1) provided an overview of the RL and deentralized RL approahes to optimizationby interating with the environment and learning from reinforements. A historial bakground forUTC was provided and the hallenges that motivated the need for an e�ient approah to UTC werepresented. The trends in UTC optimization were also disussed inluding the emerging tehnologiesthat an be exploited for better UTC systems suh as �oating vehile data (FVD). RL and espeiallyQ-Learning was identi�ed as a promising approah for e�ient UTC systems. Our researh hypothesiswas presented where and argues for the possibility of designing an adaptive and responsive UTC systemusing deentralized RL and ollaboration.In Chapter (2) we reviewed existing Markov Deision Proess (MDP) and RL optimization teh-niques supporting di�erent learning and ation seletion strategies. Di�erent elements that ontributeto unertainty in UTC systems suh as �utuations in tra� were also disussed in addition to tra�pattern identi�ation. Three groups of UTC approahes where disussed, i.e., lassial systems suhas SCATS and SCOOT, non-RL based UTC approahes and RL-based approahes. We identi�ed thepossible bene�t of a deentralized RL-based UTC optimization approah that is model-free and that137



6.1. Thesis Contributionan optimize without an a priori model for tra� as well as being able to ope with the �utuatingnature of urban tra� in an adaptive and responsive manner.In Chapter (3) we �rst outlined a set of requirements for e�ient RL-based UTC systems resultingfrom the analysis of existing RL-based UTC systems in Chapter (2). After presenting the motivationsbehind our design hoies, the design of the Soilse approah to UTC inluding its non-parametriPattern Change Detetion (PCD) mehanism was presented. This overed the type of phases, therelearning strategy used, the reward model used as well as the ollaboration spei�s in the ase ofSoilseC. Both the Soilse and SoilseC agent algorithms were detailed as well as the PCD algorithm.In Chapter (4) the implementation of our design was presented. The generi CRL frameworkthat provides the basi onstituents needed for building Soilse and SoilseC agents was presented. Inorder to build Soilse and SoilseC agents, an agent generator was implemented by ustomizing andinstantiating the CRL framework. The PCD implementation was also desribed.In Chapter (5) we desribed the evaluation of our approah through UTC simulation. The perfor-mane of deployments of Soilse and SoilseC using available ation seletion strategies was omparedagainst the performane of �xed-time UTC, (i.e., round-robin (RR)) and SAT (an algorithm that emu-lates the behaviour of SCATS) baseline deployments in two senarios. These senarios are of a di�erentsale and di�erent tra� patterns were used to represent uniform-low, morning-peak, uniform-highand evening-peak tra� in both senarios. The relearning behaviour in our approah was also dis-ussed. The performane of a situation where only initial learning ourred (SoilseInit) was omparedagainst the performane of Soilse. In addition, di�erent ollaboration modes for SoilseC deploymentswere evaluated. The performane of SoilseC deployments were also ompared against the performaneof Soilse deployments in both senarios.Performane results show that deployments of Soilse and SoilseC using ǫ-greedy as an ationseletion strategy outperformed those using Boltzmann and greedy. In the Trinity senario, Soilseusing ǫ-greedy outperformed both baselines, RR and SAT, in terms of Average Waiting Time (AWT)by ∼ −10.42% and ∼ −19.53% respetively. On the other hand, SoilseC provided slightly betterperformane (ompared to Soilse) in terms of AWT against RR and SAT in the Trinity senario byproviding ∼ −11.81% and ∼ −20.78% lower AWT respetively. Soilse and SoilseC using ǫ-greedy havealso outperformed the baselines in terms of average number of stops (AvgStops), however, SoilseCprovided better performane than Soilse against the baselines in that ase, i.e., ∼ −18.20% and
∼ −20.20% less AvgStops against RR and SAT respetively.In the larger-sale senario, Soilse and SoilseC using ǫ-greedy and Boltzmann deployments haveproved to sale and provide a notably better performane in terms of AWT and AvgStops against138



Chapter 6. Conlusions and Future Workthe baselines deployments. A single exeption was in the ase of Soilse using Boltzmann againstSAT_2_1.5 in terms of AvgStops. Remarkably, SoilseC using ǫ-greedy has outperformed RR20s andSAT_2_1.5 by ∼ −91.53% and ∼ −54.56% in terms of AvgStops respetively and by ∼ −89.80%and ∼ −43.27% in terms of AWT respetively. In addition, Soilse using ǫ-greedy also outperformedSoilseInit by providing ∼ −44.75% and ∼ −56.50% lower AWT and less AvgStops respetively.The performane of Soilse and SoilseC deployments in the larger-sale senario was learly betterthan their performane in the Trinity senario against the baselines. In addition, ǫ-greedy as an ationseletion strategy showed better performane against other ation seletion strategies as it relearns ina manner that does not rely on the poliy model in ontrast to Boltzmann. Moreover, SoilseC de-ployments, through ollaboration, resulted in better performane against the non-ollaborative Soilsedeployments in the larger-sale senario ompared to its performane in the Trinity senario. SoilseCagents showed lower ratios of relearning time to the simulation time ompared to Soilse agents inboth senarios. For example, these ratios for the most-a�eted Soilse agents using ǫ-greedy rangedfrom ∼ 46% to ∼ 53% ompared to only ∼ 19% to ∼ 41% for the most-a�eted SoilseC agents using
ǫ-greedy in the larger-sale senario. The performane of SoilseC depends on the ollaboration modeused and on the sale of the senario.The above performane analysis shows that the Soilse approah an potentially provide an ef-�ient deentralized RL-based UTC optimization approah that is adaptive and responsive to thenon-stationary nature of urban tra�. Moreover, ertain limitations have arisen in terms of evalua-tion given the nature of the simulator used. The tools available in the UTC simulator did not supportvariability in di�erent input tra� data for a given tra� pattern. Hene, unertainty on that levelould not be measured. The initialization proess of PCD parameters, being dependant on small salepreliminary experiments, ould also be seen as a limitation however, it is a one-o� e�ort.6.2 Future WorkDuring the design and evaluation of our approah and after analysing the state of the art relevant toour approah a number of possible areas of future work were identi�ed.In the PCD mehanism used by Soilse and SoilseC agents, a �xed thresholding tehnique was usedfor all agents in a given deployment. It ould be interesting to explore other thresholding tehniquesand evaluate their e�et on the overall performane, for example, dynami thresholding tehniqueswhere the value of the threshold used an hange per agent. For example, this dynami thresholdan hange based on the performane of the agent and the previous history of genuine tra� pattern139



6.2. Future Workhanges. A model for alulating suh a threshold is needed. In addition, a ollaborative thresholdingtehnique might be designed where a group of Soilse or SoilseC agents an negotiate a given valuefor the threshold to be used. Moreover, an automati (possible ollaborative) tuning tehnique thatontrols the sensitivity of the PCD mehanism per agent ould be investigated.Given that SoilseC agents all ollaborate using a given ollaboration mode and frequeny as well asuse a �xed disount rate on the exhanged rewards, a possibility arises to investigate the potentials forhanging these parameters dynamially. This ould be through a onsensus-based protool among one-hop neighbours or possibly on a regional level. In addition, a metri that ombines the performane andthe degree of tra� pattern hange of involved agents an then be used for group reparameterization.Soilse and SoilseC ould be extended to deal with multi-objetive optimization (also known asmulti-poliy optimization) where a group of di�erent priority objetives need to be optimized simulta-neously for. For example, prioritizing publi transport or emergeny tra� suh as ambulanes whileontrolling usual urban tra� simultaneously. Also, Soilse and SoilseC ould be generalized in orderto deal with other ontrol optimization problems that has a non-stationary environment.The Soilse approah should possibly support a ertain level of fault-tolerane, espeially, in aSoilseC deployment where SoilseC agents might fail. In suh a ase, ollaboration ould be adverselya�eted and hene the performane as well. The sensor information reliability ould also be addressed.
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