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Abstract

This dissertation proposes a new transport layer protocol called Axon. This is a UDP-

based data transport protocol suited for a range of mobile wireless networks inspired by

what occurs between neurons in biology. This dissertation shows, through preliminary

real world experiments, that this shows promise in terms of performance as well as

suitability with existing transport layer protocols over wireless networks.

In particular the content addresses the concepts of intra-protocol fairness, network la-

tency bias, and Transmission Control Protocol (TCP) friendliness which have not been

considered at the time of writing. Such concepts are not feasible through the deploy-

ment of existing Internet data transport protocols including TCP and UDP.

We hope that Axon will be suited to the emerging data intensive applications we see to-

day. This includes applications such as media streaming where this commonly involves

a diminutive number of connections that share a capable amount of wireless network

bandwidth.

Axon has been implemented at the application level as a C++ library and the related

documented process forms a substantial feature of this dissertation. There are two re-

lated but orthogonal parts in the work presented by this dissertation: the Axon protocol

and its congestion control algorithm.

By definition Axon is an application level, end-to-end, unicast, reliable, connection-

oriented streaming data transport protocol. The protocol is specially designed for

efficient high-speed data transfer over networks that may include Wireless links and

potentially be in an Ad-Hoc configuration.

The primary aim of this dissertation is to gave an insight into the design and implemen-

tation of Axon. Specifically we focus on the tailored congestion control algorithm. This

has been inspired by the biological action of neurotransmission in the nervous system:

A high speed, multi node network that we all depend on.
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1

Introduction

1.1 The Present Day

Today, particularly in the western world, we find ourselves living in bandwidth rich times where

the speed of networks seems to be ever increasing. More revolutionary is fast growth of wireless

networks found in the home and office place. Computer networks are now truly mobile and network

bandwidth today, even that over wireless links, has been expanded to speeds measured in the

Megabytes per second (Lehr and McKnight, 2003). This, excitingly, has allowed the development

of many data intensive applications that were impossible in the past (Samueli, 2000). It could even

be argued that applications such as Internet Protocol TeleVision (IPTV) and on-demand media have

stimulated the deployment of such high-speed wireless networks.

Living in bandwidth rich times we have seen the once hyped term ‘broadband’ has found almost

compulsory usage in the marketing material issued by ISPs worldwide where it’s a label that can be

given to any high-speed connection. However, the term also takes on several meanings in relation

to the fast evolution of carrier technologies - from DSL (Digital Subscribed Lines) to fibre-optic,

from WiMax to the next generation networks such as 4G. This has meant users Japan can boast

connection speeds exceeding 60Mb/s and even 1Mb/s is offered in some of the remotest parts of

the Philippines.

Interestingly we are living in a world of exponentially increasing data. The concept of storing

data in either optical or flash storage ready for delivery to the, as is apparent in DVD and Blue-

Ray films is becoming a dated one. In many situations this apparently old fashioned method of

shipping data on storage media makes it impossible meet the requirements of modern web-based

‘on-demand’ applications (Little and Venkatesh, 1994). Examples of applications that are growing

1



1. INTRODUCTION

hungrier for bandwidth may include Internet gaming and Video-on-Demand. This is in turn fed by

us, the user, who in demanding network service providers to provide a better Quality of Experience

(QoE) have produced a demand for the network to transport ever increasing amounts of data (Fulp

and Reeves, 2004).

Moving away from the home user we can see that researchers in high-energy physics, astron-

omy, bioinformatics, and other high performance computing areas have started to use both wired

and wireless high-speed networks to transfer vast quantities of data. Media streaming is another

application that in particular carries the demand of high data throughput over wireless networks.

This has been driven exclusively by the Internet and in particular it’s ubiquity. This has undoubtedly

made it an attractive platform for the delivery bandwidth intensive applications such as streaming.

Although this been nothing short of revolutionary socially, in the western world at least, a particu-

larly elusive goal has proven to be the deployment of a effective streaming solution.

Such a solution arguably can not be implemented with the de facto transport protocol of the

Internet - the Transmission Control Protocol (TCP). There are cases where it substantially under-

utilises network bandwidth over high-speed connections with long delays (Motwani and Gopinath,

2005). In considering the viability of TCP for streaming video the recent proliferation of work on

TCP-friendly streaming should be considered. One of the most important issues today in research

is whether service model of TCP need to change. Much work needs to be done but it does seem the

unfortunate case the high-speed networks that are very available today may not be used to their

potential by these applications.

Coupled with that fact that high-speed and long delay network conditions are now common

in wireless networks both at the local and wide area. These are becoming ever popular due to

their convenience and lack of infrastructure costs from the perspective of the user and the owner

of the network infrastructure. A new transport protocol is therefore a timely solution to meet this

challenge. As with any new protocol though it should be expected to be easily deployed and easily

integrated with the applications, in addition to utilizing the bandwidth efficiently and fairly.

This dissertation hence recognizes the emerging requirements of wireless networks in general

and proposes a new high performance neurologically inspired network transport protocol called

Axon. This dissertation will describe in detail the design and implementation of Axon and through

extensive theoretical and experimental work demonstrate that Axon satisfies the requirements de-

manded by data intensive applications.

2



1.2 The Motive

1.2 The Motive

The way that network transport protocols are deployed are integral to a user’s Quality of Service

(QoS) and Quality of Experience (QoE) on a network. This respectively refers to both resource

reservation control mechanisms as well as the perceived service quality. Both concepts prove to be

very important in applications ranging from the simplest File Transfer Protocol client to the most

complex Peer-to-Peer media streaming service.

The problem exists where the established transport layer communication protocols such as TCP

were developed without the requirement to provide connectivity in both typical Wireless and Mo-

bile Ad hoc NETworks (MANETs). There were instead designed and implemented to provide a

fundamental transport layer service to hard wired network infrastructures. As such these protocols

cannot be applied effectively to MANETs or even the most standard Wireless Network where the

characteristics of infrastructure networks are fundamentally different. With Wireless Network we

encounter a whole new range of problems that can be attribute to unpredictable nature of radio

transmission.

Two characteristics that are arguably crucial are the potentially large number of hops of a com-

munication, the lack knowledge of the topology and membership of the network. The later issues

can be notably be applied to the most general of Wireless Networks where knowledge can be used

to counter a number of specific problems such as packet loss. These are notably not addressed in

the mainstream transport protocols we see today.

This thesis will propose areas where MANETs and Wireless Networks in general exhibit simi-

lar characteristics to the communication patterns that occur between neurons. Such comparisons

maybe drawn where a many to many relationship is observed in the communication between in-

dividual nodes to other nodes. Interestingly the interaction between them is, also like in Wireless

Networks, intermittent. Hence this dissertation will pay particular focus on how other such obser-

vations maybe used to improve the interaction between nodes at the transport layer.

1.3 The Current State of Research

The shortfalls of existing transport protocols, namely the Transport Control Protocol (TCP) and the

User Datagram Protocol (UDP), are the topic of ongoing debate both in the academic and industrial

research community. Specifically TCP’s deployment over mobile wireless networks comes up against

a very critical view across the research community (Nahm et al., 2005). The main issue lies in the

fact that TCP cannot distinguish a wireless specific transmission error from a congestion issue. UDP
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respectively also comes up against similar criticism where the sense of using an unreliable protocol

over an inherit unreliable wireless network is very debatable. Interestingly though it has been

observed that when UDP does work in an mobile environment the throughput can be exceptional

(Garg and Kappes, 2003) and this forms but one area of ongoing research which will be examined

further on.

1.3.1 Ongoing research

Currently the beginnings of promising solutions to the problem of transport data across wireless

link maybe found in the concepts of ‘split’ TCP, TCP aware link protocols and Explicit Notification

Schemes. ‘Split’ TCP can be used to be describe the ideas behind Indirect TCP and Selective Repeat

Protocol (SRP).

Indirect TCP itself uses two TCP connections. One from the fixed host to the base station and

from the base station to the mobile host (Bakre and Badrinath, 1997). Independent flow control

can be found on two connections and the data packets are themselves buffered in the base. SRP

however takes a much simpler approach. Like indirect TCP two connections are used from the

fixed host to the base station and from the base station to the mobile host (Yavatkar and Bhagawat,

1994). Unlike indirect TCP however it uses standard TCP from the fixed host and SRP over UDP

from the base station and mobile host.

Snoop is a well known member of the TCP Aware Link Layer Protocols. Snoop works using

split connection and link level retransmission. In this set-up the base station monitors the returning

acknowledgements (Balakrishnan et al., 1995). It thus retransmits on duplicate acknowledgements

and subsequently drops them.

Explicit notification schemes are themselves less complex but conceptually very different. One

major scheme includes Explicit Loss Notification (ELS) which is used with mobile host sources

whose first link on the path is wireless (Balakrishnan et al., 1997). Here the base station keeps

track of the missing packet for the mobile host.

Although all very different and promising these are all topics of ongoing research and maybe not

be suitable for use in the real world. Bold this statement maybe but these examples are themselves

tied down to such a specific scenario and therefore are quite limited in terms of potential areas of

implementation. They presume the mass take up of any new technology that may develop from the

research where there are essentially extensions of existing technologies - most notably IP. Giving

version six of the IP (Internet Protocol) as the most infamous example where we are still no where

near the point of mass deployment you simply cannot expect such a wide and diverse user audience
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such as those connected to the Internet to accept a new approach quickly. This especially the case

when the current approach seems to work just fine to the unaware user.

We should however never attempt to remove the scope to suggest alternatives where this forms

the focus of this thesis and research in general. Many have already taken on this task as seen in the

examples Snoop or SRP that have produced some very promising results in some scenarios. This

drive to research and develop further alternatives is continued in the following section.

1.3.2 The need for further research

Many of the problems with current Transport Layer Protocols are due to the fact that mobile wireless

networks arrived on scene all too recently. Protocols such as TCP were simply never designed to

accommodate wireless transmission and this exposes a number of issues. It is important to also

consider that these were designed for weird networks whose performance were measured in Bytes

per second. Such a increase in performance would have extensively examined during their design.

Current research has suggested modifications to a transport this has often required a modifi-

cation to the underlying workings of TCP. However such modifications would have to be made to

the TCP stack found deep in the foundations of the current range of Operating Systems. From a

practical perspective this is simply not an attractive option due to the entailed complexity. From

this we see there is a definite need for an alternative to such alternatives.

Although the likes of TCP and UDP do seem to adequate for the current breed of wireless appli-

cations the likelihood is that this will not be the case as applications become increasingly more data

intensive. Once technologies such as Wireless Local Area Networks (WLANs) and Mobile Broad-

band start to mature and become more common place we may need to look at the suitability and

the improvement of TCP over such networks. In keeping with this idea we will argue that efficiency

should form a common design objective in such further revisions and innovations in transport layer

protocols. Efficiency is obvious in the major majority of cases but we should highlight the cases

where this can decrease as the bandwidth delay product increases.

We define the bandwidth delay product as the product of the link capacity and the round trip

time of a packet. This thesis will highlight other considerations, such as fairness and stability, that

sometimes make it difficult to realise the goal of optimum efficiency over wireless links.

1.4 Aims of the Project

Here we will attempt to assess the both the final and preliminary aims of the project.
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1.4.1 Final aim

Today, the emergence and spread of wide area wireless networks has imposed new challenges

on transport protocol design. While the transport layer is an unlikely candidate for application

performance woes it can become a problem. When we consider that the transport protocols in

broad use today were designed in 1981 (Ruthfield, 1995) issues do become apparent. The demands

of Today’s application and network topologies differ greatly from the networks of the early 1980s.

TCP really shows it’s age when you consider that 300 baud was considered state-of-the-art at the

time it saw initial deployment.

When we contemplate the networks that TCP was originally design to work on we see that

congestion was largely due to a handful of nodes on a shared network of limited scale. This is very

different to the complex high-speed networks that are plagued with over subscription aggregation

and millions of concurrent users each contending for available bandwidth we see today. Applica-

tions at the time TCP was deployed were often text-oriented applications but today even the most

ill-equipped corporate user can easily move files that are tens upon hundreds of megabytes in size

at a click of a button.

Although the network has inevitable evolved, the fact remains that TCP is very relevant in

today’s dynamic and ever-changing network environment. TCP has had to undergo minor changes

in the past 25 years and those changes are in the form of extensions rather than thorough rewrites.

Although there are some more modern transport protocols that have roots in TCP such as WTCP,

many are considered developmental projects only and currently have limited deployment in the

mainstream. Although some have met with some success we should concede that it is unrealistic to

deploy a new protocol in the transport layer in a comparatively short period of time.

Ideally we should be able to gradually deploy new transport protocols on a network. These

should be friendly to existing protocols while achieving superior performance. An application level

solution is often more desirable in this where it may be ported into the lower layer gradually if

the protocol proves to be successful. This is arguably one of original purposes of the standard UDP

protocol where it allows new data transport mechanisms to be built on top of it if needed. One

example could include the RTP (Real-time Transport Protocol) currently being used increasing to

stream multimedia.

Follow this idea we will present both experiences and critical observations in the implementa-

tion of a high performance wireless network transport protocols for data intensive applications at

the application level. In particular it will focus on solves the issues that have not been addressed

previously with traditional protocols such as TCP.
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This will required the design and implementation of a network transport protocol and a respec-

tive library to overcome the efficiency and fairness problems of existing network transport protocols

over wireless networks. In keeping with the topic of this dissertation the main concerns will remain

in performance in an wireless environment and how any shortcomings may be addressed. It is

hoped that any shortcomings can be solved by observing the interactions between neurons at a

cellular level where we can draw parallels with the Wireless Ad-Hoc concept.

1.4.2 Preliminary aims

This thesis will attempt to make the following research contributions:

• To suggest an original MIMD rate control algorithm that uses a bandwidth estimation tech-

nique to determine the best increase parameter for efficiency. From our experiments we hope

to see an increase on the effective throughput of the protocol. We will also look into the

advantages of a MIMD rate control algorithm where it should be fair to existing TCP flows.

This is important since many networks are shared and many networked applications employ

TCP-based communication.

• To propose a new, neurologically inspired, congestion control algorithm that increases fair-

ness and enabling multiple transport flows to coexist over the same path. This is important

for concurrent wireless data intensive applications that exist in certain scenarios.

• To advocate the use of dynamic window control to reduce loss and oscillations which are

not apparent in transmissions within the nervous system but a problem in wireless network

environments. In particular this we will look into why both are desirable from the perspective

a typical data intensive application that may be deployed in a wireless network.

These will taken into account during the course and eventually the conclusion of this work.

1.5 A Reader’s Guide

This dissertation is divided into carefully divided chapters to give the reader a better insight into

the experience of designing and implementing a new network transport protocol in an easy to grasp

manner:

• Chapter 2 will detail the State-the-of-Art and outline the current research that is ongoing in

both academia and in industry.
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• Chapter 3 will go into the design of Axon; a neurologically inspired transport layer protocols

to solve the problem of low throughput in high bandwidth delay product wireless ad hoc

networking environments.

• Chapter 4 introduces the “Materials and Methods” used to measure the potential success of

the new network transport protocol. These will be used essentially as a means to compare

the performance of Axon to TCP in a number of common application scenarios.

• Chapter 5 details the Implementation of Axon using the C++ programming language and

the behaviour of the protocol at the transport layer in the network stack. In particular we

will focus on some of the measures undertaken to ensure we have a good quality reference

implementation library.

• Chapter 6 is where we will discuss the preliminary measures of performance gained through

putting the implemented Axon library through it’s paces. For comparison we will compare

these results to those gained from the use of TCP using the same experimental setup.

• Chapter 7 will penultimately outline any conclusions we may draw from the results presented

in Chapter 6. From this we be able to determine what works well in the protocol and what

should be highlighted as areas for future research.

• Chapter 8 will finally outline any such future work and suggest any specific areas that should

be looked at in any further iterations of the design or implementation of Axon
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State of the Art

In the layered Internet architecture, the transport layer forms the fourth layer found above the net-

work layer and below the application layer. Currently there are two well-known transport protocols

at this layer: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol), while there

are new protocols emerging, including SCTP (Stewart and Metz, 2001) and DCCP (Kohler et al.,

2006).

A transport protocol provides various functionalities to the applications, including but not lim-

ited to data delivery, data reliability control, and a streaming or messaging service. General-purpose

transport protocols should have four fundamental objectives that are usually transparent to appli-

cations: efficiency, fairness, convergence, and the ability to be distributed if needed. It should also

be efficient and able utilise the available bandwidth as efficiency as possible.

A protocol should therefore accomplish the following two tasks quickly:

• Determine the maximum available bandwidth where we must respect and aspire to this limit

• Recover to the maximum speed after a drop in the sending rate due to congestion or packet

loss. Meanwhile, after it reaches maximum speed, it should remain at the current state until

the network situation changes. This means that oscillations should be as small as possible.

This will increase the aggregate throughput.

We should also expect network bandwidth to be shared fairly among all concurrent flows where

it is too restrictive to limit applications to one effective flow. This demand that will look in how we

should go about measuring fairness where there are a number of different approaches. The most

common one is the max-min fairness where we try to maximize the minimum throughput (Hahne,
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1991). The fairness property among all flows belonging to the same protocol is also very relevant

and known as the intra-protocol fairness.

Moving toward the next piece of jargon we come to network latency independence. We use this

to describe the special case of fairness over topology with different round trip times, a condition

not satisfied by TCP. This prove to be very troublesome with wireless links where network latency is

rarely static due to the need of retransmission at the MAC Layer where radio transmission is rarely

100% reliable (Cali, 2000). The fairness problem becomes even more difficult to overcome when

we consider the cases when heterogeneous protocols coexist. A new transport protocol is required

to consider the situation when it coexists with TCP before it is widely deployed on the Internet.

The fairness between TCP and a new protocol such as Axon is known as TCP friendliness. The

ideal situation is where the data sending rate should converge to a unique equilibrium from any

starting point with any given specific network situation (Yang et al., 2003). It is acceptable that

the throughput oscillates around a fixed point because binary feedbacks are usually used to notify

changes in the network situation that can be far from ideal. This is known as the global stability

property of network transport protocols.

Finally, we must take into account that large networks such as the Internet are essentially a

large loosely coupled system. That makes it impossible to have a central server to dispatch the

bandwidth in some form of paradigmatic solution. Transport protocols must consequently control

their data sending rate at the end hosts with or without assistance from the routers that the traffic

passing through. The end-to-end principle states to this effect that, whenever possible, transport

protocols operations should only occur at end hosts. The end-to-end principle greatly increases

the system’s scalability. This even the case with the existence of gateway operators where it is still

necessary to retain congestion control functionalities at end hosts (Floyd and Fall, 1999).

Congestion control therefore forms a critical component in a transport protocol in order to

realize these objectives. The transport protocol needs to adjust the data sending rate as required

using some form of congestion control algorithm. This usually takes the form of a feedback system

where this can be either explicitly generated from intermediate nodes such as routers, estimated

by packet losses, increase trends in packet delay, or time out events. We can use explicit feedback

from routers to gain more accurate information. We will actually consider one protocol, XCP, that

takes this approach but at the expense of higher deployment costs.

When trying to work how we may tune the data sending rate we soon see that this can be

done through either the inter-packet time or by examining the number of outstanding packets.

The former method is called rate-based congestion control and the latter is called window-based
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congestion control. A linear system is often applied in a control scheme to tune these parameters

because of its simplicity. The most famous example of such a control algorithm is the Additive

Increase Multiplicative Decrese (AIMD) algorithm in TCP (Gao and Rao, 2005).

2.1 Transmission Control Protocol - Past it’s best

TCP is by all measures the most widely used transport protocol and holds high status as the de facto

standard Internet data transport protocol. TCP provides the reliable data streaming service that

many applications demand. First proposed during the 1970’s (Mowery and Simcoe, 2002) there

has since been many updates that are proposed to improve its performance or fix the problems

found in previous versions. The success of TCP may be put down to its stability and the widespread

presence of short lived reliable flows on the Internet. However the use of network resources in high

performance, sometimes distributed, data intensive applications is quite different from that of the

more traditional Internet applications we are familiar with.

Data transfer often lasts a very long time at relatively high speeds as we can in streaming plat-

forms such as YouTube or the BBC iPlayer and the various clones these have inspired. Applications

are also becoming more distributed and this requires cooperation among multiple data connections.

Fairness between flows with different start times and network delays is desirable where ultimately

networks are a shared medium of information flow. Now that we has established the general short-

falls we must consider what modifications have been made to TCP adapting for use in modern

networking environments.

So far, four major versions have been widely deployed: Tahoe (Van Jacobson, 1988), Reno

(Mo et al., 1999), NewReno (Barman and Matta, 2002), and SACK (Fall and Floyd, 1996). TCP

NewReno and TCP SACK are commonplace today as versions of the TCP protocol. More recently

from the TCP BIC (Xu et al., 2004) and TCP CUBIC (Ha et al., 2008) have recently entered the

scene bringing their own pros and cons.

2.1.1 The varying versions of TCP

As we have already stated TCP has not been static in terms of it’s design. It has had to adapt to cope

with the way networks have changed since the protocol came into being. This means that they are

plenty of different versions available suiting various network environments, both new and old. We

examine this in the following.
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2.1.1.1 Tahoe and Reno - A differential overview

TCP Tahoe and Reno are in fact quite similar where they use a multi-faceted congestion control

strategy in attempt to avoid congestion collapse. Such an event can occur in any packet switched

computer network when it reaches the point where little or no useful communication can happen

due to congestion. This requires TCP to maintain a congestion window, limiting the total number

of unacknowledged packets that may be in transit end-to-end. This is a concept probably best

compared to that of TCP’s sliding window used for flow control.

Tahoe and Reno form very much the ‘usual suspects’ in the history of TCP where it uses a

mechanism called slow start (Fall and Floyd, 1996) to increase the congestion window after a

connection is initialised and after any time-out that may occur within a network connection. This

is primarily so we can avoid congestion with in the network. In such situations packets will go

a miss on networks and this cases likelihood of duplicate acknowledgements being received to be

very high. It is how Tahoe and Reno differ in the way they detect and react to packet loss which set

them apart from the alternatives.

In Tahoe a loss maybe discovered when a time-out expires before an acknowledgement is re-

ceived. It will then reduce congestion window to that of the Maximum Segment Size, a value

indicating the largest amount of data that a network device can receive in a single piece before

resetting to slow-start state. The maximum segment size is equal to largest amount of data that a

computer or communications device can handle in a non-fragmented piece.

Reno takes a different approach where it halves the congestion window, performs a “fast re-

transmit”, and enters a phase called Fast Recovery in the event of three duplicate acknowledge-

ments being received (Fall and Floyd, 1996). Fast Recovery, by definition, is when TCP retransmits

the missing packet that was signalled by three duplicate acknowledgements. After this it will wait

for an acknowledgement of the entire sending window before returning to congestion avoidance.

Being critical we should consider that they are cases where no acknowledgements will be re-

ceived and TCP Reno will, as a consequence, experience a time-out. Here it will enter the slow-

start state like Tahoe state and throughput will be limited. This is not only issue though. Reno

and Tahoe are designed to reduce congestion window to that of the maximum segment size on a

time-out event. Such issues are substantial where wireless networks are involved where packet loss

and time-out are more frequent (Holland and Vaidya, 2002).
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2.1.1.2 NewReno - An improvement on the familiar

In more recent research TCP New Reno improves retransmission during the fast recovery phase

of TCP Reno. The most influential change is in concept of the fast recovery(Mathis et al., 1997).

Here we see for every duplicate acknowledgement that is returned to TCP New Reno, a new unsent

packet from the end of the congestion window is sent. This in order so that we keep the packet

transmission window full. For every acknowledgement that makes partial progress in the sequence

space, the sender assumes that the acknowledgement points to a new hole, and the next packet

beyond the acknowledged sequence number is sent.

2.1.1.3 TCP SACK - Reno and Selective Acknowledgements

Finally TCP SACK forms a conservative extension of Reno TCP modified to use the concept of

Selective Acknowledgements originally proposed by the Internet Engineering Task Force (IETF).

It is therefore an attempt to solve Reno TCP’s performance problems when multiple packets are

dropped where ultimately the absence of selective acknowledgements does impose limits to the

performance of TCP.

This specific TCP implementation preserves the properties of Tahoe and Reno TCP of being

robust in the presence of out-of-order packets and uses retransmit time-outs as the recovery method

as a last resort. The main difference when comparing SACK TCP implementation and the Reno TCP

implementation is in the behaviour when multiple packets are dropped from one window of data.

This achieved using selective acknowledgements, the data receiver can inform the sender about all

segments that have arrived successfully, so the sender need retransmit only the segments that have

actually been lost (Allman, 1998).

2.1.1.4 BiC - Suiting the Long and Fat (Networks)

BiC is an implementation of TCP with an optimized congestion control algorithm for high speed

networks with high latency (Xu et al., 2004). It uses a similar strategy to the alternatives but

it proposes a more complicated method to increase the sending rate. Achieving good bandwidth

utilization, BiC TCP also has a better fairness characteristic than Scalable and HighSpeed TCP where

it is not as aggressive. In addition, BiC TCP has an upper limit on the increase parameter which

makes it less scalable; a potential problem in the ad hoc environment.

13



2. STATE OF THE ART

2.1.1.5 TCP CUBIC - Bic3

CUBIC is a less aggressive and more systematic derivative of BIC, in which the window is a cubic

function of time since the last congestion event, with the inflection point set to the window prior

to the event. Being a cubic function, there are two components to window growth. The first is a

concave portion where the window quickly ramps up to the window size before the last congestion

event. Next is the convex growth were CUBIC probes for more bandwidth, slowly at first then very

rapidly (Ha et al., 2008). CUBIC spends a lot of time at a plateau between the concave and convex

growth region. This allows help the network stabilize before the TCP variant begins looking for

more bandwidth.

Another major difference between CUBIC and the more traditional versions of TCP is that it does

not rely on the receipt of acknowledgements to increase the window size. This works as CUBIC’s

window size is dependent only on the last congestion event. With standard TCP, flows with very

short round trip times will receive acknowledgements faster and therefore have their congestion

windows grow faster than other flows with longer round trip times (Ha et al., 2008). CUBIC also

interesting allows for a greater fairness between flows since the window growth is independent of

round trip time.

2.1.2 Shortfalls of TCP

Although various versions of TCP have their differences they all share similarities and arguably a

flaw. This takes shape of TCP’s AIMD-based control algorithm (Jacobson, 1995) that increases the

sending rate using the congestion window size approximately one segment per s round trip time. It

then halves the window size once there is a loss event. Here if we consider 200ms round trip time,

a realistic figure that could be regraded as approximately the network distance between nodes in

a wide area wireless network, after a loss event, well over 200 round trip times are required for

TCP to increase its window for full utilization of 54Mb/s with 1500-byte packets. This is equal to

the payload in a Ethernet frame and entails 9000 packets each round trip time or approximately 4

seconds.

Put simple, to maintain its maximum utilization of 54 Mb/s (75% of the peak throughput),

the loss rate cannot be more than 1 loss event per 99,900,000 packets. This is a bit too close for

comfort to the theoretical limit of even the bit error rate of a wired connection, let alone a wireless

link. This is of special concern in wireless networks where the medium of transmission is, at best,

unpredictable.
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Equation 2.1 (Padhye et al., 2000) indicates that TCP generally becomes ineffective as the

network bandwidth and delay increases (Katabi et al., 2002) where T is the throughput, S is the

TCP segment size, p is the loss rate and t to is the TCP time out value. This is bad news in the case

of Wireless Networks and in particular those that fall into the category of Mobile Ad-hoc NETworks

(MANETs) where the loss rate is like to comparatively high. Furthermore, the existence of network

latency in the TCP throughput model means that flows with different round trip times may have

different throughputs. This is also known as round trip time bias.

Many researchers have made very compelling arguments for such a apparent flaw where some

draw the conclusion that this is an acceptable trade-off so we ensure network stability. However

some may instead form the opinion that this is only relevant to the yesterday’s networks where

reliability was of the prime concern. Today this is not as relevant where both the hardware and

software has matured to the point where efficiency is primary concern for the user. We are observ-

ing networks implement faster links and so we see an increased availability in high performance

networking. Unfortunately despite such improvements wireless network users still experience per-

formance penalties because their high bandwidth yet high delay networks are not suited to TCP

flows.

When taking into account the current trend of research we se that TCP performs poorly in three

notable scenarios:

2.1.2.1 Poor link utilization in high Bandwidth Product Networks

It is difficult to obtain high TCP throughput and, hence, good link utilization for high Bandwidth

Delay Product flows traversing end-to-end paths with high bandwidth, high delay, or both. It has

been observed that a single TCP flow, in the extreme case, may saturate a 10Gbps link (Bu et al.,

2006), that incurs large, oscillatory queues. However, sustaining these high flow rates requires a

unrealistically low packet loss where such an event causes TCP to back off all too easily. This is not

only limited to infrastructures which such headlining bandwidth figures.

This is often too apparent in the current deployment of wireless networks at the hands of your

average user where we rarely see bandwidth used optimally for the same reason. Although (Bu

et al., 2006) does present a very extreme scenario we can see how TCP, in it’s current form, is likely

to become more of a liability as the capability of wireless networks increases over time.
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2.1.2.2 Unfairness at long round-trip times

TCP flows with long round-trip times have difficulty obtaining their fair share of bandwidth on

a bottlenecked link (Vojnovic et al., 2000). This is strange when you consider the increasing

use of mobile, satellite and cellular networks in the present day, all of which carry a substantial

amount of TCP traffic. Typically once TCP enters congestion-avoidance mode, long round-trip-time

flows slowly open their congestion windows. As a result, short round-trip time flows obtain higher

throughput and this causes the troublesome network latency bias.

We can see where this quickly becomes an issue in the ad-hoc environment. Round trip times

are dependent on link quality and this is turn related to the distance between nodes. We can not

assume either to be constant figure and we should consider that link quality is also at the mercy of

radio interference which is periodically random in its occurrence.

This problem is not limited to just the ad-hoc environment. Even in managed wireless networks

that include a base station there is a varying round trip time due to the intermittent need of re-

transmission at the MAC Layer. There is also the fact that the distance from the base station will

vary. Notably none of the TCP variants discussed address the round trip time bias problem and we

should make every attempt to look into potential solutions.

2.1.2.3 Confused by lossy links

TCP uses packet loss as a binary indicator of congestion where there is no feedback on the inten-

sity of congestion (Balakrishnan et al., 1997). This works well where packet loss is a reasonable

congestion indicator on links with negligible non congestion-related packet loss. However, many

wireless links are subject to, for example, uncorrectable bit errors; as a result, TCP may treat them

as congested networks and underutilize them.

We need therefore a different approach where by packet loss should not always infer the situa-

tion of a congested network link.

2.1.3 Summary

Given the apparent shortfalls in TCP there is a need to look at ways to improve performance in these

environments. We place particular emphasis on the first two problems of Poor link utilization in

high Bandwidth Product Networks and Unfairness at long round-trip times where these are the more

straight forward to overcome from a practical perspective. There demand a different approach and

are also the most common general flaws in wireless networks that have such popularity today.
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We should not however ignore the problem where TCP is Confused by lossy links. This is an

equally relevant issue that should be ideally overcome although it represents a greater challenge.

We should always expect lower throughput on a lossy link and we can not always expect con-

trol traffic to keep through. This thus limits our options and we may need to infer events from

observations such as packet loss or link capacity.

2.2 Previous Work

Before we can set out to fix these problems that have been highlighted it is necessary to look at what

research has been conducted. From this we can determine the methods that have been effective in

overcoming these issues as well as learn from those have not meet with such success.

2.2.1 TCP Modifications

For a long time researchers have continually worked to improve TCP. Probably the most straightfor-

ward approach suggested is to use a larger increase parameter and smaller decrease factor in the

AIMD algorithm than those used in the standard TCP algorithm. Scalable TCP (Kelly, 2003) and

High Speed TCP (TOKUDA et al., 2003) are the two just typical examples of this class. Others will

be examined in the following:

2.2.1.1 Highspeed TCP

Highspeed TCP Changes the way TCP behaves at high speed and in particular focuses on how

Congestion Avoidance is conducted. Put plainly it modifies the response function of TCP so that

ridiculously low packet drop rates are not required to sustain high throughput. It is claimed that

this modification allows Highspeed TCP to roughly emulates n parallel TCP connections (TOKUDA

et al., 2003). It should be noted that this is not by design and is not controlled by the protocol.

It merely indicates that the throughput of Highspeed TCP is n times that of standard TCP under

similar conditions and this is a good thing in terms of network performance.

The best way to see the differences between Highspeed TCP and Standard TCP is in there

response functions. If w is the congestion window and p the packet drop rate these would w =

0.12/p0.835 and w = 1.2/sqr t(p) for standard TCP. This is respective of whether it is necessary to

increase or decrease throughput due to congestion. The way in which Highspeed TCP handles the

size of congestion windows is shown in Algorithm 1 using the same symbols.
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Algorithm 1 - Highspeed TCP Window Handling
while Highspeed TCP connection is open do

if network is congested then

w← w+ a(w)/w
else

w← w(1− b(w))
end if

end while

This algorithmic behaviour is only applicable in the instances where the size of the conges-

tion window is large and where a(w) and b(w) are log functions depending on several measures

(TOKUDA et al., 2003). This is not shown as it is beyond the scope of this State of the Art. However

from the material available we can see a likely case where if the size of the congestion window is

less than 38, a(w) = 1 and b(w) = 0.5 the behaviour of this protocol is identical to TCP. Unfor-

tunately this makes it less than suitable for the wireless network environment where this does not

address the issues that packet loss is all too common.

However we do see that efficiency is ensured where a(w) and b(w) are precomputed and stored

in lookup tables. Such an approach to improve the overall performance of the transport layer is

though debatable with computing power fast becoming a commodity.

Overall this does seem indeed like the fundamentally correct thing to do as there is a defined

need for backwards compatibility and incremental deployment. However another researcher may

form the view that this is more a minor modification rather than a novel approach.

Here they have taken a quiet a narrow minded approach to solving the shortcomings of TCP.

If we consider wireless networks where lossy links would be frequent due to radio related phe-

nomenon such as interference this derivative of TCP is not likely to perform any better in the real

world. It is still too eager to shorten the window size at the first sign of packet loss and this causes

it not address the difference between packet loss caused by congestion and packet loss caused by

transmission error. Many researchers would probably argue though that this is designed for High

Speed Networks and not Wireless Networks. They would probably be right but with innovations

such as 4G and 802.11n the dividing line between such networks appears to be getting thinner as

time draws on.
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2.2.1.2 Scalable TCP

Scalable TCP increases its sending rate proportional to the current value, whereas it only decreases

the sending rate by 1/8 when there is packet loss. HighSpeed TCP uses logarithmic increase and

decreases functions based on the current sending rates (Kelly, 2003). Both of the two TCP variants

have better bandwidth utilization, but suffer from serious fairness problems. The MIMD (multi-

plicative increase multiplicative decrease) algorithm used in Scalable TCP may not converge to the

fairness equilibrium, whereas HighSpeed TCP could converge very slowly.

Scalable TCP works through the implements of very simple modifications to algorithmic foun-

dations of TCP. It focuses on the observation that traditional TCP connections can not effectively

use large windows. This is bad where often we have a limited amount of sockets able to receive and

buffer memory available. This means that they tend not to have a windows greater than a certain

size (Kelly, 2003). This maybe referred as the legacy window size and its use is shown in Algorithm

2 where w is equal to the congestion window, lws is equal to the legacy window size.

Algorithm 2 - Scalable TCP Window Handling
while Scalable TCP connection is open do

if network is congested then

if w ≤ lws then

Use the traditional window update algorithm.

end if

if w ≥ lws then

if An Acknowledgement Packet is received then

w← w+ 0.01

end if

if A Packet Loss is discovered then

w← w− 0.125×w
end if

end if

end if

end while

This response function is effectively MIMD. In a fixed time, in terms of number of round trip

times for doubling the sending rate, the calculation for each acknowledgement received is: w =

w + a and for each loss: w = w − b× w. Quite intuitively this allows scaling property applies for

any choice of values for a and b so giving the TCP variant such a curious name.

This is important where its a wide variety of performance attributes a connection may have.
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This includes on impact on legacy traffic, bandwidth allocation properties, flow rate variance, con-

vergence properties as well as how it would be possible to control theoretic stability.

Critically it would seem that Scalable TCP is actually a special case of the Highspeed TCP re-

sponse function. This makes is much easier to implement, mathematically modelled and less ad-hoc

in nature. Benefits may also be found where the protocol ensures that sending rate is fixed in terms

of number of round trip times and this independent of the capacity of the link. This, in turn, makes

the protocol very scalable and suited to today’s data intensive applications.

It is however not the first network technology in existence not to have issues. The choice of a

MIMD congestion algorithm does have it inherently more aggressive than protocols which imple-

ment a form of AIMD. We see another issue where there does not seem to be enough experimental

results available to convinces us that Scalable TCP will not starve standard TCP. Research is though

ongoing and it would seem again the problems of TCP over wireless networks is a moot point.

It would therefore be conceivable to argue that this protocol would again suffer when deployed

on a wireless network. Again this we suspect that this is due to packet losses being mistakes for

congestion and as a need to slow down transmission.

2.2.1.3 Wireless TCP

Wireless TCP (WTCP) has a similar approach to that proposed in Indirect-TCP (I-TCP). We see this

as it splits the transport connection at the interface between weird and wireless networks, and

maintains two TCP connections, one over the wired network, and another over the wireless link

(Sinha et al., 2002). This way the poor quality of the wireless link is hidden from the fixed network.

WTCP follows a similar line of thinking but maintains the end-to-end TCP semantics and requires

no modification to the TCP code running in the fixed host or the mobile host in the wireless next.

WTCP effectively shields wireless link errors and attempts to hide the time spent by the base station.

This allows locally recover so that the TCP’s round trip time estimation at the source is not affected

(Sinha et al., 2002). This is critical since otherwise the ability of the source to effectively detect

congestion in the fixed wired network will be hindered. It important to consider that this have been

done at the expense of the end-to-end principle.

2.2.1.4 FAST TCP

Recently a new method that follows the strategy outlined in TCP Vegas called FAST TCP was pro-

posed. FAST uses an equation-based approach in order to react to the network situation faster.
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FAST TCP works where instead of resulting to AIMD congestion control that backs off in re-

sponse to a single congestion indication we use equation-based congestion control. Such a control

equation that explicitly gives the maximum acceptable sending rate as a function of the recent loss

event rate. The sender adapts its sending rate, guided by this control equation, in response to

feedback from the receiver (Wei et al., 2006). We should also taken into account the queuing delay

where the time a job waits in a queue until it can be executed is a necessity in events such as burst

packet transmissions. It is in these scenarios where buffering becomes necessary.

Conceptually this is a take on TCP that differs in its use of multiplicative decrease with packet

loss. This means that the protocol undergoes exponential reduction of the congestion window

when a congestion even takes place. Here packet loss is notably used as a gauge to how congested

a network may or may not be. Arguably the interesting fact of FAST TCP is that it is based on

flow-level dynamics rather than packet level dynamics (Wei et al., 2006). FAST TCP therefore

ensures that most of existing research on data networks wrongly assume a fixed population of TCP

connections or flows.

The main algorithm in FAST TCP is in fact quite simple and can be described as a simple number

of steps:

1. Estimate target rate

2. Estimate how far away the current rate is from target rate

3. If very far, increase the sending rate aggressively

4. If close by, increase the sending rate very smoothly

The biggest advantage is that avoids oscillations in terms of the amount of network traffic and

this should keep router queues stable. FAST TCP achieves this through a intrinsic window control

algorithm which is detailed in Algorithm 3.

Algorithm 3 - FAST TCP Window Handling
w = w× (br t t/r t t) + k

In Algorithm 3 w is the congestion window, r t t is the exponential weighted average of round

trip time, br t t is the minimum instantaneous round trip time and k is the constant that determines

fairness (or inversely the aggressiveness) and convergence rate.

Currently k is computed using the link bandwidth and the link round trip time which is then

stored in a look up table. Work continues in trying to compute it automatically. Theoretically, it is
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shown to be fair but there is a distinct lack experimental results illustrate this. We should also the

fact that the effect delay on congestion indication is neither fully understood or widely deployed in

the networks at the time of writing.

Other issues exist where although there has been much theoretical work on Vegas and FAST,

many of their performance characteristics on real networks are yet to be investigated. In particular,

the delay information needed by these algorithms can be heavily affected by reverse traffic. As a

consequence, the performance of the two protocols is very vulnerable to such events.

2.2.1.5 MulTCP

MulTCP is quite different where it was originally proposed for differentiated services with a form of

pricing scheme (Nabeshima, 2005). This takes the form of a computer networking architecture that

specifies a simple, scalable and coarse-grained mechanism for providing Quality of Service (QoS)

guarantees on modern IP networks with a price tag.

Ignoring the business opportunity and concentrating rather on technical detail we see that a

typical MulTCP flow behaves as if it was a collection of several virtual flows. This has been achieved

through modifications to the slow start, linear increase and multiplicative decrease algorithms of

TCP. An interesting aspect to note is that the developer has not been able to modify the manner in

which timeouts are handled. This further outlines the difficulty in modifying an existing protocol.

The modified Slow Start algorithm is outlined in Algorithm 4 where w represents the congestion

window.

Algorithm 4 - MulTCP Window Handling (in Slow Start State)
if i < k then

w← w× 3

else

w← w× 2

end if

All that is happening here is the the congestion window is tripled for each acknowledgement

received for the first k round trip times and double after that. The congestion window for MulTCP

at the end of k round trip times should therefore be equal to 3k and the sum of Congestion window

of n separate flows will be n2k. This all relies on the choosing k ∈ 3k = n2k.

The Linear Increase algorithm of MulTCP is shown in Algorithm 5, where w is the congestion

window:
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Algorithm 5 - MulTCP Window Handling (Linear Increase Component)
if An acknowledgement packet is received then

w← w+ n/w
end if

If we look at Algorithm 5 we can see that MulTCP simply increases the congestion window

by n/w for each incoming acknowledgement. The Multiplicative Decrease algorithm is shown in

Algorithm 6 in a similar fashion.

Algorithm 6 - MulTCP Window Handling (when Packets get lost)
if A packet lost is discovered then

w← (1/n)× 0.5×w
end if

This shows that for each loss the the congestion window should be reduced for only one virtual

flow (Nabeshima, 2005).

Although this protocol clearly has its advantages where it does improve throughput and adds

an intriguing dimension to plain TCP we must consider the shortfall. Currently the variable n has

to be set by the user and may not be dynamically influenced by end-to-end congestion conditions.

Another argument against it’s widespread deployment is that the protocol relies on policing and

pricing to ensure that it does not result in congestion collapse. So it does particular shortfalls of TCP

but only through a business orientated theorem. This is not always deployable in all networking

environments.

MulTCP also suffers where it is more bursty compared to traditional TCP flavours and this

causes it to suffers performance loss during time-outs compared to n individual flows (Nabeshima,

2005). The effective gain does not always therefore correspond to the assigned weight n for flavours

other than SACK. Some researchers also argue that MulTCP is also more aggressive than should be

when compared to more traditional approaches such as TCP SACK in cases n < 5. This is a valid

argument where is this often one of the approaches used to implement and claim a “faster TCP”.

We should also consider the real world problem that exists where increasingly aggressive transport

protocols may lead back to the point where there is effectively no congestion avoidance. This would

unfortunately cause a network to be chronically congested and we, as researchers, would be back

to square one.
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2.2.2 Explicit Control Protocol (XCP)

Explicit Control Protocol (XCP) adds explicit feedback from routers (Zhang and Henderson, 2005),

is a more radical change to the current Internet transport protocol. While those TCP variants men-

tioned previously have tried many methods to estimate the network situation, XCP is a more radical

approach where makes use of explicit information fed back from routers. XCP is novel where as a

data packet passes each router, the router calculates an increase parameter or a decrease factor and

updates the related information in the data packet header (Zhang and Henderson, 2005). After the

data packet reaches its destination, the receiver sends the information back through acknowledge-

ments.

XCP therefore forms an effective congestion-control system suited toward high bandwidth prod-

uct networks and possibly even those of the wireless variety. This gives XCP the potential to deliver

the highest possible application performance over a range of networking infrastructures, including

the extremely high-speed and high-delay links not well served by TCP. This brings with it some

benefits where it always achieves maximum link utilisation and reduces the wasted bandwidth due

to packet loss.

XCP separates the efficiency and fairness policies of congestion control, enabling routers to

quickly make use of available bandwidth while conservatively managing the allocation of band-

width to flows. Built on the principle of carrying per-flow congestion state in packets this allows

packets to each carry a small congestion header. This allows a sender to request a desired through-

put. Routers then compute a fair per-flow bandwidth allocation without maintaining any per-flow

state.

XCP is provably stable and has been shown, through simulation, to scale with numbers of flows,

rates of flows, and variance in flow rate and round trip times (Zhang and Henderson, 2005). Simu-

lations show that under these conditions XCP almost never drops packets. This form of congestion

control is an opportunity to develop a more systematic framework for managing network resources.

This includes link capacity, router memory, and processing power where effectively decouples con-

gestion control from the bandwidth-allocation policy. The router itself comprises of two separate

controllers: the Efficiency Controller for preventing congestion and maintaining high utilization

and the Fairness Controller for splitting the aggregate bandwidth fairly among connections sharing

the link.

If we consider that routers in the core of the Internet typically carry many thousands of flows

concurrently we see that algorithms requiring per-flow state have poor scaling properties; XCP

provides a form of congestion feedback that is fine grain and flow specific without retaining state in
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the routers. The necessary flow specific state is carried in the packets and enables routers execute

a few multiplications and additions per packet. The result is an algorithm that is fast, scalable, and

robust.

However as XCP requires all routers along the path to participate deployment quickly becomes

a concern. XCP may though be deployed on a cloud-by-cloud basis providing some increased link

utilization within each cloud. However this does not remove the other issue that should be taken

into account is that during an XCP deployment, TCP traffic. It is a very rare case indeed where a

network will not carry TCP traffic and this raises the issue of XCP and TCP compatibility, or even

XCP and TCP friendliness.

XCP is clearly very in different in it’s approach when compared to the more conservative pro-

posed modifications to TCP. It introduces explicit, non binary feedback from the network to the

endpoints and so achieves several important functional and performance advantages. First, it en-

ables large bandwidth delay product flows to ramp up to peak rates quicker than current versions

of TCP, in both start-up and steady-state operation.

The protocol is also able to obtain the maximum performance supported by the infrastructure

under the greatest range of challenging conditions. Rather than being only a modification or tuning

of TCP it also introduces a novel framework for resource management. The basic building blocks of

XCP may be used by a range of protocols with different semantics, meeting the high-performance

communication needs of most networked data intensive applications.

We simply cannot be ignore the fact that overall XCP demonstrates very good performance

characteristics. However, it suffers more serious deployment problems than the examined TCP

variants where it requires changes in the network infrastructure as well as to the operating systems

of end hosts. In addition, recent work showed that gradual deployment where one may update the

Internet routers gradually causes a significant performance drop (Zhang and Henderson, 2005).

This raises the question if they is any method of estimating the capabilities of a network where

making major changes to infrastructure.

2.2.3 Datagram Congestion Control Protocol (DCCP)

Another more novel approach is Datagram Congestion Control Protocol (DCCP), a message-oriented

Transport Layer protocol. DCCP implements reliable connection setup, teardown, Explicit Conges-

tion Notification (ECN), congestion control, and feature negotiation Kohler et al. (2006). From

these features ECN appears to be the most relevant to wireless networks.
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ECN is an attractive concept where this allows the end-to-end notification of network congestion

without the need to drop packets. This very unlike the more traditional approach where by IP

networks will signal congestion by dropping packets. If and when ECN is successfully negotiated,

an compatibility router may start to set bits in IP header instead of dropping a packet in order

to signal impending congestion. This would first appear useful where this enables us to know

the difference between packet loss due to congestion and packet loss due to transmission error.

On closer inspection ECN brings its own issues where it is only effective when supported by the

underlying network and there are even cases of outdated equipment of dropping packets with ECN

bits set.

It allows for flow-based semantics as with general case of TCP, but does not provide reliable

in-order delivery. DCCP is useful for applications with timing constraints on the delivery of data

that may become useless to the receiver if reliable in-order delivery combined with network con-

gestion avoidance is used. Such applications include streaming media, Multiplayer online games

and Internet telephony. While being useful for these applications, DCCP can also be positioned as a

general congestion control mechanism for UDP-based applications, by adding, as needed, a mech-

anism for reliable and/or in-order delivery on the top of UDP. In this context, DCCP allows the use

of different, but generally TCP-friendly congestion control mechanisms. DCCP connection contains

control traffic as well as data traffic. Acknowledgements inform a sender whether packets have

arrived successfully and, importantly, whether they were marked by a ECN. Acknowledgements are

transmitted as reliably as the congestion control mechanism in use requires.

DCCP obviously offers a number of very attractive features but no consideration, again, seems

to have been made for the needs of wireless networks. This especially so when the consider when

consider the case that the majority of wireless networks do not support ECN.

2.2.4 Ant-Colony Based Routing

Many researcher argue that network goodput, particularly in high bandwidth product networks

such as wireless, is limited due to ineffective routing strategies. Ant-Colony Based Routing, al-

though arguably a little irrelevant, does bear some striking resemblance to XCP and has been in-

cluded for comparison. This is where uses a form a explicit feedback from the network infrastruc-

ture to improve on performance.

As a concept it is based on the basic idea of the ant colony optimization meta heuristic (Bouazizi,

2002). This intriguingly is taken from the food searching behaviour of real ants where on they way

to search for food, they start from their nest and walk toward the food. When an ant reaches an
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intersection, it has to decide which branch to take next. While walking, ants deposit pheromones,

which marks the route taken. The concentration of pheromone on a certain path is an indication of

its usage (Bouazizi, 2002). Although far removed from the realms of computer networks the link

between this and the need for a optimal routing strategy has been made.

This is best seen where a scenario with two routes from the nest to the food place. At the

intersection, the first ants randomly select the next branch. If one route is shorter than other, the

ants which take this path will reach the food place first. On their way back to the nest, the ants

again have to select a path. After a short time the pheromone concentration on the shorter path

will be higher than on the longer path, because the ants using the shorter path will increase the

pheromone concentration faster. The shortest path will thus be identified and eventually all ants

will only use this one. This behaviour of the ants can therefore be used to find the shortest path in

network and optimize network traffic.

Although very interesting and to a point effective at routing in mobile networked environments

this approach assumes that the de facto transport layer protocol TCP would operate as normal. This

is by no means a flaw in the argument for the use of such routing techniques where the ultimate goal

is to route traffic around high BDP networks. The other equally valid argument remains however

that wireless, so long as radio transmission remains ever changing and therefore unreliable, routing

can only do so much. Even outside the scope of Computer Science even the most cleaver of Ants

are shown in nature to starve in changing conditions.

2.3 Biology - A possible source of inspiration?

Although Ant-Colony Based Routing is one concept where Biology has inspired it does not seem

to be the answer at least where lossy wireless networks are concerned. From this it would seem

apparent that there is a lack of crossover between the areas of Computer Science and Biology in

the arena of Data Communications and Networking. Granted there is the very successful field of

Bioinformatics where the application of Information Technology and Computer Science has been

applied the field of molecular biology.

However its primary use since at least the late 1980s has been limited to genetics, particularly

applications that involve large-scale DNA sequencing. This is very apparent when it is uniquely

focused on the creation and advancement of databases, algorithms, computational and statistical

techniques, and theory to solve formal and practical problems arising from the management and

analysis of biological data. Despite the work been done is nothing short of revolutionary it’s does
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seem to be very one traffic between the research field combo Computer Science and Information

Technology with that of Biology. From this observation one should be able to ask themselves if this

field of Computer Science (with Information Technology) could be applied to Biology with so much

success then why could this not be so effective in reverse - Biology applied to Computer Science.

Although you may, quite rightly, argue that comparing Biology with Computer Science is a

definitive case of “chulk and cheese”. However there a number of specific research quarters where

you may, at the very least, find the comparison interesting. One such topic is that Neuroscience and

in particular, when regrading this the topic dissertation, Neurotransmission. When put along side

the concepts of “networks” and especially “network transmission” we can see that both Biology and

Computer Science are trying to come to the same answer - How to get messages from one node to

another, possible passing through several nodes, undamaged and more importantly efficiently. This

is discussed further in the following subsection.

2.3.1 Biology and Data Communications - The Link

So it is in the arena of Neuroscience and the foundations of Neurotransmitter where there is a direct

comparison with Data Communications within Computer Networks. As already highlighted both

are means to an end where they focus through the various issues in trying to get electronic messages

across several modes of communication. It can even be regarded that the only real difference is

what can be defined nodes in the networks and the way in which they are connected. Conceptually

therefore the two fields are similar in both there set-up and execution. Some researchers even go

as far as suggesting that the most complicated and extravagant networks are found on the Internet

but in the nervous systems of you and me.

Looking deeper toward a technical level and at a biological cellular level we can see that the

nervous system, like computer networks, have also come to put where two manners of transmission

between nodes have had to be accommodated. In traditional computer networks we know that to

be wired and wireless between various network interfaces where convenience has driven the need

for users to become mobile. In neuroscience these are the chemical and electrical synapses between

the specialised group of cells know.

From this we can determine that there are two types of synapse being chemical and electrical.

Synapses are essential to neuronal function: neurons are cells that are specialised to pass signals

to individual target cells, and synapses are the means by which they do so. At a synapse, the

plasma membrane of the signal-passing neuron comes into close apposition with the membrane

of the target post-synaptic cell. These are know as the pre-synaptic and the post-synaptic neuron
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Wireless Networking Term Neurological Term Unified Conceptual Term

Networked Computer Neuron Node

Packets Neurotransmitters Transmission Quanta

Over-the-air Modulation Synaptic Cleft Transmission Medium

Protocol Stack (Sender) Axon Terminal Sending Device

Protocol Stack (Receiver) Dendritic Spine Receiving Device

Acknowledgements Neurotransmitter Reuptake Finalization Action

Congestion Window (Sender) Synaptic vesicle Indexed Buffer

Congestion Window (Receiver) Post-Synaptic receptors Buffer Advertisement

Table 2.1: The relation between Computer Networks and Neurology

respectively. Both the pre-synaptic and post-synaptic sites contain extensive arrays of molecular

machinery that link the two membranes together and carry out the signalling process. In many

synapses the pre-synaptic part is located on an axon and this gives the name of the protocol de-

scribed in this dissertation.

It can be expected and it is correct to assume that chemical and electrical synapses have very

different mode of operating in sending messages between neurons. In a chemical synapse, the pre-

synaptic neuron releases a chemical called a neurotransmitter that binds to receptors located in the

post-synaptic cell (Koch and Poggio, 1987). Binding of the neurotransmitter to a receptor can affect

the post-synaptic cell in a wide variety of ways. On the other hand in a electrical synapse, the pre-

synaptic and post-synaptic cell membranes are connected by channels that are capable of passing

electrical current, causing voltage changes in the pre-synaptic cell to induce voltage changes in the

post-synaptic cell (Koch and Poggio, 1987). This can be liken to a wired and wireless form network

interface where quite conveniently chemical synapses are slower and more reliable than chemical

synapses.

All related concepts with in the confines of Wireless Networks are described in tables 2.1 and

2.2 will be used as a forward for the design.

2.3.2 Biology and Data Communications - The How

A summary of the sequence of events that take place in synaptic transmission from a pre-synaptic

neuron to a post-synaptic cell through a chemical synapse is described in the following (Osborne,

1996):

1. The process begins with a wave of electrochemical excitation called an action potential trav-

elling along the membrane of the pre-synaptic cell, until it reaches the synapse.
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Unified Conceptual Term Unified Conceptual Definition

Node Something that processes and transmits information by elec-
tronic signalling via connections with others nodes

Transmission Quanta These relay and modulate messages between nodes

Transmission Medium Some through which nodes send messages to each other. Often
shared any means of transmission (e.g. packets) must then be
cleared out efficiently so that it can be ready to used again as
soon as possible

Sending Device Interface where the sending of messages is processed

Receiving Device Interface where the receiving of messages is processed

Finalization Action Performed after a node has performed the function of trans-
mitting a message. Maybe used to regulate the level of Trans-
mission Quanta in the Transmission Medium

Indexed Buffer Stores various neurotransmitters that are about to be sent

Buffer Advertisement Involved in a wide range of differing reactions from the node
receiving the message. This may trigger anything from activa-
tion to inhibition of a connection.

Table 2.2: A description of shared concepts between Neurotransmission and Data Communications with

descriptions

2. The electrical depolarization of the membrane at the synapse causes channels to open that

are permeable to calcium ions.

3. Calcium ions flow through the pre-synaptic membrane, rapidly increasing the calcium con-

centration in the interior.

4. The high calcium concentration activates a set of calcium-sensitive proteins attached to vesi-

cles that contain a neurotransmitter chemical.

5. These proteins change shape, causing the membranes of some “docked” vesicles to fuse with

the membrane of the pre-synaptic cell, thereby opening the vesicles and dumping their neu-

rotransmitter contents into the synaptic cleft, the narrow space between the membranes of

the pre- and post-synaptic cells.

6. The neurotransmitter diffuses within the cleft. Some of it escapes, but some of it binds to

chemical receptor molecules located on the membrane of the post-synaptic cell.

7. The binding of neurotransmitter causes the receptor molecule to be activated in some way.

Several types of activation are possible, as described in more detail below. In any case, this is

the key step by which the synaptic process affects the behaviour of the post-synaptic cell.
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8. Due to thermal shaking, neurotransmitter molecules eventually break loose from the recep-

tors and drift away.

The entire process may run only a few tenths of a millisecond in the fastest synapses and is a

very complicated one. It is therefore very necessary that we focus on a number of specific areas

where neurotransmission has attempted to solve some of problems shared with mobile wireless

networks. These fall into the much more specific sub-areas of signalling and modulation. That

is how messages are sent and how it maybe influenced. Signalling can be broken down further

into the concepts of Neurotransmitter release, receptor binding and termination. Modulation, in

confines of this dissertation, is best used to refer to desensitization, homosynaptic plasticity and

heterosynaptic plasticity.

All these apprehensions will be used as elevation for the design found in the next section.

2.4 Contributions

It seems to be apparent that numerous research problems in data transport protocols and in par-

ticular those that are involved in Wireless Networks in general. This is an important aspect to

consider where it seems to be case that many of problems experience in Wireless Ad-Hoc environ-

ment are shared with a managed Wireless environment. To solve the problems with Ad-Hoc we

should attempt to solve the fundamental shared issues where more will benefit. This dissertation

will therefore strive to make the following specific contributions:

• A new protocol that provides a practical solution to the problem of effective data transfer in

high-speed wireless networks. Importantly it more be easily deployable where we should con-

sider that only four versions of TCP have been widely deployed in the past three decades. This

due to the long time required for the standardization, implementation, and deployment of

kernel space protocols. This means that although there are numerous TCP variants proposed

these should not expected to be deployed widely in the near future.

• A protocol where bandwidth estimation techniques are not used in any form of congestion

control mechanism. This removes the need for manual tuning of the control parameters for

optimal performance as it necessary in TCP.

• To systematically investigate the design and implementation issues of high performance data

transport protocol at the application level. This appears to have been neglected in many cases
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of transport protocol design despite it seems to be the fact that the design and implementation

does have a significant impact on efficiency. As address previously in this State-of-the-Art this

is directly related to the overhead arising from acknowledgements, loss processing, thread-

ing, and memory copy. One appropriate goal in this dissertation is to therefore to propose

solutions to such issues that are applicable to all transport layer solutions.

• To suggest a congestion control algorithm that addresses both the objectives of efficiency and

fairness.

• A protocol whose flows are fair to each other, even if they have different round trip times as

is typically the case in a Wireless Networks. While a protocol that is highly efficient is a very

desirable one in today’s bandwidth rich society, it should not be aggressive. This is so that it

is friendly to TCP flows which in the age of the Internet we simply cannot expect to go away

due to TCP forming a de facto standard.

• The protocol that uses an appropriate algorithm to solve the loss synchronisation problem.

The loss synchronisation problem is the situation when all multiple flows increase and de-

crease their sending rate at the same time, thus the aggregate throughout has a very large

oscillation and leads to a low average utilization of the bandwidth. This does not seem have

been addressed in any of the protocols examined and should be considered where it is a very

narrow minded to assume that users will be limited to a single flow.

• Finally but arguably most importantly a protocol that can also handle non-congestion packet

losses. This should not be read as a requirement for the protocol to have explicit knowledge of

when network congestion is occurring but to react more cautiously when packet loss occurs.
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Design

This section proposes Axon as an alternative data transfer protocol in wireless networks where TCP

does not always work well. One of the most common cases, and also the original motivation of

Axon, is to overcome TCP’s inefficiency in wireless high bandwidth-delay product networks. We

focus on wireless networks as a whole rather than the Ad-Hoc environment specifically. As stated

in the previous chapter this is necessary where to solve the issues Ad-Hoc wireless environments

we must first deal the problems that are also apparent with wireless network in general.

The design therefore particularly focuses on the challenges that wireless networking encourages

us to overcome. This includes the challenge of how we may go about uniquely address the issue of

congestion from connection errors or if such an outcome is overspecialised.

From an architectural perspective Axon sits at the application layer and is therefore reliant on

UDP. This brings an important advantage as regards implementation where this makes a relatively

easy undertaking when compared to the alternatives. For example a modification to TCP would

involve implementation around the inner workings of the Operating System where the TCP/IP

would normally be located. A connection oriented, unicast, and duplex protocol, Axon is feature

rich where it enables reliable data streaming and implements a neurologically inspired congestion

control algorithm.

The congestion control algorithm is based on a MIMD (Multiplicative Increase Multiplicative

Decrease) rate control technique specially devised for the high bandwidth delay wireless links. A

troublesome mode of data communication stunted by the running of transport layer protocols ill

equipped to be used optimally.
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3.1 Introduction

Make no mistake the Transmission Control Protocol (TCP) is very successful and greatly contributes

to the popularity of today’s Internet. TCP, as of the present day, still contributes the majority of the

traffic on the internet and should be expected to do so in some form for many years to come.

However TCP is not perfect by any means and due to it’s maturity has found use in networks which

it was never designed to be used in. This is apparent where we have seen a rapid advance of wireless

networks and media rich Internet applications. This where TCP has been found to be inefficient

as the network bandwidth delay product increases (Henderson et al., 1998) as highlighted in the

State of the Art.

On closer inspection we see that current research suggests that the choice of a AIMD (additive

increase multiplicative decrease) algorithm for congestion control is not a well informed one in the

specific case of Wireless Networks. This is as TCP reduces the congestion window drastically in the

event of network issues but fails to recover it to the available bandwidth in the time required to

use the available bandwidth optimally. Further more theoretical flow level analysis has shown that

TCP becomes increasing susceptible, to packet loss as the bandwidth increases (Henderson et al.,

1998). This is bad news in the case of wireless networks where packet loss, due to unpredictable

nature of radio communications happens more often than we, as developers, would like.

To overcome the TCP’s inefficiency problem over the high speed wireless links and hopefully

mobile ad-hoc networks is the primary motivation of Axon. The term high speed is a valid one

even if this displease the marketeers of optical fibre networks and similar technologies. TCP was

designed in the infancy of data communications between computers and at a time where speeds

approaching 400b/s were becoming commonplace. Although there are new TCP variants deployed

today such as BiC TCP on Linux and Compound TCP on Windows better suited to today’s faster

networks certain problems still exist. The main issues that stand out and that will remain the focus

of this dissertation is that none of the new TCP variants address network latency unfairness or that

packet loss might not be a result of congestion.

Network latency bias proves to be a big issue in the wireless networking world where this causes

connections with shorter network latency to unfairly consume more bandwidth (Henderson et al.,

1998). A varying network latency is a typical occurrence wireless network as concluded by (Balakr-

ishnan et al., 1995). This is frequently caused by transmission error and the inevitable requirement

retransmission at the underlying MAC layer. This becomes much more probable in the case of mo-

bile networks where the state of the network is fluid as nodes are not static. This is seen particularly
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in the case of Ad-Hoc wireless networks where this maybe caused by the varying number of base

stations that data packets must travel across before they reach the required destination. What is

important to remember though is that in either case the varying network latency problem is likely

to be more frequent than in traditional wired networks.

The real motive behind this design is the hope that they will be situations when Axon proves

a more helpful choice than TCP. For example where the congestion control and reliability control

in TCP may not desirable in emerging applications such as High-Definition Telepresence, Media

streaming and Real-Time Data Backup over wireless networks. To achieve this it is necessary to

design a new, well defined data transfer protocol. This is the case where we do not want to re-

stricted by the needs of an existing protocol, such as TCP, that was designed for legacy networking

environment and would not be as accommodating to the novel approach required by modelling

transmission mechanism that occur between neurons.

3.2 Neurology - An inspiration

Axon gains it’s name from the long slender projection of a nerve cell that conducts electrical im-

pulses away from a neuron’s cell body. From this it should be inferred that the design of protocol

has been embolden by the inner mechanisms of Neurotransmission. Here the mechanism of Neuro-

transmission will be summarised in addition to some of the more fundamental concepts so that we

may gain some insight of how we can improve both the efficiency and effectiveness of the transport

layer in the general case of Wireless Networks.

As we have already looked into the similarities of Neurons and Mobile Ad Hoc Networks it

is necessary to look at the mechanisms of neurotransmission closer. This is in addition to the

fundamental concepts that will aid us in the design of Axon as a effective transport layer protocol

for this particular breed of wireless networks.

3.2.1 The Neuron - A technical perspective

Neurons are the basic processing units of the brain. Each neuron receives electrical inputs from

many other neurons who then pass the signal on to many more. Impulses arriving simultaneously

are added together and, if sufficiently strong, lead to the generation of an electrical discharge,

known as an action potential. The action potential then forms the input to the next neuron in the

network.
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Neuron have a very specialized structure as far as biological cells go. They have a cell body

or soma and fine tissues that run from it. These processes are split into two types - dendrites

are the highly branched processes that carry the incoming information, in the form of electrical

impulses, to the soma; the action potential leaves via the axon. Axons can be very short or very

long depending on the location of the neuron which is meant to receive the signal. They can also be

highly branched, so neurons not only receive information from many neurons, they pass the result

of the processing to many other neurons, forming the dense neural networks that are such a feature

of the brain. It is quite easy to relate this arrangement to what occurs in a Mobile Ad Hoc Network.

It is our hope therefore to examine the methods and operations between Neurons so we may

better the data transmission between wireless nodes.

3.2.2 The Focus - How neurons communicate between each other?

As already stated in the State of the Art neurons communicate at structures called synapses in a

process called synaptic transmission. The synapse consists of the two neurons, one of which is

sending information to the other. The sending neuron is known as the pre-synaptic neuron placed

before the synapse while the receiving neuron is known as the post-synaptic neuron where it is

found after the synapse. Although the flow of information around the brain is achieved by electrical

activity, communication between neurons is a chemical process. This is arguably comparable to

the differences between a wired and wireless network connection where the nature of process is

fundamentally different.

When an action potential reaches a synapse, pores in the cell membrane are opened allow an

influx of calcium ions (charged atoms) into the pre-synaptic terminal. This causes a small ’packet’

of a chemical neurotransmitter to be released into a small gap between the two cells. This is what

we call the synaptic cleft. The neurotransmitter diffuses across the synaptic cleft and interacts with

specialized proteins called receptors that are embedded in the post-synaptic membrane. These

receptors are ion channels that allow certain types of ions to pass through a pore within their

structure. The pore is opened following interaction with the neurotransmitter allowing an influx of

ions into the post-synaptic terminal. This is propagated along the dendrite toward the soma.

Quite interestingly Neurotransmission can be either excitatory where it increases the possibility

of the post-synaptic neuron firing an action potential, or inhibitory. In this case, the inhibitory signal

reduces the likelihood of an action potential being generated following excitation. At a cellular and

chemical level this is hard to comprehend where the true complexity of the nervous system becomes

all too apparent.
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Figure 3.1: A diagram illustrating Neurotransmission
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We have already seen that action potential is propagated by the leading edge of a depolarisation

wave activating sodium channels further down the axon. We have also seen that the activation of

these sodium channels is achieved by a small depolarisation of the neuronal membrane.

We have not considered the case when membrane potential is stabilised, The depolarisation

inside the neuronal axon would dissipate and the action potential would not be able to propagate

any further so inhibiting it. This stabilisation of the membrane potential is achieved by an influx of

negatively charged chloride ions that are unaffected by the depolarisation wave coming down the

axon. Formerly, this is equivalent to an efflux of positively charged sodium ions. Put in layman’s

speak this is like punching a hole in a hose so that water will leak out through the puncture and

not get to the sprinkler! Put in the language of a Computer Scientist this is like a node halting the

sending of data packets when required.

Although very intrinsic this does identity the fact that neurotransmission is a controlled process

this is where this dissertation will focus it’s efforts in determining how neuroscience could lead us

to developing something that can be applied effectively on a Mobile Ad Hoc Network. How are

these small ’packets’ of chemical neurotransmitters released into the synapse between the two cells

controlled? What are causes and effects of such control measures? Both very valid questions that

we shall attempt to answer in the following subsection.

3.2.3 An in-depth analysis

To fully understand how control in built into the process of neurotransmitter it is necessary to

understand how the signal output of a neuron can either cause excitation or inhibition in the

neuron it is connected to. This is what we inner by the term Action Potential.

When we take an arguably well deserved step from biological jargon and processes this is quite

to easy to understand. a neuron sends an excitatory signal to another neuron, then this signal will

be added to all of the other inputs of that neuron. If it exceeds a given threshold then it will cause

the target neuron to fire an action potential, if it is below the threshold then no action potential

occurs. This is illustrated in Figure 3.2

By definition an action potential is an electric pulse that travels down the axon until it reaches

the synapse where it then causes the release of neurotransmitters. The synapses are extremely

close to the dendrites of the target neuron. This allows the neurotransmitters to diffuse across the

intervening space and fit into the receptors that are located on the target neuron.

This causes some action to take place in that neuron that will either decrease or increase the

membrane potential of the neuron. If it increases the membrane potential then it is exciting the
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Figure 3.2: Graph showing the relation between Action Potential and Stimulus

neuron, and if it decreases the membrane potential it is inhibiting the neuron. If it causes the

membrane potential to pass the firing threshold then it will activate an action potential in the

target neuron and send it down its axon.

The action potential travels down the length of the axon as a voltage spike. It does this using

the steps outlined above. As a section of the axon undergoes the above process it increases the

membrane potential of the neighbouring section and causes it to spike. This is like a mini chain

reaction that proceeds down the length of the axon until it reaches the synapse. An important thing

to keep in mind about the action potential is that it is one way, and all or nothing. The action

potential starts at the top of the axon and goes down it.

Also, if a neuron fires then the action potential is the same regardless of the amount of excitation

received from the inputs. What is important in neurons is the rate of fire. Figure 3.3 demonstrates

this principal. A weak stimulus will cause a lower rate of fire than a strong stimulus. This shows it

is not the amplitude of the action potential that is important in terms of control, but the number of

times a neuron fires for a given time period. The extent at which neurons exchange “data” in the

broadest sense is therefore rate based.

Simply put you keep the “packets” that enable transmission of “data” of a static size but just vary

how often you send them depending on the given stimulus. In Neurons this maybe anything from

the concept of reward to pain. In Ad Hoc Networks we need to decide what stimulus we should

choose to react on.
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Figure 3.3: The relation between Stimulus and Neuron Firing rate

3.2.4 The borrowed concepts

Like neurons Axon will follow the sender and receiver paradigm where one node sends something

to another. It will feature a rate based mechanism that will determine the rate at which data is sent

depending on a number of variables or stimulus. In the Synapse these take the form of chemical

neurotransmitters but in the case of Axon this will be packets where the field of application changes

from Biology to Computer Science. This will form part of a hybrid rate-window congestion control

determined by the amount of available bandwidth detected as well as receiving rate of packets at

a particular node. These have been chosen as they simple but effective measures of the state of

the network. It is hoped that this will enable Axon to overcome the problems faced by TCP which

arguably takes too simplistic a view of network.

Another borrowed concept related to bandwidth is that of a limited number of neurotransmitters

or rather the degradation and elimination of the chemical that forms them. Neurotransmitter must

be broken down once it reaches the post-synaptic cell to prevent further excitatory or inhibitory

signal transduction. For example, acetylcholine, an excitatory neurotransmitter, is broken down by

acetylcholinesterase. Other neurotransmitters such as dopamine are able to diffuse away from their

targeted synaptic junctions and are eliminated from the body via the kidneys, or destroyed in the

liver.

As we have already determined we will take the simplistic view that neurotransmitters are

analogous to packets in a network. Again stepping back from the biological jargon we can make

a number of important observations of potential features that should be modelled in the Axon

protocol.
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The first is that neurotransmitters are produced and consumed like packets on network. Cru-

cially this means we do not have to depart or better abstract away from the way we currently

quantised data prior to transmission over a network. More substantially is the concept that number

of neurotransmitters or packets “in play” should have a effect on transmission. Unlike in neurons

where this determined through potential differences we use a combination of acknowledgements

and loss reports to determine the amount of packets that have been received.

A full and accurate explanation of how these will be used will feature in the following sections

but it is important to look at loss reports a little closer. This is as their derivation from the mecha-

nism is less simple. Loss reports simply informs the sender of what the receiver has not received and

requires to ensure the accurate receiving of information. This is necessary in Axon being network

protocol as neurotransmitters do not carry sequenced and packet specific data. If a neurotransmit-

ter goes missing the neuron cell just makes another one depending on the state of excitation at that

time. What is ultimately important is that the signal is past on.

Acknowledgements are closer to what happens in the synapse however where this replaces the

concept of polarisation. We specific acknowledgements as excitatory where in neurons it increases

the possibility of the post-synaptic neuron firing an action potential. In the more plain world of

wireless networks this means that we should consider this a stimulus, either weak or strong, for the

sender.

3.3 Implementation Structure

Axon is built solely on the top of UDP and like between neurons in biology the mechanisms of

connection management (action potential) and data transfer (neurotranmission) are kept separate.

This means that both data and control packets are regarded as separate entities over UDP. Axon

is therefore connection-oriented where this allow us to easily maintain congestion control, relia-

bility, and security. Again like the nervous system where communication occurs from neuron to

neuron through a shared synapse a unicast protocol is proposed where data may be transferred in

duplex. The protocol also supports reliable data streaming where for simplicity the data streaming

semantics is similar to that of TCP.

From a more technical perspective Axon adapts itself into the layered network protocol architec-

ture 3.4 as the application layer. Axon uses UDP through the socket interface provided by operating

systems. Meanwhile, it provides a Axon socket interface to applications. Applications can call the

Axon socket API in the same way they call the system socket API.
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Axon Socket
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Figure 3.4: Axon in the layered network protocol architecture
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Data

Control
Node A Node B

Sender Receiver

Figure 3.5: Relationship between Axon sender and receiver

As already stated Axon entity should include two logical parts: the sender and the receiver. This

is analogous to what occurs between neurons where you have pre and post-synaptic connections.

The sender sends application data according to flow control and rate control and retransmits when-

ever this proves necessary. This is dependent on the state of the network at that particular time

depending on aspects such as packet loss. The receiver forms a similar but more simplistic entity

where it listens for both data packets and control packets, and sends out control packets depending

on packets received.

This relationship between the sender and the receiver in Axon is described in Figure 3.5. Here

one Axon entity sends application data to another Axon entity. Conceptually data is therefore

sent from one sender to another receiver, whereas the control flow is exchanged between the two

receivers.

The receiver is also responsible for triggering and processing all control events, including con-

gestion control and reliability control, as well as any related mechanisms. Axon uses rate-based

congestion control (rate control) and window-based flow control to regulate the outgoing data

traffic. Rate control updates the packet-sending period every constant interval, whereas flow con-

trol updates the flow window size each time an acknowledgement packet is received.

Respecting the fact that neurotransmitters are quantised Axon always tries to pack application

data into fixed size packets, unless there is not enough data to be sent which may occur toward the

end of stream. It is important to note however since Axon is designed to be used in modern day

bandwidth heavy streams it is safe to presume that there is only a very small portion of irregular

sized packets in a Axon session. The fixed size may be set up by applications and the optimal value

is the maximum transmissible unit across that path so to avoid the media access layer taking issue

with anything we are trying to do at the transport layer such as large scale fragmentation. The

actual size of a Axon packet should therefore be inferred from the UDP header where this may vary

from network to network.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 Packet Sequence Number

Connection Identifier
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hhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhh

Figure 3.6: Axon Data Packet Format

3.4 Data Sending and Receiving

In terms of the sending and receiving data the sender sends and retransmits application data as is

needed. This is similar to how the receiver listens for both data packets and control packets and

sends out control packets according to what specific packets are processed. This is in addition to

the monitoring of timers used to determine the state of the connection. These are necessary as the

receiver is responsible for triggering and processing all control events, including congestion control

and reliability control and any mechanisms related.

Again in keeping with what occurs between neurons a multiplexer should be implemented

where this allows a single UDP port being shared. This has the complication where the sender

and the receiver should always be called from the multiplexer. This emulated what fundamentally

occurs in the dendrites; the branched projections of a neuron that act to conduct the electrochemical

stimulation received from other neural cells to the cell body. Shying away from the biological terms

again we again take the simplistic view where connections should be shared in a single entity. This

should bring benefits in terms of usability where this make network management an easier task as

only one port need be open or forwarded.

3.5 Packet Structures

As well as having a separate sender and receiver component Axon also has two kinds of packets –

data packets and the control packets. This emulates the fact that control and transmission are two

very independent mechanism even though one brings about the other. To keep things simple from

the perspective of implementation this should be distinguished by the first flag bit of the packet

header. The data packet header structure is shown in Figure 3.6.

44



3.5 Packet Structures
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1 Packet Type

Control Information
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Connection Identifier

Figure 3.7: Axon Control Packet Format

The data packet header always starts with a 0 to define it as such. Then follows the packet

sequence number that occupies the following 63 bits after the flag bit. Axon uses packet based

sequencing and this requires for the sequence number to increased by 1 for each and in each order

of data packet sent. Should the sequence number even be increased to the maximum number

(232 − 1) it will be wrapped around.

The Connection Identifier is used for the UDP multiplexer that forms a crucial component of

Axon so enabling multiple Axon sockets to be bound on the same UDP port much like many neuro-

transmitters share a single synapse. The Connection Identifier is thus used to differentiate between

multiple Axon connections. This is another decision that has taken inspiration from the inner work-

ings of the nervous system. At the terminus of the Neurological Axon, that enables communication

between neurons possible, includes many transmitters and receptors of the neurotransmitter, sero-

tonin, over a shared synapse.

If the flag bit of a Axon packet is 1 however then it should be inferred that is a control packet

and parsed according to the structure outlined in Figure 3.7. In the draft version of Axon outlined

in this design there are four types of control packets in Axon. The differential type information is

put in bit field 1-15 of the header. Such a large field has been chosen to offer substantial flexibility

that may occur in future developments of the protocol. The contents of the following fields will

depend on the packet type where some are naturally more complicated then other. The first 32

bits and final 32-bits should exist in the packet header whereas there may be an empty Control

Information field depending on the packet type. What is contained in the Control Information field

will depend on varying types of control packets are detailed in the following sections.
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3.6 Timers

Axon uses four timers to trigger different the periodical events that maybe necessary to keep a

connection open and working optimally. Each event has its own period and are all independent

in their operation. They use the system time as origins and should process wrapping if the system

time wraps. This is the one of the many areas where artistic license has been applied to the inner

workings of the neuron. The neuron according to present research has no concept of timers but

computer networks fall short in manner where the connections between neurons do not. Transmis-

sion been neurons is reliable where the axon is protected by a myelin sheath.

The main purpose of a myelin sheath is to increase the speed at which impulses propagate

along the myelinated fibre. It sheath increases electrical resistance across the cell membrane and

decreases capacitance (McNeal, 1976). Thus, myelination helps prevent the electrical current from

leaving the axon and makes communication between neurons reliable. It is through the use of

timers that we will able to make such bold assumptions of a connection across a wireless network.

This is as well as using such events as a stimulus, either excitatory or inhibitory, for the sending of

packets.

The way these timers work is a matter best explained mathematically so we may keep things

clear and concise. So for a certain periodical event E in Axon, suppose the time variable is Et and

its period is p. If E is set or reset at system time t0 ∵ Et = t0, then at any time t1 ∵ t1− ET ≥ p is

the condition to check if E should be triggered.

The four timers are Acknowledge, Loss, Expiry, Send. Send stands out where it is only used

in the sender component for rate-based packet sending whereas the other three are used in the

receiver component.

The granularity of their periods is in microseconds where this is most realistic value we should

apply to the wireless networks we see today. Although greater accuracy may prove useful in push-

ing the capabilities of network connections this is not always practical where accurate clocks are

difficult to implement, particularly in a platform independent manner.

The timers work where the system time is queried after each time bounded UDP receiving to

check if any of the Acknowledge, Loss, or Expiry event should be triggered.

3.6.1 Acknowledge

Acknowledge is used to trigger an acknowledgement and its period is set by what is specific in

congestion control. However, Axon will send an acknowledge at a frequency no greater than every
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0.01 second, even though the congestion control does not need timer-based acknowledgement.

Here, 0.01 second is defined as the Synchronisation Time (S ync) where it affects the other timers

used in Axon.

3.6.2 Loss

The loss timer is used to trigger a negative acknowledgement (Loss Report). Its period is dy-

namically updated to 4 ∗ RT T + RT Tvar + S ync, where RT T is the network latency, measured in

milliseconds, RT Tvar is the network latency variance also in milliseconds and Computed using the

variance of network latency samples. S ync is the value assigned the S ync timer.

3.6.3 Expiry

The Expiry is used to trigger data packets retransmission and maintain connection status. Similarly

to the loss timer its period is updated to 4 ∗ RT T + RT Tvar + S ync when required.

3.6.4 Send

Send is the timer used to time the sending of packets by. As with neurons this will vary depending

on state. The logic follows if we need to send data faster we will send data more frequently as we

are dealing with a fixed packet size.

3.7 Connection Management

Again this is a departure from what maybe occurs between neurons but is a necessary requirement

in the case of the transport layer. In neurons once a connection is made it is quite permanent

until it is cut through injury. Network connections are on the other hand are quite spontaneous

by comparison and we need a method so that new connections can be made both efficiently and

securely.

From a practical perspective Axon should support two different connection set-up methods, the

traditional client/server mode and the rendezvous mode. In the latter mode, both Axon sockets

connect to each other at around the same time. The rendezvous connection is useful when both

peers are behind firewall where we use UDP hole punching (Ford, 2004). This is often necessary

in modern day networks that need to employ stringent security policies to protect both data and

users.
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Figure 3.8: Packet Type 0 - Connection Handshake

3.7.1 The Handshake

The Axon client sends a handshake request control packet to the server or the peer side. The

handshake packet has the following information. If this is preformed in rendezvous mode both

peer are clients:

1. Axon version: this value is for compatibility purposes where we should expect the protocol,

if used, to change over time. The current version is 1 and this should be updated in later

versions to ensure compatibility.

2. Connection Type: This information is used as a differential between the connection configu-

ration modes and request/response.

3. Starting Sequence Number: It is the starting data packet sequence number that the Axon

entity that sends this handshake will use to send out data packets. This should be a random

value.

4. Packet Size: the maximum size of a data packet including headers where This should be the

value equal to the Maximum Transmission Unit.

5. Connection Identifier: A differential between concurrent Axon connections that maybe active.

This is illustrated appropriately in Figure 3.8.

3.7.2 The Client/Server Connection Process

One Axon entity starts first as the server which acts like listener. The server accepts and processes

incoming connection request and creates new Axon socket for each new connection as needed.
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A client that wants to connect to the server will send a handshake packet first. The client

should keep on sending the handshake packet every constant interval until it receives a response

handshake from the server or a time-out timer expires.

The server, on receiving a handshake packet, should compare the packet size and maximum

window size with its own values and set its own values as the smaller ones if necessary. This will

include attributes such as version, packet size and window size. The result values are also sent back

to the client by a response handshake packet, together with the server’s version and initial sequence

number.

The server, after this step is finished, should be ready for both sending and receiving data

immediately. However the server must send back a response packet as long as it receives any further

handshakes from the same client. This may have to occur in the instance of a faulty connection.

The client can start sending/receiving data once it gets a response handshake packet from

the server. Further response handshake messages, if they are received, should be omitted. The

connection type from the client should be set to 1 and the response from the server should be set

to −1. The client should also check if the response is from the server that the original request was

sent to for both sanity and security reasons.

3.7.3 Rendezvous Connection Setup

In this mode, both clients send a connect request to each other at the same time. The initial

connection type is set to 0. Once a peer receives a connection request, it sends back a response. If

the connection type is 0, then the response sends back −1; if the connection type is −1, then the

response sends back −2. No response should be sent for −2 request.

The rendezvous peer does the same check on the handshake messages as described in the case

for a client/server connection. In addition, the peer only process the connection request from the

address it has sent a connection request to. Finally, rendezvous connection will be rejected by a

regular Axon server listening for incoming connection requests.

A peer initializes the connection when it receives −1 response.

3.7.4 Acknowledgements

This packet consists of a acknowledgement sequence number that occupies 32-bits in the control

packet header as, one would expect, ranges from 0 to (232−1). The structure of the control packet

carrying the Acknowledgement is shown in Figure 3.9.
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Figure 3.9: Packet Type 1 - Acknowledgement

These acknowledgements are selective by nature and are generated at every constant interval

to send back largest continuously received sequence number of data packets. So that we gain

crucial information about the network state this packet also carries the measured Network Latency,

the variance in Network Latency as well as packet arrival speed, and estimated link capacity in

respective 32-bit fields. Acknowledgements in Axon crucially form of a feedback indicating the

current situation of network through a form of “Network Status Update”.

3.8 Loss Reports

Loss reports are best described as a “negative-acknowledgement” where by it is explicitly generated

as soon as packet loss is detected. Loss information may be resent if receiver has not received the

retransmission after an increasing interval. These measures emulate the role of the meylin sheath

around the axon of a neuron where by reliable data transmission can be assured.

A useful side effect of including Loss Reports is that we can use this to determine periods of

network congestion where often in Wireless Networks packets do not regularly get lost in flight as

IEEE 802.11 and other standards insist on a retransmission mechanism whereby packets that are

not successfully received and acknowledged are resent. This mechanism generally serves to reduce

the packet loss rate to less than 0.1 percent (Aguayo et al., 2004). This makes loss reports a very

versatile tool in determining if a wireless link is congested or just subject to radio transmission

errors.

The packet structure for the loss report is shown in figure 3.10.
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Figure 3.10: Packet Type 2 - Loss Report
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Figure 3.11: Packet Type 3 - Stay Alive

3.9 Connection Maintenance

Again departing from the theory we understand about neurons we need a mechanism to determine

whether or not a node remains accessible on a wireless link. This is a necessity where Axon should

be classed as a Streaming Protocol where we make every effort to ensure the correct delivery of

each bit presented. TCP accomplishes this with a system of time outs and retries and similarly so

does Axon albeit with less complexity. In Axon a connection should remain open between a sender

and receiver so long as Stay Alive packets are periodically exchanged between the two. Notably if

the message is not received, the peer side should be closed after 16 continuous time outs of the

Expiry timer.

The structure for the Connection Maintenance packet is shown in figure 3.11.
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Figure 3.12: Packet Type 4 - Shut Down

3.10 Connection Shutdown

If one of the connected Axon entities is being closed, it will send a shut down message to the peer

side. The peer side, after received this message should, as a consequence, also be closed. This shut

down message is only sent once and not guaranteed to be received due to the nature of UDP. If it

is case that the message is not received, the peer side should be closed after 16 continuous time

outs of Expiry timer. This similar to the case in Stay Alive packets. The total time out value should

therefore be in region between 3 seconds and 30 seconds for the most standard wireless network

connections.

The structure for the Connection Maintenance packet is shown in figure 3.12.

3.10.1 The Sender’s Algorithm

The Sender’s Algorithm is simple where it focuses around a single data structure, the Sender’s Loss

List. The Sender’s Loss List is used to store the sequence numbers of the lost packets fed back by

the receiver through Loss Report packets. The numbers are stored in increasing order where they

should increase as packets are sent. Please refer to Algorithm 7 for further details.

3.10.2 The Receiver’s Algorithm

The Receiver’s Algorithm is more complex where it deals with six separate data structures and

variables. The first is the Receiver’s Loss List a list of tuples whose values including the sequence

numbers of detected lost data packets, the latest feedback time of each tuple, and a parameter k

that is the number of times each one has been fed back in the loss report. These values are stored

in the increasing order of packet sequence numbers for manageability.
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Algorithm 7 - The Sender’s Algorithm
while An Axon Connection is open do

if The sender’s loss list is not empty then
Retransmit the first packet in the list
Remove this packet from the list

end if
Wait until there is application data to be sent
if If the number of unacknowledged packets exceeds the flow/congestion window size then

Wait until an acknowledgement arrives from the receiver
Continue

else
Send a new data packet

end if
if the sequence number of the current packet is 8n, where n is an integer then

Continue
end if
Wait (Send − t) time, where Send is the inter-packet interval updated by congestion control and t is the total time
used by step 1 to step 5

end while

Next is the Acknowledgement History Window, a circular array of each sent acknowledgement

and the time it is sent out. The most recent value will overwrite the oldest one if there is no more

free space in the array. This is closely followed by two further circular arrays: the Packet History

Window and the Packet Pair Window. These store the arrival time of each data packet and time

interval between each probing packet pair respectively.

Finally are the two integers Largest Received Sequence Number and Expiry Count. Largest Re-

ceived Sequence Number is a variable that records the largest received data packet sequence number

and initialised to the sequence number −1. The Expiry Count is a variable to record number of

continuous Expiry time-out events.

3.10.3 Acknowledgement Event Processing

The primary purpose of this algorithm find the sequence number prior to which all the packets have

been received by the receiver. This maybe referred to as the Acknowledgement Number.

Notably the pseudocode outlined in Algorithm 11 makes uses of the Lar gestReceivedSequenceNumber

that records the largest received data packet sequence number and two useful subroutines find in

Algorithms 9 and 10.
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Algorithm 8 - The Receiver’s Algorithm
while Time bounded UDP receiving do

if A Acknowledgement, Loss, or Expiry timer has expired then
if This is a acknowledgement timer then

Check the acknowledgement packet interval
end if
Process this event accordingly (see subsections 3.10.3, 3.10.4, and 3.10.5)
Reset the associated time variables

end if
if no Packet arrives then

continue
end if
Reset the Expiry Count to 1.
if there is no unacknowledged data packet then

reset the Expiry timer.
end if
if if this is an acknowledgement then

reset the Expiry timer.
end if
if Loss Report control packet then

reset the Expiry timer.
end if
if This is a control packet then

Process it accordingly to packet’s type
continue

end if
if the sequence number of the current data packet is 8n+ 1, where n is an integer then

Compute the time interval between this packet and last data packet in the Packet Pair Window
end if
Compute the packet arrival time in Packet History Window.
if the sequence number of the current data packet is greater than Largest Received Sequence Number + 1 then

Put all the sequence numbers between and excluding these two values into the receiver’s loss list
Send the receiver’s loss list to the sender in an Loss Report packet

end if
if the sequence number is less than Largest Received Sequence Number then

Remove this sequence number from the receiver’s loss list
end if
Update Largest Received Sequence Number

end while

Algorithm 9 - Calculation of the packet arrival speed
Compute the median value of the last 32 packet arrival intervals (xai) using the values stored in Packet History Window.
In these 32 packet arrival intervals, remove those either greater than xai × 8 or less than xai/8
if more than 8 packet arrival intervals are left then

Compute the average of the left packet arrival intervals x ′ai , and the packet arrival speed 1/x ′ai (number of packets
per second)

else
Assume that x ′ai = 0 AND 1/xai = 0

end if
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Algorithm 10 - Calculation of the Link Capacity
Compute the median value of the last 32 packet pair intervals (xpi) using the values in Packet Pair Window
Compute the link capacity as 1/xpi

Algorithm 11 - acknowledgement Event Processing Algorithm
if the receiver’s loss list is empty then

The acknowledgement number is Lar gestReceivedSequenceNumber + 1
else

The acknowledgement number is the smallest sequence number in the receiver’s loss list
end if
if the acknowledgement number is equal to the acknowledgement number in the last acknowledgement and the time
interval between this two acknowledgement packets is less than twice the network latency then

DO NOT send this acknowledgement
end if
Assign this acknowledgement a unique increasing acknowledgement sequence number. Pack the acknowledgement
packet with network latency, network latency Variance, and flow window size
Compute the packet arrival speed using Algorithm 9
Compute the estimated link capacity according to Algorithm 10
Pack the packet arrival speed and estimated link capacity into the acknowledgement packet and send it out.
Record the acknowledgement sequence number, acknowledgement number and the departure time of this acknowledge-
ment in the acknowledgement History Window.

3.10.4 Loss Report Event Processing

Algorithm 12 details of what should occur if a Loss timer should expire and we should assume

packets have gone missing.

Algorithm 12 - Loss Report Timer Expiration Processing
k← 2
for those sequence numbers whose last feedback time is k × networklatenc y before where k is initialized as 2 and
increased by 1 each time the number is fed back do

k← k+ 1
Compress these numbers back to the sender in an Loss Report packet

end for

3.10.5 Expiry Event Processing

Algorithm 13 details what should occur in the event of Expiry event being triggered by the appro-

priate timer. This is an important mechanism where it decides where a link should remain open or

not. This is quite crucial in a wireless network and in particular a streaming protocol where data

may not always be exchanged on a constant basis.
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Algorithm 13 - Expiry Event Processing Algorithm
Put all the unacknowledged packets into the sender’s loss list
if Ex pCount > 16 OR 3 minutes has elapsed then

Close the Axon connection
end if
if the sender’s loss list is empty then

Send a keep-alive packet to the peer side
end if
Ex pCount ← Ex pCout + 1

3.10.6 On receiving an Acknowledgement Packet

Algorithm 14 shows the importance of acknowledgements where they give us the variables and

means to apply the neurology inspired transmission approach to wireless links. These will act as

stimulus and can be used in Axon’s rate based approach to congestion control. Axon could be

regarded as driven by acknowledgements in this manner where entails the most computational

complexity.

Algorithm 14 - Acknowledgement Processing Algorithm
Update the largest acknowledged sequence number
Send back an Acknowledgement of Acknowledgement (AoA) with the same acknowledgement sequence number in this
acknowledgement with the next data packet
Update network latency and network latency variance
Update both acknowledgement and loss report period to 4 ∗ RT T + RT Tvar + S ync, where RT T is the network latency
and RT Tvar the network latency variance.
Update flow window size
Update packet arrival rate, A to (A∗ 7+ a)/8, where a is the value carried in the acknowledgement
Update estimated link capacity, B to (B ∗ 7+ b)/8, where b is the value carried in the acknowledgement
Update sender’s buffer (removing elements in the buffer that have been acknowledged)
Update sender’s loss list (removing all those elements that have been acknowledged)

3.10.7 On receiving a Loss Report packet

The processing of explicit Loss Reports is detailed in Algorithm 15. As already suggested this be

regarded as a sign of congestion where wireless networks do not drop packets as we should expect

due to retransmission measures deployed within the MAC Layer. This causes the Packet Sending

Period to be adjusted and slowed on receiving such a packet. The topic Rate Control is dealt with

in relevant following subsection detailing Congestion Control.

Note that the use of explicit loss reports is very different to the use of duplicate acknowledge-

ments in TCP. With duplicate acknowledgements, the sender may not know all the loss events in

one congestion event, and usually only the first loss event is detected. In fact most TCP implemen-
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tations will not drop the sending rate more than once in a time period equal to the network latency.

However, in Axon, all loss events will be reported by a Loss Report so we have added clarity.

Algorithm 15 - Loss Report Processing Algorithm
Add all sequence numbers carried in the Loss Report into the sender’s loss list
Update the Packet Sending period using the Rate Control Method
Reset the Expiry time variable

3.10.8 On Acknowledgement of Acknowledgement (AoA) packet received

Initially the use of AoA appears to be a bit overkill but it is necessary if we to keep the task of

data transmission and control separate as in the neuron model. AoA packets where the sender

is required to send one back to the receiver for each ACK. For the small amount of bandwidth

they do arguably waste bandwidth but we must not disregard the fact that they could prove useful

where they allow us to gain an accurate measure of network latency and crucially network latency

variance. This gives a fair idea of what situation of the network is at that time. Network latency

variance or jitter is important metric in wireless networks, in particular, where the round trip time

for packets will vary due to problems brought by wireless transmission. On receiving a AoA packet

Algorithm 16 should be followed.

Algorithm 16 - Acknowledgement of Acknowledgement (AoA) Processing Algorithm
Locate the related acknowledgement in the acknowledgement History Window according to the acknowledgement se-
quence number in this AoA
Update the largest acknowledgement number ever to be acknowledged so far
Compute new network latency according to the AoA arrival time and the acknowledgement departure time
Update the network latency variable
Update network latency variance
Update both acknowledgement and loss period to 4× RT T + RT Tvar + S ync, where RT T is the network latency and
RT Tvar the network latency variance.

3.10.9 On Keep-alive packet received

This is nice and easy, just do the necessary sending of the control packet to keep the connection

alive and therefore open.

3.11 Flow Control

Current research shows that Window control sends data in bursts, and may have sent a large

number of packets by the time when the sender learns that there is congestion along the link. In
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addition, the bursting traffic requires that routers have a buffer as large as the bandwidth delay

product. This is however unrealistic on lossy wireless links whose delay is significant, especially

when compared to wired equalising.

It has been proposed that packets be sent within the congestion window at average intervals to

alleviate this problem in TCP. However using the congestion control algorithm in TCP to determine

the packet-sending period in this manner often decreases the throughput and works especially

poorly when coexisting with standard TCP (Aggarwal et al., 2000).

In such wireless links neurons may show us a the better solution where by we tune the packet-

sending period directly with an efficient rate control mechanism depending on a number of vari-

ables. However, we must consider that rate control can also lead to another situation of continuous

loss: when congestion occurs and the loss report packets get lost, the data source may continue

to send out data before it receives a loss report or a time-out event. Therefore, a supportive win-

dow control should be used together with rate control to specify a threshold on the number of

unacknowledged packets. This is yet another departure of the inspiration model of neuron but we

should respect the many differences between what goes on in the nervous system and computer

networks.

Axon therefore combines these two mechanisms. Rate control is the major mechanism used to

tune the packet-sending period, whereas window control is a supportive mechanism used to specify

a dynamic threshold that limits the number of unacknowledged packets. The window control is

refereed to flow control in this protocol as it incorporates a simple flow control mechanism by

feeding back the minimum value between the congestion window size and the current available

receiver buffer size. This works where Axon’s flow control computation is done at the receiver side

and is simple in operation where on receiving acknowledgement packet received the flow window

size is updated to the receiver’s available buffer size. The flow control window size is 32 initially.

3.12 Congestion Control

We explain the rationale of the Axon congestion control algorithm and determine its performance

in this chapter. We generalize a new class of MIMD algorithms in which the size of the additive

increases will decrease as the data sending rate increases. We call these algorithms MIMD algo-

rithms with decreasing increases and increasing decreases or DIID algorithms. We will show that

DIID algorithms are stable, fair, and efficient. The Axon algorithm is a special case of the DIID
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algorithm where the increase and decreasing parameter is proportional to the available bandwidth

that is estimated by a bandwidth estimation technique.

3.12.0.1 MIMD with decreasing increases and increasing decreases (DIID)

We consider a general class of the following AIMD rate control algorithm:

For every rate control interval, if there is no negative feedback from the receiver due to loss, but

there are positive feedbacks (acknowledgements), then the packet-sending rate (x) is increased by

a constant factor α(x) (0< α < 1).

x ← α.x (3.1)

α(x) is non-increasing and it approaches 0 as x increases

For any negative feedback, the sending rate is decreased by a constant factor β (0< β < 1):

x ← (1− β)x (3.2)

By varying α(x), we gain a class of rate control algorithm that we name the DIID algorithm

where decreasing increases and increasing decreases.

If we use the rate control interval as a unit of time, then from time t to t + 1, the increase to

the sending rate would be at follows:

x(t + 1) = αn x(t) (3.3)

and the decrease from is Computed by:

x(t + 1) = (1− β)n x(t) (3.4)

where n is the number of negative feedbacks.

There is one fundamental difference between DIID and some TCP variants that use loss as

a congestion signal: as the window size becomes larger HighSpeed TCP, for example, increases

faster, whereas the increase of BiC TCP may be independent of the absolute sending rate but it is

determined by the distance between the current sending rate and a target rate.

One fact remains is that the function of α.x has to be large to be efficient and it has to decrease

quickly to reduce oscillations. The first stage in the function should be used to decide how quickly

a DIID flow can probe the available bandwidth at the beginning, and the length of the stage deter-

mines how aggressive is observed to be. The longer the stage is, the more aggressive it will be. Each
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later stage has a smaller increment as the flow approaches available bandwidth. This will reduce

the oscillations at the equilibrium.

Specifically, to achieve efficiency, the increment at each stage should be proportional to the

available bandwidth and this is what is aimed for in the DIID algorithm.

3.12.0.2 MIMD (DIID) in Axon

Axon adopts this efficiency idea and specifies a piecewise α.x that is related to the link capacity.

The Axon rate control directly tunes the packet-sending period t which indirectly determines

the packet-sending rate x:

t x = 1 (3.5)

We therefore can write the rate control formula in the form of the sending rate. The fixed rate

control interval of Axon is SYN, or the synchronization time interval, which is 10 milliseconds. Axon

rate control is a special DIID algorithm by specifying α(x) in Equation 3.6 where S is the current

packet sending rate, BMAX is the maximum detected bandwidth, Bn is the amount of bandwidth

currently being used and t is the time since the last increase or decrease. The unit in all cases is

packets per second where this removes the need to worry about a varying packet size depending

on implementation.

S = α(x) = BMAX .(1− e
t

log10(Bn) ) (3.6)

Conversely Equation 3.7 shows the β(x) and the manner in which the packet sending rate

should be decreased in the event of a Loss Report being received.

S = β(x) = BMAX .e
t

log10(Bn) (3.7)

As you should expect this is similar the mathematical model applied to an action potential in

a neuron. If we assume the time constant τ is defined as τ = rc where where r is the resistance

across the membrane and c is the capacitance of the membrane.

The time constant is used to describe the rise and fall of the action potential, where the rise is

described by Equation 3.8.

V (t) = Vmax .(1− e
−t
τ ), (3.8)

The fall of action potential is conversely defined in Equation 3.9.
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Figure 3.13: Ion flow in action potential down the length a Neural Axon

V (t) = Vmax .e
−t
τ , (3.9)

Where V is the potential difference (voltage) measured in millivolts, the time, t, is in seconds,

and τ is in seconds. The behaviour of these two equations is illustrated in Figure 3.13.

In the case of Axon, the transport layer protocol, we have substituted the base 10 logarithm

of current bandwidth Bn for τ, the time constant. log10(Bn) therefore specifies congestion step

response to reach 1− 1/e ≈ 63.2 of the maximum sending rate in the case of a required increase.

We use the logarithm of the bandwidth where we assume that step response should be logarithmic.

In the case where a decrease is a required, for example when a loss report is received by the sender,

this is step response to reach 1/e ≈ 63.2 of the maximum sending rate.

It should be noted that is loss reports are received and no decrease in bandwidth is estimated

the packet sending rate will be reduced to eventually 1/e of the available bandwidth until an

Acknowledgement is received.
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3.12.1 An outline of the benefits DIID brings

DIID follows Multiplicative-Increase Multiplicative-Decrease law (MIMD), which brings it’s own

advantages where this increases the traffic rate proportionally to the spare bandwidth in the system.

This is instead of increasing by one packet as is done in many of the popular TCP implementations.

This allows Axon to quickly acquire the positive spare band- width when it may become available

and this makes it competitive. A quality that any high performance protocol should have but with

some reservations. This is where the Decreasing Increases and Increasing Decreases comes into it’s

own.

Axon increases its sending rate quickly at the beginning and slows down as it is approaches the

detected and estimated available bandwidth. Similarly the protocol decreases its send rate slowly

initially and speeds up as further decreases are deemed necessary. It is hoped that this nature will

make Axon a fair competitor when used with other protocols such as TCP. It should have stability

where the sending rate is pegged to the current rate rate and estimated bandwidth. It should also be

fair where we should expect the detected bandwidth to decrease as Axon is make to share a single

wireless link. This is due to the multiplexing that should occur at the IP layer by the Operating

System.

Finally oscillations should be avoided where developers should be able to expect a constant

amount of bandwidth when needed. This has been achieved where the sending rate is scaled back

quickly to allow any network congestion to pass. This hence allows us to also resume an optimal

packet sending speed expeditiously.

3.12.2 Rate implied Congestion Control

Our primary goal to ensure that Axon has a congestion control algorithm designed for the data

intensive application we presently see on high bandwidth delay product wireless networks. As we

have defined in the previous subsections this is best achieve through a type of a hybrid congestion

control algorithm. One that allows us to adjust both the congestion window size and the inter-

packet interval to gain a high degree of throughput. This is achieved through the use of time

sensitive acknowledgements where we assume initially that the acknowledgement interval is equal

to S ync.

Axon dense uses a modified MIMD algorithm where on the passing of every S ync time, if there

is no Loss Reports, but there are acknowledgements received in the past S ync time, the number of

packets to be increased in the next S ync time is Computed using Equation 3.6.
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If however a loss report is received by the sender the number of packets to be decreased in the

next S ync time is Computed using Equation 3.7. A slight exception to this is where to help clear the

congestion, the sender should stops sending packets in the next S ync time if the largest sequence

number a Loss Report is received which contains a greater value than the largest sequence number

sent when the last decrease occurred.

The Axon congestion control described above is not enabled until the first Loss Report is received

or the flow window size has reached the maximum flow window size. This is the slow start period

of the Axon congestion control. During this time the inter-packet time is kept as zero. The initial

flow window size is 1 and it is doubled each time an acknowledgement is received. The slow start

only happens at the beginning of a Axon connection, and once the above congestion control scheme

is enabled, it will not happen again. We require such a feature when negotiation new connections

as we can not infer any state until an acknowledgement is received. This main reason for this is so

Axon do not add load to an already congested network.

The initial congestion window size is 32 packets and the initial inter-packet interval is 10 mil-

liseconds. The algorithm starts with slow start phase until the first acknowledgement or loss report

arrives.

3.12.3 The Determination of Bandwidth

The rate inferred congestion control depends much on a method of estimating the amount of band-

width that is available on a wireless link. Such information will prove invaluable where although

congestion can be presupposed from the presence of Loss Reports this is too simplistic. A measure

a bandwidth enables Axon, as a protocol, to be aware of the networking resources it has to it’s

disposal and to use them in optimal manner. Arguably the most precious information we gain from

this is limit of the network described as the number of packets we may every second.

Axon uses receiver-based packet pairs to estimate the available bandwidth (Min and Dai Logu-

inov, 2004). This works where by a sender in Axon sends out a packet pair every 8 data packets

omitting the inter-packet waiting time. The receiver then records the inter-arrival time of each

packet pair or train and uses a median filter on them to compute an accurate measurement.

The process is straightforward where we suppose the median inter-arrival time is t and the av-

erage packet size in the measure period is s, then the link capacity can be estimated by calculating

f racst. Although simple there are a number of concerns in using packet pairs to estimate band-

width. One is the impact of cross traffic where this may cause the capacity be under estimated.
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Packet pairs may also lead to a value referred to as Asymptotic Dispersion Rate, which is a value

between available bandwidth and link capacity.

3.12.4 Being sensible about Packet Loss

While most loss-based congestion control work effectively, packet loss is regarded as a simple con-

gestion indication, few of them have investigated the loss pattern in real networks. As one single

loss may cause a multiplicative rate decrease in Axon, dealing with packet loss is very important.

In wireless network there are particular kinds of situations related to packet loss that need to be

addressed including loss synchronization and link error occurrence. Loss synchronization is a con-

dition in which all concurrent flows experience packet loss at almost the same time. Most familiar

is the concept of link error that can give transport protocols false signals of network congestion.

The phenomenon of “loss synchronization” is less familiar where this deals with the event when

a finite number of concurrent flows increase and decrease their sending rate at the same time, thus

the aggregate throughout undergoes a very large oscillation and leads to low aggregate utilization

of the bandwidth. This is due to the fact that almost all the flows will experience packet drops when

congestion occurs and have to drop their sending rates. Similarly when there is no congestion, they

all increase the sending rate. This causes problem in application wanting to make use of more than

one Axon connection limiting the usefulness of the protocol.

We use a randomization method to alleviate both these problem. As we already know a Axon

sender can detect a loss event when it receives a loss report. We thus define congestion event is

a particular loss event only when the largest sequence number of the lost packets is greater than

the largest sequence number that has been sent when the last rate decrease occurred. The period

between two continuous congestion events should be referred to as a congestion epoch and should

be the only only time when the sending rate is decreased.

3.13 An Overview

In this chapter, we described a new general type of MIMD congestion control algorithm, named

DIID, whose increment decreases as the sending rate increases. This is different from other MIMD-

based algorithms recently proposed to improve the performance of TCP in Wireless Ad Hoc envi-

ronment. We also described how to estimate the parameter of link capacity in Axon and discussed

the impact of estimation error. Further we discuss the robustness of our method on bandwidth

estimation error.
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Finally, we proposed two methods to deal with the global loss synchronization problem and the

non-congestion packet loss problem, respectively. These loss handling schemes have great impacts

on the transport protocol performance in today’s Wireless Networks. The following chapters will

deal with the implementation and the success of these approach in the Axon protocol.
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4

Materials and Methods

In this chapter we will go into how the performance of Axon will be conducted using real net-

works. The performance characteristics to be examined include efficiency in terms of throughput,

intra-protocol fairness, TCP friendliness, and stability. These performance characteristics and their

measurement are listed and explained below. Finally we will describe the simple test bed used to

gain the results that will be presented in later chapters.

4.1 Efficiency and Throughput

The efficiency of Axon is defined as the aggregate throughput of all concurrent Axon flows that

may exist. Efficiency is one of the major motivations of Axon, which is supposed to utilize the high

bandwidth efficiently, that is, utilize as much bandwidth as possible. Notably a single Axon flow

should reach high efficiency regardless of what we should expect out of concurrent flows.

This is calculated supposing there are n Axon flows in the network and the i-th flow has an

average throughout of x i , the efficiency index is defined in Equation 4.1.

E =
n
∑

i=1

x̄ i (4.1)

4.2 Inter-protocol Fairness

The fairness characteristic measures how fairly the concurrent Axon flows share the bandwidth.

The most frequently used fairness rule is the max-min fairness, which maximizes the throughput of

the poorest flows. If there is only one bottleneck in the system, then all the concurrent flows should
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share the bandwidth equally according to the max-min rule. In this case, we can use a fairness

index (Jain et al., 1999) to quantitatively measure the fairness characteristics of Axon.

F =
(
∑n

i=1 x̄ i)

n
∑n

i=1 x̄2
i

(4.2)

Equation 4.2 where n is the number of concurrent flows and x i is the average throughput of the

i-th flow. F should always be less than or equal to 1. A larger value of F means a better rating of

fairness. F = 1 should be considered the best which means all flows have equivalent throughput.

4.3 TCP Friendliness

TCP friendliness is a more obscure measurement than the others, because it is almost impossible

for a protocol with different control algorithms to reach the same performance as TCP when used

on the same link. It is not reasonable to limit the throughput of a new protocol in a high bandwidth

product wireless environment for the sake of the throughput of TCP. Such an approach is pessimistic

and, as a consequence, inefficient.

We consider the TCP friendliness separately in different situations, which are related to two

factors: the network bandwidth delay product and the TCP flow lifetime. When consider the low

bandwidth delay product environments where TCP may utilize the bandwidth efficiently, we should

expect that Axon to share the bandwidth with TCP both equally and fairly. In high bandwidth delay

product networks however we should expect Axon to make use of the bandwidth that TCP fails to

use where TCP cannot efficiently use the bandwidth.

TCP’s behaviour may though be very different for long-lived bulk flows and short-lived flows

where we must take into account the impact of TCP slow start at the beginning of a connection.

We therefore consider the situation of short-lived TCP separately because a majority of TCP traffic

over the Internet are short-lived flows as seen with general web traffic.

For a TCP flow we may suppose there are nAxon Axon and nT C P TCP flows coexisting in the

network. When using the same network configuration, we should start n and m flows separately.

The average throughput for the i-th TCP flow in each run is x̄ i and ȳi ,respectively. The definition

the TCP friendliness index is shown in Equation 4.3. Here the denominator is the fair share of TCP.

Here T = 1 is the ideal value we should apply to friendliness; T > 1 means Axon is too friendly;

and T < 1 means Axon overruns TCP. For short-lived flows, we should compare the aggregate

throughput of a large number of small TCP flows under different numbers of background bulk

Axon flows.
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T =
1
n

∑n
i=1 x̄ i

1
m+n

∑m+n
i=1 ȳi

(4.3)

4.4 Stability (Oscillations)

We use the term of “stability” in this chapter to describe the oscillation characteristic of a data

flow. A smooth flow is regarded as desirable behaviour for most applications where it often leads to

better throughput. This is a different concept from the meaning of “stable” in control theory where

this required the convergence to a unique equilibrium from any start point.

To measure oscillations, we have to consider the average throughput in each unit time interval

as a sample. We use standard deviation of the sample values of the throughput of each flow to

express its oscillation in Equation 4.4 where n is the number of concurrent flows, m is the number

of throughput samples for each flow, x i( j) is the jth sample value of flow i, and x i is the average

throughput of flow i.

S =
1

n

n
∑

i=1

(
1

x̄ i

s

1

m− 1

m
∑

j=1

(x i( j− x̄ i)2) (4.4)

4.5 CPU Usage

CPU usage is usually measured in terms of a percentage of use and is important to consider where

this indicates the efficiency of the implementation. However we sometimes need to consider the

data throughput when comparing CPU utilisations where the CPU may be used to process different

sizes of data per a given unit time. We should also take note of the fact a percentage of CPU usage

does not form a generic measurement. That is, these values are only comparable against those

values obtained on the same system, or at least systems with the same configuration. This bring

onto the subject of test beds where we need a uniform hardware configuration that will be used to

determine the performance of the Axon protocol once it is implemented.

4.6 Test bed

As this forms a first attempt on our part to solve some of the problems shared between managed

Wireless and Wireless Ad-Hoc networks we keep the test bed very simple. This is necessary where

any tests conducted will form a “dry run” of the design and implementation of the neurologically
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inspired Axon protocol. This allows us to determine any of the more fundamental problems that

may exist and possible be overlooked. It would be arguably counter-productive if we focused too

much on the small issues that exist in the complex Ad-Hoc networking scenarios than the large

issues that exist in the simpler scenarios. Typically if we can not solve such large issues the small

issues become very trivial and this limits usefulness of the protocol.

In keeping with this idea all Axon tests featured in this dissertation are preformed on a elemen-

tary 802.11g Ad-Hoc link between two nodes. The nodes will be formed of two Samsung NC10s

running the 2.6.33 Linux Kernel in a real world network environment. By a real world environ-

ment we mean one where other Wireless Networks exist and we may observe periodic traffic. This

is important where if we test in a “clean room” where no other wireless network exist we limit

the change of observing how Axon reacts in some very common situations observed on real world

wireless networks. These crucially includes, among others, bit errors and radio interference which

typically results in packet loss.
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Implementation

5.1 Software Architecture

Figure 5.1 depicts the Axon software architecture. The Axon layer has five function components:

the API module, the sender, the receiver, the listener, and the UDP channel, as well as four data

components: sender’s protocol buffer, receiver’s protocol buffer, sender’s loss list, and receiver’s loss

list.

Because Axon is bi-directional, all Axon entities have the same structure. Noticeably the sender

and receiver in Figure 5.1 have the same relationship as that in Figure 3.5. The solid line represents

the data flow and the dashed line represents the control flow. The dotted line specially represents

congestion control. The blocks outlined in a dashed line form the four data components whereas

the solid lined blocks are function components.

Figure 5.1: Diagram of the Axon Protocol Architecture
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The Application Programming Interface (API) module is responsible for interacting with appli-

cations that wish to link with it. The data to be sent is passed to the sender’s buffer and sent out by

the sender into the UDP channel. At the other side of the connection, the receiver of the same ar-

chitecture reads data from the UDP channel into the receiver’s buffer, reorders the data, and checks

packet losses. Applications can then read the received data from the receiver’s buffer when and if

required.

The receiver also processes any control information received during the time a connection has

been open. The receiver should then cause an update the loss list at both the sender and receiver

end when a loss report is received. Crucially certain control events will trigger the receiver to

update the congestion control module that controls the sending of packets where this enables us to

react any change in the network situation.

5.2 Even Distribution of Processing

One of the most common problems of lossy, relatively high-speed data transfer is that the generation

of control information and application data reading at the receiver side can take a considerably long

time when compared to the high packet arrival rate. Poor implementation of any transport protocol

can potentially cause frequent packet drops, time outs, and even packet loss avalanches where the

processing of loss report may cause even more packet loss. In a Wireless Networking environment

where packet loss is already an issue this is something we should make every effort aim to avoid.

A very good example comes from the Linux implementation of SACK TCP in kernel 2.4.18 (Leith

and Clifford, 2005). In this case the TCP implementation used a linked list to record unacknowl-

edged packets, which is scanned upon receiving SACK notifications. In high bandwidth product

networks this list is can become so long that the scanning can cause unnecessary time outs. In

Axon however we should not dismiss the accomplishments of SACK but rather learn from it’s short-

falls. As the protocol only uses explicit loss reports and this requires the receiver to maintain a loss

list to record the loss information. In the worse case accessing the loss list may take such a long

time that the arriving packets overflow the UDP buffer. This is potentially a very real issue where

due to the small packets used in Axon, hopefully matching the transmission unit at the MAC layer,

may contain up to tens of thousands of packets in a given lossy link.

To handle this type of problem we have attempted to evenly distribute the processing into small

pieces in the implementation even if this leads to higher aggregate processing time. This is an

acceptable trade off where processing resources are relatively inexpensive at the time of writing.
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We will therefore attempt to describe how Axon manages the information of “in-flight” packets and

handles the necessary memory copy when applications attempt to receiving packets.

5.3 Loss Information Management

Lost packets are generally represented as holes in a sliding window using some form of bit array.

However as we have already considered in wireless networks where a high bandwidth product

should be expected this window may become very large and may take a considerable amount of

time to scan. Adding to this issue is the fact that the number of lost packets during congestion

can also be very large, especially where packets are small. Notably to report such a loss will take

several packets. Finally we must also take into account the fact that, the insert, delete, and query

operations to the loss storage need substantial time in a simple array or list data structure.

The noticeable perplexity here is great but the reference implementation includes a simple

solution. If we consider the fact that loss is often continuous during high congestion, we may use

two values to represent a loss event, instead of using all the sequence numbers. For example, if

packets from sequence number 100 to 200 are lost, the pair of (100, 200) could be used to record

the loss, rather than inefficiently using a hundred and one numbers.

Furthermore, with each loss event, loss information is stored as one entity. The main access op-

erations are therefore required to split and combine the entities. The practical scanning complexity

is much smaller than that of scanning a regular array or list, because there are much fewer loss

events than lost packets. Meanwhile, each access takes a similar amount of time.

The loss information carried in the loss report is compressed as follows where the flag bit of

the first 32-bit packet header has been reused: If the flag bit of a sequence number is 1, then all

the numbers from the current one to the next one are lost; otherwise, the sequence number itself

is a lost sequence number. For example, in the following segment of a loss list where we rep-

resent the loss information using hexadecimal values: 0x00000001, 0x80000006, 0x0000000F ,

0x00000024 the lost sequence numbers are 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 36.

The loss list in Axon is a static list as show in Figure 5.2 where each node should contain

two values: the start and the end sequence numbers. This means that all numbers between and

including these two numbers should be considered as lost. If there is only one single loss, the end

number is −1 the location of a node would therefore equal to the position of the head node plus the

distance between the start numbers of the two nodes. The list is logically circular where it should

act as a single, fixed-size buffer, connected end-to-end.
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Head Tail

Link 4 ... ... -1
Start 1 ... ... 10
End 3 ... ... -1

Figure 5.2: The figure shows a loss list with loss 1, 2, 3, and 10. Each node on the list has a start value

and an end value. The list uses a static list data structure

The major operations on the loss list are insert, delete, and query. Here, in Algorithm 17, we

only explain how an insert is done to this data structure as the other two related algorithms dealing

delete and query are derived from this. Theoretically, the complexity of this algorithm is O(n),

where n is the number of nodes in the data structure, and the time is mostly consumed through the

need to search the prior node. However, according to the locality phenomenon, most searches can

be finished in several steps around the near neighbours, so in practice it should prove to be quite

fast. As you should expect delete and query operations have the same complexity as insert.

Algorithm 17 - Insert new loss sequence of n (start, end) to loss list L
if L is empty then

insert (start, end) at position 0
break

end if
Find the position of n.start in L (i). If L is empty, insert (start, end) at node 0; break.
Find the position of n.start in L (i) and the offset from the list head (o f f set);
if o f f set < 0 then

insert (start, end) at i where i becomes new head of L
end if
if o f f set > 0 then

if L[i].start = n.start AND n.end > L[i].end then
modify L[i].end to n.end

else if if prior node p and n overlaps or are continuous then
search the prior node p

else if n.end > L[p].end then
modify L[p].end to n.end

else
Insert n at i.

end if
end if
if the new modified node overlap then

Combine them
end if
if o f f set = 0 AND n.end > L[head].end then

modify L[head].end to n.end
end if

In Axon, the operations in the sender and the receiver are slightly different from the above

algorithm because more information can be used to simplify them. For example, at the receiver side,
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Figure 5.3: The sender’s buffer as a list of both protocol allocated buffers

Figure 5.4: The receiver’s buffer as a protocol buffer

insert only happens at the end of the list. It is also import to note that with this loss information

storage, no other bit array or map is needed for data reliability.

5.4 Memory Copy Avoidance

The buffer management modules are responsible for temporally storing the outgoing or incoming

data.

The sender’s buffer shown in Figure 5.4 is a list of outgoing data blocks. When a application

sends data, it should then be copied into a newly allocated memory block and linked on the list in

the order of the data sends. After all the data in a block is sent and acknowledged, it should then be

removed from the list and released. Insertion of the new block always occurs at the tail of the list

and removal always happens at the head of the list. Note that since the buffer blocks are allocated

dynamically, the sender’s buffer is economical with memory.

Critically the Axon sender reads and sends out data in the order that the buffers are linked on

the list. There are three regions in the sender’s buffer in an attempt to keep the implementation

reasonably organised. These are acknowledged data, sent but unacknowledged data, and unsent

data.

The receiver’s buffer shown in Figure 5.4 consists of a list containing user (application allocated)

buffers and a block of protocol buffers. Incoming data is always written into the protocol buffer

and read into the user buffer when a packet is received. The protocol buffer is dynamically resized

according to usage. Again there are three regions in the receiver’s buffer: the acknowledged data,

the unacknowledged data, and the free buffer space
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Due to the increasing amount of data being transferred in today’s network due to influx of

bandwidth hungry applications, copy avoidance in high performance transport protocols is becom-

ing more critical. Here the motivations include reducing the delay, jitter, timeout, and packet loss

when the CPU or the system bus is busy copying a large data block. This in addition to saving CPU

time from any unnecessary copying that maybe taking place. This keeps the implementation light

weight as well as effective at sending data between nodes in a wireless networking environment.

5.5 Assuring accurate Rate Control

As we saw in the design Axon, due to it being inspired by the way in which neurons communicate,

rate control forms the major mechanism that ultimately manages efficiency and fairness. This is

in contrast to the window control where this only plays a supportive role to specify a dynamic

threshold that limits the number of unacknowledged packets. Although this looks good in theory,

there is a potential hazard in the implementation that window control could become the dominating

mechanism and rate control becomes impaired. This situation must be avoided in order that the

protocol behaves are we expect. This may be caused when the packet-sending period decreases

to below the actual packet sending time. Once this happens, the packet sending is completely

controlled by the flow window and the packet-sending period may continue to drop.

Although most theoretical work evidently assumes an instant packet sending time, this assump-

tion does not hold at high transfer rates. For example, to send a 1500-byte packet out from a

802.11g Network Interface will take in the region of 65 microseconds at 54Mb/s. This all too

comparable to the packet-sending period as the transfer speed approaches the maximum in such

networks. To avoid this problem we make sure that the value assigned to the current packet sending

period is corrected using the real sending rate before updating the packet sending period.

5.5.1 High Precision Timer

Related to rate control is the requirement of very high precision timers are not available in most

general-purpose operating systems. This becomes more of an issue when you consider that to

support rate control at high speeds becoming available along with technologies such 802.11n and

MIMO, the timing precision should be at least at the microsecond level.

We should take understand that very high precision timers required to be accurate to the mi-

crosecond are not available in most general-purpose operating systems. However to support rate
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control at the speeds available in today’s, and more importantly future, wireless networks the tim-

ing precision should be at least at the microsecond level. It is even better at the CPU frequency

level where a simple implementation could the use busy waiting approach of querying CPU clock

cycles using the RDTSC instruction.

The Time Stamp Counter is a 64-bit register present on all x86 processors since the Pentium and

simply counts the number of ticks since reset. Although this does limit portability it provides an

excellent high-resolution, low-overhead way of getting CPU timing information (Intel, 1997) and

this enables us to plan the rate at which we send packets very accurately. Busy waiting, although

it may consume 100 percent of the time on one CPU, may be scheduled to a lower priority so that

other jobs are allowed to continue. Due to the blocking manner of UDP sending, higher speeds

need less CPU time for the busy waiting implementation.

An alternative implementation could use an additional variable of burst to control the number

of packets that can be sent out continuously. The sender then sleeps for a longer time, hoping that

it is long enough to meet the minimum sleep interval that operating systems can provide. The Axon

implementation uses the second option where the sender will sleep for the minimum time allowed

by the host system after it sends out a burst of data packets. To reduce the burst size, the Axon

sender will be awakened by any possible Axon events, such as the arrival of data or control packets

or an application call.

5.6 Speculation of Next Packet

Another optimisation that was included in the reference implementation becomes obvious if we

consider if the incoming data can be placed directly into its destination buffer position. If we receive

or send data that are stored in different memory locations together the need for a temporary buffer

can be eliminated and memory copy is further reduced. The key problem to achieving is how

we should guess the sequence number of the next arrival packet where this will decide where we

should put the incoming data.

If most packets arrive in order, speculation is easy when no loss occurs. However during periods

of congestion where we assume the receiver to received retransmitted packets, it is very likely that

the next incoming packet will have the lowest sequence number greater than the current one among

those that have not yet been received.

Being optimistic Axon always speculates that the next packet will be the next consecutive num-

ber after the largest sequence number already received. This scheme has the advantage of computa-
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tion and storage simplicity. The accuracy of the speculation is in approximately reverse proportional

to the packet loss rate, because one loss can cause two speculation errors. This will occur when it a

packet is lost and when the retransmission arrives. An admittedly less than ideal optimisation but

the benefits should become clear as transmission across wireless networks becomes more reliable.

5.7 Threading

Three threads are started in a particular Axon entity. These are the sending thread, the receiving

thread, and the listening thread. All the threads are not started at the same time where the listening

thread is only started in a listening Axon entity in which the sender and the receiver are not started.

A regular Axon entity will create a receiving thread at the beginning of the connection and the

sending thread is only ever started after the first data is initially sent. This one area where laziness

really does pay where we can save system resources since many connections are typically only used

for one-way data transfer; from server to client.

An alternative and possibly simpler approach could be to use one single thread for both sending

and receiving. However with two separate threads we can take advantage of today’s multiple core

processors that were design for concurrency. The benefits of this should become more apparent as

we see the data transfer speeds inevitably increase over time.

The sender and the receiver implement the sending and the receiving algorithms detailed in

Algorithms 7 and 8. The sender should only send a data packet from the sender’s loss list if it is

not empty or from the sender’s buffer if there is user data to be sent. This is subject to congestion

control though. The receiver, on the hand, should receive both data and control packets from the

UDP channel in addition to also sending out control information.

The in-order data should be put into the receiver’s buffer and any detected loss be recorded in

the receiver’s loss list. It should also update the sender’s loss list when a loss report is received.

Finally, the receiver thread will remain responsible for triggering congestion control events and

updating control parameters as required.

The listener thread will accept connection requests and maintains the accepted sockets in the

globally shared Axon descriptors queue. Axon identifies different connections by the random initial

sequence number and IP address.
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5.8 Related Work

Researchers also have continually worked to improve TCP in both wired and wireless networks.

TCP SACK (Fall and Floyd, 1996), which is currently the most supported TCP version, uses se-

lective acknowledgement to alleviate the TCP performance degradation from multiple continuous

losses. TCP New Reno (Fall and Floyd, 1996) is another example designed to recover quickly from

packet loss by using bandwidth estimation techniques on the acknowledgement packets. TCP Vegas

and FAST TCP (Wei et al., 2006) use delay instead of loss as the main indication of congestion. In

particular, FAST TCP provides an equation-based control algorithm designed to react to network

situations more quickly and with higher stability. HighSpeed TCP (TOKUDA et al., 2003), Scal-

able TCP (Kelly, 2003), and BiC TCP (Xu et al., 2004) are focusing on fast probing of available

bandwidth.

Improvements to TCP variants are often limited by the compatibility requirement with standard

TCP where in order to communicate with original TCP we are limited to only modifying the TCP

sender. Some important deficiencies there remain, particularly in fairness and automatic parameter

tuning.

People in the past have been looking for application level solutions to overcome the limitations

presented by TCP. One of the common solutions is to use parallel TCP connections and tune the TCP

parameters, such as window size and number of flows. However, parallel TCP is inflexible because

it needs to be tuned on each particular network scenario. Moreover, parallel TCP does not address

fairness issues and the problems caused by packet loss on Wireless Networks

When attempting high data transfer experiences in this area have shown that implementation

is critical to performance and this is a view we have taken on board when implementing Axon.

Ideas take on board can be found in some of the basic implementation guidelines addressing per-

formance. These include Application Level Framing and Integrated Layer Processing where the

basic idea behind these two guidelines is to ensure efficiency by breaking down the explicit layered

architecture..

Arguably the biggest problem we hope to over is that of memory copy that often costs the most

in terms of CPU time for high-speed data transfer (Rodrigues et al., 1997). Solutions do however

exist that focus around the avoiding of data replication between kernel space and user space. There

is also literature that describes the overall implementation issues of specified transport protocols.

One of more relevant examples includes a description of an implementation of a user level TCP

(Thekkath et al., 1993)
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5.9 Concluding Remarks

As we seen high-speed and effective data transfer brings with it many challenges for the design

and implementation of a transport layer protocol. This becomes more of a concern when we make

use of small 1500 byte packets where to achieve 54Mb/s data transfer speed an end host needs

to process 45,000 regular sized packets per second. This means that any additional action on per

packet processing could lead to a significant increase in CPU usage, whereas a bursting of CPU

usage can further lead to packet loss. Moreover, on wireless links with a comparative large network

latency, the number of on flight packets is also huge and requires large data storage to temporally

record their information. The access to such data storages is thus also critical.

This chapter dealt with implementation issues related to the design of Axon. We also presented

the details of the Axon protocol and in particular those related to high performance data transfer.

We hope that the experiences described here and the reference implementation of Axon may

be useful for future work on transport protocols. Some ideas that previously appeared mainly

in theory and simulations have been tested in Axon, such as the use of bandwidth estimation in

transport protocols. By testing the design and any trade-offs necessary may prove to be useful in

other experimental high performance network transport protocols in the future. Most importantly

the Axon implementation has been designed so that the described methods of loss list processing,

congestion control algorithms, and bandwidth estimation techniques can be overridden. These

can even be reused where both allow a reduction in the implementation work required for any

related research or development even if protocol fails to meet the requirements of a future wireless

application.
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Discussion

While the simulations, such as those conducted in applications such as NS-2 cover the majority of

network situations, they do not simulate the real world perfectly. This not ideal in case of Axon

where the aim of this dissertation is to produce a neurologically inspired transport layer protocol

that is practical in the real world. Experiments in real world settings give us more insight into the

performance Axon. Hence there is a need to determine the performance of Axon in this section

through number of experiments deployed on real world wireless ad-hoc networks.

We will discuss throughput and efficiency, intra-protocol fairness, and stability in section 6.1.

TCP friendliness will be covered in section 6.2. Section 6.3 examines the implementation efficiency

(CPU usage) and we will examine the performance of Axon in real applications in section 6.3.

All experiments were conducted on the test bed introduced in the Materials and Methods chap-

ter and the results were plotted from a random sample for fairness. It should be noted any results

gained from the implemented protocol should only be considered preliminary where Axon fits into

the description of a prototype. It is hoped that the library could be improved in time from the

results gained in this chapter. This forms a realistic approach where the protocol is only a recent

development and should be open for improvements.

6.1 Efficiency, Fairness and Stability

We performed two groups of experiments in different network settings to examine efficiency, intra-

protocol fairness, and stability property in the Axon protocol.

In the first group of experiments, we started a single Axon flow between two wireless nodes in

close proximity at a distance of 1 metre (3 feet). This should serve as a useful result set we can
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Figure 6.1: The variation of throughput in Axon over time

refer to where this shows us the behaviour of Axon on the highest quality of wireless links.

Figure 6.1 shows the throughout of the single Axon flow over each link when the one flows is

started. As is apparent a single Axon flow is capable of 26.5Mb/s over a 802.11g 54Mb/s connec-

tion with the varying network latency we would expect on such a wireless connection. On closer

examination of the results we can determine a good average of 24.99Mb/s. In contrast TCP reaches

25.65Mb/s as a peak value but only achieves an average of 19.51Mb/s making Axon the better per-

former. This may be taken as an indication that the tuning of the packet sending period, illustrated

in Figure 6.1, is effective in importantly promoting throughput stability. We also see in Figure 6.1

the relation between throughput and the packet sending period. The longer the period the small

the realised throughput.

For comparison the throughput of TCP in the same experimental configuration is illustrated in

Figure 6.1.

Figure 6.1 shows the throughput when with the same flow configuration but the nodes were

moved to limit of where 24Mb/s could be achieved. 54Mb/s was not possible in this case due

to way that 802.11g applies throughput steps in the event of radio interference. This experiment

demonstrates the unbiased nature of Axon flows across a wireless link in terms of network latency.

The flow measured a peak throughput approaching 12.14Mb/s as shown in Figure 6.1.
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Figure 6.2: The variation of throughput in TCP over time
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Figure 6.3: The tuning of the packet sending rate in Axon
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Figure 6.4: The variation of throughput in Axon over time in a high delay environment

This should be considered with Figure 6.1 where we can clearly see Axon does not exhibit bias

toward shorter round trip times as we would expect with TCP. Although we are limited to a narrow

range of network latencies further evidence we see nothing conclusive to lead us to believe that

Axon favours a shorted round trip as is the case with TCP.

To check the efficiency, fairness, and stability performance of concurrent Axon flows we set up

another experiment using the same simple network configuration as described. The mean network

latency observed between the two sites was in the region of 25ms and the nodes remained in a

static in terms of movement.

For the a given pairs of nodes five Axon flow was started, one after each other, every 60 seconds.

These were then stopped in the reverse order every 60 seconds. The detailed performance of each

flow and the aggregate throughput in this scenario is shown in Figure 6.1. Similarly table 6.1 lists

the average throughput of each flow, the average network latency and loss rate at each stage, the

efficiency index, the fairness index, and the stability index.

Importantly all stages achieve good and fair bandwidth utilization. As we have seen previously

the maximum possible bandwidth is about 26.5Mb/s on the link as measured in the case of a single

flow. The fairness among concurrent Axon flows is virtually 1 as shown in Figure 6.1. Furthermore

the stability index values was, crucially, very small as illustrated in Figure 6.1, which means the
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Figure 6.5: The weak correlation between network latency and throughput
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Figure 6.6: The fair and stable sharing of throughput between Axon flows over time
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Time (s) Flow A Flow B Flow C Flow D Flow E Average

0 0 0 0 0 0 0

60 0.8923 0 0 0 0 0.89230

120 0.7045 0.812 0 0 0 0.75803

180 0.357 0.359 0.519 0 0 0.4115

240 0.6778 0.4563 0.809 1.0453 0 0.74710

300 0.2871 0.3331 0.3236 0.316 0.427 0.33728

360 0.629 0.918 0.613 1.2633 0 0.85576

420 0.4879 0.455 0.4976 0 0 0.48022

480 1.0634 1.17 0 0 0 1.11671

540 2.3301 0 0 0 0 2.33008

Table 6.1: TThe fairness of multiple Axon flows

sending rate is very stable crucially meaning fewer oscillations. Again these seem to show that the

tuning of the packet sending rate is effective where the data for Flow A is plotted in Figure 6.1.

Once more we also see again no real conclusive evidence of a round trip time bias in this scenario

seen in Figure 6.1.

6.2 TCP Friendliness

When designing a new transport layer protocol we should always consider the short lived TCP flows

that make up the web traffic and certain control messages which comprises a substantial part of

data traffic on real world networks. To examine the TCP friendliness property against such TCP

flows, we set up a TCP connection that transfers data from one node to another as a distance

of 1 metre (3 feet). In addition a similar single bandwidth consuming Axon flows was initiated as

background traffic as an attempt to determine the behaviour of Axon during a period of congestion.

The results gained through preliminary testing are summarised in Figure 6.2.

From this there no denying that TCP does not under-perform significantly in the case of a simple

54Mb/s 802.11g Ad Hoc wireless link capacity with a overall low average network latency in the

region of 25ms. The TCP flow utilized significantly more bandwidth than the Axon flow and this

is further highlighted in Figure 6.2. This could be a result of an overly large buffer size in the

implementation of flow control and shortfalls in the way we estimate bandwidth. Both factors do

seem to cause the protocol to be uncompetitive but very quick to react in the instance of congestion

where the TCP flow is designed to push the link to and, in the process, beyond capacity. Importantly
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Figure 6.7: The fairness of concurrent Axon flows
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Figure 6.9: The tuning of the Packet Sending Period in concurrent Axon flows
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Figure 6.10: The weak correlation between Network Latency and Throughput in concurrent Axon flows
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Figure 6.11: The throughput of concurrent Axon and TCP flows

though this does show Axon to be not overly aggressive despite the MIMD nature of it’s congestion

control algorithm.

6.3 Implementation Efficiency

In this sub-section we examine Axon’s implementation efficiency through the CPU usage. This

is important due to the method in which have employed to time the sending of packets by - a

derivative of busy waiting. CPU usage is also crucial when you consider the efficiency of TCP.

The efficiency of TCP is this respect is likely to be difficult to beat where you consider that the

implementation of the protocol is found in the kernel space rather than at the user level. Moreover

we should consider the perspective of the developer where they are unlikely to use a library that

make inefficient use of system resources regardless of any technical advantage.

Figure 6.3 shows the CPU utilization of a single Axon flow and TCP flow, sending and receiving

for the purposes of a bulk data transfer. As is apparently the CPU utilization of Axon is slightly

higher than that of TCP. Axon averaged 7.5% when sending and 6.5% when receiving). TCP is

notably a fraction of this but when we consider that Axon is implemented at the user level and

performance available in modern computers this difference in efficiency should be acceptable. This
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Figure 6.13: CPU usage of the reference Axon Implementation
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maybe even considered an achievement when we consider the method we have employed to time

packets by accurately.

This data was obtained using the Linux System Monitor and should be considered as the aver-

age for the modules of buffer management, loss processing, congestion/flow control, and UDP I/O

that are called from the sending and receiving threads. We should therefore consider that these

CPU times are overlapped in Axon where we have both a sending thread for sending packets and

a receiving thread for receiving. Other aspects that should be contemplated are the measures un-

dertaken in the implementation that were designed to ensure that the sender and receiver threads

should consume the most CPU time. In contrast the UDP I/O time should only be that consumed in

the Axon layer. This would include function calls to UDP socket and necessary preparation of the

calls but excluding the data I/O time inside the Linux kernel.

Moreover the congestion control module, the necessary timing and performance monitoring

to make the neurological inspired rate control possible are the most likely candidates of the most

major CPU consumers. This forms one definitive area that should be marked for improved should

the reference implementation be revised.

6.4 Performance in Real World Applications

While we have demonstrated Axon’s performance with both extensive simulations and experiments,

the real goal of Axon, however, is to benefit real world applications with high performance data

transfer support over wireless links. Therefore, it is very important to examine Axon’s performance

in real applications. We went about this is by reproducing a scenario that is very familiar to even

the most inexperienced of users; the transfer of a file from one networked computer to another.

This was done using the testing configuration used to measure the throughput of the single axon

link as seen in Section 6.1.

Figure 6.4 therefore shows the average throughput when both sending and receiving a file off

over a lossy wireless link. This experience in the region of 2% packet loss, a average network

latency of 25ms. Again this compares well with TCP where on sending 1GB (1024 MB) file took

it over 2 minutes (123.76 seconds) longer to complete. TCP also limped behind Axon in terms of

throughput where average through was measured at significantly below the 25Mb/s provided by

Axon. This is likely to have been partially caused by the greater throughput stability offered by the

neurologically inspired congestion control mechanism featured in the Axon protocol.
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Figure 6.14: Real world performance of Axon in file transfer

Although not conclusive this does prove that Axon could be potentially used in many of today’s

applications, such as file transfer, remote data replication, distributed data mining, and distributed

file servers in both centralised and ad-hoc Wireless Networks.

6.5 Concluding Remarks

In this section we have detailed the several experiments that have been conducted to preliminary

examine Axon’s performance and any areas for potential improvement. These experimental studies

demonstrate in a quantitative way that Axon is efficient, fair, stable, and friendly to TCP. They also

show that our Axon implementation is efficient and correct over the wireless link it was designed

to accommodate.

In particular we have used experiments to ensure that protocol design of Axon and the related

control algorithms in a controlled network environment are both correct and effective. This was

quite apparent where we focused on the effect of network latency, number of concurrent flows

and the issue of sharing bandwidth with TCP. Although we have unfortunately neither the time or

hardware to gain definite results it was only the behaviour of Axon when a bandwidth consuming

TCP flow was introduced that let the side down. Although some result sets were not ideals we may

have hoped for initally we have seen Axon to be fairer, more stable and have a better efficiency
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than TCP. This is both in instances of individual or multiple flows over a wireless link. Even though

we must admit have fallen short where that the protocol is far too friendly (fair) to TCP flows this

is but one area for improvement. Most importantly this we have demonstrated arguably the biggest

benefit in using Axon in a future applications; the ability to react quickly to congestion and changes

to available bandwidth but not to transmission errors.

However, the real world experiment plays a more important role in the Axon project. The fun-

damental objective of Axon is to develop a transport protocol that can be used in real applications

that need to send data efficiently over high-speed wireless linls, and the best way to examine this

performance is to use it in real applications and in large scale ad hoc networks. This forms a step

that should perhaps be taken in the near future.
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Conclusions

This dissertation addresses the solution to bridge high-speed wireless ad hoc networks and the many

data intensive applications we see in present day. Today’s emerging high performance applications

requires large amounts of data to be transferred at relative high speed among geographically dis-

tributed machines. However, although the maturity of wireless network technology can provide

this ability, the current data transport protocols on today’s networks simply fail to effectively utilize

the network resources in this situation.

In response we have presented Axon, a high performance data transport protocol to meet these

requirements. We divided the problem into two orthogonal parts where both were areas we could

draw inspiration from what is observed in neurons:

• Protocol design and implementation

• Congestion control.

The Axon protocol appears to work well for fast data transfer where we aimed to introduce

minimum overheads to the network and the end host. We also designed the Axon congestion control

algorithm such that the Axon data traffic can utilize the bandwidth efficiently and fairly. Axon’s

native congestion algorithm integrates a specific class of rate based MIMD congestion algorithm,

bandwidth estimation technique, and several packet loss processing schemes all modelled from

the inner process that occur in a Chemical Synapse. As we have seen in the preceding chapter

experimental studies have been conducted to examine the performance and the outcome is initially

promising.
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This final chapter begins with a summary of the contributions of this dissertation, followed by

an analysis of some of the manifesting limitations as well as the guidelines for future research work.

Finally we offer some final remarks on the Axon project as a whole.

7.1 Contributions

In the following we attempt to highlight the contributions and successes of this dissertation.

7.1.1 A High Performance Data Transport Protocol and a Implementation of

Axon provides a timely and practical solution to the problem of transferring bulk data in high-speed

wireless ad hoc networks. The Axon protocol is both efficient and fair for effective data transfer in

such high bandwidth delay product network environments.

Our work systematically investigated the design and implementation issues of a such high per-

formance data transport protocol at the application level. The Axon project identified the overhead

arising from acknowledgements, loss processing, threading, and memory copy, and we have sug-

gested appropriate solutions that have been modelled in the reference implementation. Although

these could have easily been neglected, protocol design and implementation have prove these to be

a significant impact on efficiency.

Axon is also easily deployable where it will work, in theory, on platform that supports UDP. This

is important as there are only four versions of TCP that have been widely deployed in the past

three decades because of the long time lag of standardization, implementation, and deployment of

kernel space protocols. Although there were numerous TCP variants proposed at the same time as

Axon was developed, these protocols are not expected to be deployed in the near future due to the

development climate.

Finally, as a result of our research and development work, we developed an reference Axon

library for both research and application use. The Axon library is near the productivity phase and

should have the potential to be used in many real world applications.

7.2 An Efficient and Fair Congestion Control Algorithm

We summarized a class of MIMD-based control algorithms named DIID, whose increase parameter

is decreasing as the sending rate increases and decrease parameter is increasing as the sending rate

decreases. We have shown that DIID may be fair and stable, and can be efficient as well given the
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proper tuning. Notably Axon’s control algorithm is a specific case of DIID where is it related to the

mathematical model applied to Action Potentials that are sent from neuron to neuron.

We believe that this form of rate based congestion control algorithm addresses both the issues

of efficiency and fairness in transport layer protocols. This is apparent where the algorithm takes

a near constant time to converge to what available bandwidth maybe. Axon flows are also fair to

each other, even if they we are in the frequent situation where we have a varying network latency

over a wireless link. While Axon is highly efficient though that is not evidence that it is necessarily

aggressive. This is seen in our experiments where it is friendly to concurrent TCP flows.

Other more practical benefits have been gained through the implementation of Axon. The

bandwidth estimation techniques used in the congestion control mechanism means that there is

no longer a need for the manual tuning of the control parameters necessary in some TCP varients.

Also, it is evident that the Axon has arguably solved solve the loss synchronization problem using

a random decreasing method. Finally and arguably most importantly we have demonstrated that

Axon can also handle that limited non-congestion packet losses that are observed wireless links.

Axon is quite unique amount transport layer protocols where it attempts to use bandwidth esti-

mation techniques in determining control parameters; a technique that has origins where neurons

“fire” at varying rates depending on stimulus. Despite there is quite a gulf between Neuroscience

and Computer Science the rationale that the increase of the sending rate should be proportional

to the available bandwidth is a sound. We see this in XCP where this uses bandwidth utilization

information obtained from the intermediate routers. However since end-to-end protocols cannot

get explicit information from networking hardware such as routers this estimation technique does

come across as an attractive choice.

7.3 Limitations and Future Research Direction

Here we discuss both the apparent and realised limitations of the Axon protocol.

7.3.1 Bandwidth Estimation in the Context of Transport Protocol

Current research all too often has hinted that end-to-end transport protocols such as TCP usually

suffer from the lack of explicit network information; especially in the case of a wireless ad hoc

environment where the situation is very fluid. Looking again at the example of XCP we have

seen how such information can significantly promote the efficiency of congestion control protocols.
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However, a different neurologically inspired approach is to estimate this information at the end

hosts is now available in the bandwidth estimation techniques used in Axon.

Axon’s approach is effective in data intensive applications where there are a small number of

concurrent flows, but it is not suitable in a high concurrency environment, because the bandwidth

estimation technique currently used in Axon may overestimate the available bandwidth in high

concurrency environments. Once again this is forms another area for improvement.

We should not however disregard the fact that future work can further investigate bandwidth

estimation techniques in the context of transport protocols. A bandwidth estimation scheme within

transport protocols may even have greater advantages than using regular bandwidth estimation

tools but the evidence is not clear as yet.

7.3.2 Implementation Optimization

Profiling the Axon implementation shows that there is still space to improve, in particular, the CPU

usage. A efficient implementation is especially important to user space protocol stacks because

they cost more CPU time on memory copies and context switches. We believe therefore that further

investigation of the efficient implementation of Axon will also benefit many other transport protocol

implementations that may be conducted at the user level.

7.3.3 Tuning and Configuration

The useful side effect of developing Axon in C++, an object oriented language, is that is does have

limited support for the implementation of alternative and innovative congestion control mecha-

nisms. A more advanced version could though enable many more extensions to network protocols,

similar to what network simulators such as NS-2 offer us, but working on real IP networks.

A particularly interesting extension as regards wireless link could be issues the data reliability

and timeliness control, which often has different requirements depending on applications. For ex-

ample, multimedia applications may only require a “best effort” delivery service where data quickly

becomes useless once it is out of date. Furthermore, more complex extensions could potentially

make the Axon an example of gateway software for protocols that focus on, amongst others, gate-

way algorithms and for overlay networks.
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Although throughput and network latency bias has been the major concern in the development of

Axon much of the protocols acheivements can be summerised through the concept of Scalability.

This is quite an achievement when we consider this was not factored into the design. Scalability has

been one of the major research problems of the Internet community ever since the emergence of

the internet. The insufficient number of IP addresses may be the most commonly known scalability

problem but in many wireless networks researchers have also found that as a network’s bandwidth-

delay product increases TCP, the major Internet data transport protocol, does not scale well either.

This is a worry when we consider the mass potential growth of wireless internet connection in

future over 4G candidates such as LTE and Wi-Max.

As an effective, timely, and practical solution to this scalability problem, we designed and im-

plemented a protocol that can utilize abundant bandwidth efficiently and fairly in distributed data

intensive applications inspired from the mode of transmission between neurons.

Axon’s approach appears highly scalable. Given that there is enough CPU power, Axon can sup-

port up to unlimited bandwidth within terrestrial areas. The timer-based selective acknowledgment

generates a constant number of Acknowledgements no matter how fast or slow the data transfer

rate is. The congestion control algorithm and the bandwidth estimation technique allow Axon to

increase to very near the available bandwidth no matter how limited it is. Finally and most impor-

tantly the constant rate control interval removes the impact of a varying network latency; a issues

that adversely affect the performance of TCP over Wireless Ad Hoc Networks.

We have done extensive perliminary experimental studies to verify Axon’s performance charac-

teristics. Axon can utilize wireless bandwidth very efficiently and fairly. The intra-protocol fairness

is maintained even between flows regardless of any difference in network latency. This is very im-
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portant for many applications where a stable throughput makes the the performance of the network

predictable.

To benefit a broader set of network developers and researchers, Axon has been implemented in

a manner so to accommodate alternative congestion control algorithms if required.

In the short term though Axon forms a practical solution to the data transfer problem in the

emerging data intensive applications that our being used more and more on wireless links. In the

long term, because of the long time lag in deployment of in-kernel protocols but the fast speed with

which new applications are emerging, Axon could prove be a very useful tool in both application

development and network research.

100



References

A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of TCP pacing. In IEEE

INFOCOM, volume 3, pages 1157–1165, 2000. 58

D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level measurements from an 802.11 b

mesh network. In Proceedings of the 2004 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 121–132. ACM, 2004. 50

M. Allman. On the generation and use of TCP acknowledgments. ACM SIGCOMM Computer Com-

munication Review, 28(5):4–21, 1998. 13

A.V. Bakre and BR Badrinath. Implementation and performance evaluation of indirect TCP. IEEE

Transactions on Computers, 46(3):260–278, 1997. 4

H. Balakrishnan, S. Seshan, and R.H. Katz. Improving reliable transport and handoff performance

in cellular wireless networks. Wireless Networks, 1(4):469–481, 1995. 4, 34

H. Balakrishnan, V.N. Padmanabhan, S. Seshan, and R.H. Katz. A comparison of mechanisms for

improving TCP performance over wireless links. IEEE/ACM Transactions on Networking (TON), 5

(6):756–769, 1997. 4, 16

D. Barman and I. Matta. Effectiveness of loss labeling in improving TCP performance in wired/wire-

less networks. In 10th IEEE International Conference on Network Protocols, 2002. Proceedings,

pages 2–11, 2002. 11

I. Bouazizi. ARA-the ant-colony based routing algorithm for MANETs. In Proceedings of the 2002

International Conference on Parallel Processing Workshops, page 79. IEEE Computer Society, 2002.

26, 27

T. Bu, Y. Liu, and D. Towsley. On the TCP-Friendliness of VoIP Traffic. In INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings, pages 1–12, 2006. 15

101



REFERENCES

F. et. al. Cali. IEEE 802.11 protocol: design and performance evaluation of anadaptive backoff

mechanism. IEEE Selected areas in communications, 18(9):1774–1786, 2000. 10

K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK TCP. ACM SIGCOMM

Computer Communication Review, 26(3):21, 1996. 11, 12, 79

S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM

Transactions on Networking (TON), 7(4):458–472, 1999. 10

B. Ford. Unmanaged Internet Protocol: taming the edge network management crisis. ACM SIG-

COMM Computer Communication Review, 34(1):98, 2004. 47

E.W. Fulp and D.S. Reeves. Bandwidth provisioning and pricing for networks with multiple classes

of service. Computer Networks, 46(1):41–52, 2004. 2

J. Gao and N.S.V. Rao. TCP AIMD dynamics over Internet connections. IEEE Communications Letters,

9(1):4–6, 2005. 11

S. Garg and M. Kappes. An experimental study of throughput for UDP and VoIP traffic in IEEE

802.11 b networks. 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003, 3:

1748–1753, 2003. 4

S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS

Operating Systems Review, 42(5):64–74, 2008. 11, 14

E.L. Hahne. Round-robin scheduling for max-min fairness in data networks. IEEE Journal on Selected

Areas in communications, 9(7), 1991. 9

T.R. Henderson, E. Sahouria, S. McCanne, and R.H. Katz. On improving the fairness of TCP con-

gestion avoidance. GLOBECOM NEW YORK, 1:539–544, 1998. 34

G. Holland and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks. Wireless

Networks, 8(2/3):275–288, 2002. 12

Intel. Using the RDTSC Instruction for Performance Monitoring. Technical report, Intel Coorpora-

tion, 1997. 77

V. Jacobson. Congestion avoidance and control. ACM SIGCOMM Computer Communication Review,

25(1):187, 1995. 14

102



REFERENCES

R. Jain, A. Durresi, and G. Babic. Throughput fairness index: an explanation. In ATM Forum

Contribution 99, volume 45, 1999. 68

D. Katabi, M. Handley, and C. Rohrs. Congestion control for high bandwidth-delay product net-

works. In Proceedings of the 2002 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 89–102, 2002. 15

T. Kelly. Scalable TCP: Improving performance in highspeed wide area networks. ACM SIGCOMM

Computer Communication Review, 33(2):91, 2003. 17, 19, 79

C. Koch and T. Poggio. Biophysics of computation: Neurons, synapses, and membranes. Synaptic

function, pages 637–697, 1987. 29

E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion control without reliability. ACM

SIGCOMM Computer Communication Review, 36(4):38, 2006. 9, 25

W. Lehr and L.W. McKnight. Wireless internet access: 3G vs. WiFi? Telecommunications Policy, 27

(5-6):351–370, 2003. 1

DJ Leith and P. Clifford. TCP Fairness in 802.11 WLANs. In 2005 International Conference on Wireless

Networks, Communications and Mobile Computing, pages 649–654, 2005. 72

T.D.C. Little and D. Venkatesh. Prospects for interactive video-on-demand. IEEE multimedia, 1(3):

14, 1994. 1

M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP congestion

avoidance algorithm. ACM SIGCOMM Computer Communication Review, 27(3):67–82, 1997. 13

D.R. McNeal. Analysis of a model for excitation of myelinated nerve. IEEE Transactions on Biomed-

ical Engineering, pages 329–337, 1976. 46

S.K.X.L. Min and D. Dai Loguinov. Packet-pair bandwidth estimation: Stochastic analysis of a single

congested node. In Proceedings of the 12th IEEE International Conference on Network Protocols,

2004. ICNP 2004, pages 316–325, 2004. 63

J. Mo, R.J. La, V. Anantharam, and J. Walrand. Analysis and comparison of TCP Reno and Vegas.

In IEEE INFOCOM, volume 3, pages 1556–1563, 1999. 11

103



REFERENCES

G. Motwani and K. Gopinath. Evaluation of advanced TCP stacks in the iSCSI environment us-

ing simulation model. In Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass

Storage Systems and Technologies (MSST 2005), pages 210–217, 2005. 2

D.C. Mowery and T. Simcoe. Is the Internet a US invention?–an economic and technological history

of computer networking. Research Policy, 31(8-9):1369–1387, 2002. 11

M. Nabeshima. Performance Evaluation of MulTCP in High-Speed Wide Area Networks. IEICE

Transactions on Communications, pages 392–396, 2005. 22, 23

K. Nahm, A. Helmy, and C.C. Jay Kuo. TCP over multihop 802.11 networks: issues and performance

enhancement. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking

and computing, page 287, 2005. 3

R.H. Osborne. Insect neurotransmission: neurotransmitters and their receptors. Pharmacology and

Therapeutics, 69(2):117–142, 1996. 29

J. Padhye, V. Firoiu, D.F. Towsley, and J.F. Kurose. Modeling TCP Reno performance: a simple model

and its empirical validation. IEEE/ACM Transactions on Networking (ToN), 8(2):133–145, 2000.

15

S.H. Rodrigues, T.E. Anderson, and D.E. Culler. High-performance local area communication with

fast sockets. In Proceedings of the annual conference on USENIX Annual Technical Conference,

page 20, 1997. 79

S. Ruthfield. The Internet’s history and development. Crossroads, 2(1):2–4, 1995. 6

H. Samueli. The Broadband Revolution. IEEE Micro, 20(2):26, 2000. 1

P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan. WTCP: A reliable

transport protocol for wireless wide-area networks. Wireless Networks, 8(2):301–316, 2002. 20

R. Stewart and C. Metz. SCTP: New transport protocol for TCP/IP. IEEE Internet Computing, pages

64–69, 2001. 9

C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska. Implementing network protocols at user

level. IEEE/ACM Transactions on Networking (TON), 1(5):565, 1993. 79

104



REFERENCES

K. TOKUDA, GO HASEGAWA, and M. MURATA. Performance Analysis of HighSpeed TCP and its

Improvement for High Throughput and Fairness against TCP Reno Connections. IEIC Technical

Report (Institute of Electronics, Information and Communication Engineers), 102(694):213–218,

2003. 17, 18, 79

M.J.K. Van Jacobson. Congestion avoidance and control. ACM Computer Communication Review,

18(4):314–329, 1988. 11

M. Vojnovic, J.Y. Le Boudec, and C. Boutremans. Global fairness of additive-increase and

multiplicative-decrease with heterogeneous round-trip times. In IEEE INFOCOM, volume 3, pages

1303–1312, 2000. 16

D.X. Wei, C. Jin, S.H. Low, and S. Hegde. FAST TCP: motivation, architecture, algorithms, perfor-

mance. IEEE/ACM Transactions on Networking (ToN), 14(6):1246–1259, 2006. 21, 79

L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (BIC) for fast long-distance

networks. In IEEE INFOCOM, volume 4, pages 2514–2524, 2004. 11, 13, 79

Y.R. Yang, M.S. Kim, and S.S. Lam. Transient behaviors of TCP-friendly congestion control protocols.

Computer Networks, 41(2):193–210, 2003. 10

R. Yavatkar and N. Bhagawat. Improving end-to-end performance of TCP over mobile internet-

works. In Mobile Computing Systems and Applications, 1994. WMCSA’08. First Workshop on,

pages 146–152, 1994. 4

Y. Zhang and T.R. Henderson. An implementation and experimental study of the explicit control

protocol (XCP). In IEEE INFOCOM, volume 2, page 1037, 2005. 24, 25

105


	List of Figures
	List of Tables
	1 Introduction
	1.1 The Present Day
	1.2 The Motive
	1.3 The Current State of Research
	1.3.1 Ongoing research
	1.3.2 The need for further research

	1.4 Aims of the Project
	1.4.1 Final aim
	1.4.2 Preliminary aims

	1.5 A Reader's Guide

	2 State of the Art
	2.1 Transmission Control Protocol - Past it's best
	2.1.1 The varying versions of TCP
	2.1.1.1 Tahoe and Reno - A differential overview
	2.1.1.2 NewReno - An improvement on the familiar
	2.1.1.3 TCP SACK - Reno and Selective Acknowledgements
	2.1.1.4 BiC - Suiting the Long and Fat (Networks)
	2.1.1.5 TCP CUBIC - Bic3

	2.1.2 Shortfalls of TCP
	2.1.2.1 Poor link utilization in high Bandwidth Product Networks
	2.1.2.2 Unfairness at long round-trip times
	2.1.2.3 Confused by lossy links

	2.1.3 Summary

	2.2 Previous Work
	2.2.1 TCP Modifications
	2.2.1.1 Highspeed TCP
	2.2.1.2 Scalable TCP
	2.2.1.3 Wireless TCP
	2.2.1.4 FAST TCP
	2.2.1.5 MulTCP

	2.2.2 Explicit Control Protocol (XCP)
	2.2.3 Datagram Congestion Control Protocol (DCCP)
	2.2.4 Ant-Colony Based Routing

	2.3 Biology - A possible source of inspiration?
	2.3.1 Biology and Data Communications - The Link
	2.3.2 Biology and Data Communications - The How

	2.4 Contributions

	3 Design
	3.1 Introduction
	3.2 Neurology - An inspiration
	3.2.1 The Neuron - A technical perspective
	3.2.2 The Focus - How neurons communicate between each other?
	3.2.3 An in-depth analysis
	3.2.4 The borrowed concepts

	3.3 Implementation Structure
	3.4 Data Sending and Receiving
	3.5 Packet Structures
	3.6 Timers
	3.6.1 Acknowledge
	3.6.2 Loss
	3.6.3 Expiry
	3.6.4 Send

	3.7 Connection Management
	3.7.1 The Handshake
	3.7.2 The Client/Server Connection Process
	3.7.3 Rendezvous Connection Setup
	3.7.4 Acknowledgements

	3.8 Loss Reports
	3.9 Connection Maintenance
	3.10 Connection Shutdown
	3.10.1 The Sender's Algorithm
	3.10.2 The Receiver's Algorithm
	3.10.3 Acknowledgement Event Processing
	3.10.4 Loss Report Event Processing
	3.10.5 Expiry Event Processing
	3.10.6 On receiving an Acknowledgement Packet
	3.10.7 On receiving a Loss Report packet
	3.10.8 On Acknowledgement of Acknowledgement (AoA) packet received
	3.10.9 On Keep-alive packet received

	3.11 Flow Control
	3.12 Congestion Control
	3.12.0.1 MIMD with decreasing increases and increasing decreases (DIID)
	3.12.0.2 MIMD (DIID) in Axon

	3.12.1 An outline of the benefits DIID brings
	3.12.2 Rate implied Congestion Control
	3.12.3 The Determination of Bandwidth
	3.12.4 Being sensible about Packet Loss

	3.13 An Overview

	4 Materials and Methods
	4.1 Efficiency and Throughput
	4.2 Inter-protocol Fairness
	4.3 TCP Friendliness
	4.4 Stability (Oscillations)
	4.5 CPU Usage
	4.6 Test bed

	5 Implementation
	5.1 Software Architecture
	5.2 Even Distribution of Processing
	5.3 Loss Information Management
	5.4 Memory Copy Avoidance
	5.5 Assuring accurate Rate Control
	5.5.1 High Precision Timer

	5.6 Speculation of Next Packet
	5.7 Threading
	5.8 Related Work
	5.9 Concluding Remarks

	6 Discussion
	6.1 Efficiency, Fairness and Stability
	6.2 TCP Friendliness
	6.3 Implementation Efficiency
	6.4 Performance in Real World Applications
	6.5 Concluding Remarks

	7 Conclusions
	7.1 Contributions
	7.1.1 A High Performance Data Transport Protocol and a Implementation of

	7.2 An Efficient and Fair Congestion Control Algorithm
	7.3 Limitations and Future Research Direction
	7.3.1 Bandwidth Estimation in the Context of Transport Protocol
	7.3.2 Implementation Optimization
	7.3.3 Tuning and Configuration


	8 Concluding Remarks
	References

