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Abstract 
 

 

The future of mobile and ubiquitous computing presents many novel 

challenges for protocol design. The increasing popularity of dynamic, 

Mobile Ad-hoc Networks with heterogeneous nodes has meant that major 

questions have been asked about the suitability of IP addressing as a 

means of identifying nodes in modern networks.  

 

This research presents a new way of creating identities for communicating 

devices in modern networks. The novel concept of an Agent-Oriented 

Neural Network is introduced as a means of evolving a personality for a 

device. The device’s evolved personality reflects the functional capabilities 

of the device and its usage patterns. 

 

The personal identity is designed to aid reliable route path selection and 

to promote respect for other devices in heterogeneous networks. This is 

achieved by providing information about what a device is capable of 

handling. Nodes will be able to select next-hop recipients with similar 

functional capabilities to themselves, knowing that they can reliably 

forward their load as their personality reflects similar traits.  
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Chapter 1 

Introduction 
 

 

This research is concerned with developing a new method of identifying 

network nodes with a view to rectify the growing constraints posed by 

current addressing protocols such as IPv4 and IPv6, which date back as 

far as 1980. 

 

In this research a solution is presented to address some of the problems 

that current node identification techniques cause for effective data 

dissemination in modern networks. The solution discussed in this research 

is centred on a new means of identifying devices in a more meaningful 

way. A novel concept called an Agent-Oriented Neural Network (AONN) 
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is introduced, which takes a node’s usage patterns by monitoring the 

activity of hardware modules and evolves a unique personality for the 

node. The personality is based on its interactions with its environment, 

with other nodes and with the devices used, where applicable.  

 

The research undertaken in this dissertation is regarded as a contribution 

to the work done in the field of content and characteristic-based routing 

approaches. 

 

1.1 Research Question 

The research question that this dissertation addresses is: 

 

Can an identity be built for a network node that provides details about 

what kind of device it is and how it is used? 

 

1.2 Context 

The trends, for the future of the Internet and the future of mobile and 

ubiquitous computing, show that the traditional methods of identifying 

network nodes are not suitable for the dynamic nature of the modern 

topology-free networks, such as Mobile Ad-hoc Networks (MANETs). The 

TCP/IP stack protocols were designed for, and for the most part still rely 

on, fixed network structures using static gateways to interconnect 

networks.  

 

For the majority of node identification techniques, the identity given to a 

device is bereft of any information about the device itself or what it is 
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capable of. Some modern approaches to routing protocol design observe 

characteristics of devices or content of the messages nodes are transferring. 

This approach is taken in order to create a more meaningful method of 

choosing routing paths for data in a network.  

 

An assumption is made in this research to motivate the design. The 

assumption is that in a highly dynamic MANET it is more beneficial to 

know what kind of device your payload is being routed through for 

reliability and respect for other devices in the network (se Fig.1). For 

instance, it is assumed to be less favourable to route a large video stream 

through a Bluetooth enabled, low power, sensing module, as its 

computational ability would not be sufficient to handle such a load. 

Furthermore, it is assumed to be better practice not to overload devices, of 

low computational power, with large complex loads that may adversely 

affect the way they perform the duties they were designed to perform. 

 

 

 

Fig.1. Path through MANET with heterogeneous nodes. 

 

1.3 Aim and Objectives 

The aim of this research is to identify the challenges that are introduced 

by emerging mobile technologies. The research aims to identify the current 
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state-of-the-art and analyse it with a view to its potential limitations. The 

main goal is to introduce a novel method of identifying network nodes, 

which are focused primarily on catering for the needs of devices in 

dynamic topology-free networks such as dynamic MANETs with 

heterogeneous nodes. Once the solution design is presented to the reader it 

is the aim of the author to critically evaluate the solution with a 

comparative study and analysis in order to ascertain whether the solution 

could be applied in the real world. 

 

The overall objective of this research is to introduce a new method of 

identifying network nodes, which can help future mobile technologies 

integrate seamlessly into the established infrastructure. Whether the 

outcome of the presented solution is successful or not, it is the author’s 

goal to inform the research community of the findings of this dissertation 

in order to aid meaningful research in the future. 

 

1.4 Motivation 

The motivation for this research is the lack of adaptability and suitability 

of many of the node identification systems currently in place. The aim of 

this research is to try to offer a better method of identifying network 

nodes, which reflects the functionality and capability of the device. With a 

view to the future, it seems imperative to begin taking a new look at what 

is considered important information for communicating in a network. 

 

This research is motivated also by the required complexity of routing 

protocols due to the current node identification techniques and by the 

issue of address space depletion. 



  5 

 

1.5 Study Background 

There are four main areas of interest in this research the first of which is 

IP addressing. Since the beginning of the Internet there has been some 

means of identifying the end nodes of a communication. As the Internet 

has evolved, technologically as well as in scale, new challenges are arising. 

We find ourselves at a point of uncertainty, where a new focus on mobile 

technology is revealing the limitations of the current Internet 

infrastructure. However, because of how well established the infrastructure 

is, it is almost unimaginable to consider what would be involved in 

implementing some new design for it. With this considered, it is not the 

author’s intention to attempt to reinvent the Internet. Instead the solution 

this research hopes to provide is a new means of identifying network nodes 

in such a way that allows for less reliance on static addressing schemes. As 

every node has a number of hardware modules installed, there is the scope 

for generating an identity for each node based on its own unique usage 

patterns. 

 

The second area of interest in this research is with regard to Mobile Ad-

hoc Networks (MANETs). MANETs are becoming more prominent in the 

development of the future of mobile computing and with these new 

networks comes inherent challenges for the legacy protocols still widely in 

use. Many new approaches have been introduced to help to integrate 

MANETs into the current infrastructure and new protocols pioneered to 

best suit the dynamism of these ever-changing networks.  
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The third area of interest in this research is Characteristic or content-

based routing protocols. Characteristic-based routing protocols attempt to 

remedy the static nature of IP addressing by attaching some metaphor to 

the nodes in the network and using a characteristic of this metaphor, 

rather than some static ID, to help improve the freedom of a node. In this 

research a number of these techniques will be identified to best assess 

where the author’s contribution lies. One of the main challenges for the 

future of MANETs is to try to either break down the static constraints of 

the Internet infrastructure – with its minefield of gateways and routers and 

switches etc. – or improve the current technologies to overcome these 

constraints.  

 

This research will follow in the vein of Characteristic and or content-based 

ideology. By creating a personality for a device it is possible that routing 

protocols could utilize this knowledge to improve how they function. 

When nodes have personalities based on the hardware technologies they 

have installed, it is projected that they will be more meaningfully 

identified. Furthermore, it is projected that this will aid the discovery of 

reliable routing paths as a node’s suitability for processing or forwarding 

data packets will be apparent in its personality. 

 

The fourth and final area of interest in this research is Pattern generation. 

For the solution introduced in this research an approach of pattern 

generation is adopted. The solution described in this research involves 

intelligently evolving a personality from a node’s hardware usage data. 

For this the Agent-Oriented Neural Network (AONN) is introduced, which 

merges some Multi-Agent Systems (MAS) ideology with Artificial Neural 

Networks (ANN) to produce a more powerful pattern-generating solution. 
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In this research the use of ANNs is investigated for pattern generation as 

they have been utilized to great effect for memory modelling and pattern 

recognition in the fields of Machine Learning and Connetionist computing 

[1][2].  

 

A set of Goals, Beliefs and Actions are formulated for each Neuron so that 

they fire deliberately rather that in accordance with some binary threshold 

function.  

 

In this regard MASs play two crucial roles: 1) for adding logical reasoning 

to Neurons; and 2) for gaining insight into Agent behaviours for 

cooperative versus non-cooperative Agents and deliberative versus reactive 

or bold Agents [3]. 

 

1.6 Dissertation Structure 

In Chapter 2 the current state-of-the-art is defined with regard to current 

node identification techniques, focusing on aspects of mobility. 

 

In Chapter 3 a discussion about the solution design is presented. Both 

basic and advanced design perspectives are discussed. 

 

Chapter 4 provides a discussion about the solution’s implementation 

design. 

 

Chapter 5 presents a comparative evaluation of the solution with respect 

to the current state-of-the-art. 
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Finally, the conclusions drawn from this research are presented in Chapter 

6. Some suggestions for future work are offered. 
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Chapter 2 

State Of The Art 
 

 

In this chapter a literature review is presented which details the current 

state-of-the-art for node identification. 

 

 

2.1 The Internet Protocol 

Identifying nodes in a network is crucial as it facilitates the routing of 

packets from a source to a destination. Without node identification, 

packets may never be delivered to the desired recipient. The IP protocol is 



  10 

a network or Internet layer protocol, which looks after the addressing and 

forwarding of packets. From the very beginning of networking there has 

always been some means of nodes identification. However, not all have 

been as suitable for the growing Internet as IP addressing. IP addressing 

was designed for identifying many millions of nodes within local networks, 

which are topologically disparate from one another. Fundamentally IP 

addressing is a static addressing protocol, which is infrastructure and 

location dependent. It also relies on static gateways to assign network 

addresses. Many suggested solutions such as SIP in Driessen et al [4] have 

failed, however they have paved the way for pioneering thought for 

approaching the Internet protocol. 

 

2.1.1 History 

One of the earliest recorded descriptions of a network-based social 

interaction was by J.C.R. Licklider of MIT in a series of memos from 

August 1962 detailing his “Galactic Network” concept [5]. His vision was a 

globally interconnected network of computers, which could facilitate fast 

data access and programs from anywhere in the world. Fundamentally, 

Licklider envisioned the modern Internet.  

 

Following Licklider’s advice Leonard Kleinrock convinced Lawrence 

Roberts that a global internetwork was theoretically feasible, using packet 

communications rather than circuits. This was a major innovation in the 

field of data networks and began a new era of computer-based 

networking. Another major consideration in this was to get the computers 

to communicate with one another. In 1965 the first connection was made 
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between two computers using this new computer networking approach, the 

TX-2 computer in MIT and the Q-32 in California using a low speed dial-

up telephone line. This was marked as the very first wide-area computer 

network [6]. 

 

In 1966 Roberts began developing the computer network concept at 

DARPA where he pioneered his plan for “ARPANET”, the first 

internetwork [7]. For the first time the term “packet” was used to describe 

data segments and a proposed line speed was suggested as 50kbps for the 

ARPANET. 

 

By August 1968, Roberts along with other DARPA researchers had 

outlined the main structure and specifications for the ARPANET. 

However, one of the main areas of interest remained in question, the 

packet switches called Interface Message Processors (IMP). 

 

The Internet Protocol was first described by Cerf and Kahn [8], as “a 

protocol that supports the sharing of resources that exist in different 

packet switching networks”. The protocol outlined in this work was 

designed to provide for a number of challenges inherent in packet-

switching networks such as, varying packet sizes, packet transmission 

failures, packet sequencing, flow control, end-to-end error checking, and 

logical process-to-process connections. The authors introduce the concept 

of Gateways as an interface between networks, which allowed for packets 

to be transmitted from one network to another. The introduction of the 

Gateway here adds an addressing complexity to the routing of packets 

from a source to a destination, as with Gateways it is possible to transfer 

packets through networks of different types. The Gateways convert 
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packets into the format of the network they interface and thus the 

addition of an “internetworking header” in the packet’s prefix. The authors 

outline the need for a uniform address space common to all networks in 

order for there to be cooperation between the TCPs at each “host” and to 

allow for packet fragmentation and re-assembly to happen successfully. 

While introducing the notion of ports the authors also speculate the first 

IP address called a TCD address, which is a 24-bit address for TCP to 

TCP connection. 

 

By 1969 four host computers were connected together to form the initial 

ARPANET, which formed the first internetworked packet switching 

network and thus the foundation for the Internet [9]. In the same year the 

first Request For Comments (RFC) was published by Internet Engineering 

Task Force (IETF) on the ARPANET as a means of gathering feedback 

on ideas and questions asked about ARPANET. RFC 1 [11] was the first 

RFC published on APRPANET’s Host Software. It outlines some 

fundamental attributes of the IMPs and Hosts on the ARPANET. At this 

early stage messages were send with a 16-bit header containing a 5-bit 

destination address, an 8-bit link header, a 1-bit trace bit and 2 unused 

spare bits. In these first stages of the Internet a 5-bit address was sufficient 

for identifying an end node due to the small number of nodes on the 

internetwork.  

 

In 1972 Robert E. Kahn outlined some rules for a new protocol, which 

with the help of Vinton Cerf in 1973, became the Transmission Control 

Protocol/Internet Protocol (TCP/IP) [9]. This new protocol effectively 

replaced the old Network Control Protocol (NCP) used prior to this. With 

it was brought end-to-end host error control and more reliable packet 
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transmission. Thus supporting a more communication-oriented, open-

architecture network. For this protocol a 32-bit IP address was sufficient 

for the vision of ARPANET by its creators as a national infrastructure of 

relatively small numbers of nodes. The first 8-bits were dedicated to 

identifying the network and the remaining 24-bits for identifying the host 

within the network. 

 

At the same time Xerox PARC was developing Ethernet and local area 

netwroks. However, engineers at DARPA did not consider internetworks of 

more than 256 individual networks – evident in their modest Address 

space provided in the early TCP/IP. 

 

In [10] a series of APRPANET protocols were put to the test to evaluate 

their performance with respect to packet throughput over long distances. 

The protocols, which were a development of some of the ideas expressed in 

[8], are shown to perform quite well under the described circumstances. As 

their addressing mechanism was much the same as that described by Cerf 

and Kahn [8], it was shown that the main concern for the early 

internetworks was not with addressing but with flow control and message 

processing.  

 

When efforts were made to develop more advanced network applications 

TCP/IP was found to hinder the performance of some of these 

applications where some packet loss should not be corrected. This led to 

the split of TCP and IP into two separate, more specific, protocols. User 

Datagram Protocol (UDP) was developed to bridge the gap and IP’s role 

was confined to simply addressing and forwarding [9]. 
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As Xerox PARC were focused on developing personal workstations such as 

the Xerox Alto, David Clark of MIT set out to simplify TCP to run on 

these new machines. This proved that PCs and workstations could also 

join the Internet and with the early development of email in DARPA there 

was a new surge interest in a more inclusive Internet. 

 

Through the 1980s, the Ethernet innovations at Xerox PARC, led by Bob 

Metcalfe, helped to develop the Internet and its protocols for use with 

much larger numbers of processing nodes than had been considered by the 

ARPANET. In RFC 760 (1980) [11] the IPv4 address was redefined as a 

32-bit ID, 8-bits as the network number and 24 bits for the local address, 

which were assigned by the local network. This would allow for a single 

host to appear as multiple hosts. However Ethernet would soon adopt a 

48-bit Media Access Control (MAC) address instead to cater for the new 

volumes and types of traffic for the new Ethernet networks. 

 

The development of the IP through the 1980s was very much 

concentrated on the physical location of networks and nodes and the 

infrastructure of the whole Internet was formed on the assumption of static 

nodes. With the introduction of Domain Name Servers (DNSs), Interior 

Gateway Protocols (IGPs) and Exterior Gateway Protocols (EGPs) the IP 

address evolved into an identifier, which indicated a physical location 

inside a hierarchy of spatially specific gateways and routers. 

 

With the privatization of the Internet infrastructure came a great 

competitive upsurge in technological development for company gain. This 

drove the scale of the Internet through the 1990s and pushed 

technological advances. The more nodes coming on line the more the 
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technology was refined and the more the IP address space was being 

exhausted.  

 

In 1998 with the Internet expanding rapidly the IETF recognized the 

depletion of the IPv4 address space. As a solution they devised an 

expanded namespace called IPv6 (RFC 2460) [11]. IPv6 was defined as a 

128-bit address allowing 2128 possible addresses. While this measure solves 

the current problem of available IP addresses it still assumes that a node is 

connecting to a static access point to a local network somewhere. 

 

2.1.2 Limitations of IP 

IP’s limitations can be attributed to some basic characteristics i.e. in order 

to send a packet over the Internet a node must have an IP address. A 

node’s IP address is an indication of the computer’s physical location. The 

TCP/IP protocol routes packets from a source to a destination using an 

IP address. These factors produce some major limitations for IP. Such as if 

a mobile node moves between network access points without changing its 

IP address, the routing is lost and if a node changes its IP address its 

connection to the network is lost. Thus, with IP there is very poor 

crossover between Wifi networks. Packets will be lost either, when the 

connection fails or the route fails which means the network is unreliable 

[12][13]. 

 

For proper mobility the wireless Internet will have to provide all of the 

services available on the Internet and should be reliable. It should provide 

reasonable throughput both indoors and outdoors for both mobile and 

stationary nodes. It should use energy efficiently as most devices run on 
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batteries and should scale up to support millions of active devices in a 

single metropolitan area [13][14].  

 

2.1.3 Mobile IP 

Mobile IP is a new set of protocols created for mobile computing. It is an 

improvement of IPv6, which enables nodes to continuously receive data 

packets regardless of their access point to the Internet. Mobile nodes can 

still maintain communication with others when passing between access 

points to the Internet, using the same IP address. However, mobile IP still 

cannot facilitate smooth network handover or fast mobility [13]. 

  

Packets are routed end-to-end from a source node to a destination node 

using IP. This is facilitated by forwarding packets from incoming network 

interfaces to outbound interfaces. The routing of these packets is done 

according to a routing table, which maintains all next hop information 

about each destination IP address. The routing table’s information is 

based on the number of networks a particular IP address is connected to. 

In the IP address the bits that contain information about the node’s point 

of attachment to the network are generally masked. From this the 

network number is derived. 

 

In order to sustain the existing transport layer connections a node must 

keep its IP address the same while travelling from place to place. In TCP, 

connections are indexed using a quadruplet header that contains the IP 

addresses and port numbers of both connection endpoints. If any of these 

four numbers are changed the connection cannot be established properly 
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and will be lost. However, in order for packets to be correctly delivered to 

a mobile node’s point of attachment, it requires the correct network 

number from the node’s IP address, which changes for each new point of 

attachment. If the routing is to be changed then a new IP address must be 

assigned to the new route, as the end points of attachment will change.  

 

Mobile IP aims to solve the problem of IP re-assignment by issuing each 

mobile node with two IP addresses: a home address and a care-of address. 

The home address is static and is used to identify a node for TCP 

connections. The care-of address is dynamic and is assigned each time a 

new point of attachment is established. This address can be considered as 

mobile node’s topologically significant address – it contains the network 

number, which identifies the node’s point of attachment location in the 

network topology. [12] 

 

2.2 Mobile Ad-hoc Networks 

In this section I will be looking at the nature of MANETs and their 

implementation of Transport protocols for data transmission in networks 

with no topology. 

 

Mobile Ad-Hoc Networks are a type of wireless ad hoc network. They 

typically exist in a routable networking environment on top of a Link Layer 

ad hoc network. Generally, each device in a MANET is free to move around 

from point to point connecting to many different devices and access points. 

For these behaviours a MANET’s topology should be a self-organizing and 

each node should participate in forward packets from other nodes, which 

may be unrelated. One of the main challenges for building a network like 
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this to ensure that each node can maintain continuous accurate information 

necessary for routing traffic. MANETs can operate independently or can be 

connected to the larger Internet [14]. 

 

In the last decade there has been a great rise in the number of mobile 

devices such as laptops and other portable 802.11 powered devices. This has 

impacted upon the type of network infrastructure needed to serve such 

devices. MANETs have become an important area of research as a result. 

There has been a great focus on new protocols and their ability to 

accommodate an ever-changing network topology.  

 

Currently there are three major classes of MANET: Internet Based Mobile 

Ad-hoc Networks (IMANET), Vehicular Ad Hoc Networks (VANET) and 

Intelligent vehicular ad hoc networks (InVANET). IMANET is the most 

significant of the mobile ad-hoc networks as they are constituted of mobile 

nodes inter connecting and also connecting directly or indirectly to fixed 

Internet-gateway nodes. VANETs are comprised of many vehicles 

interconnecting and connecting with some roadside source. Stucturally and 

idealistically IMANET and VANETs are quite close. However, the mobility 

of their respective nodes is very different. Fundamentally, the challenges for 

fast, reliable packet delivery are the same. However, for VANETs one of the 

greatest challenges is fast reliable route discovery and establishment of 

connections.  

 

MANETs have some unique characteristics, which make them inherently 

more challenging than other network types, such as broadcasting 
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communication, path loss, fading, interference, Doppler shift, transmission 

rate constraints, and highly frequent routing changes. [14] 

 

2.2.1 Challenges 

In this section I will discuss the challenges that MANETs face with the 

current Internet infrastructure and the challenges faced by a network with 

such topology-independent characteristics. 

 

There are many technical and research challenges associated with 

MANETs, which need to be addressed for the successful function of the 

network. MANETs and their inherent architectural characteristics have 

many benefits for the intercommunication of modern devices, such as self-

reconfiguration and the ability to adapt to certain mobile characteristics 

(i.e. traffic distributions, transmission conditions, power and load 

balancing. Although these are benefits to the overall freedom and variety 

of nodes they also pose some difficult challenges due to their 

unpredictability. Thus, designing systems on top of these networks can be 

very tricky. Furthermore, to establish a system of identifying nodes and 

routing packets with some sort of reliability and robustness is an essential 

but difficult challenge to overcome. Already some developments in the 

area have attempted to alleviate some of the challenges born from 

MANETs unpredictability, such as, distributed MAC and dynamic routing, 

Wireless Service Location Protocol, Wireless Dynamic Host Configuration 

Protocol, distributed admission call control, and quality-of-service (QoS)–

based routing technique. [15] 
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2.3 Characteristic-based Routing 

Characteristic-based routing protocols attempt to address the limitations 

of IP addressing. These limitations adversely affect the freedom of the 

connectivity that modern Internet ready devices should enjoy. Many new 

ideas have surfaced in response to the needs of modern devices in 

topology-free networks. One of the most prominent fields of thought is 

centred on the concept of routing network traffic using some characteristic 

of a node instead of a static number. 

 

An approach has been developed within the Distributed System Group 

(DSG) in Trinity College Dublin whereby a network node advertises 

certain characteristics attributed to themselves such as, an ability to act as 

a gateway to a wired network etc. Information is propagated through the 

network in a way similar to gossiping. This approach is designed as a 

replacement for IP addressing at the network layer [15]. 

Traffic in a MANET is typically routed through the network from a source 

to a destination following this characteristic. In [15] packets are picked up 

by neighbouring nodes and forwarded to nodes with similar characteristics. 

Characteristics are distributed through the network in the same way that 

water flows from a spring. The process of packets being delivered 

resembles, “the following of the stream of water upwards towards the 

spring”.  

 

2.3.1 Discussion About Content-based Routing Strategies 

In [16] the authors outline a content-based communication infrastructure 
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for the first time, which marked the beginning of a new service model 

targeting MANETs. They define their model, not as a replacement for IP 

but rather, an infrastructure to facilitate interfacing with a 

publish/subscribe middleware service. The authors outline the architectural 

criteria for the network model, which is designed to incorporate reliability, 

security and performance. 

 

The model the authors describe is not intended to replace IP or interfere 

with any network layer protocols. Rather the model is based on standard 

physical network architecture where physical components such as routes 

and hosts are considered and nodes in a graph and their immediate 

connection links as the arcs between the nodes. Links are assumed to be 

bi-directional and thus the model is considered to be a non-directed graph. 

With this graphical model view the authors define their service model to 

vary substantially from traditional unicast and multicast networks. Instead 

of datagram addresses being used r-predicates and s-predicates are used. 

These define a datagram that a node intends to receive or send 

respectively. Datagram models and Predicate models outline format 

specifications for datagrams and how nodes intend to send or receive 

them. A router in the network stores a routing table based on the 

graphical model of the network, and forwarding of packets is done based 

on this routing table. The router maintains and updates its routing table 

by keeping a register of predicates for adjacent nodes. The forwarding 

table is used to disseminate datagrams along possible optimal routes. 

 

The advantage of this network model is that it sets up a framework which 

facilitates ad-hoc networking because nodes in the network simply have to 

use predicates to signal their intention to participate in data dissemination 
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within a particular network. 

 

This introduction to content-based networking spurred much development 

in similar ad-hoc routing focused approaches, such as that of the scalable 

protocol for content-based routing overlay networks by [17] and the first 

proper implementation of a forwarding algorithm for content-based 

networks is described by [18]. Both publications extend the model defined 

by [16].  

 

In [18] the same authors as [16] extend their original model to include a 

functioning forwarding algorithm. The algorithm is based on content 

filtering for text documents and used these to handle message predicates. 

Their initial design yielded some reasonable results but as the authors 

themselves concede, this is the first attempt to tackle a complex problem. 

 

In [17] the authors outline a protocol called XRoute, which they 

demonstrate to implement a very convincing routing scheme. It appears to 

optimize bandwidth and network use by minimizing the size of routing 

tables being maintained in the system using tree structures. The authors 

demonstrate a good scalable solution, which can facilitate large numbers 

of nodes using their XTRIE filtering algorithms running on the application 

layer of a router.  

 

The authors provided some good optimizations for content-based 

networking, which could be used to great effect for MANETs. If each node 

had the potential to act as a router then this could be a very powerful 

system. Perhaps with a token system an application layer algorithm could 

judge when a particular network was becoming saturated and then 
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another node could be activated as a router – maybe on the periphery of 

the network in order to extend the functional limits of the network. 

  

It is clear how a content-based model might facilitate the use of a 

personality described in this research. A node could register its personality 

with a router and an optimized routing path could be devised based on 

the personality as the type of device that is connected is revealed in its 

personality. Possibly one of the most valuable contributions of content-

based networking is that it can support the integration of other routing 

schema based on a different kind of predicate. Predicates could be defined 

and altered to be almost anything and some of the existing forwarding 

algorithms and routing schemes could be adapted to the new content or 

characteristic with relative ease. 

 

One such adaptable routing scheme is outlined in [19]. A “push” and “pull” 

type mechanism is used with a broadcast protocol in order to propagate 

route information. In the case of this particular scheme, message predicates 

are processed using a matching algorithm. This is a potentially costly 

solution for the networks of limited processing nodes, such as WSNs. 

However, it seems like a viable possibility for less resource constrained 

networks. 

 

Naturally, it would seem that this kind of network is more suitable for the 

types of networks we come to imagine in the future. We imagine 

autonomously maintained networks where each node actively routes 

packets for the network and perhaps nodes become delegated as routers as 

capacity dictates. Perhaps the rise in popularity in WiMax networks and 

the move to an all IP-based, packet switched, cell network technology will 
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mean that soon there will be ubiquitous access to the Internet without 

tricky provider restrictions and costly handover mechanisms.   

 

In [20] the authors evaluate the existing content-based routing protocols 

and critically analyse their suitability for MANETs. They established that 

while protocols mostly of provided strengths in some facets such as 

reliability and fault-tolerance, there was a trade-off for transmission speed. 

They allude to the fact that it is very difficult to achieve a good balance 

of all features of the protocols. However, focus on protocols like FT-CBR 

for highly dynamic network topologies appears to be the favoured choice 

when considering the current commercial trends in mobile device sales. 
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Chapter 3 

Solution Design 
 

 

In this chapter the design of the AONN is discussed. Firstly, the basic 

design overview is presented and the fundamental concepts and 

terminology for the solution are introduced. A high-level design view is 

given followed by a more detailed low-level description of the solution 

design.  
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3.1 Overview 

An Agent-Orient Neural Network is used in this research to generate 

patterns for network nodes, which represent the device’s personality. This 

personality is evolved on the device and it reflects the way the device is 

used in its environment. 

 

The concept of a personality for a device could help to identify it better in 

a network. In the current design for most networks and inter-networks, a 

system of fixed switches and routers helps to divide collections of devices 

into geographically significant groupings (networks). Within these 

networks all devices have IP addresses assigned to them by the network’s 

router. However, many worldwide sales statistics released over the past 5 

years from sources such as Gartner [21] and the IDC [22] have shown a 

significant increase in the numbers of mobile devices entering into wireless 

network infrastructures around the world. For the majority of devices 

connecting in these networks IP (802.1x networks) and IMSI (cellular 

networks) addressing systems are implemented to identify unique devices. 

For these systems a number is assigned to a device, which provides 

minimal geographical location information about the device. With 3GPP 

LTE advanced beginning to roll out across the world the fourth 

generation of mobile computing will see a huge increase in the demand for 

IP addresses. With 4.7 billion mobile subscriptions worldwide [23] in 2009 

by 2012 it is likely that most of these devices will be using IP packet 

switching as part of 4 th generation telecommunications, and thus massively 

increasing the load on an already heavily-laden addressing system. 
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With an AONN-based system a device is uniquely identifiable via a 

personality called an EPID (Evolved Personal Identity). Data is fed into 

the Agents on the input layer of the AONN. Agents process the 

information they receive and make a decision on when to fire based on 

their interaction with other agents and their environment.  

 

Hardware usage is monitored by the AONN such that any activity carried 

out by a user (where applicable) is reflected in the personality of the 

device. Over time the regular use of a particular feature of a device will 

strengthen the part of the device’s personality corresponding to that 

regularly used feature. For instance if I use my Smartphone everyday to 

get my location via GPS, I use Wifi regularly to check my emails and I 

ring my classmates everyday, then GPS, Wifi and Cell Radios will define 

my particular device’s personality – thus, reflecting my own. In this way 

any device in a network can be characterised by its owner and with 

standardised personality evolution each device can quickly establish what 

every other device is capable of in its transmission range.  

 

This knowledge of other device’s capabilities is the key to its preferential 

routing potential. The assumption is that if two devices are 

communicating in a highly dynamic ad-hoc environment, full of 

heterogeneous nodes, then in order to reliably route packets it is more 

favourable to do so via nodes that are familiar to both end nodes. For 

example if a mechanical Engineer want to pass information to another 

mechanical engineer (s)he is not likely to relay the message via a botanist 

unless the botanist is well read in mechanical engineering. Likewise, in a 

dynamic ad-hoc network with heterogeneous nodes it is assumed to be 

better that a Smartphone routes its data through a device similar in 
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computational ability to itself or the destination node. If we consider the 

scenario of a smart building where there may be thousands of sensors, 

laptops, PDAs, Smartphones etc. it is better that a laptop which 

consistently transmits large packets does not utilise a battery-powered 

sensor node on its routing path as it will adversely affect the performance 

of the sensor node. 

 

The ability to generate a meaningful identity for a device, which can be 

generated and utilised quickly and efficiently, is one of the main design 

concerns of this research.  

 

There are three main motivations behind this design:  

1. To help to route data more efficiently in dynamic ad-hoc networks 

with heterogeneous nodes. 

2. To provide a scalable node identification system which will not 

deplete. 

3. Ease the amount of processing required at router and switches. 

 

3.2 Terminology 

• Agent-Oriented Neural Network (AONN):  This term refers 

to the software, which processes the hardware data. It is responsible 

for generating a personality for a device. The AONN is comprised 

of Agents interconnected in an ANN structure. 

 

• Evolved Personal Identity (EPID):  The EPID is the 

personality, which is evolved using the AONN. 
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• Neural Agent or Neuron: A Neural Agent or Neuron in the 

context of the AONN refers to a computational unit in the network 

where an Agent is implemented. It is conceptually synonymous 

with a Binary threshold Neuron in a standard neural network. 

 

• Agent: An Agent in an AONN is a partially autonomous software 

agent, which replaces the traditional binary threshold function in a 

neural network. Agents adhere to the Multi-Agent System view of 

Agenthood expressed by Yoav Shoham [24]. 

 

• Synapse: In the context of an AONN, Synapses connect Agents of 

different layers to one another much like Synapses in a Neural 

Network. 

 

• Channel: A Channel refers to a conceptual medium through which 

hardware data is fed into a subset of Neurons on the Input layer of 

the AONN. Each Channel corresponds to a particular hardware 

module on the device. The hardware modules assigned to a 

Channel are standardised for all devices. 

 

• Channel Band: A Band in the context of an AONN refers to all 

active Neural Agents from the input layer up to any subsequent 

layer within a certain range dictated by the Channel. For instance, 

if Channel 1 feeds data in to Neurons 0 – 3 on the input layer then 

only Neurons 0 – 3 on all subsequent layers will be included in that 

Channel’s Band. 
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• Channel Set: Channel sets refer to the groupings of Channels into 

three groups. The most common hardware modules for mobile 

communication devices are in Set 1 and less common hardware is 

handled in Set 2 and Set 3.  

 

• Snapshot: Snapshots are momentary EPID states captured for use 

in device communication or identification.  

 

• Basetime: This is a symbolic start time generated on a test 

device, which is used by the Neural Agents as a reference point. It 

is created the first time the AONN starts and provides context for 

the Agents. 

 

3.3 High-Level Design View 

In the following section there is a high-level description of the AONN. This 

incorporates the basic design of the AONN’s structure and the overall 

concepts of the design. 

 

3.3.1 Basic design 

The AONN is based on the structure of a Multi-Layer Perceptron (MLP). 

It is based on a feedforward Neural Network (ffNN) model, which maps 

input data from the input layer of Neurons onto the Neurons on the 

output layer. The AONN is comprised of multiple layers of nodes 

connected in a directed graph. Unlike the traditional MLP, which is fully 
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connected across all layers (see Fig.2a), the AONN is fully connected in 

bands across the network (see Fig.2b).  
 

 

Fig.2a. Multi-layer Perceptron connectivity. 

 

 

Fig.2b. Agent Oriented Neural Network connectivity. 
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Each of these bands is fed by a Channel, which corresponds to a specific 

hardware module on a device. Each of the nodes in the network is a 

Neural Agent analogous to the processing elements found in an ffNN.  

 

Network Structure 

The AONN was initially designed to comprise 64 layers each containing 

64 Neural Agents. There is an input layer, Li, an output layer, Lo, and Lo-1 

– Li+1 hidden layers. Unlike an MLP with nonlinear activation functions as 

computational units, AONN Neurons have the facility to deliberate over 

when they fire according to a set of beliefs, desires, and intentions.  

 

The Neurons on the input layer are considered to be computational units 

with the same functionality as Neural Agents in the hidden layers in the 

network. Input is received at Lo via Channels and each Neural Agent fires 

a weight value, which is received as input in the Neurons on the next 

consecutive layer. The media, which carry these weights, are the Synapse.  

 

Channels 

In the initial design of the AONN, with 64 x 64 Neurons, 22 Channels 

were used to feed data into the input Neurons. Each Channel is assigned a 

particular hardware module to monitor continuously for changes in state. 

When the hardware is seen to be in use the Channel returns a 1 to the 

corresponding input Neurons it feeds. The Neural Agents process the data 

and fire only to Neurons in the next layer, which correspond to the firing 

Neuron’s Channel. In this way the data for hardware modules is processed 

in bands. 
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Based on the appearance of current mobile communication device 

specification trends, a list of the most common technologies to feature in 

such a device has been compiled. A preliminary standardised list has been 

set for the designation of hardware modules to Channels for the purposes 

of this research (see Fig.3). 

 

 

Fig.3. Channel list with assigned technologies and associated colours. 
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Technologies are assigned to Channels, depending on which appear to be 

most commonly featured in modern mobile electronic communication 

devices. Those technologies featured in Channel Set 1 are seen to be the 

most commonly occurring hardware technologies, whereas those in 

Channel Set 2 are considered to be less common. Channel Set 3 is 

designated to other technologies which a vendor or private network may 

decide to assign to their devices. 

 

EPID 

The EPID is evolved over time on a device based on the frequency of use 

of its hardware modules. If a device is designed to be operated by a user 

then the user’s patterns of operation are reflected in the EPID. Thus, the 

device’s EPID takes on the personality of the user.  

 

Scenario 

It is possible, at a high level, to establish what sort of device is being 

identified, by analysing which bands are active in the EPID. For example 

(see Fig.4) device A is a Smartphone and it wants to send an important 

video to device B. Device B is in an area of healthy cellular radio 

coverage whereas device A is in an underground Metro station with 

hundreds of people and cannot establish a connection with a cell tower. It 

sends out a search packet to try to find suitable devices in its environment 

through which to route its data packets.  

 

Within range of device A’s Bluetooth radio is a number of devices with 

Bluetooth capability. Two of the devices are basic embedded sensor nodes 

with low computational power. Their EPIDs are very different to device 

A’s. One device within range has a very similar EPID to device A but has 
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no access direct point within range. Device A sends its EPID to the 

suitable device, which in turn sends out a search packet and so on 

returning only a route chosen through nodes with similar EPIDs.  

 

 

 

Fig.4. Example scenario of preferential routing based on EPIDs. 

 

As such an EPID is designed to aid existing routing protocols by choosing 

routes through familiar devices, when using EPIDs to route traffic in a 

highly dynamic MANET with heterogeneous nodes, it is assumed to be 

beneficial to know what sort of devices share a network space. If devices 

know each other’s capabilities it is assumed that this knowledge can help 

them to reliably and more efficiently route traffic. 
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3.4 Low-Level Design View 

In this section a more advanced insight into the design and function of the 

AONN is given. A discussion about the design choices and iterations is also 

included. 

3.4.1 AONN Advanced Design 

Initial Design 

From the initial design phase it was decided to use a fully connected 

network  (see Fig.2a) with a size of 64 x 64 Neurons, as this would 

provide a highly detailed view of the devices’ use patterns. In the early 

stages the network was fully connected (see Fig.2a) and weights were 

stored on Synapses, as is the case with standard MLPs. With this design it 

meant that 63 x 4096 separate data instances were used to identify a 

device. A weight value in the range of 0 - 7 was stored on each Synapse 

meaning that there was a potential for 8258048 identities to be generated. 

 

Each Neuron was initially given a basic set of knowledge about its 

environment: Basetime, current time and location in the network. This 

context is important for the Neural Agents as their decision to fire depends 

on how much time has elapsed in its lifespan and also since the last time it 

fired. Furthermore, knowledge of where exactly in the network a Neural 

Agent is located is essential for making their decision to fire. 

 

The decision to use a Multi-Agent approach was to investigate the power 

of computation that such a design could achieve. For standard ANNs such 

as MLPs each computational unit (Neuron) is comprised of a binary 

threshold function, such as: 
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where y is the output fired by the Neuron. This step function sums all 

weight values, w, it receives as input and fires when a threshold θ is 

reached. While this method provides a means by which basic simulated 

memory and recognition can be reproduced it is still very limited and not 

very sophisticated.  

 

Initially the goal was to attempt to create an ANN where Neurons were 

more sophisticated and could operate autonomously without the 

requirement for training or supervision. The benefit of this would be to 

add a more deliberated approach to the evolution of an EPID as each 

Agent makes a calculated decision to fire. 

 

Neural Agents were designed to hold beliefs, desires and intentions in 

accordance with the BDI model described by Anand and Georgeff [25]. 

For this solution these beliefs, desires and intensions are defined as follows: 

 

• Belief: The belief set for the agent includes updated information 

about the current system time and information about when the 

Agent last fired. Also the Agents’ belief-set includes knowledge 

about where it is in located in the AONN. 



  38 

• Desire: Agents’ desire is to fire a value to the next layer. An 

Agent’s goals, desires and intentions are closely related. In this case 

the Agent only has one desire and that is to fire. 

• Intention: The Agents’ intentions are defined such that the agent 

will fire once it has received a set number of input messages from 

the preceding layer. It intends to fire once a set time has elapsed. 

The set time corresponds to the layer the Agent is in. The closer it 

is to the output layer the greater the amount of time that must 

elapse between firings. 

 

The Neural Agents were designed to function as depicted in the structure 

in Fig.5 below. 

 

 

Fig.5. Agent Architecture design. 

 

The Basetime set at the first launch of the AONN denotes the beginning 

of an Agent’s life. This is used as a reference for all decisions to fire during 

the evolution period of the EPID. Time segments are distributed over the 

layers, the sum of which amount to a period of     

€ 

te⋅ 864, where te is the time 

segment to be elapsed. The length of time segments increases linearly the 

closer an Agents is to the output layer. The distribution of time segments 

can be represented by the graph in Fig.6. When an Agent’s allotted time 

elapses it fires with a value based on how much input it has received since 
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the last time it fired. A value of between 0 - 7 is then stored on the 

Synapse and for human readability was assigned a colour corresponding to 

its weight. 

 

 

Fig.6. Linear distribution of time segments over AONN layers. 

 

First Design Revision 

Due to the amount of computational expense incurred by this design and 

the time it took to process all of the information the design was deemed 

unfeasible and impractical and as such a decision to take a new design 

approach was made.  

 

As each Agent is, by nature, designed to be autonomous it meant that 

when it came to the implementation stage that the ample test equipment, 

used for developing the prototype AONN, struggled to manage the 

computational load. 
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The first revision of the design involved changing where the weight values 

were stored. It was decided, that in order to reduced the amount of 

memory used by the AONN, weight values would be stored at Neural 

Agents rather than on Synapses. This meant that the number of possible 

identities the AONN could generate would be reduced to 84096, which is 

still a very large number. 

 

It was easier to manage the AONN with this revision as the data returned 

by the Network was more closely related to its structure. This meant that 

rendering a humanly readable version of the EPID was possible (see Fig.7). 

 

 

Fig.7. EPID in design phase 2. 

 

Second Design Revision 

The second revision was to redesign how the Synapses connected the 

Neurons. It was decided that the Channels concept should be expanded to 

a concept of Bands across the EPID. This meant that the Neural Agents 

fed by a particular Channel would fire only to an equivalent number of 
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Neurons on the next layer within the same range. Fig.8 below shows a 

Channel within Channel Set 1 where a hardware module feeds a range of 

4 Neurons at the input layer – iN0 to iN3. The Neurons in this range fire 

only to Neurons in the same range, on the next layer – N0 to N3. 

 

 

Fig.8. A Band created by segmenting Neurons across the layers. 

 

Instead of having a colour representing a weight value on a Neuron, with 

this design revision the colour was assigned to a particular Channel. As 

the Channel was assigned a particular colour the Band associated with the 

Channel thus inherited the colour. Neural Agents were redesigned also to 

be inactive until such time as the Neurons on the previous layer fired 

weight values to it. This meant that the Bands progressed through the 

layers one by one activating new layers of Neurons as more data was fed 

into its Channel. 

 

The concept of a “depth of personality trait” was adopted for the new 

Channel Band design. With the “depth of personality trait” idea the more 

a particular hardware was used the stronger that feature became part of 

the device’s personality. It can be visualised as a bar chart turned 90°, 

where the further the bar is to the right-hand-side, the deeper or stronger 

that trait is in the personality of the device (see Fig.9). 
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Fig.9. EPID in design phase 3. 

 

These design changes meant that there was less computational overhead 

due to a reduction in the number of Synapses for Neurons to fire along 

and less weight values to be stored. Moreover, the new revision meant 

that a more logical EPID was being returned by the AONN.  

 

The figure (Fig.9) represents the Bands’ progression from left to right, or 

from input layer to output layer. Bands nearer the top are thicker than 

those nearer the bottom. This is due to the fact that there are more 

Neurons in the Channels’ range (see Fig.3). This design returned one value 

for each Channel representing the maximum layer that the band had 

reached. Thus, the maximum number of combinations or identities possible 

for this design was 6422. The machine-readable version of the EPID at this 

stage vaguely resembles an IPv6 address: 
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2:31:0:0:19:60:55:12:41:47:52:0:13:29:39:57:0:0:12:0:0:0 

 

Each number separated by a “:” represents the current maximum evolution 

point of a Channel at the point at which the Snapshot is taken. 

 

Channel Bands regress if a layer’s time segment elapses with no activity. 

Depending on the apportioned time segment at a particular layer a 

proportional decrease occurs in the Channel Band. If the Neurons in a 

layer are commanded to regress then that Neuron becomes inactive again 

and can only be activated by receiving input. 

 

In the case of a Band reaching all the way to the output layer, a “cooling 

off” process is initialised. The cooling off process entails increasing the 

length of time segment at each layer by two until the Band has regressed 

to a manageable state.  

 

Third Design Revision 

The changes made during the second design revision provided some 

improvements to the overall resultant EPID. There remained an issue, 

however, with the amount of information the EPID provided. Thus, the 

third revision of the AONN design involved adding another dimension of 

detail to the EPID. The extra detail would ensure that a greater number 

of unique EPIDs could be generated. With the addition of a variation in 

tonality within each Band, a higher granularity resulted. Each Neuron’s 

weight value was represented as a variation in the main colour of the 

Channel’s Band (see Fig.10). 
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Fig.10. EPID with Band granularity. 

 

This means that the EPID can be used at either of two levels of detail. 

The short EPID could be used during the initial route discovery phase of a 

routing protocol. A node could broadcast a search packet to all 

neighbours, containing its short EPID. Once the node has established 

which device would be best suited to routing its load it could send its long 

EPID to the selected device as a means of ensuring it does not select the 

source node as the next hop. This very basic example would require a 

Snapshot of the EPID to remain unchanged throughout the duration of 

the communication.    

 

Final Design Revision 

The final revision of the AONN design involved introducing a scaled down 

version of the AONN with dimensions 32 x 32. This decision was again 

made based on the consideration of computational expense. Also it is quite 
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probable that an EPID with 81024 possible combinations would provide 

enough uniqueness to suffice for the purposes it was designed for. 

 

For the scaled down version of the AONN the number of Channels is 

reduced to 11, however the same Channel Set proportions are maintained. 

Therefore, the first 6 Channels comprise the first Channel Set with each 

Channel feeding 4 Input Neural Agents each; the second Channel Set 

contains three Channels each feeding two Neurons; and the third Channel 

Set contains 2 single Channels. The overall effect is a less detailed EPID 

(see Fig.11). 

 

 

Fig.11. 32 x 32 dimension EPID. 

 

The maximum evolution time of the EPID remained the same at 32 days 

for this design, which meant that the allocated time segment for each 

layer was increased proportionately over the smaller Network. A change in 
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the way the Agents were implemented meant that a slightly different 

approach was taken to the time constraint and progression of a feature’s 

“depth of personality trait”. Fig.12 illustrates how a Neural Agent at layer 

Ln must fire a defined number of times before the following layer, Ln+1, can 

fire. The degree to which the Neural Agent fires is an exponent of the 

maximum weight held at a Neuron. This way the weight received by a 

Neuron is normalised and once a threshold value is breached it fires an 

output weight value of “1” to the next layer. The effect of this is a more 

steady progression and regression in a Channel Band. The AONN with 

this approach acts like a signal filter or dampener. 
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Fig.12. Representation of “depth of personality trait”. 

 

The y-axis in Fig.12 represents the depth of a trait or amount a particular 

hardware module is used. This is represented by the number of times a 

Neuron must fire before the following layer fires. The x-axis represents the 

layers of Neurons. 
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An equal time segment is apportioned to each layer of the AONN for this 

design. The flow of Input to the Network is regulated at set intervals. 

Channel Bands can regress if a set time elapses. With each elapsed time 

interval the weight value of a Neuron is reduced. When all Neurons within 

the same range, within the same layer are reduced to 0, the Band 

regresses by 1 layer. In the event of a Channel Band reaching the output 

layer the same aforementioned “cooling off” process is invoked. During this 

design increment the cooling off process consisted of a halving of the time 

interval to be elapsed in order to incur regression of a Band. The same 

pattern of Channel Band progression is adhered to in reverse for Channel 

Band regression. For instance the Neurons at layer Ln-1, where n is the 

maximum number of layers, will only have to display inactivity for half 

the elapse interval 81 times before a full layer is regressed. This regression 

pattern continues until the Channel Band regresses by a maximum of 25% 

in a given time frame. This number is selected somewhat arbitrarily for the 

purpose of demonstrating Channel Band regression as a feature of 

maintaining an actively evolving EPID. 25% regression equates to 16 

layers for the 64 x 64 dimension AONN and 8 layers for the 32 x 32 

dimension version. This is considered a reasonable maximum regression as 

it means that the maximum regression time, 
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where, t is the time interval elapsed and     

€ 

θ (r)  is the maximum regression 

layer. For example, if you consider a device that uses a cellular radio 

constantly – with the evolution time segment te = 1s – a Band will fully 
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evolve in     

€ 

te⋅ 864 seconds. Progression and regression are demonstrated in 

Fig.13 below. 

 

 

Fig.13. Progression and Regression. 

 

The final state of the AONN is designed such that the EPID is build up 

from the input layer to the output layer (left to right). When an input 
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Neural Agent decides to fire it resets its weight value to “0” and continues 

to process input. Once a Neural Agent fires for the first time it activates 

the next subsequent layer of Neurons. This increases the depth to which a 

“trait” features in the personality of a device. If a hardware module is not 

frequently active the Channel Band representing its activity will regress 

toward the input layer. If a particular hardware device is so active that it 

reaches the output layer then the Channel undergoes a cooling off period, 

which stabilises the Channel Band. 
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Chapter 4 

Implementation 
 

 

In this chapter details about the implementation of the solution are given. 

Some design choices from chapter 3 are explained further in this chapter. 

 

 

4.1 Overview 

The implementation process for this project followed a rapid prototyping 

model. For this, software was designed, created and tested in increments. 

Each design cycle was derived from the previous iteration. Throughout the 
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implementation process there were 8 design-implement-refactor (DIF) 

cycles. At certain stages during the implementation process a prototype 

iteration reached a design milestone. These milestones were marked as 

releases. Each new iteration was an improvement on the previous 

implementation and with it brought new knowledge, which benefitted each 

subsequent iteration. The entire implementation process was a learning 

experience and with each new lesson came new understanding about the 

problem and new improvements to the solution. 

 

The initial implementation phase was carried out in the Netbeans IDE 6.9 

on an Apple MacBoolPro with a 3.06GHz Intel Core 2 Duo processor and 

4GB of DDR3 RAM – running OS X 10.6 (Snow Leopard). This 

implementation phase was designed to provide the proof of concept 

solution for the AONN and did not take into consideration any processing 

power restrictions. Java SE SDK 6 was chosen as the development 

platform due to familiarity with the platform. The AgentFactory Standard 

Edition (AFSE) framework was chosen for implementing the Agent-based 

functionality. This decision was justified by two main factors: it is Java 

based and it also features a java mobility edition. 

 

The Second implementation phase was carried out in the Eclipse Helios 

3.6.0 IDE on a HTC Desire Smartphone with Qualcomm QSD 8250 1 

GHz (Snapdragon) and 576MB RAM – running Android OS 2.2 (Froyo). 

The Android platform was chosen because of its power and accessibility. It 

is uses the Dalvik virtual machine and provides a very powerful 

development platform. Another attracting factor for using Android 2.2 was 

its strong emergence into the market place over the past year coupled 

with the rapid growth of its user base.  
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This second implementation phase involved porting the proof of concept 

solution to the Google Android Platform 2.2 and optimizing it for the 

reduced power hardware.  

 

4.2 Implementation Design 

The implementation of the AONN is designed with a number of key 

components. The components comprise a hierarchical structure, which is 

reflected in the project’s package structure: 

 

• AONN 

o Network 

 Network Utilities 

 Network Elements 

• Network Element Utilities 

o Channels 

 Channels Utilities 

 

These components contain the elements that make up the functioning 

AONN.  

 

The Network component contains the Network interface, which defines the 

methods for creating and accessing the structure of the AONN.  

 

The Network Utilities component contains a class, which implements the 

network interface, called NetworkUtilities.java. It is this class, 

which manages creation of the structure of the AONN. All references to 
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the AONN datastructure are done via the Network interface. This 

component also manages the EPID Snapshots – both human and 

computer readable versions. 

 

The Network Elements component contains all of the Network’s functional 

elements: 

• Agent interface 

• InputNeuralAgent 

• HiddenNeuralAgent 

• OutputNeuralAgent 

 

The Agent interface defines an Agent object. The InputNeuralAgent, 

HiddenNeuralAgent and OutputNeuralAgent classes implement the Agent 

interface. 

 

The Network Element Utilities component contains a class called 

Position.java, which stores an Agents location for context purposes. 

 

The Channels component contains the Channel object class, which is 

assigned a colour and a number. It is responsible for reading data from a 

data file and feeding it to the AONN. 

 

The Channel Utilities component contains the ChannelsStandards class 

and the MonitorUsage class. The ChannelStandards class is responsible for 

returning the correct range of Neurons for a Channel and also for 

assigning a colour to a given Channel. The MonitorUsage class is an 

Android Service, which initializes a thread for each Channel and 

instantiates each one. 
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 The main elements of the implementation design are depicted in Fig.14. 

The flow of interaction between these elements is also shown.  

 

 

Fig.14. Class interaction diagram. 

 

4.3 Initial Implementation Phase 

During the initial implementation phase the goal was to develop a 

functional proof of concept for the solution. Four DIF cycles were 

completed during this phase with only one prototype release. 

 

4.3.1 Network Structure 

A Network class was implemented to generate and link the structure of the 

AONN. As the initial design incorporated a 64 x 64 dimension EPID, the 

AONN was thus implemented using a data structure comprised of an 

ArrayList of 64 ArrayLists each containing 64 Neural Agent objects. A 

location class was created to store the position of a Neural Agent in the 

data structure. A Neural Agent object is passed a Position object when it 
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is instantiated. When a Neural Agent fires it invokes the 

inputReceived() method in a Synapse object. 

 

When the link() method is invoked in the Network class the 

synapseLayers data structure is populated with Synapse objects. The data 

structure contains an ArrayList of 63 ArrayLists each containing 4096 

connection objects, which link the Neurons of one layer to those in the 

next layer. When a Synapse object is instantiated it is passed a source and 

destination Neural Agent as arguments. When a Neural Agent fires it 

invokes the firedVaule() method in the Synapse object, which passes 

the weight value received from the source Neuron and passes it to the 

destination Neuron on the next layer. In accordance with the initial design 

described in Chapter 3, it was necessary to use objects to represent the 

links between layers because the Synapse links stored the weight values 

fired by Neurons.  

 

4.3.2 Channels 

Channels were implemented as Runnable objects each running in their own 

separate thread inside a thread pool. 22 Channels were created for the 64 

x 64 dimension network and each one bound to a separate hardware 

module. For the purposes of proof of concept, hardware access was 

simulated by reading streams data from flat files. 

 

4.3.3 Simulated Data 

A method was invoked during the construction of the AONN, which 

populated 22 flat files with 100,000 binary data instances each. A 1 



  57 

signifying the hardware module is active and a 0 signifying that it is 

inactive. 

 

4.3.4 Neural Agents 

Neural Agents were implemented with Actuators and Perceptors. The 

Perceptors define and manage information, which makes up an Agent’s 

Beliefs. Actuators performed the tasks of the Neural Agent (i.e. receive 

input, fire etc.). Perceptors update the Neural Agents’ beliefs according to 

the Agents’ states i.e. fired, not fired etc. This was implemented using a 

belief statement and by defining a commitment to the task: 

 

BELIEF(wantToFire(?name, ?addr)) => 

COMMIT(?self, ?now, BELIEF(true), 

    inform(agentID(?name, ?addr), fire) 

);  

 

Once the Agent has this information then preconditions are defined to 

control the action of “firing”. The preconditions in this case means that the 

action of firing is not considered until its belief conditions are satisfied. 

 
ACTION fire { 

    PRECONDITION BELIEF(true); 

    POSTCONDITION BELIEF(true); 

 

    CLASS actuator.Fire; 

} 

 

The Belief is bound to by the Agent by defining its state when it is in an 

alive state: 
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ONTOLOGY alive { 

    PREDICATE wantToFire(?name, ?addr); 

} 

 

In the Actuator the definition of the Agents’ firing action is defined simply 

by sending a message to the Agents in the next layer: 

 
public boolean act(FOS action) { 

     for (int i = 0; i < Network.synapses.size(); i++) { 

  Network.synapseLayers.get(position.layer+1) 

.get(i).firedValue(weight); 

 }    

return true; 

  } 

 

When the Neural Agent receives input it checks its beliefs and checks the 

time since last firing. TemporalBeliefStores facilitate the validation of a 

belief if a certain temporal constraint is satisfied. If all preconditions and 

beliefs are fulfilled then the Agent can fire. 

 

4.3.5 Initial Issues & Solutions 

With this fully connected neural network implementation there were a 

total of 262,166 objects being instantiated before any input processing 

even began in the AONN. With a thread pool of 22 threads continuously 

feeding data into the Network before long there were multiple 

StackOverflow errors being thrown. Some of the initial 

StackOverflow errors were related to the fact that weight values were 

not reset or normalised when the firing threshold was reached at a Neuron.  

The weight values to be stored at Synapses were stored as Integer data 

types, however when all 4096 Synapses had received a weight value, by 
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the 4 th or 5 th layer the weight values were getting too large to be stored as 

Integers. At each subsequent layer a Neuron receives an exponent of 

weight value stored at a Neuron on the previous layer. For instance, 

consider an atomic instance of the worst-case scenario, where all 22 

Channels feed positive activity data (i.e. a “1”) as input to the network, at 

the same time, for one iteration. If all Input Neurons fired to 4096 

Synapse objects each of the Neurons in the next layer receives a weight 

value of 4096. For the next layer a value of 40962 is fed into Neurons on 

the following layer etc. until by the third layer the weight value being 

stored is 68,719,476,736. As Java Integers store 32-bit signed numbers the 

StackOverflow error is thrown. The remedy to this problem initially 

was to normalise the weight and scale them to within the range 0 – 7 to 

be stored as a whole Integer value at Synapses. Also weight values were 

reset when they breached the set threshold at each Neuron. These changes 

provided more stable and consistent weights. Then a colour was assigned 

to each weight value. 

 

The main cause of StackOverflow errors however, was due to the 

volume of method invocations happening too quickly across too many 

objects. The number of Neuron and Synapses objects being accessed 

concurrently by Channels at such a frequent rate was the main cause of 

the stack running out of memory. 

 

The solution to this issue was to store the weight values at the Neurons 

rather than at Synapses and reduce the amount of processing required 

within Synapse objects. Furthermore, the EPID being returned by the 

AONN was a 64 x 64 matrix of weight values in the range 0 – 7, rather 

than a 63 x 4096 matrix with the same weight values. 
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4.4 Second Implementation Phase 

During the second phase of implementation the remainder of the 

development process took place on the Android 2.2 platform. The Android 

SDK was installed in Eclipse Helios via the Android plug-in. An 

application was created for Android 2.2 with target API level 8. Three 

release prototypes were output during this phase with a total of five 

completed DIF cycles. 

 

The application comprised two Activities: the main Activity and the EPID 

Snapshot Activity. The main Activity (see Fig.15) contains two buttons 

labelled “Start AONN” and “Show EPID” and also contains a number of 

check boxes, which allow the monitoring of specific hardware modules to 

be toggled on and off.  

 

The structure of the AONN is initialized in the onCreate() method when 

the main Activity is built. The “Start AONN” button initializes a Service 

called MonitorUsage, which instantiates the 22 Runnable Channel objects. 

Using a Service meant that the hardware monitor could be running even 

when the Activity it was initialised from did not have focus anymore. By 

starting threads from the Service it meant that even after the AONN 

application was closed down it would continue to feed simulated hardware 

data into the AONN and thus could be running on the device without 

being affected by the Dalvik garbage collector. As long as the Channel 

threads were actively accessing the AONN structure, the objects retained 

their cache allocation. 
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Fig.15. Main Activity. 

 

The EPID Snapshot Activity is executed when the “Start EPID” button is 

pressed. This Activity renders a humanly readable version of the EPID on 

an Android Canvas object. Each colour is drawn row by row.  

 

Porting the solution to the Android platform was relatively 

straightforward from a compatibility perspective. However, immediately 
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there were issues with the cache delegation in the Dalvik virtual machine 

(VM). As the Dalvik VM is optimised for memory constrained devices the 

amount of memory assigned to an application is much more restricted. 

Due to the amount of memory allocation required by the initial design it 

was necessary to revise the design as describe in chapter 3, beginning with 

the First Design Revision. A number of optimizations were introduced to 

improve the performance and operation of the AONN for the less powerful 

platform. 

 

4.4.1 Optimization: Data Type Conversion 

The first optimization to be introduced was to replace all Integer data 

types with Byte data types where possible. All variables whose values were 

less than 127 were converted to Bytes to save memory. This also 

impacted on the initial build time of the application because it required 

less Dalvik cache to be freed before it executed. 

 

This optimization constituted the first DIF cycle. 

 

4.4.2 Optimization: Introduction of Channel Bands 

By introducing a system of Bands in the AONN, ranges of Neural Agents 

were grouped across all layers in the Network. A range of Neural Agents 

was allocated to each Channel corresponding to the range of 

InputNeurons each Channel fed. The getChannelRange() method in the 

com.aonn.channels.util.ChannelStandard class calculated the 

correct range for Neurons for a given Channel. The introduction of 

Channel bands was done for two reasons: 
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1. To give the EPID a more logical and readable structure and 

2. To reduce the number of Synapse objects required per layer. 

 

The latter was imperative for reducing the memory footprint of the 

AONN.  This optimization meant that the number of Synapse objects 

required was reduced from 4096 per layer to 220. The result of this was 

that there were now 244,188 less objects being committed to memory 

before the monitoring and processing of hardware data began. 

 

This optimization constituted the second DIF cycle and first prototype 

release in this implementation phase. 

 

4.4.3 Optimization: Simulated Agents 

The PRISM group at University College Dublin provides a Micro Edition 

of AgentFactory (AFME), which is based on J2ME. The Neural Agent 

implementation was altered for the AFME platform. Bridging the J2ME 

platform with the Android platform is not a straightforward process and 

would not be recommended. There are some third party bridging APIs 

available but none of them can port code reliably. An unsuccessful 

attempt was made to reliably port the code to the Android platform. All 

that could be achieved was error free code and an attempt to allocate 

memory to the application, which quit because of excessive requirements. 

One successful build attempt was achieved on an emulator with all 

applications deleted and all non-critical processes halted. However, the 

application crashed when trying to load the view with a StackOverflow 
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error being thrown. Further attempts were abandoned, as the requirements 

for a successful built were unrealistic. 

 

The extra processing cost of utilising the bridge and the computational 

overhead associated with implementing such a large number of Agents was 

too great for the test device. As this solution is designed to be viable for 

devices with restricted memory and CPU power, it was decided to simulate 

the function of the Agents using the native Android APIs instead.  

 

For the simplicity of the functionality required for the Neural Agents it 

was decided to simulate the deliberative quality of Agents by 

implementing Neural Agent objects with similar attributes. This was 

achieved by ascribing certain criteria to the Neural Agents, which had to 

be met before the Agent could fire. Fig.16 shows the structure of the 

algorithm design to simulate the functionality of the Agents developed in 

AFSE. 

 

A simplified list of checks was created to simulate an Agent’s 

preconditions. Each of the three categories of Agents was implemented 

slightly differently depending on whether it was on the input, hidden or 

output layers. 
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Fig.16. Simulated Agent Algorithm structure. 

 

It was found that a 42% decrease in the application’s load time was 

achieved by this optimization. The effect of the desired Agent 

functionality, provided by the AgentFactory framework, was achieved by 

the simulated Agents and provided a very large performance increase. 

 

This optimization constituted the third DIF cycle and second prototype 

release in this implementation phase. 

 

4.4.4 Optimization: Synapse Object Removal 

Following the redesign of the Neural Agent implementation, time was 

given to review the overall structure of the AONN in order to find more 

opportunities to optimize the solution. As a result of this a decision was 

made to remove the Synapse objects from the AONN implementation as 

their function had become trivial. Instead each Neural Agent was 

programmed to fire directly to the Neural Agents in the next layer, within 
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their assigned Channel Band. This reduced the number of objects being 

instantiated on initialisation of the AONN by 13,860. What remained at 

this stage were 4,118 optimized objects comprising the AONN. 

 

This optimization constituted the fourth DIF cycle. 

 

4.4.5 Optimization: Scaled Down Network 

When considering that one of the major design goals of the AONN was to 

provide an inexhaustible address space the 64 x 64 dimension Network 

certainly provided that. However, with concerns over the performance of 

the AONN for evolving an EPID a scaled down version of the solution 

was introduced. A Network dimension of 32 x 32, with 11 Channels was 

implemented. This further reduced the amount of memory allocation 

required and reduced the overall running time of the Network. There were 

still 81024 possible EPID combinations. 

 

In the com.aonn.Settings class there is a variable (NET_DIM) 

defined, which can be altered to switch between a 32 x 32 or 64 x 64 

dimension network. There is also a variable to adjust the magnification 

(MAG) of the AONN. The recommended values are: 

 

• MAG  = 6 when NET_DIM = 64. 

• MAG  = 11 when NET_DIM = 32. 

 

This optimization constituted the fifth DIF cycle and final prototype 

release in this implementation phase. 
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4.5 Final Prototype 

The final prototype of the AONN incorporated: 

 

Memory & Storage 

• 4096 Neural Agent objects in a nested Collection data structure. 

• 22 Channel objects, each run on a separate thread. 

• 22 simulated data file. 

• Basetime flat file. 

 

Input 

• Binary data 1/0. 

 

Output 

• Short EPID – either 11 or 22 values separated by “:”, signifying the 

maximum progression of a Channel Band. 

• Long EPID – 32 x 32 or 64 x 64 matrix of weight values between 

0 - 7. 

 

Operations 

• Receive Input. 

• Normalise weight. 

• Fire. 

• Cool off. 

• Output EPID. 
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Chapter 5 

Evaluation 
 

 

This chapter provides a comparative evaluation of the EPID as a means 

of identifying network nodes. Its suitability as a device identifier for the 

future of dynamic MANETs with heterogeneous nodes is compared to the 

current state-of-the-art identification methods. 
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5.1 Features of AONN 

Following the discussion of the AONN’s design in Chapter 3 the features 

of an EPID evolved with an AONN can be defines as follows: 

 

• An EPID is a means of identifying communicating devices.  

• An EPID provides a dynamic identity, which can change in 

different environments. 

• The EPID is generated on the device rather than being assigned to 

it by a network infrastructure node. 

• The identity that an AONN returns provides information about the 

functional capability and use of a device. 

• Two levels of EPID detail are available: short EPID and long 

EPID. 

• The AONN can generate 81024 EPIDs for a 32 x 32 dimension 

AONN or 84096 EPIDs for a 64 x 64 dimension AONN. 

 

The AONN was designed to generate identities for network nodes, which 

can aid MANET routing protocols by providing them with information 

about the devices they are routing through. 

 

5.2 Disadvantages 

There are a number of disadvantages to the Agent-Oriented Neural 

Network as a means of generating EPIDs. Also there are some 

disadvantages to the EPID itself as a universal identification for all types 

of communicating device. 
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• The AONN as a mechanism for generating EPIDs remains to be 

quite resource heavy and may not be suitable for current day 

reduced performance nodes.  

• The standardised assignment of hardware modules to specific 

Channels in the AONN poses a potential difficulty when 

considering the shift in consumer trends. Hardware modules that 

are common in communicating devices today may not be so in 18 

months time. Thus, some form of update will be required for 

assigning new hardware modules to the Channel Standard. 

• The long EPID would add a great deal of extra load to the 

network, as the size of the ID returned by the AONN is very large. 

• The time it would take to resolve a node’s EPID would certainly 

be greater than the current time required for other identification 

method – IPv6 for instance. 

• The EPID provides no location specific information. This means 

that some form of network context information will be required if 

the solution is to be expanded outside the field of MANETs. 

 

Most of the disadvantages are potential areas of interest for future work 

but for this research, they remain open questions and distinct 

disadvantages to the solution in its current state. 

 

When comparing the AONN against other methods of generating node 

identities, there are some market advantages. Also when comparing the 

suitability of the EPID as a means of node identification in dynamic 



  71 

MANETs with heterogeneous nodes, it becomes quite apparent where the 

advantages lie. 

 

5.3 IPv4 and IPv6 

IPv4 is not suitable for use in MANETs because of the static nature of its 

design. IPv4 addresses define only the physical location of infrastructure 

nodes such as routers and gateways. No information is provided to the 

network about the device itself. Similarly IPv6 addresses do not provide 

information about the device the address is assigned to. There is more 

flexibility in IPv6 in that routing prefixed can be changed for an entire 

network without the requirement for renumbering or internal redesign. 

This means that it is more suitable for dynamic networks. However, there 

is still the requirement for complex routing protocols for high mobility. 

 

The EPID does not provide any information about the physical location of 

a node nor does it reflect the infrastructure of the network system it is in. 

However, in providing information about the type of device being 

identified and what it is capable of, the EPID offers information that is 

much more useful for dynamic MANETs with heterogeneous nodes. 

Devices in a MANETs will be able to identify the capabilities of one 

another and will be able to make decisions on the most reliable routes to 

take though a network. This will be possible because selected paths 

through a network will consist only of nodes with similar EPIDs as the 

sender. Reliability stems from the assumption that two nodes of equal 

power and functional capabilities can do similar jobs. 
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5.4 Mobile IP 

MobileIP is an effective way of adapting static IP addressing for added 

mobility. By introducing a home agent and care-of address a host can 

move from network to network whilst always maintaining a permanent IP 

address. A tunnel is used to route datagrams from the home agent to the 

host’s care-of address.  

 

While this protocol is an effective work-around for achieving mobility for 

IP based devices, there are still issues with smooth hand over between 

networks and thus fast mobility cannot be accomplished. The added 

overhead of referring continuously to the home agent and tunnelling 

datagrams to a care-of address makes it somewhat arduous. However, 

even with this in place routing within a subnet means nodes rely on 

regular routing protocols and for this mobile IP does not help.  

 

With the nature of MANETs being autonomous, self-maintained and 

topology free, routing protocols such as AODV and OSLR help to build 

route paths using vector distances or link state schemes. These protocols 

are complex and costly. By providing information about a device to a 

routing protocol, it would be much easier to decide which next hop to 

avoid and thus, built of a route path could be reduced greatly. 

 

5.5 Content and Characteristics 

Content- and Characteristic-based routing protocols are designed 

specifically for dynamic MANETs. They take a different approach to 

routing traffic in topology free networks. Paths are selected based on 
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either the contents of messages being transferred or on some Characteristic 

such as colours flowing and merging. This research follows the ideology of 

Characteristic-based routing in so far as it is the belief of the author that 

a characteristic of a node can aid the routing process. By using a 

Characteristic of a node rather than a static address routing can be made 

much easier. However, it is the goal of this research to extend the ideology 

of Characteristic-based routing to Characteristic-based identification.  

 

For content-based routing a routing decision can be made based on what 

information is in the data being transmitted. This is interesting because, if 

the data being transmitted is suitable for one device and not another, the 

decision to omit that node from the routing path can be made. Much like 

with the EPID if a node can be identified as being incompatible with the 

sender then it can be omitted from the routing path. 

 

The overall usefulness of an identification strategy, which can provide 

useful information about the device being identified, is quite significant. 

The prospect of being able to select reliable next hop decisions based on 

the knowledge of a devices’ capability affords a great potential for 

smarter, faster and more reliable routing in dynamic MANETs with 

heterogeneous nodes. Table 1 outlines some of the differences between the 

different identification schemes currently used for routing data. 
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EPID IPv4 IPv6 Mobile IP 
Content / 

Characteristic 

Dynamically 
evolved on 

device 

Assigned by 
network host 

Assigned by 
network host 

Assigned by 
home 

network. 
Care-of 

address used 
away from 

home 

Characteristic 
of node or 
content of 

packet can be 
used to route 

traffic 

Provides 
information 
about device 

it’s on 

Provides no 
information 
about device 

Provides no 
information 
about device 

Can provide 
some vendor 

specific 
information 
if using IPv6 

Less reliance on 
fixed state node 

addressing 

EPIDs can be 
used as a way 

of 
preferentially 
selecting next 

hop 
destination 

Not suitable 
for MANETs 

Not suitable 
for MANETs 

Cannot 
facilitate 
smooth 

handover or 
fast mobility 

Suitable for 
MANETs with 
heterogeneous 

nodes 

Number of 
possible 

unique ID will 
never be 
exhausted 

Address 
space is 
already 

becoming 
exhausted 

Address space 
is unlikely to 

become 
exhausted in 
foreseeable 

future 

Exhaustion 
depends on 

use of 
IPv4/6 

Little reliance 
on static 

addressing 

Table 1. Comparison between different identification schemes. 
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Chapter 6 

Conclusions 

 

6.1: Conclusions 

This research presented a method of identifying network nodes displaying 

characteristics of its own functional capabilities. A novel concept called an 

Agent-Oriented Neural Network was introduced. The design of the 

solution was presented followed by details of its implementation and 

qualification of some design decisions.  
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A new identity called an Evolved Personal Identity was introduced, which 

represented the patterns of hardware usage on a network device. The 

EPID’s advantages and disadvantages were discussed and evaluated 

against the current state of the art identification methods being used in 

MANETs. 

 

It can be concluded that the AONN is an effective tool for generating a 

logical and useful identification for a network node. The processing power 

required for its operation is perhaps excessive for a large portion of the 

current network device specifications. However, when more processing 

power is available to devices this solution could be utilised effectively. 

 

The design of the AONN itself could be improved with some more 

performance modifications or even by being integrated into the operating 

system where the hardware monitoring and processing of data could be 

optimized more aggressively. More care should be taken when planning 

what technologies should be used for the implementation. Problems with 

cross platform integration arose when attempting to port the Agent 

implementation using AFME into the Android platform. A simple fix for 

these problems would have been to select a mobility platform compatible 

with the AFME framework such as the Symbian platform. 

 

The resultant EPID from the AONN has shown that it provides 

meaningful information about the device it is on and is readable both by 

humans and by machines.  

 

The added load that the EPID would put on a network may hinder its 

performance and potentially negate its benefits. However, with the option 
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of both a long or short EPID, nodes can avoid incurring the extra cost 

associated with the long EPID until such time as is absolutely necessary.  

 

6.2: Future Work 

The most obvious next step for this research would be to design a routing 

protocol, which utilises the AONN-generated EPID. An interesting 

comparison could be made between existing MANET routing protocols 

and modified versions using EPIDs. 
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