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Abstract

A peer-to-peer system can be de�ned as an overlay network built by a set of nodes on top of a physical
network infrastructure and its operating protocols, such as the Internet. In a peer-to-peer network,
each node maintains a limited number of connections with other nodes, called peers, and the graph of
peer connections constitutes the overlay's topology. One of the most fundamental properties of existing
large-scale peer-to-peer systems is a very high heterogeneity and dynamism of peers participating in
the system. Studies show that the distributions of peer characteristics, such as peer session duration,
available bandwidth, and storage space, are highly skewed and often heavy-tailed, with small fractions
of peers possessing disproportionally large fractions of the total system resources. Such heterogeneity
introduces both challenges and opportunities when designing peer-to-peer systems. The use of low-
performance or low-stability nodes for maintaining system data or services can easily lead to a poor
performance of the entire system, while the placement of critical data and services on the most reliable,
high-capacity nodes may improve the overall system stability and performance.

Current state-of-the-art peer-to-peer systems exploit their heterogeneity by introducing two-level
hierarchies of peers. High capability peers, so called super-peers, form an independent sub-topology
within the existing peer-to-peer network and handle the core system functionality, such as indexing
peer data and handling search queries, or relaying tra�c on behalf of �rewalled peers. Ordinary
peers connect directly to super-peers and act as their clients. However, many existing systems lack
an e�cient, decentralised super-peer election algorithm. In many systems, super-peers are selected
manually, through an out-of-band mechanism, or are elected using simple local heuristics, which are
likely to generate suboptimal super-peer sets. Sophisticated super-peer election algorithms exist, but
they are usually highly speci�c to particular systems and are not easily portable to other application
areas.

This thesis presents a novel class of peer-to-peer topologies, called gradient topologies, which
generalise the concept of super-peer networks. In gradient topologies, the position of each peer is
determined by a continuous utility function, and the highest utility peers are clustered in a logical
centre of the topology, while peers with lower utility are located at gradually increasing distance
from the centre. The utility metric captures application-speci�c peer requirements and re�ects peers'
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ability to contribute resources and services to the system. The gradient structure of the topology
has two fundamental properties. Firstly, all peers in the system with utility above a given threshold
are located close to each other in terms of overlay hops and form a connected sub-topology. Such
high-utility peers can be exploited by higher level applications in a similar fashion to super-peers in
traditional two-level hierarchies. Secondly, the information captured in the topology enables a search
heuristic, called gradient search, that enables e�cient discovery of such high utility peers.

The gradient topologies have been evaluated using a custom-built simulator and compared with
state-of-the-art super-peer systems. The evaluation shows that the election techniques based on gra-
dient topologies allow more �exible super-peer criteria speci�cation compared with the other systems.
Moreover, the super-peer sets elected using gradient topologies are closer to the theoretical optimum,
compared with the other systems, and have a higher average utility and stability. The experiments also
show that the maintenance cost of gradient topologies, in terms of generated messages and established
connections, is similar to that in the state-of-the-art systems.
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Chapter 1

Introduction

The purpose of this chapter is to give a general introduction to the area of peer-to-peer system and
to the problems discussed in this thesis. It describes brie�y the history of peer-to-peer systems and
discusses the main characteristics found in these systems. It is shown that existing large-scale peer-
to-peer systems are highly heterogeneous. This chapter also describes the thesis goals, explains the
motivation behind these goals, and outlines the thesis organisation.

1.1 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems belong to the fastest growing applications in the area of distributed com-
puting. Within a short number of years, P2P systems gained an extreme popularity, attracted millions
of users, entered a number of di�erent application areas, and became one of the main contributors of
global tra�c in computer networks.

Although the �rst widely-used systems considered P2P appeared already in 1970's, with Usenet
and the Network News Transfer Protocol (NNTP) being examples of such systems, most of the modern
P2P applications have been invented during the last decade. Particularly, the �rst application that
gained an extraordinary popularity was Napster, a �le-sharing application developed and published
in 1999. By the end of 2000, Napster had been downloaded by 50 million people around the world
and became the fastest growing application on the Web [149]. The success of Napster was quickly
followed by other �le-sharing P2P systems, such as Gnutella, KaZaA (also known as FastTrack),
DirectConnect, eDonkey, Overnet, BitTorrent and many others. Soon, P2P systems became one of
the two most dominant applications on the Internet, in terms of global tra�c contribution, along
with the Web. On a typical day, KaZaA has more than three million active users, sharing over
5,000 terabytes of content [102]. According to the measurements by Tier 1 Internet providers, P2P
applications generate between 15% and 20% of the total Internet tra�c, and up to 60% of tra�c
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on some Internet backbone links [57, 87]. Moreover, a number of regional Internet service providers,
such as university network operators or national operators, estimate that P2P applications account
for approximately 30-70% of total generated tra�c, and their share is still growing [12, 11, 111, 53].

Freenet [40, 39], which appeared in 1999, was another system that pioneered the development of
P2P networks. Freenet was a distributed storage system that allowed for publication, replication, and
retrieval of data, while protecting the anonymity of both authors and readers. Along with �le sharing
and �le storage, P2P systems entered a number of other application areas, such as Internet telephony,
video conferencing, and multimedia streaming [37, 32, 84, 33, 92, 140, 204]. P2P systems were also
used for content distribution [41], for example by the Debian organisation for distributing Linux
distribution image �les. An extremely large popularity was achieved by Skype [15, 67], an Internet
telephony and conferencing application made available in 2003. In 2006, Skype was reported to have
83 million registered users around the world and was used by approximately 3-4 million simultaneous
users at any one time [35].

Another initiative that contributed to the development P2P systems was SETI@home [8, 194], a
scienti�c project launched in 1999, whose aim was to exploit unused computing resources, such as
CPU idle time, on machines connected to the Internet for running scienti�c computations, such as
analysing radio telescope signals in search of intelligent life outside Earth. Although SETI@home is
not generally considered a P2P system, since its nodes communicate with a centralised server rather
than with each other, it shares a number of common characteristics with P2P systems, and belongs
to a wider class of distributed systems known as Public Resource Computing (PRC) or volunteer
computing. Both P2P and PRC systems rely on large and dynamic populations of autonomous nodes
that contribute resources to the system.

The SETI@home project received a strong public response, and by 2002, over 3.8 million people reg-
istered in the program. This enabled an unprecedented computing power (order of 100 TeraFLOPS),
and by 2002 the program performed a total of 1.7e21 �oating-point operations, the largest computation
on record at that time [8].

As the popularity of P2P grew, P2P systems also became a signi�cant research area within the
greater domain of distributed systems. A number of conferences and scienti�c journals have been
devoted solely to P2P systems and their applications, and a large body of work has been published in
the area.

A number of independent de�nitions for P2P system have been proposed [171, 10, 2, 167]. Most
de�nitions describe P2P systems as large-scale, decentralised systems maintained by a large number of
autonomic nodes, called peers, which voluntarily contribute resources, such as storage space, processor
cycles, bandwidth, or physical human presence, and self-organise in order to provide a useful services
to a community of users. The membership in P2P systems is open and dynamic, as peers can freely
join and leave during the system's operation. There is no distinction between dedicated servers and
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clients, as all nodes participating in the system provide services to each other as peers. Every peer
can function as both a client and a server. Some de�nitions also assume that the responsibilities and
capabilities of all peers in a P2P system are identical [162, 44, 176].

Due to the scale and dynamism of a P2P system, it is not feasible for each peer to possess and
maintain an accurate model of the entire system. Instead, each peer usually has a knowledge of and
communicates with a limited number of other peers, called its neighbours. The connections between
neighbouring peers form an overlay network, on top of the physical infrastructure, such as the Internet.
This overlay network is used by peers for routing messages and exchanging information. Unlike in
wireless networks, where the communication range is limited, the nodes in P2P systems are directly
reachable and the overlay structure can be adapted arbitrarily depending of the system needs. The
graph of peer connections is called the system topology.

1.2 Heterogeneity in Peer-to-Peer Systems

Contrary to the de�nitions that assume identical roles and capabilities of all peers in the system, mea-
surements show that deployed P2P systems are characterised by a very high diversity of participating
peers. The distributions of basic peer characteristics, such as the processing power, storage space,
bandwidth, or session duration, are highly skewed and radically di�erent from the normal or uniform
distributions. In the normal distribution, practically all values are located within several standard
deviations from the mean (e.g., 99.7% of all values are within three standard deviations from the
mean) and values beyond this range are extremely unlikely. In P2P systems, it has been observed
that the characteristics of peers (i.e., storage, bandwidth, etc.) vary by several orders of magnitude
between individual peers (see Table 1.1 for a comparison). Furthermore, while a large majority of
peers have relatively few resources, small subsets of peers possess signi�cant fractions of the total
system resources. Such distribution is often modelled using the Pareto distribution, also known as
the Zipf's law and power law [135, 4], and other heavy-tailed distributions, such as the Weibull and
log-normal distributions.

One of the basic peer properties that shows a high P2P system heterogeneity is the session duration,
de�ned as the amount of time a peer stayed (or is expected to stay) on-line in the system without
disconnecting. According to a number of independent measurements, the average session duration
in existing P2P systems is relatively short, and varies between 1 minute and 1 hour, depending
on the system and the measurement method [181, 144, 27, 36, 167]. However, in nearly all studied
systems, groups of peers were found which stayed on-line for considerably longer periods. For example,
Stutzbach et al. [181] observe that roughly 10%-20% of peers in Gnutella and Kad have an uptime
(i.e., amount of time since joining the system) longer than one day, and around 1-3% of BitTorrent
peers have an uptime longer that two weeks. Similarly, Pouwelse et al. [144] report that 17% of
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BitTorrent peers stay in the system for longer than one hour after they �nished downloading, 3.1%
of peers stay on-line for at least 10 hours after downloading, 0.34% of peers stay for more than 100
hours after downloading, and their longest observed session is 83.5 days.

Related to the peer session duration is peer availability, a property de�ned as the fraction of
time a peer spends on-line in the system within a longer period. Measurements indicate that peer
availability ranges from almost 0% to 100% between peers, and the availability distribution is highly
skewed [173, 18]. The majority of peers have a poor availability, while small subsets of peers stay
on-line almost all the time. Furthermore, while some peers frequently join and leave the system over
time, other peers connect to the system only once and never come back. For instance, Bhagwan et
al. [18] discover that in a two-week trace collected from the Overnet system, on each day, new hosts
never seen before in the trace comprise over 20% of the peer population. A number of experiments
reveal also diurnal patterns in the peer participation in P2P systems [18, 167, 36, 67, 27].

Bandwidth is another example of an unevenly distributed resource between peers. Although tech-
nically bandwidth is a property of a network connection between two machines, in practice the bottle-
neck bandwidth between a peer and the rest of the Internet is determined by the peer's direct link to
the Internet [97, 167], and hence, is a property of this peer. Saroiu et al. [167] show that the median
upstream bottleneck bandwidth of peers in Gnutella is roughly 1Mpbs, while about 22% of peers have
a bottleneck bandwidth below 0.1Mbps, 8% of peers have a bottleneck bandwidth above 10Mbps, and
the highest observed bandwidth capacities reach 100Mbps. Similarly, Pouwelse et al. [144] show that
while the average download speed of a peer in BitTorrent is 240 Kbps, a number of peers download
at much higher rates, with a maximum around 4,000 Kbps. A number of other measurements show
consistent results [9, 173, 188].

Other peer properties that have been analysed and shown to follow skewed distributions include
peers' computing power and available storage space and memory (RAM) [9]. Moreover, it has been
shown that a signi�cant fraction of peers in P2P systems are located behind �rewalls or Network
Address Translators (NAT) which limit their ability to communicate with other peers [102, 181]. The
types of peers' �rewalls or NATs add one more dimension to the diversity of peers and hence to the
heterogeneity of P2P systems.

Apart from hardware parameters, peers also very between each other in terms of their behaviour.
An important peer characteristic is willingness to share resources. Studies show that the number of
�les shared by Gnutella peers vary between 0 and 10,000 [167, 208]. In particular, a large fraction
of users (so called free riders, up to 70% of all users) share no �les [5]. Some Gnutella users also
take steps to discourage other users from downloading �les from them, for example by advertising the
lowest possible upload speed (64 Kbps or less) [167]. On the other hand, groups of peers have been
observed which exhibit a contrary behaviour. These peers do not download any �les but stay on-line
and let other peers download from them. It is estimated that 7% of peers in Gnutella together o�er
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Property Measurement Year System Value Range

Session duration

Stutzbach [181] 2005 Gnutella, BitTorrent,
Kad 1min � 1day

Pouwelse [144] 2004 BitTorrent 0.1h � 1000h
Bustamante [27] 2003 Gnutella 20min � 3days
Chu [36] 2002 Napster, Gnutella 10min � 10,000min
Saroiu [167] 2001 Napster, Gnutella 0 � 720 min

Availability

Kutzner [95] 2004 Overnet 1 � 192 h*
Bhagwan [18] 2003 Overnet 1 � 24 h/day

Sen [173] 2001 FastTrack, Gnutella,
DirectConnect 0 � 1440 min/day

Bandwidth

Anderson [9] 2006 SETI@home 20Kbps � 8Mbps
Pouwelse [144] 2004 BitTorrent 0 � 4 Mbps
Tutschku [188] 2003 eDonkey 100bps � 1Mbps
Saroiu [167] 2001 Napster, Gnutella 10Kbps � 100Mbps

Sen [173] 2001 FastTrack, Gnutella,
DirectConnect 10KB/s � 10MB/s

Disk space Anderson [9] 2006 SETI@home 0.1 � 512 GB
CPU Anderson [9] 2006 SETI@home 0 � 4,000 M�op/s
Memory Anderson [9] 2006 SETI@home 0.1 � 512 GB

Shared �les
Zhao [208] 2005 Gnutella 10 � 10,000
Saroiu [167] 2001 Napster, Gnutella 0 � 10,000
Adar [5] 2000 Gnutella 1 � 10,000

Downloads Leibowitz [98] 2003 KaZaA 1 � 1000
(*) within a two-week period

Table 1.1: Heterogeneity in peer-to-peer systems.

more �les than all of the other peers combined [167].

The amount of tra�c generated by individual peers is also extremely variable. Sen et al. [173]
analyse network tra�c in a large Tier 1 Internet provider and show that less than 10% of peer IP
addresses contribute around 99% of the total tra�c volume, and the top 1% of peer addresses transmit
73% of the total tra�c. A single peer may transmit over 10GB of data during a one day. Similarly,
Leibowitz et al. [98] observe that while the majority of KaZaA peers initiate less than 10 downloads
during their life time, a number of peers request several hundred �les. Such highly active peers,
generating relatively large amounts of tra�c, are often called heavy-hitters.

Table 1.1 shows a summary of measurements of peer characteristics in deployed P2P systems.
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1.3 Motivation

One of the main challenges in building P2P systems is dealing with the di�cult substrate on which
these systems are based � the heterogeneous and dynamic population of peers discussed in section 1.2.
Since the average peer session duration in a P2P system is short, large numbers of peers continuously
join and leave the system. This process is often referred to as churn, and the rate of peer arrivals,
which is approximately equal to the rate of peer departures in the long run, is also called churn rate
[181, 153].

In the presence of high churn, the entries in peers' neighbourhood tables become quickly outdated
and may point to peers that no longer participate in the system [93]. This either increases message loss
rates, since messages routed using these entries are not delivered, or increases delays in communication,
as message failure detection and retransmission is usually slow. In order to keep neighbourhood tables
up to date, peers need to frequently exchange messages with their neighbours. However, this increases
the overhead related to the overlay network maintenance [113, 100]. For example, it is estimated that
in the early versions of Gnutella, keep-alive messages accounted for over 50% of all generated tra�c
[155]. As the churn rate increases, the system also needs to increase the level of data redundancy (e.g.,
the replication factor) in order to guarantee a certain level of data availability. This again increases the
overlay maintenance cost, since more data need to be transferred when peers are joining and leaving
the system and more replicas need to be synchronised when updates are issued [17]. Consequently, a
number of P2P systems have been shown to perform poorly in the presence of high churn [153].

Furthermore, P2P systems may su�er poor performance if they do not address their heterogeneity
and do not adapt their structure to the properties of individual peers. The lowest performance peers,
with poor processing capacity or insu�cient network throughput, are likely to become bottlenecks.
For example, in August 2000, the entire Gnutella network experienced deteriorated performance, with
slow response time and fewer available resources, as it grew to a larger size. This was caused by peers
connected by dial-up modems, which became saturated by the increased load and caused network
fragmentation. Indirectly, this was caused by Gnutella's lack of ability to control its topology and to
adapt it to the capabilities of individual peers [200].

However, the heterogeneity of P2P systems, as well as being a challenge, is also an opportunity
that can be exploited. By assigning more responsibilities to stable, high capability peers, a P2P
system may improve its overall reliability and performance [167, 110]. The subset containing the most
stable peers is less subject to churn, and hence, is more suitable for hosting data or routing tra�c
[181, 27]. Likewise, a set of peers with the largest amount of resources is most suitable for performing
resource-intensive tasks, such as handling search queries [34].

Consequently, nearly all widely used P2P systems today attempt to exploit the diversity of par-
ticipating peers. In most systems, peers are divided into two categories. The highest capability peers,
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called super-peers, act as servers to the other peers. Usually, they form an independent sub-topology
within the system overlay and handle the core system functionality. Ordinary peers maintain con-
nections to selected super-peers and act as their clients [200]. For example, KaZaA uses super-peers
(called supernodes) to index data stored by clients and to handle the search protocol [102]. A similar
concept has been employed by Gnutella, where ultrapeers are used for routing search queries [177],
and in eDonkey, where eDonkey servers are used by client peers as rendezvous points [188, 75]. In
Skype, supernodes are mainly used for relaying messages between peers whose Internet access is re-
stricted by a �rewall or a Network Address Translator (NAT) [15, 67]. While di�erent systems and
research documents introduce their own vocabulary for describing peers, they refer in principle to the
same general concept of distinguished peers that have higher capabilities and perform more tasks than
ordinary peers. For consistency, this thesis uses the term super-peers for describing such distinguished
peers, and the terms ordinary peers and clients for the remaining peers. In most contexts, the terms
super-peer, ultrapeer, supernode, and superpeer can be treated as synonyms.

There are other approaches to exploiting heterogeneity in P2P systems, in which the system
structure is adapted to the properties of participating peers, but no division between super-peers an
clients is made. Such approaches include spanning tree and mesh structure optimisations in streaming
systems [150, 6, 139, 112, 21, 168], topology and message �ow adaptation in Gnutella [110, 34, 27],
and the introduction of virtual servers to distributed hash tables [148, 88]. However, these approaches
are highly speci�c to their application areas, and hence are not as universal as the super-peer based
approaches.

The design based on super-peers has two main advantages. First, certain system tasks, such
as hosting data or services, can be assigned to stable, high-performance peers, i.e., super-peers, in
order to improve the overall system reliability and performance. Second, the use of super-peers
allows the system to limit the number of participants in certain distributed algorithms, such as search
[109, 199, 187, 99], which do not scale well and become too expensive when the system size is large.
Thus, the super-peer design can improve the scalability of a P2P system.

However, the use of super-peers introduces a number of new challenges that need to be addressed.
In order to elect super-peers, the system needs to decide on how many super-peers are needed and
which peers are most appropriate to take the role of super-peers. Furthermore, the system needs
to maintain and continuously adjust the super-peer set in response to peer arrivals and departures,
changes in the current load and changes in peer capabilities. The system also needs to distribute
clients between super-peers and migrate them when super-peers leave or fail. Ideally, the load between
super-peers should be balanced to ensure the system's scalability and fault-tolerance. This must all
be performed in a dynamic and decentralised manner, with no central coordination or authority.

It should be noted that traditional election algorithms for distributed systems, such as the bully
algorithm [60], and classic approaches to group communication [156, 73, 19], are not applicable to
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large-scale P2P systems due to their cost and message overhead. Most of these approaches require
strong global consensus between all peers in the system [20] and rely on broadcasting messages between
all peers in the system [60, 70]. As such, they can be only applied to small systems (order of thousands
of nodes [70]) or smaller subsets of peers within a larger system.

Few existing P2P systems attempt to elect super-peers in an e�cient, decentralised way. Many P2P
systems rely on manual super-peer selection, through an out-of-band mechanism, or employs simple
heuristics, which are likely to generate suboptimal super-peer sets. In some systems, the addresses
of super-peers are simply hardcoded into the application. Only few P2P systems attempt to elect
optimal super-peers sets according to some metric, but most of these systems are speci�c to particular
applications and their super-peer election mechanisms are not easily portable to other domains.

1.4 This Thesis

This thesis describes a novel approach to dealing with heterogeneity in P2P systems. This approach is
based on peer utility metrics and gradient topologies. A utility metric is a function evaluated at each
peer locally that re�ects peer's ability to contribute resources to the system and to provide services
to other peers. A utility metric is domain-speci�c, and captures peer requirements imposed by the
higher-level application built on top of the gradient topology.

A gradient topology is a P2P topology where the highest utility peers are clustered in the logical
centre of the topology, while peers with lower utility are found at gradually increasing distance from
the centre. In contrast to super-peer topologies or hierarchies, where peers are divided into two or
more discrete groups, gradient topologies introduce a continuous spectrum of peers, from the highest
utility peers in the centre to the lowest utility peers at the periphery.

Gradient topologies have an elementary property that for any given utility threshold, all peers in
the system with utility above this threshold are located close to each other, in terms of overlay hops,
and form a connected sub-topology within the system overlay. Such high utility peers can be exploited
by the system in a similar way as super-peers in traditional two-level hierarchies. Furthermore, high
utility peers in gradient topologies can be easily and e�ciently discovered by lower utility peers using
an heuristic called gradient search, which routes messages from outer peers towards the centre of the
topology, as in hill climbing and similar techniques based on the notion of gradient.

The main advantage of gradient topologies over the traditional super-peer topologies is that utility
thresholds can be increased or decreased, adjusting the number of peers above the thresholds according
to the system requirements, without the need to recon�gure any peer connections. For any selected
threshold, peers above the threshold are clustered at the centre of the gradient topology and gradient
search can be used by low utility peers to e�ciently discover them. Moreover, without any additional
mechanisms, multiple thresholds can be calculated to elect multiple concentric sets of high utility
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peers, similar to a hierarchy.
Gradient topologies, together with election algorithms described in this thesis, allow P2P system

to select the most suitable peers for performing tasks such as hosting system data, running services, or
participating in certain distributed algorithms. By selecting the highest utility peers in the network for
these tasks, P2P systems can exploit the heterogeneity in peer populations for improving the overall
system stability and performance.

Gradient topologies are domain-independent and can support many di�erent classes of P2P appli-
cations, such as storage systems, name services, �le-sharing applications, and semantic registries. As
gradient topologies are based on the notion of peer utility rather than peer connection utility, they
are not directly applicable to P2P systems that need to adapt their structures to the properties of
the underlying low-level network, such as link latencies and link throughputs. Systems that belong to
this category, for example multi-media streaming applications, are not addressed in this thesis.

The main contributions of this thesis are: (i) a number of utility metrics for the characterisation
of peers in a P2P system, (ii) neighbour selection algorithms that generate and maintain gradient
topologies with desired properties, such as a low degree of peers and a low distance between the high-
est and the lowest utility peers, growing logarithmically with the system size, (iii) election algorithms,
based on decentralised aggregation techniques and adaptive utility thresholds, which create and man-
age close-to-optimal super-peer sets in the gradient topologies and minimise the number of swappings
between super-peers and ordinary peers, (iv) routing heuristics that enable high-utility peer discovery
in the gradient topologies.

The proposed algorithms have been validated using a custom-built P2P simulator. In a range
of experiments, it is shown that gradient topologies, together with aggregation-based election tech-
niques, generate better-quality and higher-stability super-peer sets, and have similar maintenance
cost, compared with state-of-the-art super-peer systems. Moreover, it is shown that gradient topolo-
gies o�er more �exible and powerful super-peer election mechanisms compared with the existing P2P
systems, and thus extend the current state-of-the-art knowledge on super-peers, and more generally,
heterogeneity exploitation in P2P systems.

1.5 Thesis Roadmap

The remainder of this thesis is organised as follows.

Chapter 2 reviews a wide range of P2P systems that introduce super-peers, with a particular em-
phasis on the super-peer criteria and election mechanisms, highlighting the achievements and
limitations of each system.

Chapter 3 formally de�nes the class of gradient P2P topologies and describes their main character-
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istics.

Chapter 4 presents a collection of utility metrics and algorithms that generate gradient topologies
and enable super-peer election and discovery in these topologies.

Chapter 5 evaluates the algorithms introduced in chapter 4 and veri�es that they construct topolo-
gies de�ned in chapter 4. It also compares the functionality and performance of gradient topolo-
gies with a number of state-of-the-art super-peer election systems.

Chapter 6 summarises the thesis and discusses future work.
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State of the Art

This chapter surveys the area of P2P systems that exploit the diversity in peer characteristics. In
the large majority of cases, these systems are based on super-peers. For each reviewed system, the
super-peer functions, election mechanisms, and topology maintenance algorithms are described, and
the advantages and limitations of each proposed approach are discussed. The last section in this
survey covers systems that do not use super-peers but are based on alternative principles.

Systems that exploit heterogeneity between peer connections rather than individual peers are not
covered in the survey. These systems include in particular streaming and multicasting applications,
which optimise dissemination trees, mesh overlays, and other structures based on the latency, band-
width, and throughput of connections between peers [150, 6, 139, 112, 21, 168]. Due to the di�erent
requirements and objectives, these systems cannot be directly compared to the gradient topologies
and election strategies described in this thesis.

2.1 Super-Peer Systems

The concept of super-peers has been �rst studied by Yang and Garcia-Molina in [200], who divide P2P
systems into three categories. In pure P2P systems, such as Freenet and initial versions of Gnutella,
all peers have equal roles and responsibilities in all aspects, and the system's functionality is fully
decentralised. In hybrid systems, such as Napster, some functionality is handled by a centralised
component (e.g., search), but otherwise the system is decentralised (e.g., downloads are performed
directly between peers). Super-peer networks, such as KaZaA and early versions of Morpheus, present
a cross between pure and hybrid P2P systems.

A super-peer is a node that acts as a centralised server to a set of clients and as an equal to other
super-peers. Clients communicate with their super-peers as with servers in hybrid P2P systems or in
traditional client-server architectures. However, super-peers are also connected to each other as peers
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(a) Classic super-peer
topology

(b) Redundant client
connections

(c) Redundant super-
peers

(d) Embedded super-
peer topology

Figure 2.1: Four variants of super-peer topologies.

in pure P2P systems, forming a super-peer overlay that handles the core system functionality, such as
search. A super-peer together with the set of its clients is called a cluster, and the cluster size is the
number of nodes in the cluster, including the super-peer.

In a sense, the introduction of super-peers enables a trade-o� between full decentralisation and
partial centralisation in a P2P system. The advantage of super-peer systems over hybrid P2P systems
is that they do not have any centralised components. The advantage of super-peer systems over pure
P2P systems is that they can exploit the heterogeneity in peers by assigning relevant system functions
to high-capability peers and that they reduce the number of participants in expensive algorithms, such
as search, by running these algorithms on super-peers only.

2.1.1 Super-Peer Topologies

Super-peer topologies found in the existing P2P systems and literature can be divided into four general
types. In classic super-peer topologies, every client is connected to exactly one super-peer, as shown in
Figure 2.1(a). These topologies, however, have the drawback that in the case of a super-peer failure,
all clients of the failed super-peer become disconnected from the network and isolated.

In order to address this problem, some systems allow clients to maintain connections to multiple
super-peers, as shown in 2.1(b). Similarly, for improved system reliability and fault tolerance, Yang
and Garcia-Molina [200] introduce a k-redundant super-peer topology, where each super-peer, called a
virtual super-peer, is replicated on k physical peers. Each of the k physical peers maintains connections
to all neighbours of the virtual super-peer (clients and other super-peers) and hosts a full copy of the
super-peer data. In this way, a virtual super-peer can tolerate up to k−1 peer failures without service
disruption. A sample 2-redundant super-peer topology is shown in Figure 2.1(c).

Finally, in some systems, any two peers are allowed to establish a connection between each other,
including two clients, in which case the super-peer topology is embedded in the overall system topology,
as shown in Figure 2.1(d). Such a topology is also known as a hub topology [176].
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2.1.2 Super-Peer Election

In order to introduce super-peers, a P2P system needs to decide on how many super-peers are desired
and which peers are the best candidates for super-peers. These two problems are correlated, as
the desired number of super-peers may depend on the properties of available peers. For example,
fewer super-peers may be elected if high-capacity candidates are available in the system, while more
super-peers may be required if all peers have low capacity.

As the system elects super-peers, it needs to decide on how to connect the super-peers with each
other and how to assign clients to super-peers. The connections between super-peers, as well as
the super-peer functionality, are usually application-speci�c. However, the algorithms for super-peer
election and client distribution are often application-independent, and given an optimality criteria,
can be directly compared with the election algorithms used in gradient topologies. For that reason,
a special emphasis is put on the super-peer election mechanisms used in the systems reviewed in this
chapter. Systems with the more elaborated super-peer election algorithms are covered in more detail.

The reviewed systems are divided into four loose categories based on the super-peer election mech-
anisms. The proposed organisation is not an exhaustive formal taxonomy, and some systems may �t
in more than one category. The classi�cation is introduced for convenience only.

The �rst category, described in section 2.2, comprises systems that do not specify any super-
peer election algorithm or have a very simple super-peer election approach. This includes manual or
centralised super-peer selection, and selection performed locally at each peer based on a static criteria.
Many of the �rst P2P systems that introduced super-peers belong to this category.

The second class, covered in section 2.3, consists of systems where the population of peers is divided
into disjoint groups, and super-peers are elected within each group independently. The groups are
usually based on peer properties such as physical location, network proximity, or semantic content.

The third class (section 2.4) contains systems where the super-peer election method is based on a
Distributed Hash Table (DHT). The DHTs [179, 149, 162, 46] are a well-known class of P2P systems,
with a well-de�ned functionality (i.e., that of a hash table), which constitutes a coherent subset of P2P
systems. Due to the distinctive characteristics of the DHTs, systems that use DHTs for the election
of super-peers are considered as a separate class in this review.

Finally, the last category (section 2.5) contains adaptive systems that elect super-peers based on
global demand, for example de�ned as the number of clients, rate of client requests, or current load on
super-peers. These systems usually de�ne some optimality criteria and continuously strive to optimise
the super-peer set. Table 2.1 lists the systems reviewed in each of the four categories.
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Simple Approaches Group-Based DHT-Based Adaptive
2.2.1 OceanStore 2.3.1.1 Crown 2.4.3 SOLE 2.5.1 SG-1
2.2.2 Brocade 2.3.1.2 PASS 2.4.4 Hierarchical DHT 2.5.2 SG-2
2.2.3 Gnutella 2.3.1.3 PoPCorn 2.4.5 HONets 2.5.3 DLM
2.2.4 KaZaA 2.3.1.4 Wolf and Merz 2.4.6 SPChord
2.2.5 Gnutella 0.6 2.3.2.1 Edutella 2.4.7 Mizrak et al.
2.2.6 eDonkey 2.3.2.2 ROSA-P2P
2.2.7 Yang et al. 2.3.2.3 Qiao et al.
2.2.8 Skype 2.3.3.1 Mastroianni et al.
2.2.9 JXTA 2.3.3.2 Glare
2.2.10 LST
2.2.11 SBARC
2.2.11 Zhu et al.
2.2.12 SUPS
2.2.13 Schelling

Table 2.1: Systems covered in the review.

2.2 Simple Approaches to Super-Peer Election

This section reviews P2P systems with the simplest super-peer election and management mechanisms.
This category includes systems that do not specify any super-peer election method, or rely on external,
out-of-band mechanisms, or leave the super-peer election to higher-level applications; systems where
the super-peer sets are hardcoded; systems that use centralised components for handling super-peer
management; systems where super-peers are selected manually, either by a global system administrator
or by the local user at each peer; systems where super-peers are elected based on �xed threshold, such
as minimum amount of bandwidth or storage space. A number of research papers reviewed in this
section assume that a certain super-peer topology is given and focus on the exploitation of such a
topology. The creation and maintenance of the super-peer topology is treated in these papers as a
separate research topic. Moreover, a large number of papers specify super-peer election criteria, usually
as a combination of peer characteristics such as bandwidth, storage space, or processing power, but
do not elaborate on any super-peer election algorithm.

The reviews begin with OceanStore, one of the �rst P2P systems that postulated the use of
super-peers, and Brocade, a system inspired by OceanStore. Next, the section describes a number
of �le-sharing systems that rely on super-peers, including KaZaA and Gnutella. Finally, the review
covers Skype, an Internet telephony system, and a number of general P2P frameworks and algorithms
such as JXTA and the Schelling algorithm.

2.2.1 OceanStore

One of the �rst systems that proposed the use of super-peers, published in 2000, was OceanStore
[94, 152], a global-scale distributed storage system for persistent data. OceanStore can be seen as a
predecessor of P2P systems, as it was designed to run on a large number of nodes distributed around
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the world and maintained by multiple independent providers. The nodes in OceanStore are considered
unreliable and untrusted, as in P2P systems.

For reliability and performance reasons, data stored in OceanStore is replicated and spread evenly
between nodes using a proactive replication algorithm. Every data object has a primary replica, which
serialises updates, veri�es access control credentials, and constructs a dissemination tree between
secondary replicas. The primary replicas are hosted on a selected set of nodes, called primary tier or
inner ring. These nodes function in OceanStore in a similar way to super-peers in many P2P systems.

As stated in [94], �the primary tier consists of a small number of replicas located in high-bandwidth,
high-connectivity regions of the network�. However, OceanStore does not provide any algorithm for
the election of nodes in the primary tier. According to the replication protocol speci�cation [62], nodes
that participate in the inner ring are selected manually by system operators.

The data placement and discovery in OceanStore is controlled by a variation of the Plaxton algo-
rithm [143], which later evolved into the Tapestry [207], one of the �rst distributed hash table systems.
In this algorithm, every data item, as well as every peer in the system, is assigned a unique identi�er.
Data items are assigned to peers based on their identi�ers and independently of their physical loca-
tions. Peers maintain a system topology and routing tables that enable e�cient query routing and
data access. Both Tapestry and the original Plaxton algorithm spread data and tra�c equally between
all peers in the system, and treat all peers in the system as if they possessed uniform resources.

2.2.2 Brocade

In order to address peer heterogeneity and to improve routing performance in OceanStore, an extension
to Tapestry has been proposed called Brocade [206]. In Brocade, high-capability super-peers, called
landmark nodes, are used for routing messages through wide-area networks on behalf of other peers
that act as their clients. Landmark nodes maintain a Tapestry network between each other and use
the Tapestry routing algorithm. Landmark nodes also maintain lists of their clients.

Brocade elects super-peers from nodes that �have signi�cant processing power, minimal number
of IP hops to the wide-area network, and high-bandwidth outgoing links� [206]. Amongst the nodes
that satisfy these requirements, super-peers are selected by the Internet Service Providers (ISP) in
each local network. According to [206], �gateways routers or machines close to them are attractive
candidates� for super-peers. An election algorithm is mentioned, but no details of such an algorithm
are provided.

Brocade also includes two mechanisms that associate clients with super-peers. In the �rst approach,
super-peers monitor the tra�c in their local networks and intercept all messages destined to peers
located in remote networks. These messages are subsequently tunnelled and routed over the Tapestry
overlay by the super-peers. However, this approach requires that every local network in the system
must have at least one super-peer and the network must be con�gured in such a way that the super-

15



2.2. Simple Approaches to Super-Peer Election

peers can intercept messages from all local peers. Such a requirement may be a serious obstruction in
the system deployment.

The second method relies on the use of prede�ned names in the Domain Name System (DNS) to
identify super-peers. Every super-peer, when elected, binds its address to a �xed name in the local
DNS domain. A client can discover its super-peer by resolving the �xed name in its own local DNS
domain. If no super-peer is found, the client can become a super-peer itself. However, this approach
again requires that at least one super-peer must be created for every local DNS domain in the system,
and furthermore, super-peers must be allowed to alter their DNS domains in order to register.

2.2.3 Gnutella

Amongst the �rst P2P systems that introduced super-peers were �le-sharing applications. In these
systems, each peer speci�es a collection of �les that it agrees to share with other peers and each
peer can download potentially any �le made available by other peers in the system. Most �le-sharing
systems also provide a search facility that allows peers to discover �les shared by other peers that
satisfy certain search criteria. In Napster, search was provided by a centralised server that kept
track of all �les hosted by peers in the system. However, most P2P �le-sharing systems provide a
decentralised search facility. In these systems, a peer performs search by generating a search query.
The query is propagated in the overlay, and peers that store �les that match the query reply back to
the searching peer.

Early �le-sharing systems, such as the �rst versions of Gnutella, commonly used �ooding to prop-
agate queries between peers. Other search techniques often used include random walks, Breadth First
Search (BFS), Depth First Search (DFS), and iterative deepening [199, 109, 187]. However, these
search strategies, sometimes called blind search techniques, have the drawback that they need to dis-
seminate search queries potentially to all peers in the system in order to �nd matching results. As
a consequence, when the size of the system grows and more search queries are generated, an average
peer receives more search messages. At certain point, the system does not scale as the search overhead
becomes prohibitive.

Gnutella addressed this problem by restricting the maximum number of times a query could be
forwarded, limiting the scope of search queries. However, this introduced the problem known as the
search horizon � peers were able to discover only a subset of �les available in the system. Furthermore,
Gnutella su�ered poor performance due to the fact that the slowest peers in the network easily became
overloaded, as the system did not adapt its topology to the peer capabilities.
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2.2.4 KaZaA

The scalability problems encountered in Gnutella were solved in KaZaA, the �rst P2P �le-sharing
application that introduced super-peers for handling search [102, 200].

In KaZaA, peers are divided into two classes � high-capability super-peers (called supernodes) that
handle search, and ordinary peers that act as their clients. Each super-peer maintains an index of
all �les stored on its clients. The search protocol in KaZaA is called FastTrack. A client performs
search by submitting a search query to its super-peer. The super-peers disseminates the query to other
super-peers, and as it receives results from other super-peers, it forwards the results to the client.

This design has two advantages over traditional search algorithm for P2P systems. First, it limits
the number of peers that participate in the search protocol, as search messages are exchanged between
super-peers only. This way, search is quicker, less expensive, and more scalable. Second, it prevents
low-capability peers from being overloaded, and further improves search performance, as search is
handled by selected, high-capability peers.

However, it is not precisely known how KaZaA elects super-peers, since it is a proprietary appli-
cation and its speci�cation and source code are not publicly available. Based on reverse engineering,
it is believed that peers in KaZaA decide to become super-peers using local knowledge about their
own characteristics, such as bandwidth, processing power, unrestricted access to the Internet and
availability [102]. Furthermore, becoming a super-peer is voluntary, as each peer has the option to
suppress the super-peer functionality.

2.2.5 Gnutella 0.6

As KaZaA became popular and the super-peer approach proved valid, super-peers were also introduced
in Gnutella version 0.6 [177]. Like KaZaA, Gnutella 0.6 used super-peers (called ultrapeers) for
indexing �les stored by clients (called leaves) and for handling search. The introduction of super-
peers reduced the load on the lowest-performance peers and improves the scalability of the Gnutella
network.

Gnutella 0.6 divides leaves into two categories: ultrapeer-capable and ultrapeer-incapable. The
distinction is based on minimum performance requirements. The Gnutella 0.6 protocol [177] speci�es
that a peer is capable of becoming an ultrapeer if it has a non-�rewalled connection to the Internet
(allowing incoming TCP connections and UDP packets), minimum of 20 KB/s downstream bandwidth
and 10 KB/s upstream bandwidth, an operating system that can handle large numbers of simulta-
neously open sockets, such as Linux, Windows 2000/NT/XP and Mac OS/X, and a su�ciently high
uptime.

Every ultrapeer can accept up to 32 connections from leaves and up to 30 connections from other
ultrapeers. In order to become an ultrapeer, a leaf peer must meet the ultrapeer requirements and
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must connect to an ultrapeer with at least 27 clients (90% of maximum 32). If an ultrapeer-capable
leaf connects to an ultrapeer that has fewer than 27 clients, it connects as a leaf; otherwise, it connects
an ultrapeer [103].

This way, a new ultrapeer is created when an existing ultrapeer has utilised 90% of its capacity.
Generally, ultrapeers are created when new peers are added to the system, and ultrapeers are removed
when peers leave the system. Moreover, every Gnutella user can force its peer to act as an ultrapeer
or a leaf, disabling the election algorithm.

An interesting feature of the Gnutella 0.6 protocol is that it is backward compatible with earlier
versions. For this reason, it is possible for ultrapeers and leaves to coexist in one Gnutella overlay
with peers that do not distinguish between super-peers and clients and connect to all of them in the
same manner.

2.2.6 eDonkey

eDonkey is another P2P �le-sharing application that introduced super-peers, called eDonkey servers,
for handling search [188, 75]. eDonkey servers do not share any �les and do not initiate downloads,
but index �les stored on their clients and enable search. Every peer in the eDonkey network is eligible
to setup a server, and the decision is made manually by each eDonkey user.

2.2.7 Yang and Garcia-Molina

Yang and Garcia-Molina [200] analyse the performance of super-peer based �le-sharing networks and
give practical guidelines for designing such networks. They investigate the relationships between the
number of super-peers in the network, load on super-peers, and search performance, in order to �nd
the formula for an optimal system con�guration. Their model is speci�c to �le-sharing systems and
is not easily generalised to other application areas. Moreover, they do not address the problem of
super-peer election and super-peer topology maintenance, as they only analyse static properties of
super-peer networks.

2.2.8 Skype

Skype [15, 67] is a P2P telephony system that enables voice communication between users using
computers connected through a wide-area network. It uses super-peers (called supernodes) for relaying
tra�c between �rewalled peers.

Peers are classi�ed into two categories: �rewalled peers, located behind a �rewall or Network
Address Translator (NAT), which usually have a private IP address and cannot receive incoming TCP
connections and UDP packets, and non-�rewalled peers, which have full access to the network and
can accept all connections. Super-peers are elected amongst non-�rewalled peers only.
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Depending on the type of the calling peer and the callee, four scenarios are possible. If both
the caller and the callee are non-�rewalled, they can communicate directly. Similarly, if the caller is
�rewalled but the callee is non-�rewalled, the caller can establish a direct connection with the callee.

Every �rewalled peer, in order to receive phone calls, maintains a permanent connection with a
super-peer. If a non-�rewalled peer attempts to call a �rewalled peer, it �rst contacts the super-peer
associated with the callee, the super-peer then noti�es the callee, and the callee initiates a connection
to the caller. When the connection has set up, the caller and the callee can communicate directly.

In the last possible scenario, where both the caller and the callee are �rewalled, the connection
procedure consists of two steps. First, the caller connects to the super-peer of the callee, and syn-
chronised by the super-peer, the caller and the callee attempt to establish direct connectivity using
STUN [161, 160], a NAT traversal protocol. If this step fails, peers fall back to the TURN protocol
[159], where all messages between the caller and the callee are relayed by the super-peer [67].

Although the Skype protocol speci�cation and source-code are not publicly available, it is believed
that peers are promoted to super-peers in Skype if they are non-�rewalled and have a high amount
of bandwidth [67].

2.2.9 JXTA

Juxtapose (JXTA) [65] is a network programming and computing platform, created by Sun Microsys-
tems, speci�cally designed to be the foundation for creating P2P systems. JXTA standardises a
common set of protocols that allow groups of hosts to establish P2P overlay networks. JXTA can
be implemented on top of TCP/IP, HTTP, Bluetooth, HomePNA, and many other transport-layer
protocols.

JXTA uses two types of super-peers, called rendezvous peers and relay peers [186].
Rendezvous peers are peers that enable search. They cache so-called advertisement indices, i.e.,

pointers to client peers that advertise particular resources, and act as directory services. Rendezvous
peers also connect to each other and form a semi-structured super-peer network, where each rendezvous
peer maintains a loosely-consistent list of all other rendezvous peers in the system. Rendezvous peers
forward search queries between each other using a limited-range rendezvous walker algorithm [185].

Relays are used for bridging peers that do not have direct physical connectivity, for example due
to �rewalls or NAT. Like rendezvous peers, relay peers connect to each other and maintain loosely-
consistent lists of all relay peers available in the system. A routing algorithm is used to establish a
connection between any two peers in the system through a series of relays.

Furthermore, JXTA uses two sets of peers that act as permanent rendezvous and permanent relays,
called seeding rendezvous and seeding relays. The seeding peers are used for bootstrapping peers that
join the overlay.

The super-peer election algorithm in JXTA is not fully speci�ed. According to [186], �any peer can
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become a rendezvous peer assuming it has the right credentials�. Similarly, �any peer may become a
relay peer assuming it has the right level of credentials and capacity (bandwidth, low churn rate and
direct connectivity)�. It is up to the higher-level application to decide on the minimum capacity and
credentials required for rendezvous and relay peers. The JXTA white paper speci�es also that �if none
of the seeding rendezvous is reachable after a tunable period (5 minutes), the edge [i.e., client] peer
will try to become a rendezvous (if it has the right credential)� [186]. Seeding rendezvous and seeding
relays must be hard-coded in the application.

2.2.10 LST

Kleis et al. [90] propose the use of Lightweight Super-Peer Topologies (LST) for routing in P2P net-
works. Their approach is based on Yao-Graphs and the Highways scheme, which allow the construc-
tion of Euclidean minimum spanning tree. Such a tree structure can be used for e�cient multicasting.
LST relies on super-peers, however, Kleis et al. [90] do not specify any super-peer election mechanism.
They only mention that a super-peer �should have enough resources to serve other peers� and �should
be reliable in the sense that it is not joining and leaving the P2P network frequently�. Furthermore,
�trust and security incentive schemes could be layered in this election process.�

2.2.11 SBARC and Zhu et al.

Another example of a P2P system that does not specify any super-peer election algorithm is the
Supernode Based Peer-to-Peer File Sharing System (SBARC) [197]. SBARC improves the routing
performance in Pastry DHT [162] by routing messages through high-capability super-peers. Xu and Hu
describe a routing algorithm and a data caching scheme that take advantage of super-peers, however,
they do not elaborate on the super-peer election mechanism. The following paragraph describes their
super-peer election criteria.

The basic requirement is a high bandwidth connection. [...] The second criteria is it
[i.e., super-peer] must have enough computation power because supernodes need to deal
with most system workloads. [...] Third, supernodes can not join/leave system frequently,
otherwise its e�ciency will be greatly reduced. Also it is helpful if supernodes have large
amount of storage space. [197]

It is not speci�ed what amount of available bandwidth or computational power or storage space
is required for a super-peers, and no algorithm is given that could calculate such minimum super-
peer requirements. Furthermore, it is not explained how to estimate peer stability in order to elect
super-peers that do not join or leave the system frequently.

A very similar approach is described by Zhu et al. in [209], where the routing performance in a
DHT is improved through the introduction of super-peers. However, as in [197], Zhu et al. [209] focus
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on routing strategies and do not describe any super-peer election algorithm. They only specify the
following criteria for super-peers: �signi�cant processing power, high bandwidth, high availability, and
large amounts of memory and storage space�. The details of the super-peer election are not discussed
�due to space constraints.�

2.2.12 SUPS

Scalable Unstructured P2P System (SUPS) [145] is another system that relies on super-peers but
does not contain any super-peer election mechanism. The main goal of SUPS is to produce a low-
diameter and balanced super-peer topology. A neighbour selection algorithm is shown, inspired by
the theory of random graphs, that connects super-peers in such as way that the topology diameter is
Θ(ln N/ln ln N) and the average super-peer degree is minimised, given a system with N super-peers.

However, [145] does not address the problem of super-peer election. It only mentions that �super-
peers are selected from normal peers that have high bandwidth, high computing power, a long resis-
tance time, and a low likelihood of failure [...] the detailed choice of super-peer remains as a separate
research topic not addressed in this paper.�

2.2.13 Schelling Algorithm

Singh and Haahr [176] propose a neighbour selection algorithm, inspired by the Schelling's model,
that constructs and maintains hub topologies. A hub topology can be de�ned as P2P topology, where
selected peers, called hubs, are highly connected with each other, while ordinary peers are connected
to both hubs and other ordinary peers. Hub topologies are considered more robust than classic super-
peer topologies, since in the former, a super-peer failure causes an isolation of its clients, while in the
latter, ordinary peers are connected to multiple super-peers and can handle hub failures.

The original Schelling's model is a sociological model proposed to explain the existence of segre-
gated neighbourhoods in the United States. In this model, each agent de�nes its satisfaction condition,
and changes its neighbourhood whenever the satisfaction condition is not met by performing an adap-
tation procedure.

The customised Schelling algorithm that creates hub topologies is shown in Figure 2.2. A hub
is satis�ed if it is connected to at least one, but not more than Hmax, other hubs, where Hmax is a
system constant (lines 1-3). If the number of hub neighbours, h, is above Hmax, the hub drops one
hub connection (lines 5-9). If h is zero, the hub connects to another hub discovered by performing
a Depth First Search (lines 10-13). An ordinary peer is satis�ed if it is connected to at least one
hub (lines 14-17). If this condition is not met, the peer discovers and connects to a hub (lines 23-
24). Furthermore, if its number of neighbours is above Nmax, where Nmax is a system parameter, it
removes a random neighbour (lines 18-22).
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1: satis�ed()
2: h← number of hub neighbours
3: return (0 < h < Hmax)

4: adaptation()
5: h← number of hub neighbours
6: if h > Hmax then
7: q ← one of hub neighbours
8: disconnect q
9: end if
10: if h = 0 then
11: s← search for hubs
12: connect q
13: end if

(a) Hub

14: satis�ed()
15: h← number of hub neighbours
16: return (h > 0)

17: adaptation()
18: n← number of neighbours
19: if n > Nmax then
20: q ← one of neighbours
21: disconnect q
22: end if
23: s← search for hubs
24: connect q

(b) Ordinary Peer

Figure 2.2: Schelling algorithm for the generation of hub topologies.

The algorithm does not determine which peers act as hubs. According to [176], hubs are �high-
availability and high-capacity peers�. They can be be exploited in a similar manner as super-peers in
traditional super-peer systems, for example to perform resource-intensive tasks such as �maintaining
a directory of resources in the network and processing search queries�. The main advantage of the
Schelling algorithm is its simplicity and robustness. However, it does not address the super-peer
election problem.

2.2.14 Discussion

All systems described in this section employ very simple approaches to super-peer election and manage-
ment, which are not likely to produce optimal, or close to optimal, system con�gurations. Centralised
approaches introduce reliability and scalability concerns, and are in obvious contradiction with basic
principles of P2P systems. Manual super-peer selection is di�cult due to the large scale, dynamism,
and complexity of P2P systems. A global system administrator is not likely to possess su�cient
knowledge about the system to select an optimal super-peer set. A local user at each peer is even less
likely to obtain such a knowledge about the system.

Most of the reviewed systems specify criteria for super-peer election. In most cases, these criteria
are described as a high amount of available bandwidth, storage space, processing power, and a long
session time. However, many systems do not provide any mechanism for the estimation of peer
properties in order to apply these criteria. For example, it is not obvious how a peer can estimate
its remaining session time. More importantly, given a criteria such as a high amount of property x,
many systems do not specify precisely what high is.
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In many reviewed systems, the super-peer criteria is de�ned as static threshold, e.g., x > 5, such
that all peers with property x above the threshold automatically become super-peers and all the
remaining peers become clients. This simple approach has the advantage that every peer can make
the decision about becoming a super-peer locally, without any communication with other peers. In
some cases, the threshold may be directly de�ned by the requirements of a higher-level application.

However, this approach has a serious drawback. A static threshold does not allow the system to
control the number of super-peers in dynamic populations of peers. If peer properties change, the
super-peer sets changes accordingly. This can lead to extreme cases, where no super-peers are elected,
if all peers fall below the threshold, or where every peer is a super-peer, if all peers are above the
threshold.

In many P2P applications, the number of super-peers is critical for the system performance. For
example, in �le-sharing applications, the number of super-peers must be signi�cantly smaller than the
total number of peers in order to reduce the amount of search tra�c to an acceptable level. At the
same time, the number of super-peers must be large enough to be able to handle the load associated
with serving clients. Often, the optimum number of super-peers in the system depends on the current
load, e.g., the number of user requests. A static threshold does not allow the system to adapt the size
of the super-peer set to the current demand.

Setting a threshold that limits the number of super-peers to a desired level requires a global
knowledge of peer characteristics. In many systems, it is assumed that peer properties follow a certain
distribution. Such a distribution can be estimated using domain-speci�c knowledge, or measured
experimentally in deployed systems.

However, there are a number of reasons why the distribution of peer characteristics may change.
A natural change may occur over time, as new technologies are developed and the Internet evolves.
According to the Moore's Law [129], the capabilities of computers, measured as the number of tran-
sistors placed on an integrated circuit, is increasing exponentially, doubling approximately every two
years. The global network conditions and the general behaviour of users are another two important
and unpredictable factors. Peer properties may depend on the time of the day, day of the week, and
external events which may generate �ash crowds. Peer properties may also change when the system
is deployed in a di�erent environment, for example in a di�erent country, or exposed to a di�erent
group of users.

Figure 2.3 shows a sample super-peer election scenario with a static threshold. Each peer is
assigned a capacity value, and the super-peer election threshold is 10. In Figure 2.3(a), four super-
peers are elected, and the ratio of clients to super-peers is balanced. In Figure 2.3(b), the capacity of
all peers is reduced by a half. As the threshold remains static, only one super-peer is elected in the
system. Such a single super-peer is likely to become overloaded. In Figure 2.3(c), the capacity of all
peers is twice increased. Nearly all peers in the system become super-peers and the system is again
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(a) Initial con�guration (b) Peer capacity is halved (c) Peer capacity is doubled

Figure 2.3: Threshold-based super-peer election example.

likely to becomes ine�cient.
To conclude, the systems reviewed in this section clearly show that there are many applications

scenarios where the performance and scalability of a P2P network can be signi�cantly improved by
introducing super-peers. Moreover, as the reviewed systems o�er relatively simple super-peer election
mechanisms, there is a general need for more sophisticated techniques that would allow peers to better
control the number of super-peers in the system and to adapt the super-peer set to the changing system
conditions. Such approaches to super-peer election are covered in the next three sections.

2.3 Super-Peer Election in Peer Groups

The systems described in this section rely on a common mechanism of peer grouping. In these
systems, the population of peers is divided into disjoint groups, based on peer properties such as
physical location or data semantics, and a super-peer, or multiple super-peers, are elected within each
group independently.

The main advantage of this approach is that the general problem of super-peer election in the
system is decomposed into a number of local election subproblems within groups, which are easier to
solve since groups are much smaller than the total system size. In the most straight-forward case, the
characteristics of all peers in a group are directly compared with the existing super-peer. Furthermore,
systems that belong to this class usually impose restrictions on the super-peer topology, such as a
certain maximum distance between a super-peer and a client, according to some metric, in order to
satisfy application-speci�c requirements.

In most approaches, super-peers are created on demand, as peers join the system. The general
structure of the join procedure consists of the following steps, as shown in Figure 2.4. First, the joining
peer, p, determines the group, g, that it belong to (line 2 in Figure 2.4), and contacts the super-peer,
s, responsible for group g (line 3). These steps may involve interactions between p and other peers in
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1: Join():
2: g ← group of peer p
3: s← super-peer in group g
4: if s is nil then
5: become super-peer
6: else
7: if s higher capability than p then
8: become client of s
9: else
10: become super-peer
11: transfer all clients from s to p
12: request s to become client of p
13: end if
14: end if

Figure 2.4: Join procedure at peer p in a group-based system.

(a) Initial con�gura-
tion

(b) Joining an empty
group

(c) Joining as a client (d) Swapping with a
super-peer

Figure 2.5: Sample join scenarios in a group-based system.

the system, and are system-speci�c. It is assumed that every peer must know at least one other peer
that already participates in the system in order to join.

If no super-peer exists in group g, peer p becomes a new super-peer in group g (lines 4-5). If a
super-peer s is found, peer p compares its characteristics with s in order to decide which of the two
peers is more suitable to serve as a super-peer for the group (line 7). If peer p has higher capabilities
than s, it joins the group as a client of s (line 8). Otherwise, it becomes a new super-peer and swaps
its roles with s. In the latter case, all existing clients are transferred from s to p and s besoms a client
of p (lines 10-12).

The join procedure is graphically shown in Figure 2.5. An initial con�guration consists of four
groups, three super-peers and eight clients (a). If a new peer enters an empty group, it becomes a new
super-peer in this group (b). If a peer joins a non-empty group, it connects to the existing super-peer
in this group (c), compares its capabilities with the super-peer using some application-speci�c metric,
and potentially swaps its role with the super-peer (d).

Apart from peer arrivals, the super-peer election algorithm is run whenever an existing super-peer
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Figure 2.6: Sample coordinate space based on two landmark nodes.

becomes unavailable. Often, the super-peer maintains a list of all peers in the group and periodically
broadcast this list to all its clients. The list is ordered based on the characteristics of individual peers,
from the highest-capability peer to the lowest-capability peer. In case of a super-peer failure, an
election is performed and the �rst peer on the list becomes a new super-peer. A number of variations
of the super-peer election algorithm exist, for example where multiple super-peers are elected within
each group, and where groups are dynamically split and merged with each other during the course
of the system's operation. If peer characteristics are dynamic, the super-peer may occasionally swap
with one of its clients.

The systems reviewed in this section are divided into three subcategories, where peers are organised
into groups based on physical location, semantic description, and administration domain (in Grids).

2.3.1 Location-Based Systems

In a number of systems, peers are organised into groups based on their physical location, for example
using information about their country, ZIP code, or ISP. Many systems also introduce peer distance
metrics, for example de�ned as the communication latency or number of IP hops on the route between
two peers. In these systems, the goal is usually to assign clients to super-peers that are close to them
according to the distance metric.

Many systems also use Internet coordinate systems, such as GNP [136] and Vivaldi [45], where
every peer is positioned in a k-dimensional virtual coordinate space. The k coordinates of each
peer are calculated by measuring the distance of each peer to k well-known landmark hosts. If the
landmark nodes are evenly distributed in the system, the Euclidean distance between peers in the
virtual coordinate space approximates the distance between these peers in the physical network.

Figure 2.6 shows an example of a two-dimensional coordinate space generated using two landmark
nodes, X and Y . Peer A measures its distance to X and Y and obtains (1, 10) as its coordinates .
Similarly, peer B determines its coordinates as (5, 6). The distance between A and B can be estimated
as

√
(1− 5)2 + (10− 6)2 = 5.6.

A k-dimensional virtual space can be mapped onto a lower-dimensional space (one-dimensional
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space in particular) using a Space Filling Curve (SFC), such as the Hilbert space-�lling curve and the
z-order curve. These curves have the locality-preserving property. Points that are close in the original
k-dimensional space are mapped onto points that are also close in the target space.

2.3.1.1 Crown

Crown [192] is a distributed resource management protocol, similar to a distributed hash table. It
allows a P2P system to distribute resources, such as �les, programs, and services, uniformly between
peers, and it enables an e�cient resource lookup protocol. Each peer in Crown is assigned two
identi�ers: a peer identi�er, which is unique, and a group identi�er, which is potentially shared with
other peers. A peer identi�er is de�ned as the SHA-1 hash of the peer's IP address, and a group
identi�er is de�ned as the SHA-1 hash of the �rst m = 24 bits of a peer's IP address. It is assumed
that peers which share a common IP address pre�x are likely to be located in the same local network
or autonomous system, and hence, the connections between such peers are likely to have low latency
and high throughput.

Peers that belong to each group elect a super-peer. The details of the super-peer election algorithm
are not described in [192], but it can be expected that a similar algorithm to the one described in
Figure 2.4 can be applied in Crown. The criteria for super-peer election in Crown are: high peer
bandwidth, high availability (uptime), large computational power, and a low load. Additionally, users
are allowed to manually select which peers become super-peers.

Super-peers connect to all clients in their respective groups and to other super-peers in the system,
forming a ring topology that spans all peer groups. Super-peers run a decentralised lookup protocol,
which allows them, and their clients, to locate resources available in the system.

2.3.1.2 PASS

A similar approach to super-peer election is proposed in the Peer-to-peer Asymmetric �le Sharing
System (PASS) [96], a P2P �le-sharing application. Peers in PASS are divided into multiple areas
based on their geographical location, using information such as ZIP codes or administrative network
domain names. PASS does not impose any particular division scheme, but it assumes that the latency
between peers that belong to the same area is low compared with the entire system.

Each group of peers independently elects its own super-peers. The super-peers maintain a dis-
tributed directory of system data and handle search. As in other �le-sharing applications, search
requests are propagated between super-peers only and are not forwarded to clients in order to reduce
search overhead. Furthermore, one of the super-peers in each area is elected as a Representative
SuperNode (RSN), which handles inter-area communication. It is assumed that due to the location-
aware division of peers into groups, operations executed locally in a group, such as super-peer elections,
directory updates and lookups, are performed at low cost.
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As the performance of super-peers (particularly RSNs) is critical for the system's operation, the
super-peers are selected from the most stable peers in the system. The �rst peer that enters an area,
becomes a super-peer and RSN for this area. If an existing super-peer becomes overloaded, e.g., due
to a high number of clients, the super-peer selects one of its clients, promotes it to a super-peer,
and splits the remaining clients between itself and the new super-peer. Furthermore, each super-peer
appoints a backup peer amongst its clients; when a super-peer leaves, it is replaced by its backup
peer.

2.3.1.3 PoPCorn

A very di�erent approach is followed in PoPCorn [105], which assumes an n-dimensional Euclidean
space generated using an Internet coordinate system such as GNP and Vivaldi described above. PoP-
Corn elects k super-peers and distributes them evenly in the coordinate space. The distribution
criteria, dispersal, is achieved by maximising the sum of inter-node distances between pairs of super-
peers.

Super-peers are elected using k tokens exchanged between peers using a repulsion model. The
initial token placement is random. Every peer that holds a token performs a scoped gossip with its
neighbours in order to notify them about tokens in their vicinity. When a peer receives a gossip
message, it updates its model of nearby tokens and calculates a combined repulsion force of these
tokens. If the repulsion force exceeds a threshold, TR, the token is passed to another peer, according
to the force direction. If a token stays on a peer for a certain number of time steps, T , this peer
becomes a super-peer. Each peer calculates its threshold TR based on its capabilities. Peers that are
better quali�ed to serve as super-peers have higher values of the threshold TR, and hence, are more
likely to be elected super-peers.

The algorithm description in [105] is very brief and is missing many details. In particular, it
it not entirely clear how peers select their neighbours and what topology they maintain, how they
perform gossip, and how they discover peers that are closest to the virtual locations de�ned by the
repulsion forces. No evaluation is shown in [105] and there is no evidence that the algorithm generates
the desired system con�gurations. Furthermore, it is not obvious how to deal with peer failures and
departures, and in particular, how to address the problem of lost tokens.

2.3.1.4 Wolf and Merz

Wolf and Merz [195] consider a similar problem of constructing a super-peer topology where the dis-
tance between super-peers and their clients, as well as between connected super-peers, is minimised.
The motivation for this problem is to minimise the total communication cost in the system. Wolf and
Merz state that the problem is NP-di�cult, but show a heuristic based on evolutionary algorithms
enhanced with local search that generates close-to-optimal super-peer topologies. However, the pro-
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Figure 2.7: Sample coordinate space based on term frequencies.

posed heuristic algorithm requires a global view of the entire network and as such cannot be directly
deployed in a P2P system.

2.3.2 Semantics-Based Systems

A number of P2P systems elect super-peers based on peer semantics, for example using tags, text
descriptions, or XML descriptions, or ontology concepts associated with peers. A number of standards
have been proposed for the semantic description of peers, which include the Resource Description
Framework (RDF), Web Ontology Language (OWL), and RDF Schema. Many systems also introduce
formal metrics that measure the semantic similarity between peers. Furthermore, virtual coordinate
spaces can be generated based on peer semantic properties, as in location-based systems.

Tang et al. [183] describe an approach where peers are mapped onto a coordinate space using
the Vector Space Model (VSM). In this model, every peer is associated with a set of text documents,
and a �xed set of k terms is used to calculate peers' coordinates. The i'th coordinate of peer p is
de�ned as fp(i)

f(i) , where fp(i) is the frequency of the i'th term in p's documents, and f(i) is the total
frequency of the i'th term in all documents. The distance between peers p and q, assigned coordinates
X = (x1, x2, . . . , xk) and Y = (y1, y2, . . . , yk) is given as cos(X, Y ).

Figure 2.7 shows a sample two-dimensional coordinate space based on terms 'aaa' and 'bbb'. Peer
A is described by terms 'aaa', 'bbb', and 'ccc'. Given the global frequencies of 'aaa' as 0.3 and 'bbb'
as 0.3, both coordinates of peer A are equal to 1/3 · 0.3 = 1.11. Similarly, peer B, associated with
terms 'aaa', 'bbb', 'ddd ', and 'bbb', is assigned coordinates 1/4 · 0.3 = 0.83 and 1/2 · 0.3 = 1.66, and
peer C, with keywords 'aaa', 'ccc', and 'bbb' has coordinates 0 · 0.3 = 0 and 1/3 · 0.3 = 1.1.

VSM has the disadvantage that it does not recognise term synonyms and generates coordinate
spaces with large dimensions. These problems are addressed in the Latent Semantic Indexing (LSI)
algorithm [48], which projects high-dimension vectors generated by VSM onto low-dimension semantic
subspaces, selecting the most relevant terms for each peer.
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Figure 2.8: Sample coordinate space based on �xed-length terms.

Another approach is proposed by Smidth and Parashar [170], where every peer is described by a
sequence of k keywords and positioned in a k-dimensional coordinate space. The i'th coordinate of a
peer is de�ned by the i'th keyword of this peer. Each keyword is treated as a d-digit base-b number.
Keywords that are longer than d digits are truncated by removing their last letters. Keywords shorter
than d letters are padded with a special zero character.

For example, if keywords were constructed over the plain Latin alphabet with 26 letters, each
keyword would be a base-26 number, with 'a' representing 1, 'b' representing 2, and so on. Figure 2.8
shows a sample two-dimensional coordinate space (k = 2) with three-letter keywords (d = 3) over a 26-
character alphabet (b = 26). Peer A, associated with keywords 'abc' and 'ddd' is assigned coordinates
1 ·262 +2 ·261 +3 ·260 = 731 and 4 ·262 +4 ·261 +4 ·260 = 2812. Similarly, peer B with keywords 'kk'
and 'sss' has coordinates 11 · 262 + 11 · 261 + 0 · 260 = 7722 and 19 · 262 + 19 · 261 + 10 · 260 = 13357,
and peer C with keywords 'abcde' and 'pqr ' has coordinates 1 · 262 + 2 · 261 + 3 · 260 = 731 and
16 · 262 + 17 · 261 + 18 · 260 = 11276.

A number of other peer distance metrics based on peer semantics are described in [147].

2.3.2.1 Edutella

Edutella [132] is a �le-sharing P2P network where every shared �le and every peer is described using
RDF schemas and RDF metadata. As many other �le-sharing networks, Edutella uses super-peers
for handling search in order to reduce the overall search cost and overhead [134, 133]. Super-peers
are arranged in a hypercube topology, maintained using the HyperCuP protocol [169], which enables
e�cient routing of search queries, and is also robust to multiple peer failures. In a hypercube with
N peers, the path between any two peers has at most log2N overlay hops, and the minimum number
of peers that need to be removed to partition the network is log2N , while each peer maintains log2N

neighbours. A hypercube overlay also allows e�cient broadcast and multicast.

In Edutella, every peer is described using a combination of structuring concepts, de�ned through
a set of global ontologies, known to all peers in the system [169, 108]. These structuring concepts
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determine the coordinates of each peer in the hypercube. An ordinary peer connects to the semantically
closest super-peer. A super-peer joins the hypercube overlay using the HyperCuP protocol. This way,
peers that have similar semantic characteristics are located close to each in the system topology.

According to [134], �super-peers provide the necessary bandwidth and processing power to enable
e�cient and reliable query processing and answering�. However, no algorithm is described that would
allow the selection of such high-performance peers. In all algorithms described in [169, 134, 133, 108],
it is assumes that every peer joins the system either as a super-peer or an ordinary peer and it is not
explained how a peer decides on its role.

2.3.2.2 ROSA-P2P

The Repository of Objects with Semantic Access (ROSA) [26] is an e-learning system, whose purpose
is to support teachers in the preparation of didactic materials. ROSA-P2P [26] is a P2P network that
provides a distributed storage and search facility for ROSA.

As in Edutella, ROSA-P2P organises peers into groups based on their semantic characteristics.
Each group consists of peers that have similar subjects and localisation. Furthermore, each group elects
a super-peer, which is responsible for storing data and handling search. The super-peer election criteria
are based on peer characteristics such as stability, bandwidth, processing power, available memory
and storage capacity. In order to act as a super-peer, a peer needs to satisfy certain performance
requirements. Additionally, peers that belong academic institutions automatically become super-
peers.

Each peer can declare one of three preferences: to refuse being a super-peer, to accept becoming
a temporary super-peer, or to accept being a permanent super-peer. In the �rst case, the peer never
becomes a super-peer. In the second case, the peer becomes a super-peer only if there is no other
peer in its group that agrees to be a permanent super-peer. In the third case, the peer is elected a
super-peer if it is the highest-capability peer in its group.

When a peer joins the ROSA-P2P network, it �rst determines the group it belongs to and contacts
the super-peer in this group, as in the general scheme shown in Figure 2.4. The list of available
groups and corresponding super-peers is obtained from a centralised ROSA portal. The further steps
depend on the preferences of the current super-peer and the joining peer. If no super-peer is found in
the group, the joining peer is requested to become a super-peer. If it rejects the request, it is either
assigned to a di�erent group of is not allowed to join the system. If a temporary super-peer is found in
the group, and the joining peer agrees to become a permanent super-peer, the existing super-peer and
the joining peer swap their roles. In all other cases, the joining peer becomes a client of the existing
super-peer in the group.

Each super-peer periodically compares the characteristics of its clients and selects the highest-
capability peer in its group that agrees to serve as a super-peer. If the selected peer has better
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characteristics than the existing super-peer, the roles of the two peers are swapped. Moreover, each
super-peer de�nes a limit on the maximum number of clients it can simultaneously support. When
the number of peers in a group approaches the limit, the super-peer assigns a new super-peer from its
clients and splits the group.

Even though ROSA-P2P has been thought as a decentralised P2P system, it is partly centralised,
as it relies on a centralised ROSA portal, which maintains the information about the current structure
of groups in the system. The centralised portal allows all peers in the system to achieve a synchronised
view on the peer groups.

2.3.2.3 Qiao et al.

Qiao et al. [147, 146] propose a P2P system where peers are arranged using a globally-known taxonomy
of concepts. Such a taxonomy is a tree, or a hierarchy, where vertices represent concepts, and edges
represent relationships between concepts. Every peer is characterised by a number of concepts, but the
taxonomy tree is maintained by super-peers only. Each super-peer is responsible for one or multiple
subtrees of the taxonomy tree, and maintains an index of all peers that are characterised by the
concepts in these subtrees. A super-peer together with associated clients form a semantic cluster.

Super-peers are created on demand. Each concept is associated with a load, de�ned for example
as the frequency of queries related to the concept, or the number of clients or data items associated
with the concept. Moreover, every super-peer has a maximum capacity that de�nes the maximum
load it can handle. When the load in a cluster exceeds the capacity of the super-peer, the super-peer
selects one of its clients as a new super-peer and splits the cluster.

There are two algorithms for splitting clusters. In the Semantic First Clustering Algorithm (SFCA),
a cluster always contains a single subtree of the global hierarchy. When a cluster is divided, the super-
peer selects a subtree with load approximately equal to half of the current cluster's load. The resultant
clusters always have a parent-child relationship.

The Load Balance First Clustering Algorithm (LBFCA) allows more �exible cluster splitting in
order to balance the load between clusters more evenly. A cluster is divided into two subclusters
according to the following three rules: (i) if the cluster consists of a single semantic tree, the tree
is split into one or multiple subtrees and these subtrees are divided between subclusters; (ii) if the
cluster consists of multiple subtrees, these trees are divided between subclusters; (iii) if the cluster
consists of a single concept, the load associated with this concept is shared between subclusters.

Figure 2.9 shows a sample hierarchy consisting of concepts A, B, . . . K. Each number represents
the load associated with a concept. The maximum super-peer load is 20. Initially, the entire hierarchy
belongs to one cluster X. When the load associated with every concept is doubled, the cluster is split
into clusters X and Y using rule (i) in LBFCA. Next, the load in cluster Y is doubled again, and
cluster Y is split into Y and Z using rule (ii). In the last scenario, the load in cluster Y is doubled
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Figure 2.9: Sample division of a semantic hierarchy using LBFCA.

once again, and cluster Y is divided into Y and Y' using rule (iii), so that the single concept A is
shared by both clusters Y and Y'.

Although SFCA and LBFCA o�er a �exible and adaptive division of the semantic space between
super-peers, they raise a number of questions. Both algorithms do not specify how clusters are merged,
for example when the load in the system decreases. Furthermore, they require a static and globally
known hierarchy of concepts. It is not obvious how such a hierarchy is created and what authority
maintains it. One approach would be to adapt a centralised server, as in ROSA-P2P, but this would
con�ict with the system's decentralisation.

Finally, it can be questioned if a hierarchy is a generally a suitable structure for P2P systems. If
a super-peer hierarchy is used for routing or searching, as described in [147], the top-level super-peers
may easily become overloaded. Moreover, the failure of the top-level super-peers, potentially due to
a malicious attach, may disable the entire P2P system.

2.3.3 Grid Systems

A large-scale Grid can be viewed as a network interconnecting small-scale, proprietary Grids, where
each of such small-scale Grids is a network composed of hosts located within one administrative
domain, called a Virtual Organisation (VO) [116, 175]. Grid systems and P2P systems, although
considered distinct areas, share a number of common characteristics. In particular, both Grid and
P2P systems consist of large numbers of nodes physically distributed between di�erent geographical
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locations, which cooperate with each other in order to provide system-level services.

The main di�erences between Grids and P2P systems are their scale, dynamism, and the degree to
which these systems are controlled. In the currently largest deployed Grids, the numbers of participat-
ing nodes are on the order of thousands [117], while in the most popular P2P systems, such as Skype
and KaZaA, the numbers of simultaneous users have already exceeded millions [35, 102]. Furthermore,
Grid nodes are more stable, as they are usually run by large enterprises and public institutions and
are often hosted on dedicated servers. In P2P networks, nodes can freely join and leave the system.
Grid systems are also more tightly controlled by system administrators and are more secure than P2P
systems.

2.3.3.1 Mastroianni et al.

Mastroianni et al. [116, 117] propose the adoption of super-peers in large-scale Grids in order to
improve the e�ciency of resource discovery and membership management. In their approach, super-
peers maintain metadata about their clients and run a search protocol in a similar manner as in
P2P systems. The authors believe that super-peers can be selected manually in Grids, unlike in
P2P systems, due to the fact that large-scale Grids are composed of smaller, locally-managed Virtual
Organisations. In each VO, local administrators can select a set of the most �powerful� super-peers
using local knowledge available within the organisation.

2.3.3.2 GLARE

A more self-managing approach to super-peer election is proposed in the Grid Activity Registration,
Deployment and Provisioning Framework (GLARE) [175]. Here, the Grid is divided into multiple
peer groups, as in [117], and each group elects a super-peer. Super-peers are used for relaying search
queries and caching search results. However, unlike in [117], peer groups are not de�ned by VOs, but
are rather created using the Globus Toolkit 4 (GT4) built-in hierarchical aggregation and indexing
mechanism.

One member of each peer group is selected as an election coordinator using the GT4. In order
to initiate an election, the coordinator noti�es all peers in the group, and peers reply back to the
coordinator with their static characteristics, such as processor speed, amount of memory, uptime, and
site name. The coordinator ranks the peers and selects the highest-capability peer as a super-peer.
In case the group consists of a large number of peers, the coordinator may decide to split the group
by appointing multiple super-peers and splitting the group members equally between the super-peers.
If a super-peer fails, the �rst peer that discovers the failure selects the highest rank peer as a new
coordinator, who initiates a new election. If the majority of peers in the group con�rm that the
current super-peer is not available, the highest rank peer becomes a new super-peer.
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2.3.4 Discussion

One of the main advantages of dividing a P2P system into peer groups is that many system-level
problems can be decomposed into simpler to solve group-level subproblems. In particular, the general
problem of super-peer election in the system can be decomposed into simpler subproblems of super-
peer election in each group. Additionally, if super-peers are elected locally in each peer group, they are
usually located close to their clients in terms of physical distance, communication latency, bandwidth,
semantic similarity, or other metrics, depending on the mechanism used to construct peer groups. Such
a proximity-aware organisation of super-peers and clients in the overlay topology is often required by
higher-level applications.

However, the use of peer groups introduces the problem of group creation and maintenance in a
decentralised P2P system. Every peer needs to know the group it belongs to.

In the simplest case, a peer determines its group based on its static properties, such as IP address,
ZIP code, ISP, administrative domain, or position in some global semantic ontology. This has the
advantage that every peer can independently decide on its group, without negotiating with other
peers. Moreover, in many systems, every peer group elects exactly one super-peer. This simpli�es
greatly the super-peer election, as it can be performed using a single coordinator in each group, which
collects complete information about every peer in the group and selects a super-peer.

However, such simple approaches have a number of drawbacks. First of all, they do not allow
the system to actively control and adapt the number of super-peers to changing system conditions.
The number of super-peers is determined by the current number of groups and cannot be tuned at
runtime. Furthermore, in many systems, the maximum number of groups is �xed and is determined
by the number of possible values of peer properties, such as IP address pre�xes, ISPs, ZIP codes, etc.
If the total number of peers in these systems is low, groups have relatively few peers, and the overall
ratio of clients to super-peers is low. Contrarily, if the number of peers is large, groups consist of large
numbers of peers, and the ratio of clients to super-peers is high. For a certain system size, super-peers
become overloaded. Inherently, such a system does not scale.

Figure 2.10 shows a sample system with four peer group. The capacity of each peer is marked by
a number. In �gure 2.10(a), the number of super-peers and clients is balanced. In �gure 2.10(b), the
overall number of peers is reduced, resulting in a very low client to super-peer ratio. In �gure 2.10(c),
the number of peers is increased, resulting in a high client to super-peer ratio and a high load on
super-peers.

If the distribution of peers between groups is non-uniform, some groups may become highly pop-
ulated by peers, while others may contain relatively few peers. For example, in systems where peers
are assigned to groups based on their physical locations, it can be expected that groups corresponding
to high-density, developed areas, such as cities, may contain more peers than other groups. In such
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(a) Balanced ratio of clients
to super-peers.

(b) Low clients to super-
peers ratio.

(c) High clients to super-
peers ratio.

Figure 2.10: Sample systems with four peer groups.

cases, the load between super-peers is imbalanced. Moreover, if the distribution of peer capabilities
between groups is also skewed, some groups may contain signi�cantly more high-capability peers than
other groups. If the goal of the system is to elect the globally highest-capability super-peers, such a
skewed distribution may lead to an suboptimum super-peer election. An example of such a scenario
is shown in Figure 2.10(a). The highest capability values are 18, 16, 15, and 14. However, the elected
super-peers have lower capabilities, i.e., 18, 15, 11, and 9. Peers with capabilities 14 and 16 are not
elected super-peers because they are clustered in one group with peer 18.

These shortcomings can be addressed in two ways. First, multiple super-peers can be elected in
each group. However, this requires additional mechanisms for the synchronisation and coordination
of multiple super-peers elected in one group, and dividing clients between super-peers in a group.
Ultimately, as the system size grows to a large number of peers, the problem of multiple super-peer
election in a group becomes equivalent to the general problem of super-peer election in a P2P system.

The second approach is to adjust groups in the system dynamically, for example by splitting and
merging them. However, this requires dedicated mechanisms for the management of dynamic groups
in the system. Every peer needs to be able to determine the group it belongs to, and super-peers need
to achieve an agreement between each other on the structure of peer groups. As this is non-trivial
in a decentralised system, some systems rely on centralised servers that manage information about
peer groups. Furthermore, merging and splitting groups requires an additional algorithm that decides
when and which groups to merge and split. In the extreme case, where groups are fully �exible and
can be arbitrarily changed, the problem of group construction is equivalent to the general super-peer
election problem.
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2.4 Super-Peers in Distributed Hash Tables

This section describes the class of P2P systems known as Distributed Hash Tables (DHT). A DHT
is a P2P system that distributes values, such as objects, chunks of data, and user requests, between
peers in the system. Each value is associated with a key, and the system provides an e�cient and
deterministic mapping from keys to peers. DHTs support three operations: an insert operation that
associates a given key with a given value and stores the key-value pair on a peer in the system; a
lookup operation that retrieves the value associated with a given key; and a delete operation that
removes from the system a given key together with its associated value.

Every peer in a DHT is assigned a unique identi�er and is responsible for the maintenance of a
part of the key space. Usually, a peer is responsible for the keys that are numerically closest to its
own identi�er.

The three operations, insert, lookup, and delete, require multi-hop routing between peers in order
to access keys and values stored by the system. Typically, DHTs support routing from a peer to any
other peer in the system in O(log N) overlay hops, while every peer maintains O(log N) neighbours,
where N is the number of peers in the system.

2.4.1 Chord

Chord [179, 180] is one of the the earliest, most often cited, and most popular to date DHT systems.
In Chord, every peer calculates its m-bit identi�er by applying the SHA-1 hash function to its IP
address. Similarly, every key is assigned an m-bit identi�er generated by hashing this key. In some
variations of Chord, the key's identi�er is identical to the key itself and is obtained by hashing the
value associated with this key. Due to the properties of the SHA-1 functions, both peer identi�ers and
key identi�ers are scattered evenly in the identi�er space, and the probability of generating duplicated
identi�ers for di�erent peers or keys is extremely low.

The identi�ers are ordered in an identi�er circle modulo 2m. The successor of identi�er k is
de�ned as the �rst peer whose identi�er is equal to or follows k in the identi�er circle. Similarly, the
predecessor of k is the �rst peer whose identi�er precedes k in the identi�er circle.

The keys, and the values associated with them, are assigned to peers in the system using consistent
hashing. The basic rule is that key k is assigned to the predecessor of k. This scheme has the property
that keys are distributed evenly between peers, and the addition or removal of a peer in the system
does not change the mapping of keys to peers signi�cantly. In particular, in a system with N peers
and K keys, with high probability, every peer is responsible for at most O(K/N · log N) keys, and
when a peer joins or leaves the system, O(K/N) keys are re-assigned between peers, and only between
the joining or leaving peer and its neighbours [179].

Figure 2.11(a) shows an example Chord system with a 4-bit identi�er space (m = 4) and nine
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Figure 2.11: Sample Chord topology over a 4-bit identi�er space.

peers. Since all operations are performed modulo 24, identi�er 15 is followed by 0. Each identi�er is
assigned to the closest preceding peer, and hence, peer 0 is responsible for identi�ers 0 and 1, peer 2
is responsible for identi�er 2, peer 3 is responsible for identi�ers 3 and 4, and so on.

Peers in Chord connect to their successors and predecessors by which they organise into a ring
topology. In some variants of Chord, peers maintain lists of successors and predecessors, i.e., lists
of peers that immediately precede and follow them in the identi�er space, in order to improve the
system's fault-tolerance. The ring topology enables a simple routing algorithm, where peers forward
messages to their successors until each message reaches its destination. However, in this simple routing
strategy, a message is forwarded on average between O(N) peers before it is delivered.

In order to improve the routing performance, peers maintain additional neighbours that act as
�shortcuts� in the ring topology. These neighbours are selected using a �nger table, which consists of
m identi�ers. For a peer identi�ed by n, the �nger table contains

n + 20, n + 21, . . . n + 2m−1

where all arithmetic is modulo 2m. In generality, the i'th entry in the �nger table of peer n is n+2i−1,
where 0 ≤ i < m. The entries in the �nger table do not change over time, since peer identi�ers are
constant. Figure 2.11(b) shows a sample �nger table in the 4-bit Chord system. For peer 0, the table
contains identi�ers 1, 2, 4, and 8.

For each identi�er k in the �nger table, each peer maintains a connection to the peer that is
responsible for k, i.e., to the predecessor of k. Such a neighbour, associated with the i'th entry in the
�nger table, is called the i'th �nger neighbour, or simply the i'th �nger. Unlike entries in the �nger
table, �nger neighbours depend on the system con�guration and may change over time.

The maximum number of �nger neighbours of a peer is m. However, if the size of the identi�er
space (i.e., 2m) is signi�cantly larger than the total number of peers in the system, it is likely that a
peer is responsible for the �rst entries in its own �nger table. In this case, the number of peer's �nger
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neighbours is lower than m. It can be shown that in a system with N peers, the average number of
neighbours per peer in Chord is O(log N).

Figure 2.11(c) shows �nger neighbours of peer 0 in the sample Chord system. The neighbours,
which are peers 2, 3 and 7, corresponds to identi�ers 2, 4 and 8 in the �nger table of peer 0, as shown
in picture (b). Peer 0 has only three �nger neighbours, as no neighbour is associated with the �rst
identi�er in the �nger table, i.e., 1.

The structure of �nger connections enables a very e�cient routing algorithm, where a message
can be routed between any two peers in the system in O(log N) overlay hops. A peer routes a
message addressed to k by forwarding it to the neighbour that most immediately precedes k in the
identi�er space. This way, each message is �rst routed over long (in terms of identi�er distance) �nger
connections, and is gradually forwarded over shorter links, until it �nds its destination.

Figure 2.11(d) shows a sample message routed from peer 0 to peer 10. Dashed lines represent peers'
�nger neighbours, and solid lines indicate the selected routing path. The message is �rst forwarded
to peer 7, using the longest �nger connection of peer 0, and is next forwarded to peers 9 and 10 using
shorter-distance connections.

The algorithm that maintains the Chord topology, known as the stabilisation algorithm, as well
as the details of the routing algorithm, are described in [179].

2.4.2 Other DHT Systems

A number of other DHT systems have been proposed, including Pastry [162], CAN [149], Tapestry
[207], Kademlia [118], Kelips [71], P-Grid [1], and Symphony [115]. DHTs have been shown in both
theoretical and experimental evaluations to exhibit good performance and stability in the presence
of high peer churn, and scalability to millions of participating peers. In particular, DHTs usually
provide routing between any peers in the system in O(log N) hops, given the system size N , and
have an expected cost of insert, delete, and lookup operations of O(log N) message transmissions.
Viceroy [114] is the �rst system that achieved routing in O(log N) hops with O(1) neighbours per
peer. Kaashoek and Karger [85] show that the lower bound for routing in a DHT is O(log N) hops
per lookup request with 2 neighbours per node, and O(log log N/ log N) hops per lookup request with
O(log N) neighbours per node. These bounds are met in the Koorde system [85]. A good comparison
of several DHT systems can be found in [100] and [153].

Kad, based on Kademlia [118], is considered the largest DHT system that has been implemented
and deployed in the Internet. As a part of eMule, a popular �le-sharing application, Kad has been
reported to support over one million simultaneous users [181]. Bamboo [154], also known as OpenDHT,
an open-source implementation of Pastry [162], has been shown to handle higher peer churn rates than
other state-of-the-art DHT systems [153]. It has been deployed on PlanetLab [38], a wide-area testbed
for P2P systems.
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Figure 2.12: Super-peer election in a 4-bit Chord system using SOLE.

2.4.3 SOLE

An approach to super-peer election based on a DHT, called Scalable Supernode Selection (SOLE), is
described in [105]. The approach relies on the DHT functionality, but does not require any particular
DHT scheme and can be customised to any DHT system. It allows a P2P system to elect and maintain
K super-peers, where K is a global system constant.

The main idea of SOLE is relatively simple. The system de�nes K super-peer identi�ers, and every
peer that is responsible for at least one super-peer identi�er, according to the mapping provided by
the DHT, becomes a super-peer.

The de�nition of the super-peer identi�ers depends on the type of the DHT. If Chord is used as
the underlying DHT, the super-peer identi�ers can be de�ned as
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⌋
, for 0 ≤ i < K.

This way, the super-peer identi�ers divide the DHT identi�er circle into K approximately equal arcs,
each containing 2m/K identi�ers (b2m/Kc or d2m/Ke, to be precise). Each peer p belongs to exactly
one arc, and using simple arithmetic, peer p can calculate the super-peer identi�er k that directly
follows it in the DHT identi�er circle. Furthermore, the peer can perform a DHT lookup in order
to discover the super-peer responsible for k. If k is assigned to the peer itself, the peer becomes a
super-peer. Otherwise, the peer becomes a client of the super-peer responsible for k.

Figure 2.12(a) shows an example Chord system with four super-peers (K = 4) elected using SOLE.
The super-peer identi�ers are 0, 4, 8 and 12. Peer 0 is elected super-peer as it is responsible for super-
peer identi�er 0. Similarly, peers 3, 6 and 11 are elected super-peers as they are responsible for
identi�ers 4, 8 and 12, respectively. Figure 2.12(b) shows the same system with extra peers added. As
the number of peers is increased, the super-peers are distributed more evenly in the identi�er space.
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1: Super-Peer:
2: q ← lookup super-peer id
3: if q 6= p then
4: request q to become super-peer
5: transfer all clients to q
6: become client of q
7: end if

8: Client:
9: if super-peer unavailable then
10: q ← lookup super-peer id
11: if q = p then
12: become super-peer
13: else
14: become client of q
15: end if
16: end if

Figure 2.13: SOLE super-peer election algorithm.

Figure 2.12(c) shows the same system with a fraction of peers removed. In this scenario, the number
of super-peers is lower than K, as multiple super-peer identi�ers are assigned to the a single peer. In
particular, both identi�ers 4 and 8 are assigned to peer 3.

Lo et al. [105] describe variants of SOLE that use other DHT systems than Chord, such as
Pastry and CAN. The general structure of the SOLE algorithm is shown in Figure 2.13. A super-peer
periodically checks if it is responsible for its super-peer identi�er (line 2). If the identi�er is assigned
to a di�erent peer q (line 3), the peer appoints q as a new super-peer (line 4), transfers all clients to
q (line 5), and becomes a client of q (line 6). A client performs a DHT lookup only when it is not
assigned to any super-peer, for example when it is joining the system or when the client's previous
super-peer has become unavailable (lines 9). The client determines peer q responsible for the closest
super-peer identi�er (line 10), and depending on the result, it either becomes a super-peer (line 12),
or connects to q as a client (line 14).

Since the super-peer identi�ers divide the key space into K equal parts, and due to the properties
of Chord, the distance from a peer to its super-peer is O(log(N/K)) overlay hops. Hence, the lookup
operation needed to discover a super-peer requires O(log(N/K)) message transmissions, given N peers
in the system.

The number of super-peers elected by SOLE does not exceed K, as there are K super-peer identi-
�ers and each of them can be assigned to at most one peer. Furthermore, if every arc in the identi�er
circle contains at least one peer, the number of elected super-peers is equal to K. Given that peer
identi�ers are uniformly distributed in the identi�er space, the probability that no peers belong to
a particular arc is (K−1

K )N . The probability that every arch contains at least one peer can be then
estimated as greater or equal to 1−K(K−1

K )N . Hence, if N À K, with high probability, the algorithm
elects K super-peers.

The main advantages of SOLE are its simplicity and wide-applicability. The use of DHTs assures
full system decentralisation, high resilience, and good scalability. The algorithm enables the restriction
of the number of super-peers in the system, balances the load between super-peers, and provides an
e�cient super-peer discovery mechanism.

However, the algorithm has a number of disadvantages. First of all, it elects super-peers based on
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Figure 2.14: Hierarchical DHT.

DHT identi�ers rather than their performance or capacity. If peer identi�ers are generated randomly
or using hash functions, as in many DHTs, the election of super-peer can be seen as a random process,
where all peers, including the lowest-performance peers, have equal probability of becoming super-
peers. Lo et al. [105] mention criteria for super-peer election, such as high CPU speed, high network
connectivity, and high amount of other resources, but it is not clear how the additional super-peer
criteria can be combined with the DHT-based super-peer election and discovery algorithms.

Another disadvantage of SOLE is that it elects K super-peers, where K is a prede�ned value,
known to every peer, which cannot be easily changed at runtime. The algorithm does not allow super-
peer addition in response to an increased system size or load. Furthermore, SOLE requires that every
peer in the system participates in the DHT, which may cause a high load on the lowest performance
peers.

2.4.4 Hierarchical DHT

In hierarchical DHT systems [59], peers are organised into groups, and each group maintains its own
autonomous overlay network. Each group also elects one or more super-peers, and the super-peers
maintain a top-level DHT overlay that connects all peer groups. The communication between peers
within groups is handled by the intra-group overlays. The communication between peers located in
di�erent groups is relayed by super-peers over the DHT. In order to communicate with peers in other
groups, a peer contacts the super-peer in its group, the super-peer routes the message over the DHT to
the super-peer in the destination group, and the message is forwarded to the destination peer. Figure
2.14 shows a sample hierarchical DHT system that consists of four groups connected by Chord.

The groups may be heterogeneous. Each group, including the top-level group, may establish a
di�erent P2P overlay. In particular, peers in a group may deploy an internal DHT overlay, as in
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two right-hand-side groups shown in Figure 2.14. The advantage of this approach is that intra-
group communication is fully decentralised between all peers in the group, and hence the group can
scale to a large number of peers. Alternatively, all peers in a group can directly connect to their
super-peer, forming a local star topology, where all intra-group communication, as well as inter-group
communication, is handled by the group's super-peer. This con�guration is shown in Figure 2.14 in
the bottom-left group. The advantage of this approach is that the load on clients is very low, but
it has a drawback that the super-peer can easily become a performance bottleneck limiting the size
of the group. One more approach is to elect multiple super-peers within each group, as shown in in
Figure 2.14 in the top-left group.

Depending on the application-speci�c requirements, peers in a group may or may not be topo-
logically close to each other. It is assumed that every peer belongs to exactly one group. A peer p

is uniquely identi�ed by a pair (idg, idp), where idg is the identi�er of peer's group g and idp is the
peer's identi�er used for the communication within the group. Garcés-Erice et al. [59] do not specify
how peer identi�ers and group identi�ers are created and how peers are assigned to groups. They
only mention that the group identi�er of a peer may correspond to the peer's local ISP or university
campus. A more self-managing approach would be to generate group identi�ers based on peer IP
addresses, or using a virtual coordinate system, as described in section 2.3.

Each group elects its super-peers from the �most powerful� peers available in the group. The
super-peer election criteria are based on peer properties such as high uptime and good connectivity
(primarily), and high CPU power and network connection bandwidth (secondarily). It is assumed
that higher uptime peers are more likely to stay on-line in the future. By selecting the most stable
and bandwidth-rich peers as super-peers, the system improves the reliability and throughput of the
inter-group overlay. Super-peers also cache values frequently accessed in the top-level DHT by the
super-peers' clients. If peer groups are organised based on proximity, such a caching strategy can
improve data access performance.

When peers join the system, they follow a similar procedure to that described in section 2.3 (as
shown in Figure 2.4). In order to join, a peer p is required to know at least one other peer q that
already participates in the system. Peer p obtains the address of a super-peer s in its group g by
querying peer q, and becomes a client of s. If no super-peer in group g exists, p joins as a super-peer.
In a con�guration with m super-peers per group, the �rst m peers that join a group become group
super-peers.

Garcés-Erice et al. [59] introduce an interesting approach to handling super-peer failures. Peers
run the algorithm shown in Figure 2.15. Each super-peer maintains a list L that contains all peers
that belong to the super-peer's group (line 4). The super-peer periodically probes its clients in order
to keep the list of peers up-to-date. The list is sorted by peer characteristics, from the best candidates
for super-peers to the worst candidates. Furthermore, each super-peer creates a list S that contains
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1: Super-Peer:
2: loop
3: wait δ time units
4: L← list of all peers in the group
5: S ← list of super-peer neighbours
6: broadcast (L, S) to all peers in group g
7: end loop

(a) Super-Peer

8: Client:
9: if super-peer unavailable then
10: q ← highest uptime peer on list L
11: if q = p then
12: become super-peer for the group
13: join super-peer overlay using S
14: else
15: become client of q
16: end if
17: end if

(b) Client

Figure 2.15: Super-peer election algorithm in hierarchical DHT systems.

neighbours of this super-peer in the top-level overlay (line 5). These two lists, L and S, are periodically
broadcast by the super-peer to all peers in the group (line 6). Each client also obtains a copy of the
two lists when joining its group.

In case of a super-peer failure or departure from the system, each client p checks the �rst entry on
its list L (lines 9-10). The �rst peer on the list, q, becomes a new super-peer for the group (line 12)
and joins the top-level super-peer overlay by contacting super-peers on its list S (line 13). All other
peers connect to q and become its clients (line 15). If a super-peer fails and the lists L and S are not
available at a peer p, peer p executes a join procedure as if it was joining the system for the �rst time.

The main open issue in hierarchical DHTs, as they are described in [59], is the mechanism for the
group construction and maintenance. Furthermore, although Garcés-Erice et al. assume that multiple
super-peers can be elected in a single peer group, they do not specify how clients are distributed
between such multiple super-peers and how lists L and S are generated and synchronised between
multiple super-peers in a peer group. In many aspects, hierarchical DHTs are similar to other group-
based systems described in section 2.3, and most points made in the discussion in section 2.3.4 are
also valid for hierarchical DHTs. In particular, hierarchical DHTs with static structures of groups
may not scale well with the system size, do not guarantee load balancing between groups, and do not
assure optimal super-peer election in terms of super-peer capabilities.

Hierarchical DHTs can be generalised to an arbitrary number of levels. For example, in a three-
level hierarchy, each group of peers elects a super-peer, and groups of super-peers elect higher-level
super-peers (super-super-peers), which connect through a top-level overlay. However, in this design,
not only must peers be assigned to groups, but also super-peers must be assigned to second-level groups
(super-peer groups) in order to elect third-level super-peers (super-super-peers). More generally, a
mapping must be de�ned between peers and groups at each level of the hierarchy, excluding the
top level. The more groups and levels in the hierarchy, the more knowledge is required at peers to
construct and maintain the hierarchy. The problem of group de�nition and peer assignment to groups
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is not discussed in [59].

2.4.5 HONet

A similar system to hierarchical DHTs, called Hybrid Overlay Network (HONet), is proposed by Tian
et al. in [184]. A HONet system consists of non-overlapping peer groups, called clusters. Every group
elects a super-peer, called root node, and the super-peers connect with each other forming a top-level
overlay that binds all the groups. Peers in each group also maintain a local overlay, as in hierarchical
DHTs. Both the intra-group overlays and the top-level overlay are DHTs with independent identi�er
spaces. Every peer is uniquely identi�ed by a cluster identi�er (CID), which is the local cluster root's
identi�er in the top-level DHT, and a member identi�er (MID), which is the peer's identi�er in the
cluster-level DHT.

Clusters are created using an Internet coordinate system, such as GNP [136] and Vivaldi [45]
described at the beginning of section 2.3.1. When a peer p joins the system, it determines its co-
ordinates in the virtual space, and calculates its identi�er in the top-level DHT, id, by projecting
the k-dimensional coordinates onto the one-dimensional space of the top-level DHT using a locality-
preserving Space-Filling Curve, such as the z-order or Hilbert curve described in section 2.3.1. Next, it
performs a lookup in the top-level DHT and discovers the closest peer to id, denoted q. If the distance
in the DHT identi�er space between p and q is below a threshold T , p assumes that it belongs to the
same cluster as q and becomes a client of q. Due to the properties of the identi�er space and the SFC
mapping, p and q are located in close physical proximity. If the distance between p and q is higher
than T , p joins the system as a super-peer and creates its own cluster. In this case, it sets id as its
CID.

Apart from DHT connections, every peer maintains random shortcut links to peers located in
di�erent clusters. The number of such links depends on the peer's capacity, and these links are
created using a customised random walk algorithm. The system provides two routing algorithms:
hierarchical routing, where messages are transferred over both the top-level DHT and cluster-level
DHTs, as in the hierarchical DHTs, and fast routing, where messages are transferred directly between
clusters using shortcut links, if they are available, bypassing the super-peer overlay.

According to [184], �each cluster can choose the most stable member to serve as cluster root,
resulting in improved global and local stability�. However, it is not obvious how a cluster can change
its super-peer from a less stable peer to a more stable peer, since the algorithm described in [184] does
not take into account any other peer characteristics than coordinates. Similarly, it is not obvious how
the system addresses super-peer failures and departures. If a super-peer is changed in a cluster, the
distance between the new super-peer and some of the cluster members may increase above T . In such
a case, the cluster may need to elect more than one super-peer in order to cover all peers. Ultimately,
the system needs to �nd a trade-o� between electing the highest-capability super-peers in the system
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Figure 2.16: Sample SPChord system.

and electing super-peers that are evenly distributed in the DHT identi�er space.
This leads to another issue associated with HONet. Almost all DHTs rely on a uniform distribution

of peer identi�ers in the DHT space. This is required to assure e�cient routing and balanced load in
the DHT. However, in HONet, peer identi�ers are calculated based on peer coordinates, which depend
on the physical peer location. If a large number of peers belong to one area, the distribution of DHT
identi�ers becomes skewed and the DHT may exhibit suboptimum performance.

2.4.6 SPChord

In Super-Peer Chord (SPChord) [101], super-peers maintain a Chord overlay with an m-bit identi�er
space, and the remaining peers connect to them as clients. Every peer generates its own m-bit unique
identi�er, including clients, and a client connects to the super-peer that is responsible for this client's
identi�er in the DHT overlay. Figure 2.16(a) shown a sample SPChord topology with four super-peers
and eleven clients distributed between them.

Super-peers are selected from the most stable peers. Peer uptime is used as a predictor for peer
stability, and it is assumed that higher-uptime peers are more likely to stay on-line than lower-uptime
peers.

Peer identi�ers are generated in a two-step process. First, each peer determines its coordinates in
a virtual coordinate system, such as GNP [136] and Vivaldi [45] described in section 2.3.1. Second,
each peer maps its virtual coordinates onto the m-bit Chord identi�er space using space-�lling curves
that preserve locality, as described in section 2.3.1. This way, super-peers that are close in the physical
network are located close to each other in the DHT identi�er space, and are associated with clients
that are in physical network proximity.

Figure 2.17 shows the algorithm executed at each peer p in SPChord. The join procedure is
described in lines 1-8. The �rst peer that joins the system becomes a super-peer (lines 2-3). All
other joining peers perform a DHT lookup in order to determine the super-peer responsible for their
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1: Join:
2: if �rst peer in the system then
3: become super-peer
4: else
5: q ← lookup own identi�er
6: become client of q
7: obtain L and S from q
8: end if

9: Client:
10: if super-peer unavailable then
11: q ← highest uptime peer on list L
12: if q = p then
13: become super-peer
14: else
15: if p follows q then
16: become client of q
17: else
18: become client of q's predecessor
19: end if
20: end if
21: end if

22: Super-Peer:
23: if overloaded then
24: q ← highest uptime client
25: request q to become super-peer
26: for each client c do
27: if c follows q then
28: transfer c to q
29: end if
30: end for
31: end if
32: if underloaded then
33: r ← predecessor
34: if r able to handle p's load then
35: transfer all clients to r
36: become client of r
37: exit
38: end if
39: end if
40: L← list of all peers in the group
41: S ← list of super-peer neighbours
42: broadcast (L, S) to all clients

Figure 2.17: SPChord algorithm at peer p.

identi�er (line 5) and become clients of this super-peer (line 6).

SPChord uses the same approach for handling super-peer failures as the hierarchical DHT described
in the previous section. Every super-peer maintains a list of its clients, L, and a list of its neighbours
in the DHT, S. The lists are periodically broadcast to all clients of the super-peer (lines 36-38), and
a joining peer obtains the lists L and S from the super-peer it connects to (line 7). If a super-peer
becomes unavailable, the highest-uptime client, q, on list L takes over the role of the super-peer (lines
10-13). All other clients connect either to q or the predecessor of q, depending on their identi�ers, so
that each client p is associated with the super-peer that is responsible for p's identi�er in the DHT
(lines 15-19).

The most novel element of SPChord is the algorithm that creates super-peers based on load. If a
super-peer p is overloaded (line 23), it selects its highest-uptime client, q, as a new super-peer (lines
24-26), introduces q to the DHT overlay, and splits its remaining clients between itself and q, based
on the clients' DHT identi�ers (lines 26-30). According to [101], a super-peer is overloaded when the
number of its clients exceeds c, where c is a system parameter, equal for all super-peers. The algorithm
can be easily extended to allow for individual limits in the number of clients per each super-peer.

A similar algorithm can be used to reduce the number of super-peers when the load is low. When
a super-peer p is underloaded (e.g., has fewer clients than c/2), the super-peer attempts to merge its
cluster with the cluster of its predecessor, r (lines 32-39). However, before p can delegate its clients to
r, it must check if r can handle the extra load without splitting its own cluster (line 34). This extra
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1: Adjust:
2: q ← select maximum uptime client
3: id← generate random DHT identi�er
4: r ← lookup super-peer responsible for id
5: if q's uptime higher than r's uptime then
6: request q to become super-peer
7: swap q's and r's DHT identi�ers
8: transfer all connections from r to q
9: accept r as client
10: end if

Figure 2.18: SPChord topology adjustment
algorithm at super-peer p.

Figure 2.19: Sample con�guration generated
by SPChord.

check is necessary to avoid a cyclic behaviour of super-peers, where p continuously merges its cluster
with r and r continuously splits its cluster and selects p as a super-peer. If r can accommodate p's
clients without exceeding its maximum load limit, p migrates all clients to r and becomes a client of
r (lines 35-36).

In the absence of peer failures and departures, the peer join procedure and the cluster splitting
mechanism guarantee that the highest-uptime peer in each cluster is elected super-peer. However,
these algorithms do not guarantee that the uptime of super-peers is globally maximised. For that
reason, Liu et al. [101] propose a topology adjustment algorithm, periodically performed by every
super-peer p in the system, as shown in Figure 2.18. In this algorithm, each super-peer p selects its
highest uptime client, q (line 2), and a random super-peer, r, discovered by performing a DHT lookup
on a randomly generated peer identi�er (lines 3-4). If q's uptime is higher than that of r (line 5),
the roles of q and r are reversed. Client q becomes a super-peer (line 6), the DHT identi�ers and
neighbour connections of q and r are swapped (lines 7-8), and r is demoted to a client of p (line 9).

The topology adjustment algorithm probabilistically improves the uptime of super-peers, but it
also introduces a signi�cant maintenance overhead. Each time a super-peer is swapped with a higher-
uptime client, the super-peer needs to notify all its clients and all its DHT neighbours about its
identity change. Such frequent changes in the topology may a�ect the DHT's performance and its
stabilisation cost. Since the evaluation of SPChord described in [101] is based on relatively simple
simulation experiments, it is not obvious if the proposed algorithm is feasible in a large-scale P2P
environment.

As in HONets, peer identi�ers in SPChord are calculated based on peer location so that peers
that are located close to each other in the physical network also have close DHT identi�ers. This
way, the system reduces the communication cost for super-peers and their clients. However, many
DHT systems, including Chord, require a uniform distribution of peer identi�ers in order to provide
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logarithmic routing and even load distribution between peers. If the distribution of peer locations in
the virtual coordinate space is non-uniform, the DHT overlay is likely to su�er reduced performance.

SPChord regulates the number of super-peers according to the system size. When new peers
join the system, it creates super-peers, and when peers leave the system, it removes super-peers.
Furthermore, it elects super-peers from the highest-uptime clients. However, even in a stable peer
population with no arrivals, departures and failures, SPChord does not balance clients evenly between
super-peers, hence does not reduce the number of super-peers in the system to minimum, and hence
does not guarantee that super-peers have globally-highest uptime.

This is because clients in SPChord are assigned to super-peers based on their DHT identi�ers, which
imposes additional constraints on the con�gurations that the system can generate. For example, if two
high-uptime peers have very close DHT identi�ers, the system can elect both peers as super-peers, but
in this case the preceding peer is very likely to have very few or no clients due to the short distance to
the other super-peer. Conversely, if the system elects only one of these two peers as a super-peer, the
uptime of super-peers in the system is not maximised. Hence, the system can only choose between
electing super-peers with maximum uptime, and electing super-peers that are evenly distributed in
the DHT space, which is required to balance clients evenly between super-peers and to minimise the
number of super-peers in the network. The topology adjustment algorithm can improve the uptime
of super-peers, but it does not assign clients uniformly to super-peers.

This is further illustrated in Figure 2.19, which shows a sample SPChord system. The numbers
written on peers, within the circles, represent peers' uptimes. The numbers written next to peers,
outside the circles, are peers' DHT identi�ers. The maximum number of clients per super-peer is 4.
Given that there are 14 peers in the system, 3 super-peers are su�cient to handle the remaining 11
peers as clients. However, SPChord elects 4 super-peers, and due to the constraints imposed by the
DHT, cannot reduce this number to 3. Super-peer 0 (with uptime 2) cannot merge its cluster with
super-peer 3 (uptime 6) or super-peer 10 (uptime 9), as this would require creating a cluster with
more than 4 clients. Similarly, super-peer 8 (uptime 5) cannot merge its cluster with the neighbouring
super-peers.

Due to the failures of super-peers and merging of clusters, some clients in SPChord may have
higher uptimes than their super-peers. In the presented example, the highest-uptime peers in the
system are 10, 1, 3 and 12, with uptimes values of 9, 7, 6 and 6, respectively. However, the uptimes
of elected super-peers are 9, 6, 5 and 2. The topology adjustment algorithm can gradually swap
super-peers with clients and eventually achieve a con�guration where peers 10, 1, 3 and 12 are elected
super-peers. However, the adjustment algorithm is not able to balance the clients evenly between the
super-peers, and hence is not able to reduce the total number of super-peers to 3.
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Figure 2.20: Structured Superpeers example.

2.4.7 Structured Superpeers

Structured Superpeers, a system introduced by Mizrak et al. [123], is in many aspects similar to
SPChord. In Structured Superpeers, every peer generates a unique identi�er and participates in
a global Chord overlay called outer ring. The system also elects super-peers, which maintain an
additional, fully-connected overlay, called inner ring. Every super-peer has a full information about
all other super-peers in the inner ring. The outer ring is divided into arcs, and each arc is assigned to
one super-peer in the inner ring. Figure 2.20 shows an example of such a topology, where the outer
ring is split between �ve super-peers.

The system guarantees routing between any two peers in O(1) overlay hops. In order to send a
message from peer p to peer q, peer p forwards the message to its super-peer s. Due to the full-
connectivity of the inner ring, super-peer s locates super-peer s′ responsible for the arc enclosing q

and forwards the message to s′. Super-peer s′ delivers the message to q.
The outer ring is not used for routing messages. It's purpose is to improve the network's robustness,

as it prevents peer isolation and overlay partitioning in case of a super-peer failure. It is also used
by peers to monitor each other and detect potential failures. Moreover, for increased fault-tolerance,
super-peers replicate their state on their neighbours in the inner ring.

Super-peers are elected using a volunteer service. Mizrak et al. [123] do not specify how the
volunteer service is implemented, but only require that every peer joining the system registers in
the service, and that the service, when queried, returns the best candidates for super-peers available
amongst clients. It is assumed that every super-peer knows its maximum capacity and is able to
measure its load. When the load on a super-peer approaches the maximum capacity, two scenarios
are possible. If the load on the super-peer's neighbours is below a threshold, the super-peer shares its
load with the neighbours using a load-balancing algorithm. Otherwise, the super-peer splits its outer
ring arc and creates a new super-peer, selected using the volunteer service. Analogously, when the
load on a super-peer is lower than a certain threshold, a super-peer may dismiss one of the existing
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super-peers and return it to the volunteer service.
The description of Structured Superpeers, published by Mizrak et al. [123], is brief and lacks detail.

The main element missing from the description is the algorithm used by super-peers to synchronise
their views on the outer ring division. Every super-peer needs to maintain full knowledge of other
super-peers in the system and their corresponding outer ring arcs in order to provide constant time
routing. Given that super-peers are created and removed on demand, and arcs are dynamically split
and merged, it is not known how the information about changes in the arc division is propagated
between super-peers. A straight-forward solution would require either a centralised coordinator or
an expensive super-peer synchronisation protocol. Furthermore, it is not clear if clients are migrated
between super-peers when they are sharing load, and it is not obvious how to implement the volunteer
service.

2.4.8 Discussion

Systems reviewed in this section use DHT overlays to elect super-peers. In these systems, peers use
the DHT overlay to discover other peers that are located close to them in the DHT identi�er space,
and super-peers are elected locally amongst peers that are close in the DHT space.

The advantage of DHT-based approaches over group-based approaches is that in the DHT-based
systems, peer clusters (i.e., super-peers together with their clients) can be easily split and merged
at runtime. The DHT manages the information about current cluster division in an e�cient and
decentralised manner. The system can dynamically adapt the number of super-peers to the current
overlay size or load, while at the same time, every client joining the system is able to discover its
super-peer and all super-peers agree with each other about the current division of clients between
super-peers.

However, the DHT-based approaches have also disadvantages. Due to the constraints imposed by
the DHT, the system cannot at the same time elect the highest capability super-peers and distribute
clients evenly between the super-peers. Furthermore, if the clients are not evenly balanced between
the super-peers, the total number of super-peers in the system cannot be minimised.

For example, if the best candidates for super-peers have close DHT identi�ers, which corresponds
to the situation where high-capability peers are located in one group in a group-based approaches,
the system is forced to choose between electing the highest-capability super-peers, and electing lower-
capability super-peers that evenly divide the DHT space. Such a trade-o� is particularly likely if the
DHT identi�ers are not purely random, but are rather generated based on peer properties, such as
peer location.

Finally, in some systems described in this section, such as SOLE and Structured Superpeers, every
peer is required to participate in a global DHT overlay. However, running a DHT protocol may
introduce a signi�cant overhead on the lowest-performance peers. This is important, since in many
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P2P systems, super-peers are introduced in order to reduce the load on the lowest-capability peers,
allowing a ordinary peer to have only one connection to a super-peer and letting the super-peers
handle more expensive protocols. Systems where the DHT overlays are maintained by super-peers
only, such as SPChord, are more consistent with this idea.

2.5 Adaptive Super-Peer Election

This section contains reviews of three systems that elect and optimise super-peer sets according to
some well de�ned criteria. In SG-1 [124], the optimality criteria is based on peer capacities. In SG-2
[83], the optimality criteria is based on peer capacities and distances. In DLM [196], the optimality
criteria is derived from a �le-sharing systems workload model.

2.5.1 SG-1

The goal of the SG-1 algorithm, proposed by Montresor in [124], is to generate and maintain general-
purpose super-peer topologies with the following characteristics

(i) every client is associated with exactly one super-peer,

(ii) super-peers are connected through a pseudo-random overlay network,

(iii) the number of super-peers is minimised.

The last condition, (iii), is based on the notion of peer capacity. SG-1 assumes that peers are
heterogeneous and associates each peer p with a parameter cp, called capacity, which determines the
maximum number of clients that p can handle if elected super-peer. SG-1 also assumes that every
peer is able to calculate its capacity upon joining the system and that peer capacity does not change
over time. Condition (iii) states that SG-1 generates a topology with minimum number of super-peers
such that the total super-peers capacity is higher than or equal to the total number of clients. A P2P
topology that satis�es conditions (i-iii) is called an SG-1 target topology.

As many other P2P systems, SG-1 assumes that all peers are mutually reachable through some
lower-level network, such as the Internet, and that any peer can potentially connect to any other
peer. The SG-1 algorithm is based on periodic gossipping. Every peer periodically exchanges with
selected neighbours its information about its current capacity, numbers of clients, and neighbours. In
response to an information exchange, a super-peer may transfer its clients to a higher-capacity super-
peer, a super-peer may become a client of another super-peer, and a client may be promoted to a
super-peer. The general goal of the algorithm is to migrate clients from lower-capacity super-peers to
higher-capacity super-peers and to eliminate super�uous super-peers, i.e., those that have no clients.
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Figure 2.21: Sample SG-1 super-peer topology.

In SG-1, each peer maintains four neighbourhood sets: connected, superpeers, underloaded, and
clients. The connected set contains a random sample of all peers in the system. It is used by peers
to exchange information with each other in order to maintain the other three neighbour sets. It also
assures full overlay connectivity. The superpeers set contains a random sample of super-peers in the
system. It is used to establish connectivity between super-peers and is required to generate the target
topology. The underloaded set contains super-peers that have fewer clients than their capacity value.
This set is used in to obtain candidates for client transfers. Finally, the clients set manages the
relationship between clients and super-peers. For a client, this set contains at most one entry, which
represents the current super-peer of this peer. For a super-peer, this set consists of clients currently
associated with this super-peer.

Figure 2.21 shows a sample topology generated by the SG-1 protocol. Peer capacity values are
indicated by numbers. For clarity, only a subset of peer connections are shown. Super-peers are
linked with each other through their superpeers neighbour sets, client are linked with their super-
peers through clients set, and random peers are linked with each other through connected sets.
Additionally, one super-peer is underloaded (with capacity equal to 7), and a number of peers are
connected with this super-peer through their underloaded sets.

In order to create and maintain the four neighbourhood sets, each peer periodically runs four
neighbour selection algorithms. The connected set is maintained using Newscast [80, 82], a gossip-
based neighbour selection algorithm that generates approximately random P2P topologies.

2.5.1.1 Newscast

The general structure of Newscast is shown in Figure 2.22(a). Each peer p maintains a limited-size
partial view, sp, which contains its neighbours' descriptors. The maximum size of a partial view,
denoted as c, is a system constant. A neighbour descriptor consists of a neighbour address and a
timestamp.

It is assumed that a TIMEOUT event is generated every δ time units at peer p, which triggers
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1: loop
2: e← WaitForEvent()
3: if e is TIMEOUT then
4: q ← random peer from sp

5: s′p ← sp ∪ (p, t)
6: send request s′p to q
7: end if
8: if e is request sq from q then
9: add (p, t) to sp

10: send response sp to q
11: sp ← merge(sp, sq)
12: end if
13: if e is response sq from q then
14: sp ← merge(sp, sq)
15: end if
16: end loop

(a) Single-threaded algorithm

1: Active thread:
2: loop
3: wait δ time units
4: q ← random peer from sp

5: add (p, t) to sp

6: send sp to q
7: receive sq from q
8: sp ← merge(sp, sq)
9: end loop

10: Passive thread:
11: loop
12: receive sq from a peer q
13: s′p ← sp ∪ (p, t)
14: send s′p to q
15: sp ← merge(sp, sq)
16: end loop

(b) Two-threaded algorithm

Figure 2.22: Newscast algorithm at peer p at time t.

the execution of the algorithm. As the event is raised (in line 4 in Figure 2.22(a)), peer p selects a
random neighbour q from its partial view (line 5), adds its own address and the current time to the
partial view (line 6), and sends a request to the selected neighbour q (line 7). The request contains
p's partial view sp. When p receives a request from a neighbour q (line 9), it adds its own address and
the current time to its partial view (line 10), sends a response to q (line 11), and updates its partial
view by applying the merge operation on sp and sq (line 12). The response again contains the partial
view of p. Finally, when peer p receives a response from a neighbour q (line 14), it merges its partial
view sp with the received view sq using the merge operation.

Operation merge(sp, sq) consists of the following steps. First, all entries in sp and sq are combined
into one collection, which contains at maximum 2c+1 peer descriptors. Second, all duplicated entries
are removed from the collection. If multiple descriptors are associated with the same address, only
one descriptor with the most recent timestamp is preserved. Finally, the most recent c descriptors are
selected from the collection and all other descriptors are discarded.

The Newscast algorithm is also modelled using two threads, as shown in Figure 2.22(b). An active
thread initiates a gossip exchange with a random neighbour every δ time units, while a passive thread
continuously listens for incoming exchange requests and responds to them. The merge operation is
identical in both variants of the algorithm. The algorithms are also equivalent in terms of generated
topologies and message costs.

Both the superpeers and underloaded sets are maintained by running two instances of a modi�ed
version of Newscast. The modi�cation to the original Newscast algorithm is twofold. First, the
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neighbour chosen for gossip exchange (in line 4 in both Figure 2.22(a) and Figure 2.22(b)) is selected
randomly from the connected set, and not from the superpeers or underloaded set. This way, all peers
in the system participate in the dissemination of super-peer and underloaded super-peer information,
as the connected set contains a random sample of all peers in the system. Second, the peer adds itself
to the set of descriptors (in line 5 in Figure 2.22(a) and in lines 5 and 13 in Figure 2.22(b)) only if
it satis�es a condition. For the superpeers set, this condition is that the peer must be a super-peer,
and for the underloaded set, the peer must be a super-peer with fewer clients than its capacity.

2.5.1.2 Client sets

The algorithm that maintains the clients sets is the most sophisticated component of SG-1. It is
run periodically, as the other neighbour selection algorithms in SG-1, and its pseudocode is shown in
Figure 2.23(a). Each super-peer periodically invokes the SuperPeer() procedure (in line 1 in Figure
2.23(a)), while each client executes the OrdinaryPeer() procedure (line 23).

A super-peer p iterates over all entries in its underloaded set and attempts to �nd a candidate for
a client exchange (lines 2-10). Such a candidate q must satisfy a number of conditions. First, it must
be a super-peer with free client slots. Second, it must either have a higher capacity than that of p, or
it must have an equal capacity as p but a higher number of clients than p (lines 3-5).

If a candidate q is found, peer p transfers as many clients to q as q is able to handle (line 13). If
p is left with no clients, and q has at least one free client entry (line 14), peer p becomes a client of
q (line 15). This way, clients are migrated to a higher-capacity super-peers and the total number of
super-peers in the system is reduced.

In the last step, if p still has some clients after an exchange with q (line 16), peer p selects the
highest-capacity client of q, denoted as r (line 17), and if r's capacity is higher than the capacity of p

(line 18), peer p swaps its role with r (line 19). For this purpose, r becomes a super-peer, p transfers
all its clients to r, and p becomes client of r. This step again assures that higher-capacity peers are
promoted to super-peers.

The OrdinaryPeer() procedure is very simple. Every peer joins the system as a super-peer, and
whenever a client loses its super-peer, it becomes a super-peer again (lines 24-26).

2.5.1.3 Discussion

Contrary to the evaluation described in [124], the original version of the SG-1 algorithm does not
converge to the target topology1. The following scenario can be given as a counterexample. The
highest capacity peer in the system, p, becomes a super-peer and accepts the second highest capacity
peer in the system, q, as its client. Subsequently, other peers connect to p and the capacity of p

1This fact was acknowledged by Alberto Montresor, the author of SG-1, in a private conversation held with the
author of this thesis in March 2008.
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1: SuperPeer():
2: for all q ∈ underloaded do
3: if cq ≥ cp then
4: lq ← obtain load from q
5: if lq < cq ∧ (cq > cp ∨ lq > lp) then
6: Transfer(q)
7: exit loop
8: end if
9: end if
10: end for
11:
12: Transfer(q):
13: transfer min(cq − lq, lp) clients to q
14: if lp = 0 ∧ lq < cq then
15: become client of q
16: else
17: r ← maximum capacity client of q
18: if cr > cp then
19: swap roles of p and r
20: end if
21: end if
22:
23: OrdinaryPeer():
24: if clients = ∅ then
25: become super-peer
26: end if

(a) Original version of SG-1

1: SuperPeer():
2: for all q ∈ underloaded do
3: if cq ≥ cp then
4: obtain load lq from q
5: if lq < cq ∧ (cq > cp ∨ lq > lp) then
6: Transfer(q)
7: exit loop
8: end if
9: end if
10: end for
11: for all q ∈ superpeers do
12: r ← maximum capacity client of p
13: if cr > cq then
14: swap roles of q and r
15: end if
16: end for
17:
18: Transfer(q):
19: transfer min(cq − lq, lp) clients to q
20: if lp = 0 ∧ lq < cq then
21: become client of q
22: else
23: r ← maximum capacity client of q
24: if cr > cp then
25: swap roles of p and r
26: end if
27: end if
28:
29: OrdinaryPeer():
30: if clients = ∅ then
31: for all q ∈ underloaded do
32: lq ← obtain load from q
33: if lq < cq and cp ≤ cq then
34: become client of q
35: exit
36: end if
37: end for
38: become super-peer
39: end if

(b) Extended version of SG-1

Figure 2.23: SG-1 algorithm at peer p.
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becomes fully utilised. In the absence of failures and peer departures, the con�guration becomes
stable, as p does not belong to the underloaded sets of other peers and does not participate in client
exchanges. Peer p is a super-peer while peer q is a client. However, in the target topology, it is very
likely that both p and q should be elected super-peers, since they are the two highest-capacity peers
in the system.

This problem can be addressed by extending the clients set maintenance algorithm, as shown in
Figure 2.23(b). It should be noted, however, that the proposed extension does not belong to the
original SG-1 algorithm and is only a suggestion of this thesis' author. In the extended SG-1, each
super-peer p selects candidates for client transfers (lines 2-10) and performs the Transfer() procedure
(lines 18-27) in exactly the same way as in the original version of SG-1. However, two extra steps are
added. In lines 11-16, each super-peer p iterates over its entries in the superpeers set and searches
for a super-peer q such that its capacity cq is lower that the capacity cr of the highest-capacity client
r of peer p. This can be done without incurring any extra communication cost. If a suitable super-
peer q is found, the roles of q and r are swapped. Client r becomes a new super-peer, all clients
of q are transferred to r, and q becomes a client of r. This way, a higher-capacity client replaces a
lower-capacity super-peer.

The second extension to the original algorithm, in lines 30-39, allows peers to join the system as
clients rather than super-peers. Every client p that is not associated with a super-peer, either when
it is joining the system or when it loses a previous super-peer, attempts to �nd a new super-peer in
its underloaded set. If a super-peer q with free capacity is found, which has a higher capacity than
that of p, peer p becomes a client of q. Otherwise, peer p becomes a super-peer.

It can be shown that a topology managed by the extended SG-1 algorithm, in the absence of
peer arrivals, departures, and failures, always converges to the target topology. If churn is present,
the algorithm approximates the target topology. SG-1 is also capable of dealing with catastrophic
failures, where a large percentage of super-peers (even 100%) are suddenly removed from the network.

SG-1 allows every super-peer to specify its capacity, i.e., the maximum number of clients it can
handle. However, in many applications, the load associated with handling clients may vary between
di�erent peers and may also change with time. SG-1 does not model this. More importantly, the
load on a super-peer may depend not only on the number of clients directly connected to this super-
peer, but also on the general activity of other peers in the system. For example, in systems where
super-peers handle search, the load on a super-peer is generated by serving its own clients as well as
processing queries received from other peers. SG-1 has the drawback that it does not allow the system
to explicitly control the number of super-peers and to adapt the super-peers set to the current total
demand in the system.
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2.5.2 SG-2

SG-2, proposed by Jesi et al. in [83], is an algorithm inspired by SG-1 that generates proximity-aware
super-peer topologies. In such topologies, super-peers are elected from the highest-capacity peers, as
in SG-1, but the system imposes additional constraints on the maximum distance between peers using
a distance metric. Each peer p is assigned a capacity value cap(p), which represents the maximum
number of clients it can handle if elected super-peer. Peer capacity is static and it is assumed that
every peer knows its own capacity value, as in SG-1. Additionally, for any pair of peers (p, q) the
system de�nes a latency distance lat(p, q). SG-2 generates topologies where:

(i) every client is associated with exactly one super-peer,

(ii) the number of clients of any super-peer s does not exceed cap(s),

(iii) the latency between a client and its super-peer does not exceed tot,

(iv) two super-peers are connected if the latency between them is below tot + δ,

(v) the number of super-peers in the system is minimised.

Parameters tot and δ are con�gurable system constants. The distance metric lat() is de�ned as
the average round-trip time (RTT) between two peers, and is calculated using the Vivaldi virtual
coordinate system [45], described in section 2.3.1. It is assumed that every peer is able to determine
its distance to any other peer in the system. A topology described by conditions (i-v) is called a SG-2
target topology.

The target topology can be described using geometrical concepts. Each peer in the system is
represented as a point in the virtual coordinate space. The in�uence zone of a peer is an n-dimensional
sphere of radius tot centred at that peer. The goal of SG-2 is to cover the virtual space with a minimum
number of super-peers in such a way that every peer is either a super-peer or belongs to the in�uence
zone of a super-peer.

Figure 2.24 shows a sample topology generated by SG-2 in a two-dimensional Euclidean space.
Five super-peers are elected in order to cover all peers in the space, and their in�uence zones are
marked with circles. Each client is connected to the highest-capacity super-peer in its in�uence zone.

2.5.2.1 Spherecast

In SG-2, peers communicate with each other using a local broadcast service, which e�ciently dis-
seminates messages to all peers within the in�uence zone of the sender. The local broadcast service
is provided by Spherecast, a gossip algorithm based on Newscast [82] and Lightweight Probabilistic
Broadcast [54].
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Figure 2.24: Sample topology generated by SG-2 in a 2-dimensional Euclidean space.

In Spherecast, every peer runs an instance of Newscast that manages its set of neighbours. The
fan-out set of a peer is de�ned as the subset of the peer's neighbours that belong to the peer's in�uence
zone. A peer broadcasts a message by sending it to all peers in its fan-out set. When a peer receives
a message from a neighbour, it either forwards this message to all neighbours in its fan-out set or
drops it. The decision is made probabilistically, based on the number of times the message has been
encountered by the peer in the past. A message is dropped with probability 1− e−f/ϑ, where f is the
number of previous message occurrences, and ϑ is a constant threshold parameter.

2.5.2.2 SG-2 algorithm

Every client that is not associated with a super-peer periodically broadcasts a �request for super-peer�
message, denoted CL-BCAST, in its in�uence zone. Super-peers reply to these request messages, and
clients connect to them. If a client discovers multiple super-peers in its in�uence zone, it connects
to the highest capacity super-peer. Furthermore, a client may probabilistically decide to become a
super-peer, depending on its capacity and the frequency of requests received from other clients.

At the same time, every super-peer periodically broadcasts a �super-peer advertisement� message,
denoted SP-BCAST, to all neighbours within tot + δ range in order to announce its presence. Super-
peers whose in�uence zones overlap compete with each other, as clients are migrated from lower-
capacity super-peers to higher-capacity super-peers. A super-peer that loses all its clients is demoted
to a client.

The three parallel processes, which create super-peers based on demand, transfer clients to high-
capacity super-peers, and remove idle super-peers, together generate a topology that approximates
the system target topology.

Figure 2.25 shows pseudocode for the SG-2 algorithm. Given that there are two types of peers,
super-peers and clients, and two types of messages, CL-BCAST and SP-BCAST, four scenarios of
message exchange are possible.
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1: Super-peer p gets 〈SP-BCAST, s, cap(s)〉:
2: if cap(p) > cap(s) then
3: for each client c of s do
4: if lat(c, p) < tot then
5: transfer c from s to p
6: end if
7: end for
8: if s has no clients then
9: s becomes client
10: if lat(s, p) < tot then
11: s connects to p
12: end if
13: end if
14: end if

15: Super-peer p gets 〈CL-BCAST, c〉:
16: accept c as client

17: Client p gets 〈SP-BCAST, s, cap(s)〉:
18: if p has no super-peer then
19: become client of s
20: else if cap(super(p)) < cap(s) then
21: migrate from super(p) to s
22: end if

23: Client p gets 〈CL-BCAST, c〉:
24: become super-peer with probability s2

s2+θ2
p

Figure 2.25: SG-2 algorithm.

When a super-peer p receives an SP-CAST message from a super-peer s (line 1 in Figure 2.25),
whose capacity cap(s) is lower than cap(p), it requests a client migration (lines 2-14). All clients of
s that belong the in�uence zone of p are transferred to p, provided p has enough free capacity (lines
3-7). If s is left with no clients, it is demoted to a client (lines 8-9), and if it belongs to the in�uence
zone of p, it becomes a client of p (lines 10-12).

When a super-peer p receives a CL-CAST message from a client c, it accepts c as its client, given
it has enough free capacity (lines 15-16).

When a client p receives an SP-CAST message from a super-peer s, if p is not currently associated
with any super-peer, it connects to s as a client. If p is associated with a super-peer with a lower
capacity than the capacity of s, it disconnects from the current super-peer and becomes a client of s,
provided s has enough free capacity. Super-peer s can refuse the connection from p if it does not have
enough free capacity.

Finally, when a client p receives a CL-CAST message from another client c, it switches its role to
a super-peer with probability f2

f2+θ2
p
, where f is the number of times p has encountered this message

in the past, and θp is a threshold variable maintained by p. Intuitively, as the frequency of requests
grows, the probability of p becoming a super-peer increases, and as the frequency of requests decreases,
the probability of v becoming super-peer decreases. Parameter θp is initialised at each peer p as
capmax − cap(p), where capmax is the maximum peer capacity in the system, and is periodically
updated at each peer according to the following formula

θp(t) = θp(t− 1) + α(t− t′p) (2.1)

where t is the current time, t′p is the last time when p became a super-peer, and α is a system
parameter. The update formula is used to decrease the probability of role switching between clients
and super-peers over time, in order to stabilise the topology and reduce the maintenance overhead.
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2.5.2.3 Discussion

According to [83], the problem of �nding the target topology, even in a static system, is NP-di�cult. In
a dynamic environment, with joining and leaving peers and with communication failures, the problem
is even more di�cult. However, as shown in [83], SG-2 generates topologies where a large majority of
clients manage to connect to super-peers in their tot latency range and the number of super-peers is
close to optimum.

SG-2 uses Spherecast for handling local communication between peers located in physical prox-
imity. However, it is not clear if the Spherecast algorithm scales. When the density of peers in the
system grows, more peers belong to each in�uence zone, and an average peer receives more messages.
Similarly, when the range of in�uence zones is increased, a peer receives on average more messages. If
a low-performance peer is located in an area with a high density of other peers, it may easily become
overloaded.

On the other hand, when the range of in�uence zones is decreased, fewer neighbours of a peer
belong to the peer's fan-out set. If the system size is large and the range of in�uence zones is small,
the probability that fan-out sets contain any peers may become very low, and as a consequence,
Spherecast may stop to work correctly. Thus, the range of peers' in�uence zones appears to be a
critical factor a�ecting the system's performance. Setting this range appropriately may be non-trivial
when deploying an SG-2 system.

2.5.3 Dynamic Layer Management

Another approach to the construction of optimal super-peer topologies is proposed by Xiao et al. in
[196]. They ask the following three fundamental questions.

• What is the optimal ratio of super-peers to ordinary peers in a P2P system?

• Which peers should be elected super-peers given an optimal super-peer ratio?

• How to maintain an optimal super-peer ratio in a running P2P system?

In order to address the �rst question, they introduce a workload model for �le-sharing systems, and
derive from this model an optimal ratio of super-peers to ordinary peers. In order to address the
latter two questions, they introduce Dynamic Layer Management (DLM), a decentralised algorithm
that �designates peers with relatively long lifetimes and large capacities as super-peers� and �can
maintain an optimal layer size ratio and adaptively elect and adjust peers between superlayer [i.e.,
super-peers] and leaf layer [i.e., clients]� [196].
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2.5.3.1 Workload model

The workload model assumes that every peer stores a collection of �les, shared with other peers in the
system, and generates a search query with an average frequency f . Super-peers index �les stored by
their clients and handle search. The model does not depend on any particular search algorithm, but
assumes that every search query is propagated to at least p super-peers before the results are returned
to the originating peer. A client connects on average to m super-peers, and a super-peer connects
on average to k other super-peers. The average durations of client to super-peer and super-peer to
super-peer connections are tl and ts, respectively.

Ordinary peers are subject to very little message tra�c, as they communicate with their super-
peers only when updating indices of shared �les or issuing search queries or receiving search results.
Super-peers are subject to much higher load, as they maintain connections with multiple clients and
super-peers, and relay queries received from both their own clients and other super-peers.

Xiao et al. [196] introduce two types of workload. The workload on a super-peer, Wsp, is de�ned as
the average message cost incurred by a super-peer when performing a search operation. The workload
on the overall network, Won, is de�ned as the total message cost of an average search operation in the
P2P network. Furthermore, Xiao et al. [196] derive the following upper and lower bounds of the two
workloads

mη
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k

ts
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+

k
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+ f(mη + pk) (2.2)
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(2.3)

where n is the number of peers in the system, and η is the ratio of clients to super-peers. They also
introduce a weighted workload, W , as

W = αWsp + β
Won

n
(2.4)

where α and β are weights such that α + β = 1. The optimal super-peer ratio, η∗, is de�ned as a
ratio between super-peers and clients that minimises the weighted workload W . It can be estimated
using formulas (2.2) and (2.3). For the most e�cient search algorithm, which corresponds to the lower
bound on the workload, the optimal super-peer ratio is

√
βtl
αm

(
k −m

ts
− m

tl
+ f(p− 1)

)
− 1. (2.5)

For the least e�cient search algorithm, the optimal super-peer ratio is given by
√

βtl
αm(1 + ftl)

(
k −m

ts
− m

tl
+ f(kp−m)

)
− 1. (2.6)

Since m, k and p are de�ned by the P2P protocol, and tl and ts can be measured experimentally, the
formula allows the calculation of an optimal super-peer ratio η∗.
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1: if p is super-peer then
2: Gp ← connected clients
3: µp ← log(|Gp|/mη∗)
4: else
5: Gp ← known super-peers
6: lp ← number of clients per super-peer in Gp

7: µp ← log(lp/mη∗)
8: end if
9:
10: for all q ∈ Gp do
11: if cq ·Xc,p > cp then
12: Yc,p ← Yc,p + 1/|Gp|
13: end if
14: if aq ·Xa,p > ap then
15: Ya,p ← Ya,p + 1/|Gp|
16: end if
17: end for

18: if p is super-peer then
19: if Yc,p > Zc,p and Ya,p > Za,p then
20: become client
21: end if
22: else
23: if Yc,p < Zc,p and Ya,p < Za,p then
24: become super-peer
25: end if
26: end if

Figure 2.26: DLM algorithm.

Using their workload model, Xiao et al. [196] calculate that the optimum number of clients per
super-peer in a typical P2P �le-sharing application is between 30 and 65. They also notice that this
number corresponds to the typical super-peer ratios found in popular �le-sharing systems such as
KaZaA.

2.5.3.2 DLM algorithm

The Dynamic Layer Management (DLM) algorithm elects super-peers from peers with longer lifetimes
and higher capacities and maintains a given ratio η∗ of clients to super-peers in a P2P system. Each
peer p is assigned a static capacity value, c(p), which re�ects the peer's ability to process and relay
search queries and search responses, and an age a(p), which is de�ned as the length of time since the
peer joined the system. According to [196], the capacity can be given as a weighted sum of low-level
peer properties, such as available bandwidth, CPU speed, and storage space. The age of a peer is
used as an estimator of the peer's lifetime. It is expected that peers with higher uptimes are more
likely to stay on-line in the future.

In order to elect super-peers and maintain the desired super-peer ratio, each peer performs algo-
rithm shown in Figure 2.26. The algorithm consists of three main blocks. First, each peer collects
information about its neighbours, estimates the current super-peer ratio and determines how much it
diverges from the optimal ratio η∗ (lines 1-8 in Figure 2.26). Second, each peer compares its capacity
and age with the corresponding characteristics of its neighbours in order to determine if it is an ap-
propriate candidate for a super-peer (lines 9-16). Finally, each peer decides whether it should become
a super-peer or a client (lines 17-25).

Each peer p de�nes its related set, Gp, as a subset of peers in the system that it uses for the
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estimation of system properties. For a super-peer, the related set is de�ned as the current set of
clients (line 2). For a client, the related set is de�ned as super-peers that the client knows about (line
5). Xiao et al. [196] suggest that the related set for a client p may be de�ned as the set of super-peers
that p has connected to within the last T time units.

Using Gp, each peer p approximates the average number of client connections per super-peer, lp.
A super-peer simply assumes that lp is equal to its own number of clients (i.e., |Gp|), and a client
calculates lp as an average number of clients per super-peer in Gp (line 6). Given the optimal clients
to super-peers ratio, η∗, and the fact that each client connects to m super-peers, the optimal number
of client connections per super-peer in the system is mη∗.

Each peer estimates the divergence of the current system topology from the optimal topology as
µp = log( lp

mη∗ ) (lines 3 and 7). A positive value of µp indicates that super-peers currently have too
many clients, and hence, new super-peers should be elected, while a negative value of µp indicates
that too many super-peers exist in the system and some of them should be demoted.

Next, each peer p compares its capacity cp and age ap with the capacity and age of peers in the
related set Gp (lines 10-17). It calculates Yc,p as the fraction of peers in Gp that have a higher capacity
than cp (lines 11-13) and Ya,p as the fraction of peers in Gp that have a higher age than ap (lines
14-16). In the comparison, the capacity of each peer in Gp is weighted by Xc,p (line 11), and the age
of each peer in Gp is weighted by Xa,p (line 14).

The aim of the scale parameters Xc,p and Xa,p is to regulate the probability of a super-peer
promotion and demotion. However, it is not explained in [196] how Xc,p and Xa,p are calculated.
Xiao et al. only mention that

Xc,p and Xa,pare adjusted according to the value of µp. For a superpeer, if it �nds that the
system needs more superpeers, it will decrease the possibility of its demotion by decreasing
the two scale parameters. Otherwise, it will increase the possibility of its demotion by
increasing the scale parameters, while for a leaf peer, if it �nds that more superpeers are
needed, it will decrease the scale parameters in hoping to increase the promotion possibility;
otherwise, it will increase the scale parameters to decrease the promotion possibility. [196]

In the last step, peer p compares its values of Yc,p and Ya,p with threshold values of Zc,p and Za,p

(lines 18-26). A super-peer with both Yc,p and Ya,p higher than Zc,p and Za,p, respectively, becomes
a client (lines 19-21). In order to switch its role, it drops all connections to clients and preserves only
m connections with selected super-peers. It is not speci�ed in [196] what happens to the disconnected
clients and how they �nd new super-peers to connect to.

A client with the values of both Yc,p and Ya,p above Zc,p and Za,p, accordingly, is promoted to a
super-peer (lines 23-25). It preserves its current super-peer connections and starts to accept incoming
connections from clients. However, again, it is not entirely clear how Zc,p and Za,p are calculated.
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Xiao et al. state that

The values of threshold variables, Zc,p and Za,p, are also adjusted according to the value of
µ. When more superpeers are needed, superpeers will increase the values of the threshold
variables to reduce the demotion tendencies and leaf-peers will reduce the values of the
threshold variables to increase the promotion tendencies. For the case there there are too
many superpeers, inverse measures will be taken accordingly. [196]

Furthermore, it is not obvious why the algorithm needs both the thresholds variables Zc,p and Za,p

and the scale parameters Xc,p and Xa,p. Their roles appear to be redundant, as they both are used
to regulate the probability of super-peer promotion and demotion, and they are both adjusted based
on µp.

Two extensions to the DLM algorithm, labelled DLM-2 and DLM-3, are proposed in [196]. In DLM-
2, all super-peers periodically gossip with each other and exchange information about their clients.
This information is used by super-peers to approximate the average number of client connections per
super-peer more accurately than in the original version of DLM. An experimental evaluation in [196]
shows that DLM-2 achieves better performance than DLM-1 and DLM-3.

In DLM-3, the election algorithm is run only on super-peers in order to reduce load on clients.
The decision about a super-peer demotion is made as in the DLM-1 algorithm. Super-peer promotion
is managed by existing super-peers. When a super-peer decides a new super-peer is needed, it selects
a client q with maximum value of γ1cq + γ2aq, where γ1 and γ2 are constant weighing parameters and
γ1 + γ2 = 1, and promotes q to a super-peer.

2.5.3.3 Discussion

DLM and the super-peer election algorithm used in the gradient topology, described later in this thesis,
share a number of similarities. Both algorithms introduce metrics that capture peer capabilities and
quantify the suitability of individual peers to become super-peers. In both approaches, the optimum
number of super-peers in the system is calculated based on estimated system properties. Furthermore,
in both approaches, super-peers are elected using adjustable thresholds.

However, unlike the gradient topology, DLM uses relatively simple heuristics for the estimation of
global system properties. For example, the average number of clients per super-peer is estimated in
DLM as the current number of clients of one super-peer. At the same time, dedicated algorithms exist,
such as aggregation algorithms described later in this thesis, that have been speci�cally designed to
e�ciently approximate global system properties. These algorithms have been shown to achieve good
scalability and performance, with average approximation error decreasing exponentially with time.

The theoretical model for P2P systems proposed in [196] is speci�c to �le-sharing applications
and cannot be easily applied to other areas. Furthermore, it requires the knowledge of the average
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duration of peer connections, which may depend on the system deployment environment, and hence,
can only be obtained at runtime. Moreover, the description of DLM in [196] is missing details, which
makes the algorithm very di�cult to analyse and implement. In particular, [196] does not explain
how the threshold parameters, Zc,p and Za,p, and scale parameters, Xc,p and Xa,p, are calculated.

2.6 Gradient Topology Approaches

This short section describes P2P systems that adapt their structure to available peer resources, but
do not elect super-peers. The purpose of this section is to complete the state-o-the-art systems review
in this chapter by presenting alternative approaches to dealing with P2P system heterogeneity. Some
of the concepts introduced in the systems covered in this section are similar to the gradient topology.

2.6.1 Astrolabe

Astrolabe [151] is a large-scale information management system that continuously monitors the dynam-
ically changing state of a collection of distributed resources, reporting summaries of this information
to its users. Astrolabe computes these summaries using on-the-�y aggregation controlled by SQL
queries.

Astrolabe has a hierarchical structure that can be viewed as a tree. Each node in this tree represents
a zone. A zone is �recursively de�ned to be either a host or a set of non-overlapping [i.e. not having
any hosts in common] zones� [151]. The leaves in the tree represent individual hosts. For each zone,
Astrolabe computes aggregates of information from all hosts that belong to this zone (i.e. host being
descendants of this zone). These aggregates are computed by nodes continuously gossipping with
each other within their administrative zones. Additionally, each zone has representative agents that
gossip with representatives agents of other zones on behalf of these zones. This way, the information
is summarised and gradually propagated from tree leaves to the root node, which receives the system-
wide aggregates of all hosts.

Astrolabe is similar to the gradient topology in that it has a hierarchical structure. The repre-
sentative nodes in each zone are elected using the same gossipping mechanism that produces data
aggregations. Thus, Astrolabe can exploit the most stable and best performing nodes for represent-
ing zones at higher hierarchy levels. However, Astrolabe does not provide any speci�c mechanisms
that allows nodes to actively manage and optimise the zone structure. Zones in Astrolabe are im-
plicitly de�ned by node names. Each node that enters the system autonomously chooses its own
name and joins the corresponding zones, creating new zones if necessary. For example, a node identi-
�ed /USA/Cornell/pc3 belongs to the root zone /, the /USA zone, and the /USA/Cornell subzone
withing /USA. Thus, the zone tree grows spontaneously.
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2.6.2 Gia

An interesting approach to address P2P system heterogeneity is proposed in Gia [34, 110]. Gia extends
the original Gnutella protocol in order increase its scalability. It is based on four main principles. First,
it introduces a dynamic topology adjustment mechanism that increases the degree of high-capacity
nodes. Node capacity is calculated based on node properties such as �processing power, disk latency,
and access bandwidth� [34]. Each node occasionally compares its capacity with that of its neighbours,
and computes its level of satisfaction. The satisfaction level is low if the total capacity of node's
neighbours, normalised by their degree, is lower than the node's own capacity. In such a case, the
node runs a topology adjustment algorithm, where it discovers and connects a new neighbour.

The second main principle in Gia is one-hop replication. All nodes in Gia maintain pointers
to the content stored by their immediate neighbours. This mechanism, together with the topology
adjustment algorithm, allows high-capacity nodes to act as hubs, which can resolve queries on behalf
of other nodes. Third, Gia replaces the �ooding-based search in Gnutella with a biased random walk,
which directs queries to high-capacity nodes and allows the utilisation of hubs. Finally, Gia uses an
active �ow control algorithm that balances the load in the overlay by probabilistically routing queries
towards nodes with more available capacity. By avoiding hot-spots (i.e., overloaded peers), Gia can
signi�cantly reduce query latency and drop rate.

The similarity between Gia and the gradient topology is that higher-capacity nodes are promoted
in the system structure such that they handle more system tra�c and load. However, Gia is speci�cally
designed for keyword query processing and its design principles cannot be easily ported beyond the
�le-sharing domain.

2.6.3 Virtual Nodes

A powerful mechanism to exploit high-capacity nodes in a P2P system is proposed in Chord [179]. In
this system, a single physical host can run multiple virtual nodes, i.e., instances of the P2P protocol,
in order to utilise its available capacity. By creating, migrating, and removing virtual nodes, the
system can balance the load between physical hosts and e�ectively use available resources. A number
of virtual node allocation algorithms, based on Distributed Hash Tables, are proposed in [148, 88].

The main advantages of virtual nodes are their great simplicity and very high applicability. Virtual
nodes can be used in a straight-forward way in many di�erent P2P applications. However, virtual
nodes also have a number of disadvantages. First, they usually increase the system overhead. For
example, in a DHT overlay of size N , a node typically maintains O(log N) neighbours. When a host
runs k virtual nodes, it needs to maintain O(k log N) DHT neighbours, and hence, must generate more
background tra�c to detect neighbour failures and to keep its routing tables up-to-date. Generally,
virtual nodes increase the number of nodes in a P2P protocol, while super-peers can be used to reduce
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the number of participants in a P2P protocol. If the protocol does not scale well, generating virtual
nodes may become nonviable. Similarly, if node stability is concerned, virtual nodes are of limited
use, since they can only increase the number of stable nodes in the system but do not exclude the
non-stable nodes from the P2P protocol.

2.7 Summary

This chapter surveys the area of heterogeneous P2P systems. These systems are based on super-
peers in the large majority of cases, but examples are also given for systems that are based on other
design principles. The covered domains include storage systems (OceanStore, Brocade), �le-sharing
systems (Gnutella, KaZaA, eDonkey), telephony and video-conferencing systems (Skype), e-learning
systems (Edutella, ROSA), Grid systems (GLARE), and distributed hash tables (HONets, SPChord,
Structured Superpeers, and others). A large part of the reviewed systems can be classi�ed as general
P2P frameworks and algorithms.

The functions assigned to super-peers, as well as the overlays run by the super-peers, are generally
application-speci�c. File-sharing, e-learning, and Grid systems use super-peers for indexing �les (and
other resources) and handling search protocols. Grid systems also use super-peers for managing mem-
bership information. Skype uses super-peers for relaying tra�c between �rewalled peers. OceanStore
introduces super-peers for coordinating updates on replicated objects. Brocade, and many other
systems based on DHTs, use super-peers for routing messages.

Most reviewed systems attempt to elect super-peers that have certain desired characteristics. These
characteristics are often described as high stability, high processing capability, large available storage
space, and a high-quality network connection. Peer stability is usually estimated using peer's current
uptime. The processing capability is often de�ned as a function of peer's CPU clock speed and
amount of RAM. The quality of a peer's network connection is typically measured using the upstream
or downstream bandwidth of the peer's Internet link. Furthermore, some systems, such as Gnutella,
require that super-peers have non-�rewalled Internet connections and run a certain version of the
operating system.

The reviewed systems vary in the requirements for the desired number of super-peers in the net-
work. In PoPCorn and SOLE, the goal is to elect a �xed number of super-peers, given as a system
parameter. In more adaptive systems, such as SG-1, SG-2, DLM, HONets and SPChord, the number
of super-peers is regulated according to the current system size and load. In particular, DLM main-
tains a �xed ratio of super-peers to clients, and both SG-1 and SG-2 elect super-peer sets that have
su�cient capacity to handle the remaining peers as clients. In some systems, such as Crown, PASS,
eDonkey and Grids, the numbers of super-peers is not strictly controlled and depends on external
factors such as peer IP addresses (Crown), peer locations (PASS), and local users or administrators
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(eDonkey, Grids). Furthermore, some systems introduce additional constraints on super-peers and
clients, such as a maximum distance in a virtual coordinate system or semantic space.

The super-peer election methods in the reviewed systems can be divided into four general cate-
gories. The �rst category, comprising the simplest approaches, includes systems where super-peers
are hardcoded, con�gured manually, or elected based on �xed thresholds. Centralised approaches are
not scalable and introduce security and reliability risks. Manual or static selection is not likely to
produce optimal super-peer sets due to the complexity and dynamism in most P2P systems. Fixed
thresholds can only be applied to systems where the distribution of system-wide peer characteristics
does not change signi�cantly in time and is known to the system designer or administrator.

In systems that belong to the second category, peers are divided into groups based on properties
such as physical location, position in a virtual space, semantic content, or membership in a Virtual
Organisation. This approach has the advantage that the super-peer election problem can be decom-
posed into local election subproblems which are solved independently in each group. It also allows the
system to bind clients with super-peers that are close to them according to a system metric. However,
this approach introduces the problem of group management. Simple schemes, based on peer properties
such as IP address or ZIP code, do not allow peers to actively control the number of super-peers in
the system. Furthermore, election in groups does not guarantee that all peers with globally-highest
capability become super-peers, and does not guarantee that clients are evenly distributed between
super-peers.

The third category consists of systems that elect super-peers using a DHT overlay. In these
systems, super-peer clusters can be dynamically split and merged, and the number of super-peers can
be regulated based on the current network size and load. However, due to the constraints imposed
by the DHT, these systems cannot guarantee that the elected super-peer sets are optimal in terms of
size and super-peer capabilities.

The last category contains systems that continuously optimise super-peer sets according to a
formally de�ned criterion. SG-1 generates a topology with minimum number of super-peers such
that the total super-peer capacity is equal to the total number of clients. SG-2 extends SG-1 and
introduces additional constraints on the maximum distance between super-peers and clients. Finally,
DLM derives an optimal ratio of super-peers to clients from a �le-sharing workload model, and provides
a mechanism for maintaining such an optimal ratio in a P2P system, electing high-uptime and high-
capacity super-peers.

In summary, the systems reviewed in this chapter clearly show that there is a general need for
introducing super-peers in P2P applications in order to improve their overall performance and scalabil-
ity. However, the majority of existing systems o�er simple and limited mechanisms for the super-peer
election, and only a handful of systems attempt to optimise super-peer sets according to well-de�ne
criteria. These few sophisticated systems are speci�c to particular application scenarios.
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The remaining chapters in this thesis show that gradient topologies, in combination with aggregation-
based election techniques, extend the current state-of-the-art knowledge on super-peers, and allow
more �exible and adaptive super-peer election in large-scale heterogeneous systems. In particular,
gradient topologies can generate super-peer sets equivalent to that in SG-1, DLM, and many other
reviewed systems, and can adapt super-peer sets according to the requirements in the system.
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Gradient Topologies

This chapter formally de�nes gradient topologies (GT) and describes their main properties. It then
introduces a subset of gradient topologies, called tree-based gradient topologies (TGT), which have a
number of attractive, formally proven properties, such as a diameter growing logarithmically with the
overlay size. Due to these properties, the thesis mainly focuses on the TGTs, although many features
are common to both GTs and TGTs. The last section presents a brief design of two large-scale
applications, a P2P storage systems and a P2P name service, that take advantages of the TGTs. The
purpose of this last section is to show, at a high-level of detail, how the TGTs can be used in practical
application scenarios. The algorithms that generate TGTs and elect super-peers are presented in the
next chapter.

3.1 Topology Properties

Gradient Topologies (GT) are a class of P2P overlay topologies, where peers are arranged according
to their utility such that the highest utility peers are clustered in the logical centre of the topology
(also called core) while lower utility peers are located at gradually increasing distance. The higher
the utility of a peer, the closer this peer is, in terms of overlay hops, to the maximum utility peers in
the system.

Peer utility metric is de�ned by the application that runs on top of the gradient P2P topology. It
is assumed that the higher-level application requires the selection of the highest-utility peers in the
network for its application-speci�c purposes. For example, in a content distribution network, the utility
may be de�ned as a function of a peer's maximum upstream bandwidth. In a P2P storage system,
the utility may combine a peer's available storage space and bandwidth, while in a grid computing
system, the utility may be a function of a peer's processing speed and expected availability.

The gradient topology is independent from the higher-level application in the sense that all al-
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(a) Conceptual diagram (b) Visualisation obtained from a P2P simulator

Figure 3.1: Gradient topologies.

gorithms used for the construction of the topology, message routing, and election of super-peers, do
not make any assumptions about peer utility. They only require that for every peer p in the sys-
tem, a utility value, U(p), is de�ned. Thus, the utility metric encapsulates application-speci�c peer
requirements.

Formally, gradient topologies can be de�ned as P2P topologies where for any two peers, p and q,
if U(p) ≥ U(q) than dist(p, p0) ≤ dist(q, p0), where dist(x, y) is a peer distance metric de�ned as the
shortest path length between two peers x and y, and p0 is the highest utility peer in the system. Figure
3.1(a) shows a conceptual diagram of a gradient topology, and 3.1(b) shows a sample visualisation
of a gradient topology generated in a P2P simulator [163]. Darker nodes and darker edges indicate
higher-utility peers and connections between high-utility peers.

Gradient topologies have two main properties. First, all peers in a gradient topology with utility
above a given utility threshold form a connected sub-overlay, which is itself a gradient topology and
is concentric with the total system topology. Such high-utility peers can be exploited in a similar
manner as super-peers in traditional P2P systems.

Second, the information captured in the gradient topology enables e�cient routing of messages
from low-utility peers to high-utility peers. This is achieved by forwarding messages at each peer to
the highest-utility neighbour, as in hill-climbing and similar search heuristics. This strategy, called
gradient search, guarantees that messages are eventually delivered to the highest-utility peers in the
system.

Assuming that a higher-level application uses the highest-utility peers in the system for running
certain services, gradient search allows lower-utility peers to discover these high-utility peers in order
to access the services hosted by them. Gradient search does not require any global knowledge at peers,
as it requires only that each peer estimates the utility of its immediate neighbours. Gradient search
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is also deterministic, and it does not require peers to duplicate message, as in �ooding and parallel
random walks.

3.1.1 Utility Thresholds

Given that peers are characterised by a common utility metric U , the super-peer election problem
in a gradient topology can be solved by calculating a super-peer utility threshold. All peers with
utility above the selected threshold become super-peers, and the remaining peers become clients. The
super-peer set elected this way is optimal in the sense that the utility of peers in the set is maximised.
Each super-peer has a higher utility than any client.

The number of elected super-peers is directly controlled by the super-peer utility threshold. By
decreasing the threshold, the system can increase the number of super-peers, and by increasing the
threshold, the system can decrease the number of super-peers. Due to the structure of the gradient
topology, no peer connections need to be recon�gured as super-peers are added or removed, since
super-peers always are clustered at the centre of the topology and can be discovered by clients using
gradient search.

A number of di�erent criteria can be applied when calculating super-peer thresholds. In the
simplest case, the threshold can be explicitly given by a higher-level application. However, as discussed
in section 2.2.14, setting a threshold that limits the number of super-peers to a desired level requires a
global knowledge of peer utility. Furthermore, if the super-peer election threshold is �xed, the system
is not able to adapt the number of super-peers to the existing demand and is likely to generate a
suboptimal super-peer set if the characteristics of peers in the system signi�cantly change over time.

3.1.1.1 Top-K Threshold

A top-K threshold is de�ned as a utility value, tK , such that exactly K peers in the system have utility
equal or above tK and all remaining peers have utility below tK . Given the cumulative peer utility
distribution in the system, D : R→ R, where D(u) is the number of peers with utility above u,

D(u) =
∣∣∣{p : U(p) ≥ u}

∣∣∣ (3.1)

the top-K threshold must satisfy the following equation

D(tK) = K. (3.2)

Assuming that peers have a knowledge of the utility distribution D, a top-K threshold allows a precise
restriction of the number of super-peers in a dynamic system. It has the property that, regardless of
the system size (as long as N ≥ K) and utility of participating peers, it elects exactly K super-peers,
and the utility of these super-peers is maximised.
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3.1.1.2 Proportional Threshold

Similarly, a proportional threshold is de�ned as a utility value, tQ, such that a �xed fraction Q of
peers in the system have utility greater than or equal to tQ. In a system with N peers, a proportional
threshold is described by the following equation

D(tQ) = Q ·N. (3.3)

A proportional threshold allows peers to adapt the number of super-peers to the total system size. As
the system grows and shrinks in size, the proportional threshold increases and decreases, adjusting
the number of super-peers in the system so that the ratio of super-peers to ordinary peers remains
constant.

3.1.1.3 Capacity Threshold

In many applications, the desired number of super-peers depends not only on the system size but also
on the capabilities of available peers. For example, systems such as SG-1, SG-2 and DLM introduce
the notion of peer capacity and generate super-peer sets that have su�cient capacity to handle all
remaining peers as clients.

Assuming that a capacity value C(p) is de�ned for each peer p, a �xed-capacity threshold can be
introduced as a utility value, tC , such that peers with utility above tC have a total capacity of C. A
�xed-capacity threshold can be calculated using a cumulative peer capacity distribution, Dc : R→ R,
where Dc(u) is the total capacity of peers with utility above u,

Dc(u) =
∑

U(p)>u

C(p). (3.4)

The threshold must satisfy the following formula, similar to the top-K threshold de�nition

Dc(tC) = C. (3.5)

3.1.1.4 Clients Threshold

In order to elect super-peers that have a total capacity equal to the number of clients in the system,
as in SG-1 and SG-2, a clients threshold is de�ned as a utility value, t, such that

Dc(t) = N −D(t). (3.6)

In the above equation, D(t) is the number of elected super-peers, N −D(t) is the number of clients,
and Dc(t) is the total super-peer capacity. If peer utility is de�ned as peer capacity, i.e., U(p) = C(p)

for every peer p, the super-peer set generated using a clients threshold is equivalent to that in the
SG-1 target topology. If U(p) 6= C(p), super-peers are selected from the highest-utility peers in the
system, and the number of super-peers is determined by the system size and super-peer capacity.
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3.1.1.5 Load-Based Threshold

A more general approach to elect super-peers is based on the concepts of peer capacity and peer
load. Depending on the higher-level application, load can represent connected clients, stored data,
network transfers, handled requests, running jobs, or other application-speci�c concepts. The goal of
the super-peer election is to generate a super-peer set that has a su�cient total capacity to handle
the load generated in the system.

More formally, the capacity C(p) of a peer p is de�ned as the maximum load peer p can handle at
a time, and L(p) represents load that peer p is currently handling. Any peer can generate load, and
the total amount of system load �uctuates over time. A load-based threshold is de�ned as a utility
value, t, such that peers with utility above t have a total capacity equal to the total system load, i.e.,

Dc(t) =
∑

p

L(p). (3.7)

The utilisation of peer p is de�ned as the ratio of a peer's current load to the peer's capacity, i.e.,
L(p)
C(p) . If the super-peer threshold is calculated using formula 3.7, all super-peers must achieve a full
utilisation (i.e., equal to one) in order to handle the total system load. This requirement can be
relaxed by allowing super-peers to have a higher total capacity than the system load. In order to
maintain an average super-peer utilisation of W , where 0 < W ≤ 1, the super-peer election threshold,
tW , must satisfy the following formula

Dc(tW ) ·W =
∑

p

L(p). (3.8)

This way, super-peers maintain a margin of spare capacity and can accommodate extra load in case
of a rapid load level increase. Moreover, when the average super-peer utilisation is reduced, more
super-peers in the system have free capacity, and the distribution of load between super-peers that
have free capacity becomes easier.

3.1.1.6 Composite Threshold

Finally, multiple criteria for super-peer sets can be combined into one threshold. For example, if the
super-peer set must satisfy two conditions, to have a minimum size of K, and a minimum capacity of
C, a composite threshold, tK,C , is de�ned as min(tK , tC), where tK and tC are derived from formulas
3.2 and 3.5, respectively. Similarly, in order to elect a super-peer set that has a size of K or capacity
of C, the super-peer election threshold is set to max(tK , tC).

3.1.2 Super-Peer Utility

Many measurements on existing P2P systems show that peer characteristics, such as session times,
availability, and bandwidth, are closely approximated by Pareto distributions [173, 144, 181], and
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many theoretical models of P2P systems assume that peer properties follow Pareto distributions,
also called power-law [135, 4, 14, 7]. Typically, the Pareto shape parameter, k, in P2P systems is
approximately equal to two [181]. Given a system with Pareto distributed peer utility, the following
theorem describes the utility of super-peers.

Theorem 3.1 In a system where peer utility follows a Pareto distribution with exponent k, and the
highest-utility peers are elected super-peers and constitute a fraction Q of all peers in the system, the
ratio of mean peer utility to mean super-peer utility is k

√
Q.

Proof Given that peer utility follows a Pareto distribution, the probability that a peer p has a utility
value above x is

P (U(p) > x) =
(m

x

)k

(3.9)

where m is the minimum peer utility and k is a constant system parameter, k > 0. In order to
maintain a ratio Q of super-peers to the total number of peers, the super-peer utility threshold, t,
must satisfy (m

t

)k

= Q. (3.10)

Hence, t = m −k
√

Q. The utility of super-peers also follows a Pareto distribution, but the minimum
super-peer utility is t. The probability that a super-peer s has a utility value above x is then given by

P (U(s) > x) =
(

t

x

)k

. (3.11)

The mean of the peer utility is µ = km
k−1 . The mean of the super-peer utility is

µ′ =
kt

k − 1
=

km −k
√

Q

k − 1
= µ −k

√
Q (3.12)

and the ratio between mean peer utility, µ, and mean super-peer utility, µ′, is then µ
µ′ = k

√
Q. ¤

3.2 Tree-Based Gradient Topologies

This section introduces tree-based gradient topologies and describes their main properties, including
average peer degree, diameter, path lengths, and average distance to a super-peer.

Given a utility metric U , peers can be ordered according to their utility, from the highest-utility
peer p0 to the lowest-utility peer pN−1, where N is the total number of peers. The position of a peer
p in such a ranking, denoted R(p), is called rank. A tree-based gradient topology (TGT) is de�ned
as a gradient topology such that each peer p (excluding p0) is connected with a peer ranked bR(p)

B c,
where B is a constant system parameter called branching factor, B > 1. Peer ranked bR(p)

B c is called
p's parent.

Figure 3.2 shows a sample TGT with 27 peers and branching factor B = 3. For clarity, peers have
only these connections that are required by the TGT de�nition, i.e., to their parents. In most realistic
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Figure 3.2: Sample tree-based gradient topology.

use cases, peers need to maintain additional links with each other in order to increase the system's
fault-tolerance and reduce the probability of the topology partitioning.

3.2.1 Peer Degree

In a tree-based gradient topology, assuming no peer connections other than between a peer and its
parent, peers ranked less than bN

B c (with the exception of p0) are connected with B + 1 other peers:
one parent and B children. Peers ranked above bN

B c have no children and are connected with their
parents only. The average peer degree is 2(N−1)

N , since each peer (excluding p0) has one outgoing
connection to a parent, and the total number of incoming parent connections is equal to the total
number of outgoing parent connections. Given that N is usually large in P2P systems, the average
peer degree is close to two.

3.2.2 Topology Diameter

One of the main properties of TGT is that the shortest path between peer p and p0 has at most
O(log R(p)) edges, where p0 is the highest utility peer in the system. This fact can be shown by a
straight-forward induction.

Theorem 3.2 In a tree-based gradient topology, the shortest path between a peer, p, and the highest
utility peer, p0, where p 6= p0, has at most 1 + logB R(p) edges.

Proof Let dist(r) denote the shortest path length between peer pr and p0, i.e., dist(r) = dist(pr, p0).
The proof is by induction on the peer rank. The base case is for peer p1, which is directly connected
to p0, and hence dist(1) = 1.

Inductive step. Assume dist(i) ≤ 1 + logB i for all i such that i ≤ r. It needs to be shown that
dist(r + 1) ≤ 1 + logB(r + 1). Peer pr+1 is connected with its parent, ranked b r+1

B c, and hence
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dist(r + 1) ≤ 1 + dist(b r+1
B c). Using the induction hypothesis, 1 + dist(b r+1

B c) ≤ 1 + 1 + logBb r+1
B c ≤

2 + logB
r+1
B = 1 + logB(r + 1). ¤

Theorem 3.2 immediately implies that the diameter of a TGT with N peers is at most 2+2 logB N ,
that is O(log N).

A single fact that a P2P topology has a short diameter does not necessarily indicate that such
a topology is useful. For example, the diameter of purely random topologies grows logarithmically
with the number of peers, but determining the shortest paths between peers in such topologies is
expensive due to the lack of knowledge about the topology structure. Searching algorithms used in
random P2P topologies, such as �ooding, random walks, Breadth First Search (BFS), Depth First
Search (DFS), and iterative deepening [109, 187, 199, 64], require sending messages to large numbers
of peers, potentially all peers in the system.

Gradient topologies, in contrary to random and unstructured P2P topologies [31, 109, 42, 78],
contain information about peer utility and enable e�cient routing from low-utility peers to high-
utility peers using gradient search. It can be shown that in a TGT, a message from peer p is routed
by gradient search to peer p0 through at most logB R(p) intermediate peers. Thus, the worst-case cost
of gradient search is O(log N) message transmissions. This fact can be shown by a simple induction
on the peer rank, almost identically to Proof 3.2.

3.2.3 Distance to Super-Peer

Super-peers are elected in a TGT using utility thresholds, described in section 3.1.1, exactly in the
same way as in GTs. According to Theorem 3.2, the K highest utility peers in a TGT form a TGT
sub-overlay with a diameter of O(log K). Moreover, the topology structure imposes bounds on the
maximum distance between a super-peer and a client.

Theorem 3.3 In a tree-based gradient topology, where the K highest utility peers are super-peers, the
shortest path between an ordinary peer, p, and a super-peer has at most 1 + blogB

R(p)
K c edges.

Proof Let dist′(r) denote the shortest path length from peer pr to any super-peer. The proof is by
induction on the peer rank. Obviously, for all peers pi where i < K, dist′(r) = 0. Furthermore, all
peers pi such that K ≤ i < KB are directly connected to super-peers through their parent links, and
hence dist′(i) ≤ 1 for i < KB.

Inductive step. Assume dist′(i) ≤ 1 + blogB
i
K c for all i such that K < i ≤ r. It needs to be

shown that dist′(r + 1) ≤ 1 + blogB
r+1
K c. Peer pr+1 is connected with its parent, ranked b r+1

B c, and
hence dist′(r + 1) ≤ 1 + dist′(b r+1

B c). Using the induction hypothesis, 1 + dist(b r+1
B c) ≤ 1 + 1 +

⌊
logB(b r+1

B c/K)
⌋ ≤ 2 + blogB

r+1
BK c = 1 + blogB

r+1
K c. ¤
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According to Theorem 3.3, every peer in a TGT is located within at most O(logB
N
K ) overlay hops

from a super-peer, where N is the overlay size and K is the number of super-peers in the overlay.
Given a super-peer ratio Q = K

N , the maximum distance from a client to the closest super-peer is
at most O(logB Q−1) overlay hops. Hence, if the branching factor, B, is set to the reciprocal of the
super-peer ratio, Q, then every peer in the system is directly connected to a super-peer.

Theorem 3.4 In a tree-based gradient topology where B = Q−1, the maximum distance between a
client and its closest super-peer is one.

Proof Let N be the total number of peers in the system and K be the number of super-peers. The
super-peer ration, Q, is equal to K

N . From Theorem 3.3, the maximum distance between a client and
its closest super-peer is 1 + blogB

N−1
K c. This distance is equal to one if blogB

N−1
K c = 0, which is

equivalent to 0 ≤ logB
N−1

K < 1, which is equivalent to B > N−1
K . This can be achieved by setting B

equal to N
K = Q−1. ¤

An analogous reasoning to Proof 3.3 can be used to determine bounds on the performance of
gradient search. It can be shown that in a TGT with a super-peer ratio of Q, gradient search routes
a message from any peer in the system to a super-peer through at most logB Q−1 intermediate peers,
and the maximum cost of a super-peer discovery in a TGT is 1 + logB Q−1 message transmissions.
This cost is equal to one if B = Q−1.

3.3 Sample Applications

This section describes the design of two sample applications, a P2P storage system and a P2P name
service, that take advantage of the properties of gradient topologies.

3.3.1 Storage System

The storage system is designed to permanently store user-provided data. It supports the following
operations: (i) create an empty �le, (ii) delete a �le, (iii) read from a �le, and (iv) write to a �le. All
operations (i-iv) take a �le name as a parameter.

For performance and reliability reasons, the data stored by the system is hosted by super-peers
only. Furthermore, the data is partitioned between super-peers using a DHT, such as Chord described
in section 2.4.1. Each �le name is mapped onto the DHT identi�er space using a hash function, such
as SHA-1, and assigned to a super-peer.

In order to create or delete a �le, a peer p generates a request and routes it using gradient search to
the closest super-peer, q. The contacted super-peer, q, forwards the request using the DHT protocol
to the super-peer, s, that is responsible for the given �le. Super-peer s then creates or deletes the �le,
as requested by p.
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Figure 3.3: Storage system based on a gradient topology.

Similarly, in order to read or write a �le, peer p performs a gradient search to discover a super-peer,
q, which uses the DHT overlay to contact s, the super-peer responsible for the given �le. Super-peer s

directly contacts p and transfers the contents of the �le. The design can be further extended to allow
for �le encryption and access veri�cation, for example using public-key cryptography.

In a gradient topology with N peers and M super-peers, super-peer discovery requires at most
O(log N

M ) message transmissions, as shown in Theorem 3.3. Furthermore, the DHT guarantees that
the cost of a DHT lookup is at most O(log M) message transmissions. Thus, as shown in Figure
3.3, the total cost of locating a �le is O(log N

M ) + O(log M) = O(log N) message transmissions, as in
a traditional DHT. This cost can be further reduced if clients cache super-peer addresses and reuse
them when performing sequences of operations.

Super-peers are elected using a load-based utility threshold. Peer capacity is de�ned as the amount
of storage space available at a peer, and the load at a peer is de�ned as the amount of data stored by
the peer. The system maintains a set of super-peers that has a su�cient storage space to accommodate
all data uploaded to the system. In order to distribute the data between the super-peers, one of the
well-known approaches to load-balancing in a DHT is applied [88, 148, 76].

Furthermore, for improved data availability, each �le can be replicated on r super-peers with
numerically closest DHT identi�ers to the hash of the �le's name, as described in [179, 162, 52]. In
this case, the total super-peer capacity must be r times higher than the amount of data uploaded to
the system.

The choice of the peer utility function depends on the system requirements. In order to minimise
the number of super-peers in the system, peer utility is de�ned as peer capacity. In order to maximise
the throughput of read and write operations, peer utility is de�ned as a function of peer's downstream
and upstream bandwidth capacity. According to theorem 3.1, if peer bandwidth follows a Pareto
distribution with exponent k, and Q is the ratio of super-peers to the total number of peers, the
average super-peer bandwidth is −k

√
Q times higher than the average peer bandwidth. Thus, the
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expected �le transfer rate, assuming no contention, is improved by a factor of −k
√

Q compared with a
traditional DHT where no super-peers are elected and all peers host data.

Another approach is to de�ne peer utility as the expected peer session duration, which can be
estimated using the history of previous peer sessions and current peer uptime [181]. If peer sessions
follow a Pareto distribution with exponent k, than according to theorem 3.1, the average leave rate
of super-peers is lower by a factor of −k

√
Q compared with the average leave rate for all peers in

the system. This has two advantages. First, the probability of data loss is lower compared with
a traditional DHT, since peers hosting data are less likely to fail. Second, �le replica maintenance
cost is reduced, since peers join and leave the DHT less frequently (assuming the super-peer election
threshold does not change) and hence, �le replicas need to be transferred or re-created less frequently.

3.3.2 Registry Service

The P2P registry service stores a collection of domain-speci�c records, and allows peers to add new
records, update existing records, delete records, and search for records that satisfy certain criteria.
Each record can be updated or deleted only by its owner, which is the peer that created the record,
but can be read by all peers in the system.

For fault-tolerance and performance reasons, the registry service is replicated between a limited
number of high-utility super-peers, determined by an adaptive election threshold. Unlike the storage
system described in the previous section, where the data is partitioned between super-peers, each
super-peer in the P2P registry service maintains a full replica of the entire registry, i.e., has a copy
of all records stored in the system. It is assumed that the average size of a record in the registry is
relatively small (order of kilobytes), and hence, a single super-peer is likely to have enough storage
space to host a full registry replica.

It is assumed that search operations are signi�cantly more frequent than update operations, and
hence, the registry is optimised for handling search. Due to the applied replication scheme, every
super-peer can independently handle any search query without communicating with other super-
peers. This is important, since complex search, for example based on attributes, keywords, or range
queries, is known to be expensive in distributed systems [99, 141, 199, 109].

In order to perform a search on the registry, a peer generates a query and routes it to the closest
super-peer using gradient search, as shown in 3.4. The super-peer processes the query and returns
the search results directly to the originating peer. It can be shown that in a system with N peers
and M super-peers, a query passes through at most O(log N

M ) peers before it is delivered to a super-
peer. Optionally, if the super-peer is heavily-loaded, it may forward the query to another super-peer
which has enough capacity to handle it. Clients may also cache super-peer addresses and contact the
super-peers directly in order to reduce the routing overhead.

In order to create, delete, or update a record in the registry, a peer generates an update request and
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Figure 3.4: Registry service built upon a gradient topology.

routes it to the closest super-peer using gradient search. The update is then gradually disseminated
to all super-peers using a probabilistic gossip protocol.

Every record in the registry is associated with a timestamp of the most recent update operation on
this record. The timestamps are issued by the records' owners. Super-peers periodically gossip with
each other and synchronise their registry replicas, as in [49]. Each super-peer periodically initiates
a replica synchronisation with a randomly chosen super-peer neighbour, and exchanges with this
neighbour all updates that it has received since the last time the two super-peers gossipped with each
other.

Super-peers do not need to maintain a membership list of all replicas in the system. Due to
the properties of the gradient topology, all super-peers are located within a connected component,
and hence, every super-peer eventually receives every update. Con�icts between concurrent updates
are resolved based on the update timestamps. Every record can be updated only by its owner, and
it is assumed that the owner is responsible for assigning consistent timestamps for its own update
operations.

Super-peers are elected using a load-based utility threshold. Each peer de�nes its capacity as the
maximum number of queries it can handle at one time. The load at a peer is de�ned as the number
of queries the peer is currently processing. The super-peer election threshold is calculated in such a
way that the super-peers have su�cient capacity to handle all queries issued in the system. When the
load in the system grows, new replicas are automatically created.

In order to reduce the probability of a super-peer departure or failure, peer utility is de�ned as
the expected peer session duration. Hence, super-peers are elected amongst the most stable peers in
the system. Furthermore, every peer, once elected a super-peer, never switches back to the role of a
client, and maintains a registry replica until it permanently leaves the system.
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Design and Algorithms

This chapter describes a set of algorithms that allow a P2P system to generate and maintain a gradient
topology, elect super-peers, and route messages from clients to super-peers. The chapter is organised
as follows. The �rst section gives a high-level overview of all algorithms. The second section describes
a number of peer utility metrics and shows how they can be computed by peers. The third section
presents neighbour selection algorithms that generate GTs and TGTs. The fourth section describes
aggregation algorithms that approximate global system properties. The �fth section covers super-peer
election strategies for gradient topologies. The sixth section describes peer ranking algorithms. The
seventh section addresses gradient search. Finally, the last section shows a bootstrapping mechanism
for peers joining the system. The algorithms are evaluated in the next chapter.

4.1 Overview

Figure 4.1 shows a general overview of the algorithms introduced in this chapter, with dependencies
between them indicated by arrows.

In a TGT, the neighbours of each peer are divided into three subsets: random, successors and tree,
and each of these subsets is managed by a di�erent neighbour selection algorithm. Random sets are
used by an aggregation algorithm that estimates global system properties, such as the system size and
peer utility distribution, and allows peers to calculate adaptive utility thresholds, which in turn are
the basis for super-peer election. Moreover, the estimation of global system properties, together with
successor sets, allows peers to estimate their ranks and generate tree sets. The topology structure
created by the tree sets is exploited by gradient search, which routes messages from clients to super-
peers. In addition, every peer has a black-box component that calculates peer's current utility. Since
almost all algorithms rely on this component, for clarity, it is not drawn in Figure 4.1.

The construction of a GT is similar. The main di�erence is that GTs do not require tree neighbour
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Figure 4.1: Overview on the main algorithms.

sets, and therefore, do not run the peer ranking algorithm.

4.2 Utility Metrics

The utility U(p) of peer p is a number that re�ects the appropriateness of peer p to act as a super-peer.
The higher the utility, the more suitable a peer is to become a super-peer.

Peer utility is application-speci�c, and can be de�ned by the higher-level application in an arbitrary
way. However, it can be expected that many P2P applications aim to elect super-peers that have the
best possible hardware parameters, such as CPU clock speed, amount of RAM, and storage space.
In such applications, peer utility can be de�ned as a function, such as a weighted sum or product, of
these hardware parameter. This approach has the advantage that the computation of peer utility is
simple and straight-forward. Each peer can obtain from the operating system, or measure directly,
the values of its relevant parameters and independently compute its utility.

More sophisticated utility metrics may involve feedback from neighbouring peers. In particular,
in untrusted environments, a decentralised approach to trust or reputation management [86, 138, 61]
may be adopted in order to prevent malicious peers from providing fake utility information. However,
trust-based approaches to utility computation are beyond the focus of this thesis.

4.2.1 Network Characteristics

Network characteristics, such as bandwidth, latency, and �rewall status, are more challenging to
estimate due to the decentralised and complex nature of wide-area networks. Moreover, many network
properties, including bandwidth and latency, are properties of pairs of peers, i.e., connections between
two peers, rather than individual peers.

Nevertheless, a peer can estimate the average latency and bandwidth of all its connections over
time and use the average value as a general indication of its network connectivity and overall utility for
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the system. Furthermore, it has been shown that the bottleneck bandwidth of a connection between
a peer and another machine on the Internet is often determined by the upstream bandwidth of the
peer's direct link to the Internet [97, 167]. Thus, available bandwidth can be treated as a property of
single peers.

The type and behaviour of the peer's �rewall or Network Address Translator (NAT) can be deter-
mined using the STUN protocol [161, 160].

4.2.2 Peer Stability

For many applications, peer stability is amongst the most important peer characteristics, since in
typical P2P systems the session times vary by orders of magnitude between peers, and only a relatively
small fraction of peers stay on-line for a long time, as discussed in section 1.2.

One way of measuring the peer stability is to estimate the expected peer session duration. Stutzbach
et al [181] show that the durations of consecutive peer sessions are highly correlated and the durations
of previous peer sessions are good estimates for the duration of the current peer session. A number
of sophisticated models, based on patterns in the history of peer sessions, have been proposed for
predicting the behaviour of peers [106, 121].

In some applications, peer availability, de�ned as the fraction of time a peer is on-line, may be
more adequate for expressing peer utility than the expected peer session length. As shown in a
number of analyses, peer availability can be estimated based on the history of previous peer sessions
[121, 172, 51, 18].

However, the information about previous peer sessions may not always be available, for example
when peers are joining the system for the �rst time. In these cases, the remaining peer session
duration, as well as the expected peer availability, can be estimated based on the peer's current
uptime. Stutzbach et al [181] show that the peer's uptime is on average a good indicator of the
remaining peer session time, although it exhibits high variance.

It can be shown that in systems where peer session times follow the power-law (i.e., Pareto dis-
tribution), the expected remaining session time of a peer is proportional to the current peer uptime.
Similar properties can be derived for other session time distributions, such as the Weibull and log-
normal distributions, which are often used in P2P system modelling.

Formally, if the peer session times in a system follow a Pareto distribution, the probability that
a peer session duration, X, is greater than some value x is given by P (X > x) = (m

x )k, where m is
the minimum session duration and k is a system constant such that k > 1. The expected peer session
duration is E(X) = µ = k·m

k−1 .
For peers with uptime of u, where u > m, session durations also follow a Pareto distribution, but

with the minimum value of u, i.e., the probability that a peer's session is greater than x is equal to
P (X > x) = (u

x )k. Hence, the expected session duration for peers with an uptime of u is k·u
k−1 . From
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this, the expected remaining session time is derived as k·u
k−1 − u = u

k−1 .

4.2.3 Composite Utility

Multiple peer properties, such as hardware parameters, network characteristics, peer stability and
availability, can be combined into one utility function. Given a set of M measurable peer properties,
ϕ1, ϕ2, . . . , ϕM , the simplest utility de�nition for a peer p is the product

U(p) = ϕ1(p) · ϕ2(p) · . . . · ϕm(p) (4.1)

where all properties have an equal impact on the overall peer utility. In order to assign individual
weights αi for each peer parameter ϕi, peer utility is de�ned as a weighted sum

U(p) = α1ϕ1(p) + α2ϕ2(p) + . . . + αmϕm(p). (4.2)

Naturally, any function of peer properties, depending on application-speci�c knowledge, can be used
to de�ne the peer utility metric.

4.2.4 Capacity and Load

Many P2P systems, such as SG-1, SG-2 and DLM, introduce the notion of peer capacity and load.
Peer capacity, C(p), usually refers to the total amount of resources, such as storage space, processing
power, and bandwidth, available at peer p, while peer load, L(p), usually represents the mount of
resources that are currently being used.

There are two general approaches to de�ning peer utility based on capacity and load. One approach
is to specify peer utility as a function of the peer's available capacity, i.e., C(p)−L(p). This, however,
has a signi�cant drawback that peer utility changes over time, as it depends on the peer's current
load. In particular, a peer decreases its utility when it is elected a super-peer and starts to receive
load, and a peer increases its utility when it falls below the super-peer election threshold and stops
receiving load. Such cyclic peer behaviour may destabilise the overlay and even prevent peers from
generating a gradient topology. Moreover, depending on the application, frequent switches between
ordinary peers and super-peers may introduce a signi�cant overhead.

A better approach is to de�ne the peer utility as a function of the total peer capacity, C(p), and
use the information about system load for the calculation of the super-peer election threshold. This
way, peer utility, and hence the system topology, remain stable, while the super-peer set grows and
shrinks as the total system load increases and decreases.

4.2.5 Dynamic Utility

If an external process consumes peer resources (i.e., storage space, processing power, bandwidth, etc.),
the utility of peers perceived by the P2P application may change over time. Such utility changes are
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1: GetUtility():
2: tnow ← current time
3: if tnow − t > tmax then
4: U ← measure peer utility
5: t← tnow

6: end if
7: return U

Figure 4.2: Lazy utility evaluation.

unpredictable from the P2P application's point of view, and hence, they force peers to occasionally
re-compute their utility. In the simplest case, a peer p may calculate its utility every time U(p) is
requested by an algorithm running at p. However, this may introduce a signi�cant overhead, especially
if the evaluation of U(p) requires measurements to be performed at peer p.

In order to reduce the overhead, a peer may cache the most recently calculated utility value, and
re-evaluate its utility only if the cached value is older than a prede�ned parameter tmax. Figure 4.2
shows the pseudo-code of such a lazy utility evaluation strategy. Another approach is to calculate
peer utility periodically.

Since peers are not able to measure or predict the utility of their neighbours, each peer p needs to
maintain a cache that contains the most recent utility value, Up(q), for each neighbour q. Every entry
Up(q) in the cache is associated with a timestamp created by q when the utility of q is calculated.
Neighbouring peers exchange and merge their caches every time their neighbour selection algorithms
exchange messages, preserving the most recent entries in the caches. Clocks do not need to be
synchronised between peers since all utility values for a peer q are timestamped by q.

Highly variable peer utility is generally not desired, as it may impede peers' ability to create and
maintain a gradient topology, and may cause frequent switches between super-peers and ordinary
peers. In order to reduce utility �uctuations, a peer may calculate a moving average of its latest
utility samples. Assuming a peer p periodically measures its utility and obtains utility samples

Sp,t, Sp,t−1, Sp,t−2, Sp,t−3, . . . (4.3)

the utility of peer p at time t can be de�ned as

Up,t(p) =
1
T

(Sp,t + Sp,t−1 + Sp,t−2 + · · ·+ Sp,t−T+1) (4.4)

where T is a system parameter. This strategy, called simple moving average (SMA), requires peers to
maintain a FIFO list with T most recent utility samples.

An alternative approach, called exponential moving average (EMA), does not require state to be
maintained at peers and can be combined with both periodic and on-demand utility sampling. When
a peer p obtains a new utility sample, Sp,t, it updates its current utility according to the following
formula

Up,t(p) = αSp,t + (1− α)Up,t−1(p) (4.5)
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where α is a constant weighing factor, 0 < α < 1. In an in�nite system run, the utility calculated
using EMA converges to a sum of all samples with exponentially decreasing weights

Up,t(p) = αSp,t + α(1− α)Sp,t−1 + α(1− α)2Sp,t−2 + α(1− α)3Sp,t−3 + . . . . (4.6)

4.2.6 Utility Monotonicity

Assuming peer utility changes over time, two important utility properties are monotonicity and pre-
dictability. When peer utility grows or decreases monotonically, peers can cross the super-peer elec-
tion threshold only once, assuming the threshold is constant. Moreover, if the utility changes are
predictable, a peer is able to accurately estimate its own utility and the utility of its neighbours at
any given time.

For example, if peer p de�nes its utility as the expected session duration, Ses(p), and estimates it
based on the history of its previous sessions, U(p) is constant during one session. When p is elected a
super-peer, it is not demoted to a client unless the super-peer election threshold increases above U(p).

If the utility of p is de�ned as p's current uptime, Up(p), the utility increases monotonically with
time. Again, when p is elected a super-peer, it is not demoted unless the election threshold changes
signi�cantly. Furthermore, the utility function is fully predictable. Any peer q, at any time t, can
compute the utility of p, given q has a knowledge of p's birth time, i.e., the time tp when peer p entered
the system, since

U(p) = t− tp. (4.7)

Clocks do not need to be synchronised between peers, and q can estimate the birth time of p using its
own clock. At time t, when q receives the current uptime Up(p) from p, it assumes that tp = t−Up(p).

If peer utility is de�ned as the expected remaining session time, i.e., U(p) = Ses(p)− Up(p), the
utility of a peer decreases monotonically over time. Peer q calculates the utility of p at time t as

U(p) = Ses(p)− (t− tp). (4.8)

Peer utility in this case may be negative, since Ses(p) is only the expected session length and may di�er
from the actual session length. Furthermore, as peer utility decreases monotonically over time, every
super-peer gradually drifts away from the gradient topology centre and may eventually be demoted.

4.2.7 Utility Uniqueness

Many algorithms described in this thesis assume that the utility value of each peer is unique, i.e.,
U(p) 6= U(q) for any peers p 6= q. This property may not hold for some utility de�nition, particularly
if peer utility is based on hardware parameters such as CPU clock speed, amount of RAM, etc.
If the utility function is signi�cantly coarse-grained, the ranking of peers based on utility and the
construction of a gradient topology may become impossible.
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Utility Metric Constant Monotonic Predictable

Total Capacity yes constant yes
Available Capacity no no no
Session Length yes constant yes
Remaining Session no decreasing yes
Uptime no increasing yes

Table 4.1: Utility metric properties.

In order to address this problem, each peer can add a relatively small random number to its utility
value to break the symmetry with other peers. Thus, the utility of p is de�ned as

Up(p) = U ′
p(p) + εp (4.9)

where U ′(p) is p's utility measured using one of methods described in sections 4.2.1 up to 4.2.6, and
ε is pseudo-random variable initialised when p joins the system.

Table 4.1 summarises the main properties of the utility metrics described in this section.

4.3 Neighbour Selection

In a P2P system, a peer p has a knowledge of and communicates with a limited number of peers,
i.e., its neighbours, denoted Np. The addition and removal of neighbours at peer p is controlled by
a neighbour selection algorithm. This section describes a number of neighbour selection algorithms
that generate gradient topologies.

4.3.1 Connection Model

There are two general approaches to modelling neighbourhood in P2P systems. In one approach, the
neighbourhood relation is asymmetric, i.e., if q ∈ Np for two peers p and q, it is not required that
p ∈ Nq. Thus, the system topology is a directed graph. This model is relatively straight-forward to
implement, as it only requires a peer to store contact addresses of each of its neighbour. However,
it also has the drawback that peers may store stale addresses of neighbours that have already left
the system. This is especially likely in the presence of heavy churn in the system. Such dangling
references are disseminated between peers unless an additional mechanism is imposed that eliminates
them from the system, such as timestamps used in the peer sampling service [78] and Newscast [80].
Moreover, in the asymmetric neighbourhood model, a peer has no knowledge about other peers that
decide to add it to their neighbourhood sets, and hence, cannot control its in-degree in the topology
structure.
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In the second approach, the neighbourhood relation between peers is symmetric. If p ∈ Nq, peers
p and q are connected, and it is required that q ∈ Np. It should be noticed, however, that the
symmetric model does not require any particular communication protocols. It only assumes that the
neighbouring peers are able to contact each other. For example, in systems where messages are small
and peers frequently change their neighbours (e.g., in gossip-based protocols), neighbouring peers may
simply store the addresses of each other and may communicate over UDP. In applications where large
amounts of data are exchanged between neighbouring peers and communication needs to be reliable,
neighbouring peers may establish TCP connections. A peer can also create and close TCP connections
using some algorithm, for example based on the Least Recently Used (LRU) strategy.

The main advantage of the symmetric connection model is that peers can notify each other when
changing their neighbourhoods or leaving the system, which helps to keep the neighbourhood sets up
to date. Furthermore, outdated neighbour entries are not propagated between peers in the system,
as each peer veri�es references received from other peers by contacting each new neighbour directly.
Symmetric peer connections also reduce the risk of peer overloading. When a peer receives too many
incoming connection requests, it may simply reject them. In the case of neighbours crashing, or
leaving without notice, broken connections can be detected either by the operating system (e.g., when
using the keep alive protocol for TCP connections) or through periodic polling of neighbours at the
application level. The main drawback of the symmetric connection model is that every time two peers
set up or close a connection, they need to exchange at least two messages.

In the remaining part of this thesis, it is assumed that peers maintain symmetric neighbour rela-
tions. Furthermore, it is assumed that any two peers are directly and mutually reachable. Firewall
bypassing, using techniques such as STUN [161, 160], TURN [159], and ICE [158], is not addressed in
this thesis.

4.3.2 Neighbour Subsets

The neighbours at each peer p are assigned into neighbour subsets. Each of these subsets is managed
by a di�erent neighbour selection algorithm, which adds and removes entries in it. A single neighbour
q may belong to multiple subsets at peer p.

The neighbour selection algorithms are periodic. As shown in �gure 4.3, peer p periodically invokes
an update() procedure on each neighbour subset, which performs a cycle (also called time step) of
a neighbour selection algorithm. If Np is empty, peer p invokes a bootstrap procedure described in
section 4.8.

Periodic neighbour selection algorithms generally perform better than reactive algorithms in heavy
churn conditions, as they have a �xed invocation frequency and usually a bound communication cost.
It has been observed that in systems with reactive neighbour exchange, peers generate bursts of
messages in response to local failures, which congest local connections and results in a chain-reaction
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1: loop
2: if Np is empty then
3: bootstrap
4: else
5: for each neighbour subset S do
6: update(S)
7: end for
8: end if
9: wait until next cycle
10: end loop

Figure 4.3: Neighbour selection framework.

from other peers that send more messages, potentially leading to a major overlay congestion and
failure [153].

4.3.3 Connection Maintenance

The neighbourhood Np at each peer p has a maximum size of N ∗
p . For each neighbour q ∈ Np,

peer p maintains an estimation Up(q) of q's utility, as described in section 4.2. Additionally, for each
neighbour q, peer p maintains an estimate Rp(q) of q's rank. Peer ranks are estimated using an
algorithm described in section 4.6, and are exchanged and timestamped by neighbouring peers in a
similar way as utility values.

Moreover, for each neighbour q ∈ Np, peer p maintains a variable, Refp(q), which counts the
number of p's neighbour subsets that q belongs to. These counter variables serve two purposes. First, a
neighbour q can be removed from Np by a neighbour selection algorithm only if Refp(q) = 0, i.e., when
q does not belong to any neighbour subset. By adhering to this rule, neighbour selection algorithms
running at peer p do not interfere with each other when adding and removing neighbours. Second, a
neighbour q can be removed from Np only if Refq(p) = 0, that is when the connection between p and
q is not used by the neighbour q. This way, peers achieve an agreement on which connections can be
closed, and do not remove connections initiated by neighbours. Connection thrashing is harmful, as
it increases the system overhead and may prevent peers from generating a desired topology.

When a neighbour selection algorithm at peer p decides to add peer q to a neighbour subset S, it
follows the add procedure shown in Figure 4.4. In this procedure, peer p �rst checks if q belongs to
the neighbourhood set Np (line 2). If q /∈ Np, peer p attempts to sends a connect request to q and
waits for a response (lines 4-5). If none of the two peers reached the maximum number of neighbours,
the peers agree to establish a connection and add their addresses to each other's neighbourhood sets
(lines 7-8). Finally, peer p increments the Refp(q) counter and adds q to S (lines 13-14).

In order to remove peer q from a neighbour subset S, peer p executes the remove procedure shown
in Figure 4.4. First, peer p decrements Refp(q) by one (line 17). If Refp(q) is equal to zero, peer p

concludes that q does not belong to any of its neighbour subset and hence is a candidate for removal
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1: Add(S, q):
2: if q /∈ Np then
3: if |Np| < N ∗

p then
4: send connect request to q
5: receive response from q
6: if |Nq| < N ∗

q then
7: Np ← Np ∪ {q}
8: Nq ← Nq ∪ {p}
9: end if
10: end if
11: end if
12: if q ∈ Np then
13: S ← S ∪ {q}
14: Refp(q)← Refp(q) + 1
15: end if

16: Remove(S, q):
17: Refp(q)← Refp(q)− 1
18: if Refp(q) = 0 then
19: send disconnect request to q
20: receive response from q
21: if Refq(p) = 0 then
22: Np ← Np \ {q}
23: Nq ← Nq \ {p}
24: end if
25: end if

26: Leave():
27: for all neighbour q in Np do
28: send disconnect message to q
29: Nq ← Nq \ {p}
30: for each neighbour subset S at q do
31: S ← S \ {p}
32: end for
33: end for

34: Verify():
35: for all neighbours q ∈ Np do
36: request Refq(p) from q
37: if q is unresponsive then
38: Np ← Np \ {q}
39: for each neighbour subset S at q do
40: S ← S \ {p}
41: end for
42: else
43: if p /∈ Nq then
44: if Refp(q) = 0 then
45: Np ← Np \ {q}
46: else
47: Nq ← Nq ∪ {p}
48: end if
49: else if Refp(q) = Refq(p) = 0 then
50: Np ← Np \ {q}
51: Nq ← Nq \ {p}
52: end if
53: end if
54: end for

Figure 4.4: Neighbour connect, disconnect, leave and verify procedures.

(line 18). To that end, peer p sends a disconnect request to peer q (lines 19-20). If Refq(p) = 0, peer
q agrees to close the connection (line 21), and both peers remove each other from their neighbourhood
sets (lines 22-23). Otherwise, peer p preserves neighbour q in Np.

Thus, two peers need to exchange two messages with each other in order to connect or disconnect.

When peer p is leaving the system, it performs the leave procedure shown in Figure 4.4. In this
procedure, it sends a disconnect message and unilaterally closes the connection to each neighbour q

in Np, without waiting for a reply (lines 27-28). A neighbour q, when receiving a disconnect message
from p, removes p from from its neighbourhood set Nq (line 29) and from all its neighbour subsets
(lines 30-32). The purpose of the leave procedure is to help peers keep their neighbourhood sets
up-to-date.

However, in an open P2P system, it cannot be assumed that all peers perform a leave procedure. A
fraction of peers may silently crash, become unreachable, or leave without notifying their neighbours.
Furthermore, due to message loss, the neighbourhood sets maintained at neighbouring peers may
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1: Update(Sp):
2: if Sp is empty then
3: r ← random peer in Np

4: add(Sp, r)
5: end if
6: if |Sp| ≥ S∗p then
7: r ← random peer in Sp

8: remove(Sp, r)
9: remove(Sr, p)
10: end if

11: if |Sp| < S∗p then
12: r ← random peer in Sp

13: obtain random set Sr from r
14: S′r ← Sr \ Sp

15: q ← random peer in S′r
16: add(Sp, q)
17: add(Sq, p)
18: end if

Figure 4.5: Random set management algorithm.

become inconsistent. In particular, it may happen that p ∈ Nq, but q /∈ Np for two peers p and q.
In order to remove stale entries from the neighbourhood set and resolve discrepancies with neigh-

bours, each peer p periodically runs a neighbour veri�cation algorithm shown in Figure 4.4. In this
algorithm, peer p attempts to contact each neighbour q ∈ Np (lines 35-36). If peer q is unreachable
(line 37), peer p removes q from Np (line 38) and all its neighbour subsets (lines 39-41). If q is re-
sponsive, but p /∈ Nq (line 43), the discrepancy between peers is resolved based on Refp(q) (line 44).
If Refp(q) = 0, none of the peers are interested in maintaining the connection, and hence it is closed
(lines 45). If Refp(q) > 0, peer q adds p to Nq in order to remove the inconsistency between the two
peers (lines 46-47). Finally, in the case where Refp(q) = Refq(p) = 0 (line 49), the peers remove the
connection between them (lines 50-51).

Furthermore, a neighbour is removed from Np if a communication failure occurs when contacting
this neighbour, for example, if no acknowledgement has been received within a certain period, or a
certain number of message re-transmissions have failed, depending on the low-level communication
protocol.

4.3.4 Random Set

A random neighbour subset contains a close-to-uniformly-random sample of all peers in the system.
The main purpose of this set is to supply the aggregation algorithm with candidates for gossipping.
As they are relatively easy to maintain and bootstrap, they can also be used by peers that have just
joined the system for routing messages to higher utility neighbours, and as a simple means of system
exploration. Furthermore, random sets practically prevent overlay partitioning, as the probability of
a random graph partitioning is extremely low.

The neighbour selection algorithm that maintains a random set Sp at peer p is shown in Figure
4.5. The algorithm aims to keep approximately S∗p entries in Sp. If the set is empty, it is initialised
with a random neighbour from Np (lines 2-5). If the size of Sp is equal to or higher than S∗p (line 6),
peer p removes a random peer, r, from Sp (line 7-8), and in order to maintain the symmetry, peer r

removes p from its random set Sr (line 9). Finally, if the size of Sp is below S∗p (line 11), peer p selects
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a random neighbour, r, from Sp (line 12) and obtains r's random set, Sr (line 13). Peer p then selects
a random entry, q, from Sr, such that q /∈ Sp (lines 14-15), and both peers p and q add each other to
their random sets (lines 16-17).

By removing excessive neighbours (i.e., when |Sp| > S∗p) and adding new neighbours when |Sp| <
S∗p , the algorithm strives to maintain S∗p neighbours in the random set. Moreover, as all entries
inserted and removed from the set are selected at random, the algorithm generates pseudo-random
samples of peers in the system.

The algorithm initiates at most one neighbour exchange with another peer per time step. Hence,
on average, a peer participates in less than two neighbour exchanges per time step. In every exchange,
a peer connects to at most one new neighbour. Hence, on average, a peer connects to less than two
other peers per time step, and disconnects less than two neighbours per time step. Each of these
operations, connecting, disconnecting, and exchanging neighbours, requires sending one message by
the peer. Thus, the average cost of the neighbour selection algorithm can be bounded by 6 messages
per time step.

A number of other gossip-based algorithms for the generation of pseudo-random topologies are
known, including Cyclone [190], Newscast [80], and other approaches described in [78]. The main
di�erence between these algorithms and the algorithm shown in Figure 4.5 is the connection model.
The algorithm described in this thesis is based on a symmetric neighbourhood model, while all the
other mentioned algorithms assume an asymmetric model.

RanSub [91] is another system that generates uniformly random neighbourhood sets. However, it
is not based on randomised gossipping, but instead constructs a global overlay tree. For this reason,
RanSub is less robust to churn and random failures compared to gossip-based approaches.

The algorithm presented here belongs to the 〈rand, pull, rand〉 class from the the taxonomy
proposed in [78]. However, it does not converge to a star topology, as expected in [78], due to the
symmetric neighbourhood model, which allows peers to eliminate excessive connections from other
peers.

4.3.5 Preference-Based Set

In order to generate a topology that is more sophisticated than a random graph, peers must be able
to select their neighbours according to individual criteria. In the preference-based neighbour selection
algorithm, each peer p de�nes a preference function, which allows p to order any set of peers, S,
from the most preferred neighbour, max(S), to the least preferred neighbour, min(S). The ordering
is achieved by comparing pairs of peers using a preference operator >

p
. If q >

p
r for two peers q and r,

then p prefers q over r as its neighbour.
Figure 4.6 shows the pseudo-code of the preference-based neighbour selection algorithm. The

algorithm is divided into two parts, which correspond to the left-hand side and right-hand side of
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1: Update(Sp):
2: loop
3: if Np = Sp then
4: exit loop
5: end if
6: m← max(Np \ Sp)
7: if |Sp| < S∗p then
8: add(Sp,m)
9: else
10: n← min(Sp)
11: if m >

p
n then

12: remove(Sp, n)
13: add(Sp,m)
14: else
15: exit loop
16: end if
17: end if
18: end loop

19: q ← random peer in Sp

20: obtain Nq from q
21: if Nq * Np then
22: N ′

q ← Nq \ Np

23: m← max(N ′
q)

24: if |Sp| < S∗p then
25: add(Sp,m)
26: else
27: n← min(Sp)
28: if m >

p
n then

29: remove(Sp, n)
30: add(Sp, m)
31: end if
32: end if
33: end if

Figure 4.6: Preference-based neighbour selection algorithm.

Figure 4.6. In the �rst part, peer p updates its set Sp based on entries available in Np. This part of
the algorithm does not require any communication with other peers, as it operates on peers that are
already connected to p and belong to Np. These steps are necessary, as the neighbourhood Np may
have changed between the algorithm cycles due to churn, actions taken by other peers, and actions
taken by other neighbour selection algorithms running at peer p. Furthermore, the preference function
of peer p may have changed since the last algorithm cycle, for example due to the peer utility change.

If Sp = Np, nothing can be improved in Sp and the set update is �nished (lines 3-5). Otherwise,
peer p selects the most preferred neighbour, m, in Np that does not belong to Sp (line 6). If the size
of Sp is below S∗p , peer p adds m to Sp (lines 7-8). If the size of Sp has already reached S∗p , peer p

selects the least preferred neighbour, n, in Sp (line 10) and compares it with m (line 11). If m >
p

n,
m and n are swapped in Sp (lines 12-13). If m ≯

p
n, Sp cannot be improved with entries in Np and

the algorithm continues in line 19.

In the second part of the algorithm (lines 19-31), peer p attempts to obtain a new neighbour
through gossipping with one of its current neighbours, as in the T-Man topology generator framework
[77]. First, it chooses a gossip partner, q, that belongs to Np (line 19). In the simplest case, q is
selected randomly from Sp. Alternatively, q may be selected from Sp using a round-robin strategy. In
principle, the choice of the gossip partner, q, enables a trade-o� between the exploration of random
connections in Np and greedy exploitation of the knowledge about neighbours in Np. In some systems,
the selection of q = max(Np) results in the fastest topology convergence to an optimal con�guration,
but randomised approaches are more robust in the general case.

When q has been chosen, peer p sends a gossip request to q and obtains the set of q's neighbours,
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Nq (line 20). From this set, peer p selects the most preferred neighbour, m, that does not belong to
Np (lines 22-23). If such a peer exists, and the size of Sp is below S∗p , peer p adds m to Sp (lines
24-25). If Sp has reached the maximum size, peer p selects the least desired neighbour, n, in Sp (lines
26-27) and compares it with m. If m >

p
n, peer p removes n from Sp and replaces it with m.

In the presence of churn and communication failures, if either a request or response message is lost,
a neighbour exchange fails. Thus, churn and message loss reduce the convergence speed of the system
topology to the desired con�guration, but do not introduce any side-e�ects such as a bias towards a
particular non-desired topology.

The performance of the algorithm can be further improved by introducing �age bias� [79]. With
this technique, a peer p does not initiate gossip exchange with low-uptime neighbours, because such
neighbours have not had enough time to optimise their neighbourhood sets according to the preference
function, and therefore are not likely to provide good neighbours for p.

As in the random set, on average, a peer gossips with two other peers per time step, connects
at most two new neighbours, and disconnects at most two neighbours. The number of neighbours
changed in the set per time step depends on the stability of the topology. A peer generally swap its
neighbours more frequently upon joining the system, and less frequently when it has already found its
optimal position in the topology. Neighbours are also more often swapped when the utility of peers
changes dynamically. In all cases, the average number of messages sent by a peer per time step is
between two and six.

4.3.5.1 Successor Set

A simple gradient topology can be constructed using utility successor sets. In these sets, peers aim
to connect with neighbours that have higher but similar utility. Formally, a peer p prefers q over r for
its successor set (q >

p
r) if and only if

Up(q) > Up(p) and Up(r) < Up(p) (4.10)

or

|Up(q)− Up(p)| < |Up(r)− Up(p)| (4.11)

for Up(q), Up(r) > Up(p) and Up(q), Up(r) < Up(p).

The advantage of the above preference function is that it does not require any knowledge of peer
ranks and can be easily evaluated by every peer in the system. Gradient topologies generated using
this preference function have been studied in [164, 163]. In principle, they do not guarantee the
O(log N) gradient search cost and provide inferior support for message routing compared with TGTs.
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4.3.5.2 Predecessor Set

Similar to successor sets, utility predecessor sets are generated by a preference function where q >
p

r

if and only if

Up(q) < Up(p) and Up(r) > Up(p) (4.12)

or

|Up(q)− Up(p)| < |Up(r)− Up(p)| (4.13)

for Up(q), Up(r) > Up(p) and Up(q), Up(r) < Up(p).

Predecessor sets, when used together with successor sets, improve the topology convergence to a
con�guration where every peer is connected to the most similar peers in terms of utility [164, 163].
Again, such gradient topologies are outperformed by TGTs.

4.3.5.3 Tree Set

In order to generate a tree-based gradient topology, as de�ned in section 3.1, peers maintain tree sets.
In these sets, each peer p aims to connect with neighbours that have ranks as close as possible to
bRp(p)

B c, where B is the topology branching factor and Rp(p) is p's current estimation of its own rank.

Tree sets are generated by a preference function where q >
p

r for peers p, q and r if and only if

∣∣∣∣Rp(q)− Rp(p)
B

∣∣∣∣ <

∣∣∣∣Rp(r)− Rp(p)
B

∣∣∣∣ . (4.14)

In the simplest case, the size of the set is de�ned as S∗p = 1, which produces a TGT where each
peer has one parent. In order to improve the fault tolerance of the overlay, S∗p is increased, so that
each peer has more than one parent. However, this signi�cantly increases the number of connections
at high-utility peers, since in a TGT with N peers, where S∗p = M for each peer p, a peer with utility
above N

B has on average (B + 1) ·M neighbours.

4.4 Aggregation

The aggregation algorithm, described in this section, allows peers to compute and periodically update
approximations of global system properties, such as the minimum, maximum, and mean of peer utility,
system size, and others. The approximations of these properties are used in turn for the calculation
of peer ranks and super-peer election thresholds. The aggregation algorithm requires that a peer is
able to obtain a close-to-random sample of all peers in the system. Such samples can be generated
based on random neighbour subsets, described in 4.3.4, as well as the Newscast [80] and Cyclon [190]
protocols.

97



4.4. Aggregation

1: loop
2: q ← random peer
3: send Tp to q
4: receive Tq from q
5: Tp ← merge(Tp, Tq)
6: wait until next cycle
7: end loop

(a) Active thread

1: loop
2: receive Tq from any peer q
3: send Tp to q
4: Tp ← merge(Tp, Tq)
5: end loop

(b) Passive thread

Figure 4.7: Aggregation algorithm skeleton.

4.4.1 Framework

The aggregation algorithm is based on periodic gossipping. Each peer p maintains estimates (also
called aggregates) Xp,0, Xp,1, . . .Xp,n−1 of n global system properties. The true values of these
properties are denoted X0, X1, . . .Xn−1. Additionally, each peer stores a set Tp that contains the
currently executing aggregation instances and auxiliary data. The aggregation algorithm can be seen
as a meta-algorithm, since the selection of the system properties X0, X1, . . .Xn−1 can be tailored to
application-speci�c requirements.

Each peer runs an active and a passive thread. The active thread periodically initiates a gossip
exchange and the passive thread responds to all gossip requests received from neighbours. Thus, on
average, a peer sends and receives two aggregation messages per time step, i.e., protocol cycle. When
initiating a gossip exchange, peer p randomly selects a neighbour q from its random neighbourhood
set, and sends Tp to q. Peer q responds immediately by sending Tq to p. Upon receiving their sets, both
peers merge them using a merge() operation described later. The general structure of the algorithm,
shown in �gure 4.7, is based on Jelasity's push-pull epidemic aggregation [81, 125].

The aggregation algorithm can be intuitively explained using the concept of aggregation instances.
An aggregation instance is a computation that generates new approximations of the system properties
X0, X1, . . .Xn−1 at all peers in the overlay. Aggregation instances may overlap in time and each
instance is associated with a unique identi�er id. Potentially any peer can start a new aggregation
instance by generating a new id and creating a new entry in Tp. As the new entry is propagated
throughout the system, other peers join the instance by creating corresponding entries with the same
id. Thus, each entry stored by a peer corresponds to one aggregation instance that this peer is
participating in. Every instance has a �nite time-to-live, and when an instance ends, all entries
corresponding to this instance are removed and all peers obtain new approximations of X0, X1,
. . .Xn−1.

Formally, each entry, Tp, in Tp of peer p is a tuple consisting of n + 2 values,

(id, ttl, x0, x1, . . . xn−1) (4.15)
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where id is the unique aggregation instance identi�er, ttl is the time-to-live for the instance, and x0,
x1, . . .xn−1 are variables that contain the current estimations of X0, X1, . . .Xn−1.

A peer p starts a new aggregation instance by creating a local tuple

(id, TTL, init0(p), init1(p), . . . initn−1(p)) (4.16)

where id is chosen randomly, TTL is a system constant, and init0(p), init1(p), . . . initn−1(p) are initial
estimations of system properties X0, X1, . . .Xn−1 by p, as explained later.

As the initial tuple is disseminated by gossipping, peers join the new aggregation instance. It can
be shown that in push-pull epidemic protocols, the dissemination speed is super-exponential, and with
a very high probability, every peer in the system joins an aggregation instance in just a few time steps
[80, 81].

The tuple merge procedure, merge(Tp, Tq), consists of the following steps. First, for each individual
tuple Tq = (id, ttl, x0, x1, . . . xn−1) ∈ Tq received by p from q, peer p checks if its local set Tp contains
a tuple that is identi�ed by id. If such a tuple is not found, and ttl ≥ TTL

2 , peer p creates a new tuple

(id, ttl, join0(p), join1(p), . . . joinn−1(p)) (4.17)

and adds it to Tp. Values join0(p), join1(p), . . . joinn−1(p) depend on the approximated system prop-
erties X0, X1, . . .Xn−1 and are covered later.

By creating a local tuple, peer p joins a new aggregation instance id and introduces its own input
to the approximation of X0, X1, . . .Xn. However, if ttl < TTL

2 , peer p should not join the aggregation,
as there is not enough time before the end of the aggregation instance to disseminate the information
about p and to calculate accurate aggregates. This usually happens if p has just joined the P2P system
and received an aggregation message that belongs to an already running aggregation instance. In this
case, the update operation is aborted by p.

In the next step, for each tuple Tq = (id, ttlq, x0, x1, . . . , xn) ∈ Tq received from q, peer p replaces
its own tuple, Tp = (id, ttlp, y0, y1, . . . , yn), with

(id,
ttlp + ttlq − 1

2
, merge(x0, y0), merge(x1, y1), . . . merge(xn, yn)) (4.18)

where again, functions merge0(), merge1(), . . .mergen−1() are speci�c to the approximated system
properties. By merging its local tuples with the tuples received from q, peer p contributes to the
calculation of the aggregation result.

Finally, for each tuple Tp = (id, ttl, x0, x1, . . . xn) in Tp such that ttl ≤ 0, peer p removes Tp from
Tp and updates its current estimates of the system properties by setting Xp,i = update(xi).

4.4.2 Aggregates

The de�nitions of initi(), joini(), mergei() and updatei(), for 0 ≤ i < n, depend on the approximated
system properties X0, X1, . . .Xn. For example, in order to approximate the average peer utility in
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Approximation of the average through aggregation.

the system, Xi, initi(p) and joini(p) are de�ned as U(p) for every peer p, mergei(x, y) is de�ned as
x+y

2 , and updatei(x) is simply x. It can be shown that the values Xp,i generated by the aggregation
algorithm at each peer p approximate the the true utility average Xi with the average error and
variance decreasing exponentially over time [82, 125, 81].

Figure 4.8 shows graphically a simple scenario where 6 peers estimate the average of their utility.
The initial con�guration is shown in picture (a). The peer in the top left corner initiates a new
aggregation instance. As peers exchange tuples with each other, they gradually join the aggregation
instance and update their estimations of the average (b-e). The variance between peers' estimates
decreases over time. After 5 time steps, peers terminate the aggregation instance (f).

The estimation of the total number of peers in the system is based on the calculation of the
average. The peer that starts the aggregation instance creates a tuple containing initi(p) = 1. The
remaining peers join the aggregation instance by adding tuples with joini(p) = 0. Tuples are merged
as in the calculation of the average. The values obtained at the end of the aggregation approximate
the reciprocal of the system size, and hence, updatei(x) = 1

x . Moreover, given the number of peers in
the system, N , and the average peer utility, Avg, the sum of all peers' utility values is calculated as
Avg ·N .

Figure 4.9 shows a sample aggregation execution where 6 peers estimate the system size N . Initially,
one peer holds a value of one and the remaining peers are initialised with zeros (a). Over a few random
gossip exchanges, peers average out their values and obtain close approximations of 1

N (b-e). After
six time steps, four peers estimate the system size as ( 5

32 )−1 = 6.4, and two peers estimate the system
size as ( 3

16 )−1 = 5.33 (f).
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Approximation of the system size through aggregation.

Despite an extreme skew in the initial value distribution (1 for the peer that starts the instance and
0 for all other peers), the algorithm e�ciently approximates the system size. This can be intuitively
explained in the following way. At the beginning of an instance, very few peers hold non-zero values.
When a non-zero holding peer performs a random gossip, with a very high probability, it passes half
of its value to a zero-holding peer. Hence, the value held by the peer decreases at an exponential
rate. At the same time, the number of peers participating in the instance grows exponentially, as in
a push-pull epidemic. When only few non-participating peers are left, they join the instance within
just few time steps.

It can be shown that the gossip exchange operations do not change the sums of values held by
peers. Thus, the sum of all values is always equal to one, as in the initial con�guration. Moreover, each
time two peers perform an exchange, they can only reduce (or leave unchanged) the global variance.
Intuitively, extreme values (either high or low compared to the mean 1

N ) have higher probability of
being averaged out in a random exchange, since the expected peer value is equal to the mean 1

N . Over
time, the global variance converges to zero and the values held by peers converge to the mean 1

N . A
theoretical proof of this behaviour, as well as an experimental evaluation, are described in full detail
in [82, 125, 81].

In order to estimate the minimum and maximum peer utility in the system, the initi() and joini()

functions are de�ned as U(p) for each peer p, mergei(x, y) is de�ned as min(x, y) and max(x, y),
respectively, and updatei(x) is de�ned as x. This way, the true system minimum (or maximum,
respectively) is broadcast between peers in the system using a push-pull epidemic and the convergence
speed is exponential [82].
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Property init(p) join(p) merge(x, y) update(x)

Maximum U(p) U(p) max(x, y) Maxp ← x

Minimum U(p) U(p) min(x, y) Minp ← x

Mean U(p) U(p) x + y

2
Avgp ← x

Mean
Square U(p)2 U(p)2 x + y

2
Sp ← x

Variance � � � Sp −Avg2
p

Count 1 0 x + y

2
Np ← 1

x

Sum � � � Avgp ·Np

Fraction
{

1 if cond(p)
0 if not cond(p)

{
1 if cond(p)
0 if not cond(p)

x + y

2
Fp ← x

Conditional
Count � � � Np · Fp

Conditional
Sum

{
U(p) if cond(p)
0 if not cond(p)

{
U(p) if cond(p)
0 if not cond(p)

x + y

2
x ·Np

Conditional
Average

{
U(p) if cond(p)
0 if not cond(p)

{
U(p) if cond(p)
0 if not cond(p)

x + y

2
x · Fp

Table 4.2: Aggregation settings.

The aggregation algorithm can also be used to estimate the fraction of peers in the system that
satisfy a certain condition cond. To that end, initi() and joini() are set to one for peers that satisfy
the condition cond and zero for peers that do not satisfy cond. Merge and update are de�ned as in
the average utility calculation.

Given the fraction Q of peers that satisfy cond, and the system size N , the number of peers
that satisfy cond can be calculated as Q · N . Similar approaches allow the approximation of the
average utility of peers that satisfy a given condition, and the sum of utility values for peers that
satisfy a condition. Table 4.2 lists the de�nitions of initi(), joini(), mergei() and updatei() for the
approximation of a number of di�erent system properties.
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4.4.3 Histograms

In order to construct a tree-based gradient topology and elect super-peers using thresholds as described
in section 3.1.1, peers need to have a knowledge of the current number of peers in the system, N , the
total load in the system, L, and most importantly, the distribution of of peer utility, D, and capacity,
Dc.

It is straight-forward to approximate the system size and load using the aggregation algorithm
described in the previous section. However, D and Dc are functions rather than scalars and cannot
be directly approximated through aggregation. Instead, they are interpolated using histograms, which
divide the peer utility spectrum into �xed intervals and approximate D and Dc in a �nite number of
points.

A cumulative peer utility histogram, H, is de�ned as an array consisting of b elements, called
bins, where the i'th element, H(i), is equal to the number of peers in the system with utility above
min + i · λ

H(i) =
∣∣∣{p : U(p) ≥ min + i · λ}

∣∣∣ (4.19)

where λ is a parameter called bin width, de�ned as max−min
b−1 , and min and max are two variables

that determine the range of the histogram. The number of bins, b, is also called histogram resolution,
b > 1. A utility histogram, H, is a discrete version of the utility distribution function, D, with b points
positioned between min and max, since H(i) = D(min + i · λ) for each i ∈ N such that 0 ≤ i < b.

Similarly, a cumulative peer capacity histogram, Hc, is de�ned as a an array consisting of b

elements, where the i'th element, Hc(i), is equal to the total capacity of peers with utility above
min + i · λ

Hc(i) =
∑

U(p)≥i·λ
C(p) (4.20)

with the de�nitions of min, max, and λ as above for utility histograms. A capacity histogram is a
discrete version of the capacity distribution function, as Hc(i) = Dc(min + i · λ) for i ∈ N such that
0 ≤ i < b.

Utility and capacity histograms can be generated using aggregation. According to the classi�cation
in Table 4.2, each bin H(i) in a utility histogram is conditional count, and each bin Hc(i) in a capacity
histogram is a conditional sum, with the condition cond in both histograms de�ned as U(p) ≥ min+i·λ.

4.4.4 Histogram Interpolation

A utility histogram produced by the aggregation algorithm approximates the utility distribution func-
tion, D, in a limited number of points. In order to obtain the value of D(u) for any utility u, a peer
interpolates its utility histogram, H, and generates an approximation of D, denoted DH .

When using linear interpolation, DH(u) is calculated as follows. For u < min, the interpolant
is outside of the histogram range, and DH(u) is de�ned as H(0). Similarly, for u > min, DH(u) is
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Figure 4.10: Histogram interpolation.

set to H(b − 1). For min < u < max, value DH(u) is approximated based on two histogram bins,
H(i) and H(i + 1), where i = bu−min

λ c. The interpolant u must lie between u′ = min + iλ and
u′′ = min + (i + 1)λ, as shown in Figure 4.10, where the values of D(u′) and D(u′′) are known and
are equal to H(i) and H(i + 1). Using linear interpolation,

DH(u) = D(u′′) + (D(u′)−D(u′′))
u′′ − u

u′′ − u′
= H(i + 1) + (H(i)−H(i + 1))

min + λ(i + 1)− u

λ
.

Naturally, any other interpolation methods can be used by peers to approximate D(u), such as poly-
nomial and spline interpolation.

Interpolation techniques can also be used by peers to estimate utility thresholds, t, such that
D(t) = K for some variable K. If the inverse function for D exists, t = D−1(K). A peer calculates
tH , which approximates t, based on a utility histogram H.

For K > H(0), tH is set to min, and similarly, for K < H(b − 1), tH is set to max. For
H(0) ≥ K ≥ H(b−1), there must be histogram bins H(i) and H(i+1) such that H(i) ≥ K > H(i+1).
The two histogram bins are correspond to the values of D for u′ = min+ iλ and u′′ = min+λ(i+1).
Using a linear interpolation,

tH = u′ + (u′′ − u′)
D(u′)−K

D(u′)−D(u′′)
= min + iλ + λ

H(i)−K

H(i)−H(i + 1)
.

Similar approach can be applied by peers to approximate the values of the capacity distribution
function, Dc, based on capacity histograms, Hc.

4.4.5 Algorithm

This section describes a full version of the aggregation algorithm that approximates all system prop-
erties needed for the super-peer election. Each tuple Tp in Tp at peer p consists of 10 values

(id, ttl, w, l, min, max, h, hc, hn, hx) (4.21)
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where id is the unique instance identi�er, ttl is the time-to-live value, w is called the weight of the
tuple and is used to estimate the system size, l is the current estimation of the system load, min and
max are the current estimations of the minimum and maximum peer utility, h and hc are two b-bin
arrays used in the estimation of H and Hc, and hn and hx are the histogram range parameters used
in this aggregation instance.

A peer joining the system obtains the current estimations of the system properties from one of its
initial neighbours. At each time step, peer p starts a new aggregation instance with probability Ps by
creating a tuple

(id, TTL, 1, L(p), U(p), U(p), Ip, Ic
p, Minp, Maxp) (4.22)

where Minp and Maxp are the current estimations at peer p of the minimum and maximum peer
utility in the system, Ip is an initial utility histogram created by p such that

Ip(i) =





0 if U(p) < hn + i · λ

1 if U(p) ≥ hn + i · λ
(4.23)

and Ic
p is an initial capacity histogram where

Ic
p(i) =





0 if U(p) < hn + i · λ

C(p) if U(p) ≥ hn + i · λ
(4.24)

for 0 ≤ i < b. The bin width λ is de�ned as hn−hx
b−1 , and b is a constant system parameter determining

the histogram resolution, b > 1. Probability Ps is calculated as 1
Np·F , where Np is the current

estimation of N at peer p, and F is a system constant that regulates the frequency of peers' starting
aggregation instances. In a stable state, with a steady number of peers in the system, a new aggregation
instance is created on average with frequency 1

F .

A peer joins an aggregation instance by creating a tuple

(id, ttl, 0, L(p), U(p), U(p), Ip, Ic
p, hn, hx) (4.25)

where ttl, hn and hx are obtained from the tuple received from the neighbour that invited p to join
this aggregation instance.

When a tuple (id, ttlp, wp, lp, minp, maxp, hp, hc
p, hnp, hxp) is merged with tuple (id, ttlq, wq,

lq, minq, maxq, lq, hq, hc
q, hnq, hxq), it is replaced with

(id,
ttlp + ttlq

2
− 1,

wp + wq

2
,

lp + lq
2

, minpq, maxpq,
hp + hq

2
,

hc
p + hc

q

2
, hnp, hxp) (4.26)

where minpq = min(minp,minq), maxpq = max(maxp,maxq), and all arithmetics on histograms hp

and hq are performed pair-wise on each bin.
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Finally, when an aggregation instance ends, a peer p updates its estimates of the system properties
by setting Np = 1

wp
, Lp = lp, Minp = minp, Maxp = maxp, and for each i ∈ N such that 0 ≤ i < b

Hp(i) =
hp(i)
wp

(4.27)

and
Hc

p(i) =
hc

p(i)
wp

. (4.28)

4.4.6 Handling Churn

In a stable population of peers, with no message loss, the aggregation algorithm has the following
invariant. For each aggregation instance id, the weights of all tuples in the system associated with
id sum up to 1. Moreover, the average of l, minimum of min, and maximum of max �elds in all
tuples associated with an aggregation instance are equal to the average load, minimum utility, and
maximum utility, respectively, amongst all peers that participate in the instance. It can be shown
that the aggregates converge over time to the true values of system properties [82, 125, 81].

In the presence of churn, the results produced by the aggregation algorithm may diverge from the
true system properties, since the system is changing while the aggregation is running. However, the
approximation error depends on the type of the aggregated system property. When estimating an
average, such as the average peer utility, the expected value introduced by a joining peer, as well as
the expected value removed from the system by a leaving peer, is equal to the overall system average.
Hence, the expected value produced by aggregation is equal to the true average, and there is no bias
towards higher or lower values. Churn increases the variance of the aggregated results, but does not
change their expected value.

This property does not hold when estimating peer counts and sums, both conditional and uncon-
ditional, and histograms. This can be shown by the following analysis. A single run of an aggregation
instance can be divided into two halves. In the �rst half, when the instance time-to-live is above TTL

2 ,
peers can join the instance as well as leave the instance by departing from the P2P system. In the
second half, peers can only leave and are not allowed to join.

Leaving peers always have non-negative weights, which they remove from the system. At the same
time, joining peers initialise their weights to zero and hence do not increase the instance weight. These
two facts cause the phenomenon of the aggregation weight loss. In the presence of churn, the longer
an aggregation instance runs, the lower the weight of this instance.

Since the system size is approximated by the reciprocal of the tuple weight, peers tend to over-
estimate N due to the aggregation weight loss. Similarly, sums and histograms generated by the
aggregation algorithm have a bias towards higher values.

In order to improve the accuracy of aggregation results in systems with churn, peers departing
from the system, if they do not crash, perform a leave procedure, where they send all currently stored
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tuples with time-to-live values above TTL
2 to randomly chosen neighbours. The receiving neighbours

add the weight of each received tuple to their corresponding tuples, joining aggregation instances
when necessary. This way, peers prevent the aggregation weight loss and help to preserve the weight
invariant.

Peers do not perform the leave procedure for tuples with time-to-live values below TTL
2 for two

reasons. First, extra weight passed between peers shortly before the end of an aggregation instance
may distort the aggregation results. Second, in the second half of an aggregation instance, no peers
are allowed to join, and the total instance weight must be reduced when peers are leaving the system
in order to obtain correct weight at each peer at the end of the aggregation instance.

4.4.7 Message Loss

In the presence of communication failures, similar to churn, aggregation may produce inaccurate
estimations of system properties. When an aggregation request fails, a peer simply does not perform
an gossip exchange with a selected neighbour and does not update its tuples. Hence, request loss
decreases the convergence speed of aggregates towards the true system properties, but does not produce
any bias in the generated results.

When a response message is lost, the requestee updates its tuples, as if an exchange took place,
while the requester dismisses the exchange assuming a communication failure. Thus, the algorithm's
invariants, such as mass conservation, are violated and the results produced by aggregation become
inaccurate. Moreover, a systematic bias may appear, similar to the weight loss e�ect in the presence
of churn.

However, in many P2P systems, it can be expected that response messages are signi�cantly less
likely to fail compared with request messages. A request message is lost when a peer attempts to
send it to a neighbour that no longer exists in the system. In dynamic systems, peers are always
likely to have such outdated entries in their neighbourhood sets due to churn, communication latency,
and failures. At the same time, response messages are only sent to peers that have just issued an
aggregation request, and hence are likely to be on-line. Furthermore, with some probability, request
messages are blocked by �rewalls and NATs installed between peers. However, a response message is
less likely to be blocked by a �rewall, since it is only sent when two peers have already transmitted
a request, and hence there is no �rewall between the peers, or the �rewall permits a communication
between them.

Since push-pull aggregation algorithms can handle request message loss, it is argued that they
are more applicable to P2P systems than push-based algorithms, such as those proposed by Kempe
et al. [89] and Sacha et al. [165]. Moreover, it is believed that push-pull aggregation algorithms to
outperform push-based approaches since push-pull epidemics spread faster than push-only epidemics
[80].
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4.4.8 Increasing Fan-Out

In the aggregation algorithm described in section 4.4.5, an aggregation instance is started with an
average frequency of 1

F . Since a peer performs on average two gossip exchanges per time step and
the time-to-live of a tuple is decreased by 1

2 at each gossip exchange, an aggregation instance lasts
approximately TTL time steps and a peer participates on average in less than TTL

F aggregation
instances. Hence, a peer sends and receives on average two messages per time step and the message
size is proportional to TTL

F .
When the frequency of aggregation is increased, the aggregates maintained by peers are more up-

to-date, but the cost of the algorithm increases proportionally to 1
F . Similarly, the cost grows when

TTL is increased. A third approach is increase the algorithm fan-out, i.e., the number of neighbours
contacted per time step. In this version of the algorithm, the active thread at peer p performs one
gossip exchange if p participates in no aggregation instances (i.e., Tp = ∅), and performs G gossip
exchanges with randomly selected neighbours if p runs at least one aggregation instance (i.e., Tp > ∅),
where G is a system constant. The passive thread remains unchanged.

An aggregation instance is started with an average frequency of 1
F , as before, but it lasts only TTL

G

time steps, since peers perform on average 2G gossip exchanges when they participate in aggregation
instances. Thus, on average, a peer participates in approximately TTL

F ·G instances. The average number
of messages generated by a peer per time step, assuming TTL

F ·G < 1, is then

2
(

TTL

F ·GG +
(

1− TTL

F ·G
))

= 2 + 2
TTL

F
· G− 1

G
< 2 + 2

TTL

F
(4.29)

since a peer initiates G gossip exchanges with probability TTL
F ·G and one exchange with probability

1 − TTL
F ·G , and for each exchange peers generate two messages. Thus, neither the average number of

generated messages nor the average message size grow with increasing G. When TTL
F ·G ≥ 1, a peer

exchanges approximately 2G messages per time step.
As G is increased, aggregation instances become shorter (TTL

G time steps), and hence, fewer peers
join and leave the system when an instance is executing. This way, the algorithm reduces the impact
of churn on the aggregation results. In particular, it reduces the instance weight loss. Furthermore,
as the instance is shorter, aggregates are calculated more quickly and are hence more up-to-date. The
only cost associated with increasing fan-out is that peers need to send bursts of messages per time
step, which may cause a network congestion and a higher message loss rate.

4.5 Super-Peer Election

The super-peer election algorithm, executed locally by each peer in the system, classi�es each peer
as either a super-peer or an ordinary peer. The algorithm has the property that it elects super-peers
with globally highest utility, and it maintains a highest-utility super-peer set as the system evolves.
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1: loop
2: t← calculate threshold
3: if U(p) > t and p is client then
4: become super-peer
5: end if
6: if U(p) < t and p is super-peer then
7: become ordinary peer
8: end if
9: wait until next cycle
10: end loop

(a) Single threshold

1: loop
2: if super-peer then
3: t← calculate lower threshold
4: if U(p) < t then
5: become ordinary peer
6: end if
7: else
8: t← calculate upper threshold
9: if U(p) > t then
10: become super-peer
11: end if
12: end if
13: wait until next cycle
14: end loop

(b) Two thresholds

Figure 4.11: Super-peer election algorithms.

The algorithm also limits the number of switches between ordinary peers and super-peers in order to
reduce the associated overhead.

4.5.1 Single-Threshold Election

Given the approximations of the system size, N , system load, L, peer utility distribution D, peer
capacity distribution Dc, and other aggregates generated by the algorithm described in section 4.4.5,
every peer can calculate super-peer election thresholds, as de�ned in section 3.1.1. In the simplest
case, every peer p periodically calculates the super-peer threshold, t, and compares it with its own
utility U(p), as shown in Figure 4.11(a). All peers with utility above the threshold become super-peers,
while peers below the threshold become clients.

However, in a dynamic system, the super-peer election threshold constantly changes over time
due to peer arrivals and departures, system load �uctuations, and statistical error produced by the
aggregation algorithm. Moreover, the utility of individual peers may change, as discussed in section 4.2.
As a consequence, peers may frequently cross the super-peer threshold and switch their roles between
being super-peers and clients, increasing the system overhead, for example due to the required data
migration and synchronisation between super-peers.

4.5.2 Two-Threshold Election

In order to prevent peers from frequently switching their roles between super-peers and clients, the
system uses two separate thresholds for the super-peer election, an upper threshold, tu, and a lower
threshold, tl, where tu > tl. An ordinary peer becomes a super-peer when its utility exceeds tu, while
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Figure 4.12: Super-peer election using two utility thresholds.

a peer stops to be super-peer when its utility falls below tl, as shown in �gure 4.11(b). This way, peers
with utility above tu are always super-peers, peers with utility below tl are always clients, while peers
between the two thresholds can be either super-peers or clients, depending on their previous utility
values and previous election thresholds. Thus, the system exhibits the property of hysteresis. The
minimum utility change required for a peer to switch its status, assuming constant election thresholds,
is 4 = tu − tl. A gradient topology with super-peers elected using two utility thresholds is shown in
�gure 4.12.

The upper and lower thresholds determine the minimum and maximum number of super-peers in
the system. Thus, they restrict the number of super-peers in the system to an interval. For example, in
order to maintain between K1 and K2 super-peers, where K1 ≤ K2, thresholds tu and tl are calculated
based on the utility distribution, D, so that D(tu) = K1 and D(tl) = K2. Likewise, in order to adapt
the number of super-peers to the system load, L, while maintaining the average super-peer utilisation
between W1 and W2, where W1 ≤ W2, tu and tl must satisfy Dc(tl) ·W1 = L and Dc(tu) ·W2 = L.
Similar formulas can be derived for other threshold de�ned in section 3.1.1.

4.5.3 Election without Demotion

As the gap between the upper and lower threshold increases, the restriction on the number of super-
peers in the system is relaxed, but the switches between super-peers and clients become less probable.
In order to eliminate super-peer demotions completely, peers may use a variant of the super-peer
election algorithm, shown in �gure 4.13, super-peers are elected for their lifetimes, i.e, until they leave
the system.

In order to control the number of super-peers in this algorithm, two changes are required in the
threshold calculation and histogram generation. First, the histograms H and Hc are calculated in
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1: loop
2: if ordinary peer then
3: t← calculate threshold
4: if U(p) > t then
5: become super-peer
6: end if
7: end if
8: wait until next cycle
9: end loop

Figure 4.13: Super-peer election with no super-peer demotion.

such a way that they contain only peers that can be promoted to super-peers, i.e., clients. For that
purpose, in the aggregation algorithm, when peers start or join an aggregation instance, they de�ne
their initial utility histogram as

Ip(i) =





0 if U(p) < i · λ or p is super-peer

1 if U(p) ≥ i · λ and p is client
(4.30)

and for the capacity histogram as

Ic
p(i) =





0 if U(p) < i · λ or p is super-peer

C(p) if U(p) ≥ i · λ and p is client
. (4.31)

This way, H(i) contains the number of clients with utility above min + λi, and Hc(i) contains the
total capacity of clients with utility above min+λi. Through interpolation, histogram H can be used
to estimate the client utility distribution function, D̂, where

D̂(u) =
∣∣∣{p : p is client and U(p) ≥ i · λ}

∣∣∣. (4.32)

Similarly, Hc can be used to estimate the client capacity distribution, D̂c, where

D̂c(u) =
∑

U(p)>u
p is client

C(p). (4.33)

In order to maintain K super-peers using a top-K threshold, a peer checks at each time step how
many new super-peers need to be created in the current state of the system. Assuming the peer
can estimate the current number of super-peers, K ′, using aggregation, the number of required new
super-peers is K” = K −K ′. If K” ≤ 0, the threshold is set to in�nity, as no super-peers need to be
created. If K” > 0, the super-peer election threshold, t, is derived from equation D̂(t) = K”. This
way, in a system with dynamic peer population, �uctuating peer utility, load, and election thresholds,
super-peers are never demoted to clients, but the system creates no more than K super-peers at any
given time.

Similarly, in order to maintain a super-peer set with a total capacity of C, for example equal to
the total system load, L, peers estimate the current super-peer capacity in the system, C ′, using
aggregation, and calculate a super-peer election threshold according to formula D̂c(t) = C − C ′.
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4.5.4 Client-Based Election

The calculation of the clients threshold, as de�ned by formula 3.6 in section 3.1.1, requires the knowl-
edge of both D and Dc. This section describes an approach that allows the estimation of the clients
threshold using D only.

Each peer estimates the current system size, N , and the current super-peer ratio, Q. The current
number of clients, and hence the required super-peer capacity to handle these clients, is given by
N(1 − Q). Peers calculate the super-peer election threshold as a utility value, t, such that Dc(t) =

Np(1−Qp).
Although super-peer sets elected this way do not necessarily have the exact capacity required to

handle the clients in the system, they converge to the optimum size when the election is repeated.
When the algorithm elects too many super-peers, the number of clients decreases, and fewer super-
peers are elected in the following iteration. Similarly, when too few super-peers are elected, the number
of clients increases, and the algorithm elects more super-peers in the following run.

4.6 Rank Estimation

This section describes three algorithms that allow peers to estimate their ranks. The �rst method is
based on utility histograms, the second method is based on utility successor sets, and the last method
is a combination of the �rst two. Peer ranks are required for the construction of tree-based gradient
topologies.

4.6.1 Histogram-Based Method

The simplest way to calculate peer ranks is to use utility histograms, assuming they are generated by
aggregation. The rank of a peer p is equal to Rp(p) = DH(Up(p)), where DH is a utility distribution
function approximated using histogram Hp at peer p, and Up(p) is p's estimation of its own utility.

The main drawback of this rank estimation method is that it generates a signi�cant error for the
highest-utility peers. This is because the highest utility peers belong to the last bins in the histogram
(i.e., close to b − 1), which contain very few samples, and the interpolation of these few samples is
likely to produce a signi�cant approximation error.

4.6.2 Successor-Based Method

Another approach to the peer rank estimation is to use the information about neighbours in successor
sets. In order to calculate Rp(p), a peer p �rst creates a subset, S′p, of its successor set, Sp, which
contains peers with utility higher than Up(p)

S′p = {q ∈ Sp : Up(q) > Up(p)}. (4.34)
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In a stable state of the system, where the successor sets are fully optimised according to the preference
function de�ned in section 4.3.5.1, S′p should contain M peers with ranks equal to

R(p)− 1, R(p)− 2, . . . R(p)−M (4.35)

where M is equal to min(R(p), S∗p) . The sum of the ranks of all peers in S′p is then equal to

R(p) ·M − M(M + 1)
2

. (4.36)

This information can be used by peer p to estimate its rank Rp(p). If S′p is empty, peer p assumes
that it has the highest utility in the system and sets its rank to zero. Otherwise, peer p calculates the
sum of the ranks of its neighbours in S′p and sets its rank to

Rp(p) =

∑
q∈S′p

Rp(q)

|S′p|
+
|S′p|+ 1

2
(4.37)

where the rank estimation formula 4.37 is derived directly from 4.36.
In principle, any neighbour in S′p can be used for the estimation of R(p), given formula 4.35.

However, by summing and averaging the ranks of all neighbours in S′p, peer p uses all available
information for the estimation of its rank, and reduces the estimation error, since the individual errors
introduced by each Rp(q) variable may cancel out.

In order to initialise its rank when joining the system, peer p selects then the highest utility
neighbour, m, in its initial neighbour set, Np, such that Up(m) < Up(p), and the lowest utility
neighbour, n ∈ Np, such that Up(n) > Up(p). The rank of peer p is calculated as the average between
Rp(m) and Rp(n)

Rp(p) =
Rp(m) + Rp(n)

2
. (4.38)

The successor-based rank estimation method requires that peers maintain globally optimal succes-
sor sets. If a peer does not connect to a higher-utility neighbour that would belong to its successor set
in an optimal topology con�guration, the peer is likely to underestimate its rank, i.e., calculate its rank
Rp(p) such that Rp(p) < R(p). Moreover, as peers calculate their ranks based on the rank estimates
of their higher-utility neighbours, rank estimation errors are propagated, and gradually magni�ed,
from the highest-utility peers to the lowest-utility peers.

Thus, in large and dynamic systems, due to churn and communication failures, peers tend to
underestimate their ranks, and the rank estimation error increases together with peer rank. Due to
that, the successor-based rank estimation method is only applicable to small P2P systems.

4.6.3 Mixed Method

In order to combine the advantages of both the histogram-based and successor-based rank estimation
methods, a mixed approach is proposed, where the highest-utility peers use successor sets to estimate
their ranks, and all remaining peers use histograms for the rank estimation.
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1: GetRank():
2: if p has no successor set then
3: Rp(p)← histogram-based rank
4: if Rp(p) < Rs then
5: create successor and predecessor sets
6: end if
7: else
8: Rp(p)← successor-based rank
9: if Rp(p) ≥ Rs then
10: r ← histogram-based rank
11: if r ≥ Rs then
12: remove successor and predecessor sets
13: end if
14: end if
15: end if
16: return Rp(p)

Figure 4.14: Mixed rank estimation method.

The pseudo-code of the mixed method at peer p is shown in Figure 4.14. If peer p has no successor
set (line 2), it approximates its rank using a utility histogram (line 3), as described in section 4.6.1.
Furthermore, if the estimated rank of p is lower than a threshold value Rs (line 4), peer p creates
successor and predecessor sets and joins the highest utility peers (line 5).

If peer p estimates its rank when it already has a successor set (line 8), it applies the successor-
based method described in section 4.6.2 (line 8). If the estimated rank Rp(p) is equal to or higher
than Rs (line 9), peer p generates another rank estimation, r, using its current histogram (line 10),
and removes its successor and predecessor sets if r ≥ Rs (line 11-12).

The extra check between Rp(p) and r in line 11 of the algorithm is necessary to prevent peer p

from cyclically adding and removing its successor and predecessor sets. Such a situation could have
happened, if the rank estimation obtained using the histogram-based method was below Rs, while
the rank estimated using the successor set at peer p was above Rs. In the algorithm shown in �gure
4.14, a peer removes the successor and predecessor sets only if both estimation methods produce ranks
below Rs. Moreover, in case of an inconsistency between the ranks obtained using the two methods,
the algorithm assumes that the successor-based rank estimation method is more accurate.

Further improvements to the algorithm may be introduced in order to allow a gradual transition
between rank estimates obtained using the two methods. For example, the rank of peer p can be
calculated as Rp(p) = γr1 + (1− γ)r2, where 0 < γ < 1 is a system parameter, and r1 and r2 are two
rank estimates produces by the two methods.
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4.7 Gradient Search

Gradient search is a multi-hop message routing algorithm, that can deliver a message from potentially
any peer in the system to a high utility peer, i.e., a peer with utility above a given utility threshold. In
gradient search, a peer p greedily forwards each message that it currently holds to its highest-utility
neighbour, i.e., to a neighbour q whose utility is equal to

max
q∈Np

Up(q). (4.39)

Thus, messages are forwarded along the utility gradient, as in hill climbing and similar techniques.
If gradient search is performed over a TGT, peers are most likely to forward messages to their

parents. As shown in theorem 3.3, the worst-case cost for routing a message from a peer p to a
super-peer in a TGT is O(logB

R(p)
K ) overlay hops, where K is the total number of super-peers in the

overlay. Message paths can be even shorter than O(logB
R(p)
K ) hops, if peers use their random sets for

routing, which potentially contain neighbours with higher utility than that of parents.
By exploiting the information contained in the topology, gradient search achieves a signi�cantly

better performance than general-purpose search techniques for unstructured P2P networks, such as
�ooding or random walking [164]. Gradient search also reduces message loss rate by preferentially
forwarding messages to high utility peers, assuming peer utility is based on a notion of peer stability
[164].

4.7.1 Local Maxima

Local maxima should not occur in an idealised gradient topology, however, every P2P system is under
constant churn and a gradient topology may undergo local perturbations from the idealised structure.

There are a number of di�erent approaches to prevent message looping in the presence of a local
maxima in a gradient topology. One approach is to assign a unique identi�er to every generated
message, and to maintain at each peer a cache of recently forwarded messages. For each message, the
cache contains the neighbours to which the message was forwarded. When a peer receives a message
that it has already routed, it forwards the message to a neighbour that is not yet present in the cache
for this message. If no such neighbour can be chosen, the message is forwarded to a random neighbour
in order to escape the local deviation in the topology structure.

Another approach is to append a list of visited peers to each search message, and to impose a
constraint that forbids forwarding messages to previously visited peers. Again, if a peer is not able to
forward a message to a non-visited neighbour, it routes the message randomly. Additionally, a time-
to-live value is added to each message, which is decremented by one at each overlay hop. Messages
with negative time-to-live values are discarded by peers in order to prevent in�nite message circulation
in the overlay.
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4.8 Bootstrap

Bootstrap is a process in which a peer obtains an initial con�guration in order to join the system. In
P2P systems, this primarily involves obtaining addresses of initial neighbours. Once a peer connects
to at least one neighbour, it can receive from this neighbour the addresses of other peers in the system
as well as other initialisation data, such as the current values of aggregates.

However, initial neighbour discovery is challenging in wide-area networks, such as the Internet,
since a broadcast facility is not widely available and peers cannot simply broadcast a join request to
all addresses in the network. In particular, the IP multicast protocol has not been commonly adopted
by Internet service providers due to design and deployment di�culties [50]. Most existing P2P systems
rely on centralised bootstrap servers that maintain lists of peer addresses.

This section describes a bootstrap procedure that consists of two stages. In the �rst stage, a peer
attempts to obtain initial neighbour addresses from a local cache saved during the previous session,
for example on a local disk. This can be very e�ective; Stutzbach et al [181] analyse statistical
properties of peer session times in a number of deployed P2P systems and show that if a peer caches
the addresses of several high-uptime neighbours, there is a high probability that some of these high-
uptime neighbours will be on-line during the peer's subsequent session. Furthermore, such a bootstrap
strategy is fully decentralised, as it does not require any �xed infrastructure, and it scales with the
system size.

However, if all addresses in the cache are unavailable or the cache is empty, for example if the peer
is joining the system for the �rst time, the peer needs to have an alternative bootstrap mechanism. In
the second stage, peers obtain initial neighbour addresses from a bootstrap node. The IP addresses of
the bootstrap nodes are either hard-coded in the application, or preferably, are obtained by resolving
well known domain names. This latter approach allows greater �exibility, as bootstrap nodes can be
added or removed over the course of the system's lifetime. Moreover, the domain name may resolve
to a number of bootstrap node addresses, for example selected using a round-robin strategy, in order
to balance the load between bootstrap nodes.

4.8.1 Bootstrap Nodes

Each bootstrap node is independent and maintains its own cache containing peer addresses. The cache
size and the update strategy are critical in a P2P system, as the bootstrap process may have a strong
impact on the system topology, particularly in the case of high churn rates. If the cache is too small,
subsequently joining peers have similar initial neighbours, and as a consequence, the system topology
may become highly clustered or even disconnected if the peers in the cache become overloaded. On
the other hand, a large cache is more di�cult to keep up to date and may contain addresses of peers
that have already left the system.

116



Chapter 4. Design and Algorithms

Figure 4.15: Bootstrap process of Peer A.

A simple cache update strategy is to add the addresses of currently bootstrapped peers to the cache
and to remove them in the FIFO order. However, this strategy has the drawback that it generates
topologies where joining peers are highly connected with each other. In such topologies, joining peers
are less likely to discover their optimal neighbours, since most peers they communicate with are also
joining the system and have not yet optimised their con�gurations.

A better approach is to continuously �crawl� the P2P network and �harvest� available peer ad-
dresses. In this case, the bootstrap node periodically selects a random peer from the cache, obtains
the peer's current neighbours, preferably from the peer's random neighbour subset, adds these neigh-
bours to the cache, and removes the oldest entries in the cache. This has the advantage that the
addresses stored in the cache are close to a random sample from all peers in the system.

Figure 4.15 shows the bootstrap process of Peer A. In step (1), Peer A obtains a list of initial
neighbour addresses from its local cache. If any of the initial neighbours are alive, the peer goes
to step (4). Otherwise, in step (3), the peer resolves a well-known domain name and obtains an IP
address of a bootstrap node. From the bootstrap node, in step (3), Peer A receives a list of addresses
of initial neighbours. Finally, in step (4), Peer A contacts one of the initial neighbours (Peer B) and
obtains additional information about the system, such as current values of the aggregates.

4.9 Summary

This chapter describes the design of the gradient topology and its main component. The chapter shows
a number of utility functions and neighbour selection algorithms that generate TGTs, aggregation and
ranking algorithms that estimate global system properties, super-peer election strategies, gradient
search variations, and an approach to bootstrap peers joining the system. The next chapter evaluates
these algorithms, shows their performance characteristics and trade-o�s, and compares them to a
number of state-of-the-art systems.
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Chapter 5

Evaluation

The description of the gradient topology evaluation consists of six sections. The �rst section contains a
functional comparison between gradient topologies and a number of state-of-the-art super-peer election
systems. It shows that gradient topologies o�er more �exible and powerful election mechanisms than
the other considered systems. The second section describes a custom-built P2P simulator, which is
used later to run performance experiments. The third section compares the performance of gradient
topologies and selected state-of-the-art systems, and shows that the election algorithms used in the
gradient topologies generate higher-quality super-peer sets, according to a number of di�erent metrics,
at a similar cost, compared to the other systems. The fourth section describes a detailed evaluation
and analysis of gradient topologies and their speci�c features that are not supported in the other
systems. The purpose of this section is to verify the theoretical properties of gradient topologies
introduced earlier in chapter 3, and to validate the design of the algorithms introduced in chapter
4. The �fth section validates the custom-built simulator. Finally, the last section demonstrates the
practical viability of gradient topologies by applying the experimental results to a sample application
scenario.

5.1 Functional Comparison

The functional comparison is intended to examine the ability of systems to generate, control and adapt
super-peer sets in the overlay according to the higher-level application requirements. For this reason,
the comparison is concerned with the state-of-the-art systems that are classi�ed as adaptive and DHT-
based in chapter 2, sections 2.5 and 2.4. Group-based super-peer election systems, described in section
2.3, are not considered in the comparison, since most of these systems depend on application-speci�c
peer properties, such as physical location, position in a virtual space, and semantic properties, and
introduce additional application-speci�c constraints in the super-peer election which cannot be directly
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SOLE X � � � � � X �
Hierarchical DHTs X � � � � � X ?
HONet X � � � � X ? �
SPChord � X � ? ? X � ?
Structured Superpeers � � � ? ? � � ?
DLM � X � ? ? � � ?
SG-1 � � � X � � � �
SG-2 � � � X � X ? ?
Gradient Topology X X X X X � X X

Xsupported � not supported ? hypothetical

Table 5.1: Functional system comparison.

compared with general-purpose super-peer election algorithms addressed in this thesis. The simplest
approaches to super-peer election, described in section 2.2, are also excluded from the comparison.

5.1.1 Feature Set

The systems are compared based on eight features. Six of these features correspond to super-peer
election criteria identi�ed in the super-peer systems reviewed in chapter 2. These criteria can be
described as a �xed number of super-peers, �xed ratio of super-peers to clients, �xed super-peer
capacity, super-peer capacity based on the client set, super-peer capacity based on load, and latency-
based super-peer constraints. Additionally, two features are added, which are believed to be highly
relevant to many P2P applications. These are the support for peers that dynamically change their
properties, and election of multiple super-peer sets.

5.1.2 Analysis

SOLE [105], covered in section 2.4.3, allows the election of �xed numbers of super-peers, determined by
global super-peer identi�ers. It supports the election of multiple super-peer sets, as each application
running on top of SOLE can de�ne its own set of super-peer identi�ers. However, SOLE does not
introduce any notion of peer capability and elects super-peers solely based on their positions in the
DHT.
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Hierarchical DHTs [59], described in section 2.4.4, also elect �xed numbers of super-peers, deter-
mined by peer groups. Each group in the system elects its highest-capability peer as the group's
super-peer. In cases where peer capabilities change over time, the system can swap super-peers with
higher-capability clients, but does not provide any mechanisms to reduce the associated overhead.
Hierarchical DHTs can be generalised to multi-level hierarchies with super-peers elected at each level
in the system structure, but the design of such an approach is not described in [59].

HONet [184], introduced in section 2.4.5, elects super-peers based on peer coordinates in a virtual
space. A super-peer is created each time a peer is located beyond a �xed distance, T , from the existing
super-peers. Thus, the maximum number of super-peers elected in a HONet system is �xed and is
determined by the size of the virtual space and the super-peer coverage, T . Hypothetically, each
application built on top of a HONet system could elect its own super-peer set with a custom value for
T , using the virtual peer space and the DHT overlay, but this approach is not considered in [184].

In SPChord [101], described in section 2.4.6, a new super-peer is created when the size of a cluster
exceeds a �xed threshold, c, and a super-peer is removed when the size of a cluster falls below c

2 .
Thus, SPChord maintains a ratio of clients to super-peers between c and c

2 . Peers are positioned in a
virtual coordinate system, and each client is associated with the closest super-peer, while super-peers
are elected based on their uptimes. The super-peer election criteria can be potentially changed, but
the system does not provide any mechanisms to stabilise the topology and reduce the number of
swappings between super-peers and clients if peer properties �uctuate over time. Parameter c can
be theoretically de�ned for each peer individually, re�ecting peer capacity, in which case SPChord
would generate super-peer sets with total capacity equal to or higher than the number of clients in
the system. Moreover, it may also be possible to split and merge super-peer clusters depending on
the load on super-peers, but all these approaches are not addressed in [101].

Structured Superpeers [123], covered in section 2.4.7, is a system similar in many respects to
SPChord. It splits and merges clusters, de�ned as arcs in an outer DHT ring, based on the number
of clients and load associated with each super-peer. However, due to the lack of detailed system
description, it is di�cult to determine exactly how the super-peers are elected and what are the
properties of the election mechanism.

DLM [196], described in section 2.5.3, is an election algorithm that maintain a �xed ratio of super-
peers to clients in a P2P system. Super-peers are elected based on their capacity and uptime, but
similar to hierarchical SPChord and Structured Superpeers, other super-peer election criteria could
potentially be applied in DLM. The DLM algorithm can also handle peers with dynamically changing
capacity, but [196] does not address the problem of super-peer stability and switches between super-
peers and clients.

SG-1 [124], addressed in section 2.5.1, generates a P2P topology where the total capacity of super-
peers is approximately equal to the number of clients in the system, and the capacity of super-peers
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is maximised. The algorithm assumes that peer capacity is constant, and continuously attempts to
transfer clients from lower-capacity super-peers to higher-capacity super-peers, reducing any redun-
dant super-peers. In order to elect two super-peer sets, each peer would have to participate in two
superpeer and two underloaded overlays, and would have to maintain two clients sets. Hence, the
system overhead would almost double.

SG-2 [83], discussed in section 2.5.2, extends the SG-1 algorithm and adds latency constraints to
the generated P2P topology. Super-peers in SG-2 cover the system space and periodically broad-
cast advertisement messages in their neighbourhood, while clients are transferred from lower-capacity
super-peers to higher-capacity super-peers. Hypothetically, independent sets of super-peers can be
created in SG-2 if each set of super-peers generates and broadcasts it own type of super-peer messages,
but such an approach is not followed in [83]. Moreover, since super-peer election is localised in SG-2,
the algorithm should work with peers dynamically changing their capacity.

Gradient topologies, together with the aggregation and election algorithms described in this thesis,
allow the election of super-peer sets with �xed sizes, proportional sizes to the number of peers, �xed
capacity, capacity based on the number of clients, and capacity based on the system load. Double
super-peer election thresholds, and other election techniques described in section 4.5, allow peers
to minimise the number of switches between super-peers and clients as the utility of peers changes.
Gradient topologies also support the election of multiple super-peer sets, since peers can calculate any
number of super-peer election thresholds, and the topology structure guarantees that each super-peer
set is connected and can be discovered using gradient search.

5.1.3 Summary

Table 5.1 summarises the results of the comparison. It can be concluded that gradient topologies, to-
gether with aggregation-based election techniques, o�er more �exible and powerful super-peer election
mechanisms compared with the existing P2P systems, and thus extend the current state-of-the-art
knowledge on super-peers, and more generally, heterogeneity exploitation in P2P systems.

5.2 Peer-to-Peer Simulator

Performance evaluation is especially important when designing a novel P2P topology, such as the
gradient topology, since P2P systems usually exhibit complex, dynamic behaviour that is di�cult to
predict a priori. Theoretical system analysis is di�cult, and often infeasible in practice, due to the
system complexity. At the same time, a full implementation and deployment of a P2P system on
a realistic scale requires extremely large amounts of resources, such as machines and users, that are
prohibitive in most circumstances. Consequently, the approach followed in this thesis is simulation
experiments.
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However, designing P2P simulations is also challenging. The designer has to decide upon numerous
system assumptions and parameters, where the appropriate choices or parameter values are non-trivial
to determine. Furthermore, dependencies between di�erent elements of a complex system are often
non-linear, and a relatively small change of one parameter may result in a dramatic change in the
system behaviour. Moreover, due to the large size and complexity, full-scale P2P systems are not
amenable to visualisation techniques, as a display millions of peers, connections, and messages is
not human-readable. P2P simulations must continuously collect and aggregate statistical information
about the system in order to detect topology partitions, identify bottlenecks, measure global system
properties, etc. Such frequent and extensive measurements are often computationally expensive, which
adds further challenges to analysing P2P systems.

5.2.1 Existing Simulators

A number of P2P simulators have been used for evaluating P2P systems, as summarised in [131, 130].
The choice of the P2P simulator is an important part of the evaluation strategy, since many existing
simulators di�er in the system models and assumptions, and introduce di�erent constraints on the
performed experiments. Typically, P2P systems are evaluated in Discrete Event Simulators (DES),
where the operation of a system is represented as a chronological sequence of instant events that
atomically switch the system state [157]. The state is usually stored on a single machine and all the
processing is often performed in one thread. However, simulators vary in the extent to which they
model the low-level network underlying the P2P system.

At one extreme are simulators such as NS-2 [25, 13], which model the entire TCP/IP stack at
every network node. Such approaches are expensive, and simulators based on NS-2 can usually
support at most a few thousand simultaneous nodes [74, 131, 130]. Moreover, it is argued that rigid
network modelling at the packet level is not necessary when evaluating P2P applications, since most
interesting features of P2P systems can be observed at the application protocol level [120, 107].

At the other extreme are P2P simulators where the network layer is extremely simpli�ed and
messages are passed between peers through direct method calls, with no delay. This approach is
followed in PeerSim, a P2P simulator which has been used for evaluating algorithms such as SG-1
[124], SG-2 [83], Newscast [80], and push-pull aggregation [82]. Apart from the networking model,
PeerSim also simpli�es the control �ow. Instead of ordering and processing discrete events using a
priority queue, as do most other P2P simulators, PeerSim uses a simple cycle model, where every
peer in the system executes a step procedure at each cycle of a global simulation loop. Due to
these simpli�cations, it is believed that PeerSim can simulate up to one million simultaneous nodes
[131, 124].

A number of other P2P simulators exist and have a di�erent balance between performance and
accurate low-level network modelling. Many simulators, such as p-sim [120], PlanetSim [107], and the
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Simulator Network model Flow control Scalability Code GUI
He et al. [74] Full network stack (NS2,

GTNets, GT-ITM latency)
Event queue 2000 nodes C++ no

OverSim [16] Full network stack
(OMNeT++),
Euclidean latency

Event queue 105 nodes C++ yes

Narses [63] Flow-based, GT-ITM latency Event queue 600 nodes Java no
GPS [201] Flow-based, GT-ITM latency Event queue 1054 nodes Java yes
p-sim [120] Latency (GT-ITM) Event queue 2048 nodes C no
P2PSim1 Latency (GT-ITM, G2 graph,

Euclidean, end-to-end time
graph, random)

Event queue 3000 nodes C++ no

PlanetSim [107] Latency (GT-ITM, Brite) Cycle-based 105 nodes Java yes
PeerSim2 Latency (end-to-end time

graph, random)
Cycle-based,
Event queue

106 (cycle-based),
105 (event-based)

Java no

1http://pdos.csail.mit.edu/p2psim/
2http://peersim.sourceforge.net/

Table 5.2: Peer-to-peer system simulators.

simulator proposed by He et al. [74], model network communication latency using Internet topology
models and generators, such as the Georgia Tech Internetwork Topology Model (GT-ITM) [203,
29, 202], Boston University Representative Internet Topology Generator (BRITE) [119], and Global
Network Positioning (GNP) [136]. Furthermore, simulators such as Narses [63] and the General Peer-
to-Peer Simulator (GPS) [201] model network bandwidth constraints and simulate data �ows based
on connection latencies and throughputs. Table 5.2 shows a summary of a few well-known sequential
P2P simulators.

Simulators that execute on multiple machines (e.g., a computer cluster) can be considered a
separate category. This category contains in particular Parallel Discrete Event Simulators (PDES)
[58, 122], which are based on the same system model as DES, but process system events in parallel
threads in order to shorten the overall execution time. In principle, PDES produce the same (or close
to) simulation results as sequential DES.

Another approach is taken in simulators such as ModelNet [189], which provide interfaces to
the evaluated application at the operating system level, simulating an Internet-like environment.
ModelNet allows thus a very accurate system performance evaluation, but also requires a signi�cant
implementation cost, which is often comparable to a complete system development.

Finally, WiDS [104] is a toolkit that allows a protocol simulation in both the DES or PDES mode
and a real-network deployment. Once a distributed protocol is developed using WiDS interfaces, it
can be simulated within a single address space on a single machine, simulated on a cluster of machines,
or deployed and run in the target environment.
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5.2.2 Simulation Requirements

Gradient topologies and the algorithms described in this thesis have been speci�cally designed to
achieve a high scalability and resilience in the presence of churn and communication failures. Therefore,
the evaluation of gradient topologies must be performed in a setup that involves a large-scale, dynamic
and heterogeneous peer population and unreliable communication.

At the same time, it can be argued that a detailed model of the low-level network is not necessary to
perform experiments on gradient topologies. First of all, gradient topologies and super-peer election
algorithms discussed in this thesis are based on peer characteristics, such as peer utility, and do
not exploit the properties of peer connections. Low-level network concerns play a minor role in
the construction of gradient topologies. Furthermore, since nearly all algorithms described in this
thesis are periodic (with the period length of a few seconds) and generate relatively small messages
(approximately a kilobyte or less per message), they are not likely to congest network connections.
Higher-level applications running over gradient topologies, which may use network resources more
extensively, are not evaluated in this thesis. Thus, it can be expected the system behaviour can be
adequately analysed without considering peer connections' bandwidth, cross tra�c and in-network
queueing. A simpli�ed network model also enables running experiments on larger-scale, and hence
more realistic, P2P systems.

Moreover, the evaluated algorithms are not sensitive to message latency, as they generally require
that messages are delivered and responses are returned within each algorithm cycle. Since the cycle
lengths are on the order to seconds, while a typical message round-trip time (RTT) on the Internet
is approximately 100-200 milliseconds, message latency can be assumed insigni�cant in the evaluated
protocols.

Table 5.3 summarises a number of measurements on the average RTT between machines connected
to the Internet. The results vary due to di�erences in the applied measurement methodologies. Some
values in the table are approximated based on graphs, and hence may contain minor estimation errors.
In the cases where multiple results are available in one publication, the average RTT is put into the
table. The average RTT over all measurements is 169 milliseconds.

Most measurements indicate that the distributions of message RTT are skewed, and relatively
small fractions of messages are signi�cantly delayed, even by many seconds. However, peers can deal
with such extremely delayed (or lost) messages by estimating the average RTT to their neighbours.
When a message is not responded to within a certain timeout, such as three times the RTT, it is
assumed to have been lost. This way, peers can decide whether their message have been delivered or
lost in a relatively short time (below a second), which is signi�cantly shorter than the simulation time
step.
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Measurement Year RTT (ms) System
Chen [35] 2005 157 Skype
Wang [191] 20052 81 Internet
Kutzner [95] 2004 4101 Overnet
Shakkottai [174] 2002-03 180 Internet
Lakshminarayanan [97] 2002 801 Internet
Fraleigh [57] 2001-02 130 Internet
Saroiu [167] 2001 1001 Gnutella
Acharya [3] 1996 1001 Internet
Fasbender [55] 1994-95 331 Internet
Bolot [22] 92 200 Internet
Sanghi [166] 92 85 Internet

1median value 2publication date

Table 5.3: Average round-trip times between machines on the Internet.

5.2.3 PlanetLab

An alternative approach to evaluating the performance of a P2P system is to implement it and deploy
it on PlanetLab [38, 178], a wide-area test bed for distributed systems. PlanetLab consists of a
collection of machines (914 hosts at 473 sites at the moment of writing), physically distributed across
the Globe, which are available for running scienti�c experiments.

However, there are at least three relevant reasons for which gradient topologies and the compared
systems have not been evaluated on PlanetLab. First, gradient topologies have been speci�cally de-
signed for heterogeneous P2P environments, while in PlanetLab, most nodes have similar performance
characteristics, since the PlanetLab Consortium speci�es a minimum hardware speci�cation for the
participating nodes. At the time of writing, the minimum requirement for a node was 3.2 GHz CPU
clock speed, 4 GB RAM, and 320 GB disk space. Moreover, most nodes in PlanetLab are hosted by
large research institutions and are connected with each other through fast and reliable Internet links,
such as university and corporate networks. In order to perform experiments on gradient topologies,
node capabilities in PlanetLab would have to be arti�cially limited, as in a traditional P2P simulator,
in order to model a heterogeneous peer population.

Second, most machines in PlanetLab are relatively stable and have high uptimes, since they are
used by the PlanetLab community for running long-term experiments. In order to perform experi-
ments with realistic churn conditions, with peers joining and leaving the system according to some
distribution, peer life cycle would have to be explicitly modelled, as in a P2P simulator.

Finally, PlanetLab consists of a few hundred machines only, while many existing P2P systems have
already reached the scale of millions of nodes [35, 102, 181]. In order to evaluate a P2P system on a
realistic scale, each physical node in PlanetLab would have to emulate hundreds of virtual peers.
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Measurement Year System Median Session Distribution
Stutzbach [181] 2003-05 Gnutella 30 min Log-normal, Weibull
Stutzbach [181] 2003-05 Kademlia 20 min Log-normal, Weibull
Stutzbach [181] 2003-05 Bittorrent 2-5 min Weibull, Log-normal
Kutzner [95] 2004 Overnet 6 h Power-law, Diurnal
Pouwelse [144] 2003-04 Bittorrent 17% > 60 min Power-law (close to)
Bustamante [27] 2003 Gnutella 2 h Pareto
Bhagwan [18] 2003 Overnet 60 min Diurnal
Gummadi [68] 2002 Kazaa 2.4 min Heavy-tailed
Ripeanu [155] 2000-01 Gnutella 40% < 4 h �
Chu [36] 2001-02 Gnutella 31% < 10 min Log-quadratic, Diurnal
Sen [173] 2001 FastTrack 15 min Power-law, Diurnal
Saroiu [167] 2001 Napster 60 min Diurnal
Saroiu [167] 2001 Gnutella 60 min Diurnal

Table 5.4: Median peer session times in P2P systems.

5.2.4 Simulator Overview

At the time when the experiments described in this thesis were implemented, none of the available
P2P simulators were suitable for running experiments on gradient topologies, and as a consequence,
a custom P2P simulator was developed. The simulator is based on a cycle model, similar to PeerSim,
as most of the evaluated algorithms are periodic. The main structure in the simulator is a global loop
which controls the �ow of time. At each cycle of this loop, every peer in the system executes one cycle
of its neighbour selection, aggregation, super-peer election and routing algorithms. The order of peers
at each time step is chosen randomly.

5.2.5 Churn Model

The simulator models an open, heterogeneous and dynamic population of peers, with continuous peer
arrivals and departures. The churn rate (i.e., the average fraction of peers leaving the system per time
unit) in the experiments is carefully chosen to re�ect the conditions that could be expected in a real
P2P system. Table 5.4 lists a number of independent measurements on peer session times in various
P2P systems. Notation x% < y is used to indicate that x percent of peers in a system have a session
time below y. Some values in the table are approximated based on graphs in the original publications.
Overall, most studies show that median peer session durations in existing P2P systems are between a
few minutes and and a few hours. In order to be consistent with these real-world measurements, the
mean peer session time, µ, in most experiments described in this thesis is assumed to be 30 minutes,
which corresponds to a churn rate of 1

µ = 3.3% peers per minute. Assuming a time step of 5 seconds
in the simulation, this is equivalent to mean session time of 360 time steps and a churn rate of 0.28%
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peers per time step.

While almost all published reports agree that peer session distributions are highly-skewed, there
is no general consensus whether these distributions are heavy-tailed and which mathematical model
best �ts the empirically observed peer session times. Sen at al. [173], Kutzner et al. [95], Bustamante
[27], and Pouwelse et al. [144] report power-law (i.e., Pareto) or close to power-law peer session
distributions, and Gummadi et al. [68] conclude that session distributions are heavy-tailed (see Table
5.4 for comparison). However, Chu et al. [36] suggest a log-quadratic peer session time distribution,
while Stutzbach and Rejaie [181] propose log-normal and Weibull distributions. Saroiu et al. [167],
Sen et al. [173], Chu et al. [36], and Bhagwan et al. [18] also observe diurnal patterns in peer session
times.

Moreover, Stutzbach and Rejaie estimate that the best power-law �t for the peer session times in
a number of BitTorrent overlays has a shape parameter between 2.1 and 2.7 (hence the distribution
is not heavy-tailed), and the best Weibull �t has a shape parameter between 0.34 and 0.59. Similarly,
Nurmi et al. [137] �nd that peer session times are best �tted with Weibull distributions with a shape
parameter between 0.5 and 0.6.

In this thesis, three session models are used. In the Pareto model, a peer p is assigned a session
longer than x with probability

P (Ses(p) > x) = (
m

x
)k. (5.1)

The shape parameter, k, is set to 2 (border case between heavy-tailed and non-heavy-tailed distri-
butions) and the minimum session duration, m, is calculated in such a way that the mean session is
equal to µ

m = µ
k − 1

k
. (5.2)

In the Weibull session model, peer p has a session longer than x with probability

P (Ses(p) > x) = 1− e−( x
λ )l (5.3)

where l is a shape parameter, l = 0.5, and λ is a scale parameter, such that the mean session duration
is equal to µ

λ =
µ

Γ(1 + 1
l )

(5.4)

and Γ is the Gamma function. In the third session model, used for a theoretical system analysis, peer
session times are in�nite, and peers can join the system but never leave or fail.

In all session models, joining peers are bootstrapped by a centralised server. The bootstrap server
obtains peer addresses through �crawling� the P2P overlay and maintaining a FIFO bu�er with 1,000
entries, as described in section 4.8. Additionally, the bootstrap server is used for starting aggregation
instances.
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Measurement Year Message Loss
Wang [191] 20051 0.12%
Heckmann [75] 20041 3.75%
Zhang [205] 1999-01 0.73%
Yajnik [198] 1997-98 1.98%
Boyce [24] 1997-98 7.12%
Borella [23] 1997 1.50%
Moon [128] 1997 6.87%
Paxon [142] 1994-95 3.95%
Fasbender [55] 1994-95 13.03%
Sanghi [166] 1992 4.57%
Bolot [22] 1992 13.5%
1publication date

Table 5.5: Average message loss rate on the Internet.

5.2.6 Network Model

The network layer in the simulator is extremely simple. For the reasons explained in section 5.2.2,
connection bandwidth and latency are not modelled, and it is assumed that messages are transferred
between peers instantly. However, the simulator supports three message loss models.

In the simplest model, each transmitted message has a �xed loss probability Ploss. Since gradient
topologies do not exploit peer network proximity, and most messages in the evaluated protocols
traverse wide-area networks, the message failure probability can be adequately modelled by the overall
packet loss rate on the Internet.

Table 5.5 summarises a number of measurements on the message loss rates between hosts on the
Internet. In cases where multiple experiments are reported in one publication, the average result is
calculated. Heckmann et al. [75] is the most relevant measurement in the context of P2P systems,
since it has been performed in e-Donkey, a P2P �le-sharing application. The results vary between
0.12% and 13.5%, depending on the measurement methodology, and the average loss rate over all
measurements is 5.19%. In order to be consistent with these measurements, message loss probability
in the experiments is set to Ploss = 0.05.

In the second model, the probability of a message loss is proportional to the reciprocal of the
recipients session time. A message sent from peer p to peer q fails with probability

P (p, q) =
Pprop

Ses(q)
(5.5)

where Ses(q) is the total session duration of q (known to the simulator only), and Pprop is a system
constant scaled in such a way that the average message loss between all peers in the system is equal to
Ploss. This model is based on observations that peer neighbourhood tables often contain stale entries,
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due to churn, and large numbers of messages are lost because peers attempt to forward messages using
neighbours that no longer exist in the system [30, 113]. Hence, messages are less likely to fail if they
are forwarded to more stable neighbours.

The third message loss model is speci�c to request-response protocols, such as aggregation and
neighbour selection. The probability of a request loss is calculated using the �xed-loss of the proportional-
loss model, but responses are never lost. The rationale behind this approach is the following. First, it
can be assumed that the recipient of a response message, i.e., the requester, is on-line, since the aver-
age request-response exchange time is only 100-200 milliseconds, and the probability of the requester
leaves during the exchange is negligible. Second, it is estimated that large fractions of peers in P2P
systems are connected to the Internet through �rewalls or NATs, which signi�cantly contribute to the
overall message loss [102, 181]. Typical �rewalls allow peers to generate outgoing tra�c, but reject
tra�c initiated by peers outside of the �rewalled zone. In the request-response protocols, if a peer
has already received a request and generates a response message, it can be assumed that the peer is
either not �rewalled at all or has a �rewall that allows communication with the requester.

5.2.7 Connection Model

It is assumed that all peers are mutually reachable and any pair of peers can potentially establish
a connection. In all algorithms, except for Newscast, the neighbourhood model is symmetric, as
discussed in section 4.3.1. Each peer p is assigned a capacity value, C(p), and the maximum number
of connections peer p can establish at a time is limited to 150+C(p). Capacity values follow a Pareto
distribution with the shape parameter kc = 2 (again, border case between heavy-tailed and non-heavy-
tailed distributions) and a mean of µc = 10. This way, an average peer can have up to 160 neighbours.
However, as shown later, peers rarely approach this limit and in most cases have approximately 50
neighbours. The highest utility peers in the simulated systems maintain approximately a few hundred
neighbours. For a comparison, in e-Donkey, a P2P �le-sharing system, peers have on average about
30-50 connections, and servers (i.e., super-peers) have on average 700 connections [75]. In Gnutella, an
ultrapeer can accept up to 32 connections from leaves and up to 30 connections from other ultrapeers
[103].

The neighbour veri�cation algorithm and the leave procedure, described in section 4.3.3, are not
executed by peers. The reason is twofold. First, it is very hard for the experiment designer to determine
the fraction of peers that perform the leave procedure when departing from the system, without a
detailed knowledge of the system deployment environment, application scenario and user community.
In particular, no study on peer crashes (as opposed to intentional departures) in P2P systems is known
to the authors of this thesis. Second, a simpli�ed model of peer connections signi�cantly improves the
performance and scalability of experiments, allowing larger networks to be simulated.

For these reasons, the simulator assumes that peers always have consistent views of their con-
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Parameter Symbol Value
Number of peers in the system N 100,000
Mean peer session time µ 360 steps
Session times Pareto shape k 2.0
Session times Weibull shape l 0.5
Message loss probability Ploss 0.05
Peer capacity mean µc 10
Peer capacity Pareto shape kc 2.0
Maximum number of neighbours N ∗ 150+C(p)
Aggregation instance interval F 50
Aggregation instance duration TTL 60
Aggregation fan-out G 4
Histogram resolution b 200
Gradient topology branching factor B 10
Gradient search time-to-live 30
Utility successors 5
Utility predecessors 3
Random set size 10
Newscast view size 20
SG-1 newscast set size 30
Chord successors 3
Chord predecessors 3

Table 5.6: System parameters.

nections. However, outdated neighbour entries, and the resulting message loss, are simulated in the
proportional message loss model described above in section 5.2.6.

In order to establish a connection, peers exchange two messages. If the exchange fails, the con-
nection is unsuccessful. Similarly, peers exchange two messages when they disconnect. Connection
closing always succeeds, as it can be assumed that the neighbour veri�cation algorithm eventually
resolves any discrepancies between neighbouring peers.

5.2.8 Scalability

The simulator has been implemented in Java using RePast [43], a multi-agent simulation toolkit, and
Colt1, a high performance scienti�c and technical computing library. For performance and scalability
reasons, the simulator uses regular arrays instead of Java collections, primitive data types (such as
int, double, etc.) instead of object types (such as Integer, Double, etc.) for storing numbers, and
the Colt's pseudo-random number generator instead of the default generator in Java. A number of
further optimisations have been performed using a performance pro�ler, the Java Runtime Analysis

1http://acs.lbl.gov/~hoschek/colt/
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Toolkit2 (JRat), which allow the simulator to support up to 100,000 gradient topology nodes using
2GB of memory. The simulator can also generate system visualisations, which are especially useful
for preliminary system analysis and debugging at early stages of development.

Table 5.6 summarises the main parameters used in the experiments. The parameters at the top
of the table, i.e., churn rate, session time distribution, message loss rate, and maximum number
of connections per peer, de�ne the simulated systems' environment, and are initialised based on
measurements on existing P2P systems, as explained in sections 5.2.5, 5.2.6, and 5.2.7. The remaining
parameters are con�gurable algorithm properties, and their impact on the system performance is
discussed further in this chapter. In particular, section 5.4.6 covers the aggregation settings (F , TTL,
G, and b), section 5.4.1 discusses the gradient topology branching factor and neighbourhood set sizes,
and section 5.4.7 evaluates the impact of the branching factor and message time-to-live on routing
performance. The parameters for the state-of-the-art systems (Newscast, SG-1, and Chord) are set
based on the original code and publications describing these systems.

5.3 Performance Comparison

This section describes a performance comparison between aggregation-based super-peer election algo-
rithms, used in gradient topologies, and selected state-of-the-art systems, SG-1, SPChord, Hierarchical
DHT (abbreviated to H-DHT), and SOLE, conducted using the P2P simulator described in the pre-
vious section.

5.3.1 Compared Systems

For SG-1, the original code has been obtained from the PeerSim's website3 and ported to the P2P
simulator used in this study. Moreover, an extended version of SG-1, labelled SG-1-�x, based on the
algorithm proposed in section 2.5.1.3, has been implemented and compared with the other systems.

SOLE, H-DHT, and SPChord have been implemented on top of a custom-built Chord imple-
mentation. In the H-DHT, peers are randomly assigned to static groups, and each group elects one
super-peer only. In SPChord, peer identi�ers are chosen randomly and do not correspond to peer
locations in a virtual coordinate space. Two version of SPChord are considered, with and without the
adjustment algorithm, where the latter is labelled SPChord*.

The systems are compared with a tree-based gradient topology (labelled TGT), generated using
tree sets, described in section 4.3.5.3, and Newscast sets, covered in section 2.5.1.1. Ranks are esti-
mated using the mixed method (section 4.6.3), and super-peers are elected using top-K and clients
thresholds (section 3.1.1), depending on the experiment.

2http://jrat.sourceforge.net/
3http://peersim.sourceforge.net/
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Additionally, a variant of TGTs is considered, labelled TGT*, where the random neighbourhood
sets, described in section 4.3.4, are used instead of Newscast sets. TGTs are also compared with
simpler gradient topologies, described in [163, 164], generated using the utility successor, predecessor,
and Newscast neighbourhood sets. These topologies, labelled GT, do not have the tree sets, and hence
do not guarantee logarithmic routing performance.

5.3.2 Comparison Criteria

The evaluated systems are compared with respect to the quality of the super-peer sets they generate
and the overall cost of the super-peer topology maintenance. The comparison is divided into three
sections. In the �rst section, the goal of each system is to maximise the super-peer capacity, and the
systems are compared based on the numbers of elected super-peers, average super-peer capacity, and
fraction of optimal super-peers (de�ned by peer capacity values). In the second section, super-peers
are elected based on their stability, and the systems are compared with respect to the average super-
peer session duration, super-peer leave rate, and the number of switches between super-peers and
clients. Finally, the last section evaluates the super-peer set election and maintenance cost, measured
as the average number of neighbours maintained by peers and the number of messages generated by
peers. The exact de�nitions of the comparison metrics are formally introduced in the sections below.

The systems are compared by running a series of simulation experiments. In each experiment, an
initial network consisting of a single peer is gradually expanded by adding 0.5% peers at each time step
until the system size grows to N = 100, 000 peers. At subsequent time steps, the system is still under
continuous churn, as peers leave according to their session times and are replaced by new peers, but
the rates of peer arrivals and departures are equal and the system size remains constant. The system
is run for T = 1000 additional time steps, during which measurements are performed and various
statistical data are collected. The obtained samples are averaged at the end of each experiment.

The experiment is repeated for each of the evaluated systems, and the results are summarised
using graphs. The error bars on the graphs indicate the standard deviation in the measurements.
In each experiment, all system parameters are initialised with values shown in Table 5.6, unless the
experiment description explicitly states that a di�erent setup is used.

5.3.3 Capacity Maximisation

In the �rst set of experiments, described in this section, super-peers are elected based on their capacity,
and the goal of the election algorithm is to maximise the super-peer capacity.

In SOLE, H-DHT, and TGT with a top-K threshold, the desired number of super-peers is given
as a system parameter K = 1000. Given the total system size of N = 100, 000 peers, the optimum
super-peer ratio is 1

100 , which roughly corresponds to typical super-peer ratios observed in existing
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Figure 5.2: Relative error in the super-peer set
capacity.

P2P systems, such as 30,000 super-peers for 3 million peers in KaZaA according to Liang et al. [102],
approximately 1 super-peer per 30-65 clients in KaZaA according to Xiao et al. [196], and 1 super-peer
per 32 clients in Gnutella version 0.6 [103].

In SG-1, SPChord, and TGT with a clients threshold, super-peers are elected in such a way that
the super-peer set has a capacity equal to or higher than the total number of clients in the system.
The capacity values are assigned in such a way, that the optimum super-peer ratio is approximately
equal to 1

100 . More precisely, given that peer capacity values follow a Pareto distribution with shape
parameter of k = 2 and mean µc = 10, from Theorem 3.1, the average capacity of the 1000 highest-
capacity peers in a 100,000 peer system is 100,000. The exact optimum size for the super-peer set
changes with time and depends on the current peer capacity values.

5.3.3.1 Super-Peer Election Error

Given the optimum number of super-peers, M∗
t , in a simulated system at time t, and the current

number of super-peers at time t, denoted Mt, the average relative error in the number of super-peers
over all time steps is de�ned as

Errs =
1
T

T∑
t=1

|Mt −M∗
t |

M∗
t

(5.6)

where T is the measurement duration. Similarly, the average relative error in super-peer capacity is
de�ned as

Errc =
1
T

T∑
t=1

|Ct − C∗t |
C∗t

(5.7)

where Ct is the total super-peer capacity at time t, and C∗t is the optimum super-peer capacity at
time t.

Figure 5.1 shows the value of Errs for each of the compared systems. Clearly, SPChord performs
worse than the other systems (note the logarithmic scale), both in conditions with churn and without
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Figure 5.4: Fraction of suboptimal super-
peers.

churn. This is caused by the DHT constraints imposed on super-peers in SPChord, which prevent the
system from reducing the size of the super-peer set to the required minimum. The topology adjustment
algorithm signi�cantly reduces the number of redundant super-peers in SPChord, reducing Errs by a
half, but is not su�cient to outperform the other systems.

Similarly, SG-1 elects too many super-peers in the presence of churn, since every joining peer,
and every client that becomes disconnected from a leaving super-peer, becomes a super-peer. This
problem is greatly reduced in the extended version of the protocol (SG-1-�x), where peers always
attempt to discover super-peers using the underloaded sets and connect as clients before deciding
to become super-peers. In the absence of churn, both SG-1 and SG-1-�x manage to elect a nearly
optimum number of super-peers. All the remaining systems perform relatively well, and the super-peer
election error is below a few percent in experiments with churn.

Figure 5.2 shows the value of Errc for SG-1, SG-1-�x, SPChord, and TGT with a clients threshold.
Again, SPChord and SG-1 generate super-peer sets with a signi�cantly higher capacity than the system
optimum. However, in both systems, the relative error in super-peer capacity (Errc) is about 5-6 times
lower that the error in the number of super-peers (Errs), since the low-capacity super-peers that are
elected in both systems signi�cantly increase Errs, but have a relatively low impact on Errc. In the
gradient topology, the average super-peer capacity error is below 2%.

5.3.3.2 Super-Peer Optimality

At each time step t, an optimal super-peer set, S∗t , is de�ned based on the current peer capacity
values in the system. In SOLE, H-DHT, and TGT with a top-K threshold, this set contains the
K highest-capacity peers. In SG-1, SPChord, and TGT with a clients threshold, the optimum set
contains the minimum number of highest capacity-peer that have a total capacity equal to or higher
than the number of clients.
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Figure 5.5: Average super-peer capacity.
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Figure 5.6: Average super-peer session dura-
tion.

Given the current super-peer set, St, at time t, the average fraction of optimal super-peers is
de�ned as

Opt =
1
T

T∑
t=1

|St ∩ S∗t |
|St| . (5.8)

Similarly, the average fraction of suboptimal super-peers in the elected sets is de�ned as

Sub =
1
T

T∑
t=1

|St \ S∗t |
|St| . (5.9)

Figures 5.3 and 5.4 show the values of Opt and Sub in each of the compared systems. As expected,
the gradient topology performs very well, since in threshold-based elections, by de�nition, super-peer
sets contain the highest-capacity peers only.

In SG-1, even in the absence churn, optimum super-peer sets are not achieved. This is caused by
the lack of swapping between super-peers and clients in the SG-1 protocol when super-peers are fully
utilised, as discussed in section 2.5.1.3. If churn is present, SG-1 elects a large number of suboptimal
super-peers, since all clients that are not associated with super-peers are automatically promoted to
super-peers, decreasing the value of Opt and increasing Sub. The results are signi�cantly improved
in the extended version of the SG-1 protocol, which maintains close-to-optimum super-peer sets in
experiments with churn and fully-optimised sets in the absence of churn.

SOLE generates mainly suboptimal super-peer sets, as it elects super-peers based on peer DHT
identi�ers and does not take into account peer capacity. Similarly, in SPChord, the generated super-
peer sets are largely suboptimal, since the election is based not only on peer capacity values but also
on peer positions in the DHT overlay, as previously discussed. The topology adjustment algorithm in
SPChord clearly improves the quality of super-peers.

In H-DHT, the fraction of optimum super-peers does not change signi�cantly between the exper-
iments and is close to 60% in both experiments with churn and without churn. This stems from the
fact that each super-peer in H-DHT is elected independently in its peer group, and peers located in
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di�erent groups are not compared. This simpli�es the election process, but does not produce optimum
super-peer sets at the global system level.

Figure 5.5 shows the average super-peer capacity in the compared systems. The standard error in
the results is high, due to the skewed distribution of peer capacity. In particular, Pareto distributions
with a shape of k = 2 have an unbounded variance. In order to reduce the standard error and increase
the experiment repeatability, the maximum capacity in all experiments is limited to 500, i.e., 50 times
the mean.

The results shown in Figure 5.5 are consistent with the super-peer optimality shown in Figure 5.3.
Systems with higher fractions of optimum super-peers have also a higher average super-peer capacity.

5.3.3.3 Super-Peer Sessions

In order to get more insight into the election algorithms, this section analyses the super-peer session
lengths in the evaluated systems. A super-peer session starts when a peer is promoted to a super-peer,
and ends either when a super-peer leaves the system or is demoted to a client. Thus, the average
super-peer leave rate is de�ned as

L =
1
T

T∑
t=1

Lt

Mt
(5.10)

where Lt is the number of super-peers that leave the system at time t, and Mt is the total number of
super-peers at time t. Similarly, the average super-peer demote rate is de�ned as

Dem =
1
T

T∑
t=1

Demt

Mt
(5.11)

where Demt is the number of super-peers demoted to clients at time step t.
Figure 5.6 shows the average durations of super-peer sessions in the compared systems. Similar

to Figure 5.5, the standard error is high due to the skewed peer session distribution. In SG-1, super-
peer sessions are extremely short, since all peers join the system as super-peers, and are in most
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cases demoted to clients within just few time steps. In SG-1-�x, super-peer session are longer, since
peers can join the system as clients, but the average super-peer session is still short compared with the
other systems. This results from two facts. First, joining peers, as well as clients that are disconnected
from super-peers, are often unable to discover new super-peers, since the underloaded neighbour sets
often contain outdated peer entries, i.e., peers that do not have any free capacity, are not super-peer
anymore, or have already left the system. Moreover, super-peer sessions are frequently terminated
when super-peers are swapped and replaced with higher-capacity clients.

The SG-1 paper [124] suggests that super-peer stability can be improved by allowing peers to
change their status in an initial period, when joining the system or searching for a super-peer, and
assuming that a super-peer is created only if the peer's status does not change for a �xed number of
algorithm rounds, ts. This approach is evaluated and compared with the other systems in Figure 5.6.
It is labelled SG-1-delay for the original SG-1 algorithm and SG-1-�x-delay for the extended SG-1
protocol, and the ts parameter is set to 10. As expected, the average super-peer session duration is
signi�cantly increased in the new measurement method.

Overall, SOLE, H-DHT, SPChord and SG-1 with delayed super-peer election have comparable
super-peer session durations, but are all outperformed by gradient topologies. This is further analysed
in Figure 5.7, which shows the average super-peer leave rate and demote rate in the evaluated systems.
The super-peer leave rate is nearly identical in all systems, and is equal to the overall system churn
rate, since super-peers are elected exclusively based on their capacity in the considered experiments.
However, the frequency of swappings between super-peers and clients (i.e., super-peer demote rate)
varies considerably between the systems. SG-1 and SG-1-�x are not shown in Figure 5.7 for clarity
reasons, since the super-peer demote rates in these systems are more than an order of magnitude
higher than the corresponding rates in the other systems. The gradient topologies show a signi�cant
advantage over the other systems as they have the lowest rate of switches between super-peers and
clients. The �gure also shows the cost of the topology adjustment algorithm in SPChord. The average
rate of super-peer swapping in SPChord is twice higher compared to SPChord*. As a consequence,
super-peers in SPChord have twice shorter sessions compared to SPChord*.

5.3.4 Stability Maximisation

This section describes a series of experiments that evaluate the ability of the compared systems to
maximise the stability of super-peers. To that end, each system is con�gured in such a way that super-
peers are elected based on their session characteristics rather than their capacity, as in the previous
section.

For each system, three super-peer election criteria are considered: uptime, expected session dura-
tion, and expected remaining session duration. The calculation of a peer's uptime is straight-forward.
For the estimation of the peer's session, three models are used. In the �rst model, a peer simply
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Figure 5.8: Super-peer election error.

obtains the exact session duration from the simulator, which corresponds to a situation where a peer
can predict its session length with a 100% certainty. In the second model, labelled �Error1� on the
graphs, a peer p calculates its expected session duration as

Ses′(p) = (1 + εp)Ses(p) (5.12)

where Ses(p) is the true session length of p, known by the simulator only, and εp is a parameter
randomly initialised by p at startup which follows a uniform distribution in the range from −1 to +1.
Thus, Ses′(p) is assigned randomly between 0 and 2Ses(p). In the third model, denoted �Error2�,
peer p calculates its expected session duration using formula

Ses′(p) =
1
2
Ses(p) +

1
2
Ses(x) (5.13)

where Ses(x) is a variable initialised by p which follows the same distribution as peer sessions in the
system, i.e., Pareto or Weibull, depending on the experiment. The remaining peer session is calculated
as the estimated session duration, Ses′, minus the current peer uptime.

In order to obtain accurate measurement results, due to the high variance of peer session times (in
Pareto distributions with a shape parameter of 2, the variance and standard deviation are in�nite),
each experiment is run for 10,000 time steps. However, due to the increased computational cost, the
number of peers in each experiment is reduced to 10,000. As previously, in SOLE, H-DHT, and TGT
with a top-K threshold, the desired super-peer ratio is 1

100 (i.e., the optimum number of super-peers is
K = 100), and in SG-1, SPChord, and TGT with a clients threshold, the super-peer set is created in
such a way that its total capacity is equal to or higher than the total number of clients in the system.
Moreover, in the gradient topology, the election strategy described in section 4.5.3 is followed, where
super-peers are never demoted to clients.

Figure 5.8 shows the relative error in the number of elected super-peers (i.e., Errs, as de�ned
above) in SOLE, H-DHT, and TGT, and the relative error in the super-peer capacity (Errc) in SG-1,
SPChord, and TGT. The experiments show that the choice of the super-peer election criteria has a
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Figure 5.9: Average super-peer session duration.

minor impact on the election error for most algorithms, and the results are generally consistent with
the previous measurements in section 5.3.3.1. In H-DHT, TGT, and SG-1, a better performance is
observed with the uptime-based and session-based super-peer election criteria, compared with the
capacity-based election, since with the former criteria the super-peer sets are more stable and hence
easier to manage.

Figure 5.9 shows the average super-peer session duration in the compared systems. Peer sessions
are modelled using a Pareto distribution, but similar results are obtained with Weibull distributions.
In all considered scenarios, TGT and H-DHT clearly outperform the other systems, achieving several
times longer average super-peer sessions. In SOLE, SPChord, and SG-1 (all versions), the choice
of super-peer election criteria has little impact on the super-peer stability, since in these systems the
super-peer sessions durations are mainly determined by the swappings between super-peers and clients.
In all examined scenarios, the topology adjustment algorithm in SPChord only reduces the average
super-peer session duration. Moreover, in SOLE, and to a large extent in SPChord, super-peers are
elected based on their position in the DHT overlay rather than their estimated stability, resulting in
short super-peer sessions.

In the gradient topology, top-K threshold appears to produce longer super-peer sessions than the
clients threshold. This results from the fact that the latter threshold elects more super-peers. When
peer utility is de�ned as capacity, the optimum super-peer ratio is approximately 1

100 , both in systems
with top-K and clients thresholds. As the utility function is changed from capacity to uptime, session,
or remaining session, the clients threshold requires a selection of more super-peers in order to achieve
a su�cient capacity to handle all clients in the system.

As expected, in all systems, the stability of super-peers is lowest when the election is based on
peer capacity. Uptime-based super-peer election comes second, in terms of super-peer stability, and
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Figure 5.10: Super-peer leave and demote rates.

the best results are obtained with session and remaining session based election, with little di�erence
between the last two methods.

The session and remaining session based election methods outperform the uptime-based and
capacity-based methods also in the experiments with peer session estimation error. Furthermore,
super-peer sessions are longer in experiments with the �rst error model (Error1) compared with the
second model (Error2). This can be explained in the following way. In the �rst model, if a peer p

has a short session Ses(p), then according to Formula 5.12, it must also have a low session estimation
Ses′(p), and hence is not likely to become a super-peer. In the second model, all peers in the system,
including those with the shortest sessions, have a non-zero chance of becoming super-peers, since
Ses′(p) is unbounded in Figure 5.13.

Figure 5.10 shows the super-peer leave rates and demote rates in the same set of experiments.
As previously, in the capacity-based super-peer election, the super-peer leave rate is approximately
equal for all systems. However, in experiments with the other super-peer election criteria (i.e., uptime,
session, and remaining session), the super-peer leave rate is signi�cantly lower, due to the selection of
more stable super-peers.

In SOLE, as previously, the super-peer leave and demote rates are exactly the same in all experi-
ments, since the election mechanism is based on peer DHT identi�ers. Similarly, in SPChord, only a
small reduction in the super-peer leave and demote rates are observed in the performed experiments,
as the system elects large numbers of suboptimal super-peers (i.e., low stability in this case).

In contrast, in TGT, H-DHT, and SG-1, the super-peer leave rate is greatly reduced in experiments
where super-peers are elected based on their expected session or remaining session, compared with
the capacity and uptime experiments. However, SG-1 su�ers from a relatively high frequency of
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Figure 5.11: Average peer degree.
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Figure 5.12: Average peer out-degree.

super-peer demotions, which overall causes that the average super-peer sessions in SG-1 are short. In
particular, in SG-1 where super-peers are elected based on their remaining sessions, super-peer leave
rate is almost zero, since nearly all super-peers are swapped with clients before they leave the system
(i.e., when their remaining session times are low). TGT and H-DHT generally outperform all other
systems, as they manage to minimise both the super-peer leave rates and demote rates.

5.3.5 Cost

The following section compares the cost of super-peer election in the evaluated systems. This cost is
measured as the peer degrees (i.e., the number of neighbours maintained by peers) and the number
of messages generated by peers per time step.

5.3.5.1 Peer Degrees

The system topology, T , is an undirected graph (V,E), where V is the set of peers in the system,
and E is the set of edges determined by the peer neighbourhood sets. In most algorithms described
in this thesis, the neighbourhood model is symmetric, however, some algorithms, such as Newscast,
are based on an asymmetric neighbourhood model. In order to introduce a common notation and
evaluation metrics for all systems, (p, q) ∈ E if either q ∈ Np or p ∈ Nq.

Moreover, for each type of neighbour subsets, S, a sub-topology TS = (V,ES) is de�ned, such that
(p, q) ∈ ES if q ∈ Sp or p ∈ Sq, where Sp and Sq are neighbourhood subsets maintained by peers p

and q. The degree of a peer p in a sub-topology TS is de�ned as the number of edges that connect to
peer p in TS . The out-degree of a peer p in a sub-topology TS is simply de�ned as the size of Sp.

Figure 5.11 shows the average peer degree in the system overlay and generated sub-overlays in each
of the evaluated systems. SG-1 has a clearly highest (over four times) average peer degree compared
with the other systems, which is a consequence of the fact that every peer in SG-1 participates in three
Newscast instances, i.e., connected, superpeers, and underloaded. Conversely, in H-DHT and SPChord,
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the average peer degree is many times lower compared with the other systems, since a large majority of
peers in these two systems, i.e., all clients, maintain only one connection to a super-peer. This reduces
the average number of connections per peer to about two in H-DHT and four in SPChord (almost
identical result is obtained for SPChord*). In SOLE, where all peers participate in a global DHT
overlay, the overall number of connections is signi�cantly higher (about 40), and is mainly determined
by the peer �nger tables.

In TGT, an average peer participates in one Newscast overlay, and maintains two connections
in the tree set (one outgoing and one incoming). In a Newscast overlay, a peer has on average 20
outgoing connections (30 in the original SG-1 code), and hence the average degree in Newscast is
approximately 40 (60 for SG-1). In the presence of churn, the average degree gradually decreases, due
to the outdated entries in the Newscast neighbourhood sets.

If the Newscast sets in TGT are replaced with the random sets described in section 4.3.4, the
average peer degree is reduced from 37 to 12. This con�guration is labelled TGT* in Figure 5.11. The
random sets are generally more robust to topology partitioning, and hence require fewer neighbours.
Furthermore, if a gradient topology is generated using the successor and predecessor sets instead of
the tree sets (which is labelled GT in Figure 5.11), the average peer degree grows by about 10.

Figure 5.12 shows the average peer out-degree. Since the average peer out-degree must be equal
to the average peer in-degree in the system, the out-degree distribution is almost identical (scaled by
0.5) to the general peer degree distribution.

Figure 5.13 shows the relationship between peer degree and peer rank. The plot represents a
histogram with logarithmically growing bins. Each point (ri, di) in the plot is generated by calculating
the average peer degree, di, over all peers that belong to the i'th histogram bin, i.e., peers ranked
from ri to ri−1. The histogram is generated periodically during the experiment, and the values in
each histogram bin are averaged at the end of the simulation run.

The average peer degree does not exceed approximately 50 in most systems, with SG-1 being
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the only exception. In SG-1, each client maintains up to 60 connections to super-peers through the
superpeers and underloaded sets, and since the super-peer ratio is approximately 1

100 , the average
number of connections per super-peer is approximately 6,000. As the actual super-peer ratio is higher
than 1

100 , especially in the original SG-1 algorithm, where a large number of sub-optimal super-peers
is elected, the average super-peer degree is close to 2000 is SG-1 and 5000 in SG-1-�x.

In SOLE, the average peer degree does not change with peer rank, since all peers, clients and
super-peers, participate in a global DHT. This is di�erent in H-DHT and SPChord, where only the
super-peers maintain the DHT, and low-utility peers have a degree close to one, as they are connected
to super-peers only. Furthermore, the average degree of low-utility peers in SPChord* is higher
compared to SPChord and H-DHT, since SPChord* is more likely to elect low-utility (and hence
sub-optimal) super-peers.

In TGT, the average degree of low-utility peers is 36, as these peers participate in one Newscast
overlay and have only one tree connection. The average degree increases to 46 for peers ranked 10,000
and less, since each of these peers has 10 incoming tree connections. Moreover, the 100 highest-utility
peers have on average 56 connections, since they maintain additional utility successor and predecessor
sets for the rank estimation. In GT, all peers have approximately 45 neighbours, as they all participate
in a Newscast overlay and have utility successor and predecessor sets.

5.3.5.2 Messages

One of the most commonly used metrics for measuring the cost of a distributed algorithm, or a system
overhead, is the number of messages generated by a node per time step. This approach is also taken
in this thesis. Figure 5.14 shows the average number of messages generated by each algorithm running
at peers in the evaluated systems per time step. Similar to in-degrees and out-degrees, the average
number of messages received by peers is equal to the average number of messages sent by peers. Given
that each time step in the simulation represents 5 seconds of the real time, Figure 5.14 must be scaled
by a factor of 0.2 to obtain the numbers of messages generated by peers per second.

The algorithms considered in the comparison, and the corresponding message types, are neighbour
selection (speci�c to each system), connection handling (i.e., connect and disconnect messages in the
symmetric neighbourhood model), and super-peer election, which is again speci�c to each system, and
corresponds to aggregation in the gradient topology, clients set maintenance in SG-1, and super-peer
discovery using a DHT and client transfer in SOLE, H-DHT, and SPChord.

Similar to peer degree analysed in the previous section, the average number of messages generated
by a peer is lowest in H-DHT and SPChord, since the clients in these systems, which constitute a large
fraction of all peers, communicate with their super-peer only and generate very few messages. The
cost of the DHT maintenance is H-DHT and SPChord is nearly negligible, since the participation in
the DHT overlays is restricted to super-peer only. Interestingly, the overall message costs in SPChord
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Figure 5.15: Messages generated by a peer per
time step as a function of peer rank.

and SPChord* are almost equal. SPChord generates extra messages for the topology adjustment, but
elects fewer super-peers and thus reduces the DHT maintenance cost.

SOLE incurs a much higher message cost compared to SPChord and H-DHT, since all peers in
SOLE run the DHT overlay. In SG-1, the overall message cost is dominated by the three instances of
Newscast run by all peers in the system. Each of these instances requires the exchange of 2 messages
per peer per time step.

In TGT, peers generate on average two messages for the maintenance of Newscast sets, two mes-
sages for the tree sets, and 3-4 messages for aggregation. In total, 7-8 messages per time step, which
is comparable to SG-1 and SOLE, but signi�cantly higher than the message cost in H-DHT and SP-
Chord. If the Newscast sets are replaced by the random sets in a TGT, which is labelled TGT* in
Figure 5.14, the overall message cost is signi�cantly increased, since the symmetric connection model
used in the random sets requires that peers exchange a pair of messages each time they set up or close
a connection. As the connections in the random set are constantly shu�ed, the maintenance cost of
random sets is signi�cantly higher compared with Newscast (by approximately 2 messages per time
step), and for that reason, in the remaining experiments in this thesis, peers use Newscast sets only
in the gradient topology.

A GT overlay is more expensive to create and maintain than a TGT, since each peer in a GT
participates in three neighbourhood sets, i.e., Newscast, successor, and predecessor, and generates on
average two messages per time step for each set. In TGT, only the 100 top-ranked peers construct the
successor and predecessor sets, and the cost of their maintenance is negligible compared to the total
number of messages generated in the system.

Figure 5.15 shows the relationship between peer rank and the number of generated messages in
each of the compared systems. The plots represent rank-based histograms, generated in a similar way
as in Figure 5.13. A more detailed analysis of messages generated in each of the evaluated systems is
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shown in Figure 5.16.

In SG-1, each peer incurs a constant cost of 6 messages per time step, required for the maintenance
of three Newscast overlays. Additionally, super-peer gossip and transfer clients between each other.
Super-peers with ranks close to 1,000 are most likely to pass their clients to higher-utility super-peers,
and hence have the highest connection and client transfer cost.

In SG-1-�x, in addition to the message exchanges required by the original SG-1 protocol, super-
peers periodically contact neighbours in their superpeer set and potentially swaps them with higher-
utility clients. Moreover, clients that join the system or become disconnected from their super-peers,
attempt to discover new super-peers using the underloaded overlay. Super-peers gossip more often
with each other in SG-1-�x compared with SG-1, since the underloaded sets in SG-1 contain a high
proportion of low-utility and temporary super-peers, and hence, permanent super-peers, ranked below
1,000, are less likely to discover gossip partners.

In SOLE, all peers participate in a global DHT and exchange two messages per time step for
the maintenance of their successor, predecessor, and �nger sets. The connection maintenance cost is
approximately one message per time step.

In H-DHT, in contrast to SOLE, only super-peers participate in the DHT and run the successor,
predecessor, and �nger sets. Additionally, super-peers broadcast client lists to all members in their
peer groups at every 10 time steps. Given the super-peer ratio of approximately 1

100 , the average
cost of the client list broadcast is approximately 10 messages per super-peer per time step. Due to
continuous connections and disconnections of clients, super-peers generate approximately 7 messages
per time step for the management of their connections with neighbours.

In SPChord, similar to H-DHT, super-peers maintain the DHT structures, and periodically broad-
cast client lists to all group members. Additionally, super-peers periodically contact their neighbours
in the DHT and occasionally merge or split their clusters or swap positions with higher-uptime clients.
Due to the frequent topology modi�cations, the overall connection handling cost is relatively high.

In TGT, every peer participates in a Newscast overlay, which requires an exchange of two messages
per time step, and runs the aggregation algorithm, which generates approximately 4 messages per time
step. Each peer ranked below 10,000 generates 11 messages per time step for the maintenance of the
tree sets, as it receives on average 10 neighbour exchange requests per time step from its children
and initiates on average one message exchange with the parent node. Additionally, the 100 top-rank
peers maintain utility successor and predecessors sets, for which they exchange 4 messages per time
step. Furthermore, peers with ranks close to 100 su�er a high connection handling cost, since they
frequently join and leave the successor and predecessor sub-overlays.

In GT, all peers participate in the successor, predecessor and Newscast overlays, and run the
aggregation algorithm, and hence, generate approximately 10 messages per time step.

Overall, the average message cost at super-peers varies between 7 and 30 messages per peer per
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(a) SG-1
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(b) SG-1-�x
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(c) H-DHT
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(d) SPChord
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Figure 5.16: Messages generated by a peer per time step in the compared systems.
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time step, and is comparable in all systems. Moreover, in all systems, super-peers generate more
messages per time step than clients, with the exception of SOLE and GT, where the message cost
is equal for all peers. H-DHT and SPChord achieve the lowest message cost per peer, since clients
in these systems maintain only single connections to their super-peers and rarely generate messages,
reducing the average message cost to approximately one message per peer in H-DHT and two messages
per peer in SPChord.

5.3.6 Summary

The evaluated systems have been compared in a series of experiments based on three general criteria:
super-peer set quality, stability, and cost. In the �rst set of experiments, described in section 5.3.3,
the systems are compared with respect to the average size, capacity, and optimality of elected super-
peer sets. The experiments show that only the TGTs (both with top-K and clients thresholds) and
systems with simple super-peer criteria (i.e., SOLE and H-DHT, which elect �xed numbers of super-
peers) manage to control the number of super-peers in the overlay, while SG-1 and SPChord elect
signi�cantly too many super-peers. Moreover, TGTs outperforms all other systems in terms of super-
peer optimality, and generate super-peer sets with the highest average capacity.

The second set of experiments, in section 5.3.4, evaluates the systems' ability to maximise the
average super-peer session duration. In these experiments, SOLE and SPChord achieve poor results,
since they elect low-stability super-peers and frequently swap super-peers with clients. In SG-1 and
SG-1-�x, super-peers rarely depart from the system, but the average super-peer session is short due
to frequent switches between super-peers and clients. TGT and H-DHT greatly outperform all other
systems, as they manage to minimise both the super-peer leave rates and demote rates.

In the last set of experiments, in section 5.3.5, the systems are compared with respect to the
maintenance cost, measured as the number of established connections and generated messages. In
summary, TGTs are cheaper than SG-1, comparable to SOLE (and hence to Chord), and more ex-
pensive than H-DHT and SPChord, in terms of peer connections. Moreover, TGTs are comparable
to SG-1 and SOLE in terms of generated messages, and more expensive than H-DHT and SPChord.
The cost at super-peers is comparable in all systems, and can be estimated as being between 13 and
27 messages per time step and approximately 50 connections, with the exception of SOLE, where all
peers, including super-peers, generate only 7 messages per time step.

Overall, it can be concluded that TGTs elect better-quality and higher-stability super-peer sets,
and have similar maintenance cost, compared with the state-of-the-art systems.
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Figure 5.17: Peer out-degree versus peer rank
in a TGT.
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Figure 5.18: Peer degree versus peer rank in a
TGT.

5.4 Gradient Topology Analysis

This section provides an in-depth analysis of the gradient topology and the algorithms introduced in
chapter 4, based on a series of experiments conducted in the P2P simulator. The main purpose of this
section is to verify that the proposed algorithms produce topologies and super-peer sets that have the
properties theoretically derived in chapter 3.

The section is organised as follows. The �rst experiments evaluate the neighbour selection al-
gorithms through an analysis of the generated topologies, where the studied properties include peer
degrees, average path lengths, distances to high-utility peers, and parent ranks. The second set of
experiments evaluates the accuracy of the aggregation and rank estimation algorithms in a variety of
system con�gurations. The third set of experiments focuses on the performance of gradient search,
both in GTs and TGTs, and measures the average number of message hops and failure rates in gra-
dient search. Finally, the last set of experiments examine the behaviour of the super-peer election
algorithms in systems where the utility of peers and the total system load are dynamically changed
at each time step.

5.4.1 Degree

One of the most basic topology properties is the average peer degree. In the gradient topology, the
degree of a peer p is de�ned as the size of Np, and the out-degree of peer p is de�ned as the number
of neighbours q ∈ Np such that Refp(q) > 0. Analogously, peer degrees and out-degrees are de�ned
in sub-overlays generated by individual neighbour selection algorithms running at peers.

Figure 5.17 shows the average peer out-degree in a TGT and its sub-topologies as a function of
peer rank. As in the previous experiments, each point plotted in the �gure represents one bin of a
rank-based histogram. As expected, the �gure con�rms that every peer has one neighbour in the tree
set (i.e., parent), and 20 neighbours in the Newscast set. Additionally, each peer ranked below 100
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Figure 5.20: Peer degree distribution in three
variants of gradient topologies.

has 5 neighbours in its successor set and 3 neighbour in the predecessor set.

Figure 5.18 shows the average peer degree in the same experiment. For most peers, the degree
is simply twice as high as the out-degree. However, in the tree sub-topology, peers ranked above
approximately 10,000 have no incoming connections (both their degree and out-degree are equal to
one), while peers ranked below 10,000 have only one outgoing connection to a parent and 10 incoming
connections from lower-rank peers.

Figure 5.19 shows the average peer degree in four di�erent TGTs with branching factors of 2, 4,
8 and 16. In all systems, the degree of high-ranked (i.e., low-utility) peers is approximately 35-40,
mainly due to Newscast sets, while for the high-utility peers, the degrees is increased by B incoming
tree connections, as expected in a TGT.

Figure 5.20 shows the average peer degree distribution in a GT, and two TGTs with Newscast and
random sets (the latter is labelled TGT*). Each plotted point represents the total number of peers in
the system that have a given degree. The obtained degree distributions resemble normal distributions,
where majority of peers have respectively around 12, 32, and 42 neighbours in TGT*, TGT, and GT.
The variance in the degree distribution in TGT* is much smaller compared with GT and TGT, since
the random set management algorithm actively removes neighbours when the set size grows above 10
and adds neighbours when the set size is below 10.

Similar peer degree distributions are obtained in TGTs with di�erent utility metrics and branching
factors, as shown in Figures 5.21 and 5.22. In all con�gurations, the fraction of peers that have more
than 80 neighbours is marginal. Hence, it can be concluded that the neighbour selection algorithm
balances the load between peers and the probability that a peer becomes overloaded by incoming
connections is very low.
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Figure 5.21: Peer degree distribution in TGTs
with di�erent utility metrics.
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Figure 5.22: Peer degree distribution in TGTs
with di�erent branching factors.

5.4.2 Parent Ranks

In an idealised TGT, as de�ned in chapter 3, a peer p is connected with a parent peer ranked bR(p)
B c.

However, in a dynamic system, it is extremely unlikely that all peers strictly adhere to this rule, and
minor deviations are likely to occur in the system topology. In order to measure the extent to which
the system topology diverges from the ideal TGT structure, the parent error is de�ned for each peer
p as

Errp(p) =

∣∣∣bR(p)
B c −R(par(p))

∣∣∣
bR(p)

B c
(5.14)

where par(p) is the current parent peer of p. For peers that do not have any parent, Errp is de�ned
as one. Figure 5.23 shows the average parent error as a function of peer rank in topologies generated
using four di�erent utility metrics. The divergence between R(par(p)) and bR(p)

B c is partly caused
by the peer's inability to discover and stay connected with the desired neighbours in a dynamically
changing system, and partly by the inaccuracy of the peer's estimation of its own and its neighbours'
ranks. In all performed experiments, Errp is below 20%. As shown later, this level of Errp does not
have a signi�cant impact on the topology properties.

5.4.3 Path Lengths

In order to get more insight into the structure of the generated topologies, a number of experiments are
performed that measure the average path lengths between high utility peers. The following de�nitions
and metrics are used. The system topology, T , is de�ned as an undirected graph with vertices V and
edges E determined by the peer neighbour sets, as previously. D(p, q) is de�ned as the shortest path
length between peers p and q in the system topology T , and analogously, DS(p, q) is de�ned as the
shortest path length between p and q in a sub-topology TS . The average path length in the topology
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Figure 5.23: Parent error versus peer rank.

T , denoted Apl(V ), is the average value of D(p, q) over all possible pairs of peers (p, q)

Apl(V ) =

∑
p,q∈V D(p, q)
|V |2 . (5.15)

The average path length Apl(V ) can be calculated using the Dijkstra shortest path algorithm at
an O(|V |2d) cost, where d is the average peer degree in V . However, in the experiments described
in thesis, with |V | = 100, 000 and d ≈ 50, this would require performing over 100, 000, 000, 000 basic
operations.

This cost can be reduced by selecting a random subset V ′ from V and approximating Apl(V ) with

Apl
′
(V ) =

∑
p∈V ′

∑
q∈V D(p, q)

|V ′| · |V | . (5.16)

Such approximation requires running the Dijkstra algorithm for |V ′| peers, and hence, incurs the
computational cost of O(|V ′||V |d) operations. In practice, |V ′| = 100 generates accurate results.

In the unlikely case where two peers p and q are not connected in the system topology, the distance
D(p, q) is not de�ned and the (p, q) pair is omitted in the calculation of Apl′. The number of such
pairs is extremely low in the reported experiments and such pairs only occur when a peer becomes
isolated and needs to be re-bootstrapped. With the exception of isolated peers, topology partitions
were never observed in any of the experiments described in this thesis.

In order to investigate the correlation between peer utility and the path lengths in the topology, Vr

is de�ned as a subset of peers in the system, Vr ⊂ V , that contains r highest utility peers. Formally,

Vr = {p ∈ V | R(p) ≥ r}. (5.17)

The average path length between the r highest utility peers is then given by Apl(Vr). Similarly,
AplS(Vr) is de�ned as the average path length between peers in Vr in a sub-topology TS .

Figure 5.24 shows the average path lengths between peers in Vr sets in a Newscast overlay and in
four TGT sub-overlays generated by tree sets with branching factors of 2, 4, 8 and 16. As expected, the
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Figure 5.24: Average path lengths in TGT
sub-topologies.
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Figure 5.25: Average path lengths in tree sub-
overlays in TGTs with di�erent utility metrics.

Apl′(Vr) function for Newscast is almost �at with r, indicating a low correlation between peer utility
and Newscast topologies (which are generated randomly). In the tree-based overlays, the average
path length in Vr grows linearly with logB(r). Therefore, the experiment con�rms that the generated
topologies have a gradient structure, where the highest utility peers are strongly clustered, and lower
utility peers are located at gradually increasing distances from them.

Figure 5.25 shows the average path length in �ve tree-based sub-overlays created in TGTs with
di�erent utility functions. Apart from the previously used utility metrics, based on peer capacity,
uptime, expected session, and remaining session, a �fth system is considered (labelled �DynCapacity�)
where the capacity of peers changes over time. In this system, each peer p is assigned a constant max-
imum capacity, C∗(p), and its current capacity value, C(p), is calculated at each time step according
to formula

C(p) = C∗(p) · (1− ε) (5.18)

where ε is randomly chosen between 0 and εmax. The ε parameter models the interference of external,
unpredictable applications, which consume resources at peer p. In Figure 5.25, εmax is set to 0.1, so
that the capacity of a peer changes by up 10% at each time step. In all experiments, the average
path length between peers grows linearly with logB(r), indicating a high robustness of the neighbour
selection algorithm to the utility dynamism.

5.4.4 Distance to Core

Another approach to analyse the structure of the generated topologies is to measure the distance from
each peer p to the highest utility peer in the system, p0, denoted Dt(p, p0) at time step t. Figure 5.26
shows the average value of Dt(p, p0) as a function of peer rank in Newscast and tree sub-topologies
in TGTs with branching factors of 2, 4, and 10. As previously, the graph generated as a histogram,
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Figure 5.26: Distance to the highest-utility
peer in TGT sub-topologies.
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Figure 5.27: Distance to the highest-utility
peer in TGTs with di�erent utility metrics.

where each point (ri, di) represents one histogram bin, where

di =
1
T

T∑
t=1

∑
p∈V ′i,r

Dt(p, p0)

|V ′
i,t|

(5.19)

and V ′
i,t is the set of peers ranked between ri and ri−1 at time t

V ′
i,t = {p : ri−1 < R(p) ≤ ri} (5.20)

and V ′
0,t = {po}.

In the Newscast overlay, all peers have an average distance to p0 approximately equal to 4. This
is expected, as the Newscast topology is random and is constantly shu�ed by peers. In the other
overlays, a clear tree structure is visible, with peers gradually increasing their distance from p0, the
root of the tree. In particular, for B = 10, peers ranked from 1 to 9 are directly connected to p0, peers
ranked between 10 and 99 are two overlay hops away from p0, peers ranked between 100 and 999 are
three hops away, peers ranked between 1,000 and 9,999 are four hops away, and so on.

Moreover, the distance to p0 in the tree-based overlays grows above 4 for low-utility peers, and is
higher than the distance to p0 in the Newscast overlay. This leads to an interesting observation that
Newscast connections can be e�ciently used for routing by low utility peers, since random neighbours
in Newscast sets at these peers are statistically closer to p0 than the parents in the tree sets.

Figure 5.27 shows the average distance to p0 over all neighbour subsets in �ve di�erent TGTs with
B = 10. The utility function does not have a strong impact on the system topology, and a clear
tree structure is visible even when peer utility (de�ned as capacity) randomly �uctuates at each time
step, which shows that the neighbour selection algorithm is resilient to varied system con�gurations.
Again, the distance to p0 does not grow above 4, since peers ranked between 10,000 and 100,000 use
their Newscast links to �nd the shortest paths to p0.
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di�erent methods.
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Figure 5.29: Relative estimation error in three
rank estimation methods.

5.4.5 Rank Estimation

The following section evaluates peer rank estimation algorithms. The relative error in the rank esti-
mation at peer p is de�ned as

Errr(p) =
|R(p)−Rp(p)|

R(p)
(5.21)

where Rp(p) is the peer's estimate of its own rank. Figures 5.28 and 5.29 show the average rank
estimate, and the average rank estimation error, obtained using the three rank estimation methods
described in 4.6, i.e., based on utility successors, utility histograms, and mixed. Both graphs are
generated as histograms, based on the peers' true ranks, in the same fashion as in the previous
sections.

The successor-based method is relatively accurate for high-utility peers, but provides poor rank
estimates for low utility peers. Due to the error propagation between peers, as discussed in section
4.6.2, Errr increases together with the peer's rank, and as a consequence, peers ranked 100,000
estimate their rank as approximately 4,000.

The histogram-based method, conversely, generates relatively good estimations of peer ranks for
low-utility peers, but is signi�cantly inaccurate for high-utility peers. This is caused by the fact that
the last histogram bins (those with the highest-utility peers) contain fewer peer samples, and an
approximation based on them is statistically less accurate. Furthermore, some of the highest-utility
peers may fall outside of the histogram range.

The mixed method combines the advantages of both approaches, achieving the best e�ciency and
overall estimation error below 20%.

Figure 5.30 shows the relative rank estimation error for the mixed method in a TGT with churn
and without churn. In both systems, an increase in the estimation error is observed for the lowest-
utility peers, which is caused by the linear interpolation of peer utility histograms. Even with perfectly
accurate aggregates, as in the case of no churn, the interpolation produces a distortion. Furthermore,
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Figure 5.30: Rank estimation error with and
without churn.
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Figure 5.31: Rank estimation error with dif-
ferent peer utility metrics.

a certain estimation error is produced by the successor-based method (used by peers ranked from 0
to 100) due to churn.

Figure 5.31 shows the relative rank estimation error for the mixed method in experiments with
di�erent peer utility functions. The error pattern varies between the systems, due to the di�erent peer
utility distributions, but it does not exceed 20% in any experiment. As already shown in the previous
sections, peers are able to generate gradient topologies with desired properties despite the reported
rank estimation error.

5.4.6 Aggregation

The experiments described in this section evaluate the accuracy of the aggregation algorithm. The
following notation and metrics are used. Variables Np,t, Avgp,t, Hp,t and Hc

p,t denote the current
estimations at peer p of the current system size, N , average peer utility, Avgt, utility histogram, Ht,
and capacity histogram Hc

t , respectively, at time step t. The average relative error in the system size
approximation, calculated over all peers and all time steps, is de�ned as

ErrN =
1
T

T∑
t=1

1
N

∑
p

|Np,t −N |
N

. (5.22)

where T is the experiment duration. Similarly, the average error in utility histogram estimation,
ErrH , is de�ned as

ErrH =
1
T

T∑
t=1

1
N

∑
p

d(Ht,Hp,t) (5.23)

where d is a histogram distance function de�ned as

d(Ht,Hp,t) =
1
B

B−1∑

i=0

|Ht(i)−Hp,t(i)|
Ht(i)

. (5.24)

Analogously, ErrAvg is de�ned as the average error in the average utility estimation and ErrHc is
de�ned as the average error in the capacity histogram estimation.
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Figure 5.32: Aggregation error in various system models.

Figure 5.32 shows ErrAvg, ErrN , ErrH and ErrHc in a number of experiments with varied system
con�gurations. In the experiments with no churn and no message loss, the aggregation algorithm
produces almost perfectly accurate system property approximations, with the approximation error
below 0.001%. A similarly low approximation error is observed in the con�guration with no churn,
where request messages are lost with probability Ploss, but response messages are always delivered
(labelled �ReqLoss�). This result is consistent with the expectations outlined in section 4.4.7.

In the system where both request and response messages can fail, but still in the absence of
churn (�ReqRespLoss�), the approximation error reaches approximately 15%. In a system with no
message loss, but a positive churn rate (�Churn�), the observed error is lower, approximately 10% for
the histograms and 3% for N . The Erra error does not exceed 0.3% in all experiments, since the
approximation of a system average does not introduce any systematic bias, such as an aggregation
weight loss, and the errors incurred by peers in individual gossip exchanges cancel out.

The experiment labelled �LeaveProc� evaluates the performance of aggregation when peers perform
the leave procedure described in section 4.4.6. The procedure signi�cantly improves the accuracy of
N estimation, as it prevents aggregation weight loss. However, it does not signi�cantly a�ect the error
in the histogram estimation, since the population of peer changes during the execution of aggregation,
unlike N , which is constant, and when an aggregation instance ends, the produced results are diverge
from the current system state. As it is hard to estimate how many peers in a realistic P2P system
perform a leave procedure when disconnecting from the network, in all experiments reported in this
thesis, it is conservatively assumed that no peers execute the procedure when leaving.

An additional experiment, labelled �RandomSet�, compares the performance of aggregation in
topologies generated using random sets instead of Newscast sets, which are used in all other exper-
iments. The approximation errors produced in the two systems are similar, indicating that both
topologies are suitable for running aggregation algorithms.
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Figure 5.33: Aggregation error versus instance
TTL.
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Figure 5.34: Aggregation error versus gossip
fan-out.

The last experiment included in Figure 5.32, labelled �ChurnReqLoss�, shows the aggregation error
in a TGT with the settings that are used by default in all other sections, i.e., with churn, request loss,
aggregation over Newscast topologies, and no leave procedure.

There are three parameters that control the cost and accuracy of aggregation, which are the
frequency of instance initiation, F , an instance time-to-live, TTL, and the aggregation fan-out, G.
Additionally, the histogram resolution, b, impacts on the accuracy of utility distribution approxima-
tion.

When F is decreased, peers perform aggregation more frequently, and have more up-to-date esti-
mations of the system properties. However, in the experiments described in this thesis, the system
size and the probability distributions of peer utility and capacity are constant, and hence, running
aggregation more often does not a�ect the results. At the same time, when F is decreased, the average
message size increases, as an average peer participates in a higher number of aggregation instances.

Similarly, when the TTL parameter is increased, aggregation instances last longer, peers store
more local tuples, and aggregation messages become larger. Moreover, as shown in Figure 5.33, when
aggregation instances run longer, they su�er higher weight loss, and as a consequence, generate less
accurate results. Conversely, if TTL is low, the aggregation instances are too short to produce high
quality results, since a certain number of algorithm steps is required to distribute the weight and
average out the tuples stored by peers. The optimum performance is achieved for TTL ≈ 60, and this
value for TTL is used in the experiments described in this thesis. The frequency parameter, F , is also
set to 60 so that nodes run on average one aggregation instance at a time.

Further, the performance of aggregation can be improved by increasing the fan-out factor, G.
As discussed in section 4.4.8, a higher fan-out setting requires that peers exchange more messages
when they participate in aggregation instances, but it also shortens the duration of the instances.
As a consequence, high fan-out does not increase the average number of messages sent by a peer per
time step, as long as TTL

F ·G < 1, according to formula 4.29. However, when instances are shorter, the
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Figure 5.35: Gradient search hop counts in
TGTs with variable sizes.
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Figure 5.36: Gradient search hop counts in
TGTs with di�erent branching factors.

aggregation results are more accurate, since fewer peers join and leave the system when an aggregation
instance is running, and the system is less likely to change during the instance execution. This can be
con�rmed experimentally, as shown in Figure 5.34. Based on these results, G is set to 4 in the other
experiments described in this thesis.

Finally, the accuracy of utility distribution approximation can be improved by increasing the
histogram resolution, b. Clearly, the message size grows linearly with the number of histogram bins.
The actual accuracy improvement depends on the shape of the distribution function and the histogram
interpolation method. In this thesis, linear interpolation is used and histograms have 200 bins. This
way, aggregation messages have approximately 1.6kB, and would �t well into UDP packets, assuming
this protocol was used for the aggregation implementation.

5.4.7 Gradient Search

This section describes a series of experiments that evaluate the performance of gradient search. In
each experiment, K super-peers are elected using a top-K threshold, and messages are routed using
gradient search from random peers in the topology to super-peers. The experiments measure the
average number of edges (also called overlay hops) a message traverses before it is delivered to a
super-peer, and the average message loss rate.

5.4.7.1 Overlay Hops

Figure 5.35 shows the average number of message hops in gradient search as a function of the system
size (N) and the number of super-peers (K) in a TGT with a branching factor of 10. Furthermore,
Figure 5.36 shows the average number of message hops as a function of the branching factor (B) and
the number of super-peers (K) in a TGT with 100,000 peers. Both �gures demonstrate the average
number of message hops grows proportionally to logB N and decreases proportionally to logB K. Thus,
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the experiment empirically con�rms Theorem 3.3, which states that every peer in TGT is connected
to a super-peer through at most O(logB

N
K ) overlay edges.

Figure 5.37 shows the average number of message hops when routed using gradient search in �ve
TGTs with di�erent utility metrics, where N = 100, 000 and B = 10. As expected (see Figures
5.25 and 5.27 for comparison), the choice of utility metric does not a�ect signi�cantly the structure
of the topology and the performance of routing. The only noticeable di�erence in gradient search
performance is found in the experiment with dynamic and unpredictable peer utility (�DynCapacity�),
which puts more stress on the neighbour selection algorithm.

5.4.7.2 Loss Rate

In the simplest message failure model, where each message transmission has a �xed failure probability,
the average message loss rate is simply proportional to the number of message hops. However, in the
proportional model, where the failure probability for a message transmission from peer p to q is
proportional to 1

Ses(q) , as explained in section 5.5, the choice of the peer utility metric has a strong
impact on the overall message loss rate in a gradient topology, as shown in Figure 5.38.

In the capacity-based TGT, the utility metric and the system topology are independent from
peer stability, and hence message loss rate grows linearly with the message path length, as in the
simple message model. In the uptime-based TGT, message loss rate is greatly reduced compared with
the capacity-based TGT, since messages are gradually forwarded to peers with increasingly higher
uptimes, and hence more stable and less likely to lose messages. In the TGT with session-based
utility metrics, the average message loss rate is even lower, and is nearly constant with K. In these
systems, a message forwarded over two or more overlay hops reaches high-stability peers for which the
probability of message loss is extremely low.
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Figure 5.41: Message loss rate in GT.

5.4.7.3 GT versus TGT

In the following set of experiments, TGTs are compared with GTs based on the performance of gradient
search. Figures 5.39 and 5.40 show the average number of message hops, and the message loss rate,
respectively, in two topologies generated using a capacity-based utility metric and 100,000 peers. With
the exception of the con�guration where the super-peer ratio is equal to 1

10 , where super-peer can be
trivially discovered using random sets, TGTs clearly outperform GTs, both in terms of message hops
and loss. GTs exhibit particularly poor performance when the super-peer ratio is below 1

100 .

Figure 5.41 shows in more detail the message loss in GT. In gradient search, a message is lost
either when is exceeds its time-to-live (TTL) or when a failure occurs when it is forwarded. As shown
in Figure 5.41, GT with a low number of super-peers (K ≤ 10) su�ers a very high message loss rate
(more than 80%), since peers are unable to discover the super-peers and discard messages as they
exceed their TTL. In TGTs, due to the topology structure, gradient search has a guaranteed cost of
O(log N) overlay hops, and if there is only one super-peer in the system, messages are delivered to
this super-peer and TTL is exceeded in a marginal number of cases.
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Figure 5.42: Total super-peer leave rate as a
function of ∆.
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Figure 5.43: Super-peer leave rate for ε = 0.1.

5.4.8 Two-Threshold Election

The following experiments evaluate the stability of super-peers, and the super-peer election error, in
a system where peers dynamically change their utility. The capacity of a peer p is calculated at each
time step as C(p) = C∗(p) · (1− ε), as in section 5.4.3, where C∗(p) is the maximum peer capacity, ε

is randomly chosen between 0 and εmax, and εmax is parameter that models the in�uence of external
applications on the peer's capacity. In order to reduce the number of switches between super-peers and
clients, super-peers are elected using two top-K utility thresholds, following the approach in outlined
in section 4.5.2.

Each experiment is set up with two parameters: εmax, labelled �Epsilon� on the graphs, which
determines the amplitude of peer capacity change, and ∆, denoted �Delta� on the graphs, which
determines the distance between the super-peer election thresholds. The upper and lower thresholds,
tu and tl, are calculated in such a way that the number of super-peers is between K and K −∆, i.e.,
D(tu) = K and D(tl) = K−∆, where D is a peer utility distribution. The system size is N = 100, 000

and K = 1, 000.

Figure 5.42 shows the average rate of super-peer switches with clients as a function of ∆. The
experiment demonstrates that the rate of switches sharply decreases as ∆ is increased. However, it
does not converge to zero, but rather to a constant positive value, since some super-peers always leave
the system due to churn, and are continuously replaced by ordinary peers.

Hence, super-peers are swapped with clients for two reasons. First, as super-peers leave the system,
ordinary peers are promoted in order to maintain K super-peers in the system. Second, since the utility
of individual peers and the super-peer election thresholds constantly �uctuate, some super-peers are
occasionally demoted to clients, and clients are occasionally promoted to super-peers.

Figure 5.43 shows the average rates of super-peer demotions and departures in a system with
εmax = 0.1. The rate of super-peer departures does not depend on ∆ and is determined by the overall
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Figure 5.45: Fraction of optimal super-peers
as a function of ∆.

system churn. However, the experiment shows that the number of super-peer demotions, caused by
peer utility and threshold �uctuations, can be reduced to a negligible level by using an appropriate
∆.

Figure 5.44 shows the impact of ∆ on the super-peer election error, Errs, as de�ned in section
5.3.3.1. As expected, the error grows together with ∆, since a larger gap between tu and tl relaxes the
constraints on the number of super-peers in the system. Similarly, the fraction of globally optimum
super-peers, Opt, de�ned in section 5.3.3.2, decreases as ∆ is increased, as shown in Figure 5.45.
Hence, ∆ enables a trade-o� between restricting the constraints on the super-peers set and reducing
the frequency of switches between super-peers and clients.

5.4.9 Load-Based Election

The �nal set of experiments evaluates the load-based approach to super-peer election described in
section 3.1.1. In these experiments, at each time step, each peer generates a request, or more generally,
a unit of load, with probability Preq. From the central limit theorem (law of big numbers), the total
load in the system, L, produced at a time step follows a normal distribution with a mean of N · Preq

and a variance of N · Preq(1− Preq).

The requests are routed to super-peers and distributed between them. For the purpose of these
experiments, each super-peer receives a fraction of load proportional to its capacity. Load-balancing
strategies are not in evaluated in this study. Peer capacity values follow a Pareto distribution with
a mean of 1 and shape parameter of 2, and it is assumed that a super-peer p cannot handle more
requests than it capacity value, C(p).

Super-peers are elected using a load-based threshold, de�ned by formula 3.8 in section 3.1.1. In
the performed experiments, three values for the super-peer utilisation parameters, W , are considered:
1 (full utilisation), 0.9, and 0.75.
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Figure 5.47: Total load and super-peer capac-
ity versus average request probability.

Figure 5.46 shows the relationship between the request probability Preq and the total number of
super-peers in the system. It can be seen that the system adapts the super-peer set to the increasing
load. The number of super-peers initially grows slowly, as high capacity super-peers are available, but
the growth rate gradually increases as Preq becomes higher, and eventually all peers in the system
become super-peers. Moreover, the growth in the number of super-peer is faster for lower values of
W , as expected.

Figure 5.47 shows the total system load and super-peer capacity in the same set of experiments.
The load in the system increases proportionally to the request probability, as predicted, and the total
super-peer capacity scales linearly with the system load. For W < 1, the total super-peer capacity
exceeds the total system load. Thus, the system achieves its objective and adjusts the super-peer set
according to the existing demand. For W = 1, the super-peer capacity is marginally below L, due to
the aggregation error (weight loss) and histogram interpolation error.

5.4.10 Summary

This section describes a series of experiments that examine whether the algorithms described in chapter
4 generate topologies and super-peer sets that have the properties derived analytically in chapter 3.

The �rst set of experiments, presented in sections 5.4.1 to 5.4.4, evaluate the neighbour selection
algorithms through an analysis of the average path lengths and distances between peers in the gener-
ated topologies. The results clearly show that the created topologies have a tree-based structure. In
particular, the distance from a peer, p, to the highest utility peer in the system, p0, grows logarithmi-
cally with p's rank, where the logarithm base is equal to the topology branching factor, B, as expected
in Theorem 3.2. Moreover, the neighbour selection algorithms manage to construct and maintain such
tree-based topologies in a variety of system con�gurations, with di�erent branching factors and peer
utility metrics. The analysis also shows that peers have low degrees, and the fractions of peers that
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become overloaded by excessive neighbour connections are negligible.

A further set of experiments in section 5.4.7 evaluate gradient search, and show that the generated
topologies can be e�ciently exploited for routing. As predicted in Theorem 3.3, gradient search
delivers a message from a peer to a super-peer in O(logB

N
K ) overlay hops, where N is the system

size, K is the number of super-peers, and B is the branching factor, which is veri�ed in a number of
experiments with varied N , K, B, and peer utility metrics. Moreover, gradient search signi�cantly
reduces message loss rate in topologies where the peer utility metric is based on peer stability.

Another set of experiments, described in section 5.4.6, evaluates the aggregation algorithm and
shows that it approximates global system properties with an average relative error below approximately
15%. The algorithm generally conforms to the expectations outlined in sections 4.4.6, 4.4.7, and 4.4.8,
and its performance can be tuned using parameters such as instance frequency, F , instance duration,
TTL, and gossip fan-out, G.

The rank estimation algorithms are evaluated in section 5.4.5. As expected in section 4.6.3, the
average error produced by the mixed method, based on aggregation and utility successor sets, is the
lowest, and is below 20%. Moreover, such a level of rank estimation error does not prevent peers from
generating tree-based gradient topologies.

The thesis also introduces three super-peers election techniques for gradient topologies, i.e., based
on single-thresholds, double-thresholds, and with no super-peer demotion. The �rst of these techniques
is evaluated in section 5.3.3, which shows that a single-threshold election allows a precise restriction
on the number of super-peers and generates close-to-optimum super-peer sets. The second election
method, with no super-peer demotions, is evaluated in section 5.3.4, which con�rms that this election
technique entirely eliminates switches between super-peers and clients and maximises the average
super-peer session length. The two-threshold election method is evaluated in section 5.4.8, which
shows that the use of two thresholds enables a trade-o� between imposing constraints on the number
and utility of super-peers and the reducing the frequency of switches between super-peers and clients.

5.5 Simulator Validation

This section validates the custom-built simulator, which has been used to generate the results presented
in this thesis. The validation is performed by running two identical sets of experiments in the custom
simulator and PeerSim. In the latter, the event-driven mode is enabled and node communication
is asynchronous. In order to determine message latencies, PeerSim is fed with a trace containing
nearly 3 million wide-area network latency measurements generated by the King tool [69]. Due to the
computational cost, the system size is reduced to 10,000 nodes, but all other simulation parameters
are set in the same way as in the previous sections, as summarised in Table 5.6.

Figures 5.48, 5.49 and 5.50 show the average path lengths, distances to the highest utility peers,
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and peer degrees, respectively, in TGT topologies generated in PeerSim and the custom simulator.
Remarkably, the results generated by the two simulators overlap almost ideally in most experiments.
This empirically con�rms the hypothesis stated in section 5.2.2 that message latencies observed on
the Internet do not have a signi�cant impact on the neighbour selection algorithms described in this
thesis. In both simulators, the algorithms generate nearly identical topologies.

Figure 5.51 shows the aggregation error for a number of system properties in PeerSim and the
custom simulator. As expected, message latencies on the order of 100 milliseconds (typically experi-
enced on the Internet) only marginally reduce the accuracy of aggregation, where the gossip period is
5 seconds. As a consequence, the super-peer election algorithm generates almost the same results in
PeerSim and the custom simulator.

Finally, Figures 5.52 and 5.53 show the average number of overlay hops and failure rates for
messages routed using gradient search in PeerSim and the custom simulator. The number of super-
peers is denoted by K. Again, both simulators produce similar results in most experiments. The only
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exception is the experiment for K = 1, where PeerSim signi�cantly di�ers from the custom simulator.
Higher message latency in PeerSim causes relatively more frequent and severe deviations in the TGT
structure, which in turn impact on the routing performance. Overall, the experiments described in
this section demonstrate that the custom-built simulator generates consistent results with PeerSim.

5.6 Application Example

This section demonstrates the practical viability of gradient topologies by applying the experimental
results, derived in the previous sections, to a sample application scenario. The selected application
scenario is based on the storage system described in section 3.3. In order to evaluate the impact of
a gradient topology, two variations of this system are considered: a traditional DHT overlay, where
all nodes participate in the data storage, and a system based on a gradient topology, where only the
super-peers store the data and run the DHT protocol. For consistency with the previous experiments,
it is assumed that peer properties follow a Pareto distribution, mean peer session duration is equal to
µ = 360 time steps, mean peer downstream bandwidth capacity is equal to µc = 10, and the ratio of
super-peers to the system size is equal to 1

100 . The storage system is run by N peers and is used to
permanently store D bytes of data.

5.6.1 Traditional DHT Storage System

In a traditional DHT, in order to access a data item, a user �rst discovers the node that hosts the
requested item and then communicates directly with this node. Thus, the discovery operation requires
O(log N) message transmissions, and the average download rate from the hosting node, assuming a
low contention ratio, is approximately equal to µc.

The average peer departure rate in the DHT is equal to 1
µ . If the data stored in the DHT is
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not replicated, the average rate at which the data is lost is proportional to the average peer leave
rate, and is equal to D

µ . In a DHT with k-replication, i.e., where each data item is replicated at k

independent nodes, the probability of a data item loss can be estimated in the following way. Let tr

be the minimum amount of time needed to transfer a data item between two nodes, tr ¿ µ. A data
item is lost if all k nodes that host it leave the system during tr time units. Hence, the probability
for a data item loss during time tr can be estimated as ( tr

µ )k.
Finally, k-replication requires a certain maintenance cost. Each time a node leaves, its data needs

to be restored on another node using the remaining replicas. Since nodes store in total kD data
and leave the system at an average rate of 1

µ , the average background tra�c needed to maintain
k-replication is equal to kD

µ bytes per time unit.

5.6.2 Gradient Topology Storage System

In a storage system with a tree-based gradient topology, the cost of data discovery is comparable to a
traditional DHT. As shown in section 3.3, and con�rmed in the experiments in section 5.4.7, a DHT
running on top of a TGT requires O(log N) message transmissions to route a messages to a selected
data item.

However, by selecting the highest utility peers for storing data, a gradient topology can improve
data access performance and reliability. In a gradient topology, where utility is de�ned as peer
bandwidth capacity, the average super-peer bandwidth capacity is equal to 10µc = 100, as predicted
by Theorem 3.1 and veri�ed empirically in Figure 5.5. Thus, the average data item download rate in
a gradient topology, assuming a low system utilisation, is 10 times faster compared to a traditional
DHT.

In should be noted that a tenfold improvement in super-peer bandwidth capacity is not possible
with the other evaluated super-peer systems. Due to the reasons discussed in the previous sections,
these algorithms elect suboptimal super-peer sets, and the ratio between the mean super-peer band-
width capacity and mean peer capacity µc is only 5 for SPChord and between 8 and 9 for H-DHT and
SG-1 (see Figure 5.5). SOLE does not improve super-peer capacity over µc due to its simple election
criteria.

Super-peers can also be used to reduce the data loss rate and maintenance cost (in case of replica-
tion) if peer utility is based on peer stability. Depending on the heuristic used to estimate peer session
duration, super-peer sessions in a gradient topology are from 3 times (in case of an uptime-based
utility function) to 10 times (accurate knowledge of peer session durations) higher than the average
peer session µ = 360, as shown in Figure 5.9. Thus, in the gradient topology, the average super-peer
leave rate is between 1

3µ and 1
10µ , and is 3 to 10 times lower compared to the overall peer leave rate in

a traditional DHT overlay. If no data replication scheme is applied, the average data loss rate in the
gradient topology is then up to 10 times lower (i.e., D

10µ ) compared to the traditional DHT. Moreover,
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in a gradient topology with data k-replication at super-peers, the probability of a data item loss rate
during interval tr can be estimated as ( tr

10µ )k, and is up to 10k times lower compared to the traditional
DHT.

At the same time, gradient topology reduces the replication overhead. A super-peer stores on
average kD 100

N data. During a short interval t, approximately t
10µ

N
100 super-peers leave the system,

and hence, k tD
10µ data must be transferred between the remaining replicas. This implies that the

average maintenance tra�c is kD
10µ bytes per time unit, and hence is 10 times lower compared to a

traditional DHT.
Finally, it should be noted that the other evaluated super-peer systems achieve signi�cantly lower

super-peer stability due to suboptimum super-peer election and swappings between super-peers and
clients. In particular, even with a perfect knowledge of peer session times, H-DHT extends super-peer
session only 7 times compared to the mean µ, SG-1 (with all optimisations enabled) generates super-
peer session with lengths merely equal to µ (i.e., there is no improvement in data stability), and both
SOLE and SPChord signi�cantly reduce super-peer session lengths compared to the mean µ.

5.6.3 Summary

This section evaluates the performance bene�ts of using a gradient topology in a DHT-based storage
system. By increasing the utility of data storing peers, the gradient topology improves both the
data access performance and reliability. In particular, while keeping the same O(log N) latency and
message cost for data discovery, it improves the data download rate and data loss probability by an
order of magnitude compared to a traditional P2P storage system. Moreover, due to the increased data
stability, the gradient topology also reduces the replica maintenance cost. Comparable performance
improvements cannot be achieved using other known super-peer election techniques.
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Conclusion

This chapter summarises the main contributions of the thesis, and outlines directions for future work.

6.1 Accomplishments

This thesis introduces a novel approach to dealing with heterogeneity in P2P systems using gradient
topologies. A gradient topology has a fundamental property that for any given utility threshold, all
peers with utility above this threshold are located close to each other, in terms of overlay hops, and
form a connected sub-overlay. Such high-utility peers can be then exploited by higher-level applications
in a similar fashion as super-peers in traditional P2P systems. Furthermore, the information captured
in the topology enables a search heuristic, called gradient search, that enables e�cient discovery of
high-utility peers.

The thesis introduces a subclass of gradient topologies, called tree-based gradient topologies, which
have a logarithmic diameter and allow routing messages from an ordinary peer to a super-peer in
O(logB

N
K ) overlay hops, where N is the system size, K is the number of super-peers, and B is a

constant system parameter called branching factor. TGTs are simple and easy to generate. A node
in a TGT maintains only one link to a parent node and a few randomly links to other nodes.

TGTs have been designed to support a wide class of large-scale P2P applications, such as storage
systems, name services, �le-sharing applications, and semantic registries, where the system perfor-
mance and reliability can be improved by assigning relevant system tasks, such as hosting system
data, running services, or participating in certain distributed algorithms, to the most stable and best
performing peers. The thesis describes two such proof-of-concept applications.

TGTs can be generated by a periodic neighbour selection algorithm executed at each peer. The
thesis describes the design of such an algorithm and evaluates it using a custom-built P2P simulator.
The evaluation con�rms that the algorithm constructs topologies that have the desired tree-based
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structure.

The thesis describes a number of super-peer election thresholds, which impose di�erent constraints
on the super-peers sets. In particular, the thesis introduces a top-K threshold that elects a �xed
number of super-peers, a proportional threshold that maintains a �xed ratio of super-peers to clients,
a capacity threshold that restricts the total super-peer capacity, and other thresholds that allow more
sophisticated super-peer management. All thresholds are calculated using a decentralised aggregation
algorithm which approximates global system properties, such as the system size, total load, and
peer utility distribution. The thesis also describes super-peers election techniques, based on utility
thresholds, that restrict the number of super-peers in the overlay and reduce the frequency of switches
between super-peers and clients.

In a range of experiments, it is shown that gradient topologies, together with aggregation-based
election techniques, generate better-quality and higher-stability super-peer sets, at a similar main-
tenance cost, compared to state-of-the-art super-peer systems. Moreover, it is shown that gradient
topologies o�er more �exible and more powerful super-peer election mechanisms compared with the
existing P2P systems, and thus extend the current state-of-the-art knowledge on heterogeneous P2P
systems.

Even though the thesis describes gradient topology as a single and uni�ed architecture, its indi-
vidual components can be treated as separate contributions, and can be used as independent building
blocks in other P2P systems. In particular, the aggregation algorithm can be used as a generic tool for
estimating global properties in decentralised systems. Through a distribution function approximation,
the algorithm can address classic problems such node ranking [126] and slicing [79, 56, 66, 127].

Similarly, the election strategies described in this thesis can be applied separately from gradient
topologies. For example, a system with a random P2P topology can elect super-peers by aggregating
peer utility information and calculating utility thresholds using the described algorithms. The infor-
mation about such elected super-peers can be then disseminated to ordinary peers using a gossip-based
broadcast algorithm [54, 80].

Nevertheless, gradient topologies complement well with these components, since they guarantee
that super-peers, elected using utility thresholds, are well connected with each other and can be
discovered using gradient search. While the election thresholds can be changed, peers in the gradient
topology do not need to be migrated or re-connected. Moreover, in a natural way, gradient topologies
can support multiple super-peer sets by assigning multiple utility thresholds.

6.2 Future Work

This section brie�y outlines a sample of promising research topics that can be identi�ed based on the
work described in this thesis.

172



Chapter 6. Conclusion

6.2.1 Security

One of the most important aspects for future work on gradient topologies is security. Nearly all
techniques and algorithms developed in this thesis assume a fully collaborative P2P environment.
This section outlines the main challenges, and points out potential approaches, when designing a
security model for gradient topologies.

The main security threat in a gradient topology is posed by malicious peers which may take harmful
actions against other peers. A secure P2P system should be able to function correctly (without a
signi�cant performance degradation) despite an existence of such malicious peers. In the context of
this thesis, this means that peers should be able to construct a gradient topology, elect appropriate
super-peers, and enable access to these super-peers.

Utility

The most critical information in a gradient topology is that about peer utility. By providing fake
utility status, a malicious peer may change its position in the topology and become a super-peer.
A secure gradient topology must then provide a mechanism for peers to verify the utility of their
neighbours. For example, peers may give each other feedback in order to assess their neighbours'
utility. Such techniques, based on the notion of trust in a decentralised system, are described in
[86, 193, 28]. Another potential approach is to compute, in a decentralised fashion, the reputation
for each node, and discard peers that have a low reputation (i.e., provide fake utility information)
[61, 47, 138, 72].

Aggregation

Another vulnerable component in the gradient topology, and perhaps the most challenging to secure,
is the aggregation algorithm. By disseminating fake information, a malicious node can in�uence the
global aggregation outcome, and this way, manipulate the super-peer election and node ranking (and
hence topology construction). A malicious peer can also intentionally increase the periodicity of its
aggregation algorithm in order to have a greater impact on the aggregation result. Moreover, a peer
can initiate a large number of aggregation instances in order to increase the system overhead and
potentially cause a denial of service.

The non-malicious nodes can protect themselves from these attacks in a number of di�erent ways.
First, peers may try to identify and discard fake responses from their neighbours based on the knowl-
edge from the current and previous aggregation instances. As each instance gradually converges over
time, peers can re�ne their knowledge on the expected instance outcome and detect outliers (i.e.,
forged responses). Second, peers may cache the responses received from their neighbours and com-
pare them with the �nal aggregation outcome. Misbehaving peer can then be identi�ed and isolated.
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Again, reputation management techniques [61, 47, 138, 72] can be used to black-list malicious nodes.
Similarly, peers can correlate the information on gossip exchanges in order to detect nodes that in-
crease their periodicity or maliciously initiate large numbers of instances. This may require using
cryptographic mechanisms to trace node identity. Finally, peers can impose restrictions on which
nodes can initiate aggregation instances, for example based on their reputation scores.

Routing

A common threat in a P2P system is a refusal to route messages by certain peers. Malicious peers may
also want to route messages in an illegal way and tamper with forwarded messages. In the gradient
topology, this may prevent access from clients to super-peers. A simple way to alleviate this problem
is to randomise the routing algorithm and allow message retransmissions in case of failures. Assuming
that malicious peers constitute only a small fraction of all peers in the system, this approach allows
each peer, with a high probability, to successfully route messages. Techniques to randomise gradient
search are described below in section 6.2.3.

Neighbour Selection

Malicious nodes in a gradient topology may also refuse to participate in the neighbour selection algo-
rithm, or to provide illegal neighbour candidates to gossipping peers. Since the gossipping algorithm
is highly randomised and each peer veri�es its new neighbours through direct connections (symmetric
neighbourhood model), the neighbour selection algorithm may be already able to tolerate a certain
fraction of malicious peers.

Super-Peer Election

A special situation occurs when a malicious peer becomes a super-peer. However, since the super-peers
functionality is entirely application-speci�c, it is di�cult to asses in the general case the impact of a
malicious super-peers on the system performance. For the same reason, incentives for peers to serve
as super-peers can only be considered in a particular application scenario.

6.2.2 Multiple Utility Functions

Another interesting research issue is whether a single gradient topology can support multiple ap-
plications with di�erent utility requirements. Without loss of generality, two applications can be
considered, A and B, where each application introduces its own utility function, UA and UB , respec-
tively. In such a scenario, the goal of a gradient topology is to elect super-peers with high values of
UA for use by application A, and super-peers with high values of UB for use by application B.
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Figure 6.1: Two applications sharing a common gradient topology.

A naive approach to this problem is to generate two independent gradient overlays, using the two
utility functions and the algorithms described in this thesis. However, this would double the system
overhead. A better approach is to combine the two utility functions into one general utility function
U and to generate one gradient overlay shared by both applications. A convenient way of de�ning
such a common utility function is

U(p) = max(UA(p), UB(p)). (6.1)

This has the advantage that both peers with high value of UA and peers with high value of UB have
high utility U , and hence are located in the core and can be discovered using gradient search. The
only change required in the routing algorithm is that a search message, once delivered to a high utility
peer p in the core, may have to be forwarded to a di�erent peer in the core, since p either has a high
value UA or UB . This last step, however, with a high probability can be achieved in one hop, since
peers in the core are well-connected.

The proposed approach is illustrated in Figure 6.1. A sample gradient topology supports two
applications, A and B. Ordinary peers X, Y , and Z perform gradient search to discover super-peers
for application B. Peers X and Y locate an �A-type� super-peer in the core and their request is
forwarded to a �B-type� super-peer. Peer Z discovers a �B-type� super-peer directly.

The super-peer election thresholds for the two applications, tA and tB , can be estimated using the
aggregation algorithm, where the histograms for both UA and UB are generated through the same
aggregation instance in order to reduce the number of generated messages. However, a potential
problem may appear if the two utility functions, UA and UB , have signi�cantly di�erent value ranges,
since the composed utility U may be dominated by one of the utility functions. For example, if UA

has values within range [0..1] and UB has values in range [1..100], then U is essentially equal to UB ,
and searching for peers with high UA becomes ine�cient.
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One way to mitigate this problem is to de�ne the two utility functions in such a way that both
have the same value ranges, e.g., [0..1]. However, this requires system-wide knowledge about peers.
Simple transformations or projections onto a �xed interval, for example using a sigmoid function, do
not �x the problem, since if one function has higher values than the other function, the same relation
holds when the transformation has been applied. A better approach is to scale one of the two utility
functions using the current values of the super-peer election thresholds, for example in the following
way

U(p) = max(
tB
tA

UA(p), UB(p)). (6.2)

This has the advantage that the core of the gradient topology, determined by the threshold tB ,
contains peers with UA above tA and peers with UB above tB , since if U(p) > tB for a peer p then
either UA(p) > tA or UB(p) > tB .

6.2.3 Multi-Path Routing

The gradient search algorithm has the drawback that it always forwards messages along the same
paths, unless the topology changes, which may lead to an imbalance in the routed tra�c between
peers. This is especially probable in the presence of �heavy hitters�, i.e., peers generating large
amounts of tra�c, as commonly seen in P2P systems [173]. Moreover, faulty or non-cooperating
peers, as well as broken peer connections, may prevent peers from reaching their super-peers.

These problems can be addressed by allowing multi-path routing. In a TGT where peers maintain
multiple parent neighbours (i.e., the size of the tree set is greater than one), a message can be forwarded
to a parent neighbour chosen randomly or using a round-robin strategy.

A more general approach, suitable for any gradient topology, would be to route messages proba-
bilistically. In Boltzmann routing, peer p selects neighbour q for the next-hop destination for a routed
message with a probability Pp(q) calculated using the Boltzmann exploration formula [182]

Pp(q) =
e(Up(q)/T )

∑
r∈Np

e(Up(r)/T )
(6.3)

where T is a parameter called the temperature that determines the �greediness� of the algorithm.
Setting T close to zero causes the algorithm to be more greedy and deterministic, as in gradient
search, while if T grows to in�nity, all neighbours are selected with equal probability as in random
walking. Thus, the temperature enables a trade-o� between exploitative (and deterministic) routing
of messages towards high-utility peers, and random exploration that spreads the tra�c more equally
between peers.
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6.2.4 Histograms Adaptation

The thesis describes a relatively simple approach to the construction of utility histograms and utility
distribution approximation, where all histograms bins have equal width and evenly divide the interval
between the minimum and maximum peer utility. The accuracy of the peer utility distribution approx-
imation may be potentially improved, if the bins in the histogram, and hence the interpolation points,
are dynamically adjusted by peers at system runtime. In particular, is may be desirable to increase
the density of bins close to the super-peer election thresholds. Potentially, the choice of the histogram
bins can be dictated by the interpolation method, especially if a more sophisticated approach, for
example based on cubic splines, is used instead of the linear interpolation. A proactive adjustment of
histogram bins may also eliminate the need for utility successor sets in the rank estimation algorithm.

6.2.5 Locality-Aware Gradient Topologies

Gradient topologies have been designed in this thesis with one main intention: to allow a P2P system
to exploit its highest utility peers. The next research question then is whether gradient topologies can
be built based on two constraints: peer utility and location. In a locality-aware gradient topology, a
peer selects its neighbours based on not only their utility, but also their distance, de�ned according to
some metric. Potentially, node locations and distances can be determined using a virtual coordinate
system, such as GNP [136] and Vivaldi [45]. The goal of the neighbour selection algorithm is to
construct a topology that preserves its general gradient structure (in particular, supports gradient
search and maintains super-peer connectivity), but also preferentially connects nodes that are close to
each other. This way, the topology can improve the performance of gradient search and allows peers
to discover super-peers in their proximity.

6.2.6 Higher-Level Applications

The thesis describes the design of two proof-of-concept applications for gradient topologies, a storage
system and a name service. These two applications are described only brie�y, and a signi�cant amount
of work is required to fully specify them, validate, and implement. The proposed design can be then
treated as a starting point for a wider research topic.

As shown through a theoretical analysis and simulation experiments, the properties of gradient
topologies are promising and suggest that gradient topologies can be successfully applied to many dif-
ferent large-scale and heterogeneous P2P systems. Supporting such systems is ultimately the farthest-
reaching goal of this thesis.
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