
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Uniqueness Typing for Resource Management
in Message-Passing Concurrency

Technical Appendix

Edsko de Vries, Adrian Francalanza and Matthew Hennessy

Computer Science Department Technical Report TCD-CS-2010-03
Foundations and Methods Research Group April 30, 2010

Uniqueness Typing for Resource Management in
Message-Passing Concurrency

Technical Appendix

Edsko de Vries∗, Adrian Francalanza and Matthew Hennessy∗

April 30, 2010

Abstract
This technical appendix contains the soundness proofs of the lemmas in Uniqueness Typing for Resource

Management in Message-Passing Concurrency published at Linearity 2009 in Coimbra, Portugal. It is meant
as a companion to that paper and is not written to be read independently. We prove soundness for a simplified
language (without explicit allocation and deallocation) first. The semantics of this language is the standard pi-
calculus semantics. Even in this simpler language the proof is non-trivial due to the support for strong update on
unique channels, and the proof for the simpler language is easier to understand. We then extend the proof to the
full language with explicit allocation and deallocation of channels.

1 Preliminaries

1.1 Properties of splitting
Lemma 1 (Type splitting). If [~T]a = [~T1]a1 ◦ [~T2]a2 then

1. The original channel is not affine, and the split channels are not (immediately) unique:

a ≺s 1 • ≺s a1 • ≺s a2

2. The split channels both carry objects of the same type:

~T1 = ~T2

3. Both split types are subtypes of the original:

[~T]a �s [~T1]a1 [~T]a �s [~T2]a2

4. Only one of the split channels can be unique:

if a1 ≺s 1 and a2 ≺s 1 then a1 = a2 = ω

Proof. Immediate from the definition of (◦).

1.2 Consistency
To define consistency, we define a relation that models the effect of the structural operations on the environment:
(�) is the smallest preorder that satisfies

T = T1 ◦ T2

Γ, u : T � Γ, u : T1, u : T2 Γ, u : T � Γ

T1 ≺s T2

Γ, u : T1 � Γ, u : T2 Γ, u : [~T1]• � Γ, u : [~T2]•

∗The financial support of SFI is gratefully acknowledged.

1

Lemma 2. The following typing rule is admissible.

Γ′ ` P Γ � Γ′
TSTR

Γ ` P

Proof. By definition of (�).

We can now formally define consistency.

Definition 3 (Consistency). An environment Γ′ is consistent if and only if there exists an environment Γ such that
Γ � Γ′ and Γ is a partial function.

Corollary 4.

If Γ is consistent and Γ � Γ′ then Γ′ is consistent.

Proof. Follows from transitivity of (�).

Lemma 5. If Γ ` P and Γ is consistent, then there exists an Γ′ such that Γ′ ` P and Γ′ is a partial function.

Proof. Follows from the definition of consistency and Lemma 2 (TSTR).

1.3 Properties of Consistency
Lemma 6 ((�) does not increase domains).

If c ∈ dom(Γ′) and Γ � Γ′ then c ∈ dom(Γ)

Lemma 7 (Consistency and Uniqueness).

If Γ, c : [
−→
T]• is consistent then c 6∈ dom(Γ)

Lemma 8 (Consistency and Uniqueness (cont.)).

If Γ is consistent and Γ � Γ′, c : [
−→
T]• then ∃Γ′′ such that Γ = Γ′′, c : [

−→
T′]• and Γ′′ � Γ′

Lemma 9. If u /∈ dom(Γ) and

Γ, u : [~T′]a � Γ, u : [~T]a1 , u : [~T]a2

then

Γ, u : [~T′]a � Γ, u : [~T]a1−1, u : [~T]a2−1

Proof. We must have
u : [~T′]a � u : [~T]a

′

where
[~T]a

′
= [~T]a

′
1 ◦ [~T]a

′
2

and
[~T]a

′
1 �s [~T]a1 , [~T]a

′
2 �s [~T]a2

By Lemma 1, we have
a′ ≺s 1 • ≺s a′1 �s a1 • ≺s a′2 �s a2

which means that the conclusion of the lemma is defined. Moreover, we know that a′ �s a′1 and a′ �s a′2. We take
cases on a1, a2.

• a1 = a2 = 1. Follows from weakening.

• a1 = 1, a2 = ω. We have to show that a′ �s a2 − 1 = a2; immediate.

2

• a1 = ω, a2 = ω. Trivial.

• a1 = 1, a2 = (•, i + 1). We have a′1 �s a1 and a′2 �s a2. By inversion on type splitting, this means that
a′ = (•, j) with j ≤ i; a′ �s a2 − 1 = (•, i) follows.

The missing cases are symmetric.

Lemma 10. Every sub-environment of a consistent environment is consistent.

Proof. Suppose that Γ = Γ1, Γ2 and Γ is consistent: there exists a partial function Γ′ such that Γ′ � Γ. But Γ � Γ1
because of weakening; hence, Γ′ � Γ1 because of transitivity, and Γ1 is therefore consistent.

1.4 Minimality
We introduce another property of environments which will be useful in proofs.

Definition 1 (Minimality). An environment Γ is minimal iff

• Γ is consistent, and

• If u : [~T](•,i) ∈ Γ or u : [~T]ω ∈ Γ, this is the only assumption about u in Γ.

For example, Γ1 = u : [~T](•,1), u : [~T]1 is consistent but not minimal: it is not minimal in the sense that there is a
smaller environment Γ′1 = u : [~T]• such that Γ′1 � Γ1 and Γ′1 effectively gives us the same information as Γ1.

Conversely, Γ2 = u : [~T]1, u : [~T]1 is minimal, because although there is a smaller environment Γ′2 such that
Γ′2 � Γ2 (for instance, u : [~T]ω), all such environments include a strictly stronger assumption about u.

Minimality generalizes the property of being a partial function; it would coincide with being a partial function
if we generalize affinity.

Lemma 11. Any partial function Γ is minimal.

Proof. Trivial.

Minimality has the following property which we will need in the subterm typing lemma.

Lemma 12. If Γ � Γ1, Γ2 and Γ is minimal, then there exist minimal environments Γ′1, Γ′2 such that Γ � Γ′1, Γ′2 and
Γ′1 � Γ1 and Γ′2 � Γ2.

Proof. We consider three cases for Γ1 (Γ2 is dealt with analogously).

1. The only assumptions about u in Γ1 are affine. In that case, Γ1 is minimal and we are done.

2. We have u : [~T]ω ∈ Γ1. Since Γ1 must be consistent (Lemma 10), all assumptions about u in Γ1 must
be unrestricted or affine. Remove all these assumptions, leaving only the assumption u : [~T]ω. Since this
new environment can be obtained by applying weakening (Γ1 � Γ′1) we have Γ � (Γ1, Γ2) � (Γ′1, Γ2) by
transitivity, and Γ′1 � Γ1 by splitting and subtyping.

3. We have u : [~T](•,i) in Γ1. Because of consistency all other assumptions about u in Γ1 and Γ2 must be affine.
Suppose that there are j such assumptions in Γ1 and k such assumptions in Γ2 (where j + k ≤ i). This means
that we must have u : [~T](•,i

′) ∈ Γ with i′ ≤ i− (j + k). Leave Γ2 as is (because it is already minimal with
respect to u), but remove all j affine assumptions about u from Γ1 and leave only u : [~T](•,i−j). We know
that Γ can be split as these two new environments Γ1, Γ′2 because

u : [~T]i
′
� u : [~T](•,i−j), u : [~T]1, · · · , u : [~T]1︸ ︷︷ ︸

k

and moreover Γ′1 � Γ1 because

u : [~T]i−j � u : [~T](•,i), u : [~T]1, · · · , u : [~T]1︸ ︷︷ ︸
j

3

Minimality allows us to prove the following proposition which is a generalization of Lemma 9 and is essential
for the communication case of the subject reduction proof.

Proposition 13. If Γ is minimal and

Γ � Γ′, u : [~T]a1 , u : [~T]a2

then

Γ � Γ′, u : [~T]a1−1, u : [~T]a2−1

Proof. If a1, a2 are only affine or unrestricted, the lemma follows from weakening (unrestricted assumptions are
not affected by the decrement operation). The only interesting case is where one of a1 = (•, i) and a2 = 1 (or vice
versa). Since Γ is minimal, this means that we must have that the two assumptions were contracted from a single
assumption

Γ � Γ′, u : [~T](•,i−1) � Γ′, u : [~T](•,i), u : [~T]1

and the property follows because

Γ � Γ′, u : [~T]a1−1, u : [~T]a2−1 = Γ′, u : [~T](•,i−1)

1.5 Inversion
In between every two applications of logical rules there are zero or more applications of the structural rules (sub-
typing, revision and contraction). We can use the relation (�) to conveniently state inversion principles. For
example,

Lemma 14 (Inversion for output). If Γ ` c!~d.P then

Γ � Γ′, u : [~T]a,
−→
d : T

and Γ′, u : [~T]a−1 ` P.

The inversion lemmas for the other constructs are similar.

2 Soundness of the Language without Allocation and Deallocation
In this section we consider soundness for the language without allocation and deallocation, i.e., of the type system
when applied to the standard pi-calculus, with the standard pi-calculus reduction relation, structural equivalence,
etc (we do not reproduce these definitions here; they can be found in any textbook on the pi-calculus). The
type system is the one described in the paper, excluding obviously the rules for allocation and deallocation. The
soundness proof is non-trivial because we still support strong update (revision), which makes essential use of
uniqueness typing.

2.1 Safety
Lemma 15 (Preservation of types under structural equivalence). If Γ ` P and P ≡ P′ then Γ ` P′.

Proof. Since the typing relation is not sensitive to the order of the assumptions in the typing environment, re-
ordering parallel processes and extrusion do not affect typing. Removing or adding nil processes and adding or
removing a restriction around the nil process do not affect typing because nil can be typed in any environment.
Finally, alpha-renaming bound names does not affect typing because those bound names are not in the (original)
typing environment.

Lemma 16 (Subterm typing). If Γ ` C[P] and Γ is minimal then there exists a minimal Γ′ such that Γ′ ` P, and
for every P′ such that Γ′ ` P′, Γ ` C[P′].

Proof. By induction on C.

4

• Case C = []. Immediate (take Γ′ = Γ).

• Case C = Q‖C ′. By inversion on the typing relation1,

Γ1 ` Q Γ2 ` C ′[P]
============== Γ � Γ1, Γ2

Γ ` Q‖C ′[P]

By Lemma 12 there exist minimal environments Γ′1, Γ′2 such that Γ � Γ′1, Γ′2 and Γ′1 � Γ1, Γ′2 � Γ2. By rule
TSTR (Lemma 2) we have that Γ′1 ` Q and Γ′2 ` C ′[P].

By the induction hypothesis at Γ′2 ` C ′[P] there exists a Γ′′ such that Γ′′ ` P and for every P′ such that
Γ′′ ` P′ we have Γ′2 ` C ′[P′]. Take Γ′ = Γ′′. The proof is completed by

Γ′1 ` Q Γ′2 ` C ′[P′]============== TPAR(Γ � Γ′1, Γ′2)Γ ` Q‖C ′[P′]

• Case C = C ′ ‖Q. Analogous.

• Case C = (νc)C ′. By inversion on the typing relation, we have

Γ1, c : T ` C ′[P]
========== Γ � Γ1
Γ ` (νc)C ′[P]

We therefore also have
Γ1, c : T ` C ′[P]

TSTR
Γ, c : T ` C ′[P]

where Γ, c : T is minimal because by Barendregt we can assume that c /∈ dom(Γ) (effectively, this is saying
that there is no need to apply any of the structural rules before applying TRST).

By the induction hypothesis at Γ, c : T ` C ′[P], there exists a Γ′′ such that Γ′′ ` P and for all P′ such that
Γ′′ ` P we have Γ, c : T ` C ′[P]. Take Γ′ = Γ′′. The proof is completed by

Γ, c : T ` C ′[P′]
TREST

Γ ` (νc)C ′[P′]

Theorem 17 (Type safety). If Γ ` P and Γ is minimal then P 9err.

Proof. By induction on P
err
−→.

• Case
|~d| 6= |~x|

ECOM

c!~d.P ‖ c?~x.Q
err
−→

By inversion on Γ ` c!~d.P ‖ c?~x.Q we must have that Γ � Γ1, Γ2 where

Γ′1, c : [~T]a−1 ` P
=========== Γ1 � Γ′1, c : [~T]a,

−→
d : T

Γ1 ` c!~d.P

and

Γ′2, c : [~T′]a
′−1,
−−→
x : T′ ` Q

================ Γ2 � Γ′2, c : [~T′]a
′

Γ2 ` c?~x.Q

From the rules for input and output, we have that |~d| = |~T| and |~x| = |~T′|. Remains to show that ~T = ~T′,
which follows from Lemma 1.

1We use a double line to indicate an arbitrary (but finite) number of applications of the structural rules.

5

• Case
P ≡ P′ P′

err
−→

ESTR

P
err
−→

Since Γ ` P, by preservation of types under structural equivalence Γ ` P′, at which point we can apply the
induction hypothesis to complete the proof.

• Case
P

err
−→

C[P]
err
−→

Since Γ ` C[P], by the subterm typing lemma we know that there exists a minimal Γ′ ` P. The induction
hypothesis completes the proof.

Corollary 18 (Type safety for partial functions). If Γ ` P and Γ is a partial functions then P 9err.

Proof. Follows immediately from type safety since all partial functions are minimal.

2.2 Substitution
Lemma 19 (Process substitution). If Γ1, X :proc ` P and Γω

2 ` Q then Γ1, Γω
2 ` P{Q/X}.

Proof. By induction on P followed by inversion on the typing relation.

• Case nil. Immediate.

• Case
Γ′1, X :proc, a : T ` P
============== TREST
Γ1, X :proc ` (νa)P

where
Γ1, X :proc � Γ′1, X :proc

Induction hypothesis establishes the premise of

Γ′1, a : T, Γω
2 ` P{Q/X}

=============== TREST
Γ1, Γω

2 ` (νa)P{Q/X}

• Case
Γ′1, X :proc, u : [

−→
T]a−1 ` P

================== TOUT
Γ1, X :proc ` u!~v.P

where
Γ1, X :proc � Γ′1, X :proc, u : [

−→
T]a,
−→
v : T

The induction hypothesis gives us the premise of

Γ′1, u : [
−→
T]a−1, Γω

2 ` P{Q/X}
TOUT

Γ′1, u : [
−→
T]a,
−→
v : T, Γω

2 ` u!~v.P{Q/X}
TSTR

Γ1, Γω
2 ` u!~v.P{Q/X}

• Case
Γ′1, X :proc, u : [

−→
T]a−1,

−→
x : T ` P

====================== TIN
Γ1, X :proc ` u?~x.P

where
Γ1, X :proc � Γ′1, X :proc, u : [

−→
T]a

6

Induction hypothesis gives us the premise of

Γ′1, u : [
−→
T]a−1,

−→
x : T, Γω

2 ` P{Q/X}
TIN

Γ′1, u : [
−→
T]a, Γω

2 ` P{Q/X}
TSTR

Γ1, Γω
2 ` u?~x.P{Q/X}

• Case
Γa, X :proc ` Pa Γb, X :proc ` Pb

TPAR
Γ1, X :proc ` Pa ‖Pb

where
Γ1, X :proc � (Γa, X :proc), (Γb, X :proc)

(we only treat the case where X ∈ fv Pa ∪ fv Pb; the other cases are similar but easier).

We use the induction hypothesis twice to establish the premises of

Γa, Γω
2 ` Pa{Q/X} Γb, Γω

2 ` Pb{Q/X}
TPAR

Γa, Γω
2 , Γb, Γω

2 ` (Pa{Q/X})‖ (Pb{Q/X})
TSTR

Γ1, Γω
2 ` (Pa{Q/X})‖ (Pb{Q/X})

Crucially, we take advantage of the fact that Γω � Γω, Γω for any unrestricted environment Γω.

• Case
Γω

1 , X :proc, Y :proc ` P
================= TREC

Γ1, X :proc ` rec Y.P
where

Γ1, X :proc � (Γω
1 , X :proc)

(again, we treat only the case where X ∈ fv P; we assume without loss of generality that X 6= Y).

The induction hypothesis establishes the premise of

Γω
1 , Y :proc, Γω

2 ` P{Q/X}
TREC

Γω
1 , Γω

2 ` rec Y.P{Q/X}
TSTR

Γ1, Γω
2 ` rec Y.P{Q/X}

• Case

TVAR
Γ′1, X :proc, Y :proc ` Y

where
Γ1, X :proc � Γ′1, X :proc, Y :proc

If X = Y, weakening establishes the premise of

Γ′1, Y :proc, Γω
2 ` Q

TSTR
Γ1, Γω

2 ` Q

Otherwise, we have
TVAR

Γ′1, Y :proc, Γω
2 ` Y

TSTR
Γ1, Γω

2 ` Y

• Case
Γ′1, X :proc ` P Γ′1, X :proc ` Q

======================== TIF
Γ1, X :proc ` if u=v then P else Q

where
Γ1, X :proc � Γ′1, X :proc

The induction hypothesis establishes the premises of

Γ′1, Γω
2 ` P{Q/X} Γ′1, Γω

2 ` Q{Q/X}
============================== TIF
Γ1, Γω

2 ` if u=v then P{Q/X} else Q{Q/X}

7

Lemma 20 (Identifier substitution). If Γ,
−→
x : T ` P, where the ~x are pairwise disjoint and do not occur in the

domain of Γ, then Γ,
−−→
u : T ` Q{~u/~x}.

Proof. This is a simple renaming of variables throughout the typing derivation.

2.3 Preservation
Theorem 21 (Subject reduction). If Γ ` P, Γ is minimal and P→ P′ then Γ ` P′.

Proof. By induction on P→ P′.

• Case
RCOM

c!~d.P ‖ c?~x.Q −→ P‖Q{~d/~x}
As in the type safety lemma, by inversion on

Γ ` c!~d.P ‖ c?~x.Q

we must have that Γ � Γp, Γq where
Γ1, c : [~T]a1−1 ` P
============ TOUT

Γp ` c!~d.P
where

Γp � Γ1, c : [~T]a1 ,
−→
d : T

Similarly,

Γ2, c : [~T]a2−1,
−→
x : T ` Q

================
Γq ` c?~x.Q

where
Γq � Γ2, c : [~T]a2

(as in Theorem 28, the types carried by both channels must be the same since Γ is consistent.) By the name
substitution lemma, we have that

Γ2, c : [~T]a2−1,
−→
d : T ` Q{~d/~x}

We now construct the required type derivation as follows:

Γ1, c : [~T]a1−1 ` P Γ2, c : [~T]a2−1,
−→
d : T ` Q{~d/~x}

TPAR

(Γ1, c : [~T]a1−1), (Γ2, c : [~T]a2−1,
−→
d : T) ` P‖Q{~d/~x}

TSTR
Γ ` P‖Q{~d/~x}

Remains to show that the last step is justified, i.e., that

Γ � (Γ1, c : [~T]a1−1), (Γ2, c : [~T]a2−1,
−→
d : T)

Since environment are unordered, this follows from Proposition 13.

• Case
RREC

rec X.P −→ P{rec X.P/X}
We must have that Γ � Γω where

Γω, X :proc ` P
=========== TREC

Γ ` rec X.P
It follows that Γω ` rec X.P. The process substitution lemma then establishes the premise of

Γω, Γω ` P{rec X.P/X}
TSTR

Γ ` P{rec X.P/X}
(note that Γω � Γω, Γω for any environment Γω containing only unrestricted assumptions).

8

• Case
RTHEN

if c= c then P else Q −→ P

By inversion on the typing relation, we must have that

Γ′ ` P Γ′ ` Q
================= TIF
Γ ` if c= c then P else Q

where Γ � Γ′. The conclusion is immediate. The case for RELSE is analogous.

• Case
P ≡ P′ P′ −→ Q′ Q′ ≡ Q

RSTR
P −→ Q

Follows from the induction hypothesis and preservation of types under structural equivalence.

• Case
P −→ P′

RCTXT
C[P] −→ C[P′]

Since Γ ` C[P], by the subterm typing lemma there exists a minimal Γ′ such that Γ′ ` P and for all P′ such
that Γ′ ` P′, Γ ` C[P′]. Since the induction hypothesis gives us Γ′ ` P′, there is nothing left to show.

Corollary 22 (Subject reduction for partial functions). If Γ ` P, Γ is a partial function and P→ P′ then Γ ` P′.

Proof. Follows immediately from subject reduction since all partial functions are minimal.

3 Soundness for the Full Language
We extend the type soundness results to our extended language. Most cases carry forward smoothly from earlier
proofs. In what follows, we outline the cases that are different.

3.1 Subterm Typing
The following lemmas lead to a refined sub-term lemma 27 , which is central to prove the contextual cases for both
safety and subject reduction.

Proposition 23. Γ ` σ . P and σ(c) = ⊥ implies c 6∈ dom(Γ)

Proposition 24. Γ � Γ1, Γ2 and Γ2 � Γ3 implies Γ � Γ1, Γ3

Lemma 25 (Sub-Environment Consolidation). Γ, c : T � Γ′ where c 6∈ dom(Γ) implies ∃Γ′′ such that:

• (Γ, c : T) � (Γ′′, c : T) � Γ′

• dom(Γ′′, c : T) = dom(Γ′).

Lemma 26. If Γ � (Γ1, Γ2) and Γ2 � Γ3 where Γ, Γ1, Γ2, Γ3 are all minimal then ∃ a minimal Γ4 such that:

• Γ � Γ4 and Γ � Γ4 � (Γ1, Γ3)

• dom(Γ4) = dom(Γ1) ∪ dom(Γ3)

Definition 2 (Sub Environments). σ′ is a sub-environment of σ wrt. Γ, denoted as σ �Γ σ′ iff:

• dom(σ) = dom(σ′)

• σ(c) = ⊥ implies σ′(c) = ⊥

• σ(c) = > and σ′(c) = ⊥ implies Γ = Γ′, c : [
−→
T]•

Lemma 27 (Sub-term Typing 2). Γ ` C[σ . P] implies:

9

1. ∃ a minimal Γ1 such that Γ � Γ1 and Γ1 ` σ . P

2. When Γ1 ` σ . P and there exist Γ′ ` σ′ . P′ where:

• σ �Γ1 σ′,

• Γ1 � Γ′ and Γ′ is minimal

implies ∃ minimal Γ2. Γ2, Γ � Γ2 and Γ2 ` C[σ′ . P′]

Proof. By induction on the structure of C. We here consider two main cases:

C = (νc)C ′: We have three subcases:

c 6∈ dom(σ) : Then for (νc)C ′[σ . P] = σ′′ . P′′, by the condition of well-formed configurations, we know
that c 6∈ fn P′′. Thus, by the structural equivalence P′′ ≡ (νc)P′′ (whenever c 6∈ fn P′′), we know C
acts as the context C ′ and the proof follows immediately by I.H.

σ(c) = > : Let (νc)C ′[σ . P] = σ′′ . (νc :>)P′′. By TCONF we know

d ∈ dom(Γ) implies σ′′(d) = > (1)

and by the respective Inversion Lemma we know

Γ1, c : T ` P′′
========== Γ � Γ1
Γ ` (νc :>)P′′

(2)

Since we assume alpha renaming for bound names, c 6∈ dom(Γ) (and also c 6∈ dom(Γ1)) which means
that if Γ minimal, then Γ, c : T is minimal too. Thus by Γ, c : T � Γ1, c : T, TSTR and (2) we know

Γ, c : T ` P′′ (3)

By (3), (1), TCONF we deduce that

Γ, c : T ` (σ′′, c :> . P′′) (4)

and by I.H. we deduce that there exists Γ1 such that Γ1 ` σ . P, proving the first clause.

If we assume Γ′ ` σ′ . P′ for σ �Γ1 σ′ and Γ1 � Γ′ (Γ′ minimal) then by (4) and I.H. we know that
there exists a minimal Γ3 such that Γ, c : T � Γ3 and

Γ3 ` C ′[σ′ . P′] (5)

Let C ′[σ′ . P′] = σ′′′ . P′′′. We have two cases to consider resulting form σ �Γ1 σ′:

σ′′′(c) = ⊥: By TCONF we must have

∀d ∈ dom(Γ3).σ′′′(d) = > and thus c 6∈ dom(Γ3) (6)

Γ3 ` P′′′ (7)

We also know that C[σ′ . P′] = (σ′′′ \ c) . (νc :⊥)P′′′. By (7) and TRST2 we obtain

Γ3 ` (νc :⊥)P′′′ (8)

and by (6), (8) and TCONF we obtain Γ3 ` (σ′′′ \ c) . (νc :⊥)P′′′ as required.
σ′′′(c) = >: By TCONF we must have

∀d ∈ dom(Γ3).σ′′′(d) = > (9)

Γ3 ` P′′′ (10)

We also know that C[σ′ . P′] = (σ′′′ \ c) . (νc :>)P′′′. Since both Γ3 and Γ, c : T are minimal,
by Lemma 25 there exists a minimal Γ4 such that (Γ, c : T) � (Γ4, c : T) � Γ3 where dom(Γ4) =
dom(Γ3) \ {c}. Thus by TSTR and (10) we have Γ4, c : T ` P′′′ and by TRST1 we obtain
Γ4 ` (νc :>)P′′′. Finally, by TCONF and (9) we obtain Γ4 ` (σ′′′ \ c) . (νc :>)P′′′.

σ(c) = ⊥ : Similar to the case above but simpler.

10

C = Q ‖ C ′: We know C[σ . P] = σ′′ . Q‖P′′ where C ′[σ . P] = σ′′ . P′′. By TCONF we know

c ∈ dom(Γ) implies σ′′(c) = > (11)

Γ ` Q‖P′′ (12)

By (12) and the respective Inversion Lemma we know

Γ1 ` Q Γ2 ` P′′
============ Γ � Γ1, Γ2

Γ ` Q‖P′′
(13)

By Γ � Γ1, Γ2, the fact that Γ is minimal and Lemma 12 there exist minimal Γ′1 and Γ′2 such that Γ � (Γ′1, Γ′2),
Γ′1 � Γ1 and Γ′2 � Γ2. Thus by (13) and rtittStr we have

Γ′1 ` Q (14)

Γ′2 ` P′′ (15)

Since Γ � Γ′2, by (11), (15), TCONF and I.H. we deduce that ∃ minimal Γ3 such that

Γ′2 � Γ3 and Γ3 ` σ . P (16)

and by Γ � Γ′2 and Γ′2 � Γ3 we deduce Γ � Γ3 as required by the first clause.

If we assume Γ′ ` σ′ . P′ for σ �Γ3 σ′ and Γ3 � Γ′ (Γ′ minimal), then by (15), (16) and I.H. we obtain that
there exists a minimal Γ4 such that

Γ′2 � Γ4 and Γ4 ` C ′[σ′ . P′] (17)

Let C ′[σ′ . P′] = σ′′′ . P′′′. By TCONF we know that forall c

σ′′′(c) = ⊥ implies c 6∈ dom(Γ4) (18)

By definition of σ �Γ3 σ′, these constitute the only possible discrepancies between σ′′′ and σ′′. More
specifically, for all the discrepancies between the two states σ′′′ and σ′′, i.e.,

σ′′(c) = > and σ′′′(c) = ⊥

we know Γ3 = Γ′3, c : [
−→
T]• and by Γ′2 � Γ3 we deduce also that Γ′2 = Γ′′2 , c : [

−→
T]•. From this and

Γ � (Γ′1, Γ′2) we deduce that

σ′′(c) = > and σ′′′(c) = ⊥ implies c 6∈ dom(Γ′1) (19)

Moreover, from (17) and TCONF we have

σ′′′(c) = ⊥ implies c 6∈ dom(Γ4) (20)

. Thus by Lemma 26 there exists a minimal Γ5 such that

Γ � Γ5 � (Γ′1, Γ4) and dom(Γ5) = dom(Γ′1) ∪ dom(Γ4) (21)

which means that

σ′′′(c) = ⊥ implies c 6∈ dom(Γ5) (22)

Thus by (14), (17), (21), TSTR, (22) and TCONF we obtain Γ5 ` σ′′′ . Q‖P′′′ = Γ5 ` C[σ′ . P′] as required.

11

3.2 Safety
Theorem 28 (Type safety). If Γ ` σ . P and Γ is minimal then σ . P 9err.

Proof. We assume σ . P →err and show that this leads to a contradiction. There are two new case from Theorem
28. We here consider the first; the second case, relating to rule EIN is analogous:

EOUT: By the hypothesis of this rule we know

σ(c) = ⊥ (23)

Moreover we know P = c!~d.Q for some Q. Thus if Γ ` σ . c!~d.Q, by TCONF, we know

d ∈ dom(Γ) implies σ(d) = > (24)

Γ ` c!~d.Q (25)

By (25) and the respective Inversion Lemma we know ∃Γ1 such that:

Γ1, c : [~T]a,
−→
d : T ` c!~d.Q

================ Γ � (Γ1, c : [~T]a,
−→
d : T)

Γ ` c!~d.Q
(26)

From (26) we know c ∈ dom(Γ) and by (24) we must also have σ(c) = >, which constradicts (23).

4 Subject Reduction
Lemma 29. Γ ` P and c 6∈ fn P implies Γ \ c ` P where Γ \ c = {u : T | u : T ∈ Γ and u 6= c}

Lemma 30 (Sub environments and Reduction). Γ ` σ . P and σ . P −→ σ′ . P′ then σ �Γ σ′

Theorem 31 (Subject Reduction). If Γ ` σ . P, Γ is minimal and σ . P→ σ′ . P′ then ∃ minimal Γ′ such that Γ �
Γ′, and Γ′ ` σ′ . P′.

Proof. By rule induction on σ . P→ σ . P′.

RFREE: From the rule conclusion we know:

σ = σ1, c :> and σ′ = σ1, c :⊥ (27)

P = free c.Q and P′ = Q (28)

By Γ ` σ . P, TCONF,(28) and the respective Inversion Lemma, we know that ∃Γ′ such that

d ∈ dom(Γ) implies σ(d) = > (29)

Γ � Γ′, c : [
−→
T]• (30)

Γ′ ` Q (31)

Now (30) and Lemma 8 implies

∃Γ′′. Γ′ = Γ′′, c : [
−→
T′]• and Γ′′ � Γ′ (32)

By TSTR, (31) and (32) we obtain

Γ′′ ` Q

By (32) we know c 6∈ dom(Γ′′). Moreover, by (29), (27) we obtain

d ∈ dom(Γ′′) implies σ′(d) = >

which by TCONF and (28) gives Γ′′ ` σ′ . P′. Moreover, by (32) we deduce that Γ � Γ′′.

12

RSALL: From the rule conclusion we know:

σ = σ′ (33)
P = alloc(x).Q (34)
P′ = (νc :>)Q[c/x] where c 6∈ dom(σ) (35)

From (35) and the definition of a configuration we deduce that c 6∈ fn P. By (34) TCONF and the respective
Inversion Lemma we have:

d ∈ dom(Γ) implies σ(d) = > (36)

Γ � Γ′ (37)

Γ′, x : [
−→
T]• ` Q (38)

Since c 6∈ fn Q, by (38) and Lemma 29 we know

(Γ′ \ c), x : [
−→
T]• ` Q (39)

and by (37) we obtain also Γ � Γ′ \ c. Now by (39) and Lemma 20 we deduce:

(Γ′ \ c), c : [
−→
T]• ` Q[c/x] (40)

Clearly, by definition of Γ′ \ c, c 6∈ dom(Γ′ \ c) and by TRST1 and (35) we obtain

Γ′ \ c ` P′

By Γ � Γ′ \ c and TSTR we derive Γ ` P′ and by (33), (36) and TCONS we conclude Γ ` σ′ . P′.

TCTXT: Follows from Lemma 30 and from Lemma 27.

13

