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In this project, we propose a new approach to composite event detection for complex

event processing using predicate matching over historical event data in a knowledge-

based publish/subscribe system. The project is motivated as a way to bridge the

gap between the functionality provided by semantically-enhanced publish/subscribe

systems and the requirements of complex event processing systems, particularly in

order to enable a knowledge-based network to perform useful event correlation.

Our proposed extension adds two major components to a knowledge-based sys-

tem: a data store for historical event data and three new temporal operators based

on J.F. Allen’s interval calculus. We implement these components on a Java-based

knowledge-based network, including a MySQL data store implementation and both

a simple and advanced data store implementation. We test the scalability of the

new operators in terms of processing time, and find that the processing time for the

new operators scales at worst linearly with the number of events returned from the

data store. Some of the advanced features of the advanced Oracle implementation

add a significant amount of overhead while the simple Oracle implementation per-

forms the best. We also explore the expressiveness of the new operators with two
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case studies: a severe-weather reporting system and a system to dynamically change

system logging levels.

Overall, we find that our extension successfully enables the knowledge-based system

to detect patterns of events, enhancing its expressiveness, and that the approach we

propose can be scalably implemented.
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Chapter 1

Introduction

In recent years, the number of large-scale, distributed networks has increased dra-

matically, particularly due to the spread of the Internet and the advent of wire-

less sensor and RFID technologies [42, 25]. These technologies utilize event-based

systems to interoperate, which has in turn led to an increased need for real-time,

complex event processing systems in order to filter and analyze the event stream

to provide relevant information to the users. This event processing is expensive at

the application layer, both in terms of the amount of computation required and in

terms of the price for existing commercial solutions (such as SMARTS InCharge

[60] and HP OpenView [40]). New solutions must be devised to make complex event

processing affordable and easy, while maintaining the expressiveness and scalability

of other distributed, event-based systems.

During the 1990s, researchers developed several event-driven systems to address the

need for interoperability across networks (e.g., Field [68], Yeast [50]), primarily based

on the model followed by IP multicast and generalized into the publish/subscribe

model. The ideas taken from these systems were further extended beyond local

network boundaries into the Internet scale (e.g., OMG CORBA Event Service [61]).

Later research divided the field into different areas based on the selection criteria

for filtering messages, each of which tries to increase the expressiveness (the abil-

ity to more usefully refine the filters) while maintaining a high performance across
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large-scale deployments.

The earliest publish/subscribe systems were generally channel-based, in which mes-

sages published to a specific channel were delivered to all users subscribing to that

channel, or subject- or topic-based, where the subscriptions were made based on a

highly structured and well-known set of subject attributes [27]. While the filtering

operations of these systems were very simple and easily scalable, client applications

were responsible for most of their own event filtering. Later systems (e.g., Gryphon

[43], Siena [11]) used a content-based approach to message delivery, where subscrip-

tions could filter using the entire, structured content of the messages themselves, or

type-based filters (Hermes [65]) which treat messages as strongly-typed data objects.

These approaches provided more expressiveness in the filter, but also increased the

complexity of message routing [27].

Content-based networking has provided fertile ground for further research, but the

advent of many new communication, content-delivery, and search-based applications

have made it even more important to deliver more expressive subscriptions while

maintaining performance and ensuring that subscribers receive exactly the publica-

tions they desire. A number of recent research projects have focused on improving

the scalability of content-based publish/subscribe (CBPS) systems, particularly by

improving the routing and matching algorithms used to deliver and filter messages

[13, 5, 45], while others have focused on improving the flexibility and expressiveness

of the subscriptions to allow subscribers more control over the messages that they

receive [49].

In particular, some recent research projects have been undertaken to add semantic

data filtering to CBPS middleware solutions [16, 79, 53, 82, 48, 47]. In [48, 47], this

semantically-enhanced version of the CBPS infrastructure is termed knowledge-based

networking, and allows for far more flexible subscriptions by linking the message data

of the underlying content-based network with the rich, structured, semantic data

available in application-specific ontologies. The additional semantic data provides
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better expressiveness for the subscriptions while still maintaining the performance

of the delivery of messages, as shown in [49].

The message filtering provided by a content- or knowledge-based system could be

particularly useful in the area of complex event processing (CEP), with one caveat.

CEP systems must filter a continuous event stream and detect composite events,

which are composed out of simple (atomic) events based on the relationships between

those events, either logical or temporal. The publish/subscribe systems described

above generally only provide their filtering on the content of single events, although

some of the systems (such as Siena [11] and Yeast [50]) provide some very limited

support for temporal event patterns and others (PADRES [36]) allow for some log-

ical compositions. None of the existing systems, however, provides an appropriate

blend of expressiveness and scalability.

1.1 Project Motivation

The current project is motivated as a way to bridge the gap between the functionality

provided by semantically-enhanced publish/subscribe systems and the requirements

of complex event processing systems, particularly in order to enable a knowledge-

based network to perform useful event correlation. Existing event correlation sys-

tems generally group events based on some externally-defined causal network (or

sometimes a spatial or temporal network), which could be easily modeled as an

ontology and loaded into a knowledge-based network for routing. By using the pub-

lish/subscribe architecture for message delivery, events could more easily be filtered

and grouped into composite events, so long as the publish/subscribe system in ques-

tion can recognize and filter on patterns of distinct events rather than only filtering

the content of a single event.
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1.2 Project Aims

We propose an extension to a knowledge-based network to allow filtering across

multiple events so that the network can be used to filter and detect composite

events, making the system useful for complex event processing. In particular, we

intend to

• Investigate using temporal subscription predicates to detect composite events,

• Evaluate the scalability of our extended system in terms of predicate matching

performance, and

• Explore the expressiveness of our system with some case studies representing

potential real-world uses of such a system for complex event processing.

1.3 Project Approach

Our proposed extension introduces two major components to the knowledge-based

network:

• A persistent data store component for storing events as they occur, and

• Temporal operators which act as subscription predicates comparing the con-

tent of the current publication to the contents of the historical publications in

the data store.

We present a design for the data store and the temporal operators (based on the

interval relations proposed by Allen [2, 3]) as well as an implementation of our

design using a Siena-based knowledge-based network written in Java [56]. We then

analyze the performance of our implementation on three vendor-specific data store

implementations, one for MySQL and two for an Oracle 11g database, and explore

the expressiveness of the new operators by applying them to a number of real-world

case studies, including

• A severe-weather reporting system for the mid-western region of the U.S.A.,

and
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• A client which can dynamically adjust system logging levels based on certain

event patterns.

1.4 Project Contribution

Our project attepts to validate a new approach to composite event detection in

complex event processing: that of detecting composite events through predicate-

matching over historical event data. We also evaluate whether that approach can be

scalably implemented and explore some real-world uses for the resulting system. Fur-

thermore, we attempt to demonstrate how a semantically-enhanced content-based

system, a knowledge-based system, could be used for complex event processing, a

field which could benefit from the addition of semantic capabilities.

1.5 Document Structure

Chapter 2 explores the current state-of-the-art in complex event processing, includ-

ing composite event detection and event correlation. Chapter 3 provides some back-

ground for the project, explaining publish/subscribe systems in more detail along

with the temporal reasoning which informed the design of our operators. Chap-

ter 4 describes the design of the temporal extension to the KBN, including both the

added data store component and the temporal operators themselves. The actual

implementation of that design is described in Chapter 5. Chapter 6 details our eval-

uation framework and the data received from the benchmark test of the system and

provides a brief analysis of the system. Chapter 7 explores some potential uses of

the temporal extensions through a set osf real-world case studies. Finally, Chapter 8

contains our concluding remarks.

5



Chapter 2

State-of-the-Art

The previous chapter introduced our project, including our motivations and our

specific aims. In this chapter, we summarize the current research and state-of-the-

art in the area in which our project falls. The first section, Section 2.1, details the

current state of complex event processing, including both event stream processing

and event correlation. The next section, Section 2.2, describes in detail the detec-

tion of composite events, which is an integral part of the project described in this

document.

2.1 Complex event processing

In recent years, a great deal of interest has been turned toward the area of complex

event processing, or CEP, for reasons as diverse as financial transactions [1], strategic

business decisions [59], sensor networks [25], and RFID chips [42]. Traditionally, the

analysis of these complex events has been done only retrospectively, but computing

technology is rapidly making the real-time analysis of complex events not only pos-

sible, but desirable [51].

During the mid- to late-1980s, various database management systems developed the

ability to trigger alerts and notifications when certain conditions were met, which

became known as the event-condition-action (ECA) paradigm [15], which came to

be embedded in many subsequent object-oriented or relational database manage-
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ment systems (e.g., Snoop [57], ODE [34, 35], SAMOS [33]). This paradigm was

further extended to support more complex kind of events, and has now led to the

field of complex event processing. In general, CEP systems must first filter a con-

tinuous stream of simple (or atomic) events and detect composite events formed by

patterns of these atomic events, connected using either logical or temporal combi-

nations. The detected events are then correlated by the system to determine causal

or spatial relationships between the events and to trigger certain responses from the

client system. This section summarizes the current state of complex event process-

ing, including event stream processing and event correlation and clustering, and the

following section focuses in greater depth on composite event detection.

2.1.1 Event stream processing

The first step in complex event processing is to analyze a continuous event stream

and filter the atomic events. The stream is filtered by detecting event patterns,

which are normally found by executing queries on the event stream written in an

event processing language (e.g. SASE [81], Cayuga [9]). These languages must be

able to perform a number of functions, including

• Detecting the occurrence (or not) of events matching certain criteria,

• Imposing temporal constraints on allowed patterns of events (usually by uti-

lizing a sliding window of events from the stream), and

• Imposing value-based constraints on individual events.

As an example, the SASE language [81] provides a query language which first filters

the atomic events from the stream based on their type, then on an arbitrary series of

predicates (similar to the WHERE clause in SQL), and finally using a within clause to

specify the size of the sliding window during which the event must have occurred (or

not, if negations are included in the constraints) [81]. This capability was extended

by SASE+ [22], which expands the language to apply Kleene closure patterns to

the event stream, allowing the language to define much more complex predicates

by comparing events in the stream to each other and matching on patterns of more

7



than one event rather than matching on individual events [22]. The Cayuga Event

Language [9] is very similar in form to SQL, allowing users to SELECT specific at-

tributes from the events that match a specific stream expression and publish them

to a specified output stream [9].

The event processing language is typically applied to the event stream using fi-

nite state machines, or automata. SASE [81] and Cayuga [9], in particular, both use

variants of non-deterministic finite automata, or NFAs, for their processing. The

general process for both divides the query into successive states which are reached as

an event matches each of the criteria in sequence (as though the transitions between

states represent successful predicate matches). If an automaton reaches its terminal

state when given a particular event as input, then that event is deemed to have

matched the filter [81, 9].

Summary

Within CEP, specialized query languages called event processing languages are used

to filter events from the event stream. These languages are generally quite capable

of quickly filtering extremely large quantities of events very quickly (over 50,000

events/sec in the case of SASE [81]) using query languages over the event stream

that operate in a similar manner to SQL (by means of selecting events that match

certain constraints). However, the predicates available are limited to such operations

as can be easily expressed in a SQL-like query language. The composite event

detection systems and algorithms described in Section 2.2 seem to provide much

more flexibility when detecting event patterns.

2.1.2 Event correlation

Along with the filtering of events from the event stream, CEP systems also correlate

relevant events to compose new output events for their client systems. These event

correlation systems in part attempt to determine the root cause of a sequence of

events in order to more effectively report the event occurring within the stream.
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In particular, event correlation systems need to look at the causal relationships be-

tween events, which also require them to respect the temporal relationships between

the two (since there is probably no backwards causation [7, 23, 26, 4]). The analysis

given in [39] provides a more formal description of the causal relationships used to

determine the correlation of events, as well as defining the logical process to be run

over a causal structure to find the minimal set of causes for a particular set of events

(using the SMARTS InCharge [60] system as an example). Causal relationships need

not be the only types of relationships used by these systems, however, as described

by Jiang and Cybenko in [46] with respect to intrusion detection. They describe

a method of using a Bayesian inference network to determine correlations between

multiple spatially-distinct observation spaces in order to correlate events not just

according to a causal structure, but also according to their location. Similarly, they

explain how to use a linear Kalman filter model to probabilistically identify possible

attack correlation patterns [46].

Most of the event correlation systems so far developed are available as parts of com-

mercial systems only (e.g., Hewlett-Packard’s OpenView–now HP Business Tech-

nology Optimization solutions [40], SMARTS InCharge [60], Cisco’s MARS [17]),

but some systems such as SEC (the Simple Event Correlator [74]) are available for

free. SEC reads events from a file stream and executes shell commands as its output

stream, supporting the general requirement of correlating events and producing new

ones for its clients. Event filtering is done by specifying event contexts, which repre-

sent the current knowledge the system has gained from its event stream. However,

given its lightweight nature, SEC only supports a small number of rules, including

matching a single event, a pair of events, or certain calendar-based operations. Even

so, it has been successfully applied to such domains as network fault management

and intrusion detection [74]. Another non-commercial system, GRACE [44], uses

the open-source CLIPS tool [69] to create an expert system to perform its causal

inference, demonstrating that non-commercial systems are feasible.
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Summary

After filtering events from the event stream, CEP systems must also correlate events

based on their causal (or spatial/temporal) relationships. The majority of these

systems are available commercially at great expense, making them less useful for

research purposes. Some free solutions (such as SEC [74], or other systems which

utilize expert systems for inference [44]) are available, but only perform the event

correlation without detecting composite events. There is a need for systems which

can deliver composite events to such event correlation systems to complete the pro-

cessing done by the commercial CEP solutions.

2.2 Composite events and subscriptions

The use of composite events and subscriptions has also spurred some research in re-

cent years [73, 66, 52], which grew out of some of the ECA research done on compos-

ite events in the previous decade, such as with GEM [54] and READY [38]. These

composite events describe patterns of occurrences among multiple events rather

than simply containing the description of single (or atomic) events. Many imple-

mentations of composite events (such as that described by Li and Jacobsen [52])

allow clients to issue composite subscriptions for these events which include higher-

order operations relating occurrences of atomic events. The higher-order operations

included vary among composite event systems, but usually include operators for

conjunctions of matched events, branching or disjunctive operators which match

either of two events, and operators which match a specified temporal sequence of

events, similar to Siena’s patterns [11, 52]. This section describes some implementa-

tions of composite events, dividing the systems into those based on active databases

[57, 35, 33] and those using publish/subscribe middlewares [38, 36], which are closer

in nature to the system proposed in this project.
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2.2.1 Active database systems

Early work on composite events was generally based on active database systems [35,

33, 57, 72]. Rather than acting as passive data repositories, these systems respond

to particular kinds of events with specified actions. Commonly, the types of events,

the conditions for activation, and the action to be executed are summarized into

event-condition-action rules, allowing for easy response to simple events (and even

some advanced processing) [64]. While there is no standardized way of representing

these rules, they generally are invoked alongside modifications to the data, such as

on INSERT or UPDATE SQL queries. An example of the standard ECA formulation

of the rules may look something like this:

ON INSERT vending request(Money, Request)

IF Money > 1.0

THEN VendChocolateBar(Request)

These active database systems can be used to detect composite events by building up

patterns of events before invoking the ECA-rules. This event composition operates

in a similar manner to the event stream processing described in Sections 2.1.1, but

rather than responding to a continuous stream of events, the databases only respond

directly to trigger actions on the data stored within them. These simple events are

generally composed into composite events using one of two approaches: either tree-

or graph-based algorithms or with finite state machines (automata). This section

describes each of these two approaches, including some specific systems which are

examples of one or the other.

Tree-based systems

In tree-based composite event detection systems, composite events are defined using

a tree like structure, with simple events representing the leaves of the tree and the

desired composite event representing the root. The simple events are joined into

composite events using various logical or temporal operators which generally fall

into the following four categories:
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• Conjunctions, where two or more events must both be detected regardless of

order;

• Disjunctions, where any one of two or more events must be detected;

• Sequences, where two or more events must be detected in a specified order

(sometimes with constraints on the temporal relations); or

• Repetitions, where a specified event happens more than once, either periodi-

cally or non-periodically.

One example of such a system is Snoop [57]. Snoop organizes events into a hierarchy

including database events such as INSERTs and UPDATEs and temporal events,

organized similarly to the Yeast [50] events described above with both absolute and

relative events. The composite events are formed by composing simple events using

disjunctions (OR), conjunctions (AND), sequences, and periodic or aperiodic repe-

tition. The detection of composite events is done by forming a graph of activated

events, which are linked together into trees in the event forest used by the composite

event detector to find patterns of simple events which fit the definition of the com-

posite event. Once all the simple event leaf nodes have been activated, the composite

event itself is created and signaled, and the corresponding actions are performed [57].

More complicated graph-based algorithms can also be used to detect composite

events from simple ones, such as the colored Petri nets used in the SAMOS system

[33]. Petri net algorithms represent a discrete system as a directed graph, where the

nodes represent transitions and places (either for input or output) within the sys-

tem. Tokens are transported throughout the system whenever a transition is fired,

which moves tokens from the input places connected to that transition into the out-

put places of that transition [67]. In SAMOS, the simple events of the system are

represented by the input places of the Petri net, the composite events represented by

the output places, and the composing expressions and conditions are represented by

the transitions. As the tokens travel through the output places, the corresponding

composite events are signaled to the system [33].
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Automaton-based systems

As an alternative to using the tree- or graph-based algorithms above, composite

event detection within an active database system is sometimes done using finite

state automata. One such system was proposed by Gehani, et al. [35] for the Ode

database system. Ode groups events into histories, which are finite sets of event

occurrences with unique event identifiers. Event expressions are represented as

functions which map events from the histories in the expression domain to a new set

of histories which serves as the function’s range. These expressions (which provide

operators for conjunction, disjunction, and temporal relationships) can be encoded

into automata wherein each primitive event occurrence results in a transition from

one state to another. When a composite event is triggered (by the automaton

entering an accepting state), the system then builds an occurrence tuple out of the

history to explain why the event was triggered[34]. The occurrence tuples correspond

to the tree structure stored by Snoop [57] by containing not only the resulting

composite events, but also each of the contributing atomic events.

2.2.2 Composite event detection in middleware

Along with the active database systems, much effort has been put into develop-

ing composite event detection middlewares (or extensions thereof) for distributed

systems. Rather than relying upon ECA-rules defined within an active databse,

however, these systems commonly operate as overlay networks which respond to

events that are explicitly published to the system. These systems can similarly be

divided into tree-based or automaton-based systems, examples of each of which are

briefly described in this section. This section describes two such systems: READY

[37, 38] and PADRES [36, 52].
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Tree-based systems

Middleware systems which detect events using a tree-based algorithm operate in a

manner very similar to the tree-based active databases discussed in the previous

sub-section. In general, simple events acts as the leaf nodes of the tree and are then

composed using various operators to generate tree structures with composite events

as parent nodes. Subscriptions on composite events specify the tree structure which

is to be realized in notifying the subscriber.

As an example, Gruber, et al. developed an event notification service called READY

[37, 38] which allows for composite event detection and delivery. It also operates

using something similar to the ECA paradigm described above, with event con-

sumers providing specifications that are matched with expressions that result in

specified actions. These events are matched as either simple matching elements,

which correspond to the leaves of the tree, or compound matching elements which

occur further up the tree as parent nodes. Any trees which match the structure of

any subscriptions are disseminated through the network to the event consumers [38].

A similar algorithm is used to detect complex events in the PADRES system [36].

PADRES is of particular interest for this project because of the robust way in

which composite events are used to exploit temporal relationships between events.

PADRES uses composite subscriptions to link together the events matching the

standard atomic subscriptions which are matched by individual events, thus allow-

ing the middleware itself to detect the occurrence of composite events given the

appropriate subscriptions. In particular, PADRES supports compositions of atomic

events which represent parallelization or a conjunction of events, alternation or

disjunction, sequence, and repetition [52]. Parallelization and alternation compose

the events without regard to their temporal ordering, but sequence and repetition

very much take it into account. These composite subscriptions are routed through

the network to be as close as possible to the publishers before being decomposed

(PADRES exclusively used the publish-subscribe-advertise model) [52]. This also
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makes each individual broker a composite event detector, allowing the middleware

itself to do complex event processing.

Automaton-based systems

As an alternative to using a basic tree structure to detect composite events within a

middleware system, Pietzuch, et al., propose a generic middleware extension which

can be used on top of any publish/subscribe middleware [66], based on their ex-

perience with Hermes [65]. They propose implementing a generic composite event

framework to be deployed alongside an underlying publish/subscribe network (such

as Hermes [65] or even Siena [11]) rather than attempting to modify the network

to introduce this functionality. The composite events within this generic framework

are to be modeled as patterns of the atomic events which can be detected by the

underlying publish/subscribe system, which are subscribed to independently by the

composite event detector itself. These composite events relate the atomic events

using interval time semantics similar to Allen’s [2] and are detected by finite state

automata, which have two types of state: ordinary and generative. The generative

states create new events out of the events matched so far or events in the future,

whereas the ordinary states simply represent the state of the automaton. As new

events occur, the automata change state. If a generative state is reached which

has no outgoing transitions, the prescribed event is created and the automaton ter-

minates immediately, which can result in the signaling of a composite event. The

system is distributed via the decomposition and distribution of the composite event

expression, and thus the decomposition of the resultant automaton, among the nodes

in the network [66]. Because the system is distributed and agnostic with respect

to the underlying publish/subscribe system, Pietzuch, et al., find it is an effective

framework for composite event detection.

Summary

Composite events are compositions of simple or atomic events joined by logical

or temporal operators which generally express conjunction, disjunction, sequence, or

repetition. These systems can be divided between two main groups: active databases
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(such as Snoop [57], SAMOS [33], and Ode [34]) and middleware systems (e.g.,

READY [37, 38], PADRES [36]). Those divisions can each be further sub-divided

between systems which use a tree- or graph-based detection algorithm and those

which use finite-state automata.

Active database systems generally employ event-condition-action rules by which

they respond to data manipulation events (such as INSERT and UPDATE queries)

which meet certain conditions by executing specified actions. However, this lim-

its the active databases to responding to data manipulations rather than arbi-

trary events. Middleware systems get around this limitation by responding to any

events that get published to them, but either sort of matching algorithm (graph-

or automaton-based) requires the implementing system to continually be engaged

in a form of forward matching which consumes memory by forcing the brokers to

preserve the portion of each composite subscription which has been matches as state

at the broker.

Rather than limit the current project to an active database system (and thus rely

on the operations allowed by the ECA-rules) and sacrifice the computational re-

sources necessary to save state for forward matching (as in existing middleware sys-

tems), we propose to detect composite events in our system using a form of predicate

matching against historical event records within a content-based, publish/subscribe

middleware. This will give our system the flexibility exhibited by systems such as

PADRES [36] without requiring any forward pattern matching.
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Chapter 3

Background

In the previous chapter, we described the current state-of-the-art in complex event

processing, including composite event detection and event correlation. This chap-

ter focuses on the research which led directly to the current project, particularly

in terms of the knowledge-based network upon which it is based and the temporal

reasoning used in our extension.

Section 3.1 provides a brief description of publish/subscribe technologies, includ-

ing a discussion of content-based networking in general. Section 3.2 describes the

Siena [11] project (which is extended in our implementation) in some depth, followed

by Section 3.3 which discusses knowledge-based networking, including the extension

to Siena developed by Keeney, et al.[49]. Finally, Section 3.4 summarizes the types of

temporal relations which formed the basis for the operators proposed in this project.

3.1 Publish/Subscribe Systems

Publish/subscribe systems began to appear in the 1990s as a way to handle interop-

erability among the components of early distributed systems. The earliest of these

systems (such as Field [68]) was designed following the model of IP multicast, in

which networks hosts are able to dynamically join and leave groups identified by

a single IP address within the network. Datagrams sent to this multicast address

are then subsequently delivered (using a best-effort strategy) to all current members
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of the multicast group [21]. Field [68] itself allowed integrated tools to send rudi-

mentary subscriptions to a central message server, using string patterns which were

matched against the messages received. Later systems refined the idea of the filters

used for subscriptions and can now be divided into three main categories: channel -

or topic-based, content-based, and type-based.

Channel -based systems (such as the OMG CORBA Notification Service [62] and

SCRIBE [14]) allow subscribers to specify a particular channel or topic in which

they are interested. Any message published to that channel will be delivered to

any subscribers currently in the channel, making these channels very similar to ba-

sic multicast groups with the topic taking the place of the group address. This

approach allows for very efficient routing (since the topics are static), but greatly

reduces the expressiveness allowed for the subscriptions, since only a small set of

channels will be allowed. Furthermore, many of the subscribers may need to do

further refinements at the layer above the channel-based system, since the channels

are very coarse-grained.

In order to allow for greater expressiveness, subsequent systems expanded the sub-

scription method to allow for complex matching on the structured content of the mes-

sages themselves. This is referred to as content-based networking, which has been

implemented in many systems such as Gryphon [6, 43], JEDI [18], Siena [12, 11, 13],

PADRES [36, 52], and REBECA [28]. Content-based systems allow subscribers to

provide filters on message content which then act as the address of the subscriber.

As messages are published, the intervening network routers (or brokers) evaluate

the message to see if its content matches the filters of which that broker is aware

and routes the matching messages accordingly. This approach greatly enhances the

expressiveness of the subscriptions, in effect allowing subscribers to define their own

criteria for messages rather than relying on some externally-defined set of topics.

This reduces the amount of filtering the client applications must do, but it also in-

creases the overhead of routing the messages, since each broker must now determine

how to route messages based on the subscriptions and messages it receives.
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In order to combat some of the overhead required in content-based networking,

a few recent systems (such as Hermes [65] and Knight [19]) have formalized the

structured content of the messages into type-based systems. These systems utilize a

robust typing system for the messages, allowing publishers to add their own event

types into a type hierarchy and allowing users to subscribe to messages that inherit

from specific types. This does reduce some of the overhead of the routing (since

it uses standard programming concepts such as types), but the gain comes at the

expense of limiting the subscriptions to the rigid type hierarchy.

The evolution of publish/subscribe systems from the initial multicast groups into

the more advanced content- and type-based systems has been a very fertile research

area over the last decade. This fecundity looks to continue forward from the cur-

rent position, especially in refining and improving the performance of content-based

systems (which allow the greatest flexibility for subscribers) and in extending the

paradigm to allow for greater expressiveness. The current project is based on an

extension to the content-based paradigm, knowledge-based networking, which will

be described in further detail in Section 3.3. The following section summarizes the

operation of the underlying content-based system, Siena [12].

3.2 Siena: Content-based Networking

Siena [12] is a content-based event notification service designed to provide both ex-

pressive subscriptions and to allow for Internet-scale deployments. By design, it acts

as an overlay network placed on top of some underlying networking framework. The

actors within the system fall into three main categories: publishers who introduce

messages into the system, subscribers who consume these messages, and brokers re-

sponsible for routing the messages through the overlay network. Each subscriber

issues a subscription message to a broker, which contains a filter which the broker

applies to subsequent messages received from any of the publishers currently using

the system. Messages from the publishers are called publications, which are routed
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through the system. If a subscriber A issues a subscription S, then any publication

which matches S will be delivered to A as a notification.

The subscription filters allowed by the original Siena brokers support four basic

data types (integers, floats, character strings, and Booleans) and a small set of

operators which define relations between values of those types, including numeric

comparison operators (<, ≤, =, ≥, and >) and some string operators (substring,

prefix, and suffix). The filters themselves consist of a set of attribute constraints

which include the name of a publication attribute, an operator, and a target value.

A constraint is matched by a publication, P , if the value in P of the attribute spec-

ified in the constraint satisfies the relation defined by the operator with respect to

the constraint’s target value. For example, a subscriber could specify a constraint

of

price < 80

which would then be matched by any publication which had a price attribute with

an integer value of less than eighty. If a publication matches every constraint in a

filter, it matches that filter.

The operators used in the attribute constraints also play a large role in the routing

scheme used by Siena, which makes use of covering relations between subscriptions

to achieve a form of sub- and super-netting. For two subscriptions, S and S ′, S cov-

ers S ′ if and only if every publication which matches S ′ also matches S [12]. This

information is used in the routing to group finer-grained subscriptions as subnets be-

neath subscriptions which cover them, decreasing the amount of routing information

that must be stored by each broker. This is particularly useful if Siena is deployed

on a hierarchical topology, where the covering relations can be closely modeled by

the master-subserver relationship between brokers. Siena also allows for a peer-to-

peer deployment, however, which also requires that publishers send advertisements

describing the publications they will produce in order to correctly build the routing

information with respect to the covering relations.
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The filters described above only operate within the scope of a single publication, but

Siena also includes some very basic support for capturing patterns of events. These

patterns are composed of multiple filters which are matched in sequence, each to

a corresponding event. As an example, consider a pattern composed of two filters,

F1 · F2. A broker evaluating a subscription on this pattern would first evaluate

publications against the first filter, F1. If a publication, P1 matching F1 is found

by the broker, the broker will then seek to match incoming publications against the

second filter, F2. If a second publication, P2 matches F2 (regardless of the number

of intervening publications), the broker will deliver both P1 and P2 to the subscriber

and will resume matching publications against F1 [12].

In practice, Siena provides an appropriate mix of expressive flexibility with the

types of subscriptions allowed and good scalability across a network, mostly due to

the use of the covering relations. For matching single publications, the approach

is useful; however, the pattern matching capabilities are less useful. The imple-

mentation of pattern matching was incomplete, and the simplicity of the allowable

patterns makes it a far less attractive solution than the more robust solutions for

pattern matching described in Section 2.2. Further extensions are needed in or-

der to more usefully support event patterns, as well as extensions which allow for

more operators and collections of data. The current project proposes an extension

for greater pattern support, and the following section describes a knowledge-based

network built on Siena, which adds semantic operators and support for collections.

3.3 Knowledge-based Networking

The increased flexibility of the content-based paradigm can be extended even more

through the use of semantic information, which has been attempted in a number of

recent research projects [16, 82, 79, 48, 49, 47]. This new, semantically-enhanced

paradigm is called knowledge-based networking [47]. These projects associate the

content of the publications sent through the network with external semantic data
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stored in ontologies elsewhere in the system, allowing for greater expressiveness by

leveraging the semantic relationships expressed by the messages.

In particular, [49] describes an extension to Siena [12] which enhances the system

in two ways: by adding the bag or multiset collection type and some associated

operations (such as subbag and superbag operations), and by linking the system to

a Jena ontological reasoner [41] and introducing some relevant semantic operators

(such as subsumption and semantic equivalence).

The bag operators are based on the bag or multiset collection, which distinguish

distinct collections based on the multiplicity but not the order of the elements,

unlike standards sets which do not distinguish multiplicity. For example, the bag

{ 1, 1, 2 } would be considered equivalent to the bag { 1, 2, 1 } but not to

{ 1, 2 }. The bag extension to Siena introduces the bag as a data type (along

with the standard numeric and character string data types) and also introduces

three simple bag operators which can be used in conjunction with the other oper-

ators of Siena to create composite bag operators. The three simple bag operators

define bag equality (where each member of either bag occurs the same number of

times in the other bag), the subbag relation (where one bag is contained within the

other), and the superbag relation (the inverse of the subbag relation).

The more complicated composite bag operator (not to be confused with the compos-

ite events discussed in Section 2.2) is defined by a main operator (one of the simple

bag operators) and a sub-operator, which can be any operator. The composite op-

erator takes two bags, B1 and B2 as operands, and compares the two bags using the

main operator with respect to the sub-operator instead of the standard equivalence

relation. For example, consider the following constraint applied to a publication P ,

which has the bag V as the value of its bag attribute:

bag SUBBAG< { 1, 3, 5, 7, 9 }
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When the broker applies the composite bag operator to P , it will attempt to find a

subbag B of the bag specified in the constraint where each member of V is less than

the corresponding member of B. The bag operators provide a large boost to the ex-

pressiveness of single subscriptions, in that certain sorts of conjunctive or disjunctive

subscriptions which previously could be addressed only with multiple subscriptions

can now be expressed as a relation to a bag of possible values instead of only one [49].

The extension to Siena in [48, 49] also added a set of operators used to represent

semantic relations in subscriptions. These new operators express semantic equiv-

alence, class and property sub- and supersumption, and instantiation as well as

allowing the sub scriber to define an arbitrary ontological property to be used when

determining whether or not an operator applies. The new semantic operators are

shown in Table 3.1 along with a brief description of the relation the express.

Operator Description
EQUIVAL Semantic equivalence (owl:equivalentClass, etc.[76])
NOT EQUIVAL Semantic distinction (complement of EQUIVAL)
LESSSPEC Subsumption (rdfs:subClassOf, etc.[77])
MORESPEC Supersumption (inverse of LESSSPEC)
IS A Instantiation (rdf:type [77])
IS NOT A Exclusion (complement of IS A)
ONTPROP(P) Arbitrary ontological relation (P)

Table 3.1: Semantic operators for a knowledge-based network [48, 49]

While the semantic and collection operators added by the knowledge-based exten-

sion do increase the flexibility of the subscriptions in Siena, they still do not provide

any support for patterns of events, as these operators still only apply to one publi-

cation at a time. The current project adds this support through the use of temporal

operators, the reasoning behind which is described in the following section.

3.4 Temporal Reasoning

The majority of time-based reasoning in event processing systems to date is based

on the work by James F. Allen in the early 1980s [2, 3]. Allen introduces the con-
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cept of representing temporal intervals, as opposed to earlier work which used only

point-based representations of events [55]. Using these intervals, Allen identifies a

total of thirteen unique relations which can exist between two intervals, X and Y ,

consisting of seven base relations and their inverses.1 The seven base interval rela-

tions as defined by Allen are depicted in Figure 3.1.

Figure 3.1: Allen’s interval relations [2, 3]

These interval relations can also be described based on a comparison of their start

and end points, which can be represented numerically. The interval relations as

translated into numeric expressions are listed in Table 3.2 (XS represents the begin-

ning of interval X, and XE represents its end).

Interval relation End-point relation
X before Y XE < YS

X equals Y (XS = YS) ∧ (XE = YE)
X meets Y XE = YS

X overlaps Y (XS < YS) ∧ (XE > YS) ∧ (XE < YE)
X during Y (XS > YS) ∧ (XE < YE)
X starts Y (XS = YS) ∧ (XE < YE)
X finishes Y (XS > YS) ∧ (XE = YE)

Table 3.2: Interval relations represented as terminal-point expressions [2, 3]

Allen goes on further to describe how these relations could be used by maintaining

a network of intervals based on their temporal relations (where the intervals act as

nodes and the relations as the edges) which can then be maintained by applying a

1The“equals” relation is its own inverse.
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constraint-satisfaction algorithm to compute the transitive closure of the network.

Thus, when a new fact is entered into the network, the algorithm adds all the new

information that can be inferred from the new fact. Uncertain relations can be rep-

resented as vectors within the network, which act as restricted disjunctions on which

relation applies between two intervals, which would not be possible if the intervals

were represented as zero-duration end points. However, as pointed out by Vilain, et

al. [75], determining the complete transitive closure with Allen’s proposed vector-

based interval algebra is an NP-complete problem, which makes it intractable using

modern computational techniques. Vilain, et al. suggest that restricting the algebra

to those subsets which are tractable could still prove useful. Their restricted sub-

set, which they call the continuous endpoint algebra, precludes all non-continuous

point operations (such as non-equivalence) and any truly disjunctive relationships.

Computing the transitive closure over this restricted algebra is tractable (as shown

in [75]), which makes it a more attractive choice for computational use.

One of the main criticisms of such a point-based algebra is that it does not corre-

spond to real-world events, which can sometimes have uncertain beginnings and end-

ings rather than explicitly-declared and well-defined end points. Some approaches

are to utilize fuzzy temporal relations [71, 70, 8, 24] rather than the well-defined end

points of the Allen relations. Christian Freksa describes a different approach, using

semi-intervals (which are the generalized ”beginnings” and ”endings” of intervals

rather than explicit durations of events) as the basic unit of comparison, which can

better handle the uncertainty about the end points [31]. However, despite the crit-

icisms, Allen’s original description of the relations is still very intuitive and serves

as the ultimate basis for the temporal relations used in most event-based systems.

As an example, the Yeast (Yet another Event-Action Specification Tool) [50] system

uses similar temporal relationships in order to specify the rules used to signal events

based on the time of their occurrence relative to other events. The relative time

operators they implemented (in contrast to their absolute operators, which use an

externally defined calendar system) determine whether a certain rule should trigger
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in a certain amount of time (and match permanently from then on) or within a

specified interval (which matches only transiently) [50]. Similarly, Walzer, et al.[78],

proposed an extension to the Rete algorithm [29] which enables it to do more ad-

vanced complex event processing by adding support for Allen’s interval relations.

Their extension adds new behaviors to the Rete beta-nodes (which are used to com-

pose facts in the working memory set into sets which match the rules specified to

the system [29]) to check the relative temporal constraints along with the standard

Rete join conditions. The relations added closely match those described by Allen

in [2], but include some parameterization for the DURING and EQUAL operators

which allow for specifying quantitative constraints on the size of the allowable dis-

tance between end points [78].

As shown by Yeast [50] and the temporal extension to Rete [78], Allen’s temporal

reasoning is well-suited to performing complex event processing in an event-based

system, which is precisely the approach advocated in this project. The next chap-

ter, Chapter 4 describes the design of our proposed extension to knowledge-based

networking which adds support for temporal operators inspired by Allen’s interval

relations as well as a data store component to maintain a store of previous publica-

tions against which the temporal operators may be applied.
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Chapter 4

Design

The previous chapter summarized the background for this project, including a de-

scription of content- and knowledge-based networking and the interval relations

described by Allen [2, 3]. In this chapter, we describe the design of the data store

and temporal operators we propose to add as an extension to the knowledge-based

networking paradigm. The chapter begins with a brief description of our approach

and the motivations behind our choice, then continues with an explanation of the

data store component and temporal operators before finishing with a brief summary

and a discussion of the merits of the design.

4.1 Approach

In order to provide support for composite event detection to a knowledge-based

system, we propose adding

• A persistent data store component for storing historical event data, and

• A set of temporal operators to be used in matching subscription predicates

against the historical data stored in the data store using Allen’s interval rela-

tions.

This approach stands as a contrast to the existing systems described in Chapter 2,

which utilize active databases rather than distributed, publish/subscribe systems
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or detect events using tree- or automaton-based forward matching. We elected to

extend a knowledge-based publish/subscribe system for three main reasons:

• The active database systems reviewed are too restrictive on the types of events

used in the ECA-rules, and distribution of an active database is beyond the

scope of this project,

• Using a tree-algorithm or a finite state machine for forward pattern matching

requires the system to save the state of each partial match for each composite

subscription at each broker, which greatly increases the complexity of the

matching algorithms the broker must invoke for each publication, and

• The semantic capabilities of knowledge-based systems (which are lacking in

other approaches) provide a significant increase in expressiveness to the sorts

of events which could be detected in complex event processing.

In summary, knowledge-based publish/subscribe systems provide us with an appro-

priate mix of scalability and expressiveness in a distributed system.

4.2 Data store design

In order to store historical event data for future comparison using our proposed tem-

poral operators, our extension adds a simple data store component to each broker of

the base knowledge-based system. This new component allows each broker to store,

retrieve, and analyze publications as they are transferred through the framework.

In particular, the data store needs to be able to perform three major functions1:

1. Storing (or updating) uniquely-identifiable events (as represented by publica-

tions) in some persistent data store,

2. Retrieving specific events (as publications) for inspection by the system, and

1The temporal ordering of the events is assumed to be represented by some attribute in the
publications themselves.
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3. Checking to see if the data store contains information about any events which

match a particular filter given other arbitrary constraints (such as checking

the value of certain attributes).

A generic interface for this component is shown in Figure 4.1.

Figure 4.1: Data store interface design

The first method, getEventById(), simply queries the database for the event iden-

tified by the passed identifier and returns the information stored about that event

as a publication, which is simply a name-type-value triple in a knowledge-based sys-

tem. This function serves to meet the second of the three requirements. The second

method, hasMatchingEvent() compares the events in the data store to the passed

filter and returns a result of true if any of the events match that filter, subject to

the other arbitrary constraints (represented by “...”). This satisfies the third re-

quirement. And finally, the last method shown in Figure 4.1, storePublication(),

inserts the passed publication into the data store, either by creating a new event

representation or by updating the event to which the publication refers.

4.3 Operator design

Along with the data store component, our extension also adds a small set of new

operators to the knowledge-based system which enable it to represent and detect

temporal relationships between the publication currently being examined by a bro-

ker and the historical event data already stored by that broker. These operators are

inspired by the interval relations defined by Allen [2, 3], with some alterations. In

particular, the processing done by our predicate-matching approach happens as soon

as a publication is received, so in effect, no future information can be relied upon to
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Figure 4.2: Allen’s interval relations represented as point operations

be used in determining if the operators can be applied. Furthermore, the operators

only operate over single attribute values from the current publication (such as the

beginning or end timestamp) compared to the entire interval (both start and end

timestamps) of the previously stored publications.

Due to these additional constraints, we consider Allen’s interval relations as they

relate to comparing a single time stamp (either the start or end time of one in-

terval) to another interval. Using this view, each of Allen’s seven intervals can be

represented using three operators representing the relationship of a point P (either

a start or an end) to an interval X: AFTER, WITH, and DURING. Figure 4.2

shows how these operators relate to Allen’s interval relations.

The three operators all operate by comparing a reference time XR, either the start

or end of one interval X, to a target time YT from the second interval Y . For the

AFTER operator, the reference time varies between XS (the start of X) and XE

(the end of X), but the reference time is always the end of Y , YE. The DURING

operator actually compares XR to both the start and end of Y , giving it two target
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times. Finally, the WITH operator compares XR to the corresponding timestamp

of Y , such that R = T . As shown in Figure 4.2, these three operators can represent

any of Allen’s seven relations.

In order to use the three operators listed above in our extension, we first need

to represent them as predicates taking a reference attribute as the reference time

and a target filter (which selects events from the data store) which returns events

corresponding to the target interval. For DURING and AFTER, we use a direct

translation of the reference times into attributes, using the attributes XS and XE to

represent the start and end time of a publication X, respectively, and a filter F as

the target. An operator applies if there exists a stored publication, Y , such that the

relation defined by the operator holds between the reference attribute and the start

and end times of the event represented by Y . For performance tuning, the AFTER

operator accepts an additional time limit, L, which defines the size of the window

between the end time of the compared event and the reference time.

The WITH operator, however, can be made more general when applied to pub-

lication attributes, in that it compares the value of an arbitrary attribute of a pub-

lication X to the value of the same attribute in any matching stored publication,

Y . By generalizing the equivalence test from WITH into an arbitrary operator,

we represent the WITH operator described above with a general FILTER oper-

ator that can compare any arbitrary attributes using an arbitrary operator. The

FILTER operator also accepts a configurable limit on the size of the result set (L)

which is to be examined when searching for a match. The three operators added by

our extension are summarized in Table 4.1 (where F (Y ) means that the publication

Y matches the filter F , and XR represents the reference attribute).

Operator Condition
XR DURING F ∃Y : F (Y ) ∧ (YS ≤ XR) ∧ (YE ≥ XR)
XR AFTER(L) F ∃Y : F (Y ) ∧ (YE < XR) ∧ (YE ≥ (XR − L))
XR FILTER(OP, L) F ∃Y : F (Y ) ∧ (XR OP YR)

Table 4.1: Operator summary
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It should also be noted by any implementers of this design that any subscribers

using the proposed operators would not necessarily be issuing a subscription for

the target filter evaluated by the operator. If each broker operates using its own

independent data store, the brokers themselves must subscribe to the inner filters in

order for the broker to be able to correctly apply the new operators without miss-

ing any of the relevant publications being routed through the system. In a system

such as the hierarchical model of Siena [12], each broker receiving a subscription

containing one of the proposed operators must issue a subscription to its master for

publications which match the inner filter alone. This only needs done for first-level

inner filters, however, as the next broker up the tree should send the second-level,

the next the third, and so on.

4.4 Analysis

Our aim in proposing the design for this extension was two-fold:

• To create a data store component which can be added to the brokers of a

knowledge-based system which can store, retrieve, and analyze historical event

data, and

• To add new operators to the knowledge-based system which can be used to

relate events using Allen’s interval relations.

In fulfillment of those aims, the design presented in this chapter described a data

store interface capable of realizing all the data store needs for the system and three

operators (AFTER, DURING, and the general FILTER operator) which can

represent all seven of Allen’s interval relations. Furthermore, the two temporal op-

erators very simply represent the other four (doing only two integer comparisons

each) and the FILTER operator, by virtue of its generality, allows for even more

applications of the operator than those considered in this document.

With regards to performance, the data store must iterate over all the events which
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initially match the time constraints provided by the operators, which means that

the time taken to process each operator should grow as more publications are stored

in the data store, up to the limits configured in the operators themselves. It should

be feasible to implement this design in such a way that the processing time grows

no worse than linearly with the number of events returned from the data store (such

as the implementation described in Chapter 5).

As a further benefit, our design could also be employed on any content-based pub-

lish/subscribe system, not just a knowledge-based system, as long as the system can

serialize a filter and pass it as the target of our operators. The actual time values

used by the system do not matter (as long as they are fully-ordered and defined as

publication attributes) and the data store component is simple enough to be imple-

mented any number of ways, either with a relational database system or even using

flat file storage.

Overall, we find that this design simply and completely meets all the requirements

we set forth for this project. Additionally, the design is general enough to apply to

any content-based publish/subscribe system using a variety of data store implemen-

tations, and the additional expressiveness provided by the FILTER operator could

be extended to represent many different sorts of relations between publications. The

next chapter describes a proof-of-concept implementation of this design extending

a Java-based knowledge-based system.
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Chapter 5

Implementation

The previous chapter described the general design of our proposed extension to en-

able a knowledge-based publish/subscribe system to detect patterns of events based

on their temporal relations. We added a data store component and three new oper-

ators: AFTER, DURING, and a generic FILTER operator. In this chapter, we

will describe in detail the implementation of this design that we used to evaluate the

extension. This chapter will begin with a brief introduction to our implementation,

including any assumptions and conventions we adopted. This will be followed by an

explanation of our data store implementations and the implementations of our op-

erators, as well as the utility classes we introduced to ease the use of our extension.

Finally, we will discuss the changes that we introduced to Siena and the KBN.

5.1 Implementation description

Our implementation is based on a Java-language implementation of a knowledge-

based system described in [48] which itself was implemented on top of Siena [12].

As such, our implementation utilizes the types and operators of those systems, ex-

plained in Chapter 3.

The implementation relies on a number of assumptions about the use of the system,

specifically relating to the timestamps:
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• Event start and end timestamps are totally-ordered and defined by some ex-

ternal source,

• Event timestamps are to be delivered as publication attributes,

• The end time of a particular event will always be greater than or equal to the

start time of that event, and

• Any publication marked to represent the end of an event will be preceded

by a publication marked to represent the start of that same event (excluding

instantaneous events).

Furthermore, as a general maxim in content-based systems is to minimize the amount

of meta-data attached to each publication, we have implemented our design using

a number of conventions which allow it to utilize the existing Siena framework in a

consistent manner. In particular, our implementation uses four specific attributes

to represent the start and end times of our events, as well as the unique identifiers

for the events and some additional flags to denote whether a publication represents

the start or end of an event (or an instantaneous event, in which the start and end

time are equal). These attributes are described in Table 5.1, and are utilized by the

helper classes described in Section 5.4.

Attribute Name Attribute Type Description
PUB ID String Event UUID
KBN PUB TYPE Bag1 Publication type
KBN START TIME Long Event start timestamp
KBN END TIME Long Event end timestamp

Table 5.1: Special temporal attributes

PUB ID

The first attribute added by our extension is the PUB ID attribute, which contains

the string representation of a universal unique identifier used to tie start and end

1The bag type is used rather than a string in order to allow for bag operators on start or end
constraints, which must also apply to instantaneous events.
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publications together. The value of this attribute is intended to be unique for

each event (a start and end publication pair), and is used to retrieve and update

information about the event in the data store.

KBN PUB TYPE

Along with the identifier generated for each temporal event, publications include a

special attribute which denotes which time marker the event represents, the start or

end time, or if the event is instantaneous. The type of the publication is denoted with

the KBN PUB TYPE attribute, which can take one of three values: START, END, or

INSTANT. The KBN PUB TYPE attribute is also linked to the KBN START TIME

and KBN END TIME attributes described below. Conventionally, any publication

in which KBN PUB TYPE is set to START is expected to also include a value for

the KBN START TIME attribute, and the same is true for the value END and the

KBN END TIME attribute. Similarly, a value of INSTANT expects both a start time

and an end time. Also, for each set of publications which share the same value for

PUB ID, our implementation assumes that there will only be one publication with

a KBN PUB TYPE of START and only one publication with a KBN PUB TYPE

of END, or one publication with a KBN PUB TYPE of INSTANT. However, the im-

plementation described here does not enforce these constraints, and does not verify

that the conventions have been followed.

KBN START TIME and KBN END TIME

The final two additional attributes used by the temporal extension are

KBN START TIME and KBN END TIME, which store the timestamps for the

start and end of an event, respectively. These two attributes are used as the refer-

ence attributes for the AFTER and DURING operators described in Section 4.3.
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5.2 Data store implementation

For our implementation, we decided to implement the data store component using

two commonly-used relational database systems, Oracle and MySQL. We selected

these database systems due to their widespread use, their efficiency in storing linked

data (such as attributes being linked to a publication), and as a way to explore

some of the more advanced features (including some semantic functions) included

in the latest releases of the Oracle 11g database system. This section will first

describe the schema we implemented for these relational database systems, then will

describe our data store implementations in general before detailing the individual

implementations we created.

5.2.1 Schema

The implementation described here uses a very simple schema for storing publica-

tions in the database, consisting of only two tables–one for storing publications and

one for storing publication attributes. The schema is depicted in Figure 5.1. The

Figure 5.1: Database schema

main table, publications, stores some basic information about publications and

contains five columns:

• Id, the auto-incremented primary key;

• InsertedAt, the date and time the entry was created;

• StartTime, the start time for the event (the value of the KBN START TIME

attribute);

37



• EndTime, the end time for the event (the value of the KBN END TIME at-

tribute); and

• NotificationId, the universal unique identifier for the event (the value of the

PUB ID attribute.

The secondary table, publication attributes, stores information about the at-

tributes of the publications. It also contains five columns:

• Id, the auto-incremented primary key;

• PublicationId, the foreign key into the publications table, based on

publications.Id;

• Name, the attribute name;

• Value, the attribute value; and

• Type, an integer code representing the attribute type, such as a code of 0 for

null attribute values, a 1 for Strings, etc.

5.2.2 Data store component overview

We implemented the data store component in our Java implementation in such a way

as to follow the abstract factory pattern [32]. The component uses an implementa-

tion of a DataStoreFactory interface to create a corresponding implementation of

the DataStore interface, as shown in Figure 5.2. This section describes these inter-

faces, as well as a generic data store factory implemented to make the configuration

of the data stores easier.

DataStoreFactory interface design

The DataStoreFactory interface provides an implementation-agnostic way for a

client of the data store component to get a reference to a DataStore object. In the

case of this project, the data store object returned is assumed to require some degree

of configuration, which may be time consuming. Rather than create a new object
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Figure 5.2: DataStore and DataStoreFactory interfaces

each time a DataStore is requested, the data store factory assumes that each of the

implementing classes is designed to follow the Singleton pattern [32], although this

is not strictly necessary. By using the Singleton pattern, the configuration overhead

for each data store implementation can be incurred only once, with getInstance()

returning a reference to the singleton rather than creating and configuring a new

instance for each request.

DataStore interface design

The methods which are of particular interest in the data store component are the

two hasMatchingPublication() methods and isSemanticMatch(). The other four

methods (getPublicationById(), getPublicationCount() and the two

storePublication() methods) simply retrieve a Notification object by its id

in the data store, retrieve the number of publications currently in the data store,

and insert or update stored Notifications, respectively.

The two hasMatchingPublication() methods both take Filters as arguments

and both require the data store implementation to check the passed Filter against

the stored publications in order to determine whether the Filter covers the pub-
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lication. This operation could be implemented in a number of ways depending on

the capabilities of the underlying data store, and so could potentially benefit a great

deal from optimization in the implementation. One of the two method variants

requests an additional operator, sub-operator, attribute value, and attribute name,

and will only return true if one of the matching publications also matches the has

an attribute of the specified name which stands in the relation defined by the given

operator to the passed attribute value. The other variant takes a list of one or

more conditions which must also be met by the publication. These conditions are

expected to be SQL snippets which could be executed within the WHERE clause of

a standard SQL query.

The final method, isSemanticMatch(), can be used by semantically enabled data

stores to simplify the application of the semantic operators added to the KBN by

Keeney, et al. [48] If the data store component used by an implementation of the in-

terface does not support semantic operations, this method can also be implemented

as a wrapper for some other semantic library which can be invoked from the broker

process.

Generic data store factory

The implementation also includes a utility class for configuring and creating in-

stances of the DataStore implementation, the GenericDataStoreFactory. This

class implements the DataStoreFactory interface described in Section 5.2.2 and also

includes functions for reading a configuration file and registering multiple data store

factories. Factories are registered using the static registerFactory() method, and

can be removed using the removeFactory() method. The hasDefaultFactory()

method checks to see if a default factory has been registered for the zero-argument

call to getInstance(). If not, the parametrized version of the function must be used

to specify a factory instead. The class diagram for the generic data store factory

class is shown in Figure 5.3. The generic factory instance reads the configuration

from a properties file (datastore.properties in our implementation) which contains

the connection details for each listed type of data store factory. An example snippet
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Figure 5.3: GenericDataStoreFactory class diagram

of the configuration file is shown in Figure 5.4.

datastore.factories=oracle,mysql

datastore.default=oracle

# configuration info for the oracle datastore

oracle.factory=ie.tcd.cs.kdeg.extsiena.database.oracle.OracleDataStoreFactory

oracle.host=localhost

oracle.port=1521

oracle.database=temporalkbn

oracle.username=kbnuser

oracle.password=kbnpass

# configuration info for the mysql datastore

mysql.factory=ie.tcd.cs.kdeg.extsiena.database.mysql.MySQLDataStoreFactory

mysql.host=localhost

mysql.port=3306

mysql.database=temporalkbn

mysql.username=kbnuser

mysql.password=kbnpass

Figure 5.4: Example data store configuration

The GenericDataStoreFactory first reads the datastore.factories property,

which lists the names of the individual factories which are to be registered in the

system. These names must correspond to further <name>.factory entry, which

lists the fully-qualified name of the factory class itself. This class must implement
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DataStoreFactory. A new instance of this factory is created and stored in a map

keyed by the name and is used by the system to create new data store instances when

that named factory is requested from the generic factory. The datastore.default

property sets the default factory to be used if no name is provided to the generic

factory when requesting a new data store instance.

5.2.3 MySQL data store

Our implementation includes a data store for use with a MySQL 5.0 database,

MySQLDataStore. This implementation uses the schema described in Section 5.2.1

and the abstract factory pattern described in Section 5.2.2, consisting of two classes:

MySQLDataStore and MySQLDataStoreFactory. This implementation takes a very

näıve approach to finding matching events from the database, using simple SQL

queries to find any events which match the temporal constraints imposed by the

operators and looping through them in code to test against the filter. As such, the

MySQL implementation is expected to scale linearly with the size of the result set.

In order to ensure that our implementation does not lose too much performance

in connecting to the database, we have implemented connection pooling for the ac-

tual database connections using the Apache Common DBCP component [30], which

provides Java libraries for database connection pooling using the functionality of

the JDBC 2.0 drivers provided by database vendors. The actual connections to the

database are handled using the Apache BasicDataSource class, which uses the un-

derlying driver to make connections to the database which are then used multiple

times as more connections are requested or connections are closed.

As another note, the MySQL 5.0 series of database servers provide no semantic

support, so the isSemanticMatch() of this implementation simply returns a result

of false. When using this data store, the semantic operators must be handled

using some other tool, such as Jena [41], which is the library used by the KBN in

our implementation.
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5.2.4 Advanced Oracle data store

Along with the MySQL data store, our implementation uses two Oracle data store

implementations, one which uses many of the advanced features of the Oracle 11g

data store and the other of which uses only the standard RDBMS features. This

section describes the more advanced implementation, including the Oracle features

it uses. These features include the ontology-extended relational queries introduced

as part of Oracle’s Semantic Technologies [58] and the ability to invoke static Java

methods as stored procedures from the Oracle 11g instance [20].

The core of the advanced data store implementation are the classes which implement

the interfaces described in Section 5.2.2: OracleDataStore and

OracleDataStoreFactory. The database connection used by OracleDataStore uti-

lizes the built-in connection pooling of the Oracle driver (provided by the

OracleConnectionCache framework) which is included in the OracleDataSource

provided by the JDBC 2.0 driver. This allows the system to reuse existing connec-

tions to the database each time the broker connects rather than creating and config-

uring a new connection. The Oracle driver handles all the connection caching and

reaping automatically. Also, the Oracle implementations require the addition of two

sequence objects in the database, publication seq and publication attribute seq,

in order to handle the automatic numbering for the database entry identifiers.

In order to perform the matching of stored events, the advanced Oracle data store

invokes a stored procedure, MATCH(), from the Oracle database. This stored pro-

cedure is actually a static Java function from the OracleDataStoreMatcher class,

which parses a filter from a passed string and applies it to a publication retrieved

from an internal data store (the stored procedure is in more detail in Section 5.2.4).

Any publication which matches the filter is then included in the result set and re-

turned to the data store class. As this is limiting the size of the result set and

there is no external looping required to analyze these results, we expect that this

implementation would perform rather better than the simpler MySQL and Oracle
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implementations, perhaps growing with the log of the result set size rather than

linearly.

Finally, the Oracle 11g instance includes support for semantically-enhanced queries

comparing against a loaded ontology. This allows the Oracle data store to offer the

isSemanticMatch() function by the SEM RELATED function to determine if a partic-

ular triple is included in a loaded ontology. The semantic technologies included in

the Oracle 11g installation are described in more detail in a later subsection.

Java stored procedures

In addition to the standard RDBMS features, the Oracle database comes bundled

with its own Java virtual machine using the included loadjava utility, which allows

Java objects to be loaded into the database as resources which can be called later,

which is not possible with other available database solutions. These resources can

either be Java source files or code, which is compiled and resolved against the other

loaded libraries, or Java class files, which are only resolved against the previously

loaded resources. Any method to be invoked as a stored procedure must be a static

method, but can otherwise make use of any resources that are accessible to the

database user.

In the Oracle data store implementation, the OracleDataStoreMatcher class acts as

the container for the stored procedure, match(), which is invoked during SELECT

queries used by the temporal and filter operators. The match() function accepts the

string serialization of a filter (as marshalled by Siena’s communication utilities) and

the database id of the publication currently being examined by the query, returning

1 if the publication is a match and 0 if not.

Performing these operations within the database makes the logic of the data store

much simpler, as the query only returns rows which are already checked against the

filter, but it adds some other technical complications. For one, the Oracle virtual

machine is run from a different process than the rest of the KBN, so none of the
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objects or configuration of the KBN can be accessed directly by the matching class.

Also, the entire codebase of the KBN must be loaded by the database, including all

of the classes invoked in the course of matching filters. This could potentially lead

to some extra overhead for each call because the matcher must reconfigure itself

each time.

Internal Oracle data store

In order for the stored procedure to match nested temporal or filter operators (as

well as the ontological operators), the matching procedure itself may sometimes

need to invoke the data store to test for matching publications. This is complicated

somewhat by the restrictions placed on stored procedures by the Oracle VM, which

do not allow connections of the sort attempted by the standard Oracle JDBC driver.

However, the Oracle VM also includes a special implementation of the JDBC driver

which can be used from within the database when a connection is needed from the

Java stored procedure.

The extension also includes a special implementation of DataStore and

DataStoreFactory which invoke this driver from within the matching function,

called InternalOracleDataStore (which extends OracleDataStore, itself an im-

plementation of DataStore) and InternalOracleDataStoreFactory respectively.

The data store factory is registered in the GenericDataStoreFactory as the default

for the Oracle VM environment with each invocation of the match function, so that

any future requests for a data store instance will use the internal data store rather

than attempting to connect to the database with the standard JDBC driver.

Oracle semantic technologies

Oracle 11g database systems include support for storing and querying semantic data,

including using ontological information to extend standard relational queries. This is

especially useful for storing and querying data which can be related semantically as

well as by value. For instance, a standard relational query for “EnginePart” would

not return an entry for a “SparkPlug”, simply because the values do not match.
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However, if the two entries are connected ontologically such that a spark plug is

listed as an engine part, then the semantically-enhanced relational queries would

find the relevant data, allowing for more flexibility in the way data is represented in

the database. Our implementation utilizes this feature with the isSemanticMatch()

function, which can be used in place of the Jena [41] Java reasoner currently used

by the KBN implementation.

The semantic utilities provided in the database are included as part of the SEM APIS

package of PL/SQL subprograms introduced as part spatial data features of the

Oracle 10g database. Semantic data is first loaded as triples into the database,

which generates an SDO RDF TRIPLE S type object to represent it within the Ora-

cle relational data. The actual data for these triples is stored as metadata in the

MDSYS.RDF VALUE$ table, which is automatically maintained by the database itself.

Triples can be inserted into the database in bulk via a staging table and PL/SQL

script, using a provided Java client interface to load an N-Triple format file, or in-

dividually using the provided SDO RDF TRIPLE S constructor in an insert query.

Once loaded, the triples can then be used to construct a semantic model, which

models the triples as a directed graph where the subject and object are stored as

nodes connected by the predicate, stored as a directed edge between the nodes. The

models in the Oracle database are also automatically maintained as metadata in the

MDSYS.SEM MODEL$ view and are only accessed via the provided PL/SQL subpro-

grams. These models can then be used to make queries on the semantic data.

In contrast to Jena, the Oracle database need only load the ontological model once,

because once the model has been stored in the database and the appropriate indices

have been created, the model can continue to be queried. Jena, on the other hand,

must have it’s model reloaded every time a new KBN broker is started, adding time

to the start-up of the broker. However, Jena does provide greater flexibility in the

type of reasoners allowed and in the particular rules used for reasoning, as the Or-

acle semantic implementation only allows a small number of reasoners culminating
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in the OWLPrime1 rulebase which is the largest included set of rules for the Oracle

reasoner. These can be extended with custom rulebases, however, but the process

is more complicated than the process is with Jena.

The implementation of the Oracle data source uses the included SEM RELATED op-

erator, which retrieves rows from the database based on their semantic relatedness

within a specified set of semantic models with respect to a specified set of ontologi-

cal rulebases, such as RDFS or the Oracle-created OWLPrime. Using the specified

models and rulebases, SEM RELATED checks if the passed subject and object are linked

via the passed predicate. This means that the matching of the semantic operators

is performed within the database itself rather than invoking the Jena reasoner. Us-

ing this feature, the Jena reasoner could be completely eliminated from the KBN

brokers, decreasing the number of library dependencies for the KBN Java codebase.

5.2.5 Simple Oracle data store

Along with the advanced Oracle data store, we also implement another data store

which uses the same Oracle database without invoking the Java stored procedures.

Rather, the OracleJDBCDataStore implementation checks for matching events in

the data store by retrieving all the rows and iterating over them in code, similar

to the MySQL implementation described in Section 5.2.3. This implementation

can also benefit from the Oracle semantic technologies as well, although it is not

necessary.

5.3 Operator implementation

In our implementation, the three operators described in Section 4.3–AFTER,

DURING, and the FILTER operator–all implement a common interface,

ComplexOperator, shown in Figure 5.5.

1OWLPrime supports all RDFS operations and a subset of OWL capabilities, including many
of the basic comparisons of classes, properties, and individuals but excluding many set relations
such as cardinality, unions, intersections, and enumeration.
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Figure 5.5: The ComplexOperator interface

This interface includes two methods, apply() and same op(). The apply() method

takes three parameters: the name of the reference attribute to which the attribute

is applied, the value of the reference attribute (as an AttributeValue), and the

target filter to which the operator is to be applied. If the operator does apply, the

method returns true, and it false otherwise. The same op() method checks to see

if the passed ComplexOperator describes the exact relation described by the invoked

operator.

The interface is directly implemented by two classes, FilterOperator (which imple-

ments the FILTER operator from Section 4.3) and the abstract class

TemporalOperator. The TemporalOperator class is then further extended by the

implementations of AFTER and DURING, the AfterOperator and the

DuringOperator respectively.

5.3.1 FilterOperator

The FilterOperator class implements the ComplexOperator interface, as shown in

Figure 5.6.

The class has three members:

• limit, which stores the maximum number of results to be examined when

applying the operator;

• operator, which represents the main KBN operator to be applied to matching

publications; and
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Figure 5.6: The FilterOperator class

• sub operator, which stores the secondary operator to be used if (and only if)

operator is a bag operator.

The two constructors generate a new instance of the FilterOperator, either with a

passed limit or using the default limit set in the KBN code (currently 10000). The

apply() method retrieves a reference to a data store instance from the

GenericDataStoreFactory and invokes hasMatchingPublication() with the stored

operators and limit and the passed attribute value and target filter. The same op()

method returns true if the passed operator is a FilterOperator and if the operator,

sub-operator, and limit are the same. An example of creating a FilterOperator is

given in Figure 5.7.

5.3.2 TemporalOperator

The other class to implement ComplexOperator is the abstract TemporalOperator

class, along with its two sub-classes, AfterOperator and DuringOperator. These

three classes are shown in Figure 5.8.

The TemporalOperator class itself implements only the apply() method, which re-

trieves a DataStore from GenericDataStoreFactory and invokes

hasMatchingPublication() using the two conditions returned by the abstract

condition methods of the class along with a condition which prevents an publi-

cation from matching with its own event. All of the other methods listed in the
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// Example of using the FilterOperator

public void useFilterOperator(Siena kbn, Notifiable subscriber) {

// set the main operator (less than)

ExtOp main = ExtOp.LT;

// set the sub operator (null here, since we’re not using a bag)

CompositeOperator sub = null;

// set the limit

long limit = 500;

// create the operator

FilterOperator filterop = new FilterOperator(main, sub, limit)

// set the reference attribute name

String reference = "price";

// create a target filter

Filter target = new Filter();

target.addAttributeConstraint("attr", "somevalue");

// create the outer filter

Filter outside = new Filter();

outside.addAttributeConstraint(reference, new AttributeConstraint(filterop, target));

// subscribe

try {

kbn.subscribe(outside, subscriber);

} catch (SienaException e) { }

}

Figure 5.7: Example of using FilterOperator

TemporalOperator class are implemented in the subclasses, AfterOperator and

DuringOperator, which implement the AFTER and DURING operators respec-

tively. Some example code to use these operators is shown in Figure 5.9.

AfterOperator

The AfterOperator class implements theAFTER operator described in Section 4.3.

It has one member variable, limit, which stores the maximum number of time steps

into the past that the operator will consider when testing for a match. This field is

filled from the constructor when the operator is used.

The two conditions specified by the AfterOperator (with getConditionOne() and

getConditionTwo()) both relate to the end time of the stored events the operator

is applied against:

1. The end time, YE, of the stored event Y must be less than the value of the

reference attribute, XR (i.e., YE < XR) and

2. The end time must be greater than or equal to the value of the reference

attribute minus the limit, L (i.e., YE ≥ (XR − L)).
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Figure 5.8: TemporalOperator and its subclasses

DuringOperator

The DuringOperator, which implements DURING, has no member variables, as

there is no additional parameterization to be done for this operator. The conditions

it specifies relate to both the start and end times of the stored events:

1. The start time, YS of the stored event must be less than or equal to the value

of the reference attribute (i.e., YS ≤ XR) and

2. The end time of the stored event must either be greater than or equal to the

value of the reference attribute or it must be null (i.e., YE ≥ XR ∨ YE is

null).

5.4 Utility classes

In addition to the data store and the temporal operators, we implement a number

of utility classes which encapsulate the functionality and conventions added by the

new component and operators. This section will describe those new classes.
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// Example of using the temporal operators

public void useTemporalOperators(Siena kbn, Notifiable subscriber) {

// create a target filter

Filter target = new Filter();

target.addAttributeConstraint("attr", "somevalue");

// create an outer filter

TemporalFilter overlaps = new TemporalFilter();

// create the during operator

DuringOperator duringop = new DuringOperator();

// add a start constraint to use the during operator

overlaps.addStartConstraint(new AttributeConstraint(duringop, target));

// set the time limit for the after operator

long limit = 50;

// create the after operator

AfterOperator afterop = new AfterOperator(limit);

// add an end constraint to use the after operator

overlaps.addEndConstraint(new AttributeConstraint(afterop, target));

// subscribe

try {

kbn.subscribe(overlaps, subscriber);

} catch (SienaException e) { }

}

Figure 5.9: Example of using the TemporalOperators

TemporalCovering

In order for our implementation to correctly function within the Siena/KBN frame-

work, we need to address the covering relations employed by Siena, as described

in Section 3.2. The TemporalCovering class performs this task with its covers()

method, which takes two AttributeConstraint objects as parameters and deter-

mines whether or not one covers the other.

For the operators in our extension, the covering relationships depend heavily on

the internal target filters used in the operators, and cannot be determined other-

wise. Due to this constraint, the TemporalCovering class only returns a result of

true if the two attribute constraints contain the same ComplexOperator (using the

operators’ same op() method) and the internal filter of the left-hand operator covers

that of the right-hand operator.
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TemporalFilter

To simplify the use of the new start and end time semantics which represent events in

our extension, we have added a small extension to the Siena Filter class to help with

adding constraints to the start and end times. This extension, TemporalFilter,

simply adds two new methods, addEndConstraint() and addStartConstraint(),

which automatically add the appropriate constraints to match the conventional val-

ues used in the temporally-enhanced publications. The class diagram showing the

new methods is shown in Figure 5.10.

Figure 5.10: TemporalFilter class diagram

TemporalNotification

Similarly, we also introduce a new extension to the Siena Notification class,

TemporalNotification. This class simplifies the addition of the start and end

timestamps to publications which take advantage of the new temporal extension to

the KBN. The two new methods, setEnd() and setStart(), create and set all the

attributes conventionally used by the temporal notification framework. The class

diagram for the TemporalNotification class is shown in Figure 5.11.
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Figure 5.11: TemporalNotification class diagram

5.5 Siena/KBN modifications

The features described in this chapter also require some modifications to the existing

Siena/KBN framework. This section describes those modifications.

HierarchicalDispatcher

The HierarchicalDispatcher class in the KBN is the main class for each broker,

as it implements the Siena interface. The only change necessary for this extension

is to add a store class member, which stores a reference to the default DataStore

instance returned by the GenericDataStoreFactory, which is invoked when the

dispatcher initializes. Also, it is necessary to specify whether the broker will be us-

ing the semantic features of the database or an external reasoner in the dispatcher

initialization.

The final change to the HierarchicalDispatcher relates to the subscription pro-

cess. In order for the new operators to successfully retain all relevant publications,

the first-level (non-nested) inner filters stored by each of the new operators must be

sent up the subscription tree as well. Our implementation alters the subscribe()

method so that it extracts any first-level inner filters and creates a new subscription
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by the broker for those filters as well.

AttributeConstraint

Both of the new types of operator added in this extension require a Siena Filter

object as an operand, but the existing AttributeConstraint class does not allow for

Filters to be given as values. Furthermore, since the new operators do not extend

the old operator classes, there is no way of storing those operators or testing for their

presence in the existing design. In order to allow the new operators to work within

the Siena framework, the AttributeConstraint class must be extended with new

fields and new functions which store and access the new operators and the Filter

target values.

SENP modifications

The new operators also require a change to Siena’s SENP (Simple Event Notifica-

tion Protocol) in order for the new operators to be marshalled and transmitted by

the brokers. These changes are of particular note, because they will prevent brokers

running previous versions of Siena or the KBN from recognizing subscriptions using

the new operators.

In Siena, messages are marshalled and transmitted as specifically formatted strings

which are parsed by the SENPBuffer class. These strings include special characters

or character combinations to represent the Siena operators, such as “>” to repre-

sent the greater-than operator and “*” to represent the substring operator. These

operators were extended by the KBN, introducing such combinations as “@=” for

ontological equivalence and “#<” for the subbag operator. Similarly, the new opera-

tors added to the KBN in this project were added to the SENPBuffer class (and to

the SENP itself) as described in Table 5.2.

Correspondingly, we modified the SENP writer, SENPWBuffer, to encode the new

operators when encoding the AttributeConstraints that contain them. Each of
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Symbol Next token Operator
$= <filter> During operator
$> <limit><filter> After operator
^ <operator><filter> Filter operator

Table 5.2: Temporal and filter operator codes

the new operators includes a toString() function which prints the appropriate sym-

bol to a string, along with the following tokens (the limits the operators) required

by the AfterOperator and the FilterOperator. The SENPWBuffer then encodes

the target filter as it would normally encode a filter, to be read by the SENPBuffer

on the receiving end.

5.6 Summary

In summary, we implement the following components based on the design described

in Chapter 4 and modify the existing KBN codebase to use them:

• A simple database schema for storing publication data in a relational database;

• A generic data store factory for use in configuring the data store;

• Two näıve data store implementations using the JDBC drivers for MySQL

and Oracle;

• A more advanced Oracle data store implementation utilizing Java stored pro-

cedures and Oracle’s semantic technologies;

• Two temporal operators, AfterOperator and DuringOperator, which imple-

ment the ComplexOperator interface;

• A generic FilterOperator which also implements ComplexOperator;

• Two utility classes, TemporalFilter and TemporalNotification, which ease

the use of the new components; and

• TemporalCovering, which implements the covering relations used by Siena for

the new operators.
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The modifications include some changes to the HierarchicalDispatcher class to

attach the data store and route inner filters up the tree as subscriptions and to

the AttributeConstraint class in order to make it support the new operators and

take filters as target values. We also added the new operators to Siena’s transfer

protocol, SENP.

The next chapter explains the tests used to evaluate the implementation in terms

of the scalability of the data store implementations, including some analysis of that

evaluation.
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Chapter 6

Evaluation

The previous chapter detailed the implementation of the design we proposed in

Chapter 4, including the various data store implementations we implemented for

the system. This chapter will describe the evaluation framework we used to test the

scalability of our implementation. The first section will briefly describe the evalua-

tion framework, followed by a description of the tests run on the empty databases

with their results, and finally the tests run with pre-seeded data already in the data

stores.

6.1 Framework

The tests described in this section were all run on a Dell Server PE1900 with an Intel

Xeon (Quad-core) 2.33 GHz processor, 4 GB of RAM, and 585 GB of hard disk space

running Microsoft Windows Server 2003 R2 Standard Edition with Service Pack 2.

The Java implementation was compiled with a Java 2 Standard Edition runtime

environment, version 1.5.0 11, and was executed with a Java SE runtime version

1.6.0 15. The Oracle data store implementations both used an Oracle Database 11g

11.1.0.7.0 installation using the official Java 1.6 JDBC driver, and the MySQL data

store implementation connected to a MySQL 5.1.28 installation (on a community

license) using the MySQL JDBC connector version 5.1.8. All of the semantic opera-

tors were run using a Pellet-reasoned version of the W3C Wine Ontology [80]. The

tests use KBN Version 4 (Version 3 plus the new temporal extensions described in
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Chapter 5).

Statistics were collected using a Statistics class included as part of the imple-

mentation. This class collected data on the processing time taken to complete

various tasks with the KBN broker in order to see if how the system scaled with

the number of stored events. We collected the following statistics from the broker

as each publication was received:

• The id of the publication (in order to group the results),

• The number of events stored in the data store at the time the publication was

received,

• The number of subscribers to which the publication was delivered,

• The time (in milliseconds) taken to insert the event in the database (for start

publications),

• The time (in milliseconds) taken to update the corresponding event in the

database (for end publications),

• The average time (in milliseconds) to successfully apply each filter operator

checked against the publication,

• The average time (in milliseconds) to unsuccessfully apply each filter operator

against the publication,

• The average time (in milliseconds) to successfully apply each temporal opera-

tor to the publication,

• The average time (in milliseconds) to unsuccessfully apply each temporal op-

erator to the publication, and

• The total time (in milliseconds) taken to process the publication.
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6.2 Test 1: Empty data store

The first series of tests attempted to establish how the processing time for the exten-

sion grew with respect to the number of stored publications, starting with an empty

data store. For this test, we connected an example publisher and an example sub-

scriber to a single temporally-extended KBN broker running on the server described

in Section 6.1. The example subscriber generated fifty unique subscriber instances,

each subscribing with one of the subscriptions shown in Table 6.1, randomly-selected

with a uniform description (a filter used as a target value is denoted by FX where

X is the filter name).

Filter Attribute Operator Target
A A < 8
B B ONTPROP<wine:hasColor> <wine:Red>

C A FILTER<(200) FB

D End DURING FA

E Start AFTER(500) FA

F Start AFTER(125) FA

Xa C > 10
G A FILTER<(200) FX

a This filter is only used as the internal filter for the following filter
operator.

Table 6.1: Subscriptions for Test 1

The example publisher connected to the same instance and published information

about 250 events, with one beginning every 10 seconds (in order to allow the broker

to fully process the request) and lasting between three and eight seconds (in order

to test varying event durations), at which time the end event for that event was

published. The publications contained two attributes, A and B, which were each

assigned an independent random value. A was set to an integer value between one

and ten, inclusive, and B was set to the URL of one of ten wines from the Wine

Ontology, five red and five white.

This test was run fifty times for each of the three data store implementations dis-

cussed in Chapter 5: the advanced OracleDataStore, the simple OracleJDBCDataStore,
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Figure 6.1: Average processing time of the OracleJDBCDataStore and the
MySQLDataStore implementations

and the MySQLDataStore. Based on the algorithms employed, we predicted that

the processing time would scale at most linearly with the number of events stored

in the data store. The results of the tests using the OracleJDBCDataStore and

MySQLDataStore implementations are shown in Figure 6.1. As the graph indicates,

the average processing time for each publication does appear to increase linearly with

the number of events stored in the data store, at least for the MySQL results which

match a linear regression with a high degree of confidence (R = 0.989). The simple

Oracle JDBC implementation also strongly fits a linear regression (R = 0.854), but

is also a strong fit for a logarithmic regression based on the test data (R = 0.819),

showing that the processing time for the OracleJDBCDataStore may grow with the

log of the stored events rather than growing linearly.1

1The error bars in all the graphs shown in this document represent the standard error, not the
standard deviation from the mean.
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Figure 6.2: Average processing time of the Oracle data store implementations

The more advanced OracleDataStore class also displayed a linear increase with the

number of stored events (R = 0.999), but the increase was dramatically greater than

the simpler OracleJDBCDataStore, which did not utilize the Java stored procedure

invocations used by the more complex version. Figure 6.2 compares the two Oracle

data stores directly based on their results from Test 1.

As shown in Figure 6.2, the more advanced Oracle data store may grow linearly,

but for only 250 stored events (a very small number) the processing time for each

publication takes an average of nearly seven seconds! This sort of processing time

is very troubling, as the results should have been more akin to those of the simpler

Oracle JDBC implementation and the MySQL data store implementation shown in

Figure 6.1. The increased processing time for each publication may well be due to

the overhead involved with the invocation of the Java stored procedure defined in

the OracleDataStoreMatcher class described in Section 5.2.4. In order to check for

62



matches, the matcher class must load most of the KBN infrastructure and invokes

a very complicated sequence of calls in order to parse the passed filter, retrieve the

attributes from the publication being examined, and apply any operators to deter-

mine the match. This may require the Oracle 11g instance to dynamically load

and unload many Java classes (although the logging and other utilities used by the

matcher were loaded only a very small number of times), which could dramatically

increase the time taken to perform each query, especially as the number of events

stored in the database grows.

Summary: Test 1

The first test published 250 randomly-generated publications to 50 randomly-selected

subscribers using a single temporally-extended KBN broker and an initially empty

data store. Each of the three implemented data stores (OracleDataStore,

MySQLDataStore, and OracleJDBCDataStore) was used for 50 complete runs of

the test. The results demonstrated that all three scaled (at most) linearly with the

number of stored events, with the simpler OracleJDBCDataStore showing the best

performance. The poor performance of the more complex OracleDataStore was sur-

prising as it did not seem to be affected by subsequent changes in the configurable

variables of the test (e.g., delay between publications, number of publications), but

it may be explained by the increased overhead necessary to invoke the Java stored

procedures used to match the new operators.

6.3 Test 2: Pre-loaded data

The second test set utilized much the same set-up as the first, involving a sin-

gle temporally-extended KBN broker, a simple subscriber, and a simple publisher.

However, the second set of tests operated on a pre-filled database containing 50,000

randomly-generated events (using the same publication attributes as the publisher

in the first test; see Section 6.2) and focused specifically on the time taken to pro-

cess the FILTER operators, which we determined take the most time due to their

unconstrained nature (the temporal operators took an average of around 10ms to
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process). The fifty subscribers for the second test used one of two filters, randomly-

selected from those described in Table 6.2. The publisher used for the second test

is the same as the publisher used for the first test, but with a three second delay

rather than a ten second delay between publications.2

Filter Attribute Operator Target
Xa B ONTPROP<wine:hasColor> <wine:Red>

A A FILTER<(α)b FX

Ya C > 10
G A FILTER<(α)b FX

a This filter is only used as the internal filter for the following filter
operator.

b The limit on the filter operators used in these subscriptions is one
of the variables manipulated in this test.

Table 6.2: Subscriptions for Test 2

The second set of tests were each run with varying values for the filter operator

limit (200, 500, 1000, 2000, and 5000 results), all using the OracleJDBCDataStore

implementation. We expected that the average processing time would remain nearly

constant, due to the limit imposed on the filter operator result set size. As expected,

the average publication processing time for the second test (with a filter operator

limit of 200 results) using the simple Oracle data store implementation hovered

around 200 milliseconds, as shown in Figure 6.3.

These results show that the processing time scales linearly not in the number of

total events stored in the database, but rather that the processing time is a function

of the size of the result set returned for each query. We expect that the process-

ing time will increase as the limit on the result set increases. In order to test this

prediction, we ran the second test ten times each with filter operator limits of 200,

500, 1000, 2000, and 5000 results. The average publication processing time for each

limit (along with the standard deviation and standard error) are shown in Table 6.3

and a graphical depiction of those results is shown in Figure 6.4.

2The delay was decreased in order to speed up the testing process and Test 1 showed that the
JDBC implementation did not approach the previous 10 second mark.
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Figure 6.3: Average publication processing time with a pre-filled data store

Limit Avg. Time (ms) Std. Dev. Count SEM
200 193.20 153.62 4949 2.18
500 284.72 371.35 4954 5.28

1000 444.55 759.29 4949 10.79
2000 753.96 1556.41 4949 22.12
5000 2957.66 5060.09 4947 71.94

Table 6.3: Average processing times based on filter operator limit

As expected, the processing time does increase as the filter operator limit increases,

although the increase is not quite as linear as expected. The first four data points

(200, 500, 1000, and 2000 result limits) do appear to increase linearly, but the in-

crease up to 5000 results shows a greater marginal increase than expected. This

increase could be due to the processing time approaching the delay between publi-

cations, leading to a queuing effect as the publications begin to stack up awaiting

processing. Siena only processes a single publication at a time at each broker, and
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Figure 6.4: Average processing times based on filter operator limit

the statistics gathering framework counts this wait time as part of the total.

In order to see more clearly the effect of the increased limit on the processing of the

filter operators, we also gathered statistics on the processing time devoted only to

the application of the filter operators for the publications published during the test.

This time is also expected to increase linearly with the size of the limit. The aver-

age filter operator processing times are shown in Table 6.4 (including the averages

for matched and non-matched publications), and the combined average values are

plotted as a graph in Figure 6.5.

By this measure, the results of Test 2 do show that the filter operator processing

time does increase linearly with the limit on the result set returned by the queries

used to evaluate the operators (R = 0.999), which agrees with our earlier expecta-

tions. Also, the average time taken to process matching filter operators is far less

than the average time taken for those publications that do not match (which is the
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Limit Avg. Time (ms) Std. Dev. Count SEM
200 31.05 31.95 4492 0.48
500 37.39 45.15 4506 0.67

1000 37.55 58.55 4447 0.88
2000 45.13 143.58 4460 2.15
5000 83.89 488.41 4433 7.34

(a) Matching publications

Limit Avg. Time (ms) Std. Dev. Count SEM
200 35.45 56.10 4949 0.80
500 67.79 151.17 4954 2.15

1000 116.82 281.90 4949 4.01
2000 256.52 690.74 4949 9.82
5000 587.88 1573.70 4947 22.37

(b) Non-matching publications

Limit Avg. Time (ms) Std. Dev. Count SEM
200 40.68 55.51 4949 0.79
500 73.67 148.61 4954 2.11

1000 118.80 275.42 4949 3.92
2000 258.00 690.95 4949 9.82
5000 569.84 1549.78 4947 22.03

(c) Combined (all publications)

Table 6.4: Average filter operator processing times by limit

worst case, as every result must be checked). As shown by the data, the performance

in the average case is not that much different than the performance in the worst

case.

Summary: Test 2

The second test published 250 randomly-generated publications to 50 subscribers

that subscribed using one of two randomly-selected filter operator constraints, using

the simple Oracle JDBC data store implementation and 50,000 pre-seeded publica-

tions in the database. The overall performance remained nearly constant with each

publication, showing that the results do not scale with the number of stored events,

but rather with the number of events returned in the result set of the queries used

to evaluate the operators. Examining the FILTER operator only and varying the

limit on the result set, we found that the average operator processing time does
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Figure 6.5: Average filter operator processing times by limit

increase linearly with the size of the limit, and that the average performance does

not differ significantly from the worst case (a non-matching publication).

6.4 Summary

Overall, the tests we performed showed the expected results, in that the amount of

time taken to evaluate the new operators grows at most linearly with the number

of results returned by the data store.

Surprisingly, the advanced Oracle data store performed very poorly, even to the

point where up to six or seven seconds was required for each publication, with a

result set of only 250 entries! This is contrary to what we expected, given the use

of the Java stored procedure, which we thought would simplify and expedite the

queries. It is possible that the matching function invoked by the stored procedure is

more complex than this feature was intended to perform, forcing the Oracle virtual
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machine to load and unload too many classes and incur too much overhead. Re-

gardless, the simple Oracle data store performed much better, and was our preferred

data store implementation for the second test.

We will close this chapter with one caveat about our tests: each of the filter and

temporal operators included only one level of inner filters, not more. It is possible

for these operators to be nested just as with any other operator, and it is possible

for a single subscription to contain multiple constraints with filter or temporal op-

erators. We expect that the processing time of nested filter and temporal operators

would grow faster than that of a single operator, perhaps O(m · n) where m is the

number of filters included in the constraint and n is the average number of results

returned by each. A full evaluation of the performance with nested operators must

wait for another time, however, as our goal with this project is primarily to design

and test rather than optimize the new operators.
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Chapter 7

Case Studies

In the previous chapter, we summarized our evaluation of the temporal operators

and the data store implementations in term of performance. In this chapter, we

explore the expressiveness of the new operators through some examples of how the

temporal KBN could be used for real-world applications. While the KBN could also

by used for such things as network fault logging and intrusion detection, we have

selected two motivating case studies to show even futher uses for this project. These

motivating case studies are:

• A news-feed type deployment for the delivery of severe weather reports, and

• A system for dynamically adjusting logging levels based on event patterns.

7.1 Severe weather report delivery system

In the Midwestern region of the United States, severe weather–in the form of violent

thunderstorms or even tornados–is a prominent risk during the spring and summer

parts of the year. The prediction and tracking of such storms, which can spring

up very suddenly, is a very important challenge for local weather services, as severe

injury or death could result from an incorrect or untimely forecast if residents are

unaware of the possible danger. In the United States, the National Oceanic and

Atmospheric Administration (NOAA) National Weather Service (NWS) provides

information about potential severe weather in the form of watch and warning ar-
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eas issued by the Storm Prediction Center (SPC). A watch area typically covers

around 20,000-40,000 square miles (52,000-104,000 square kilometers) and is issued

in advance of any threats if ambient weather conditions seem favorable for severe

weather. These alerts serve to inform the residents of the watch area to prepare for

potentially dangerous weather. A warning, on the other hand, covers a much smaller

area and is issued by local storm spotters (people on the ground tasked to watch for

specific severe weather activity) or local forecasters watching radar activity when

severe weather is detected in a specific region. Warnings are quickly delivered by

all media sources available to the NOAA (including local radio, television, and news

wire) to provide information to the coverage area [63].

Two of the warning types, those for severe thunderstorms or tornados, describe

potentially short-lived, isolated events which can move quickly in any direction (al-

though in the mid-western USA, they usually move from west to east). In order

for the residents and responders to be the most effective in preparing for or dealing

with severe weather, it is also important to note the direction the storm is travelling,

and the speed at which it is moving. Sometimes, the warning information issued by

the NWS covers a much broader area than is necessary in order to prepare those in

the path of the storm. For instance, severe thunderstorm warnings in the state of

Nebraska are generally issued by county as a particular storm crosses within that

county. However, Cherry County in north-western Nebraska covers a geographic

area of nearly 6,000 square miles (15,000 square kilometers), which is almost the

same size as the Irish province of Connacht [10]. For the residents of Cherry County

(and particularly those in Valentine, the largest town in the county), it would be

very useful to have more information about the specific direction in which a storm

is traveling.

The temporally-extended KBN could be used in conjunction with existing county-

based warning messages to infer the general direction that a storm is travelling.

The regions in the path of the storm could then subscribe only to those particular

patterns of publications which are relevant instead of indiscriminately receiving all
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warnings which are released within a certain radius around that region. The pro-

posed architecture for such a deployment is shown in Figure 7.1. In the proposed

Figure 7.1: Architecture for a severe weather report system

system, the SPC of the NOAA NWS would publish watch notifications via the

temporal KBN network, as would storm spotters and local forecasters who identify

severe weather for warning reports. A suggested structure for these publications

is shown in Figure 7.2. The noaa msg type attribute would contain the type of

Attribute Type
noaa msg type String
noaa msg severity String
noaa state Bag(URI)
noaa county Bag(URI)

Figure 7.2: Suggested NOAA weather report publications. URI types refer to
individuals in a spatial ontology.

weather (one of ”tstorm”, ”tornado”, or ”flood”) described by the message, and the

noaa msg severity attribute would be set to either ”watch” or ”warning” depending

on the level of the message. The other attributes could make use of an ontology

defining the locations of various states and counties with relation to each other. An

example fragment of such an ontology is shown in Figure 7.3. By using that ontol-

ogy and the temporal operators provided by our extension to the KBN, Emma, a

subscriber in York, NE (which is located in York County, shown in Figure 7.4), could
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<rdf:RDF xml:base="http://kdeg.cs.tcd.ie/temporalkbn/USRegionCounty"

xmlns:USRegionCounty="&USRegionCounty;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- other class, property, and individual definitions... -->

<USRegionCounty:USCounty rdf:about="#YorkCountyNE">

<USRegionCounty:isLocatedIn rdf:resource="&USRegionState;#NE"/>

<USRegionCounty:isNorthEastOf rdf:resource="#ClayCountyNE"/>

</USRegionCounty:USCounty>

<USRegionCounty:USCounty rdf:about="#HamiltonCountyNE">

<USRegionCounty:isEastOf rdf:resource="#HallCountyNE"/>

<USRegionCounty:isLocatedIn rdf:resource="&USRegionState;#NE"/>

<USRegionCounty:isNorthOf rdf:resource="#ClayCountyNE"/>

<USRegionCounty:isSouthOf rdf:resource="#MerrickCountyNE"/>

<USRegionCounty:isSouthWestOf rdf:resource="#PolkCountyNE"/>

<USRegionCounty:isWestOf rdf:resource="#YorkCountyNE"/>

</USRegionCounty:USCounty>

<!-- other class, property, and individual definitions... -->

</rdf:RDF>

Figure 7.3: U.S. county ontology fragment

be notified of only those thunderstorm warnings in Hamilton County which start

during thunderstorm warnings in whichever county is just west of Hamilton County

(those following the path A in Figure 7.4). That pattern of events is only likely to

happen if the thunderstorm is moving to the east, which means that York is likely

in the thunderstorm’s path. In contrast, warnings which begin during warnings in

Merrick County (to the north of Hamilton) are not as likely to impact York, as they

will generally be moving further south (as shown by path B in Figure 7.4). Harry, a

subscriber in Geneva, would be far more interested in the Merrick-Hamilton pattern

(path B), however, whereas a third subscriber, Dorothy, located in Aurora, would do

well to take cover as soon as possible! Emma’s subscription, based on the provided

ontology, is shown in Figure 7.5.
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Figure 7.4: Area around York, NE. Hamilton County shaded.

noaa msg severity = warning
noaa county SUPERBAGONTPROP<#isWestOf>

[<#HamiltonCountyNE>]

(a) Internal filter, F1

noaa msg severity = warning
noaa county SUPERBAGEQUIV AL [<#HamiltonCountyNE>]

KBN START TIME DURING F1

(b) Subscribed filter, F2

Figure 7.5: NOAA weather report example subscription

While we did not implement the system as described here (the ontology, subscrip-

tions, and publications are only provided as examples), such a system could help

Emma and Harry to limit the number of irrelevant storm warnings that are received

(namely, those along path B for Emma and path A for Harry), yet could continue

to receive any messages the NWS would send that met the constraints specified in

their subscriptions. This would free up the resources normally used to monitor the

reports and discard the irrelevant ones (such as any reports from counties to the east

of the subscriber). Furthermore, it would reduce the load on the NOAA delivery

network itself, since messages would be delivered only to interested parties rather

than flooding the entire network. Also, rather than broadcasting the messages or
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sending them individually to each media outlet in the area, the NOAA could simply

publish the messages into the temporal KBN network, which would deliver them to

any subscribers for whom they are relevant.

7.2 Dynamic logging level adjustment

Many distributed systems rely heavily on logging, whether of system faults or errors,

warnings, or mere alert messages placed by the system developers to provide infor-

mation about the system’s current state. In order for these messages to be useful,

they must be as fine grained as possible, which stands in direct opposition to the

ease with which a system administrator could comb the logs to find the cause of any

particular event. Most systems filter the log messages, either into different files or

to /dev/null (or the equivalent), based on their logging level. Conventionally, these

levels are arranged in a stack, with the most important messages as the highest and

the least important (but finest grained) as the lowest. When the level is set at a

particular setting, all messages logged at a higher level are displayed or delivered,

while those at the lower levels are suppressed. A typical logging hierarchy is shown

in Table 7.1. As an example, consider the case of Eugene, a system administrator

Level Code
ERROR 5
WARNING 4
INFO 3
DEBUG 2
TRACE 1

Table 7.1: An example logging hierarchy

for a large oil company. In most cases, Eugene would only want to allow the highest

levels to be displayed or reported, choosing to ignore any messages reported at or

below the WARNING level, for example. However, if there may be a fault in the near

future or if there is some other particular pattern of messages that may require more

attention (such as a potential intrusion pattern), Eugene may want to lower his log-

ging filter to allow more of the messages in. For example, if three WARNING messages

which each include a category value of "login failed" are detected within two
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log level ≥ 5

(a) ERROR filter, F0

log level = 4
log category = "login failed"

(b) Innermost WARN filter, F1

log level = 4
log category = "login failed"

KBN END TIME AFTER(2) F1

(c) Second WARN filter, F2

log level = 4
log category = "login failed"

KBN END TIME AFTER(2) F2

(d) Outermost WARN filter, F3

Figure 7.6: Example subscriptions for the logging client

seconds of each other, Eugene may desire to automatically drop his logging level to

INFO so that the actual location of the login attempts are logged. However, this is

very difficult to detect with existing software, and it would be expensive for Eugene

to write a custom system to perform this task.

If Eugene were to use the temporally-extended knowledge-based network described

in this document, he could easily have his client subscribe to only those messages

that meet his logging criteria (namely, with a level greater than WARN) along with

a rule to decrease the level of the filter if the three-warning pattern is met. For

example, if Eugene’s logging levels are set as those shown in Table 7.1, Eugene

could subscribe to the logging system using the subscriptions shown in Figure 7.6.

We implemented a small test system to illustrate this case study (using the imple-

mentation described in Chapter 5) with a simple publisher which sends messages

based on some set logging levels and a simple publisher which receives them. The

pseudo-code for a class very like the publisher from our implementation is shown in

Figure 7.7.
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// Logging client class

public class Logging {

// constants for the logging code

private static final int ERROR = 5;

private static final int WARN = 4;

private static final int INFO = 3;

private static final int DEBUG = 2;

private static final int TRACE = 1;

// assumes some connection to a KBN client

private static final Siena KBN = LoggedSystemUtils.connect();

// the log subscriber (simply prints to the console)

private static final Notifiable SUB = new Notifiable() {

public void notify(Notification n) {

System.out.println(n.toString);

}

};

// sets the logging level to error and subscribes to the

// appropriate filters to dynamically lower the logging level

public Logging() {

// set the initial level to ERROR

Logging.setLevel(Logging.ERROR);

// innermost filter for dropping the logging level

Filter f1 = new Filter();

f1.addConstraint("log_level", new AttributeConstraint(Op.EQ, Logging.WARN));

f1.addConstraint("log_category", new AttributeConstraint(Op.EQ, "login_failed"));

// second filter for dropping the logging level

TemporalFilter f2 = new TemporalFilter();

f2.addConstraint("log_level", new AttributeConstraint(Op.EQ, Logging.WARN));

f2.addConstraint("log_category", new AttributeConstraint(Op.EQ, "login_failed"));

f2.addEndConstraint(new AttributeConstraint(new AfterOperator(2), f1));

// outermost filter for dropping the logging level

TemporalFilter f3 = new TemporalFilter();

f3.addConstraint("log_level", new AttributeConstraint(Op.EQ, Logging.WARN));

f3.addConstraint("log_category", new AttributeConstraint(Op.EQ, "login_failed"));

f3.addEndConstraint(new AttributeConstraint(new AfterOperator(2), f2));

KBN.subscribe(f3, new Notifiable() {

public void notify(Notification n) {

// lowers the logging level to INFO

Logging.setLevel(Logging.INFO);

}

});

}

// sets the logging level to the passed level

private static void setLevel(int lvl) {

// unsubscribe the old logging level

KBN.unsubscribe(SUB);

// subscribe to the new logging level

Filter f0 = new Filter();

f0.addConstraint("log_level", new AttributeConstraint(Op.GE, lvl));

KBN.subscribe(f0, SUB);

}

}

Figure 7.7: Java pseudo-code for the logging client
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Chapter 8

Conclusion

In the previous chapter, we described some case studies which motivated our project

and showed some potential uses for the temporally-extended knowledge-based net-

work. In this chapter, we will summarize the project and our findings, and will

discuss some future work.

8.1 Project overview

Due to the recent advent of many event-based systems, such as RFID technology and

wireless sensor networks, the field of complex event processing has greatly increased

in importance, with a particular need for distributed, real-time systems which are

simultaneously scalable and expressive. Those two qualities generally oppose each

other in existing systems, which sacrifice expressiveness for routing performance or

sacrifice performance in order to provide a more robust subscription language.

In general, complex event processing involves three main steps: filtering an event

stream, detecting composite events, and correlating those events based on their

causal relationship. Many of the systems currently in use for CEP are based on

active databases (such as Snoop [57], Ode [34], and SAMOS [33]), which generally

only respond to events which alter the data stored in the database. One alterna-

tive currently being explored is the use of event-based middleware systems, such

as READY [37] and PADRES [36], but even these systems rely on heavy-weight
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forward-matching algorithms (such as graph-based compositions or finite state au-

tomata) in order to detect composite events, leaving the door open to explore other

approaches.

For this project, our aim is to employ a scalable knowledge-based publish/subscribe

middleware to detect composite events using predicate matching over historical event

data stored in a persistent data store. Knowledge-based systems came about as an

extension to content-based publish/subscribe systems (such as Siena [12]) which

route publications to subscribers based on the contents of the message rather than

only using the topic (as done in channel-based systems), allowing subscribers to

better refine the publications they receive. In knowledge-based networking, that

expressiveness is further extended with the addition of collection data types and

semantic operators, which allow subscribers to select based on the semantic con-

tent of the publications rather than only their literal content. However, the existing

knowledge-based systems only filter over single publications and are unable to detect

patterns of events.

We propose an extension to a knowledge-based system which adds a persistent data

store component as well as a set of temporal operators which allow subscriptions

to be made based on the temporal relations between the events. These temporal

operators, DURING and AFTER, are drawn from the interval relations proposed

by J. Allen in the early 1980s [2], as well as a generic FILTER operator which can

relate publications based on an arbitrary secondary operator. Chapter 4 describes

our design for this extension, and Chapter 5 describes our implementation as an

extension to a Siena-based knowledge-based network written in Java. We then test

this implementation for scalability, and explore some real-world case studies to gauge

the expressiveness allowed by our new operators.

In order for our extension to be appropriately scalable, it could grow no faster than

linearly in the number of events stored in the data store, which proves to be the case

based on our first test using an initially empty data store. Surprisingly, we also find
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that our advanced Oracle 11g data store implementation using Java stored proce-

dures to find matching publications did not perform as well as expected, probably

due to the overhead in loading the entire system into the embedded Java virtual ma-

chine. Our second set of tests further demonstrate that, rather than growing purely

on the number of events stored in the database, the processing time for each of the

new operators grows linearly in the number of results returned by the database in

response to the queries which evaluate the operators. As such, our proposed ex-

tension proves to be acceptably scalable in terms of the performance of the new

operators.

Finally, our motivational case studies, a severe weather reporting system and a sys-

tem for automatically adjusting system logging levels, effectively demonstrate how

our system could be used in the real world. Particularly in the log-level adjustment

case, our new operators allow a user to quickly and easily define a complex pattern of

events in order to trigger an appropriate response, which could significantly reduce

the load on his or her own application-level system, where such processing could

be prohibitively expensive. By allowing these new sorts of subscriptions (which

previously could not have been utilized), our extension successfully increases the

expressiveness of the underlying knowledge-based network significantly.

8.2 Contribution

In summary, our project validates a new approach to composite event detection in

complex event processing: that of detecting composite events through predicate-

matching over historical event data. Our evaluation results demonstrate that such

an approach can be scalably implemented and our real-world case studies demon-

strate the usefulness of the more expressive subscriptions allowed by our system.

Furthermore, our system demonstrates how a semantically-enhanced content-based

system, a knowledge-based system, can be used for complex event processing and how

the field can benefit from the addition of semantic data, as shown by the spatial
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information included in the subscriptions in our severe weather reporting system.

8.3 Future work

While our extension has increased the expressiveness of the subscriptions in the un-

derlying knowledge-based network without sacrificing it’s scalability, there is still

room for further extensions. In particular, the temporal operators added by this

project only model a subset of Allen’s interval algebra, and do not allow for uncer-

tain time intervals in any way. A future extension to our system might explicitly

include some of the other operators and might add support for a bit of temporal

uncertainty by parameterizing a window of time around each end point.

Another possible extension would be to add support for logical compositions as

well as the temporal operators added by our extension. Examples include operators

for conjunction (where two or more events must be detected, regardless of order) and

disjunction (where any one of two or more events can be detected). These additional

operators would further increase the expressiveness of the allowed subscriptions, and

could presumably be accomplished using the same predicate-matching approach put

forth in this project.

Finally, future research may to done to employ the semantic and temporal oper-

ators of the temporally-extended KBN with an ontology representing a causal event

structure in order to determine the system’s usefulness as an event correlation en-

gine. This would help to verify that the approach taken in this project is a viable

method of performing complex event processing without any external tools.

8.4 Final remarks

Real-time complex event processing is an important aspect of many different areas

in computer science and information technology, from financial transactions to in-

trusion detection to sensor networks, and will only increase in importance as more
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event-based technologies are brought to market. By utilizing the real-world rela-

tionships that can be modeled with semantic data in the composite event detection

necessary for this complex event processing, knowledge-based systems could provide

a very useful tool for future researchers, developers, and administrators. As interest

in event-based systems continue to grow, hopefully so too will the research into new

and better ways to respond to those events, so that each of us can safely and easily

benefit from the new and wonderful capabilities these systems offer us.
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Appendix A

Source disc contents

This document also includes a compact disc containing:

• The complete source code and referenced libraries for the Java implementation

described in Chapter 5 (in the folder kbn),

• A working example (source and binary) of a small system similar to the log-

level system described by the case study in Section 7.2 (folder demo), and

• Some configuration scripts for the MySQL and Oracle databases used by the

data store implementations (folder config).
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