
Democratic Traffic Lights
A voting-based approach to decentralized agent-based

real-time urban traffic control

A dissertation submitted to the University of Dublin, in
partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Ronny Hendrych

2009

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,
entirely my own work and has not been submitted as an exercise for a degree at this or
any other university.

Dublin, September 11, 2009
Ronny Hendrych

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Dublin, September 11, 2009
Ronny Hendrych

Acknowledgements

First of all, I want to thank my supervisor Vinny Cahill, for his ideas, guidance and help
during this stressful time. Specials thanks go to Ivana Dusparic, who guided me through
the shallows of the DTS and its trace files. Niall O’Hara deserves a special thank, too.
Without your plug-in DLL for VISSIM I would have had problems finishing this thesis.
Also thanks for the many afternoons we spent together, bouncing back and forth ideas
for our two projects and the laughs that only programmers can share on more than one
occasion.

I wish to thank Clay Stevens and my much better half for their attempts to get this thesis
in an English readable format.

I would also like to thank the NDS class of 2008/2009 for their friendship and help.
You all made this an incredible year. We had lots of fun, moaned together during the
assignments and the time of the exams and shared something very special.

I am also very thankful for my family and friends. I could not have done this with-
out your moral and financial support.

Finally, I like to thank my good friend C8H10N4O2. Without you, this would have
never been possible!

Abstract

This dissertation describes the application and evaluation of a voting-based decision-making
algorithm for decentralized traffic light controllers in an urban traffic control (UTC) system.

Nowadays, UTC systems are very limited in how they can observe the traffic flow on
the roads that they manage. Typically, these systems use inductive loops, which are
embedded in the streets close to junctions, to count how many vehicles are approaching or
passing them in a fixed amount of time. However, these sensors can not definite distinguish
between what kind of vehicle is passing, nor the destination of the vehicle. In fact, they
can differentiate between a car and a bus, but they can not tell if the bus is a member of
the public transport system.

With the emergence of wireless vehicular ad-hoc networks (VANET) vehicles could com-
municate to the system controllers from a much further distance, to tell them exactly what
kind of vehicle they are and where they want to go. Based on this much more detailed
input of sensor data, a traffic light agent could base its decision-making process for the
next phase on a new set of algorithms. These decisions of the autonomous intelligent parts
of an UTC system could be much fairer and increase the overall throughput in an urban
area.

One way to use this kind of information could be that cars approaching junctions with
traffic lights could vote for the green phase to correspond to an origin-destination pair in
the next cycle. Different kinds of vehicles could have a different number of basic votes
(e.g. cars 5 votes and buses 80 votes) and vehicles which have to wait during a cycle could
temporary have a higher number of votes in the next decision-making step to counteract
starvation.

Therefore, two voting-based agents were developed and tested with VISSIM, a microscopic
traffic flow simulation software, against two Round Robin agents. In this setup, an agent
was responsible to choose the next green phases for a junction with traffic lights.

6

The results of the evaluation prooved that the used voting-based algorithms could increase
the throughput of the system and reduce the average waiting and travel time of vehicles
in the urban area.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the thesis . 2

2 Fundamentals 3
2.1 Urban traffic control . 3

2.1.1 Traffic lights . 3
2.1.2 Sensors . 7
2.1.3 Types of UTC system . 8
2.1.4 SCATS . 9
2.1.5 Conclusion . 10

2.2 Vehicular-to-X communication . 10
2.2.1 Vehicular ad-hoc networks . 10
2.2.2 Wireless communication . 11
2.2.3 Application of Vehicular communication systems 11
2.2.4 Conclusion . 12

3 Materials and Methods 13
3.1 Specialized Phases . 13

3.1.1 Phase-to-Road mapping . 14
3.1.2 Phases for the different junction types 16

3.2 Voting-based decision-making algorithms 18
3.2.1 The idea of voting . 19
3.2.2 Possible vote strategies . 19
3.2.3 Chosen vote strategies . 20

3.3 VISSIM . 20
3.3.1 General description . 21
3.3.2 The INP-file format . 22
3.3.3 Dynamic traffic assignment . 23

Contents 8

3.3.4 COM interface and external plug-ins 25
3.4 Work flow for the extended VISSIM simulation 25

3.4.1 Work flow path 1 . 25
3.4.2 Work flow path 2 . 26

4 Design and Implementation 28
4.1 Development environment . 28
4.2 The DSG in house simulator . 28

4.2.1 The DTS map format . 29
4.2.2 The DTS phase generator . 30
4.2.3 The DTS vehicle path . 30

4.3 DSG Converter tools . 31
4.3.1 Map converter . 31
4.3.2 Trace file converter . 32

4.4 DSGVissimEvaluationFileReader . 33
4.5 DSG VISSIM extension . 33

4.5.1 Design . 33
4.5.2 Calculating the next phase of an agent 36
4.5.3 Security Considerations . 37

4.6 Complications during implementation and test runs 40
4.6.1 Problems with converted DTS maps 40
4.6.2 Use of DTS trace files . 40
4.6.3 Problems with the VISSIM COM interface 41

5 Evaluation 44
5.1 Experiments . 44

5.1.1 Experiment setup . 44
5.1.2 Evaluation metrics . 47
5.1.3 Results . 47

5.2 Performance of the simulation . 52
5.2.1 System usage . 52
5.2.2 Average performance factor of the simulations 52

6 Conclusion 54
6.1 Achievements . 54
6.2 Future work . 55
6.3 Discussion . 56
6.4 Conclusion . 56

Contents 9

A Schema definition of the internal map 1
A.1 Schema file . 1
A.2 Schema definitions . 3

A.2.1 junctionData element . 4
A.2.2 junctionRec element . 4
A.2.3 location element . 5
A.2.4 incomingJunction element . 5
A.2.5 outgoingJunctionRef element . 6
A.2.6 link element . 6
A.2.7 vissimParkingLot element . 8
A.2.8 lane element . 8
A.2.9 toJunctionRef element . 8
A.2.10 outgoingJunction element . 8
A.2.11 vissimTlAgent element . 9
A.2.12 vissimTlGroup element . 9
A.2.13 vissimTlHead element . 10

B Instructions to run a simulation with the DSGVE 11
B.1 Basic VISSM Setup . 11
B.2 Converting a DTS map to use it with VISSIM 12
B.3 Starting a simulation with the DSGVE . 12

C Content of the DVD 16

D List of abbreviations 17

Bibliography 18

List of Figures

2.1 Full Irish traffic light cycle . 4
2.2 Example of a commonly used phase-set 6

3.1 Definition of Phase-to-Road mapping . 15
3.2 Definition of phases for simple roads . 16
3.3 Definition of phases for T-shaped junctions 17
3.4 Definition of phases for cross-shaped and special junctions 18
3.5 The VISSIM GUI . 21
3.6 Basic Components for dynamic traffic in VISSIM 23
3.7 VISSIM´s Dynamic Assignment menu . 24
3.8 Overview of the work flow of the DTL simulation 27

4.1 DTS map represented with in house map generator 29
4.2 Converting DTS trace files to VISSIM trip chain files 32
4.3 UML-Diagram of the DSGVE . 34
4.4 Problems with converted DTS maps . 41
4.5 Problems with DTS trace files in VISSIM 42

5.1 Used test map for the simulations . 45
5.2 Input-graph for 24.000 vehicles over 3 hours 49
5.3 Input-graph for 60.000 vehicles over 3 hours 51

A.1 Example for action types . 7

List of Tables

2.1 Types of UTC systems . 8
2.2 Types of VC systems . 10
2.3 Types of VCS Applications . 12

3.1 Types of voting systems . 19
3.2 Parts of the INP-file . 22

4.1 Important elements of the DTS map format 30

5.1 Basic setup of the simulator . 46
5.2 Votes per type of vehicle . 47
5.3 Evaluation metric . 47
5.4 Experiment results with 24.000 vehicles in 3 hours 47
5.5 Detailed analysis of throughput for 24,000 vehicles 48
5.6 Experiment results with 60,000 vehicles in 3 hours 50
5.7 Detailed analysis of throughput for 60,000 vehicles 50
5.8 Overview of the average performance factor of the simulation 53

CHAPTER 1
Introduction

1.1 Motivation

In 1996 approximately 1,406,000 people lived in the Greater Dublin Area (GDA). Ten
years later the population was increased to 1,662,000 people and the forecast estimates
around 2,413,000 people for the year 2026 [24].

With the increase of the people living in the Dublin area the roads had to handle a
higher amount of traffic. This will continue to be an issue in the future. More vehicles
mean a lower average speed, more stops during the travel and therefore more environmental
pollution for the city area and more frustration for the drivers [21]. This applies especially
during so called peak-hours (e.g. morning-peak and evening-peak). Therefore, scientists
are searching for ways to increase the traffic flow in urban areas to reduce the waiting
time for the overall road users.

So called Urban traffic control (UTC) systems, like the Split Cycle Offset Optimisa-
tion Technique (SCOOT)[6] or the Sydney Coordinated Adaptive Traffic System (SCATS)
[32] were developed to manage the traffic flow more individually. Therefore these systems
uses sensors, like induction loops embedded in the streets closely before the stop lines of a
junction, to gather the information on which they base their decision for the next traffic
light phases on.

However, these sensors are limited. So is it not possible to determine the target destination
of the vehicle with these kind of passive sensors, nor what kind of vehicle (e.g. truck or
public bus) is passing through.

Due to the development of wireless communication devices in the last years the idea

1.2 Structure of the thesis 2

came up that cars could communicate to traffic light controllers of the UTC directly. Road
users could send their position, the number of people sitting in the car and the desired
direction via so called Vehicles-to-Infrastructure communication to a traffic light agent,
which is responsible for setting the green phases of the traffic lights.

With that kind of information it should be possible to develop better agents which
can increase the overall traffic flow inside urban areas. One approach for a better traffic
flow management is a voting-based system, where every vehicle can vote on how the phase
should change so as to improve global traffic flow.

In this approach, each kind of vehicles could have a different amount of basic votes
(e.g. cars 5 votes and public buses 80 votes) and vehicles which have to wait during a
cycle, could temporarily have a higher amount of votes in the next decision-making step
to counteract starvation.

This dissertation describes the application and evaluation of such a voting-based decision-
making algorithm for decentralized traffic light agents of a virtual Urban Traffic Control
(UTC) system.

1.2 Structure of the thesis

The thesis is structured as follows: After a short introduction (chapter 2) into the technical
fundamentals which are necessary to understand the rest of this dissertation, the materials
used and methods developed are presented (chapter 3). Afterwards, chapter 4 describes
the implementation of the necessary tools which were needed to run and evaluate the
voting-based agents. Chapter 5 evaluates the developed traffic lights agent against other
existing UTC-agents. As an conclusion, chapter 6 discusses the results of the evaluation
and sums up this dissertation.

CHAPTER 2
Fundamentals

This chapter provides a brief introduction of the necessary background knowledge for this
dissertation. These fundamentals are represented as abstractly as possible. For a full
description, the author refers to relevant materials, for example [15] or [32].

2.1 Urban traffic control

Urban traffic control (UTC) is a specialized part of an intelligent transportation system
(ITS). UTC systems are responsible for the co-ordination, integration and control of traffic
signals over a wide urban area, with the goal to manage the traffic flow [34].

Basically, modern UTC systems collect data from different kinds of sensors to get a
picture of the actual volume of traffic on the roads and then try to set the behavior of the
collections of traffic lights around the area they control so, that the traffic flow is the best
possible for the situation.

For a better understanding, the two main parts of an UTC will be explained.

2.1.1 Traffic lights

Traffic lights came a long way from the first installment of a simple electrical version in the
early nineteen-twenties, to being a part of the first (analog) computer based traffic control
system in 1952, towards the energy efficient LED-based lamps, which are used nowadays
[32]. Shape and technology may have changed, but the basic strategies are still the same.

2.1 Urban traffic control 4

Use of traffic lights

Traffic lights can be a cost-intensive factor in the budget of a city. However, there are
conditions, which require the installment of a new system on a junction [32]:

• A growth in traffic demand produces congestion

• Failure of older equipment

• Traffic flow improvement is only possible with new hardware

Installing a new group of traffic lights on a junction is not enough. These lights have to
be configured to improve the traffic flow.

Basic concept

Basically, a traffic light has two important attributes to manage:

• cycle time It defines the amount of time the particular traffic light displays
something else than the red light in a normal mode.

• (green) split It defines the amount of time the particular traffic light displays
the green light before changing to the next part of the sequence.

Figure 2.1 displays the standard cycle of a traffic light in Ireland.

Figure 2.1: Full Irish traffic light cycle: From red directly to green and then, after the
split time is over, it changes to amber.

2.1 Urban traffic control 5

Phases

Phases are more like the bigger picture of the behavior of the traffic lights from a junction.
Usually, one control unit per junction handles which symbol a traffic light displays at a
given time. After the cycle time is over it changes to the next set of symbols for the lights.
Each of these sets of symbols is called a phase.

Organizations like the National Electrical Manufacturers Association (NEMA) or the part-
ners behind the Traffic Management Unit Auckland (TMU) have published Guidelines for
street designers, to generate well fitting phase-sets for signal controllers of a junction [37][4].

Figure 2.2 displays a common used phase-set. In this example of a two-phase signal
sequence a very simple Round Robin approach [33] is used to determine the next phase
for the junction. However, there exists a conflict in phase “a)”. Whenever a vehicle from
the left side of the picture wants to make a right turn, it could collide with a vehicle
approaching the junction from the right side. Therefore, priority rules have to be defined.
In Ireland, the car from the right side is allowed to proceed first [17].

A list of examples of phase-sets for different kinds of junctions can be found in[37].
All these phases were generated with the focus of usability with the commonly used sensors
of today UTC systems (see section 2.1.2).

2.1 Urban traffic control 6

Figure 2.2: Example of a commonly used phase-set for T-shaped junctions: Sequence
starts with phase a). After cycle time controller switches to phase b).

2.1 Urban traffic control 7

2.1.2 Sensors

To get the best possible picture of the traffic density UTC systems use different kinds of
sensors. Since their introduction in the early 1960s Inductive Loops have become the most
used in-roadway sensor [5]. The basic concept behind this well-understood technology is
simple. A conductive element is incorporated in loops in the pavement of a road. These
loops usually are embedded in front of the stop line of a junction and are energized with a
continuous current electric flow.

When a vehicle enters the area of the loop the metal reduces the loop´s inductance.
This reduction can be measured. Bigger vehicles reduce the inductance more and can
be recognized, the speed of a vehicles can be determinate. Furthermore, more than one
inductive loop in a row can increase the accuracy of measurement and can also be used as
a queue counter.

This technique has a lot of advantages [32]:

• A large experience base

• A flexible design

• Insensitive to the climate and the weather

• Provides very accurate count data for all the basic data

However, there also are a lot of disadvantages for this kind of sensor. The most serious is
that the maintenance and installation requires construction works on the street, which is
expensive and can lead to lane closure [5].

Along with, the in-roadway sensors like inductive loops, magnetometers and magnetic
detectors, there is a group of above-roadway sensors which also are used by modern UTC
systems.

One well known type is the Video Image Processor sensor. The benefit of video cameras
is that multiple lanes can be monitored at once. With the evolving of pattern matching
techniques a rich array of data is available to these kind of sensors. However, maintenance
is also tricky. So, depending where the camera is mounted, lanes have to be closed for lens
cleaning or other repairs. Furthermore, fog or other kinds of bad weather can reduce the
quality of the data.

There is one fact that all used sensors have in common – they are only passive. Therefore,

2.1 Urban traffic control 8

none of them can determine where a vehicle wants to travel, except when there is a
dedicated lane for vehicles which want to turn left or right at a junction.

2.1.3 Types of UTC system

Over the years many different UTC systems where created. All these systems can be
classified in two major types - fixed time and traffic responsive systems. In the following
some of these systems are presented in an overview [23]:

Type Description
Fixed time systems The basis of many UTC systems. These systems can not re-

spond in a dynamic way to changes of traffic density due
to their use of precalculated time plans for each junction.
These fixed time plans were the first step to change the
used phase-sets depending on the day and time (peak hour
management).

Plan selection These systems also use fixed time plans, but also utilize
systems sensors data to decide which time plan is used at the mo-

ment. This first basic attempt of a more dynamic approach
was not sophisticated enough and showed not better results
than the fixed time systems.

Plan generation This kind of UTC systems generate their own time plans
systems based on detector data. These systems are more adaptive

and less under control of traffic engineers. Theoretically,
these system can even adapt to traffic accidents on the roads,
but in practice restrictions forbid large changes in the plans.

Local adaptation Local adaptation systems take sensor data into consideration
systems and modify the time plans they received from a central entity.

In this way, they can respond more dynamically to changes
of the local traffic flow.

Traffic responsive These systems respond completely dynamically. One centra-
systems lized entity collects all the data from the distributed traffic

controllers and bases its decision on these facts. These sys-
tems have the advantage, that all the important data is coll-
ected at one central place. However, there exists also an
distributed processing version, which connected to their
neighbor controllers, which could have a better performance,
but also has a higher management cost.

Table 2.1: Types of UTC systems

2.1 Urban traffic control 9

Furthermore, UTC systems can also be classified in 4 main categories [8]:

• Fully centralized All sensor data is delivered to one central management entity.
This has the benefit, that all data is available at one central point, which can help
to plan the overall strategies throughout an urban area. This centralized system has
to cope with a lot of data and many variables. Therefore, these system tend to plan
more for long-term solutions and are not so reactivate. The most popular fully
centralized system is SCOOT [6].

• Fully distributed In this type of system the traffic light controller (agent) on
each junction calculates the next phases on its own. A central entity collects data
only for monitoring purposes. The agents of this thesis are based in this approach.
PRODYN [9], for example, uses this approach.

• Centralized hierarchical These systems try to combine centralized and distri-
buted features. Local adaptation systems (see table 2.1) are based on this
philosophy. SCATS (see section 2.1.4) is one of the most well know systems in
this category.

• Distributed hierarchical Usually, a central manager sends time tables to the
controller on the junctions, but they can completely withdraw these orders and
use tables based on their sensor data (two level structure). One well known
system in this category is UTOPIA [22].

2.1.4 SCATS

The Sydney Coordinated Adaptive Traffic System (SCATS) is a local adaptation system
which was first used in Sydney in 1982. Since than it was deployed in many different cities
around the world, like New Zealand, Hong Kong and also in Dublin. In 1997 SCATS was
responsible for 170 traffic light controllers in Dublin, with expanding tendencies [10].

This centralized hierarchical system works with a fixed phase scheme for the traffic
lights for each junction in the system. In its normal mode the local controller adjusts split,
offset and cycle time for every junction once every calculation step (usually one minute),
which represents its two-level structure.

For deciding the new parameters for the next calculation step SCATS typically uses
inductive loop sensors closely before the stop lines of junctions with traffic lights [32].

2.2 Vehicular-to-X communication 10

2.1.5 Conclusion

Today, used UTC systems help to greatly improve the traffic flow in urban areas, but
the most spread systems still have problems when it comes to saturated traffic condi-
tions [30]. One of the main problems is that systems like SCATS and SCOOT due to the
use of their algorithms are not able to adapt their phase set for the traffic lights in real-time.

Therefore, other approaches were explored over the years (e.g. algorithms which try
to calculate the split and offset via dynamic optimization problems in real-time [16], or
store-and-forward modeling approaches [7]), but all these attempts have to handle the
poor resolution of the used sensor data.

2.2 Vehicular-to-X communication

One approach to improve the quality of the data about the volume and kind of traffic on
the roads is, that vehicles actively tell the UTC systems this information. This could be
done via wireless communication channels. This chapter provides an insight in this topic.

2.2.1 Vehicular ad-hoc networks

Wireless Vehicular ad-hoc networks (VANET) are a special form of mobile ad-hoc networks
(MANET). In contrast to a MANET, which consists mostly of nodes which usually have
more a static character (like deployed field sensors from the military), a VANET consists
of highly mobile and dynamic vehicles. These mobile nodes form networks via vehicle to
vehicle (V2V) and/or vehicles to infrastructure communication [31].

These VANET´s still exist only as an academic area of research, but will have a major
impact in the near future [36]. The vehicular communications (VC) between nodes of of
VANET can be divided in three major systems:

Communications Type Description
Inter-vehicle (IVC) Vehicles only communicate which each other
Hybrid-vehicle (HVC) Vehicles talk to each other and to roadside units
Roadside-vehicle (RVC) Vehicles only communicate with roadside units

Table 2.2: Types of VC systems

2.2 Vehicular-to-X communication 11

2.2.2 Wireless communication

One major topic in the research area of VANET´s is the aim, to find the best possible
solution for the communication between the involved entities. A lot of different commu-
nication standards, such as IEEE 802.11, Bluetooth and cellular mobile networks (for
example GSM, and 3G) could be used to connect vehicles and road site units to create a
network [3, 31].

However, due to the highly mobile characteristic of VANET´s it is very challenging
to find a suitable solution. The IEEE 802.11p draft tries to cope with exactly this problem.
802.11p will use for medium access control (MAC) dedicated short-range communications
(DSRC) services [39] to increase the throughput in a short time.

In this thesis cars are approaching junctions in an urban area and talk directly to the
traffic controller (the agent) for the junction. Therefore, the communication is not so
problematic, like when cars would drive with high speed on a motorway and try to generate
a VANET. Furthermore, the experiments in this thesis are completely simulator-based
and for the first approach the focus lies on the basic concept, not on the simulation of
sophisticated use of different communication standards.

2.2.3 Application of Vehicular communication systems

In the last year a lot of experiments for applications where done to test the different
possibilities for vehicular communication systems (VCS). This section will provide some
examples and results of these.

At the moment there are two addressing schema commonly considered [31]:

• Fixed addressing Every node is given a fixed address when it joins the network.
Most ad hoc networking applications assume this method as primary addressing
schema.

• Geographical addressing In this schema the nodes change addresses, de-
pending on their geographical position.

Table 2.3 provides an overview of the different types of of VCS Applications [31]:

2.2 Vehicular-to-X communication 12

Applications Type Description
Public safety The most important type of usage for this new field of

applications. These applications could save lives. Drivers
could be informed of collisions on motorways in front of them,
or cars could brake if a driver misses a red traffic light on a
junction. The difficulty in this applications lies in the hard
real time constrains.

Traffic management This kind of application focuses on improving the traffic flow
by reducing congestion. This is the type of application which
could benefit from the vote-based approach in this thesis.
A traffic management application usually uses a sparse
roadside-vehicle communications (SRVC) system.

Traffic coordination These type of applications try to increase the capacity of
and assistance existing motorway roads. One main focus lies in Platooning,

where vehicle form a group and travel together for a part of
their journey. The other focus is passing and lane change assis-
tance, with the aim of reducing risk during these maneuvers.
Both techniques require close-range IVC with real-time con-
straints, which are very hard to achieve.

Traveler information This technique is not really new. Nowadays, navigation sys-
support tems can provide information like gas stations and parking

areas. The idea is to increase the amount of information via
selected infrastructure places. Also road warnings could be
deployed by local authorities.

Comfort Comfort applications try to improve the comfort for the
traveler. Targeted vehicular communications aims at commu-
nication with surrounding vehicles for playing games or
exchange massages. Vehicle to land-based destination
communications try to connect to road-side stations to
enable more traditional applications like web or email
services.

Table 2.3: Types of VCS Applications

2.2.4 Conclusion

Vehicular communication systems are very popular area of science in the moment. Although
research results in this area are very promising it remains to be seen how these can be
used in practice. Large scale projects, like the new test track in Germany, with 400 test
cars and 150 roadside stations [1] will show how well reality matches the simulations.

CHAPTER 3
Materials and Methods

After illustrating the fundamentals which are necessary for understanding this thesis
the following chapter will discuss the necessary materials and methods for applying a
voting-based decision-making algorithm for decentralized traffic light agents.

The first part of this chapter deals with the theoretical parts for the task. Afterwards,
the used simulator is explained and a work flow for running a simulation for the agents is
developed.

Finally, the materials which are essential for the development of the application are
presented.

3.1 Specialized Phases

Section 2.1.1 describes the basic concept of phases. Nowadays, all commonly used phases
are a result of the limited sensor data. In this approach traffic light agents are aware where
a vehicle is at the moment and where it wants to travel. This could be accomplished via
RVC and GPS or WLAN tracking [29].

This “From to”-reference could be achieved with the following solutions:

• Navigation systems send their position and the next target road to the traffic light
agent. For this approach the driver has to use the navigation system actively.

• A navigation could run passively. Therefore, it always knows its position. When the
car is approaching a junction and uses the blinker to signal the next direction, this
information could be used to calculate the next road and send that information to
the traffic light agents.

3.1 Specialized Phases 14

• It is also possible to use the global position and the lane the car is queuing. This
only works when there are dedicated lanes for right and left turns on the street.

With this focus we can define three designated directions when a vehicle is approaching a
junction:

• Left

• Straight

• Right

With this better information it is possible to generate more specialized conflict free phases
(see section 2.1.1) which could better suit the actual traffic situation.

3.1.1 Phase-to-Road mapping

Before we can define these phases it is important, that there is one unique view on every
type of junction in an urban area. Figure 3.1 presents the mapping of the incoming
directions to every junction type. For the work flow it is important, that for example the
continuous road for every T-shaped junction is defined as “left” and “right” and the road
which is discharged into the ongoing road is always defined as “down”.

3.1 Specialized Phases 15

Figure 3.1: Definition of Phase-to-Road mapping: Every junction on the virtual map can
be classified on the number of in and outgoing directions. Used types: a) Simple Road, b)
T-shaped junctions, c) cross-shaped junctions, d) 5-sided junctions and 6-sided junctions.

3.1 Specialized Phases 16

3.1.2 Phases for the different junction types

Phases for Simple roads

The setup for simple roads is really basic. There are only two possible phases. In this
first approach we do not use any pedestrians. Therefore, we do not need to create phases
which would involve pedestrian crossing.

Figure 3.2: Definition of phases for simple roads: only 2) will be used in this simulation,
because we have no pedestrian.

Phases for T-shaped junctions

T-shaped junctions need four phases to cover all possibilities for this kind of junction.
Because of the better quality of the sensor data no phases which would produce a conflict
where chosen.

Furthermore, only phases where chosen, which enable three directions at a time. Figure
3.3 presents the phases for T-shaped junctions.

Phases for cross and special junctions

Figure 3.3 represent the phases for cross-shaped and special junctions. This set is special
in that 5-sided and 6-sided junctions also use the phase-set of cross-shaped junctions.

To simplify the phase-sets, the 5-sided junctions mapping (see figure 3.1) “Down_1”
and “Down_2” are combined to an overall “Down”. In addition, the 6-sided junction also
transform “Up_1” and “Up_2” in “Up”.

3.1 Specialized Phases 17

Figure 3.3: Definition of phases for T-shaped junctions.

Similar to the T-shade junctions, only phases where chosen, which enable four direc-
tions at a time.

3.2 Voting-based decision-making algorithms 18

Figure 3.4: Definition of phases for cross-shaped and special junctions.

3.2 Voting-based decision-making algorithms

After defining a set of phases for the different junction types a new approach of decision
making has to be created. The goal was, to find a fairer and better way of phase-selection

3.2 Voting-based decision-making algorithms 19

than system used with the limited sensor data, nowadays. This new method should
increase the traffic flow and therefore the overall capacity of urban area roads.

3.2.1 The idea of voting

The idea of voting is very old. Even in old Sparta 400 B. C. some decisions were made by
vote [2]. In this approach a car arrives at a junction and can vote which direction should
receive a green phase in the next cycle.

3.2.2 Possible vote strategies

There are a lot of different ways to come to a consensus via votes. Table 3.1 provides an
overview of commonly used vote system types.

Type of system Description
Majority vote system A very basic voting system. The elector votes on his preferred

candidate. The candidate with the most votes wins. This kind
of system has the benefit, that it only needs one collection step
to find a consensus.

Multiple vote system The voter can vote for more than one candidate. It is possible
for a vehicle to vote for a green phase for the right and straight
directions, but not for left. A driver could for example arrive
at the junction from the south and want to travel to the north
west. Then he would maybe not care if he turns right on this
junction or just crosses it.

Ranked vote system Basically, the ranked vote system is similar to the multiple vote
system. They only difference is the fact, that in this system the
candidates are given a descending order. So the driver in the
example above could prefer the green phase for turning right, but
in the second step a green phase for straight would be fine as well.

Range vote system The elector has to vote for all candidates by allocating them a
value in the set of the given range (e.g. rating form 1 to 10). The
candidate with the highest value wins.

Weighted vote system The system is based on the idea that there are different kinds
of voters. A public bus could have more votes than a simple car,
because a bus can transport more passengers. Voting itself is
identical to the majority vote system.

Table 3.1: Types of voting systems

3.3 VISSIM 20

3.2.3 Chosen vote strategies

It is important that the used vote strategy does not require complex calculations and can be
handled by a low amount of communication effort. Therefore, the simple majority vote and
the weighted vote system were chosen. For the majority system every vehicle has one basic
vote for each election. In the weighted system buses receive 58.7 basic votes and vehicles
1.4 to test the impact on the phase elections on the roads (see section 5.1.1 for more details).

Furthermore, a process to counteract starvation of vehicle waiting on less frequently
used roads and junctions was defined. Each vehicle on a road which was not elected for a
green phase was given the double amount of votes in the next election cycle. This bonus
is accumulative, so that:

n+1 = n2 (3.1)

represents the next amount of votes.

In this approach the vote counters are reset, after vehicles are allowed to proceed, but
other strategies are imaginable, too. For example, a vehicle, which travels a long journey
through an urban area, could collect more and more votes and therefore gain a higher
weight in the system.

3.3 VISSIM

VISSIM is a microscopic traffic flow simulation software, developed by the company PTV
AG from Germany. PTV AG claims that VISSIM in its fifth iteration counts as the
market leader when it comes to traffic simulation [28]. This is up to debate, but it is
a fact, that it is well used. Car manufactures like VW use it [38] and it is also used in
an scientific environment [14]. The German name is derived from “Verkehr In Städten -
SIMulationsmodell” which can be translated as “Traffic in cities - simulation model”.

The Distributed Systems Group (DSG) decided to use this simulator for their test and
evaluation purposes in the future. Therefore, this was the simulator of choice for this
thesis as well.

3.3 VISSIM 21

3.3.1 General description

Microscopic simulators, like VISSIM, simulate each entity individually. This has the
benefit, in contrast to macroscopic simulators, that interactions can take place between
every entity in the system. Macroscopic versions work with average representations in
form of traffic density or flow instead.

VISSIM has also multi-modal properties, which means that different kinds of traffic
can be simulated at the same time. This reaches from standard types like vehicles (e.g.
cars and buses) to cyclist or pedestrians (even in buildings).

Also, thanks to its plug-in capabilities, it is possible to use a variety of different sig-
nal controllers. Via this add-on functionality, well known controller like SCATS or SCOOT
can be used [28]. This feature was also utilized as we generated our traffic light agents.
Figure 3.5 displays the VISSIM GUI from version 5.10.-05 during a simulator run with an
INP-file.

Figure 3.5: The VISSIM GUI.

3.3 VISSIM 22

3.3.2 The INP-file format

The heart of every simulation in VISSIM is the INP-file. In this document all basic
information for the map is stored. The file itself is completely text based. This aged style
of representing data saves resources, but an object oriented representation would make it
much easier to use the data in a different context. Table 3.2 presents the important parts
of an INP-file for this thesis. A full description can be found in [28].

INP-file part Description
Links and connectors Links are the representation of roads in VISSIM. Every link

has only one direction and can have multiple lanes. There-
fore, for a bidirectional road 2 links are needed. Connectors
join two links together to a road structure and can be seen
as a part of junction.

Desired speed decisions Every type of traffic can have its own set desired speed.
However, this part represents the actual maximum allowed
speed on the road.

Conflict areas This part is important for vehicle to recognize each other
on junctions without traffic lights. Therefore, each pair of
overlapping connectors should have a set of conflict areas,
which determinate that vehicle, that is allowed to pass the
junction first.

Signal heads This property defines the actual signal heads on the map.
Every signal head is part of a signal group and every
signal group has one signal agent, which is responsible for
the whole junction.

Parking lots To generate dynamic traffic a special type of parking lot
is essential. See section 3.3.3 for more details.

Nodes Every junction has an abstract representation as a
node. These nodes are also important for dynamic traffic
assignment.

Traffic Compositions Traffic compositions are used to define what kind of traffic
will be spawned at a vehicle input. With these compositions
it is possible to declare which type of vehicle will be used in
which percentage of the overall traffic.

Table 3.2: Parts of the INP-file.

3.3 VISSIM 23

3.3.3 Dynamic traffic assignment

There are two ways to generate traffic in VISSIM. The common way in former version was
to create so called “Vehicle inputs” at the start of a link. Every input chose one of the
predefined traffic compositions and decided how many vehicles should be spawned from
this location in a particular amount of time.

Afterwards, routes had to be defined manually from every vehicle input to a wanted
destination. This can become very difficult and error-prone for large maps.

The newer and recommended way for traffic injection is called dynamic traffic assignment.
To use this method the map has to have nodes on each junction. These nodes are later
used to generate an abstract node-edge-graph of the virtual map. Based on this weighted
graph [33] VISSIM uses a shortest path algorithm to find the best possible route from an
origin to a destination. Parking lots of the type “Zone connector”, with a relative flow
greater 0, are used as origins and parking lots with a relative flow of 0 at the end of the
map are used as destinations (see figure 3.6)[28].

Figure 3.6: Basic Components for dynamic traffic in VISSIM: Figure a) shows the repre-
sentation of nodes in VISSIM. Picture b) displays a destination parking lot.

Nodes and parking lots represent the basic components for dynamic traffic assignment. To
populate the roads with vehicles a dynamic matrix is necessary (see part b) of figure 3.7).
This matrix contains for every parking lot a mapping of how many vehicles are starting
from it to the destination parking lots in a fixed amount of time.

3.3 VISSIM 24

Which matrix file is used is decided in the “Dynamic Assignment” window (see part
a) of figure 3.7). is is also possible to set the logit scaling factor in this menu. VISSIM is
using the Logit function to model a discrete choice behavior for the drivers. A high factor
means that most (or all) drivers will decide the fastest way to the destination and only
some vehicles uses a longer route, to simulate drivers which are not familiar with the part
of the city [28].

Figure 3.7: a) VISSIM´s Dynamic Assignment menu. b) a dynamic matrix with 60,000
vehicles which will be injected in the system during a timespan of 3 hours.

A second option to dynamic matrices, so called trip chain files, can be used. These files
contain on a line by line basis driving instructions for vehicles. Each line starts with the
identifier of the vehicle, followed by its type and its zone of origin. the next 4 semicolon
separated numbers represent a trip of the vehicle. Therefore, a vehicle can drive to more
than one zone before it will be deleted by VISSIM. Listing 3.1 provides an example for a
trip chain file.

Listing 3.1: Example of a trip chain file
1.1
1; 100; 44; 0; 171; 0; 0; 0; 106; 0; 0; 0; 66; 0; 0; 0; 145; 0; 0;
2; 100; 151; 0; 150; 0; 0; 0; 157; 0; 0; 0; 209; 0; 0; 0; 83; 0; 0; 0; 225; 0; 0;
3; 300; 44; 0; 10; 0; 0; 0; 171; 0; 0; 0; 106; 0; 0; 0; 66; 0; 0; 0; 62; 0; 0;
4; 100; 184; 0; 181; 0; 0;
5; 100; 243; 0; 239; 0; 0; 0; 180; 0; 0; 0; 25; 0; 0; 0; 20; 0; 0; 0; 182; 0; 0;
6; 300; 247; 0; 177; 0; 0; 0; 232; 0; 0;
7; 100; 184; 0; 181; 0; 0; 0; 187; 0; 0; 0; 14; 0; 0; 0; 235; 0; 0; 0; 55; 0; 0;
8; 100; 128; 0; 80; 0; 0; 0; 68; 0; 0; 0; 76; 0; 0; 0; 74; 0; 0;
9; 300; 197; 0; 143; 0; 0; 0; 134; 0; 0; 0; 115; 0; 0; 0; 218; 0; 0; 0; 114; 0; 0;
10; 100; 110; 0; 94; 0; 0; 0; 221; 0; 0; 0; 229; 0; 0; 0; 6; 0; 0; 0; 149; 0; 0;

3.4 Work flow for the extended VISSIM simulation 25

11; 100; 243; 1; 239; 0; 0; 0; 180; 0; 0; 0; 183; 0; 0; 0; 22; 0; 0; 0; 24; 0; 0;
12; 300; 247; 1; 177; 0; 0; 0; 232; 0; 0;
13; 100; 244; 1; 239; 0; 0; 0; 180; 0; 0; 0; 183; 0; 0; 0; 22; 0; 0; 0; 24; 0; 0;
14; 100; 245; 1; 120; 0; 0; 0; 119; 0; 0; 0; 250; 0; 0; 0; 248; 0; 0; 0; 177; 0; 0;
14; 100; 247; 1; 120; 0; 0; 0; 119; 0; 0; 0; 250; 0; 0; 0; 248; 0; 0; 0; 177; 0; 0;
16; 100; 197; 1; 143; 0; 0; 0; 134; 0; 0; 0; 115; 0; 0; 0; 218; 0; 0; 0; 114; 0; 0;
17; 100; 128; 1; 80; 0; 0; 0; 68; 0; 0; 0; 95; 0; 0; 0; 67; 0; 0; 0; 145; 0; 0; 0;
18; 300; 244; 1; 120; 0; 0; 0; 119; 0; 0; 0; 250; 0; 0; 0; 245; 0; 0; 0; 120; 0; 0;
19; 100; 128; 1; 80; 0; 0; 0; 68; 0; 0; 0; 76; 0; 0; 0; 74; 0; 0;
20; 100; 197; 1; 143; 0; 0; 0; 138; 0; 0; 0; 142; 0; 0; 0; 249; 0; 0; 0; 248; 0; 0;

3.3.4 COM interface and external plug-ins

The COM interface provides objects and methods to read and (sometimes) write data back
to VISSIM [27]. Thanks to this interface it is able to get the necessary vehicle information
out of VISSIM. It is also possible to use DLL-files to replace the internal traffic light
controller with an external version. Without this functionality it would not be possible to
expand VISSIM in a fashion this project needed.

3.4 Work flow for the extended VISSIM simulation

Figure 3.8 illustrates the work flow of a Democratic Traffic Light (DTL) simulation with
VISSIM.

There are two ways to execute a DTL simulation. Path 1 was the initial designed work
flow for the simulation, but due to complications during the evaluation of the system a
new work flow (2) had to be created. For completeness reasons both ways are presented.
Section 4.6 will explain what exactly forced the design of a second work flow.

Start This part of the work flow only has to be executed when a new part of the
DSG-map has to be converted into the VISSIM-format. Only the map generator for
the in house simulator has the capabilities to choose a map section from the overall
map of Dublin.

3.4.1 Work flow path 1

1a This step can be used to generate trace files of vehicles to innervate the streets of
the virtual map.

1b + c In this step of the work flow the in house map and the trace files are converted
into a VISSIM readable format (see section 3.3.2 and 3.3.3). Therefore, appropriate
converters had to be developed (see section 4.3).

3.4 Work flow for the extended VISSIM simulation 26

1d Before a simulation with a new map and the DSG VISSIM extension is full func-
tional the map and the trace files have to run in VISSIM without external inter-
ference via the COM interface. In this step VISSIM calculates the new pathways
for the map and the vehicles on it.

1e Before running a simulation via DSG VISSIM extension the configuration file has
to be edited, so the new map and the parameters for the traffic light agents can
suit the test run.

1f In the final step, the simulation runs with all the parameters from the con-
figuration file.

3.4.2 Work flow path 2

2a Basically, the same step as in 1b). The main difference is, that no zone connectors
are generated automatically.

2b Before a simulation with a new map and the DSG VISSIM extension is full func-
tional, origin and destination zones have to be defined and also traffic has to be created
via a dynamic matrix file.

2c VISSIM needs a short test run to calculate, based on the defined zones, the possible
routes throughout the map.

2d As in work flow part 1e) the configuration file of the DSG VISSIM extension has
to be edited, so the new map and the parameters for the traffic light agents can
suit the test run.

2e In this final step, the simulation runs with all the parameters from the con-
figuration file.

2f VISSIM saves all vehicle records during the simulation in a text file. Based on
this information we can evaluate our agents.

3.4 Work flow for the extended VISSIM simulation 27

Figure 3.8: Overview of the work flow of the DTL simulation.

CHAPTER 4
Design and Implementation

After illustrating the used materials and developed methods this chapter will provide an
overview of the implementation of the necessary tool to execute VISSIM with voting-based
traffic light agents.

4.1 Development environment

The development of the software was done with with IBM-PC. The PC was equipped with
a Intel®Core™2 Duo CPU with 4 GB DDR3 Ram. Windows Vista Professional 32-Bit
was used as OS. For the implementation of the converter (see section 4.3) Visual C++,
with the Xerces-C++ XML parser[11] in addition, was used. For the agent framework (see
section 4.5) the .Net language C# was chosen. As planing aid the UML-Design program
DIA in version 0.96.1 was utilized.

4.2 The DSG in house simulator

The DSG uses an in house simulator to observe different traffic behavior in the city off
Dublin called Dublin Traffic Simulator (DTS). However, stated in section 3.3 the DSG
decided to change to a external simulator for their studies, which has the benefit that an
external company has more manpower to develop such a sophisticated tool.

To provide a smooth transition one part of the work of this thesis was to evaluate and
test possible solutions to reuse as much functionality from the in house simulator in VISSIM.

This section will provide an overview over the DTS and its data formats to allow a
better understanding of the challenges involved in converting the old format to VISSIM
readable design.

4.2 The DSG in house simulator 29

4.2.1 The DTS map format

The DTS uses an XML-based representation of the inner area of Dublin (see figure 4.1).
This document represents the necessary data, like the coordinates of the junctions or which
junction is connected to another one, in an object oriented format [13].

Figure 4.1: DTS map represented with in house map generator.

4.2 The DSG in house simulator 30

Junctions are also the main objects in this format. Table 4.1 provides an overview of the
most important elements of a junction in the XML-based map.

Element Description
id The global unique identifier of the junction in the system.
type What kind of junction the object represents. The type defines

if the junction has traffic lights or not.
location The position of the junction on the world map.
incomingJunction Every junction which is a direct neighbor of this junction and

also has a street, where vehicles are allowed to travel towards
this junction has one incomingJunction-element. A very important
sub element is the outgoingJunctionRef-element. It describes which
choices a driver has when approaching the junction from the other
junction (left, right or straight).

Table 4.1: Important elements of a junction record in the DTS map format.

For a detailed explanation of the structure of that map see Appendix A.

4.2.2 The DTS phase generator

The DTS uses its own set of phases for traffic lights, which are generated by a python
based parser. The parser takes a DTS map as input and decides on a junction type basis
which phases could be possible. The phase generator uses the incomingJunction-elements,
especially the outgoingJunctionRef-sub elements to define a set of phases for this particular
junction [13].

This phase information is also stored in a XML-based format.

4.2.3 The DTS vehicle path

The DTS path generator offers a variety of possibilities to generate traces for cars through
a simulated map. Basically, you choose a start and a destination junction. Afterwards, a
shortest path algorithm [20] is applied to find the best route between these two junctions.
This approach has the drawback, that no vehicle is choosing a route which uses side roads
[13]. Listing 4.3 provides an example for an input file for the path generator.

4.3 DSG Converter tools 31

Listing 4.1: Example of a DSG input file for path creation
// Time of simulation
6000000
// IdSourceJunction , IdDestination # NbJourneys
3073 ,1702#135 , C
3073 ,1690#111 ,C
3073 ,1545#10 ,C
3073 ,1541#1 ,B
3073 ,1489#20 ,B
3073 ,1444#5 ,C

Listing 4.2 shows a section of a trace file after the path generator applied its shortest path
algorithm.

The output file is formated on the following terms [13]:
departure time 1 1 source junction id ... following junction ... destination junction

Listing 4.2: Example of a DSG output trace file from the Path Generator
103 ,1 ,1 ,C ,14 ,1517 ,744 ,1521 ,760 ,758 ,1273 ,7657 ,766 ,1521 ,1531 ,577 ,1532 ,1556 ,104
135 ,1 ,1C ,13 ,1517 ,1518 ,1519 ,802 ,1522 ,761 ,757 ,1521 ,1531 ,866 ,1530 ,801 ,810
150 ,1 ,1 ,C ,11 ,1517 ,744 ,1521 ,760 ,758 ,1273 ,1272 ,1659 ,583 ,837 ,8367
510 ,1 ,1 ,C ,4 ,1517 ,744 ,1521 ,760 ,758 ,1273 ,1272 ,1659 ,583 ,837 ,8367
648 ,1 ,1 ,C ,8 ,1560 ,795 ,1561 ,1551 ,1536 ,1537 ,1550 ,1549
666 ,1 ,1 ,C ,2 ,1560 ,795 ,1561 ,1551 ,1536 ,1537 ,1550 ,1549
814 ,1 ,1 ,C ,14 ,1549 ,1550 ,1551 ,1552 ,713 ,1560 ,741 ,1559 ,1558 ,1557 ,549 ,550 ,1556 ,104
882 ,1 ,1 ,B ,7 ,8367 ,837 ,1656 ,1275 ,827 ,828 ,829
904 ,1 ,1 ,B ,16 ,104 ,1556 ,1356 ,578 ,1268 ,5767 ,1269 ,1273 ,1272 ,1271 ,1266 ,1361 ,1360 ,1670 ,1359 ,1225
954 ,1 ,1 ,B ,53 ,774 ,773 ,1506 ,1630 ,607 ,1520 ,1519 ,802 ,1522 ,865 ,1530 ,866 ,1531 ,577 ,1532 ,1556 ,1356 ,578 ,1268 ,1532
1020 ,1 ,1 ,B ,68 ,1560 ,795 ,1561 ,1551 ,1550 ,1537 ,1536 ,1535 ,1529 ,1635 ,607 ,1520 ,1519 ,802 ,1522 ,1608 ,804 ,769 ,1635
1050 ,1 ,1 ,C ,68 ,1560 ,795 ,1561 ,1551 ,1550 ,1537 ,1536 ,1535 ,1529 ,1635 ,607 ,1520 ,1519 ,802 ,1522 ,1608 ,804 ,769 ,1635
1064 ,1 ,1 ,C ,68 ,1560 ,795 ,1561 ,1551 ,1550 ,1537 ,1536 ,1535 ,1529 ,1635 ,607 ,1520 ,1519 ,802 ,1522 ,1608 ,804 ,769 ,1635

4.3 DSG Converter tools

To reuse the old functionality from the DTS in VISSIM two converter tools had to be
created. This section provides a brief description of them.

4.3.1 Map converter

The DSG had started to create a basic map converter, to transfer the DTS XML-format
into the INP-file format [36]. In the given version the converter was not able to provide all
the necessary features. Therefore, the converter, which was written in C++, was expanded.

The converter is a Windows console based application which takes a DTS map and
its XML-based phase file as input and generates an INP-file and an extended version of
the DTS map as output. The extended DTS map provides the identifier of the VISSIM
representations of the junction data from the DTS map. With these additional information
external programs like the DSG VISSIM extension can generate additional functionality
like the WLAN module (see section 4.5.1).

4.3 DSG Converter tools 32

The basic design concept of the converter makes it hard to expand it with additional
functionality, so maybe for future projects it would be better to redesign it and implement
it in a more modern language.

4.3.2 Trace file converter

The trace file converter takes an DTS trace file as input and generates a VISSIM readable
trip chain file as output (see section 3.3.3). The DTS is focused on junctions. As explained
in section 3.3.2 VISSIM in contrast operates on bases of links (street) and its connectors
and does not really have an object for a junction like the DTS. The biggest challenge was
to find a suitable counterpart of junctions in VISSIM to convert the old junction-based
traces in VISSIM´s trip chains.

Trip chains work with a source and a destination zone. To map the DTS junction
with this system every link in VISSIM was given its own zone connector parking lot.
Figure 4.2 provides an example of the idea behind the conversion. A trip in DTS from
junction a) to c) would create a trace with all three junctions in it. The converted file would
set the origin zone of the train chip file between junction a and b) and the destination
zone would be the zone between b) and c).

Figure 4.2: Converting DTS trace files to VISSIM trip chain files.

4.4 DSGVissimEvaluationFileReader 33

4.4 DSGVissimEvaluationFileReader

For evaluation purposes a simple text reader was developed. VISSIM is able to dump so
called vehicle record data in a text file with the format “[INP-file name].fzp”. What exactly
and in which order is saved in this file is defined by the associated “[INP-file name].fzk”
file. To use the evaluation file reader the fzp-file has to have the following format:

Listing 4.3: Format for the fzp-file
FZNR
TYPNR
SIMZEIT
VEH_INPSEC
V
TGES
TACHOX

The file has to be stored in the same directory as the used INP-file. For a detailed
explanation see appendix B.

4.5 DSG VISSIM extension

This section describes the design and implementation of the DSG VISSIM extension
(DSGVE).

4.5.1 Design

Figure 4.3 illustrates the objects of the DSGVE. The central object is called DSG-
Simulation. Any simulation which uses the COM interface of VISSIM (see section 3.3.4)
has to be started via an external program. The DSG-Simulation-object represents the
main class which serves this purpose.

The Global clock-object is the pacemaker for the whole simulation. It controls when the
next internal simulation-second is calculated. There can be problems with interleaving
processes when using the VISSIM COM interface. Therefore, it was necessary to to take
the clock control away from VISSIM and put it in the hand of theDSG-Simulation-object.

VISSIM wrapper and the Vissim COM interface provides all the methods and
interfaces which are important for collecting and writing data from and to VISSIM. For
example, the wrapper-object is responsible to remotely start the VISSIM program and
loading the simulation map afterwards. The COM Interface provides current data of the
object inside of VISSIM during every ongoing simulation step.

4.5 DSG VISSIM extension 34

Figure 4.3: UML-Diagram of the DSGVE.

The Vehicles and TLAgents objects are containers for the vehicles and traffic light
agents in the system.

The Vehicle-object gathers all the basic data of a vehicle instance:

• VissimType There are different kinds of types defined in the INP-file (see
section 3.3.2). These data can be important for different reasons (e.g. maximum
passengers or basic votes of the entity).

• VissimVehicleID Every vehicle in a VISSIM simulation has a unique identifier.
This identifier is stored in the corresponding instance of the Vehicle-object.

• VissimNextZone One benefit of wireless communication between vehicles and
infrastructure is a more detailed knowledge base of the traffic on the roads (see
chapter 2.2). This information represents the next destination of the car (e.g. the
next street on a junction a car wants to reach).

• VissimCurrenLinkID As the VissimNextZone element represents a destination
on a trip, the VissimCurrenLinkID element symbolizes the actual position of the

4.5 DSG VISSIM extension 35

vehicle in the simulation (e.g. the actual street).

• VissimCarCoordinates This is a more detailed position of the vehicle and
can be seen as the representation of GPS-coordinates of the vehicle.

These information can be inherited from more specialized vehicle-objects. For example,
the Voting Vehicle class has, besides the basic methods and data, additional data like
the basic votes this instance of vehicle has and the actual vote counter (see 3.2).

The TLAgent-object gathers the following basic data of a traffic light agent instance:

• TlAgentId Every object in VISSIM has a unique identifier. This is the
identifier for the traffic light agent.

• JunctionAncientId The identifier of the junction from the original map (see
section 4.2.2).

• TLJucntionCoordinates The coordinates of the junction on the virtual map.
This data can be important for location purpose.For example, the more sophisti-
cated WLAN TLAgent eses this information for checking if a vehicle is in WLAN
range.

• DSGSignalGroups The Signal groups which are used from the agent.

• DSGCarIds a container for cars or other vehicles which are interacting with
this traffic light agent.

• CycleTime Every set of traffic lights from one junction can have its own set
of phase time (in seconds).

• AmberTime The amount of time for the amber phase. In many countries
around the worlds this would be usually 3 or 5 seconds.

• DSGLanePosition This class is responsible for the mapping of the actual
junction layout to the standardized set of junction used for the phase decision
algorithms (see section 3.1.1).

Following the same principles as the Voting Vehicle-class, the WLAN TLAgent-object
inherits all these basic data from the TLAgent-object. Furthermore, this object also owns
an instance of the WLAN Module-object, which is responsible for the management of
all WLAN functionality like communication and scope examination.

4.5 DSG VISSIM extension 36

However, due to the time constrains of this thesis, the module checks at the moment only
if a vehicle is in the defined WLAN area and saves the information for the traffic light
agent. During the phase decision process, the WLAN agent collects all votes from the
vehicles in the area. Thereby, no real communication is done via virtual communication
channels, so no packet drops or other interesting aspects of WLAN communication, like
effects of a high amount of vehicles in an area can be evaluated at the moment.

Finally, the Vote TLAgent inherits all objects from the WLAN TLAgent and extends it
with the necessary variables and methods for the voting-based algorithms.

4.5.2 Calculating the next phase of an agent

Voting-based agents

After all votes are collected from the vehicles and the voting-based agent decided, based
on the defined voting strategy (see section 3.2.3), which phase will be next, this decision
has to be converted in a VISSIM readable expression. Therefore, every traffic light agent
has a container of its VISSIM internal traffic light group identifier for the mapping of the
junction to the standardized junctions (see section 3.1). Based on this mapping a string is
created which has the following format:

[Cycle time] [Amber time] : [Traffic light group ID] ... [Traffic light group ID]
This string is copied into the corresponding traffic light agent file.

After the calculation for every traffic light junction is finished VISSIM is allowed to
run for the next cycle time via the Global clock-object. The plug-in DLL, which is
responsible for setting the traffic lights on the map, will read the new data from the files
and act accordingly.

Round Robin agents

This procedure is similar for the two Round Robin agents, except, that tehy do not have
to calculate the votes of the vehicles. The RR agents just store which phase was used in
the last round and choose the following phase number from the phase-set of the junction.
Afterwards this phase is translated and copied in the proper file just id is done by the
voting-based agent.

4.5 DSG VISSIM extension 37

4.5.3 Security Considerations

The study in this master thesis is completely simulator based, but when this approach
of voting-based traffic light agents would be implemented, then there would be different
areas of security relevant aspects to take in considerations. This section tries to identify
the most important ones and offers a solution for them.

General functionality

As explained before. the basic idea behind the thesis is, that every car approaching a
traffic lights votes for a green phase and that the phase set with the most votes is chosen
for a junction for one cycle. Therefore, the basic areas for security risk are:

• The communication and authentication between the entities

• Fraud detection

• Privacy issues

• Denial of Service

Communication and authentication issues

There are two possible communication pathways:

Traffic light agent to Management-station or other agents For statistic reasons
the local traffic light agents could send the phases they decided for green time back to a
centralized management station. We could also think of a voting strategy, which involves
surrounding neighbor traffic light junctions. In both ways, the communication channel
should be secured.

The advantage of this communication pathway is, that these connections are usually
the same, stable and with the same entities. To prevent a tampering with these con-
nections we can apply usual methods for a safe channel. So for example IPSEC or SSL-
tunnels could be established between the communication partners.

The main challenge would be, to set up a good PKI-structure which is able to pro-
vide new keys periodically. SSL would also take care of the integrity of the message.
Overall a reliable transport method (like TCP) between the entities of the communication
would be recommended. With a common setup between these entities it should be possible
to prevent passive (e.g. eavesdropping)and active attacks (e.g. repeat attacks). Overall,

4.5 DSG VISSIM extension 38

these security issues are more basic and there are good patterns to make such kind of
system save enough [18].

Vehicle to traffic light agent communication
Securing these kind of communication is much harder than between well known entities.
The location and the identifier of traffic light agents is known to the system and therefore
it is more or less easy to find ways to make that part of the system secure, but vehicles
which vote for a green phase are unknown to that system and the communication partners
change all the time.

It must be ensured that the entity which votes for a green phase is really a vehicle
on that road and is therefore allowed to vote. The focus in this scenario is not that the
information which is sent from the vehicle to the traffic light has to be a secret (it should
be clear to everybody that the vehicle always votes for a green light), but that there must
be a way to ensure the authentication of it.

One basic concern is, that a security system can only be safe when it is able to update the
system (e.g. new private keys for a vehicle). There exist a lot of vehicle manufacturers
and all should be able to talk with the same security standard to the traffic light agents.
These issues are not really solved today, so we have to see how the manufacturers will
implement mechanisms for safe V2C or V2I communication. Maybe a possible solution for
the case of the vehicle to traffic lights communication could be that there are 3 different
public keys for each manufacturer.

All manufacturers issue 3 keys from a CA where the traffic light agents have access
to them. There should also be a black list for the bad keys. So periodically (e.g. once
a day) the a management stations could collect these public keys and distribute them
to the traffic light agents. So when a vehicle wants to vote the traffic light it sends its
manufacturer identifier to the traffic light. The light sends back a challenge encrypted with
the public key of that manufacturer. The vehicle has the private key of that manufacturer
and can respond to that challenge and can now vote for a green phase. The private keys
have to be changed from time to time, so there must be a secure way to send vehicles the
new manufacturer keys.

Fraud detection

It must be sure, that only vehicles can vote (see authentication of the cars) and each
car can only vote as often as it is allowed for the entity. It could be a way to solve that

4.5 DSG VISSIM extension 39

problem to have a device in the vehicle which stores the keys and also have a global unique
identifier for the vehicle in it (like MAC addresses of network cards).

After the vehicle has authenticated itself by the traffic light agent it could also send
a public key to the vehicle. The vehicle could encrypt its answer with the public key of
the traffic light agent and encapsulate in its Globally Unique Identifier (GUID). So the
traffic light has its unique ID for every vote of a vehicle. This can only work when every
GUID is safe in the device and nobody can tamper with it.

Privacy issues

With this system it could be easy to generate a pattern for every vehicle and therefore
for every owner of it, so there should be privacy policies in place which clearly state how
these data are used. A good way could be to delete all logs periodically and that there
would be a third party which ensures, that these data are deleted or made anonymous.

Denial of Service

An attacker could use a mobile device to send vote requests to the traffic light agents. In
a scenario where we use PKI-systems it could be easy to generate a lot of requests which
have to be checked.

To prevent such attacks could be very difficult, but maybe when such an attack happens a
management station could use patterns from past days to set the behavior of the traffic
lights until the attack is over. Furthermore the management-stations could send an alarm
that such an attack happened to an administrator which could ask the Garda to use CCTV
to search the area for suspicious persons.

Conclusion of the Security Considerations

There are a lot of open issues when it comes to safe V2V and V2I communication. Manu-
facturers have to define a standard way for these communications before a system like the
democratic traffic lights could be implemented.

Furthermore, the performance of these secure protocols must be good enough to handle a
lot of vehicles at the same time. Maybe such systems can use elliptic curve cryptography
to reduce the length of the secret keys to improve the overall performance of the system.
Also privacy must have a high priority or such system would not have the consent of the
community.

4.6 Complications during implementation and test runs 40

4.6 Complications during implementation and test runs

As stated before in section 3.4 there were complications during the development of the
DSG VISSIM extension and the converted elements from the DTS data. This section will
provide an overview of the problems that occurred and in which way they where handled.

4.6.1 Problems with converted DTS maps

The old DTS map format is only capable to draw direct streets between two junctions.
Therefore, if the road has curves it is simulated by small “junctions” between the two real
junctions. This causes major trouble after the conversation in VISSIM.

VISSIM simulated sensors like inductive loops with queue counters at the end of each link.
These counters are only able to count vehicles on their links. Picture a) from Figure 4.4
presents a problematic case in the map used for simulations. After the conversion of this
part of O’Connell Street there are two unnecessary junctions and thereby, two additional
queue counters as well. In VISSIM it would be possible to bend links with intermediate
points. Picture b) presents a good solution for this part of the street. Only one link and
queue counter could count the complete amount of vehicles.

Due to the time constrains of the thesis there is no solution for this problem at the
moment. Maybe an algorithm could be specified which collects all the intermediate queue
counters between two junctions with traffic lights. This algorithm would have to visit
every neighbor junctions and its followers until a next junctions with traffic lights is found.
In the eyes of the author this seems like an NP-Complete problem [12]. Therefore, it could
be a better solution to break with the old DST map and generate a completely new map
of Dublin in VISSIM. Afterwards the INP-file could be parsed in an object oriented format
to use with further extension.

The agents used in this thesis do not use queue counters, but the framework is supposed
to be used with other projects in the DSG. Therefore, this issues should be solved for a
better overall quality of the map.

4.6.2 Use of DTS trace files

As mentioned in section 4.6 there are problems with using the the converted trace files
(see section 4.3.2) from the DTS. To use the converter DTS trace files every link needed a
zone connector parking lot. These parking lots are virtual and have a unlimited capacity.

4.6 Complications during implementation and test runs 41

Figure 4.4: Problems with converted DTS maps: a) Every micro link has its own queue
counter - b) one queue counter could save resources and would be enough for the link.

During the evaluation process it stand out that vehicles approaching the next desti-
nation parking lot on their trip disappear in these parking lots when the link after the
parking lot is full with vehicles (see figure 4.5). The vehicle would reappear when after the
parking lot is a free space, but only as many vehicles as there are spaces. The rest of the
vehicles would still be in this virtual space outside the map and would not be counted for
evaluation purposes. Additionally, because these vehicles disappear a tailback is avoided
which also distorts the evaluation.

For these reasons the DTS trace files are not used in this thesis and should be avoided for
further project with this framework. Instead, dynamic matrices are used with manually
placed zone connector parking lots, which is also the recommended best practice for traffic
generation in VISSIM [28].

4.6.3 Problems with the VISSIM COM interface

There evolved two major problems during the work with VISSIM´s COM interface.

Bug with queue counters during simulation

After 7200 seconds in a simulation every queue counter only returns “0” as the number
of vehicles on its link, when asked via the COM interface. PTV AG, the developer of
VISSIM is informed, but did not respond at the moment.

Another member of DGS (Niall O’Hara - niohara@tcd.ie) is searching for a work around

4.6 Complications during implementation and test runs 42

Figure 4.5: Problems with DTS trace files in VISSIM.

at the moment. Again, this thesis does not use the queue counters, but there is also a
Collaborative Reinforcement Learning (CRL) [30] agent in development which uses this
information.

Missing information about vehicles desired direction

The map used does not have a zone connector on each link anymore (see section 4.6.2).
Therefore, it is not possible to ask vehicles for the next destination zone, to figure out
the next link on their journey. This was used to calculate the “From-to”-reference (see
section 3.1). Another solution would be to ask the vehicle what the next desired location
(link) is on his or her trip. This attribute exists and can be displayed in VISSIM during
a simulation, but the COM interface is not able to provide this information, yet. The
developers are informed about this problem and they will fix this issue with one of the
upcoming service packs.

Due to these complications it is not possible to use a “From-to” relationship. Only
a “From”-reference is used instead, which is more like the commonly used inductive loop
sensors, with the benefit that the defined WLAN range with 75 meters is much higher,
than the usual sensor range of inductive loops, which usually are only 21 meters long [5],
but this benefit can only be used when the link which is approaching the junction is large

4.6 Complications during implementation and test runs 43

enough.

The phases for the implementation (see section 3.1) were designed for the “From-to”-
reference and the new restriction caused a major problem in the decision making algorithm.
For example, when a vehicle is approaching from the “Up1” direction it can not be deter-
mined if the vehicle wants to turn left, right or travel straight. Therefore, the votes of
the vehicle were added to all three internal counter for “’Up1’. This procedure is used for
every vehicles from the different directions.

Afterwards, the new phase was chosen by the agent. Phase number 8 from the de-
fined phases for cross-shaped junction (see figure 3.4) enables all directions from the
“Down”-position and also the “From-right-to-left”-direction. Usually, all votes from vehi-
cles which wanted to travel on these four directions would be reset and the votes of the
waiting vehicles would be doubled, but the system can only distinguish between “Up” and
“RIGHT” at the moment so every vehicles on these positions have to be reset.

This would contort the system, because the votes of vehicles which want to travel from
“Right”to straight or right directions are reset as well. To solve the issues, the traffic light
agents do not reset all their internal vote counters per decision cycle. Instead, only the
vote counter of the allowed direction from the phase are reset. So the storage location
for the votes was shifted from the vehicles towards the agent, which have now a little bit
more complexity, but this was the only way to rescue the votes from vehicles which are
still waiting on junctions without changing the complete concept of the framework.

These adaption should be disabled, when the VISSIM developers fix the issue of the
missing vehicle attribute in the COM interface with the upcoming service pack.

CHAPTER 5
Evaluation

This chapter provides an overview of the simulations which are run with the different traffic
lights agents and their results. Furthermore, the performance analysis of a simulation with
the different agents is provided.

5.1 Experiments

This section explains the setup, the evaluation metrics and the results of the executed
simulation to evaluate the DSGVE and the voting-based agents.

5.1.1 Experiment setup

Figure 5.1 shows the test map used for the test runs. As a test environment a part of the
city center of Dublin was chosen. The lower boundary is around the Trinity College and
the upper border around Parnell Street. Therefore, all of O’Connell Street with its side
streets are part of the map. This area contains a high number of Bus services and was
thereby very interesting for testing the weighted voting strategy. On the right border the
map ends with the roundabout around the Custom House and a part of the R105 which
also could provide interesting traffic patterns.

The black dots on the map symbolize the positions of the zone connector parking lots (see
section 3.3.3). Most of nine origin zones around the map were chosen with the focus on
the main roads where usually more vehicles approach the city center. Two of them where
placed on side street to simulate chars which where parked in that area.

5.1 Experiments 45

Figure 5.1: Used test map for the simulations: O = Origin zone; D = Destination zone.

The eigth destination zones are distributed around the map. From every origin the same
ratio of vehicles is send to every destination, with the aim of a good saturation of vehicles
on the roads around the map.

The aim of the experiment was to simulate the inbound traffic at the peek hours from 7am
to 10am on a workday. Therefore simulation time was set to 10800 seconds (3 hours). As
an estimation base for the traffic amount and the traffic pattern the Road User Monitoring
report (RUM) 2008 and the Quality Bus Corridor (QBC) monitoring report 2007 from

5.1 Experiments 46

the Dublin Transportation Office (DTO) were used [25, 26].

In this given time, 24,000 cars and 851 buses are approaching the Dublin city center via
the QBC routes [25]. Overall, around 60,000 vehicles are counted as inbound traffic for
the complete city center in the morning peak hours [26]. However, the test map is only a
small part (around a 5th) of the complete city center of Dublin, so an estimation had to
be found for the number of vehicles.

93% of all QBC routes travel through the test map, so with this in mind a test ma-
trix with 24,000 vehicles with a split of 93% cars and 7% buses was chosen.

A second matrix with 60,000 vehicles and the same car bus split was also created and
tested, to figure out which impact a strong increase in the numbers has on the tested agents.

In the scenarios with the simple majority voting agent each type of vehicle has one
basic vote. In the weighted voting agents scenarios cars have 1.4 and buses 58.7 votes.
These represent the average number of people in the current type of vehicle in the morning
peak hours [26].

The simulations were also run with a simple Round Robin agent which took every defined
phase in consideration and chose every 30 seconds the next phase from the set. Also, an
optimized version of the Round Robin agent was used. This version took all phases from
simple road and T-shaped junctions, but only phase number 8 10 12 and 14 from the
cross-shaped and special junctions (see figure 3.4).

Table 5.1 and table 5.2 outlines the configuration parameters again.

Parameter Value
Simulation run time 10,800 seconds
Phases cycle time 30 seconds
Phases amber time 3 seconds

Table 5.1: Basic setup of the simulator

5.1 Experiments 47

Agent votes for cars votes for buses
Majority voting-based agent 1 1
Weighted voting-based agent 1.4 58.7

Table 5.2: Votes per type of vehicle

5.1.2 Evaluation metrics

Table 5.3 provides a description of the used evaluation metric.

Metric Description
Average Travel Time (ATT) The ATT is defined as the time the vehicles spen1

with their speed greater than 0.
Average Waiting Time (AWT) The AWT is defined as the time the vehicles spen1

with their speed equals 0.
Throughput The throughput is defined as the number of vehicles

which arrived at their destination at the end of the
simulation.

Table 5.3: Used evaluation metrics

Furthermore, for the majority voting agent and the weighted voting the results for cars
and buses are examined separately to figure out if the weighted agent had an impact on
the overall transported person in the system.

5.1.3 Results

Experiment with 24,000 vehicle in 3 hours

Table 5.4 provides an overview of the results of the simulation with 24,000 vehicles after 3
hours.

Agents ATT AWT Throughput
Majority voting agent 135 49 21113
Weighted voting agent 138 51 21112
Round Robin agent 843 722 10961
Optimized Round Robin agent 316 209 18964

Table 5.4: 24.000 vehicles in 3 hours: Average waiting and travel time per vehicle in sec-
onds and the total number of arrived vehicles to their destinations

5.1 Experiments 48

As we can see, both voting-based agents significantly outperform the Round Robin agents.
The majority voting agent reduces the ATT compared to the optimized Round Robin agent
by 57%. The normal Round Robin agent is no match, but the agent had to use phases which
are not benificial for this kind of agent, especially for the cross-shaped and special junctions.

Table 5.5 compares the throughput of the voting-based agents in detail.

Metric Majority voting agent Weighted voting agent
Total arrived vehicles 21113 21112
Arrived cars 20474 20460
Arrived buses 639 642
Total arrived Persons 66173 66329

Table 5.5: Detailed analysis of throughput for 24,000 vehicles

Due to the higher basic votes of the buses the weighted voting agent was able to guide 3
more buses and fewer cars to their destination, which resolved in 156 more persons who
arrived their destination. Both agents performed very well and the differences are not
really significant.

Figure 5.2 display the distribution of the ATT and AWT over time. As mentioned
above, both voting agents behave more or less similar. It is hard to see the graph of the
weighted voting agent behind the majority voting agent. Over time both Round Robin
agents perform worse. This happens because more and more vehicles were injected in the
system and these agents are not fast enough to allow them to proceed to their destination.

5.1 Experiments 49

Figure 5.2: Input of 24.000 vehicles over 3 hours: Graph a) displays the development of
the ATT over 10800 seconds with a measuring accuracy of 500 seconds. Graph b) shows
the same for the AWT.

5.1 Experiments 50

Experiment with 60,000 vehicle in 3 hours

Following the same schema, table 5.6 provides an overview of the results of the simulation
with 60,000 vehicles after 3 hours.

Agents ATT AWT Throughput
Majority voting agent 335 192 31148
Weighted voting agent 375 230 29467
Round Robin agent 908 781 11103
Optimized Round Robin agent 598 443 20579

Table 5.6: 60,000 vehicles in 3 hours: Average waiting and travel time per vehicle in sec-
onds and the total number of arrived vehicles to their destinations

WWith regards to the Round Robin agents, the experiment with 60,000 vehicles does
not provide any surprises. Both voting agents out-perform the Round robin agents sig-
nificantly, too. The Majority voting agent provides the best performance and reduced
the ATT compared to the optimized Round Robin agent by 44%. The weighted voting
agent performed worse than the majority voting agent which will be discussed after the
presentation of table 5.7.

Following the schema of the experiment with 24,000 again, table 5.7 compares the through-
put of the voting-based agents in detail.

Metric Majority voting agent Weighted voting agent
Total arrived vehicles 31148 29467
Arrived cars 30238 28596
Arrived buses 910 871
Total arrived Persons 95750 91162

Table 5.7: Detailed analysis of throughput for 60,000 vehicles.

It seems that the majority voting agent can handle more vehicles better than the weighted
voting agent. The simpler agent could not only guide more cars to their destination, but
also more buses. This seems odd, because a higher throughput of the buses should be
expected with the weighted agent. However, with the QBC ratio of only 3% buses it seems
that the weighted agent does not have a beneficial impact.

5.1 Experiments 51

Figure 5.3: Input of 60.000 vehicles over 3 hours: Graph a) displays the development of
the ATT over 10800 seconds with a measuring accuracy of 500 seconds. Graph b) shows
the same for the AWT.

5.2 Performance of the simulation 52

Furthermore, buses which are approaching high frequency junctions from side street force
the weighted agent to prefer these minor roads which also could results in lesser throughput,
especial when a bus on the major road is just out of the sensor range. In this case, a few
seconds later it would have been a better to allocate the major road the green time.

Figure 5.2 displays the distribution of the ATT and AWT over time.

Both graphs show, that the weighted agent handles the traffic slightly worse than the
simpler version when more and more vehicles where injected in the system. The Round
Robin agent performed in both cases very poorly. Its optimized version is still much better,
but compared to the voting-based agents, it is still not an alternative.

5.2 Performance of the simulation

The simulations were executed on the same system, which also was used for the development
of the DSG VISSIM extension (see section 4.1) and the converter tools. This section will
present an evaluation of the simulation performance in respect of the system usage and
the overall speed of the simulation.

5.2.1 System usage

VISSIM itself supports the use of multiple cores, but during the test runs it became clear,
that the implementation of this mode is not well-balanced, yet. Usually VISSIM used up
to 100% of one core, but only maximal 10% of the second core of the system.

Furthermore, VISSIM needs to run the simulation with the test map, which contains 245
junctions, 36 of them with traffic lights, on average 1.1 GB (dynamic matrix with 8,000
vehicles) up to 1.5 GB (120,000 vehicles)of ram. The DSGVE needed around 8% of the
CPU and 8 MB ram during the test runs.

5.2.2 Average performance factor of the simulations

Table 5.8 provides an overview of the average performance factor of the simulations. For
example, a factor of 3.3 means that the simulation ran 3.3 times faster compared to a
second in reality.

With only 8,000 vehicles over 3 hours the simulation performance is almost as good as
with the Round Robin agents, but with the increasing number of vehicles the efficiency

5.2 Performance of the simulation 53

Agents \ Vehicles in matrix 8,000 24,000 60,000 120,000
Majority voting agent 17.8 9.2 5.1 3.1
Weighted voting agent 18 9.1 4.5 3.2
Round Robin agent 20.0 18.4 17.9 16.7
Optimized Round Robin agent 20.0 18.5 17.6 16.7

Table 5.8: Overview of the average performance factor of the simulation

drops significantly. The main reason can be found in the WLAN module of the DSGVE.
After a complete cycle time (in the test runs after 30 seconds) the WLAN module has
to check if there are vehicles in range of each traffic light junction to figure out which
vehicles have to talk to the respective voting-based agents. Therefore, it has to collect
the position of each vehicle in the system. This causes a visible delay up to 4 seconds for
every calculation step.

The Round Robin agents just have to choose one phase after another from their given
phase sets, so the do not have to talk to vehicles at all. These agents only have to write the
next phase in the corresponding file for the traffic light DLL and these 36 write operations
do not cause as delay in the VISSIM simulation. The slight drop in the performance is
caused by VISSIM itself which has to handle more vehicles on the road.

CHAPTER 6
Conclusion

This chapter summarizes and discusses the findings of this thesis and also describes possible
extensions and further work in the future. Finally, some conclusions are drawn.

6.1 Achievements

To satisfy the goals of this thesis a framework was created which enables external extension
to the functionality of VISSIM. With this framework and a DLL based plug-in to set
traffic light phases via an external channel it was possible to implement a new kind
of WLAN based voting agents. Furthermore, it was able to equip vehicles with more
functionality and it was shown, that it is possible to do this with different objects in VISSIM.

The resulting voting agents were, as a proof of concept, evaluated against two additionally
created Round Robin agents. The evaluation could show, that the major objectives of the
thesis could be achieved. The major achievements were as follows:

• Creation of a new framework for VISSM simulations with extension.

• Creating tools for converting DTS maps and trace files towards a VISSIM readable
format.

• Development of voting-based agents which can improve the ATT, AWT and through-
put of vehicles in the simulated environments.

The most important achievement is the new framework. Thanks to this fundamental step
it is possible to generate a huge variety of different agents in the future which can be
tested against each other on an approximation of the city center or other parts of Dublin.
These evaluations have the benefit that they use VISSIM as a basis, which is better known
than the formerly used in house simulator of the DSG.

6.2 Future work 55

It was also possible to convert the used DTS map, but given to the problems with
the unnecessary junctions (see section 4.6.1) it could be better to redo the map once and
for all in VISSIM.

The voting-based agents were able to reduce the ATT up to 57% compared to the
Round Robin agents which definitely can be counted as a success for the method. These
results could even be improved when the “From-to”-reference would work as it is supposed
to (see section 4.6.3). Visual examinations with the problematic map showed a promising
performance, but could not be evaluated due to the these problems.

6.2 Future work

Due to the time constrains of the thesis there were some aspects which could be improved
in the future. The WLAN module of the DSGVE provides only a basic functionality and
does not reflect a proper behavior when it comes to packet drops or other properties. To
test how WLAN interruptions affect the system this module should be extended.

Furthermore, when in one of the upcoming service packs for VISSIM the issue with
the missing information about vehicles desired direction (see section 4.6.3) is fixed, the
voting-based agents should be re-evaluated to see how much the better sensor data affect
the overall performance of the agents. Also, more complex voting agents could be used.
For example, a system where the votes of vehicles were not, or only partially, reset after
each green phase. These vehicles would be treated as more important over time they spent
in the system. Agents could also start to communicate with their neighbors with the aim
to generate green waves.

In addition, it would be interesting to test the voting-based agents against SCATS,
which is used in Dublin for urban traffic control at the moment. SCATS can be simulated
with SCATSIM [19] which is compatible with VISSIM, but additional licenses are needed.

Finally, it would be interesting to combine a CRL based agent with the voting-based
strategies. DSG is working on a CRL agent which is working within the same framework
at the moment. First test runs implied that the voting-based agents perform better than
the CRL agent, at least in the first simulation hours, because the CRL agents have to learn
the best strategies first. However, because the agents are not well tested and implemented
at the moment, the exact test results are not included in the evaluation. it could be a
good solution when voting-based agents decide which phase is chosen and the CRL part

6.3 Discussion 56

of the agent decides how long the green time will be. At the moment, the time for a phase
was fixed to 30 seconds, which could be too long for a phase involving a minor road.

6.3 Discussion

Over the years many different approaches for better traffic management were devel-
oped and evaluated. Commonly used adaptive systems like SCATS are able to improve
the throughput of vehicles compared to the early fixed time table systems (see section
2.1.3) and can thereby increase the capacity of roads in urban areas. However, roads are
still and will be a limited good and increasing the capacity will only work to a certain point.

Besides the improvement of UTC systems there are also different approaches to that
problem. Some people say that instead of researching, developing and applying more
and more sophisticated systems to achieve a higher capacity of the road, this money and
manpower should better be spent in traffic calming techniques and the improvement of
public transport which could increase the overall throughput significantly [35]. In my
opinion, they definitely have a point. Maybe a combination of improved UTC systems
and more park and ride, bus priority and an overall better public transport system could
have the best effect on improving the throughput in urban areas.

6.4 Conclusion

This dissertation described the application and evaluation of a voting-based decision-
making algorithm for decentralized traffic light controllers in an urban traffic control
system. With use of better sensor data and different voting strategies it was possible to
outperform the other tested agents. Finally, the developed modular framework can be
used to create and test new agents combined with VISSIM in the future.

APPENDIX A
Schema definition of the internal map

This appendix presents the XMLv2-format for the DSG internal map structure. This
format provides an symbiosis of data which is necessary for the in house simulator and
the additional information which is needed for the VISSIM converter.

A.1 Schema file

Listing A.1: junctionDataV2.xsd
1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <xs:schema xmlns:xs =’http: // www.w3.org /2001/ XMLSchema ’>
3 <! --
4 History:
5 Date - Version - Author - commend
6 unknown - V1 - unknown - original version
7 06/05/09 - V2 - hendrycr@tcd .ie - added element "Link" to " incomingJunction " for VISSIM
8 support of mapping links to lanes via connectors
9 fixed mistakes in schema

10 23/06/09 - V2 - hendrycr@tcd .ie - refactored names so all fit in the same name convention
11 deleted element " RefLanActionType " -
12 use " actionType " instead
13 added element " linkPriority " which is
14 necessary for VISSIM routing
15 24/06/09 - V2 - hendrycr@tcd .ie - changed position of the linkPriority element in
16 incomingJunction and also added it to the
17 outgoingJunction element
18 29/06/09 - V2 .01 - hendrycr@tcd .ie - Added " vissimLinkId " " vissimQueueCounterId "
19 " vissimParkingLot " " vissimNodeId " " vissimConnectorId "
20 " vissimDelayTravelTimeZoneId "
21 01/07/09 - V2 .02 - hendrycr@tcd .ie - Added elements " vissimTlAgent " " vissimTlGroup "
22 " vissimTlHead " which are needed for the traffic
23 lights in VISSIM
24 03/07/09 - V2 .03 - hendrycr@tcd .ie - Deleted " linkPriority " element in the
25 " outgoingJunction " element , because it was unnecessary
26 -->
27 <xs:element name=" junctionData ">
28 <xs:complexType >
29 <xs:sequence >
30 <xs:element name=" details " type=" xs:string " />
31 <xs:element name=" junctionRec " maxOccurs =" unbounded ">
32 <xs:complexType >
33 <xs:sequence >
34 <xs:element name="id" type=" xs:integer " />
35 <xs:element name="type">
36 <xs:simpleType >

A.1 Schema file 2

37 <xs:restriction base=" xs:string ">
38 <xs:enumeration value ="TL"/>
39 <xs:enumeration value ="Non -TL"/>
40 <xs:enumeration value =" SourcecSink "/>
41 <xs:enumeration value ="NOTO"/>
42 </ xs:restriction >
43 </ xs:simpleType >
44 </ xs:element >
45 <xs:element name=" location ">
46 <xs:complexType >
47 <xs:sequence >
48 <xs:element name=" xCoordinate " type=" xs:decimal " />
49 <xs:element name=" yCoordinate " type=" xs:decimal " />
50 </ xs:sequence >
51 </ xs:complexType >
52 </ xs:element >
53 <xs:element name=" incomingJunction " maxOccurs =" unbounded ">
54 <xs:complexType >
55 <xs:sequence >
56 <xs:element name="id" type=" xs:integer " />
57 <xs:element name=" numLanes " type=" xs:integer " />
58 <xs:element name=" linkDistance " type=" xs:float " />
59 <xs:element name=" maxVelocity " type=" xs:integer " />
60 <xs:element name=" linkPriority ">
61 <xs:simpleType >
62 <xs:restriction base=" xs:string ">
63 <xs:enumeration value =" major "/>
64 <xs:enumeration value =" minor "/>
65 </ xs:restriction >
66 </ xs:simpleType >
67 </ xs:element >
68 <xs:element name=" outgoingJunctionRef " maxOccurs =" unbounded ">
69 <xs:complexType >
70 <xs:sequence >
71 <xs:element name="id" type=" xs:integer "/>
72 <xs:element name=" actionType ">
73 <xs:simpleType >
74 <xs:restriction base=" xs:string ">
75 <xs:enumeration value ="L"/>
76 <xs:enumeration value ="R"/>
77 <xs:enumeration value ="S"/>
78 </ xs:restriction >
79 </ xs:simpleType >
80 </ xs:element >
81 </ xs:sequence >
82 </ xs:complexType >
83 </ xs:element >
84 <xs:element name="link">
85 <xs:complexType >
86 <xs:sequence >
87 <xs:element name=" vissimLinkId " type=" xs:integer " />
88 <xs:element name=" vissimQueueCounterId " type=" xs:integer " />
89 <xs:element name=" vissimParkingLot " maxOccurs =" unbounded ">
90 <xs:complexType >
91 <xs:sequence >
92 <xs:element name=" vissimParkingLotId " type=" xs:integer " />
93 <xs:element name=" vissimParkingLotType " >
94 <xs:simpleType >
95 <xs:restriction base=" xs:string ">
96 <xs:enumeration value ="zone"/>
97 <xs:enumeration value =" abstract "/>
98 <xs:enumeration value ="real"/>
99 </ xs:restriction >

100 </ xs:simpleType >
101 </ xs:element >
102 </ xs:sequence >
103 </ xs:complexType >
104 </ xs:element >
105 <xs:element name="lane" maxOccurs =" unbounded " minOccurs ="0">
106 <xs:complexType >
107 <xs:sequence >
108 <xs:element name=" laneId " type=" xs:integer " />

A.2 Schema definitions 3

109 <xs:element name=" toJunctionRef " maxOccurs =" unbounded ">
110 <xs:complexType >
111 <xs:sequence >
112 <xs:element name=" refJunctionId " type=" xs:integer " />
113 <xs:element name=" refLaneId " type=" xs:integer " />
114 <xs:element name=" vissimConnectorId " type=" xs:integer " />
115 </ xs:sequence >
116 </ xs:complexType >
117 </ xs:element >
118 </ xs:sequence >
119 </ xs:complexType >
120 </ xs:element >
121 </ xs:sequence >
122 </ xs:complexType >
123 </ xs:element >
124 </ xs:sequence >
125 </ xs:complexType >
126 </ xs:element >
127 <xs:element name=" outgoingJunction " maxOccurs =" unbounded ">
128 <xs:complexType >
129 <xs:sequence >
130 <xs:element name="id" type=" xs:integer " />
131 <xs:element name=" numLanes " type=" xs:integer " />
132 <xs:element name=" linkDistance " type=" xs:float " />
133 <xs:element name=" maxVelocity " type=" xs:integer " />
134 <xs:element name=" vissimDelayTravelTimeZoneId " type=" xs:integer " />
135 </ xs:sequence >
136 </ xs:complexType >
137 </ xs:element >
138 <xs:element name=" vissimNodeId " type=" xs:integer " />
139 <xs:element name=" vissimTlAgent " maxOccurs ="1">
140 <xs:complexType >
141 <xs:sequence >
142 <xs:element name=" TlAgendId " type=" xs:integer " />
143 <xs:element name=" vissimTlGroup " maxOccurs =" unbounded ">
144 <xs:complexType >
145 <xs:sequence >
146 <xs:element name=" vissimTlGroupId " type=" xs:integer " />
147 <xs:element name=" vissimTlHead " maxOccurs =" unbounded ">
148 <xs:complexType >
149 <xs:sequence >
150 <xs:element name=" vissimTlHeadId " type=" xs:integer " />
151 <xs:element name=" vissimTlHeadLinkId " type=" xs:integer " />
152 <xs:element name=" vissimTlHeadLaneId " type=" xs:integer " />
153 </ xs:sequence >
154 </ xs:complexType >
155 </ xs:element >
156 </ xs:sequence >
157 </ xs:complexType >
158 </ xs:element >
159 </ xs:sequence >
160 </ xs:complexType >
161 </ xs:element >
162 </ xs:sequence >
163 </ xs:complexType >
164 </ xs:element >
165 </ xs:sequence >
166 </ xs:complexType >
167 </ xs:element >
168 </ xs:schema >

A.2 Schema definitions

Following every possible element of the XMLv2 data which is defined in the schema above
is explained.

Since version 2.01 there are elements in the schema which are added from the "‘XMLv2 to

A.2 Schema definitions 4

.INP"’-converter tool. Every element which is added by the converter begins with "‘vissim"’.
These elements provide the necessary data for an mapping between the old simulator and
the new VISSIM simulator.

A.2.1 junctionData element

The root element of the XML document.

Possible children

• details
this element is used for a short description of the part of the city - e.g. when only a
part of the whole map of Dublin is used then the coordinates of the cut-out could
stay in this element.

• junctionRec
Every junction on the map has one record where all necessary data for the simulator
is gathered.

A.2.2 junctionRec element

Possible children

• id
The unique identifier for the junction in the map.

• vissimNodeId
After transforming the XMLv2 format into the VISSIM readable "‘.INP"’ format
every junction from the old simulator can be mapped to one unique node inside the
VISSIM system.

• type
The type of the junction - e.g a junction which is controlled by traffic lights would
have the value "TL".
Possible values:
TL = with traffic lights
Non-TL = without traffic lights
SourcecSink = deprecated
NOTO = ?

• location
The X and Y coordinates of the junction. At the moment there is no plan to create
an 3-Dimensional environment, but VISSIM would support that feature.

A.2 Schema definitions 5

• incomignJunction
Every junction from which you can arrive at the current junction has to have an
entry in a junctionRec element.

• outgoingJunction
Every junction from which you can reach from the current junction.

• vissimTlAgent
When a junction has traffic lights the converter adds the information about these in
this element.

A.2.3 location element

Possible children

• xCoordinate
The X-coordinate of the junction.

• yCoordinate
The Y-coordinate of the junction.

A.2.4 incomingJunction element

Every incoming junction that is to say a junction from which you can arrive at the current
junction.

Notice that for each incoming junction, there are elements that represent the outgoing
junctions that you can reach if you arrive from this incoming junction.

Possible children

• id
The unique identifier of the incoming junction.

• numLanes
The number of lanes which arrive from the incoming junction to the current junction.
This field is more or less deprecated, because you could calculate the overall number
of lanes from the link element (see below), but in cases where the specific data does
not exists it still is useful. Furthermore, the current converter does use it in some
cases.

• linkDistance
The distance between the two junctions.

A.2 Schema definitions 6

• maxVelocity
The maximum allowed speed on the link between the two junctions.

• linkPriority
This is an important feature for the VISSIM priority rule. It manages which road
user has priority on the junctions. Possible values:
major = the incoming link of the junction is a major road
minor = the incoming link of the junction is a minor road

• outgoingJunctionRef
For each incoming junction, these elements represent the outgoing junction that you
can reach if you arrive from this incoming junction.

• link
Every incoming junction has exact one link. A link contains a set of separate lane
elements.

A.2.5 outgoingJunctionRef element

For each incoming junction, these elements represent the outgoing junction that you can
reach if you arrive from this incoming junction.

Possible children

• id
The unique identifier of the junction you can reach.

• actionType
There exist 3 different actions from the old phase generator.
L = Left
R = Right
S = Straight

These actions represent the action a road user has to take when he comes from the
incoming junction to move to the outgoing junction.

A.2.6 link element

To rebuilt maps as precisely as possible in VISSIM you need to know which lanes of the
links are connected to other lanes from other links.

A.2 Schema definitions 7

Figure A.1: Example for action types.
The Lamborghini arrives at the junction on a incomingJunction element. This incom-
ingJunction element has two outgoingJunctionRef elements.
One reference has the action type entry "‘L"’ for left and the other has a "‘R"’ for right.

Possible children

• vissimLinkId
After transforming the XMLv2 format into the VISSIM readable "‘.INP"’ format
every link element can be mapped to one unique link inside the VISSIM system.

• vissimQueueCounterId
This element represents the identifier of the queue counter which is responsible for
metering the amount of waiting cars on that link.

• vissimParkingLot
Every link in VISSIM needs one parking lot with the type "‘zone collector"’ to enable
a trace routing mechanism which behaves like the trace files system of the old DSG
simulator.

• lane
Every lane which arrives from the incoming junction has to have a separate lane
element.

A.2 Schema definitions 8

A.2.7 vissimParkingLot element

Possible children

• vissimParkingLotId
The identifier of of the parking lot in VISSIM.

• vissimParkingLotType
There are 3 different kinds of parking lots in VISSIM. "‘Zone connector"’ and
"‘Abstract parking"’ are both types which are used for dynamic assignment of cars.
"‘Real parking spaces"’ are modeled parking capacity which present real parking
spaces in the environment.

A.2.8 lane element

Every incoming lane of the link has to have an outgoing reference.

Possible children

• laneId
The identifier of of the lane.

• toJunctionRef
For every junction to which this lane is connected there has to be a reference element

A.2.9 toJunctionRef element

Possible children

• refJucntionId
The identifier of the outgoing junction.

• refLaneId
This lane of the link from an incoming junction maps to a lane of a link to an
outgoing junction.

A.2.10 outgoingJunction element

Every junction from which you can reach from the current junction.

Possible children

• id
The unique identifier of the junction.

A.2 Schema definitions 9

• numLanes
The number of lanes which can be used to travel from this junction to the referenced
junction.

• linkDistance
The distance between the two junctions.

• maxVelocity
The maximum allowed speed on the link between the two junctions.

• vissimDelayTravelTimeZoneId
These zones are used for collecting the amount of cars which are leaving a junction
from one link in VISSIM.

A.2.11 vissimTlAgent element

When a junction has traffic lights the converter adds the information about these in this
element.

Possible children

• TlAgendId
The unique identifier of the traffic light agent.

• vissimTlGroup
In VISSIM every traffic light head is part of a group, which is part of one traffic
light agent.

A.2.12 vissimTlGroup element

Possible children

• vissimTlGroupId
The unique identifier of the traffic light group.

• vissimTlHead
A head is the actual sign on the road.

A.2 Schema definitions 10

A.2.13 vissimTlHead element

Possible children

• vissimTlHeadId
The unique identifier of the traffic light head.

• vissimTlHeadLinkId
The identifier of the VISSIM link.

• vissimTlHeadLaneId
The identifier of the lane which is a part of the VISSIM link.

APPENDIX B
Instructions to run a simulation with the DSGVE

This chapter will provide a step by step instruction for using VISSIM with DSGVE by
using parts of the DTS map.

B.1 Basic VISSM Setup

• Install VISSIM (Version 5.10) with CodeMeter extension

• Start WebAdmin tool from CodeMeter and switch to the configuration tab

• Add server address (last known IP: 134.224.36.119) using port 22350

• Press apply and close CodeMeter

• Got to folder V ISSIM510/API/SignalControl_DLLs/SignalGUI_DLL

• Run SignalGUI.vcproj with Visual Studio and compile Release version.

• Copy the fresh compiled "‘SignalGUI.dll"’ int the EXE folder of VISSIM

• Go to folder V ISSIM510/API/SignalControl_DLLs/Examples/STD_GUI

• Run STDSC_GUI.sln with Visual Studio and compile Release version.

• Copy the fresh compiled STDSC_GUI.dll int the EXE folder of VISSIM

• Create an empty file named "‘test.wtt"’ in the EXE folder of VISSIM

• Start VISSIM

• Go to menu "‘Simulation -> Parameters” and change the number of cores to maximum

B.2 Converting a DTS map to use it with VISSIM 12

B.2 Converting a DTS map to use it with VISSIM

This section will explain the converting process after the user has generate a map with
the DTS map and path generator. For an explanation to use this tools see ??.

For the conversion the following files are necessary:

• Start ConvertXMLtoINP.exe

• Type in the path of the DTS map which should be converted

• Type in the path of the prefix file - just press enter

• Type in the path of the file that has to be written between the converted data - just
press enter

• Type in the path of the suffile file - just press enter

• Type in the path of phase file

• Type in the path of the data phases files directory - just press enter

• Type in the path of the data numeration file - just press enter

• Type in the path where there INP-file should be generated

• Type in the name of the DLL which is responsible for the external signal controller -
Should be “mmf_sc.dll”

The INP-File was generated. Also, a file named “[DTS map name]-converted.xml” is
generated which is important for the DSGVE. It contains a mapping of the old junctions
to the internal VISSIM identifiers for the map.

B.3 Starting a simulation with the DSGVE

After the conversation the following files are needed for the VISSIM simulation:

• The INP-file

• The “[DTS map name]-converted.xml”-file

• dublin1.scprops

• The external DLL - should be “mmf_sc.dll”

B.3 Starting a simulation with the DSGVE 13

The best solution it to copy them all in on folder. Afterwards it is recommended to
generate a folder called “junction_input” in that folder.

In these folder tehr als have to be file called “config.xml”. Listing B.1 provides an
example of the values of the file.

Listing B.1: Example of the config.xml file
<?xml version ="1.0" encoding ="utf -8" ?>
<config >

<! -- ##
General config
-->

<path >C: \\ Users \\ Rascil \\ Documents \\ My Dropbox \\ Ronny \\ Sourcecode \\ DSGVissimExtention \\ RHDissertationMap
\\ </path >

<outputdir >junction_output \\ </ outputdir >
<inpfile >Dublin .inp </ inpfile >
<xmlfile >rtmap09 -modified - converted .xml </ xmlfile >

<xmlspecialtlfile >RTMap09 - SpecialTLJunctions .xml </ xmlspecialtlfile >

<! -- These 2 are only used sometimes in the wrapper but not in the DSGVissimExtenstion version ! -->
<speed >10 </ speed >
<refresh >200 </ refresh >

<! -- ##
Basic config for the simulation
-->

<simulationtime >10800 </ simulationtime >

<! -- ***
<VissimVisualization >: Should teh simulation be visualized in the VISSIM window ?
#
0 = No
1 = Yes

** -->

<VissimVisualization >1</ VissimVisualization >

<! -- ##
#
Traffig light agent config
#
-->

<! -- ***
<TLAgentMode >: Which version of the agent ?
#
SimpleVote = Simple vertsion every type of vehicle has 1 vote
BusVote = All vehcilse have 1 vote , but busses have 10 votes
SimpleRR = Very basic RoundRobin agent
OptimizedRR = Opimzed RR uses only "good" RR phases

** -->
<TLAgentMode >BusVote </ TLAgentMode >

<TLCycleTime >30 </ TLCycleTime >

<TLAmberTime >3</ TLAmberTime >

<TLAgentFiles >junction_input \\ </ TLAgentFiles >
</ config >

The text of the elements:

B.3 Starting a simulation with the DSGVE 14

• path

• outputdir

• inpfile

• xmlfile

• xmlspecialtlfile

• TLAgentFiles

have to be changed according to the new files for the simulation,

“xmlspecialtlfile” is only needed when the simulated area has a 5-sided or 6-sided traffic
light junction. Listing B.2 provides an example for an entry of a 6-sided traffic light
junction.

Listing B.2: Example of the config.xml file
<?xml version ="1.0" encoding ="utf -8" ?>
<specialJucntions >

<tlJunction >
<junctionId >1521 </ junctionId >
<type >5</type >
<postions >

<Up1 >
<refJunctionId >767 </ refJunctionId >
<FromZoneID >0</ FromZoneID >
<ToZoneRefID >173 </ ToZoneRefID >

</Up1 >
<Up2 >

<refJunctionId >757 </ refJunctionId >
<FromZoneID >8</ FromZoneID >
<ToZoneRefID >0</ ToZoneRefID >

</Up2 >
<Left1 >

<refJunctionId >744 </ refJunctionId >
<FromZoneID >10 </ FromZoneID >
<ToZoneRefID >0</ ToZoneRefID >

</ Left1 >
<Right1 >

<refJunctionId >1531 </ refJunctionId >
<FromZoneID >11 </ FromZoneID >
<ToZoneRefID >36 </ ToZoneRefID >

</ Right1 >
<Down1 >

<refJunctionId >766 </ refJunctionId >
<FromZoneID >9</ FromZoneID >
<ToZoneRefID >0</ ToZoneRefID >

</ Down1 >
<Down2 >

<refJunctionId >760 </ refJunctionId >
<FromZoneID >0</ FromZoneID >
<ToZoneRefID >171 </ ToZoneRefID >

</ Down2 >
</ postions >
</ tlJunction >

</ specialJucntions >

B.3 Starting a simulation with the DSGVE 15

Afterwards, a simulation with the DSGVE can be executed with the “DSGVissimExten-
tion.exe”.

After the simulation the fzp-file can be evaluated (see section 4.4).

APPENDIX C
Content of the DVD

• DSG VISSIM extension

• DSG map converter

• DSG trace file converter

• DSG evaluation file reader

• Used map for evaluation

• Evaluation files (results)

• Dissertation

• Presentation slides

• Presentation poster

APPENDIX D
List of abbreviations

ATT Average Travel Time
AWT Average Waiting Time
DSG Distributed Systems Group
DSGVE DSGVissimExtension
DSRC dedicated short-range communications
DTL Democratic Traffic Light
DTS Dublin Traffic Simulator
GDA Greater Dublin Area
ITS Intelligent transportation system
MANET Mobile ad-hoc networks
QBC Quality Bus Corridor
SCAT Sydney Coordinated Adaptive Traffic
SCOOT Split Cycle Offset Optimisation Technique
SRVC Sparse roadside-vehicle communications
UTC Urban Traffic Control
VANET Vehicular ad-hoc network
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
VCS Vehicular Communication Systems
VISSIM Verkehr In Städten - SIMulationsmodell

Bibliography

[1] URL www.simtd.de. (cited on page 12)

[2] The Encyclopaedia Britannica Eleventh Edition. Encyclopaedia Britannica Inc., 1911.
(cited on page 19)

[3] O. Andrisano, R. Verdone, and M. Nakagawa. Intelligent transportation systems:
The role of third-generation mobile radio networks. IEEE Communications Magazine,
38:144–151, 2000. (cited on page 11)

[4] National Electrical Manufacturers Association. NEMA Standards Publication TS
2-2003, 02.06 edition, 2003. (cited on page 5)

[5] Turner-Fairbank Highway Research Center. Traffic Detector Handbook: Third Edition.
2006. (cited on pages 7 and 42)

[6] I. Day. Scoot - split, cycle & offset optimization technique. In Adaptive Traffic Signal
Control Workshop, 1998. (cited on pages 1 and 9)

[7] C. Diakaki, M. Papagerogiou, and K. Aboudolas. A multivariable regulator approach
to traffic-responsive networkwide signal control. Control Engineering Practice, 10:183
– 195, 2002. (cited on page 10)

[8] F. Dion and S. Yagar. Real-time control of signalised networks - different approaches
for different needs. IEE Conference Publications, 1996:56–60, 1996. (cited on page 9)

[9] J. Farges, I. Khoudour, and J. Lesort. Prodyn: on site evaluation. Road Traffic
Control, 1990, pages 62 – 66, 1990. (cited on page 9)

[10] M. Fellendorf. Public transport priority within scats - a simulation case study in
dublin. 67th Annual Meeting of the Institute of Transportation Engineers, 1997.
(cited on page 9)

[11] The Apache Software Foundation. Xerces-C++ Documentation, 2005.
(cited on page 28)

Bibliography 19

[12] M. Garey and D. Johnson. Computers and Intractability : A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979. (cited on page 40)

[13] Distributed Systems Group. Dublin Traffic Simulator documentation. Trintiy College
Dublin. (cited on pages 29, 30, and 31)

[14] Z. Gu and L. Han. Evaluation of dynamic weight threshold algorithm for wim
operations using simulation, 2003. (cited on page 20)

[15] S. Guberinic, G. Senborn, and B. Lazic. Optimal Traffic Control: Urban Intersections.
CRC, 2007. (cited on page 3)

[16] L. Head and P. Mirchandani. A real-time traffic signal control system: architecture,
algorithms, and analysis. Transportation Research Part C: Emerging Technologies, 9:
415 – 432, 2001. (cited on page 10)

[17] Road Safety Authority Ireland. Rules of the road. 2008. (cited on page 5)

[18] C. Kaufman, R. Perlman, and Speciner M. Network Security: Private Communication
in a Public World. Prentice Hall, 2002. (cited on page 38)

[19] Simon Kinnear. Vissim scatsim: Beyond fixed time modelling, 2007.
(cited on page 55)

[20] D. E. Knuth. The Art of Computer Programming Vol. 3. Addison-Wesley Longman,
1999. (cited on page 30)

[21] Booz Allen Hamilton Ltd. Greater dublin area travel demand management study.
Technical report, Dublin Transportation Office, 2004. (cited on page 1)

[22] V. Mauro and C. DiTarano. Utopia. Control, Computers, Communications in
Transportation selected papers from the IFAC Symposium, pages 245–252, 1990.
(cited on page 9)

[23] Institute of Transportation Engineers. Transport in the urban environment. ITE
Journal, 1997. (cited on page 8)

[24] Dublin Central Statistics Office. Regional population projections 2011-2026. Technical
report, 2008. (cited on page 1)

[25] Dublin Transportation Office. Quality bus corridor monitoring report. 2007.
(cited on page 46)

[26] Dublin Transportation Office. Road user monitoring 2008. 2009. (cited on page 46)

Bibliography 20

[27] VISSIM 5.10-03 COM Interface Manual. Planung Transport Verkehr AG, 2008.
(cited on page 25)

[28] VISSIM 5.10 User Manual. Planung Transport Verkehr AG, 2008.
(cited on pages 20, 21, 22, 23, 24, and 41)

[29] I. Quader, B. Li, W. Peng, and A. Dempster. Use of fingerprinting in wi-fi based
outdoor positioning. Technical report, The University of New South Wales, 2007.
(cited on page 13)

[30] A. Salkham, R. Cunningham, A. Garg, and V. Cahill. A collaborative reinforcement
learning approach to urban traffic control optimization. In 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology, 2008.
(cited on pages 10 and 42)

[31] M. Sichitiu and M. Kihl. Inter-vehicle communication systems: a survey. IEEE
Communications Surveys, 10:88 – 105, 2008. (cited on pages 10 and 11)

[32] A. G. SIMS and K. W. DOBINSON. The sydney coordinated adaptive traffic
(scat) system philosophy and benefits. IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY, VT-29:130–137, 1980. (cited on pages 1, 3, 4, 7, and 9)

[33] A. S.Tanenbaum. Computer Networks. rentice Hall International, 2002.
(cited on pages 5 and 23)

[34] Siemens Intelligent Transportation Systems. Traffic control systems handbook. Federal
Highway Administration, 2005. (cited on page 3)

[35] Kenneth Todd. Traffic control: An exercise in self-defeat, 2006. (cited on page 56)

[36] Y. Toor and P. Muehlethale. Vehicle ad hoc networks: Applications and
related technical issues. IEEE Communications surveys, 10:74 – 88, 2008.
(cited on pages 10 and 31)

[37] Auckland Traffic Management Unit. Traffic Signals Design Guidelines, 2.0 edition,
October 2007. (cited on page 5)

[38] C. Wewetzer. Thevolkswagen approach to simulation of car-to-xcommunication, 2007.
(cited on page 20)

[39] J Zhu and S Roy. Mac for dedicated short range communications in intelligent transport
system. IEEE Communications Magazine, 41:60–67, 2003. (cited on page 11)

Ronny, you are turning into a leprechaun. Stop it!
-Node from one crazy mind to another-

In memory of Douglas Adams

