
The Urban Cloud:

The feasibility of using a Cloud Computing

infrastructure for Urban Traffic Control Systems

by

Colin Lyons, B.A(mod)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2009

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this, or any other University, and that unless otherwise stated, is my own work.

Colin Lyons

September 10, 2009

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Colin Lyons

September 10, 2009

Acknowledgments

Firstly, I wish to thank my supervisor Vinny Cahill for his advice and guidance. Secondly, I

wish to thank Meghanne Flynn for her encouragement and support throughout the past year.

I wish to thank Niall Bolger of Dublin City Corporation Traffic Division for answering all my

questions. I wish to thank Niall O’ Hara, a summer intern in DSG, who was always there to help

with any queries I had. Finally on a less serious note, I wish to thank the Pepsi Corporation for

keeping me awake during the late nights and early mornings spent at my computer.

Colin Lyons

University of Dublin, Trinity College

September 2009

iv

The Urban Cloud:

The feasibility of using a Cloud Computing

infrastructure for Urban Traffic Control Systems

Colin Lyons, M.Sc.

University of Dublin, Trinity College, 2009

Supervisor: Prof. Vinny Cahill

Emerging Cloud Computing technologies allow for an inexpensive use of mass quantities of

storage, bandwidth and computing resources using the pay-per-use model on which it thrives

[6]. The adoption of broadband insfrastructure in various forms (such as ADSL, 3G and Fibre)

across cities allow for high bandwidth, low latency, high-reliability connections to the internet.

Traditional adaptive Urban Traffic Control Systems were designed back in a time when the only

form of data transfer were the high latency, low bandwidth DS0 lines.

Combining these ideas and focussing on the more fine-grained Infrastructure as a Service

(IaaS) [5] through the use of the Amazon Web Services (AWS) platform [21], this dissertation

intends to make the case that the implementation of Urban Traffic Control Systems ‘on the

cloud’ is a feasible venture.

More specifically, the design and implementation of a reference architecture, dubbed the

Urban Cloud Framework along with the placement of SCATS [46] atop this framework, demon-

strates this feasibility.

v

Contents

Acknowledgments iv

Abstract v

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 1
1.2 Road-map . 1

1.2.1 Background . 2
1.2.2 Urban Traffic Control Systems and Cloud Technologies 2
1.2.3 Design . 2
1.2.4 Implementation . 3
1.2.5 Evaluation . 3
1.2.6 Conclusion . 3

Chapter 2 Background 4

2.1 Urban Traffic Monitoring and Control . 4
2.1.1 Signal Phasing . 5
2.1.2 Modelling Traffic . 5

2.2 Cloud Computing . 7
2.2.1 History . 9
2.2.2 Architecture . 10

Chapter 3 Urban Traffic Control Systems and Cloud Technologies 13

3.1 SCATS . 13
3.1.1 Sensors . 13
3.1.2 SCATS Operation . 14
3.1.3 The SCATS Architecture . 15
3.1.4 Sensing SCATS Data . 16
3.1.5 The SCATS Algorithms . 17
3.1.6 Smoothing SCATS Data . 18

vi

3.1.7 Phase Split, Offset and Group Linking . 18
3.2 Other UTC Systems . 19

3.2.1 SCOOT . 19
3.3 Amazon Web Services (AWS) . 20

3.3.1 Elastic Computing Cloud (EC2) . 20
3.3.2 Simple Storage Service (S3) . 22
3.3.3 Simple DB . 23
3.3.4 Simple Queue Service (SQS) . 24
3.3.5 Elastic Map Reduce . 25
3.3.6 Security . 26

3.4 Other Cloud Technologies . 27
3.4.1 Google AppEngine . 27
3.4.2 Microsoft Azure . 27

Chapter 4 Design 28

4.1 UCF Requirements . 29
4.1.1 VISSIM Requirements . 29
4.1.2 JC Requirements . 29
4.1.3 MC Requirements . 30

4.2 UCF Architecture . 30
4.2.1 UCF System-wide Functional Architecture 31
4.2.2 System-wide Technical Architecture . 32

Chapter 5 Implementation 35

5.1 The Urban Cloud Framework . 35
5.1.1 UTC.UTCElements . 35
5.1.2 UTC.Controller . 37
5.1.3 Sample UTCController and UTCJunctionController skeletons 41

5.2 VISSIM Component . 42
5.2.1 PhaseDataBuilder . 43
5.2.2 JunctionDataBuilder . 43
5.2.3 The VissimWrapper . 44
5.2.4 Controlling Traffic using only VISSIM COMServerlib 44

5.3 SCATS on the Urban Cloud Framework . 45
5.3.1 SCATS Main Controller (SMC) . 45
5.3.2 SCATS Junction Controller (SJC) . 47

Chapter 6 Evaluation 49

6.1 Feasibility . 49
6.1.1 Scalability . 49
6.1.2 Reliability . 50

vii

6.1.3 Real-Time Performance . 51
6.1.4 Fault-Tolerance . 52
6.1.5 Security . 52
6.1.6 Cost . 53

Chapter 7 Conclusion 54

7.1 Achievements . 54
7.2 Potential Usage . 55
7.3 Future Work . 55

7.3.1 Loosen the coupling between UCF and VISSIM 55
7.3.2 Dynamic Loading of Controller DLL’s . 56
7.3.3 A Simulation Queue . 56

Appendix A Abbreviations 57

Appendices 57

Bibliography 59

viii

List of Figures

2.1 How a cycle is made up . 5
2.2 An example of the ‘A Phase’ at the South O’Connell St Bridge Intersection . . . 6

3.1 An induction loop (left) and traffic camera (right) 14
3.2 The SCATS Architecture . 15
3.3 The Elastic Load Balancer Architecture . 22
3.4 The Elastic MapReduce Process [32] . 26

4.1 UCF System-wide Functional Architecture . 31
4.2 System-wide Technical Architecture . 33

5.1 An example of a EndOfPhaseSimEvent after being run through the GenericXMLSe-
rializer. 39

5.2 The UTCController skeleton for writing new controllers. 41
5.3 The UTCJunctionController skeleton for writing new controllers. 42
5.4 An example PhaseData XML file for a junction. 43
5.5 An example Config XML file for running simulations with the Vissim Wrapper. . 44
5.6 The log4net configuration file. 46

6.1 The set of configuration data for a simple junction. 51

ix

Chapter 1

Introduction

1.1 Motivation

With the emergence of Cloud Computing technologies providing access to cheap storage, band-
width and computing resources as a service, there is a new platform in which applications can be
built to maintain an online presence. The adoption of broadband infrastructure in various forms
(such as ADSL, 3G and Fibre) across cities allow for high bandwidth, low latency, high-reliability
connections to the internet. Traditional adaptive Urban Traffic Control Systems were designed
back in a time when the only form of data transfer were the high latency, low bandwidth DS0
lines.

Combining these ideas, the question arises as to whether implementation of a control infras-
tructure ‘on the cloud’ is possible and feasible. While several interesting hurdles exist, potential
adaptations are readily visible. The successful implementation of such a system would lend itself
to all the cities in a country (such as Ireland) pooling their traffic control resources together
into the cloud allowing for large amounts of data to be aggregated at one source online. This
could prove very helpful to Urban Traffic Control Reasearchers as they will have access to large
amounts of archived and live traffic data which they can in turn use.

As well, having a more unified model of Urban Traffic Control Systems would allow for
cities to be controlled by a varying set of algorithms which would most suit the current traffic
conditions. In an attempt to move towards this idea, the implementation of a generic framework
for Urban Traffic Control Systems ‘on the cloud’ is necessary as well as testing the feasibility of
one of the most widely used adaptive systems on top of it to make a move towards this idea.

1.2 Road-map

This dissertation consists of six additional chapters beyond this one. The following is a brief
outline of each one.

1

1.2.1 Background

Chapter 2 begins with a brief introduction as to how Urban Traffic Control Systems are broken
up into their smallest components, and will find the relationships between them. By having an
understanding of them, we can begin to figure out how these components should be modelled
and their potential use for the monitoring and control of UTCs. The second section looks into
the definition of Cloud Computing, details some of the history on how the phrase was coined
and the definition’s evolution in both an academic and commercial sense. This is followed by a
look at the architecture of Cloud Computing, detailing its split into three tiers: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). These allow
us to formulate an idea of which tier is the most useful for design and implementation.

1.2.2 Urban Traffic Control Systems and Cloud Technologies

Chapter 3 focuses mainly on two systems: SCATS and AWS. The first section examines the con-
struction of the Sydney Coordinated Adaptive Traffic System (or SCATS for short), then moves
on to the ways in which SCATS gets data from the street, the operation of the SCATS algorithm
and a look at its three tier architecture and the challenges it poses to implementation. After
which this section looks at the SCATS algorithms themselves, namely Original Volume (OV),
Degree of Saturation (DS) and Reconstituted Volume (VK), detailing how they are smoothed.
This section ends with the comparision of another popular adaptive traffic system, SCOOT.

The second section looks into how Amazon Web Services (AWS) work. It examines each of
its components, such as: the processing array known as Elastic Computing Cloud (EC2), how
storage is done via the Simple Storage Service (S3), how applications can be designed to be
functionally scalable using the distributed SimpleDB, how Amazon offers an Event Queue with
their Simple Queue Service (SQS) and lastly a look at how seriously Amazon take the security
of their cloud. This section will end with a comparison of AWS with other technologies such as
Google’s App Engine and Microsoft’s Azure platform.

1.2.3 Design

Chapter 4 is split into three sub-sections. The first is an introduction, which attempts to
establish feasible evaluation criteria for this context. Following this, it briefly states why the
VISSIM multi-model simulator and Amazon Web Services (AWS) were chosen over others.

The second section details a list of requirements whereby an implementation of the Urban
Cloud Framework architecture can be made by gathering Functional and Technical requirements
for each of the three components. These components are the Vissim Component, the Junction
Controller (JC) and the Main Controller (MC).

The third section deals with planning out exactly what the architecture will look like for
the UCF, its functional and technical architecture, include a look the tools that will be used to
implement.

2

1.2.4 Implementation

Chapter 5 is split into three sub-sections. The first deals with the Urban Cloud Framework
itself. Each of its elements such as UTCElements and UTCController will give the process by
which they were written.

The second section deals with the implementation of the Vissim Component, each of its
elements and how they work together. This shows that the control of traffic using only the COM
interface is possible, over the more traditional method of having to write a C++ controller DLL
which is then embedded later on.

The third section is the implementation of SCATS on top of the Urban Cloud Framework
(UCF). It details challenges of doing so, how exactly it is situated on the cloud, what services
it uses and how easy it can be used to implement any controller on the UCF.

1.2.5 Evaluation

Chapter 6 looks at some of the tests that were done to answer the question of whether UTCs
are feasible to run from a Cloud Computing infrastructure based on the criteria in the Design
section and commenting on each of the results.

1.2.6 Conclusion

Chapter 7 is split into three sections. The first deals with what this dissertation has achieved,
the second section looks into who could possibly benefit from this research and the last section
looks into what future work could be done to continue this project.

3

Chapter 2

Background

2.1 Urban Traffic Monitoring and Control

As there can be quite a steep learning curve in the UTC field, it would be best to take the time
to clearly define the terminology used in traffic systems. In Figure 2.1 you will see a concise
diagram of how a traffic cycle is split up into its components (namely approaches, phases and
clearance intervals) for a standard right-angle junction. The definitions of these terms [1] are as
follows:

• Cycle Length: This is the time needed to complete one full running of all the active phases.
• Approach: Is a single road, where traffic comes from it into an intersection.
• Phase: This is the movement of a set of approaches during a cycle. There is normally at

least two (three if there is a pedestrian crossing) in a cycle.
• Interval: A discrete portion of the signal cycle during which the signal indications (pedes-

trian or vehicle) remain unchanged.
• Split: This is the percentage of time of the full cycle length that is dedicated to a particular

phase. All splits added together will make up the cycle length.
• Clearance Interval: This is the time alloted between phases to allow the junction to clear

before starting the next phase.
• Offset: This is the relationship between the start or finish of the green phases in successive

sets of signals within a coordinated system.

As you can see, Figure 2.1 is an example of a junction comprised of two phases which will
allow the flow of traffic from two opposite approaches. The clearance interval is defined to give
the first approach time to clear the junction before allowing the flow of traffic from the second
approach. The splitting of the cycle into phases allows for the Time-Division Multiplexed flow
of traffic from all approaches into the junction while minimising the possiblilty of collision.
Obviously, great attention must be given to the generation of phases, in order to avoid causing
traffic accidents.

4

Figure 2.1: How a cycle is made up

2.1.1 Signal Phasing

Taking an analogy from the wireless communications world, to view the vehicles as data, the
approaches to a junction being data transmission points and the junction itself being a medium,
then phasing can been seen as the medium access control to the system. Phasing allows for the
movement (transmission) of vehicles (data) across the junction (medium) while removing the
possbility of crashes (interference). This can become very complex as the number of approaches,
and lanes contained therein, increase.

The ‘A Phase’ on O’Connell Street (shown in Figure 2.2) is an example of how more complex
junctions inherently produce a more complex phase set. This phase allows for the movement of
vehicle traffic from both the O’Connell Street Bridge and Westmorland Street approaches. As
well, it allows for the flow of pedestrian traffic along Burgh Quay and from the centre of the
O’Connell Bridge to Westmorland and D’Olier Street. The left filter from Westmorland Street
around to Aston Quay is active in the A phase but not in any other phase, as time has to be
given to the pedestrian crossing Aston Quay. The arrows shown in blue are inactive paths which
will be active in another phase. There are five different phases in this junction (A - E), which
allow for all other paths to get their turn (such as the adjacent approach on Burgh Quay to run
while allowing all other pedestrian traffic to be active).

2.1.2 Modelling Traffic

There are two common ways in which traffic can be modelled in simulations. These are in
the domain of the microscopic, in which individual agents and their behaviours are modelled
explicitly, and the macropscopic in which the modelling is done at a higher level that does not
involve single agents, but rather the flows which they would exhibit.

5

Figure 2.2: An example of the ‘A Phase’ at the South O’Connell St Bridge Intersection

Macroscopic Simulation

One of the first such uses of the macropscopic model came from M. J. Lighthill et al [4]. In
this paper they likened the behaviour of traffic to that of gas kinetics. The model they used
was in the domain of fluid dynamics in which the goal was to reach equilibrium, which occurs
through the interaction process. Using this concept with some alterations, it resulted in a traffic
model which relied on the fluctuation of velocity to achieve this same equilibrium. Although
the equations for this can be altered to accommodate different driver behaviours, it lacks the
flexibility that microscopic simulation provides.

Microscopic Simulation

Contrasting the macroscopic model, the microscopic model simulates on a per-vehicle basis,
which allows for a number of driver behaviors. This is because the vehicle interacts with the
world under its own rules which are defined before the simulation. There are two ways in which
the grouping of these agents exhibit certain interactions.

Cellular Automata The use of Cellular Automata is one technique for the design and simu-
lation of simple driving rules for vehicles. CAs use discrete, partially-connected cells, which can
be in a set of states; for example, a road cell can contain a vehicle and so on.

In the Nagel et al model [2], at each time step vehicles in the system will increase their speed

6

until a maximum velocity is reached. In the case that there is a slower vehicle ahead, the current
vehicle will slow itself to avoid a collision. The experiments used to evaulate this show that the
behaviour of the vehicles in the CA model was a realistic one, with the result of start-stop waves
showing emergent behaviour.

Cognative Multi-Agent Sytsems Another approach, the Cognative Multi-Agent System, is
a more advanced approach to traffic simulation than its Cellular Automata counterpart. In the
CMAS the agents have the ability to interact with each other and the infrastructure which they
are a part of. Each agent has a goal which it is trying to reach, exerting the minimum amount
of effort in its part. A vehicle receives its information from the environment via a set of sensors
associated with the vehicle. The agent is then capable of making decisions using the sensors
combined with set rules to select an appropriate action. The Dia model [3] used the behaviour of
real drivers in their implementation of a CMAS to model drivers’ responses to having real-time
travel information as a factor in their decisions. Based on a survey of a congested traffic corridor,
the selection of route and time of departure were recorded by the study and the results used to
formulate a set of agents. The use of these agents could then be used to measure the effect of
different information systems simulated for that particular corridor.

2.2 Cloud Computing

Cloud Computing has no exact definition. As a starting point we can first gain perspective from
the academics who are working on the current state of the art and then move on to people in
the business world who have their own ideas about this new platform.

In a June 2009 overview of Cloud Computing written for the ACM queue [6], they define
Cloud Computing as follows:

“Cloud computing is about moving services, computation and/or datafor-cost and
business advantageoff-site to an internal or external, location-transparent, central-
ized facility or contractor. By making data available in the cloud, it can be more
easily and ubiquitously accessed, often at much lower cost, increasing its value by en-
abling opportunities for enhanced collaboration, integration, and analysis on a shared
common platform.”

In the quote above, the cloud is a service which looks centralised to the observer outside
the system, but internally the system is a complex set of services which which allow universal
access to a companies service. It also plays on the utility computing aspect, in which a user will
pay less for an overall service to use only the resources they need or only at certain time. They
divide the Cloud Computing infrastructure into three elements: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). For a more in depth
discussion on these, see Section 2.2.2. There are obviously a number of enabling factors which
have contributed to the success of Cloud Computing. These are pre-cursor technologies such as:

7

• Inexpensive storage and CPU power.
• Broadband widely available to the public.
• Commercial Grade Virtualisation.
• Technologies such as Software-Oriented Architectures, HTML, Ajax and CSS.

These factors play a significant role in allowing large companies (such as Google, Amazon,
IBM and Microsoft) to put together the cloud for use by small to mid-range companies.

In Rajkumar Buyya’s view [8], the recent advances in Information and Communications
Technology are leading to the vision that computing will one day become the 5th Utility (next
to Water, Electricity, Gas and Telephone). In his view, it is a mistake to view Cloud Computing
platforms as being the combination of grid computing and clustering. He sees Cloud Computing
as the next generation of data centres which work together with technologies like Service Oriented
Architectures and Virtualisation to provide a service that is much more than their predecessors.
As well, they have provisions for business-oriented approaches to computing such as Service
Level Agreements (SLA’s) and the concept that everything is managed for you as part and
parcel of the service.

It can be very easy to throw around buzzwords when trying to define a concept which is
in its infancy. In gaining industry perspective, The Cloud Computing Journal ran an article
in January 2009 documenting the definition of Cloud Computing from twenty-one industry
experts [7]. There are some very interesting definitions presented, but three in particular that
seem particularly apt for consideration in this paper.

Blizzard’s Jeff Kaplan describes Cloud Computing as, “A broad array of web-based services
aimed at allowing users to obtain a wide range of functional capabilities on a ‘pay-as-you-go’
basis that previously required tremendous hardware/software investments and professional skills
to acquire. Cloud computing is the realization of the earlier ideals of utility computing without
the technical complexities or complicated deployment worries.” In this Kaplan captures the
enterprise aspect of Cloud Computing. The cloud works the same as a public utility such as
electricity, allowing the customer to use varying amounts in a fixed term, which the customer
will then pay at the end of the term. This is the monitoring and accounting side of the cloud.
He also talks about the usability of such as service, everything is pre-managed and put in place
to make the process of building web applications easier.

Another interesting definition is from the CEO of Stanford Technology Group and Plumtree
Software, Kirill Sheynkman. In his view, the cloud focuses on,“Making the hardware layer
consumable as on-demand compute and storage capacity. This is an important first step, but
for companies to harness the power of the cloud, complete application infrastructure needs to
be easily configured, deployed, dynamically-scaled and managed in these virtualized hardware
environments.” His argument is more to do with the grid being split into individual resources
that can be consumed seperately, this is akin to the infrastruture as a service aspect of the cloud.
He also brings the scalability aspect into play on processing and storage, as they are always seen
as ‘on demand’.

Last, but certainly not least, is some perspective from the CTO & Founder of the cloud

8

management platform RightScale, Thorsten von Eicken. He very simply states, “Most com-
puter savvy folks actually have a pretty good idea of what the term ‘cloud computing’ means:
outsourced, pay-as-you-go, on-demand, somewhere in the Internet, etc.” He covers the bases
of the other definitions with the addition of location transparency. This brings us back to the
original cloud analogy for the internet; it doesn’t matter where your application is on the cloud,
it just matters that it is there.

There are some trade-offs for companies considering using a Cloud Computing infrastructure.
The ACM queue [6] describes the capital expenditure versus operational costs dilemma which
most companies must think about when building a web application. Traditionally, a company
would buy a number of servers to meet their expected peak demands which would accrue sub-
stantial capital expenditure (expecially for start-up companies). Cloud Computing can address
this problem by tailoring a company’s costs directly to the amount of resources they are using,
as well as cutting the costs of a system administration team needed to keep their own servers
running. Essentially, by using a cloud infrastructure the initial expenditure costs are then moved
to become operational costs further into the future. A start-up taking advantage of this can
quite possibly put more money into the product/service which they intend to sell and be able
to track their expenditure.

2.2.1 History

In order to build an accurate understanding of Cloud Computing’s nature, we must understand
the concept’s background. Many opinions differ on the origin of Cloud Computing.

Cloud Computing is closely aligned with the term Utility Computing which, “Is the packaging
of computing resources, such as computation and storage, as a metered service similar to a
traditional public utility” [9]. In 1961, Turing Award winning computer scientist John McCarthy
suggested that computing should be viewed as a public utility, much like the electric grid or
water [10]. In McCarthy’s vision, the user consumes resources as needed; a monitoring and
billing system would be attached. This view coincides with the current understanding of Cloud
Computing.

The first known usage of the term ‘Cloud Computing’ is by NetCentric, a company whose
goal was to help in the creation/adoption of open source projects [11]. Or in other words to,
“Help manage the world’s efforts for co-ordinated response to humanitarian and community
projects”. NetCentric attempted to trademark Cloud Computing in May of 1997 under the
patent serial number 75291765 [12]. They later abandoned the application in April 1999.

The term again emerges in an April 2001 New York Times article by John Markoff docu-
menting software designer David Winer’s negative thoughts toward Hailstorm [13]. Hailstorm,
Microsoft’s new platform at the time, was based on their .Net framework. In the article Markoff
observes, “For Microsoft, the idea behind .Net is software programs that do not reside on any
one computer but instead exist in the ‘cloud’ of computers that make up the Internet.”

August 2006 saw the first high-profile figure to use Cloud Computing in any context, when
Google’s Eric Schmidt referred the Software as a Serviced (SaaS) as Cloud Computing at a

9

search engines strategy conference. Schmidt noted, “It starts with the premise that the data
services and architecture should be on servers. We call it cloud computing they should be in a
’cloud’ somewhere.” [14]

In a resultant cloud of media criticism, Dell also attempted to submit for the trademark to
Cloud Computing in early 2007. Dell responded by saying that they were not making exclusive
claim to the term and instead wanted to, “protect the combined term” [12].

As of publishing this paper (August 2009), the current owner of the trademark Cloud Com-
puting without Compromise is utility computing magnate, 3Tera [15]. 3Tera specialises in the
bulk of areas which Cloud Computing addresses, such as: clustering, load balancing, virtualisa-
tion and networking.

2.2.2 Architecture

By definition Cloud Computing is not a single service, but rather a host of different services
which are layered on top of each other and work together [16] [5], this is known as Everything
as A Service (EaaS). EaaS is defined as the ability to a use various set of fine-grained services
available across a network. It is split into three tiers, known as ‘Infrastructure as a Service
(IaaS)’, ‘Platform as a Service (PaaS)’ and ‘Software as a Service (SaaS)’.

Infrastructure as a Service (IaaS)

The first layer, Infrastructure as a Service is exactly as its nomenclature suggests, the delivery
of various resources in computer systems as a service. Rather than a customer buying a single
server in a hosting company (which will have small amounts of resources like storage, memory,
processing power and bandwidth), with Cloud Computing the customers can buy exactly what
they need.

For example, if you need to run a distributed ray-tracing program, you will need a lot of
processing power and memory but practically zero storage. In this case it would not make sense
to buy a grid of machines to do the task as it would be a waste of money. Instead we could use
IaaS to abstract us away from the hardware and split each resource into units that can be sold
in units.

The billing to the customer is done the same what you would pay for a public utility like
electricity, you use as many units as you need in a given period and pay for it at the end of a
contract term.

Some of the key characteristics of IaaS include:

• Dynamic scaling of services as required.
• Some form of SLA (Service-Level Agreement.)
• Variable cost in billing with a fixed price-per-unit of resource.
• Multiple Users on the same physical hardware.
• Enterprise Grade to allow mid-size companies to reap the benefits of aggregated resources.

10

This is obviously not enough to provide a platform capable of servicing the needs of the
business world. There needs to be an abstraction above this to provide services for developing
on the cloud. An example of a Cloud Computing infrastructure that takes this approach is
Amazon Web Services. In this case the user has to explicitly deals with how the topology of
their infrastructure is made up, when it should scale up and back and define a set of limits to
how many computational units should be used to get the job done. This is a fantastic platform
for anything needing vast, but variable amounts of computation in order to acheive their desired
goal (such as simulations).

Platform as a Service (PaaS)

The second layer of the three, Platform as a Service necessitates the development and deployment
of applications onto the cloud without needing to consider how they fit onto the hardware on
the lower layers [17]. This takes the buying and management of the computing resources out
of the equation for the customer and thus makes the cloud transparent to applications. On
the developers’ side, it provides a service to design, develop, test, deploy and host their web
application entirely on the cloud, without the need for downloading or installing any special dev
tools.

Key characteristics of PaaS include:

• An environment for development, testing, integration, deployment and hosting.
• Integration with databases and webservices.
• Support for collaborative development.
• All IaaS requirements.

In adopting a cloud platform, there are both positive and negative factors to consider.
The collaborative aspect of implementing a cloud platform attracts many developers because

it allows decrentralized, multi-national users to develop an application in a central location. As
well, implementers see an overall savings in time and money by having the service provider handle
programming aspects. This includes such difficulties as security and providing an easy-to-use
programming model, which abstracts the developer from the hardware.

However, the lack of interoperability between vendors lends itself to the inherent problem of
lock-in. If we wish to develop an application with the Amazon EC2 cloud, we would have to
take the effort to port the application to the Flexiscale cloud. This can be a large deterrent for
companies to avail of services from less established companies like GoGrid. The shutting down
of GoGrid would add significant and immediate costs to a web application as it will need to be
ported to another cloud infrastructure.

In Jon Brodkin’s article, “Cloud Interoperability Remains Wispy, but Progress Being Made”,
he documents the current state of interoperability between some of the major players of the cloud
computing world [18]. Describing the current efforts as “lip service”, he goes on to describe the
current progress and cooperation between major vendors. The two open standards which are
currently being proposed are the DMTF’s Open Cloud Standards Incubator [19] and The Open

11

Cloud Manifesto [20]. They have already gained wide support by companies such as AMD,
Cisco, Citrix, EMC, HP, IBM, Intel, Microsoft, Novell, Red Hat, Savvis, Sun Microsystems and
VMware.

As well, there will always been a limit to the rate of growth of a web application in terms
of both scalability and complexity of features. Complex features will most likely be difficult to
integrate with the platform and as a result much reasearch has been put in to making applications
functionally scalable.

Two examples of Cloud Computing infrastructures that make use of the PaaS model are the
Google App Engine and Microsoft’s Azure platform. They allow the user to develop on their
platform without needing knowledge of the infrastructure below. The delivery of hardware,
computing and storage resources are handled by the IaaS below.

Software as a Service (SaaS)

The highest of the three tiers is the Software as a Service layer. These are services which allow
the user to access software over a network through the use of web-services. An early approach
to the same problems were through the use of Application Service Providers (ASPs) [16]. These
ASPs would provide a method for subscribing to the service and would then bill for the use of
the services over a contract period.

Two examples of the use of SaaS are products such as the Facebook Application Framework
and Google Maps. In the case of Google Maps, they provide an API in which the user can create
a new instance of a map and have the ability to embed custom data in it by using Google’s API.
Of course, not all SaaS applications are on a pay-as-you-go paradigm as Google Maps suggests,
they rely on a different source of revenue. The Facebook API works on the same principle,
where the API itself is downloaded to the user’s webserver. The application is then built on
that webserver using the API that will make the proper calls to the application and ensure the
application conforms to the specifications set out by the Facebook SLA.

12

Chapter 3

Urban Traffic Control Systems and

Cloud Technologies

3.1 SCATS

The Sydney Co-ordinated Adaptive Traffic System (SCATS) is a widely used system developed
by the Department of Main Road, New South Wales, Australia in the early 1970s. Although
an aging system, SCATS is still active and growing in many parts of the world. Widely used in
Australia, the system was originally implemented in Sydney, with Melbourne following shortly
in 1982. Other cities of the world using SCATS include: Dublin (Ireland), Tehran (Iran), Hong
Kong (China), Gdynia (Poland) and currently being adapted by Atlanta (USA). The SCATS
system was originally designed to combat the need for an adaptive UTCS to co-ordinate the
majority of Sydneys traffic signals.

Dublin currently posesses 672 SCATS enabled intersections controlled by five regional com-
puters separated into City Centre, North City, South City, West City and Other Areas. Within
these regions operate about 160 traffic cameras used to give operators a bird’s eye view of the
current state of any junction in the system. As of May 2009, Dublin City Council decided to
upgrade the system again to 750 intersections by awarding the contract to Aldridge Traffic Con-
trollers. Along with the upgrade, they will also provide maintenance on all currently deployed
controllers [44].

3.1.1 Sensors

There are two main methods which SCATS uses to measure traffic data in the real world: the
use of induction loops under the road and traffic cameras, which are both used to count vehicles.

Induction Loops

The induction loop is an electromagnetic device which works on the same principle as a magnet
being moved across a coiled wire, which will result in a current being induced by the changing
magnetic field. As a vehicle drives over the induction loop, the changing magnetic field induces

13

Figure 3.1: An induction loop (left) and traffic camera (right)

a current which is sent back to the junction controller to be processed. This is quite a diverse
piece of equipment as it can be used to count vehicles, as well as the gaps between vehicles and
can also give data regarding the size of the vehicle (differentiating a motorcycle or bus) over it.

Traffic Cameras

In Dublin, where the surface of the road is unstable or unsuitable fo the use of induction loops,
traffic cameras such as the Traficon [47] are used. These cameras are typically placed at a high
point above the junction, then making use of computer vision techniques to split the image into
boxes which represent the lane locations. With this method, each vehicle which passes through
the vision box is counted as well as the time delay between them. The camera has also proven
superior than the induction loop in vehicle detection.

3.1.2 SCATS Operation

The SCATS system uses three parameters to control traffic in its domain: cycle time, phase
split and offset [43] [46] [1]. The control provided by SCATS is split into strategic and tactical
control.

Strategic control relies on management from Regional Managers by using data collected from
the sensors on the set of junctions controlled by it. The Regional Manager then sets the optimum
cycle time, phase split and offsets based on the data provided.

Tactical control allows for the management of traffic by Juntion Controllers and allows them
to make changes to cycles on a per intersection basis. This allows for phases to be skipped or
shortened based on the current traffic demands. Again, this is based on data from sensors at the
junction, some of which are strategic. Although the Junction Controllers assert their own form
of independent authority, configurations as to how much they can change the normal operation
of traffic are overseen by the Regional Manager.

14

3.1.3 The SCATS Architecture

The SCATS architecture is a three tier architecture split into the Junction Controller (JC), the
Regional Manager (RM) and the Control Management System (CMS) [43] [46].

Figure 3.2: The SCATS Architecture

Junction Controller

The first of the three tier structure is the Junction Controller, a small computer which sits at
every SCATS enabled junction. The JC is responsible for:

• Collecting, processing and posting data from the sensor to the RM.
• Receiving and implementing updated timing data from the RM on the junction.
• Logging faults such as blown lights or broken pedestrian buttons and posting these when

applicable back to the RM.

These controllers can also be grouped into systems and sub-systems. Systems do not interact
with each other as they are probably not geographically related. Sub-systems on the other hand,
can link together to form systems. They are a system of multiple junctions (in the range of about
1 to 10) which are grouped together based on them being in close proximity to each other. Most
of the time, each sub-system will run independently of the next one, but as traffic starts to
increase the sub-systems may start to “marry” with sub-systems which are in proximity to each
other to form larger sub-systems.

Each sub-system has minimum, maximum and optimum cycles in its own scope. As well,
there are four “background green split plans” stored for each available sub-system (for example,

15

a morning rush hour cycle, evening rush hour, pre dawn cycle, etc). Each of these variables
are selected depending on what the current flow of traffic is at the time. Located within a
sub-system is the entity known as a strategic detector. The strategic detector analyzes which
junctions in a sub-system will likely experience large traffic flows at certain times, thus marking
them as a critical intersection in the sub-system.

Sub-systems also contain five “background internal offset plans” which determine the offsets
between junctions and five “external offset plans” for linking between adjacent sub-systems. All
junctions contained in a sub-system are subject to the same common cycle length. As well,
for each sub-system to “marry” another, there are up to four plans for when they should do
so. The two sub-systems then become their own system and the common cycle length is set to
which ever sub-system had the longest cycle before linkage. As for the “divorce” of a sub-system
from a system, this is done when the conditions for linkage are no longer met, resulting in the
sub-system reverting back to an independent mode.

Regional Manager

The second tier contains the Regional Manager (RM), which can provide control for up to 250
junctions in the current implementation [48]. This is the point where all the leased lines from the
JCs meet and where the actual SCATS algorithms are contained. These machines are required
to be state of the art in order to handle the hundreds of connections and constant streams of
data from the JCs. RM to RM communication can be done via the Control Management system.
Connections between the RM and JCs can be implemented using both wired and wireless comms.

For example, in Dublin, depending on the location and importance of the junction they use
a DS0 leased line, 3G/GPRS connection using a private Access Point Name (APN) or even use
Dublin City Council’s own fibre connection. The DS0 connection is the most common of the
three for junctions, providing a 64kb/sec connection between the JCU and the RM. The mobile
communication connections are for places where it would be otherwise too expensive to run a
leased line to a junction, but where 3G/GPRS is freely available.

Control Management System

The top of the three tiers is the Control Management System. This system looks after systems
like databasing results, providing a graphical interface to the operators, where faults are logged
and system accounting. It also provides a place to collect data from the system for further in-
spection. This service is typically very secure and allows external access to provide maintenance
contractors with information about faults.

3.1.4 Sensing SCATS Data

In a given junction, data sensed from the detectors is collected by the JC and sent on the
regional computer at the end of every cycle. There are two different types of data needed from
the detectors for the SCATS algorithms to work:

16

1. Vehicle Gaps: The number of gaps occuring between vehicles (that is, the number of
times nothing is detected) and the total non-occupancy time during a particular lanes
green time. Non-occupancy is defined as “the amount of time during a lane’s green time
that the detector has no vehicles travelling over it”, which is measured in Seconds(s).

2. Unused Phase Time: This is the phase time for a lane plus any unused phase time. Phase
time is unused, for example when there are no vehicles passing through a junction during
a phase when a pedestrian pushes the button on the crossing. In this case, the JC will end
the phase prematurely.

3.1.5 The SCATS Algorithms

There are three algorithms defined by Lowrie [46] [45] which SCATS needs for each lane in the
system to function. They are split up into Original Volume (OV), Degree of Saturation (DS)
and Reconstituted Volume (VK).

Original Volume (OV)

The Original Volume (OV) is the number of vehicles n that have passed over the detector in
one traffic cycle. This calculation is done by adding the number of spaces occuring during the
green time of a phase and adding 1 for the car currently over the detector. OV will be needed
to calculate the other formulae. The equation for calculating OV:

OV = n + 1

Degree of Saturation (DS)

Lowrie defines the degree of saturation (DS) as the “ratio of effectively used green time to the
total available green time” [46]. The DS (measured in percent) takes the green time for the
phase (measured in seconds) g′ and divides it by the phase time given g plus any remaining
phase time r. g′ is calculated as the the green time g minus the result of subtracting the Total
Non-Occupancy time T from the space-time associated with each vehicle t for each vehicle n.

DS = NF [g − (T − t.n)]
g + r

≡ DS = NF (g′)
g + r

The space-time at Maximum Flow (MF) is t. MF is defined as the the greatest number
of vehicles which have been recorded passing over the detector during the phases green time
(measures in vehicles per hour). This can be calculated using by also using KP, which is defined
as the average occupancy recorded per lane during an MF (measured in percent). This produces
the following equation:

t =
3600
MF

− KP

100

17

DS Results With the DS calculated for each lane, we can come to two conclusions about its
result:

• A DS value less than 1 will show that current traffic flow for the current cycle isn’t
saturated.
• A DS value over 1 will show that the current traffic flow for the current cycle is over-

saturated. The cause of a DS over 1 is lack of traffic flow over the detector on the stop
line due to congestion on the outgoing links from the junction.

The SCATS 6 Function Description [48] states that the ideal Degree of Satuation is around
0.9 and the system will therefore vary cycle length in the range of 20 to 240 seconds to achieve
this.

Reconstituted Volume (VK)

The Reconstituted Volume is a measurement of how many cars should have passed over the
detector at the stop line for the current DS, which is measured in vehicles. This is defined by
the formula:

V K =
DS.g.MF

3600

The ratio of Original Volume (OV) to VK is a useful metric for finding the ratio of excpected
throughput for the junction versus the actual throughput for a cycle. Normal operation of the
system will suggest that this ratio carries a result of 1. A ratio greater than 1 will likely show
an indication that congestion is occuring.

3.1.6 Smoothing SCATS Data

With SCATS trying to update itself on a cycle-by-cycle basis, it can be prone to significant
variations in the three metrics, OV, DS and VK. To combat this, SCATS employs a decreasing
weighted averaging mechanism which will take the values from the last three cycles (including
the current one, which has just finished). This can be seen in the following formulae:

AOV = 0.45(OV ′) + 0.33(OV ′′) + 0.22(OV ′′′)

ADS = 0.45(DS′) + 0.33(DS′′) + 0.22(DS′′′)

AV K = 0.45(V K ′) + 0.33(V K ′′) + 0.22(V K ′′′)

3.1.7 Phase Split, Offset and Group Linking

The Phase Split is determined in SCATS by [50] attempting to equalise the DS on critical
approaches. The VK for each split plan will be calculated and the plan with the lowest maximum
DS will be selected. This is for use with systems that are in the full Masterlink mode.

18

For systems that are in Isolation Mode, the split is determined by a pre-made series of splits
that are activated depending on the time of day.

In each sub-system the offset between junctions will be selected through looking up procedure
which is based on relative volumes for each intersection. Sub-systems share the same cycle length
and use the offset as a way of maximising traffic throughput over greater areas. Without the
offset, traffic would only get to the next junction mid-way into the next cycle. This results in
a greater number of stoppages and more congestion. Small variations in offset are allowed on a
cycle-by-cycle basis.

As the cycle lengths and offsets are calculated from the critical junction, the linking and
unlinking of sub-systems will be done on the basis of whether the current junction has a desirable
cycle length which is close to an adjacent sub-system’s CL. The decision to link will be based on
whether two sub-systems’ desired cycle lengths are within a certain threshold, they will link. The
decision to unlink will then be based on when their desired cycle lengths exceed this threshold.

3.2 Other UTC Systems

Many UTC systems exist which this dissertation does not focus on, that use methods in the
domain of fuzzy logic, reinforcement learning and genetic algorithms to enable traffic control.
One such system, which is a popular alternative to SCATS, is the Split Cycle Offset Optimisation
Technique (SCOOT).

3.2.1 SCOOT

The Split Cycle Offset Optimisation Technique (SCOOT) is a system developed in the UK in
the 1970’s [52] and is used in many places in the world such as: London (UK), Bejing (China),
Toronto (Canada) and Sao Paulo (Brazil) among others. The SCOOT architecture is organised
into a fully centralised model, in which data is passes from the traffic lights directly to a data
centre where processing occurs (differentiating it from the three-tier architecture of SCATS).
SCOOT also employs [51] a second set of induction loops located anywhere from 50 to 300
metres before the stop-line (unlike SCATS which only utilises the single set on the stop-line).

The second set of detectors provide a count of vehicles coming up to the stop line so the
queue length can be determined. This allows for a more up-to-date snapshot of traffic, which
enables SCOOT time to communicate between junctions and the control centre. The difference
between SCATS and SCOOT in this instance is that SCOOT will have information about traffic
flow before cars cross the junction, whereas SCATS only receives information regarding traffic
flow after vehicles pass the stop-line. The cycle length of SCOOT can only be varied after 150
seconds, where SCATS can be varied on a cycle-by-cycle basis. SCOOT also only does estimates
of DS, whereas SCATS determines accurate measurements of DS at the stop-line.

19

3.3 Amazon Web Services (AWS)

In early 2006, Amazon started AWS to provide companies with an easy-to-use, reliable, cost-
effective, secure and flexible platform providing a cloud computing environment through a set
of web services [21]. The key to the platform’s success (60,000+ individual customers) lies
in providing an immediate service, containing no contracts, remains ‘pay as you go’ and is
completely platform agnostic with a set of well established services. These are: the Elastic
Computing Cloud (EC2), CloudWatch, Auto Scaler, Elastic Load Balancer, Simple Storage
Service (S3), SimpleDB, Simple Queue Service (SQS), and the Elastic MapReduce service. For
a list of prices (as they are probably updated regularly) visit http://aws.amazon.com/.

3.3.1 Elastic Computing Cloud (EC2)

The EC2 is a large array of physical hardware displaced around Europe and the USA which
Amazon uses to provide IaaS [22][23][25]. EC2 provides a great deal of the backbone features of
cloud computing, some of which include:

• Scalability - Amazon provides an interface for defining rules for when your application
should scale up and back.
• Location Transparency - The customer/end-user doesn’t need to know where the web

application is located on the cloud; this, in fact, will change over time. Amazon provides
“Elastic IP Addresses” which tie an IP address to your account, but not to any particular
instance. This can have a host of benefits when dealing with multiple instances.
• Load Balancing - The Elastic Load Balancer is a free service that will automatically dis-

tribute traffic across all available instances seamlessly.
• Region Specific Instances - The best course of action is for a company to deploy their

application in close proximity for efficiencies sake. Amazon has data-centres in two regions
on the globe, Europe and the USA.

From a technical perspective, each of the servers are Linux and Windows based and on top
sits an array of virtualised servers which are based on the open source Xen Virtual Machine
Monitor [26], which allows the multiple tennants on a single physical machine.

When the user launches another “instance” through the AWS Management Console, an
“Amazon Machine Image (AMI)” is booted up somewhere in the cloud and the customer receives
root access to it. This is an instance which belongs completely to the user and as such will have
full control over every part of it. There are a number of different variants of AMI available
to the public, some of the more popular ones are based on Ubuntu, Fedora, Debian and even
Microsoft Windows Server 2003.

For the developer it is as simple as downloading an AMI, installing the applications the
customer requires for their application (for example Java, Python, MPI) and uploading it back
to S3. To make things a simple as possible for the user, Amazon provides a web interface for
configuring, launching, terminating and monitoring all of the customers AMIs.

20

EC2 provides two different types of instances: standard which is built to suit the needs of
most business customers and high-CPU instances which are intended for applications of a HPC
nature. For a complete list of instance types visit http://aws.amazon.com/ec2/#instance.

CloudWatch Amazon CloudWatch is an important web-service provided as a system for
monitoring and managing your currently running instances [34]. It is designed to view statistics
from both the Amazon Elastic Load Balancer and EC2 itself. CloudWatch operates by collecting
raw data from these services and processing the information into a human readible metric format.

Raw data collected from these instances is grouped into what is known as a measure with an
associated value, unit and a timestamp. Depending on the measure’s context, it may also have
a dimension or namespace providing extra information about the current measure (such as the
instance ID) if applicable.

For example, from an EC2 instance important measures such as CPU Utilization which is
used to get a percentage of CPU time used, DiskWriteBytes which is how many bytes have been
written to the instances disk (not S3), DiskReadOps and for Networking information NetworkIn
and NetworkOut. Measures are split into one minute chunks, so if ten measures come in during
a one minute slot, they will be aggregated into a single chunk.

Once the raw data is processed and aggregated together by a particular unit, it then becomes
a metric. In the conversion from measure to metric it maintains its dimension, namespace and
unit. For each metric, there are different views such as Average, Sum, Minimum and Maximium,
which can be queried for any metric / set of metrics.

Using the data provided by Amazon CloudWatch, a developer can adjust the current set of
instances to suit the current needs of the application. CloudWatch provides both a Query and
SOAP/WSDL API to send statistical operations and recieve results.

Auto Scaling Amazon Auto Scaler is a web service providing the ability to launch, moni-
tor and terminate EC2 instances using triggers defined by the user [35]. It provides both a
SOAP/WSDL and Query API to set parameters by which an AutoScalingGroup will be scaled.
An AutoScalingGroup is to scale up and down a set of EC2 instances or to stay within a certain
range. These groups can only be for instances within a single Availability Zone.

To start an AutoScalingGroup you must first define a launch configuration. Then, define
triggers which use metrics from CloudWatch as well as threshold defined by the user which will
be used to scale up and down. When a launch configuration is updated it will only appear on
new instances launched.

Elastic Load Balancer The Amazon Elastic Load Balancer is an easy-to-use web service
(with both a Query and SOAP/WSDL API) for improving the scalability and reliability of your
web application [36]. This service allows for the distribution of traffic across the instances you
have running. As capacity hits a peak, or the usage of your web application goes down, the ELB
will dynamically register or unregister instances from the Load Balancer.

21

Figure 3.3: The Elastic Load Balancer Architecture

The ELB uses DNS CNAMEs (such as http://www.example.com) and a set of ports. When
the LoadBalancer is created for your service you will need to register instances with it. As well,
the LoadBalancer also provides a “health check” on each instance registered with it, so in the
case of problems (such as a crash or hardware fault), the LoadBalancer will stop distributing
traffic to that instance and spread it among the remaining ones. This is a great feature when
high availability is an absolute requirement for your application.

The LoadBalancer will only distribute traffic across Availability Zones equally. For example,
if you have five instances in one zone and two instances in another, each zone will get the same
amount of traffic. As a result, Amazon recommends that you keep the number of machines
across availability zones as equal as you can.

Figure 3.3 shows an example of the ELB architecture. Clients across the internet will connect
to the service via its hostname, which the LoadBalancer will then map to an active instance
to serve them. The manager can then make updates to the Load Balancing Service which will
propagate updates to the LoadBalancer set-up for the service.

3.3.2 Simple Storage Service (S3)

The S3 is an IaaS put in place to separate storage as a resource for web applications [22][27].
From a PaaS perspective, it provides a web service interface (in the form of SOAP/WSDL/XML
or REST) which is used to retrieve and store data of any size at any time.

Each data item is split into “buckets” which are anywhere from one byte up to five Gigabytes.
Each item is assigned with a unique key used to reference it at any point. Although it has the

22

standard HTTP interface used in almost every web application, they also provide an alternative
BitTorrent interface for content that is more distribution oriented.

As with all the services in the Amazon suite it provides a scalable, fast, inexpensive, reliable,
location transparent, fault-tolerant and region-specific design [28]. Requirements unique of the
S3 include:

• Concurrency Control - Designed so concurrency control is handled and little thought is
needed by the customer.
• Decentralised - Removes problems with single points of failure and bottlenecks due to

scalability.
• Controlled Parallelism - Abstracts the customer away from problems related to parallelism.

From the developers’ perspective, data in the cloud is accessed almost exactly the same way
it would be locally. The current cost for transferring to S3 is 0.18c EUR (for European data
centres) or 0.15c (for US data centres). Exempt from this fee are transfers between EC2 and S3
and within EC2.

A bucket is simply a container for multiple objects, which are stored in Amazon S3. For
example, if we have an object named “photos/test.jpg” stored in the testUser bucket, then
we can access this object by URL at http://testUser.s3.amazonaws.com/photos/test.jpg.
Objects are fundamental to S3; they consist of data and metadata. The buckets themselves
are not only used for separating data into different sections, they also serve as a unit by which
statistics can be gathered on a bucket for usage purposes. A key is used to uniquely identify an
object in a bucket. Accessing any unique piece of data is as simple as referencing the bucket
and the key. In the example above the key for the test.jpg would be “photos/test.jpg”. This
allows us to logically partition our data much like a Unix file system.

3.3.3 Simple DB

The Simple DB is intended to provide some of the core database functions an enterprise appli-
cation will need with the added benefits of their cloud infrastructure [29]. Simple DB harnesses
the power of both the EC2 and S3 to provide functionality for querying, storing and processing
data sets.

Oftentimes, it is very expensive for a small company to lay out their own distributed database,
with the main costs being in the design and hiring a dedicated database administrator for
maintenance.

SimpleDB uses the same service-oriented architecture approach as all the other services in
their suite [30]. Using SimpleDB is a simple as:

• Building There are a set of functions at your disposal. You can create, delete and list the
current domains. These functions are called CreateDomain, DeleteDomain and List.
• Retrieving - The API allows functions for SQL select statements, a function for retrieving

records by ID, a Put function for modifying items in a domain and the ability to delete
data items. These functions are Select, Get, Put and Delete respectively.

23

Although a very flexible service there are some hard limits on the use of SimpleDB. Each
domain has a maximum size of 10GB. As well, there are constraints on data retrieved by a
query. A query has to be achievable within five seconds to be valid and can only return up to
2500 data items at once and can be up to one MB in size.

3.3.4 Simple Queue Service (SQS)

The Amazon Simple Queue Service (SQS) is a distributed queuing system which can quickly
make messages to be consumed by another service [37]. The queue is intended to decouple
components of a larger system which are separated by data that needs to be processed. Any
application in the system can store a message in the queue. The queue provides a reliable,
fail-safe unit of data which is sent between services using Query or SOAP/WSDL.

SQS provides the following features:

• Redundancy built in: SQS guarantees the delivery of every message at least once, as well
as high access availability in sending and receiving messages.
• Multiple Writers and Readers: Any component in your system sends and receives multiple

messages at once to the queue. SQS ensures a locking mechanism for messages that have
already been received by other components to avoid processing the same message multiple
times.
• Configurable Queues: Each queue is configurable and does not have to be the same as any

other.
• Variable Message Size: As there is no fixed size on messages (they can be up to eight kb)

this allows for a very flexible queue. For messages larger than eight kb, storing a pointer to
an S3 or SimpleDB object allows for the processing of very large messages. Alternatively,
they can be split over multiple messages.
• Unlimited Queue Length: Amazon does not have a hard limit on the number and size of

your queues.
• Access Control: Amazon allows control over what component can send messages when,

and who can receive them.

SQS is overall a very flexible system. However, it still remains a distributed system and thus
is constrained by the problems facing them. There are several issues that must be addressed
before moving on. SQS makes an effort to preserve the order of messages as they are received to
a queue, but the system cannot guarantee correct ordering. Instead, it suggests that an ordering
should be placed in the message itself if it is a requirement. As SQS uses a form of replication
to provide high redundancy and availability, if a server storing a copy of the message becomes
unavailable for a time, then there is a chance that a copy of that same message will be received
again by that node. Thus, applications must be designed with idempotency in mind. Also,
there is an issue when attempting to consume messages from queues that are not very large
(say, under 1000 messages). As the queue only samples a subset of the servers in your queue,
there is a chance that no message will be received at all even though there are messages in the

24

queue as a whole. As a result, having a system continuously looking for messages will mean that
the queue will eventually sample all available snapshots.

SQS depends on the usage of 3 elements the Queue URL, Message ID and Reciept Handle.
The Queue URL is used to address (by URL) the queue you want to use. For example, if we
have a queue called ‘TestQueue’ and our account number is ‘1111111111’ then we can access
this queue at http://queue.amazonaws.com/1111111111/testqueue. The Message ID is a
unique identifier for each message needed in order to delete the message from the queue in older
versions. As this is a distirbuted system, there are no guarantees that a received message will
be processed. As a result it is necessary to specifically delete a message for it to leave the
queue. In the current version, the Reciept Handle is received when you receive a message from
the queue; this can then be used to delete the message or change its visibility timeout. The
visibility timeout is used to block the message which still remains in the queue to give it enough
time to be processed by the component which recieved it. If it doesn’t get the Receipt Handle
before the timeout, it allows the message to be received again by a different component, and so
on.

3.3.5 Elastic Map Reduce

Amazon’s Elastic MapReduce allows customers to process large data sets easily on the cloud [31].
It allows the user to use as much processing power as they need without having to worry with
any issues to do with scaling. The MapReduce is done using Apache’s Hadoop [33] framework
which allows the processing of massive data sets across clusters in Java.

It is made up of the following features:

• Hadoop Processing - Necessitates processing of Hadoop work flows by starting, configuring
and shutting down clusters of EC2 instances as it needs.
• Multi-Step Job Flow - A job flow can have more than a single step.
• Job Flow Monitoring - You can get real-time information on the status of a flow.

From a more technical point of view [32], the process of using Hadoop for a MapReduce is
done in quite an intelligent way. As you can see in Figure 3.4, there are five steps for executing
a MapReduce on EC2.

1. Upload the data set to be processed along with the mapping and reducing executables and
direct the Elastic MapReduce client to start the job flow.

2. Elastic MapReduce then starts a cluster of EC2 machines which are loaded up with Apache
Hadoop.

3. Hadoop executes the uploaded job flow with the data downloaded from S3 onto the EC2
slave instances.

4. The cluster of EC2 instances processes the data and uploads the results to S3.
5. The user is notified when the job is completed and results can be taken from S3. The

process is complete.

25

Figure 3.4: The Elastic MapReduce Process [32]

Apache Hadoop works using the MapReduce programming model which divides large amounts
of data into smaller more manageable chunks. The master Hadoop node then distributes one of
these chunks as well as the job flow executable amoung all the slaves. Each of these slaves run
MapReduce on their subset of data and the results are combined from all slaves into a result.
The results are put into a bucket of the users choice.

Elastic MapReduce provides an easy-to-use web front end which can be used to create,
monitor and delete a set of job flows as well as choose how many instances should be used to
process it.

3.3.6 Security

Amazon is a company who is no stranger to having large data centres. In their Security Whitepa-
per [38], the same experience has been applied to their AWS services. Starting with physical
security, their data centres are housed in a low profile centre with military grade beaming. They
also have strict access controls put in place to both the inside and internally in their data cen-
tres which is controlled by a state of the art security system with an experienced security team.
There are at least two tiers (internally) of security for any employee to get to the floors of the
server rooms. Visitors must be signed in and asked to show identity at every security station.

Data stored in S3, SimpleDB and EBS is in multiple and logical physical locations. In
addition they are protected by keys as well as SSL connections. EC2 security is deemed very
important, as each phyiscal machine can be populated by many virtualised instances. Multiple
tennants on a single machine pose security problems. To combat this, the host OS may only be
accessed by an administrator with their individual SSH key. There are different security levels
for each system and every action is logged, audited and routinely inspected.

The Guest OS is completely controlled by the user, in the sense that they are root of their
own domain. AWS administrators do not have access to customer machines and customers have
the choice of a password based or key based authentication (key being preferred by Amazon)
for each of their instances. Each of the instances on a single system are separated via the Xen

26

Hypervisor, with Amazon being active in the Xen community. Also, EC2 provides a full firewall
set-up in “deny all mode” so the user is required to specifically open any ports they want to use.
The firewall is not controlled by the host itself, but needs a X.509 cert and key to authorise a
change. The hypervisor does not have access to the physical RAM, Disk or Network directly.
Each has to pass through a layer of security to ensure no data bleeds into another instance.
The instance then uses a virtualised disk which is deleted on a block by block basis when the
instance is no longer used to ensure data confidentiality.

All API calls are signed by the users X.509 cert or their Secret Key. API calls can also be
encrypyted with TLS (over HTTPS) to maintain confidentiality and consistency on a point to
point basis (this is recommended by Amazon).

The internal AWS network provides counters to most traditional security problems such as
DDOS, Man in the Middle (MITM) attacks, IP Spoofing and Port Scanning.

3.4 Other Cloud Technologies

Besides the three main contenders out there, there are of course many other companies out there
that provide similar services. Some of note are the Google AppEngine, Microsoft Azure, IBM’s
Blue cloud, Freescale, Gogrid and 3Tera.

3.4.1 Google AppEngine

The Google AppEngine is a Platform as a Service (PaaS) that allows users to build web appli-
cations to run on Google’s infrastructure in a Java or Python environment [39]. It has many of
the underlying services that AWS provides, such as IaaS in the form of DataStore [40], which
provides the same functions of its rival, the AWS SimpleDB and their JDO which allows for S3
like storage. Although there are a lot of hard quotas, the service is free and you can even pay to
use anything above the hard quotas. In Jack Schofield’s article [41], he describes the Google Ap-
pEngine as a definite rival to AWS for the business market. It also provides other functions like
Memcache, which provides a distributed shared memory cache for applications and URLFetch,
which allows fetching resources and communication with other hosts using HTTP securely via
HTTPS. They provides a mail service in the form of the Mail API, which allows for the sending
mail to users.

3.4.2 Microsoft Azure

Microsoft Azure is another cloud platform entering the market within the last year which boasts
the same flexibilities of AWS with the added bonus of being heavily integrated with their .NET
platform [42]. They provide a host of services which directly compete with the AWS platform.
Again they provide a Platform as a Service (PaaS) rather than the AWS IaaS meaning that you
cannot control individual units of computation, storage. Instead you just write you application
for their platform and deploy it on their cloud with the lower layer being automatically handled
for you.

27

Chapter 4

Design

Before implementing anything, it is of utmost importance that time is spent gathering require-
ments and specifications; with these details we can proceed with the system design. The more
planning that is put into the project at this stage, the fewer problems will be encountered during
the implementation and evaluation stages.

The first concern is summarising what this dissertation is trying to achieve. This paper
wishes to examine the feasibility of building an Urban Traffic Control System capable of running
on a cloud infrastructure. Of course, before we can move forward we must outline a working
definition of feasibility in respect to UTCSs and Cloud Computing.

When thinking in terms of feasibility in this context we are confronted with the problems
associated with distributed systems. In order to ensure the implementation is not only possible,
but plausible from a usability perspective, we must consider questions such as: Is the system
scalable to meet the requirements of even the biggest theoretical UTC? Is the system reliable
enough to be used for such a critical application? Does the latency between the JC and the MC
a problem for real-time simulation? Is the system tolerant to faults? Can it recover from these?
Is the system secure enough to be used and ensure that all data is consistant and confidential?
From an economic perspective, does it make financial sense to implement a system like this?
These are the terms by which the urban cloud will be judged as feasible.

It is not plausable for this system to be tested in the real world. There exist a multitude of
well-constructed traffic simulation environments which allow the return of high fidelity results.
For this dissertation, VISSIM multi-model traffic flow simulator will be used, as it has been a
proven environment for over 15 years. It also has room for future work as it simulates cyclists,
pedestrians and even rikshas, as well as the usual vehicle and public transport. It is capable of
carrying out microscopic simulations, which is the more proven of the different types as individual
behavior is captured. As well, it has a very extensive system for carrying out evaluation of
simulations.

As for choosing a cloud computing infrastructure, the Amazon Web Services (AWS) frame-
work will be used as it gives you more control of individual units of computation and storage and
allows the user to define their own rules for scalability, by using EC2’s Auto Scaling Groups.

28

It also has very nice integration with the Visual Studio in C#. The integration provides an
easy-to-use development environment. Microsoft Azure and Google App Engine are possible
alternatives, but they are PaaS infrastructures rather than IaaS, which would provide less of the
fine tuning that is required for this system.

From this, the gathering of requirements and design of the Urban Cloud Framework (UCF)
using both VISSIM and AWS can begin.

4.1 UCF Requirements

This sections provides a brief list of all the requirements needed to build the UCF architecture,
which are divided into sections which correspond to the sub-components of the system. The
first set of requirements apply to the VISSIM component, the second to the Junction Controller
(JC) and the third to the Main Controller (MC) component.

As a global requirement, the system must be made in a modular fashion allowing the re-
placement of parts if required (such as the simulator, or the control algorithm).

4.1.1 VISSIM Requirements

The requirements listed for the VISSIM component are divided into two categories: functional
requirements and non-functional requirements. The VISSIM Component is required to build an
interface between VISSIM and the UCF, allowing a translation of monitoring and control data
between VISSIM and UCF objects.

VISSIM Functional Requirements

1. The VISSIM module must call the simulator’s COM Interface at every time step and
translate relevant sensing data (such as Detector Loop Data) to UCF objects. These
objects (known as UTCElements) must then be usable by the other components in the
system.

2. The VISSIM module must be able to implement the changes (such as Changes in Phase
Time) in UCF objects on the simulator.

VISSIM Non-Functional Requirements

1. The VISSIM module must be on a machine fast enough to run simulations in at least
real-time.

4.1.2 JC Requirements

The requirements listed for the Junction Controller (JC) components are divided into two cat-
egories: functional requirements and non-functional requirements.

29

JC Functional Requirements

1. The JC must be open ended enough to support the adding of custom control logic and
custom events between itself and the MC.

2. The JC must be able to communicate with its associated junction(s) in the simulation
through only the use of UCF Objects. It must not have any knowledge of the simulator.

3. The JC must be able to monitor how the junction is operating.
4. The JC must implement changes to UCF objects itself or changes by the MC.
5. The JC must also provide a fall-back coordination plan in case data communications

between itself and the Main Controller (MC) fails.

JC Non-Functional Requirements

1. Communications between JC and MC must be secure.
2. Communications between JC and MC must be able to work over the internet (this means

through firewalls).

4.1.3 MC Requirements

The requirements listed for the Main Controller (MC) component are divided into three cate-
gories: functional requirements and non-functional requirements.

MC Functional Requirements

1. The MC must be open ended enough to support the adding of custom control logic and
custom events between itself and the JC.

2. The MC must be able to handle work load ranging from a single Junction environment to
practical limits without problems.

3. The MC must provide a platform to collect data for analysis.

MC Non-Functional Requirements

1. Communications between MC and JC must be secure.
2. Communications between MC and JC must be able to work over the internet (this means

through firewalls).
3. The MC data must be presentable in a clear and extensible format.
4. The MC data must be fault-tolerant and reliable.
5. Data stored in MC must be verified to be consistant.

4.2 UCF Architecture

This section first describes the functional and technical architecture of the Urban Cloud Frame-
work as a whole before providing a more detailed description of the architecture for each of the

30

components: the VISSIM component, the Junction Controllers (JCs) and Main Controller (MC)
component.

4.2.1 UCF System-wide Functional Architecture

The functional architecture of the entire UCF is described in this section, beginning with a high-
level overview of the system, a description of why a Service-Oriented Architecture approach is
the most suitable for the system, and finally an analysis of how the chosen architecture helps us
to fulfill the requirements listed above.

Overall Architecture The functional architecture of the Urban Cloud framework can be
divided into three separate components, which themselves can be split into three layers. As we
can see in Figure 4.1 the three main component areas are the VISSIM component, the Junction
Controller (JC) and the Main Controller (MC). The three layers shown in this diagram represent
at the base, the operating system layer, the network layer and the logical system layer.

Figure 4.1: UCF System-wide Functional Architecture

The importance of viewing the architecture at this level is that it shows what communications
between the components will look like. In a real world example, data from the VISSIM module
would represent all the ground detectors and traffic lights in a major city. For example, in the
SCATS architecture there is a controller box for each junction which has the ability to grab data
from these sensors (for instance the induction loop or a camera used to count vehicles) as well
as control the physical traffic lights on the road. The link between these and the detectors and
traffic lights are an array of dedicated wires.

31

As the use of VISSIM for the traffic simulation is a requirement, and with that an inherent
separation between VISSIM and the set of JC’s, we must have a more complex network (than
just simply wires) in place to accommodate this. As a result, we’ve introduced the simulator-to-
junction controller (S2J) network. VISSIM will generate UCF data from the simulators COM
interface, the VISSIM component will then pass this traffic data to the appropriate JC over the
S2J network. On the flipside, the JC, which has a set the active phases, splits and offsets for
a Junction. In reality, the JC is implemented on top of the VISSIM component, but from a
functional perspective they are very different.

The second network introduced is the connection between the JCs and the MC module
running on Amazon Web Services. The Junction to Controller (J2C) network is a connection
between the JCs and the MC component. The JCs send relevant traffic data in the form of
SimEvents, that was taken from the VISSIM component and forward it onto the MC for it
to use. From the MC’s perspective, this network is used to transport updates (for example
changing the phase timings for a particular junction, updating the set of active phases) from
the MC component to the appropriate JC. For the most part the MC will be a reactive (event
based) system in the sense that it will only take action when receiving information from a JC.

Service Oriented Architecture The design of this architecture will utilize a Service-Oriented
Architecture model for the link between the JCs and the MC which will help to meet the global
requirement of modularity. The loosely coupled nature of SOAs, allows us to swap out a new
control algorithm (perhaps SCOOT) if needed in the future. This is possible by having a clear
partition between services which are bridged with web services. The same goes for partitioning
of services within the MC module such as storage, databasing and processing; these will all be
accessed using web services. The separation between the VISSIM component and JCs will be
that of different C# DLLs, where interaction between the simulator components will be done
by importing different namespaces into the project.

4.2.2 System-wide Technical Architecture

The system-wide technical architecture shows the same general division the function architecture
does. It is split up into the VISSIM component, the Junction Controllers (JCs) which are both
running on a Microsoft Windows XP machine and the Main Controller (MC) running on Amazon
Web Services.

The VISSIM component will only use the VISSIM COMSERVERLib to communicate with
the VISSIM simulator, which provides methods for extracting monitoring data from the simu-
lator and to send control data back to it. The VISSIM COM Server Interface provides a way
of getting information about each junction on a per-step basis from the simulator. It provides
access to many of the following objects:

• SignalController, which allow to enumerate through data which is applicable for each
Junction Controller.

32

Figure 4.2: System-wide Technical Architecture

• Each SignalController contains a number of SignalGroup objects associated with them
which represent phase data in the system. Each of these contain Signal Head Objects
which represent a single traffic light from input one Link (or approach) to one output
Link.

• Each SignalController contains a number of Detector Objects associated a Link and Lane
(or Approach).

For a full list of functions, see the VISSIM COM Manual [53].
Key to the sensing in any controller algorithm is receiving a constant information stream from

the Detectors to the JCs. This is done through the Detector Object, which allows us to check
attributes like PRESENCE which tells us if a vehicle is currently over a detector, HEADWAY
which is the time gap in seconds and OCCUPANCY which tells us how long in seconds since the
arrival of the last vehicle. Using this information combined with what approach the detector is
on and which junction this data belongs to allows for the clean, segmented extraction of data
from junctions to give the JCs.

On the control side of the VISSIM component, traditionally the simulator provides a DLL
control interface which allows for the setting the active signal groups, how long the light is green
and how long the amber should be. Instead, using the COM interface combined with setting
the control DLL to fixed traffic, we can write and abstraction to control traffic this way. The
abstraction of this on the VISSIM component will allow for a round-robin change of the current
phases which will be directly updated at the end of the cycle. The Phases themselves will not
change (as the SignalGroups themselves will never change), instead the amount of split the
phase will get will be changed on a per-cycle basis, as well as which phases are currently active
and running.

33

The VISSIM component and the Junction Controller, although functionally different, will
be tightly coupled in the same project. The Junction Controller Unit will be programmed in
C# and will have a web service interface (using .Net web services) to the MC on the cloud. The
.Net WebServices framework allows for the easy serialisation of Traffic Data into XML and will
be sent via SOAP to the web service of the MC component, which is defined and made public
using Web Services Description Language (WSDL). All communications between the JCUs and
the MC will be done using SSL to ensure confidentiality and consistency of the data as it passes
between the components.

The MC will run on a number of Microsoft Windows 2003 Amazon EC2 instances equipped
with IIS Server 7.0 and the .Net Framework version 3.5. All code will be written in C#, with
the use of .Net web services. The Amazon Simple Storage Service (S3) will used in conjuncton
with SimpleDB for data storage, such as the current state of the Junctions which will be used
by the MC as it will not keep persistant data. There are no gaurantees to whether the Elastic
Load Balancer (ELB) give you the same machine the next time a JC sends a SimEvent to the
MC, so this poses the same problem that results in a need for external persistant storage.

The MC’s presence will be split across a number of Amazon’s Availability Zones which ensure
that network problems for a zone will be restricted to that particular zone. As stated, the load
balancer will be implemented with the Amazon Elastic Load Balancer (ELB) which will tie
every instance of the MC to a single public DNS which a domain name can be associated with.
This means that externally the system looks like a centralized source, althought internally it is
very decentralized.

The ELB will ensure that none of the instances will be overloaded with traffic from the
simulator(s). For each of the Availability Zones, all MC instances will be assigned to an Auto
Scaling Group. This Auto Scaling Group will be responsible for ensuring that there are enough
instances up to consume the amount of traffic send by the simulator(s) and will use metrics from
Amazon Cloud Watch to formulate triggers for when the instances should scale up and back.

34

Chapter 5

Implementation

The implementation of this project is split into three sections. The first section deals with the
construction of the Urban Cloud Framework, first describing each of its core components, how
they work and how exactly they were implemented. For the UTCController and UTCJunction-
Controller, an example skeleton for building a new controller is shown. The second section deals
with the abstraction of VISSIM, how its core components work, what objects it works with in
the UCF framework and how it was implemented. Finally, the third section deals with the im-
plementation of SCATS on the UCF, how it uses the classes and interfaces defined by the UCF
to control traffic on the VISSIM side without having to distinguish whether it is a simulator or
the real-world.

5.1 The Urban Cloud Framework

The Urban Cloud Framework (UCF) is defined as a set of objects that can be used with a
simulator on one end with is coupled with a Junction Controller (JC) with can speak to a Main
Controller (MC) in which both controllers are written by the user.

5.1.1 UTC.UTCElements

The UTCElements are the core objects by which every other object in the UCF is built. These
are objects which represent approaches, connectors between approaches, the detectors that exist
on incoming approaches, the phases that control which approach is active during a cycle and an
object to represent the junction itself. Each of these elements are written as C# objects that
are bundled together into a DLL that can be used in other projects.

JApproach

The JApproach is an object which represents any incoming or outgoing approach to a junction
defined as a LinkID, LaneID pair of Integers. It is important to have both a LinkID and LaneID
as there can be multiple lanes in a single link. From a real-world traffic control perspective, a
detector will most likely be a on a per-lane basis, although it is possible to have a single detector

35

for the whole approach. There will be at least three approaches in a junction. An example
is the O’Connell Junction shown in Figure 2.2 which contains three incoming approaches and
three outgoing approaches. The JApproach is written in such a way that it is [Serializable()],
meaning that the object can be serialized into XML without any problems.

JConnector

The JConnector is an object which represents the connection between an incoming approach
and an outgoing approach (both defined as JApproach objects) for a junction. The JConnector
itself will have a unique ID by which it can be referenced, since a single incoming approach can
have multiple outgoing approaches. This is why the connector is important to the framework
as it can describe a topology of every incoming approach to outgoing approach, allowing a map
for the possible flows of traffic for the junction. The JConnector is written in such a way that
it is [Serializable()], meaning that the object can be serialized into XML without any problems.

JDetector

The JDetector is an object that represents a detector in either a simulation or the real world.
The type of detector that it is (for example an induction loop or traffic camera) does not matter
to this object explicity, but rather its ability to perform some of the main functions of real
detectors. Each JDetector has an ID which is unique to the map that is being used. The
JDetector is also explicitly associated with the JApproach it is servicing. This is important as
it enables the ability to tie the data the JDetector produces to a particular part of the junction.

The JDetector contains primitive functions for telling how many cars have passed over the
detector so far, which can then be reset on whatever basis you need, such as at the end of a
phase, cycle or on some condition specified by the user and a presence flag which is set if there
is currently a car over the detector currently. This class is kept abstract, so the user can extend
the object to provide more complex functions for the detectors, such as in SCATS counting
the Non-Occupancy time, the Maximum-Flow ever recorded and the Average Occupancy of the
lane. The JDetector is written in such a way that it is [Serializable()], meaning that the object
can be serialized into XML without any problems.

JPhase

The JPhase is an object that represents a Phase in a given traffic cycle. It contains an ID that
is unique to the current junction with which it is associated, as well as a name that will give
some context to the user to indicate what phase the current object represents, such as the “A”
Phase, which is traditionally defined as the most important phase for a junction. As well, it has
values for defining the amount of green time and amber time that the current phase will get as
well as the total phase time, which is calculated by adding the green and amber times to the
junction-wide clearance interval.

36

As well, each JPhase has a List of associated SignalGroups, these are groups of signals that
are active during a phase. A SignalGroup is a set of signal heads. These signal heads reresent a
path from an incoming approach, through a connector to an outgoing approach. It is important
to differentiate between each signal head, as there is a functional difference between a lane
turning left and the same lane going straight through the junction. The JPhase is written in
such a way that it is [Serializable()], meaning that the object can be serialized into XML without
any problems.

Junction

The final object in UTCElements is the Junction which represents the junction itself. The
Junction contains an ID that is unique to the current junction associated with it in the map.
The Junction also possesses a Name in order to give it some context to the user, for example
“O’Connell Stree Bridge”. Also very important to the Junction is its clearance interval, which
sets the time for which all traffic lights should remain red to clear the junction before the next
phase starts. The object also provides a Dictionary which has a mapping between DetectorID
and its associated JDetector object and Dictionaries for the mappings between PhaseID and
their associated JPhase for both the full set of Phases and the sub-set of phases which are the
currently Active Phases. The Junction also contains a cache for the currently active PhaseID,
Name and PhaseTime for which the currently active phase will run. For this current phase, there
also exists a variable which contains the current number in seconds until the phase is finished.
This is very important as it is decremented for every second the simulation runs until it reaches
zero, when logic from other higher objects will kick in to change it to the next active phase.
The Junction is written in such a way that it is [Serializable()], meaning that the object can be
serialized into XML without any problems.

5.1.2 UTC.Controller

The next highest order of name spaced objects are those in the UTC.Controller namespace.
These are objects that provide logic for what to do with the set of objects in UTC.UTCElement
it has control over for a map. Taking a bottom-up approach, the lowest layer of the this set of
objects are the SimEvents. The next layer up is the EventInterface, which provides a transport
layer between the UTCJunctionController and UTCController classes for any generic SimEvent
(using the GenericSerializer) and all associated sub-classes, as they will not be known at compile
time. Finally, the top layer being the UTCController and UTCJunctionController object which
provide a skeleton for developing your own traffic controller on top of the UCF.

UTC.Controller.EventInterface.SimEvents

The SimEvent object and any sub-classes produced by the user are at the very core of commu-
nication between a JCU and the main controller (in the case of the implementation in the next
section, SCATS). The SimEvent object is very simple and provides the following features:

37

• An EventID Guid which keeps the events unique.
• A DateTime for when the current event is created.
• An SimulationID Guid which is kept for logging purposes.

The SimEvent class itself is abstract, meaning that there is no instantiation of this object
directly. Instead it provides more of a skeleton for developing objects which extend this, such
as EndOfPhaseSimEvent. This is responsible for sending PhaseData from the JCU to the main
controller at the end of a phase. UpdatePhaseSimEvent will send the new phase data for a
JPhase by its unique ID.

UTC.Controller.EventInterface

The EventInterface is quite a simple Object which is written on top of the abstract UTCCon-
troller (and of course any of its sub-classes). It is responsible for providing a transport layer
for sending and receiving generic SimEvents between any two UTCControllers. For Controllers
that need two-way communications, it provides two methods:

• The sendSimEvent(Object simEvent) method is used to send a SimEvent to another
Controller. This applies to any controller that extends the UTController, including the
UTCJunctionController object. This method uses an Object as a parameter so the Thread-
Pool class can be be used to push simEvent’s on to be sent.
• The receiveSimEvent(String simEvent) method is used to receive a SimEvent from another

Controller. This applies to any controller that extends UTCController, including the
UTCJunctionController object. This method uses a String as a parameter, as a custom
XML Serializer had to be written to accommodate the serializing of objects that are not
known at compile time.

GenericXMLSerializer The GenericXMLSerializer object is an extension of the .Net 2.0
libraries XMLSerializer which is needed to serialize and de-serialize objects by only having
knowledge of its superclass (i.e the SimEvent object) at compile time. As we want to be able
to write classes that extend SimEvent for whatever controller is being written by the user,
it wouldn’t make much sense to require the user to write an [XMLInclude()] for every new
SimEvent they write. To avoid all of this confusion, the GenericXMLSerializer simplifies this
by using the .NET Reflection package to build a list of all objects that extend the SimEvent at
runtime and adds an array of Type that can be used when the XMLSerializer is instantiated.
The XMLSerializer then has a reference to what each of the sub-classes look like at runtime
and can serialize/de-serialize to/from XML easily one the classes themselves are marked at
[Serializable()].

An example of the output of the GenericXMLSerializer object looks as follows:
The main observation to note is that the object itself is still a SimEvent and what differs be-

tween sub-classes is the it’s xsi type, which in the case of Figure 5.1 is an EndOfPhaseSimEvent.

38

Figure 5.1: An example of a EndOfPhaseSimEvent after being run through the GenericXMLSe-
rializer.

As you can see, all data relevant to the superclass, the EventID, Time and SimulationID are
serialized in with the data that is required for this particular SimEvent.

UTC.Controller.UTCController and UTCJunctionController

The UTCJController is the base class for describing any controller that is capable of using all
of the UTCElements. Every UTCController has a UTCControllerEventInterface which it uses
for transport between itself and another controller. It also has a Dictionary of Junction objects
which are indexed by the Junction’s ID. These Junction objects represent the current state of
the junctions in the simulator for each time step.

The base UTCController classes itself is very simple and only has a handful of methods
which are used within it. They are:

• Two methods, getEventInterface() and setEventInterface(UTCControllerEventInterface e)
which are used to allow the UTCController to communicate with other controllers.
• A getJunctiondByID(int jID) which is used to look up the current junction which needs

attention in the system.
• The processEvent(Object e) is the most important method in the UTCControllers, it is

the method where a SimEvent enters the instantiated UTCController sub-class and is
processed. It is a virtual method which is left completely blank in the base class, as there
is nothing that can be done here until the user overrides this method to write the logic for
their controller. The method uses an Object as a parameter so the ThreadPool class can
be be used to push simEvent’s on to be sent.

The UTCController’s construction is intentionally simple, as it contains only the essential
elements needed to start a controller. Any logic defined to make the controller work to the user’s
specifications is worked out when they write their controller.

Obviously, some of the default behaviour for Junction Controllers that is generic enough to
write into its own class is not captured in the UTCController. This is why the construction of

39

the UTCJunctionController object which extends UTCController is necessary. The UTCJunc-
tionController is an object which describes the minimal functions required for a user to make
their own Junction Controller logic. The UTCJunctonController has a number of methods, some
of which are tied to every instance, and others which are overridden when writing a new junc-
tion controller. The ones which are overridden by the user when they write their own junction
controller are:

• The atTimeStep(int jID) is a virtual method that is triggered for each Junction object
at any time step. When the user implements their own junction controller, this method
should be treated as what to do when it is the start of a new timeStep for JunctionID jID.
• The atDetectorPresence(int jID, int dID, int presence) is a virtual method that is triggered

when a car is passing over the Detector with DetectorID dID. The DetectorID is an explicit
parameter as there can be many detectors that are active for each phase.
• The atPhaseChange(int jID) is a virtual method which acts as a trigger for when the

current phase for JunctionID jID is about to end. Any data needed about the currentPhase
is contained inside the Junction object.
• The postPhaseChange(int jID) is a virtual method that is triggered just after a phase has

been changed to the next in the list of active phases for JunctionID jID.
• The atEndCycle(int jID) is a virtual method that acts as a trigger for when the current

cycle is about to end. Having the state of the Junction before a cycle ends is important if
a record is needed about Junction jID.
• The postEndCycle(int jID) is a virtual method that acts as a trigger for when the current

cycle has ended and the Junction jID is now ready for the next cycle (i.e detector counts
have been reset).

The methods that do the fundamental control that every junction controller uses, including
sub-classes of the UTCJunctionController are as follows:

• The doDetectorStepForJunction(int jID) is a method that contains the logic for what to
do for each Detector during a time step. It first gets each Detector that is relevant for the
current JunctionID and CurPhaseID and checks to see if there is a car currently over the
detector. It then calls the trigger atDetectorPresence() for sub-classes to use.
• The setNextPhaseForJunction(int jID) is responsible for setting the next active phase

for JunctionID jID. It also sets the current phase cache in the Junction object to be
this new active phase and sets the countdown to be the greenTime + amberTime +
clearanceInterval.
• The endCycle(int jID) provides the logic for when the current cycle ends. Inside this it

calls the atEndCycle() and postEndCycle() methods described above and resets all the
junction data for the next cycle.
• The updatePhaseDataForJunctionID() method takes in an UpdatePhaseSimEvent which

extends simEvent. Using the data inside this object, the phase data for a junction can be
updated on a per phase basis, per cycle basis or whenever the user specifies.

40

• The most important method is the doTimeStep() which is concerned with what to do
everytime the simulator does a new step. In this method, it interates through every object
and calls the appropriate functions listed above.

5.1.3 Sample UTCController and UTCJunctionController skeletons

The end result of the these classes are that all functions written provide the minimum code
to allow the monitoring and controlling of an adaptive Urban Traffic Control System without
getting specific enough that it would hinder the development of one. As well, we have essentially
made a model for UTCs that is event based, which will make the process of designing a controller
much easier as we will only have to worry about what to do when an event occurs (such as when
a Phase ends). The end result of the UTCController produces a skeleton example such as the
one in Figure 5.2:

Figure 5.2: The UTCController skeleton for writing new controllers.

As you can see in Figure 5.2, to begin writing our own sample controller, we would start
with this skeleton. The main controller only has to worry about what to do when taking in
a particular SimEvent, then processing it and what SimEvent to send back. For example, if
we wanted to implement a random traffic controller, when receiving an EndOfPhaseSimEvent,
we should simply return an UpdatePhaseSimEvent to the junction controller. Once the logic
between the main controller and junction controller matches up, traffic control can be achieved.

Figure 5.3 shows the slightly more complex skeleton for writing our first junction controller:
As you can see, this has a couple more in-built methods to UTCController class which it

extends. In the case of this controller, all we have to do is fill in the logic for how the junction

41

Figure 5.3: The UTCJunctionController skeleton for writing new controllers.

controller should react to the functions shown. To write the simplest junction controller that
will just assign phases randomly, we need only assign a new set of active phases to the junction
using the atEndCycle() if we want to process this locally. If we want the main controller to
generate this, we could potentially send a EndOfCycleSimEvent and let the main controller
update the active phases on its end. Another alternative would be to write our own Randomly-
GeneratePhasesSimEvent in which the junction controller would send its current phase’s data
to the main controller at the end of its phase and the the main controller would reply with just
this phase updated with new phase data.

There are many ways in which traffic control can be done using the UCF’s UTCController
and UTCJunctionController classes. It is up to the user to choose which way they plan on doing
so and to ensure the solution is not wasteful on resources, as transmission of data across web
services can be very costly.

5.2 VISSIM Component

The VISSIM component exists as UTC.Simulator.VISSIM to allow the extraction of data from
the VISSIM simulator, combined with the configuration and phaseData XML files and the UCF
translate its content into objects the UCF can use for traffic monitoring and control on the
JCU and main controller side. It has three elements: the PhaseDataBuilder which uses the
phaseData.xml file to build a relationship between what SignalGroups in VISSIM correspond
to which phase they are in, the JunctionDataBuilder which is used for building junction data
from Vissim’s COM Server and combines it with the information from the PhaseDataBuilder to
produce a set of UTCElements that are ready to be used for simulation, and the VissimWrapper
which puts this all together to run simulations that use the embedded junction controller DLL

42

written by the user.

5.2.1 PhaseDataBuilder

The PhaseDataBuilder is a C# class which reads an XML file responsible for providing a map
of what SignalGroups are active, as well as a map of which detectors should be active during
a particular phase. Once this data is parsed into two Dictionary objects, one with a mapping
of JunctionID to another Dictionary of JPhase objects and the second a Dictionary which is a
mapping of PhaseID to another Dictionary of JDectector objects. The PhaseData.xml file itself
appears as the following format:

Figure 5.4: An example PhaseData XML file for a junction.

As you can see the format is extensible enough to allow the capturing of phase data. The ‘A’
Phase for Junction 266 has two Detectors with DetectorID 112 and 115 in which SignalGroupID
1 and 5 are active. This phase is a very simple one, showing the first phase in a simple Junction
when two opposite approaches are active. In the simulator itself the SignalGroups are broken
in to a set of SignalHeads which represent a single traffic light. For example there are two
SignalHeads for an approach to turn left and to go straight through the junction; in both cases
they should use the same detector.

5.2.2 JunctionDataBuilder

The JunctionDataBuilder is a C# class which works with the Vissim COMSERVERLib DLL to
build data from the current simulation into UCF objects which can be used for simulation. This
DLL provides a COM interface which provides services for starting, executing and retrieving
results from a Simulation while on a per-time-step basis, allowing a look at the state of each
object. The end result of this object will allow for a Dictionary object of Junctions which are
indexed by JunctionID that includes data from the PhaseDataBuilder

43

5.2.3 The VissimWrapper

The VISSIM wrapper is the main object which is used to run simulations with VISSIM. When
the VISSIM Wrapper is run, it reads a configuration XML file which gives the following details:

Figure 5.5: An example Config XML file for running simulations with the Vissim Wrapper.

The config XML contains a number of attributes which it uses to run simulations. The first,
path is the absolute path to where the VISSIM .inp map file is located. The inpfile tag is used to
poinpoint exactly where the map file is located in the path directory. The phaseData tag is the
location of where the PhaseData.xml (which is used with the PhaseDataBuilder object) file is
located in this directory. The next couple of tags are to do with how the simulation will run, the
speed tag is as a parameter to the Vissim object in the COMServer for how fast the simulation
should attempt to run (1 being real-time). The controllerFrequency tag is how many times per
second objects in the simulation such as The Detecors should sense for vehicles passing over.
The resolution tag is used for how many steps there should be in a simulation second (5 being a
stepsize of 1/5 of a second) and the simulationTime is used for how long the simulation should
run.

The Vissim Wrapper includes the objects which the simulator provides such as the Vissim
object, the Simulation object and its sub-classes and the Evaluation object which contains
evaluation data.

5.2.4 Controlling Traffic using only VISSIM COMServerlib

The traditional method used to control traffic involves writing a specific controller DLL in C++
which would contain the logic for the junctions. To simplify the process, it is possible to control
the traffic using only the COM interface. A couple of issues do arise when attempting to do so:

• The user has to take care of exactly when to switch the next signalGroup active. This is
done by first setting all of the signalGroups RED END attribute to be the time that the
current phase ends.
• The active signalGroups are then set to a RED END of the current timeStep and the

GREEN END to the phaseTime minus the clearance interval for the Junction.

44

• When the phaseCountdown in the UCF Junction object hits zero all SignalGroups are
reset and the process it continued.
• For this to work properly, the CYCLETIME for the entire simulation has to be set to the

entire simulation time which is located in the config XML under simTime.

Although not very complicated to implement, it saved a lot of time that would be spent
looking that their Signal Controller DLL skeletons. It also allows the full UCF implementation
to be in a single language, C#.

5.3 SCATS on the Urban Cloud Framework

The implementation of SCATS on the UCF starts with the two skeletons defined in the UCF
section above. From the UTCController and UTCJunctionController objects we can define our
own objects that extend these. For this portion on the implementation, they will be known as
the SCATS Main Controller (SMC) and the SCATS Junction Controller (SJC).

5.3.1 SCATS Main Controller (SMC)

The SCATS Main Controller (SMC) is the simpler defined skeleton of the two controllers. All
interactions between itself and the SJC will be done exclusively through SimEvents. This means
that we only have to worry about the SimEvents that are introduced to the controller via the
overridden processEvent(Object e) method which takes in a SimEvent on a ThreadPool from the
controllers EventInterface and when finishing processing returns another SimEvent to the SJC
as a result. For instance, if we receive a EndOfPhaseSimEvent from the SJC, we can process
the phase using the SCATS algorithms and return an UpdatePhaseSimEvent back to the SJC
for processing on its side.

The processEvent(Object e) method therefore becomes the critical point in the definition of
a controller. Inside this method, we first cast the generic object (this must be an object, so this
method can be used with ThreadPools) into a SimEvent and then check the SimEvents Type
and cast it to the appropriate one. The sections of code inside these statements then become a
place to start defining controller logic.

SMC Instantiation on an single machine

Speaking first from within a single thread in the IIS server, every time the web service is called
it starts a completely new instance of SMC. Therefore, the constructor has to call S3 to get a
copy of the Junctions with which it is working. To retrieve the correct set of Junctions from
a large set, they are indexed on S3 in the scats-data bucket with their own unique key of the
SimulationID which is encapsulated in every SimEvent. Also important to the SCATS algorithm
is the last two states of the Original Volume (OV), Degree of Saturation (DS) and Reconstituted
Volume (VK). These states are combined with the current state to give the smoothed result for
the three. It is important to smooth these results as massive fluctuations between phases/cycle

45

are possible during events like ambulances passing by. With this set of data ready, this current
instance is now ready to serve as a SMC.

Logging

The use of logging is very important for systems whose top layer is a web service. As there is
no specific interface set up in .Net for handling where the output of the Console.WriteLine()
goes, the use of an enterprise ready logging environment is required. For this, Apache’s log4net
libraries are perfect for our purposes. It provides a number of different logging priorities such as
INFO, DEBUG, ERROR and FATAL and is easily integrated into the IIS webserver, by simply
adding a single line to the Web.config file and the following lines for how the log should output
and where:

Figure 5.6: The log4net configuration file.

All logging using the log4net DLL is completely thread safe. As there will undoubtedly be
a large number of SMC’s running on the same machine, this is very important so we can be
positive that we have captured all necessary data.

Bundling the SMC AMI

Once the code for the SMC was finished, the web service was published on the single Windows
Server 2003 Amazon EC2 instance so it could initially be tested with the Simple 2-Stage Junction
map. Once the tests looked positive, it was time to bundle the AMI, so I could launch any number
of these instances to start the scalability testing. In order to bundle an Amazon AMI, you need
to install the Amazon EC2 AMI tools package for Windows which is written completely in Java,
so the JRE has to be installed as well and the paths set for JAVA HOME, EC2 HOME. Then,
using the ec2-bundle-instance command, inputting my AWS Access and Secret Key as well as
a name for the AMI’s manifest scatsami/utcontrollerbundle.manifest.xml which is stored in the
scatsami bucket in S3. Bundling can take quite some time, in the range of about 20 to 40

46

minutes, but once done the AMI is sitting in the S3 and can easily be launched by calling its
manifest.

Launching the full SMC Service

In order to launch the full scalable SMC Service we need to integrate the SCATS AMI with a
Load Balancer, set up its Launch Configuration and configure the Auto-Scaling Group.

Using the Elastic Load Balancer (ELB) a new instance was created called ScatsLB. The ELB
is set up to automatically balance incoming traffic evenly across the Availability Zones which
the instances run. In our case the ScatsLB runs over two zones and listens on ports 80 and 443
for incoming HTTP/HTTPS connections.

The Launch Configuration for the application, called SCATSLauncher has the ID of the
SMC AMI which also includes a list of the Security Groups to which it is attached. The LC uses
the default security group (which opens ports for Remote Desktop) as well as a custom security
group, UTCControllerSG which allows for incoming traffic on ports 22 for having SSH support
for each individual box and 80 and 443 for allowing HTTP/HTTPS traffic through.

The use of two Auto-Scaling Groups are required for the SMCs to run in the two Availability
Zone for which they were set up. These are called ScatsG1 and ScatsG2. These groups are
associated with both the ScatsLB and SCATSLauncher for a minimum number of instances
launched set to 1 and a maximum number set to 10.

5.3.2 SCATS Junction Controller (SJC)

The SCATS Junction Controller Agent is built by extending the skeleton for the UTCJunc-
tionController to include the algorithms needed to implement the Junction Controller (JC) for
SCATS.

The JC is quite simple for SCATS. At the end of every phase it will send back details for
the number of vehicles which have gone over the appropriate detectors and the non-occupancy
time for these detecors, which is the amount of time in seconds an approach during the phase
did not have a car over the detectors. There is also a recording of the maximum flow over the
detectors, being the largest number of cars that have ever passed over the detector during a
phase and the average occupancy, which is defined as the number getting the average number
of cars that have passed over during the maximum flow.

Starting a new simulation

As the SJC is embedded directly into the Vissim Wrapper, it is instantiated when it is called
inside this program (along with the Vissim COM Server objects). In the current state, the
SJC is explicitly defined in the Vissim Wrapper, breaking the modularity aspect as noted in
the design section. There just wasn’t enough time left to go back and change it to a generic
UTCJunctionController which type is checked at runtime.

47

When the SJC is instantiated, the first object set is the eventInterface which is used to
communicate with the SMC. The SJC then gets a set of UCF objects passed to it representing
the Junctions in the simulation it will be controlling. This is set as a Dictionary of Junction
objects which is indexed by JunctionID. At this stage the SJC immediately registers this initial
data set with S3 so it can be passed on the SMC for processing at a later time. The simulation
is saved in a scats-data bucket with the object being stored by the SimulationID Guid, which
is created at the start of every simulation. The SMC can then directly reference the Junction
data by using the SimulationID, which is passed with every SimEvent.

Calling SMC at the end of a phase

The SJC overrides the atPhaseEnd(int jID) function and for each of the JDetector objects in
the currently active phase extracts this data and forms an EndOfPhaseSimEvent with this data,
the JPhase object which represents the current phase and the JunctionID which is used on the
MC side. It then publishes this finished event to the ThreadPool in its eventInterface to be sent
to the SMC. Sometime later it should receive an UpdatePhaseSimEvent on it’s threadpool from
the eventInterface, which will process this event and update the active phase for the next traffic
cycle.

Failure of the SMC

If the SCATS Junction Controller (SJC) attempts to call the SCATS Main Controller (SMC)
and fails, the SJC has a fallback mechanism which is built into SCATS itself. If this occurs,
the JC keeps a set of background phases to which it will automatically set its current set of
active phases and continue to use these until communications between the JC and the MC are
restored. As SCATS is a distributed system, it was built with fault-tolerance in mind.

48

Chapter 6

Evaluation

The section outlines how the implementation of SCATS on top of the UCF meets the definition
of feasibility as described in the Design section. The first section outlines the tests that were
done in order to explore the various questions raised. These questions can be broken down into
proving that the system is Scalable, Reliable, Real-Time Capable, Fault Tolerant and Secure.
There will also be an evaluation of costs associated with the project.

6.1 Feasibility

As described in the Design section, feasibility is measures in terms of Scalability, Reliability,
Real-Time Performance, Fault-Tolerance, Security and Cost.

6.1.1 Scalability

The criteria for evaluation of Scalability is based on not placing limits on the number of Junctions
that can be simulated on VISSIM and controlled with the MC and JC. To show this in action,
the design of two tests were done to show scalability with the simulation of a large map and
taking the map out of the equations with a dedicated script.

Scalability Test A

The first test of Scalability was to simply test a large map on the cloud to see if the MC is able
to handle the load from the Junctions in the simulation. For this test, the use of a 46 Junction
map representing the Urban Freeway in Redmond, US was used.

In order to use a map of this size for the simulation there needed to be quite a powerful
machine needed, as at full load the map would simply run too slow. Using a Intel Core2 2.4Ghz
with 4GB of RAM as the test machine, it brought the simulation speed up to an average speed
of about 0.8 - 1.3 at full load.

On the MC end, the 46 junctions were not producing nearly enough of a load in either of
the Availability Zones which would cause the Auto-Scaling Groups to trigger the addition of
instances. Even bringing down the number of Availability Zones to a single one (which meant

49

that the Load Balancer was serving a single machine) was not enough to trigger a scale. As
well, the introduction of a larger map would be too slow to show how many junctions even a
single instance can handle, so another method needed to be devised in order to show scalability
of the MC itself, which would exclude the simulator from the equation.

Scalability Test B

The second test was designed to take the simulator out of the scalability test, as it was the
bottleneck. Instead, a Perl-based scripting client was used. This client was developed to send
large quantities of mock SimEvents to test what the capacity of the instances are. Starting with
the same configuration as Scalability Test A, it includes two SMC’s spread over two availability
zones.

To set up the test, a mock PhaseData XML file with the SimulationID of 00000000-0000-0000-
0000-000000000000 and with a data set representing 10,000 junctions at approximately 8.5kb
each. The script would then pick a random number between 0 - 9999 and start a thread which
sent a mock EndOfPhaseSimEvent with that random number in the place of the JunctionID. It
would then check the result it got back from the SMC just to make sure it there were no errors
in the data it was expecting back.

The results of this test show that after 4 minutes each Availability Zone attached to the ELB
started a new instance as a direct results of the Auto-Scaling Groups triggers to start a new
instance based on triggers defined to scale when the processing power of the server exceeded
60 percent and network traffic exceeded 1Mbit/s over a three minute period. The results show
that the average number of SMC’s controlled by a single instance is approximately 500 junctions
with an average round trip time of 94ms. This of course is averaged over the four servers which
were active during that time it was measured. Another 4 minutes after the script was stopped,
the ELB scaled each AutoScalingGroup back down to it’s initial size.

6.1.2 Reliability

One of the main goals of Amazon Web Services is to provide a service that is guaranteed to
be reliable by providing Availability Zones and Data Centres on two different continents. Any
fault in a availability zone does not affect the applications running in another. The Elastic Load
Balancer (ELB) can be used to push data across availability zones evenly, and in each of these
zones Auto Scaling can be used to ensure there is always enough instances to meet the demand
of the service. The SCATS Main Controller (SMC) uses these mechanisms to ensure that there
is always a service available. For the SCATS Junction Controller (SJC), reliability isn’t really
an issue as it is tied in directly with the simulator and if of availability of the simulator would
not allow for any simulation at all.

50

6.1.3 Real-Time Performance

One of the requirements to give a good indication of feasibility is that the Junction Controller
(JC) is capable of sending data to the Main Controller (MC) and retrieve results back in enough
time to work in at least a real-time environment. Anything faster than real-time is not necessary
to proving feasibility, but is quite desired as it demonstrates that simulations can be controlled
from the cloud.

Real-Time Performance Test

As the simulator can be the obvious bottleneck when doing tests for speed, it makes sense to
only simulate the smallest unit that is possible, a single Junction. For this test, the Simple
2Stage Junction map was used to show this.

The map itself consists of a single junction, which contains three phases. The clearance
interval is set to 3 seconds, all phases are set to a default of 30 seconds of greenTime and 3
seconds of amberTime which they will run on the first cycle before being changed by the SMC.
The first two phases allow for the opposite sets of signal groups to be active and a third to allow
the flow of traffic on the filter lights.

Figure 6.1: The set of configuration data for a simple junction.

In this test, the speed tag in the config XML file is ignored in order to allow the simulator
to run as quickly as possible. The frequency at which the controllers sense is set to one second,
the resolution of the simulation to five steps per-simulation second and the simulation time to
5000 seconds. Taking a record of the average simulation speed and the average amount of time
taken to send off an EndOfPhaseSimEvent to receive a new UpdatePhaseSimEvent, the results
show that the maximum speed the simulation can be run at is 7.4 times normal speed with an
average of 5.9.

51

This is more than is required to run simulations in real-time, as we are looking for a value
larger than one, but the values do show the overhead of using the COM interface and the Vissim
abstraction for running simulations, as a normal simulation will run at up to 40 times normal
speed. To avoid a complete halting of the simulation whenever a SimEvent needs to be sent to
the SMC and time taken to receive the Update, the simulator is threaded to use the next current
active phase, which if not updated in time will be the phaseData from the last cycle. This effect
shows that for very fast simulation there is the possibility of the junction’s phase data being off
by one cycle, which is not really a problem for the SMC as the snapshot of data that was sent
to the SMC is consistent with that point in time.

6.1.4 Fault-Tolerance

The problem with fault-tolerance is that it has to be handled on a per-controller basis. As SCATS
itself exists as a three tier system in the real world, the designers in the Road Traffic Authority,
New South Wales had to consider fault-tolerance when they were designing the system. As a
result the Junction Controllers have the concept of background phases built-in, which are used
as a fall back mechanism should the link between the Junction Controller (JC) and the Regional
Manager (RM) go down at any point. So although the implementation of SCATS on top of the
UCF is fault-tolerant, it is unwise to say that any UTC algorithm you can think of is as well.
The eventInterface is capable of throwing a FaultSimEvent back to the ThreadPool for the JC,
it is just using this SimEvent in the overridden processSimEvent() method in the JC itself wisely
that allows for fault tolerance.

On the SCATS Main Controller (SMC), the fault of an instance will be resolved by simply
starting another one in its place. As the SMC do not keep persistent data locally and instead use
the Amazon’s Simple Storage Service (S3) and SimpleDB for long term data storage, this is not
much of a problem. SimpleDB and S3 themselves are distributed systems and fault-tolerance
on their end is handled by using active replication of resources. This can cause consistency
issues, with the possibility of getting a stale copy of data if accessed too quickly. However it
has internal mechanisms for combatting this. Fault-tolerance is also related to Reliability, this
is explained above.

6.1.5 Security

Security is taken very seriously in Amazon, first with low-profile data centres, military grade
beaming and two security checkpoints to get into any server room. Taking physical security out
of the equation, it must be ensured that data communications between between a JC and MC
are kept secure and consistent.

The first step taken by Amazon Web Services (AWS) for their components such as S3,
SimpleDB, SQS is that to access these web services you need your amazon access and secret key.
This is used as an authentication mechanism for accessing objects and buckets in S3, getting
and putting in SimpleDB and sending/retrieving and deleting events from SQS. The transport

52

of data from these web services use Transport Layer Security in the form of HTTPS on port
443. As for the consistency of the data as it travels across a network, the include an MD5 hash
of the entire object which is being passed so the client can check this first to ensure the data is
safe.

The same ideas have been applied to the custom web service between the SJC and the SMC,
with the exception of the MD5 for consistency checking. As the UTCElements are serialized in
the EventInterface before it is sent off (the web service received SimEvents as serialized strings
and are then de-serialized when received), the addition of an MD5 hash to this would be quite
easy to add on but time constraints prevented this from showing up in the implementation.

6.1.6 Cost

Yet another concern of feasibility is that of cost. In this section there are two types of cost that
are appropriate to answer the question of using SMC to provide Traffic Control as a Service
(TCaaS) and as a Traffic Simuation as a Service (TSaaS).

Based on the findings of the Scalability Test B, we can work under the facts that a single
Windows instance will cost 0.25 per hour used. To ensure the availability of this service we will
need two Availability Zones for traffic control, this means for a city the size of Dublin, which
contains some 750 SCATS enabled Junctions, there would need to be at least 4 instances running
to provide a feasible SMC. This adds up to approximately 8500 + the bandwidth usage of S3
and SimpleDB to control a city the size of Dublin. A final figure would be substantially less
than 10,000 per year to run.

In doing so, the Dublin City Council would not have to worry about the maintenence of the
servers, the management of them and the power they consume currently. It must be noted that
this is most certainly not a silver bullet answer as there a lot of logisitical problems that must
still be answered. This is merely used as an example.

From a TSaaS perspective, a service could be set-up (similar to the ASP model) in which
the user could download a client for sending their traffic data to the TSaaS and will be billed
accordingly.

53

Chapter 7

Conclusion

This section summarizes the work that was carried out to achieve the objectives set out by this
dissertation. Following this, a list of users who might be interested in the implementation of
the UCF and why, concluding with a list of ideas that can be implemented to move the UCF
project forward.

7.1 Achievements

The main objective of this dissertation was to answer the question of whether an implementation
of an Urban Traffic Control System is feasible on a Cloud Computing infrastructure. As a test
case, an implementation of P.R Lowrie’s SCATS algorithms [46] was used to show this. In
the search of the definition of Cloud Computing, the concept of Everything as a Service arose,
leading to the conclusion that an Infrastructure as a Service (IaaS) was the best tier to use
for design. Going in search for an IaaS capable of meeting my needs, Amazon Web Services
demonstrated itself as being more than suitable for an implementation of a UTC algorithm.

The achievements of this dissertation are outlined as follows:

• The UCF provides a very genericized platform for writing new urban traffic controllers.
• The entire framework and implementation is written in one language, C# on top of Mi-

crosoft Windows Server 2003, the .Net Framework 3.5 and IIS 7.0.
• The controllers, and indeed the users, do not need to know any details of the environment

it’s controlling. This means that you do not have to write your algorithms with VISSIM,
ITSUMO or the real world in mind.
• The implementation of SMC on the cloud looks promising in terms of being highly scalable,

secure, reliable and faster than real-time. Although it must be noted that fault-tolerance
is inherently built into SCATS, so other algorithms must be written with this in mind.

54

7.2 Potential Usage

There are two main categories of people which would benefit from the work carried out in this
dissertation. These are:

• Urban Traffic Control Researchers.
• Parties interested in Traffic Control as a Service (TCaaS).

Urban Traffic Control Researchers will benefit from using the UCF as a platform for building
and testing their own traffic control algorithms. As the main controller is capable of any number
of simulators without problems due to its design, it can be used to test many different cases
at once using the same control algorithm. The researcher also only has to think about their
controller’s problem in UTC terminology instead of the new terminology that is introduced in
traffic simulators like VISSIM. This cuts the learning curve and allows the reasearcher to focus
completely on the control algorithm. With this implementation, there are licensing issues with
using VISSIM on the cloud as it must be able to access a dongle server which allows it to run.
An alternative would be to go in search of a different simulator and write an interface from it
to the UCF; this will allow for traffic simulation on the cloud.

For parties interested in Traffic Control as a Service (TCaaS), the use of higher bandwidth
communications such as 3G/GPRS or Fibre between the Junction Controller and the Main
Controller allows traffic to be controlled from the cloud. This means any number of cities in
close enough proximity of a cloud (like Amazon Web Services, or even a custom central cloud
for a region) allows for every city to use this service. This allows for the aggregation of massive
amounts of live and archived data, which could in turn be used for further research. As well,
the algorithm by which the traffic is controller could be switched depending on which is most
suitable for the current conditions.

7.3 Future Work

There are several features that have not been implemented in the current state of the Urban
Cloud Framework. The UCF is left very open-ended as there can be a lot done with a Framework
that allows Traffic Simulations and Control in a centralised place.

7.3.1 Loosen the coupling between UCF and VISSIM

In the UCF’s current state, the notion of a generic UTC.UTCSimulator object that VISSIM
would extend is not currently implemented. Building this would allow for any simulator to
be plugged into the UCF in a more modular way (i.e, just by loading a DLL representing the
simulatiors component, in our case the VISSIM Component). The current state of the UCF
is very tightly coupled with some of Vissim’s objects, such as the SignalGroup ID’s in the
phaseData.xml file for each map. SignalGroups, although representing groups of signals that

55

are active together, are unique to VISSIM and to ensure a completely modular implementation
of UCF a generic class for these should be made.

7.3.2 Dynamic Loading of Controller DLL’s

In the current implementation the loading of DLLs is very static in the sense that the SCATS
Junction Controller class which extends the UTCJunctionController is defined in the VIS-
SIM Wrapper class. An approach that is more in-step with the design ideology with this frame-
work would be to instead use an instantiation of a generic UTCJunctionController which is
looked up at runtime (perhaps using Reflection). This would be very desireable to the UCF,
as the source code would perhaps not be available to everyone and to move forward with the
notion of Traffic Simulation as a Service (TSaaS) and Traffic Control as a Service (TCaaS).

7.3.3 A Simulation Queue

From the perspective of it being used as a simulation framework (or TSaaS), the introduction
of a queued job system, perhaps integrating it into Amazon’s Simple Queue Service and S3
for results, would be a another useful challenge that is unfortunately out of the scope of this
dissertation. Although the initial state of the Junctions is stored in S3 for every simulation,
more data about the simulation, in fact an entire trace of the simulation, can be stored in S3 or
SimpleDB for later analysis. The inclusion of a SimulationID Guid in the abstract SimEvent class
is exactly what this was intended for, as it allows for data to be aggregated on a per-simulation
basis.

56

Appendix A

Abbreviations

Short Term Expanded Term

3G 3rd Generation (International Mobile Telecommunications-
2000)

AMI Amazon Machine Image
APN Access Point Name
AWS Amazon Web Services
CL Cycle Length
CMS Control Management Centre
COM Component Object Model
DDOS Distributed Denial of Service
DLL Dynamic Link Library
DS Degree of Saturation
DS0 Digital Signal 0
EC2 Elastic Computing Cloud
ELB Elastic Load Balancer
GPRS General Packet Radio Service
HPC High Performance Computing
IaaS Infrastructure as a Service
J2C Junction to Controller
JC Junction Controller
JCU Junction Controller Unit
JDO Java Data Objects
MC Main Controller
MITM Man in the Middle Attack
MPI Message Passing Interface
OV Original Volume
PaaS Platform as a Service
RCL Recommended Cycle Length
REST Representational State Transfer

57

Short Term Expanded Term

RM Regional Manager
S2J Simulator to Junction
SaaS Software as a Service
SCATS Sydney Co-ordinated Adaptive Traffic System
SCL Stopper Cycle Length
SCOOT Split Cycle Offset Optimisation Technique
SJC Scats Junction Controller
SLA Service-Level Agreement
SMC SCATS Main Controller
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQS Simple Queue Service
TCaaS Traffic Control as a Service
TLS Transport Layer Security
TSaaS Traffic Simulation as a Service
UCF Urban Cloud Framework
UTC Urban Traffic Control
VK Reconstituted Volume
WSDL Web Service Description Language
XML Extensible Markup Language

58

Bibliography

[1] Traffic Control Systems Handbook, FHWA-SA-95-032. Federal Highway Administration.
1996.

[2] Nagel K., Schrekenberg M. 1992. A Cellular Automaton model for Freeway Traffic,
Journal Physics France, pp. 2221–2229.

[3] Dia, H. 2002. An agent-based approach to modelling driver route choice behavior un-
der the influence of real-time information. Transportation Research Part C: Emerging
Technologies, 10-5/6:331-349.

[4] Lighthill, M. J. and Whitham G. B. (1955). On kinematic waves: Ii. a theory of traffic
flow on long crowded roads. Proceeding of the Royal Society A, 229:317-345.

[5] Weiss, A. 2007. Computing in the clouds. netWorker 11, 4 (Dec. 2007), 16-25. DOI=
http://doi.acm.org/10.1145/1327512.1327513

[6] 2009. Cloud Computing: An Overview. Queue 7, 5 (Jun. 2009), 3-4. DOI= http://

doi.acm.org/10.1145/1538947.1554608

[7] Geelan J. (2009), Cloud Computing Journal, Twenty-One Experts Define Cloud Com-
puting, http://cloudcomputing.sys-con.com/node/612375

[8] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. 2009. Cloud com-
puting and emerging IT platforms: Vision, hype, and reality for delivering comput-
ing as the 5th utility. Future Gener. Comput. Syst. 25, 6 (Jun. 2009), 599-616. DOI=
http://dx.doi.org/10.1016/j.future.2008.12.001

[9] The Definition of Utility Computing, Oxford English Dictionary

[10] Dupre, Frank. (2008), Utility (Cloud) Computing...Flashback to 1961 Prof.
John McCarthy, http://computinginthecloud.wordpress.com/2008/09/25/

utility-cloud-computingflashback-to-1961-prof-john-mccarthy/

[11] Web archive (2006), About NetCentric, http://web.archive.org/web/

20060209160435/http://www.netcentric.com/

59

[12] Gruener, Wolfgang. (2008), Tom’s Hardware, Dell’s Cloud Computing Trademark Ap-
plication Criticized, http://www.tomshardware.com/news/Dell-cloud-computing,

6049.html

[13] Markoff, John. (2001), The New York Times, Internet Critic Takes on Microsoft, http:
//www.nytimes.com/2001/04/09/technology/09HAIL.html

[14] Sullivan, Danny. (2006), Search Engine Strategies Conference, Conversation with Eric
Schmidt hosted by Danny Sullivan, http://www.google.com/press/podium/ses2006.
html

[15] 3tera Company, About, Company Section, http://www.3tera.com/Company/

[16] Jones, M. Tim (2008), Cloud Computing with Linux, Cloud computing
platforms and applications, http://www.ibm.com/developerworks/linux/library/

l-cloud-computing/

[17] Chapell, D. 2008. A Short Introduction to Cloud Platforms, An enterprise-oriented view,
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf

[18] Brodkin, Jon. (2009), Cloud Interoperability Remains Wispy but Progress Being Made,
http://www.cio.com/article/496610/Cloud_Interoperability_Remains_Wispy_

but_Progress_Being_Made

[19] Distributed Management Task Force (2009), Open Cloud Standards
Incubator Charter, http://www.dmtf.org/about/cloud-incubator/

CloudIncubatorCharter2009-04-16.pdf

[20] Open Cloud Manifesto (2009), Open Cloud Manifesto: Dedicated to the belief
that the cloud should be open, http://www.opencloudmanifesto.org/Open%20Cloud%
20Manifesto.pdf

[21] Amazon Web Services, What is AWS?, http://aws.amazon.com/what-is-aws/

[22] Palankar, M. R., Iamnitchi, A., Ripeanu, M., and Garfinkel, S. 2008. Amazon S3 for
science grids: a viable solution?. In Proceedings of the 2008 international Workshop on
Data-Aware Distributed Computing (Boston, MA, USA, June 24 - 24, 2008). DADC ’08.
ACM, New York, NY, 55-64. DOI=http://doi.acm.org/10.1145/1383519.1383526

[23] Amazon Elastic Compute Cloud (2009), Getting Started Guide, API Version 2009-04-04,
http://awsdocs.s3.amazonaws.com/EC2/2009-04-04/ec2-gsg-2009-04-04.pdf

[24] Amazon Elastic Compute Cloud (2009), Developers Guide, API Version 2009-04-04,
http://awsdocs.s3.amazonaws.com/EC2/2009-04-04/ec2-dg-2009-04-04.pdf

60

[25] Hazelhurst, S. 2008. Scientific computing using virtual high-performance computing:
a case study using the Amazon elastic computing cloud. In Proceedings of the 2008
Annual Research Conference of the South African institute of Computer Scientists and
information Technologists on IT Research in Developing Countries: Riding the Wave of
Technology (Wilderness, South Africa, October 06 - 08, 2008). SAICSIT ’08, vol. 338.
ACM, New York, NY, 94-103. DOI=http://doi.acm.org/10.1145/1456659.1456671

[26] The Xen hypervisor website, What is Xen?, http://www.xen.org

[27] Amazon Simple Storage Service (2009), Getting Started Guide, API Version 2009-04-04,
http://awsdocs.s3.amazonaws.com/S3/20060301/s3-gsg-20060301.pdf

[28] Amazon Simple Storage Service (2009), Developers Guide, API Version 2009-04-04,
http://awsdocs.s3.amazonaws.com/S3/20060301/s3-dg-20060301.pdf

[29] Amazon Simple DB (2009), Getting Started Guide, API Version 2009-04-15, http:

//awsdocs.s3.amazonaws.com/SDB/2009-04-15/sdb-gsg-2009-04-15.pdf

[30] Amazon Simple DB (2009), Developers Guide, API Version 2009-04-15, http://

awsdocs.s3.amazonaws.com/SDB/2009-04-15/sdb-dg-2009-04-15.pdf

[31] Amazon Elastic MapReduce (2009), Getting Started Guide, API Version
2009-03-31, http://awsdocs.s3.amazonaws.com/ElasticMapReduce/20090331/

emr-gsg-20090331.pdf

[32] Amazon Elastic MapReduce (2009), Developers Guide, API Version 2009-03-31, http:
//awsdocs.s3.amazonaws.com/ElasticMapReduce/20090331/emr-dg-20090331.pdf

[33] Apache Hadoop Framework Site, http://hadoop.apache.org/

[34] Amazon CloudWatch (2009), Developers Guide, http://awsdocs.s3.amazonaws.com/
AmazonCloudWatch/latest/acw-dg.pdf

[35] Amazon Auto Scaling (2009), Developers Guide, http://awsdocs.s3.amazonaws.com/
AutoScaling/latest/as-dg.pdf

[36] Amazon Elastic Load Balancer (2009), Developers Guide,
http://awsdocs.s3.amazonaws.com/ElasticLoadBalancing/latest/elb-dg.pdf

[37] Amazon Simple Queuing Service (2009), Developers Guide, http://awsdocs.s3.

amazonaws.com/SQS/latest/sqs-dg.pdf

[38] Amazon Web Services (2008), Overview of Security Processes, http://s3.amazonaws.
com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf

[39] Google AppEngine Developer Guide: What is Google AppEngine? http://code.

google.com/appengine/docs/whatisgoogleappengine.html

61

[40] Google AppEngine Developer Guide: Datastore http://code.google.com/appengine/
docs/python/datastore/

[41] Schofield, J., Google angles for business users with ‘platform as a service’, The Guardian,
http://www.guardian.co.uk/technology/2008/apr/17/google.software

[42] What is the Windows Azure Platform?, http://www.microsoft.com/azure/

whatisazure.mspx

[43] Sims, A.G.; Dobinson, K.W., ”The Sydney coordinated adaptive traffic (SCAT) system
philosophy and benefits,” Vehicular Technology, IEEE Transactions on , vol.29, no.2, pp.
130-137, May 1980 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
1622746&isnumber=34047

[44] Aldridge Traffic Controllers Website, Dublin City Council SCATS Contract Awarded
(2009), http://www.aldridgetrafficcontrollers.com.au/Breaking-News/

Dublin-City-Council-SCATS-Contract-Awarded/default.aspx

[45] M. Dineen, Real-time display of Dublin traffic information on the web, Department of
Computer Science, University of Dublin, Trinity College, Ireland, M.Sc. Thesis, Septem-
ber 2000

[46] Lowrie, P.R., The Sydney Co-ordinated Adaptive Traffic System principles, methodol-
ogy, algorithms, Proc. IEEE International Conference on Road Traffic Signalling, Lon-
don, pp67-70, 1982.

[47] Traficon, Traffic Video Detection Cameras Website, http://www.traficon.be/

[48] SCATS 6, Functional Description Manual, http://www.

aldridgetrafficcontrollers.com.au/ArticleDocuments/47/ATC_An_

Introduction_To_The_New_Generation_Scats_6%20_5_%203_.pdf.aspx

[49] Roads and Traffic Authority of New South Wales, Austrailia, ”SCATS Message
Formats”,(RTA-TC-226),June 1999

[50] Fehon, K., Chong, R., Black, J., Adaptive Traffic Signal System for Cupertino, Califor-
nia, April 2003

[51] Hunt P.B., Robertson D.I., Bretherton R.D., Royle M.C., The SCOOT On-Line Traffic
Signal Optimisation Technique, International Conference on Road Traffic Signalling,
IEE, pp.59-62. London, UK, 1982.

[52] The SCOOT Urban Traffic Control System Website, http://www.scoot-utc.com/

[53] VISSIM 5.10-03 COM Interface Manual, PTV Vision, 2008

62

