
MuAspectJ: Mutant Generation to Support Measuring the
Testability of AspectJ Programs

Andrew Jackson and Siobhán Clarke
Distributed Systems Group

School of Computer Science and Statistics
Trinity College Dublin,Ireland

+353 1 896 1756
{firstname.lastname}@cs.tcd.ie

ABSTRACT
The impact of Aspect-Oriented Software Development (AOSD)
on testability must be quantified before it can be considered
for widespread adoption by industry. One way to measure
testability is through mutation analysis (MA). In MA, a mu-
tation tool generates faults for locations in software. Each
fault is created in a new version of the software called a
mutant. Testability of a location is measured by executing
tests against mutants and counting the proportion of mu-
tants that cause test failure. To quantify the testability of
approaches to AOSD through MA, mutant generation tools
are needed. This paper introduces MuAspectJ, a tool for
generating mutants for AspectJ programs, to satisfy this
need.

The tool is evaluated in terms of the quality of mutants
it generates. Assertions reached about the testability of the
software under MA are derived by aggregating the testability
of each location. The quality of the assertions that can be
derived from MA results is only as good as the mutants
on which the analysis is based. MuAspectJ is evaluated by
benchmarking metrics that indicate the quality of generated
mutants against the existing well known Java mutation tool,
MuJava. The results validate the quality of the mutants
generated by MuAspectJ.

1. INTRODUCTION
A significant proportion of the total cost of software is at-

tributed to testing over its lifetime [24]. One way to reduce
this cost is to increase software testability. Testability is an
measure of how easily software exposes faults when tested
[2]. By improving testability the cost of testing is reduced.
There is anecdotal evidence to suggest that Aspect-Oriented
Programming (AOP), such as AspectJ, may improve testa-
bility [9]. However, for industry to consider the widespread
adoption of AOP, the impact of AOP on testability must be
quantified.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Mutation Analysis (MA) is an accurate approach to mea-
suring testability [2]. There are other approaches that ad-
vocate measuring testability in terms of the complexity of
the programs static structure. Analysis of such measures
suggests that they are good indicators of testability [16] but
are too coarse grained [26] to provide a reliable and accurate
measure. To ensure that the impact of AOP on testability
is accurately quantified support to apply mutation analysis
in comparative experiments is needed.

In MA, mutation operators are used to systematically cre-
ate faults at locations in a programs source code [19]. These
faults simulate the types of real errors that a competent
programmer would make. A location is any element in the
code at which a fault can occur. In AspectJ faults can oc-
cur at locations including expressions, statements, methods,
fields, declarations, advice and pointcuts. Mutant gener-
ation tools identify locations at which to apply mutation
operators. Each mutation operator applied to a location in-
serts a particular type of fault. Each fault is created in a new
mutant version of the software. The testability of a location
is measured by executing tests against mutants generated
for the location. The testability of the location is measured
as the proportion of the mutants that cause the test to fail
[19, 2].

The results of MA are interpreted by analysing the testa-
bility of the programs locations. Assertions reached about
the testability of the program under analysis are made by ag-
gregating the testability of each location [2]. The confidence
associated with the measure of testability for each location is
based on the number of mutants generated for each location
level. The higher the number of mutants generated for a lo-
cation the tighter the confidence interval around each testa-
bility measure. The confidence associated with the measure
of testability for the program is based on the confidence
associated with individual measures and the proportion of
locations in the program that are considered in the analysis.
Increasing the proportion of locations covered means that
assertions reached through aggregation is more representa-
tive of the entire program.

To employ MA in experiments to quantify the impact of
AOP on testability, mutant generation tools that can gen-
erate mutations for AO and non-AO specific constructs are
required. This paper introduces MuAspectJ, a tool for gen-
erating mutants for AspectJ programs. The tool is an ex-
tension of an existing tool for generating mutants for Java
called MuJava[19]. The tool provides a complete set of mu-
tation operators that can be applied to a broad range of AO

and non-AO specific locations in AspectJ programs.
MuAspectJ evaluated in terms of the quality of mutants

it generates. The quality of mutants is measured by the con-
fidence that can be associated with the results of mutation
analysis based on the mutants. In this paper an quality is
in terms of location coverage and mutation density. Loca-
tion coverage is a measure of the proportion of locations for
which mutants are generated. Mutation density is a measure
of the number of mutants that are generated for a location.
This evaluation compares the location coverage and muta-
tion density achieved by MuAspectJ against that achieved
by a benchmark set by MuJava. These measures are derived
from analysing the mutants generated by applying each tool
to a well known case study implemented as an equivalent
AspectJ and Java programs.

The results of this comparison shows that the location cov-
erage and mutation density of MuAspectJ are equivalent to
MuJava. This means that an equivalent level of confidence
can be associated with the results of mutation analysis based
on using mutants generated from either tool. The results are
a positive validation of the quality of the mutants generated
by MuAspectJ. This validation ensures that researches who
want toconduct experiments on AspectJ program using MA
can do so with confidence.

The remainder of the paper is structured as follows. First,
the background for this tool is presented. Then, the MuAspectJ
tool is introduced and described. This is followed by the
evaluation of the tool and a discussion of the results. The
work is positioned then in relation to existing work. Finally,
the paper is concluded and our future work is outlined.

2. BACKGROUND
In this section the motivation that underlies the choice of

mutation analysis as a means to measure testability is out-
lined. The audience that are expected to use MuAspectJ are
then identified. The background to the mutation operators
implemented by MuAspectJ is presented and the case study
on which the tool is explained and evaluated are presented.

2.1 Mutation Analysis
The goal of MuAspectJ is to provide support to accurately

quantify the impact of AOSD on testability. Although a
number of existing approaches that provide means for mea-
suring testability, this paper describes a tool to provide sup-
port for mutation analysis. These approaches employ static
measures of complexity based on program structure [5, 15,
25, 6] as measures of testability. These measures are in-
dended for use at the design stage to indicate areas that
are estaimated to be of low testability early in development.
Mutation analysis provides an accurate measure of testabil-
ity because it simulates real faults and measures the pro-
grams ability to expose those faults under test. Static mea-
sures do provide some indication of where faults may arise
[16] they are described as too coarse grained to provide a
reliable and accurate measure of testability [26]. To ensure
an accurate for quantify the impact of AOSD on testability
the provision of support for mutation analysis is preferred.

2.2 Usage of MuAspectJ
MuAspectJ is a tool that generates mutants that can be

used in mutation analysis. Mutation analysis can be used
to measure testability but can also be used in testing exper-
iments. Mutants generated from programs using MuJava

have been used in various experiments, including to assess-
ments of different testing strategies [20], of mutation analy-
sis effecienct [21, 23] and frameworks to support the testing
process[27]. Our primary goal in creating MuAspectJ is to
provide a means for researchers to measure the testability
of AspectJ programs through experiments. MuAspectJ can
however also be used by researchers to generate mutants
that can be used a wide array of testing experiments based
on AspectJ programs.

2.3 Case Study
The case study we apply MuAspectJ to is the Health

Watcher (HW) system that has been used in empirical stud-
ies that investigate the benefits of AOSD [14, 17, 8]. The
HW is a distributed, database driven application with a web
based user interface that allows citizens to register com-
plaints regarding health issues. In this case study there
are AspectJ and Java, implementations of the HW system.
Both implementations satisfy equivalent requirements and
are both equally well designed.

2.4 Mutation Operators
MuAspectJ generates mutants for AspectJ programs. As-

pectJ is an extension of the Java language. To ensure that
the testability of AspectJ and Java specific locations in As-
pectJ programs can be measured a set of mutation opera-
tors that can generate mutants at these locations is needed.
MuAspectJ provides Java and AspectJ mutation operators
to support the mutation of locations in AspectJ progress.

2.4.1 Java Operators
There are an existing set of well known mutation opera-

tors for Java implemented in a tool called MuJava [19]. Mu-
Java adapts mutant operators from existing works and tools
[1, 22, 19] for Java. MuJava supports 44 mutation opera-
tors. 14 of these operators are primitive operators and the
remaining 30 are object-oriented operators. The primitive
operators create mutants with faults by replacing, inserting
and deleting Java operators in expressions. The 30 object-
oriented operators are broken down into operators that gen-
erate inheritance, polymorphism and Java-specific. Inher-
itance operators change reference to inherited members by
adding or removing overriding members or adding or remov-
ing calls to super. Polymorphism operators generate faults
in references to classes or members that are polymorphic
by changing class and member references or specification.
Java specific operators cause an assortment of faults, rang-
ing from inserting or deleting Java specific keywords i.e., this
and static, to replacing reference and content assignment or
comparison. MuAspectJ adapts the Java mutation opera-
tors to support the mutation of Java locations in AspectJ
progress. The adaptation of Java mutation operators for As-
pectJ within MuAspectJ avoids reinventing the wheel. An
additional advantage is that the application of Java opera-
tors by both tools can be directly compared.

2.4.2 AspectJ Operators
MuAspectJ provides a set of mutation operators that in-

sert faults at pointcut, advice and declarations locations.
MuAspectJ implements the mutation operators that have
been identified by Ferrari et at al [12]. In their work Ferrari
et at al. identify a comprehensive set of mutation operators
based on a fault models [1, 7, 9, 11], fault classifications [18]

and bug reports [28]. They identify 15 pointcut operators
that insert or remove wild-cards, change designator types,
change pointcut types to super and sub types, and alter flow
and contextual designators types. They identify 6 declara-
tion operators that remove or alter precedence, soft, error
or warning and aspect instantiation declarations. They also
identify 6 advice operators that alter advice or join point
handle (this to enclosing), remove advice implementation
and proceed statements and change pointcut-advice bind-
ings. MuAspectJ extends this list with additional pointcut
operators to insert and remove pointcut negation. Work
on identifying an appropriate set of mutation operators for
AOP just beginning. We expect new works will emerge that
identify new operators and refine the existing set. Exten-
sions or alterations can easily be made to the set supported
by MuAspectJ. The implementation of the AspectJ opera-
tors identified by Ferrari et al ensures that MuAspectJ sup-
ports a comprehensive set of mutation operators that gen-
erate realistic faults.

2.5 Equivalent Pointcut Mutants
Pointcuts are locations in AspectJ programs that can be

mutated by removing or adding wild-cards. The systematic
mutation of pointcuts in this way results in a large number
of mutants many of which are equivalent [4]. The use of
equivalent mutants in Mutation Analysis (MA) causes the
measure of testability becomes skewed and associated with
a high level of confidence.

A pointcut identifies a set join point at run-time. Point-
cuts are equivalent if they identify the same set of join points.
Faults in mutated pointcuts can change the set of join points
selected by a pointcut. A different join point selection can
change the control flow of the program, which may cause
program error. If pointcuts are equivalent, there is no possi-
bility of program error because there is no change to control
flow. If mutant pointcuts select the same sets of join points
then these represent the same error.

Testability is measured as the proportion mutants that
fail when tested. The accuracy of testability measure is in-
dicated by the with of the confidence interval around the
measure. The width of the interval is measured as follows

interval = 2
q

p(1−p)
n

where p is the measure of testability

and n is the number of mutations from which p is derived.
A smaller width indicates a more accurate result. From this
we can see that increases in n has the effect of increasing
the interval width, reducing our confidence in the accuracy
of the testability measure.

The problem is illustrated by showing how the measure
of testability and the indicator or accuracy change when
equivalent pointcut mutants (EPM) are used in MA. There
are two types of EPM, mutant pointcuts that are equivalent
to the original pointcut (EPMO) and mutant pointcuts that
differ from the original but are equivalent to one another
(EPMM). Table 1 is an example of how the testability of
a pointcut can be effected if EPMOs and EPMMs are not
excluded from use in MA.

The first row shows that when there are no EPMs that
testability is high (.67), but accuracy is low (Width .85).
The second row shows that when EPMOs are not excluded
the testability is reduced (.02), but the accuracy in this mea-
sure is increased (Width .07). The third row shows that
when EPMMs are not excluded the testability is further re-
duced (.009), and the accuracy in this measure is further

Scenario MD Equiv Testability Width

No EPM 3 0 .67 .85

EPMO 100 97 .02 .07

EPMM 224 221 .009 .03

Table 1: Equivalent Pointcut Problem

increased (Width .03).
This simple example clearly shows that if equivalent point-

cuts are not removed that they can dramatically skew the
measure of testability and confidence associated with that
measure. In this example we could conclude that the testa-
bility of the pointcut is very low and that this measure was
very accurate when in fact the opposite is true. This issue
could, if not addressed, skew the overall result of program
testability when skewed measures pointcut testability are
subsumed, through aggregation, into the measure of pro-
gram testability.

3. TOOL
This paper introduces MuAspectJ, a tool for generating

mutants for AspectJ programs. The mutants generated by
this tool can be used in mutation analysis to quantify the
testability of AspectJ programs. In the following sections
an overview of the tool is presented. Following this, the
implementation of the Java and AspectJ mutation opera-
tors is briefly described. The application of these opera-
tors to the Java and AspectJ implementations of the Health
Watcher case study is outlined. The mutants generated by
the MuAspectJ mutation operators are compared with those
generated by MuJava. The similarities and differences ob-
served are identified and explained. This means that an
equivalent level of confidence can be associated with results
of mutation analysis based on using mutants generated from
either tool.

3.1 Overview
MuAspectJ is implemented as an eclipse plug-in that op-

erates on AspectJ projects. The high level components that
make up the plug-in are presented in Figure 1. The Source
File Finder component identifies all Java and AspectJ source
files in an AspectJ project under analysis. Java and AspectJ
source files are parsed using the relevant Parser (AspectJ
or Java). Each parser creates a Document Object Model
(DOM)1 representation of the source. The DOM is then
passed to a series of Mutator components. Each Mutator
component identifies all locations in the DOM at which the
set mutation operators it controls can be applied. Mutator
components apply operators at locations to generate candi-
date mutants. Candidate mutants are new versions of the
source file in which a fault has been inserted. The Primitive
and Object-Oriented Mutators control the Java mutation op-
erators, described in Section 2.4.1. The Pointcut, Advice
and Declaration Mutators control the AspectJ mutation op-
erators, also introduced in Section 2.4.2. Candidate mutants
must be compiled before they can be used in mutation anal-
ysis. The fault inserted into a candidate mutant may cause
compile time errors. The AspectJ Compiler component is
used to compile each candidate mutant. Candidate mutants

1http://www.w3.org/DOM/

Source File Finder

AspectJ Parser Java Parser

Pointcut Mutator

Advice Mutator

Declara7on Mutator Primi7ve Mutator

Object‐Oriented
Mutator

AspectJ Compiler MuJava Component
New Component
External Component

Legend

AJDT

Original Source

Mutants

A
sp

ec
tJ

 O
pe

ra
to

rs

Ja
va

 O
pe

ra
to

rs

Candidate Mutants

Figure 1: MuAspectJ Components

that do compile are usable in mutation analysis. Those that
fail to compile cannot be used in mutation analysis.

3.2 Java Mutation Operators
In this section we briefly outline how the Java mutation

operators are implemented and detail how

3.2.1 Implementation
The MuAspectJ tool adapts the Java operators outlined in

Section 2.4.1 to enable their application to locations in As-
pectJ programs. MuAspectJ reuses and adapts some compo-
nents from the MuJava tool that implement these operators.
The adapted components are clearly identified in Figure 1.
These components support the application of Java operators
to locations in classes or aspects. The reused components
are altered to use the AspectJ compiler to compile candidate
mutants.

3.2.2 Case Study Application
These Java operators generate candidate mutants which

must pass compilation to be usable in mutation analysis.
Figure 2 shows the number of candidate mutants gener-
ated by the Java mutant operators within the MuJava and
MuAspectJ tools when applied to the Java and AspectJ im-
plementation of the HW case study, introduced in Section
2.3. The proportion of candidates that pass and fail are indi-
cated for each operator. This figure validates that both tools
generate the same results generate roughly the same num-
ber of candidates and mutants per-operator. It also shows
that although the tools are applied to Java and AspectJ im-
plementations that change the distribution of functionality,
the number of candidates and mutants generated stays the
same. In the AspectJ implementation crosscutting function-
ality is encapsulated within aspects and is scattered within
the Java implementation. The small number of candidates
generated within aspects that pass compilation are identi-
fied in the figure to highlight that these tools are applied to

Figure 2: Java Operators - Results

different implementations. By differentiating these, we can
also conclude that there are very few mutants generated by
Java operators applied to AspectJ programs.

3.3 AspectJ Mutation Operators

3.3.1 Implementation
The implementation of the AspectJ Mutator components

and the mutation operators they based on the eclipse Java
(EJ) and AspectJ (EAJ) APIs [10]. The tool makes use
of the aspect parser from the EAJ API to create a DOM
representation of the source. The various Mutator compo-
nents then search the DOM for locations (pointcuts, declara-
tions and advice) to apply AspectJ mutation operators. The
mutation operators generate candidate mutants by creating
new versions of the DOM in which the location to which the
operator is applied. The operator then inserts a fault at the
location in the new DOM. The DOM is then transformed
back into source and is compiled by the AspectJ compiler.

3.3.2 Basic & Contextual Operators
For the most part, mutation of aspect-oriented locations

involves the simple removal from or alteration of an element
in the DOM. For instance, the removal of a proceed state-
ment from an around advice requires that the statement be
removed from the DOM. The alteration of the ordering of
the aspects declared in a precedence declaration requires that
the declaration be extracted, the order changed and then re-
placed. There are however, various mutation operators that
require contextual information from which mutants can be
generated. For instance, operators that strengthen pointcuts
by replacing elements that contain wild cards with concrete
elements require some contextual access to valid elements
that can be used as replacements.

Table 2 presents an example of a contextual strengthening
mutation of an execution pointcut designator. The original
pointcut specifies the type concretely as the EmployeeRe-

Pointcut execution(pattern)

Original * EmployeeRecord.*(..)

Mutant-1 Employee search(String)

Mutant-2 void insert(Employee)

Mutant-3 void update(Employee)

Table 2: Contextual Mutation

Pointcut execution(pattern) JPS Compile

Original HealthWatcherFacade.*(..) 48 -

Mutant-1 Health*WatcherFacade.*(..) 48 no

Mutant-2 Health*Facade.*(..) 48 no

Mutant-3 *.*(..) 999 yes

Table 3: Equivalent Candidate Mutations

cord type and specifies the method signature as wild-cards.
This indicates that any only methods of that the Employ-
eeRecord type can be used to generate strengthening mu-
tants. The EmployeeRecord type contains three methods.
The tool uses the search mechanism in the EJ API to iden-
tify these methods. The strengthening operator then uses
this contextual information to generate mutants 1, 2 and 3
in Table 2. Other examples of contextual operators include
operators that replace types with their super or sub types
and operators that change the types of method parameters.

3.3.3 Equivalent Pointcut Mutants
As demonstrated in Section 3, the use of equivalent mu-

tants in Mutation Analysis (MA) causes the accuracy and
measure and of testability to become skewed. To avoid this
issue, a pre-compilation step is taken to remove equivalent
candidate mutations. This step is based on existing strat-
egy introduced by Anbalagan and Xie [4]. The EAJ API
provides a mechanism to identify the join point shadows
associated with advice their associated pointcuts. To test
for equivalency, the join point shadows associated with the
original pointcut and the mutations of that pointcut are
recorded. If mutations result in a set of join point shad-
ows that are the same as the original pointcut or an existing
mutation the candidate mutant is not compiled.

Table 3 illustrates an example of equivalent candidate re-
moval. The original pointcut is presented in the first row
of the table. The pointcut weakening operator alters the
pointcut by inserting wild-cards into the pointcut. The re-
sult of applying the operator are 224 candidate mutants, 3 of
which are presented in Table 3. Candidate mutants one and
two result in the same set of join point shadows as the origi-
nal. These mutations and the original match the exact same
48 join point shadows. Candidate mutant three in contrast
matches 999 join point shadows. Candidate mutants three
is compiled and if compilation is successful can be used in
mutation analysis.

3.3.4 Case Study Application
Figure 3 shows the number of candidate mutants gener-

ated by the AspectJ operators. Operators 1-5 are advice
based operators, 6 is a declaration based operator and 7-15

 0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

result

pass

fail

equiv

re
su

lts

operatorID

Figure 3: AspectJ Operators - Result

are pointcut based operators. It can immediately be noted
that 5 of the 6 advice operators are used, 3 of the 6 decla-
ration operators is used and 9 of the 15 pointcut operators
are used. Lower usage rates of declaration and pointcut op-
erators is due to a lack of locations in the aspects at which
these operators could be applied. For instance, no initial-
ization/preinitialization/get/set pointcut designators were
found , no annotations were found and no throwing clauses
were found in pointcuts. No error/warning declarations or
deployment clauses were found and as such operators that
generate mutations at locations of these types cannot be
applied.

In Figure 3 the number of mutants that pass and fail com-
pilation can be identified by colour. For the pointcut opera-
tors the number of mutants that are found to be equivalent
are also identified by colour. The pointcut operators that
show high numbers of equivalent mutants (9,10,12 and 13)
are those that weaken pointcuts and strengthen the point-
cuts. From this figure clearly shows that the introduction
of a step to remove these equivalent mutants before com-
pilation has a dramatic reduction effect on the number of
candidates that are reach compilation.

The scale of candidate mutant generation differs between
Figure 3 and Figure 2. It is clear that the Java operators
have produced far more mutant candidates than those pro-
duced by the AspectJ operators. This is due to the difference
in the number of aspects when compared to classes. In the
AspectJ implementation there are 12 aspects and 89 classes.
Section 3.4 clearly demonstrates that size has a direct im-
pact on the number of candidate mutants generated.

3.4 Generated Mutants
The number of mutants generated by a mutant genera-

tion tool is the sum of mutants generated by the mutation
operators it supports. Table 4 presents the proportion of
mutants generated from candidates (PMG) by operators in

Operator Mu-Tool Mutants Candidates PMG

Java Java 4367 35325 .124

Java AspectJ 4303 34048 .126

AspectJ AspectJ 110 1748 .062

Both AspectJ 4411 35796 .125

Table 4: Mutant Generation

both tools. From examining this table the contribution of
the Java and AspectJ mutation operators to the number of
mutants generated by MuJava and MuAspectJ when applied
to the Java and AspectJ implementations can be identified.

Both MuJava and MuAspectJ support the same set of
Java mutation operators. There is slight but insignificant
difference (.124 - row one v .126 - row two, p-value 0.2774)
between the PMG of Java operators in the MuJava and
MuAspectJ tools. The big difference between the MuJava
and MuAspectJ tools is that the MuAspectJ supports a set
of AspectJ mutation operators. The effect of AspectJ opera-
tors on the overall PMG for the AspectJ implementation by
examining the PMG of the AspectJ and Java operators. The
PMG for AspectJ operators is quite low (.62 - row three) and
this reduces the overall PMG for the AspectJ implementa-
tion (from .126 - row two, to .125 row four). Despite this
reduction the difference in PMG with the Java implementa-
tion (.124 v .125, p-value 0.881) remains insignificant.

In summary, although AspectJ operators do reduce the
overall PMG of the AspectJ implementation, the reduction
does not lead to a significant difference. The AspectJ op-
erators produce a relatively small number of mutants and
candidates because there are a relatively small number of
aspects and consequently aspect locations in the AspectJ
implementation. The AspectJ implementation is made up of
101 (aspect and class) modules with 5006 lines of code LOC.
11 of these modules are aspects and between them they ac-
count for 450 LOC. Considering that a small proportion of
those lines of code will contain locations that AspectJ op-
erators can be applied to, the small number of mutants and
candidates produced by AspectJ operators is understand-
able. Because the number of mutants and candidates is so
low compared with the Java operators that the impact of
the AspectJ operators is minimal.

4. EVALUATION
MuAspectJ evaluated in terms of the quality of mutants

it generates. The confidence that can be associated with
the results of mutation analysis is bounded by the quality
of mutants used. In this paper, quality is measured is in
terms of location coverage and mutation density. Location
coverage (LC) is a measure of the proportion of locations
for which mutants are generated. Mutation density (MD) is
a measure of the number of mutants that are generated for
a location. This evaluation compares the location coverage
and mutation density achieved by MuAspectJ against that
achieved by a benchmark set by MuJava. These measures
are derived from analysing the mutants generated by apply-
ing each tool to a well known case study implemented as
an equivalent AspectJ and Java programs. The goal of the
evaluation is to validate that the same level of confidence
can be associated with results of mutation analysis based on

Measure Mean SD Sum

Java (modules = 61)

location 16.6 23.5 1014

mutation 71.6 119.8 4367

LOC 90.9 101.3 5543

AspectJ (modules = 65)

location 15.1 22.4 979

mutation 67.9 114.7 4411

LOC 76.7 84.4 4984

Table 5: Descriptive Statistics

using mutants generated from either tool.

4.1 Comparison
In this evaluation the LC and MD achieved by both tools

are compared on a per-module basis. This is feasible be-
cause both implementations contain may classes of set the
same name. This allows a direct comparison between these
classes in both implementations. This approach also serves
to highlight those modules that are not covered in both im-
plementations. As there is no way that these modules can be
directly compared in the same way, LC and MD are com-
pared at the overall program level. This two pronged ap-
proach allows both a detailed and overall perspective of LC
and MD.

Table 5 presents descriptive statistics that characterise
the data from which the LC and MD are derived. The
table characterises two data sets, one for the MuJava and
MuAspectJ tools. In each tools data set the number of lo-
cations, number of mutations and LOC are counted for each
module covered by the tool.

4.2 Location Coverage
LC is a measure of the proportion of locations for which

mutants are generated for each module. The total number
of locations for each module is indicated by the Lines Of
Code (LOC) per module. LC of a module is measured as
a proportion of the number of locations mutated over the
LOC of the module. Figure 4, visualises the comparison of
LC between tools. There are two smoothed lines represent-
ing the LC over modules, one for each tool. These lines are
surrounded by a shaded band representing a confidence in-
terval for each smoothed line. From this figure we can assert
that there is no significant difference between directly com-
parable classes (12-64). This is because each line is within
the confidence interval of the other, indicating no significant
difference. This figure also shows the LC of classes (1-11)
that are covered only in the Java implementation and the
LC of aspects (65-75) that are covered in the AspectJ imple-
mentation only. From visual inspection it seems that overall
the LC of each program is very similar but may be slightly
lower for the AspectJ implementation. This is confirmed by
noticing that the total number of locations covered by the
Java (1014) and AspectJ (979) implementations are very
similar. This is further confirmed when the mean LC of
MuJava (.1995) is found to be slightly, but not significantly,
lower than MuAspectJ (.1946).

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

implementation

Java
AspectJ

lo
ca

tio
n/

LO
C

module

Figure 4: Location Coverage

The lower LC for aspect modules is explained by the low
number of aspect locations. There are a small number of
aspect locations for which mutants are generated. The aver-
gae number of aspect locations in these modules is approxi-
mately 4 per aspect. The number of java locations in aspects
is low. In Section 3.2.2, the cause of this is the manner in
which aspects are written. In general aspects specify cross-
cutting and then delegate behaviour to supporting classes.
As the analysis shows, the impact of aspects is a reduction
of LC that is insignificant when subsumed into the overall
measure of LC for MuAspectJ.

4.3 Mutation Density
MD is a measure of the number of mutants that are gen-

erated for a location. It is measured as a proportion of
the number of mutations over the number of locations per
module. Figure 5, visualises the comparison of MD. From
this figure we assert that there are no significant differences
between directly comparable classes (12-64). From visual
inspection it seems that overall the MD of each program is
almost identical for both implementations. The LC asso-
ciated with the non-overlapping classes (1-11) and aspects
(65-75) covered only by one implementation seem to balance
one another. The fact that there are more mutations gener-
ated for the AspectJ (5543) provides some evidence back-up
this observation. To provide a firm confirmation, the mean
MD of the Java (3.45) and AspectJ (3.77) implementations
are compared. The result (p-value 0.2815) indicates that
although the mean MD achieved by MuAspectJ is slightly
higher than MuJava, that this difference is not at all signif-
icant.

As identified in 4.2, the number of locations in aspect
modules is low. As can be seen in Figure 3, there are a
number of mutation operators that generate mutants for this
small number of locations. This resuts in a relatively large
number of mutants per-aspect location which equates to a

 0

 2

 4

 6

 8

10

10 20 30 40 50 60 70

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

implementation

Java
AspectJ

m
ut

at
io

n/
lo

ca
tio

n

module

Figure 5: Mutation Density

Mu-Tool Operator N Mean Sum

Java Java 26 79.42 2065

AspectJ Java 25 80.4 2010

AspectJ AspectJ 13 5.39 72

AspectJ Both 38 54.74 2082

Table 6: Location Coverage

relatively high MD for aspect locations. The MD when sub-
sumed into the overall figure does increase the overall MD
per-module for MuAspectJ but not significantly.

5. DISCUSSION
In this section, the results of evaluation are discussed. In

3.4 the results of applying MuJava and MuAspectJ are ex-
plained by examining the contribution of mutation operators
they support to the overall number of mutants generated by
each tool. In this section this strategy is repeated to explain
how the measures of LC and MD presented in Sections 4.2
and 4.3 were arrived at.

5.1 Location Coverage
Table 6 provides mean and related information to shows

how mutation operators contribute to the LC in both im-
plementations. The first row of this table presents the mean
LC of the Java operators when applied to the Java imple-
mentation by MuJava. The remaining three rows show the
mean LC for the Java operators, AspectJ operators and their
combination when applied to the AspectJ implementation
by MuAspectJ.

Both MuJava and MuAspectJ support Java mutation op-
erators which can be directly compared. The mean LC
of Java operators is slightly, but not significantly (p-value
0.9025) higher for MuAspectJ. MuAspectJ also supports As-

Mu-Tool Mods Locat N Oper Mutant

Java class Java 1014 2.04 4.3

AspectJ class Java 935 2.09 4.5

AspectJ aspect Java 27 2.07 3.1

AspectJ aspect aspect 18 3.89 6

AspectJ both both 980 2.12 4.5

Table 7: Operators & Mutants - Per Location

pectJ operators that contribute to the overall LC for the As-
pectJ implementations to which MuAspectJ is applied. The
mean LC of the AspectJ operators is low, relative to the LC
of the Java operators. When the LC of both AspectJ and
Java operators is combined the low LC of the AspectJ opera-
tor serves to reduce the overall mean for MuAspectJ. The re-
sult is that the overall LC per-operator is barely significantly
lower for the AspectJ implementation (p-value 0.1007). This
finding matches our finding in Section 4.2 that the LC per-
module is lower for the MuAspectJ tool. Based on these
findings we can infer a causal relationship between these
results. The the lower LC per-module observed for the As-
pectJ implementation in Section 4.2 is caused by the lower
LC per-operator.

The lower LC per-operator is due to the smaller number of
aspect locations that can be covered by AspectJ mutation
operators. There are a very small number of aspect loca-
tions when compared to the number of java locations in the
AspectJ implementation of the case study. This reduces the
LC per-operator which in turn reduces the LC per-module.

5.2 Mutation Density
Mutation Operators increase mutation density by apply-

ing more operators locations to generate more mutants per-
location. Table 7 presents the mean number of operators
(Oper) and mean number of mutants generated (Mutant)
per-location for the MuJava and MuAspectJ tools. To help
isolate how each tool contributes to mutation density, each
row of the table shows how many mutants are created for
each type of location.

The MuJava tool generates mutations for Java locations
in classes. The MuAspectJ tool generates for Java locations
in classes and aspects as well as aspect locations in aspect.
The first row presents the results of the MuJava tool. The
second, third and fourth present results for the Java and
AspectJ locations treated by the MuAspectJ tool. The fifth
and final row presents the overall results for MuAspectJ tool.

The table shows that the locations identified by the MuAspectJ
tool have a higher number of operators applied to them. The
Java locations in classes and aspects are only very slightly
higher but it is obvious that the mean number of operators
covered for AspectJ locations is significantly higher (p-value
4.987e-06). Due to the small number of AspectJ locations
this difference is scaled down in the overall result. The
overall mean number of operators covered by MuAspectJ
is not significantly higher than MuJava. The same pattern
is observed for the mean number of mutants generated per-
locations. The number of mutants generated by MuAspectJ
for AspectJ locations is significantly higher than that gener-
ated by MuJava for the Java locations. Again this difference
is reduced when these numbers are subsumed into the overall

result, which indicates MuAspectJ produces more but not
significantly more mutants per-location than MuJava.

These results provide an explanation of the finding in Sec-
tion 4.3 that MuAspectJ achieved higher Mutation Density
per module. We can conclude from the information pre-
sented above that this is the result of more operators being
applied to locations in AspectJ programs resulting in more
mutations per-location, increasing mutation density.

5.3 Case Study Validity
This section describes how we addressed the validity threats

posed to our evaluation. A biased comparison threatens the
internal validity of our study. To counter bias toward either
tool we have chosen to apply the tools under evaluation to an
existing case study, introduced in Section 2.3, widely used in
comparative research evaluations [14, 17, 8]. The fact that
we are drawing conclusions from one case study threatens
the external validity of the results of our case evaluation.
Although the case study presented is a very realistic exam-
ple of how AspectJ programs are developed, it is difficult to
generalise from the results of the evaluation.

6. RELATED WORK
The work introduces a tool for the generation of mutants

for AspectJ programs. The mutants generated by this tool
can be used in mutation analysis to measure the testability
of AspectJ programs. In this section other tools that may
be used to support measuring testability are described and
related to this tool. It also introduces a new means for eval-
uating this tool. The tool is evaluated in terms of the quality
of mutants it generates. This differs from the evaluation of
MuJava, the mutant generation tool most related to Mu-
Java. In this section we describe how MuJava is evaluated
and justify the evaluation undertaken in this paper.

6.1 Tooling
MuAspectJ provides support for generating mutants based

on which mutation analysis employed to quantify the testa-
bility of AspectJ programs. There are existing tools such
as AJATO and Jinghu, that support the collection of static
metrics from aspect-oriented programs. AJATO and Jinghu
support the collection of static metrics from aspect-oriented
programs. AJATO supports a varied suite of metrics in-
cluding traditional, object-oriented and concern separation
metrics [13]. Jinghu [29]supports the collection of coupling
metrics. As noted in Section 2.1, some of the static metrics
that these tools collect could act as coarse grain indicators
of testability [5, 15, 26, 29, 25]. They could be used to
gather metrics to provide a low accuracy - low cost assess-
ment of testability. Cost in this instance is the computa-
tional and interpretation time involved. The cost is lower
using static methods because metric can gathered and in-
terpreted quickly. MuAspectJ complements these tools by
providing support for high accuracy measurement of testa-
bility. MuAspectJ supports mutation analysis which is com-
putationally expensive. All mutants must be run for a num-
ber of tests to get results. When results are complete there
is a large volume of measurements that is time consuming
to interpret.

MuAspectJ generates mutants for AspectJ programs. There
are existing tools that also generate mutants for AspectJ.
Anbalagan and Xie [4, 3] provide tooling to automatically
generate non-equivalent mutant pointcuts by the insertion

or removal wild cards in pointcuts. Their framework does
not support a full set of mutation operators of MuAspectJ.
MuAspectJ provides a full range of mutation operators that
can be applied to pointcut, advice and declaration as well
as Java locations. MuAspectJ is an extension of this work
as it reuses the pointcut generation strategy introduced by
Anbalagan and Xie [4].

6.2 Evaluation
MuAspectJ is evaluated in terms of the quality of mu-

tants it generates. MuJava, which is very related to this
MuAspectJ, is evaluated in terms of tool performance [19]
rather than mutant quality. The tool is evaluated in terms
of how fast mutants can be generated and executed. This
does provide some sense of the length of time that it will
take to get to a result but does not provide any indication
of the quality of generated mutants. This type of evaluation
does not however provide any sense of how the mutants will
impact on the assertions that can be made from analysing
the results. Although speed of generation and execution are
practical issues that must be considered when performing
MA, then can be easily addressed through parallel execution
of mutants in a distributed mutant execution approach. The
ability to measure and compare the confidence that can be
associated with assertions reached by using a mutant gener-
ation tool is a more goal focused measure. The performance
measure will tell the user how long it will take to get a re-
sult. The measure of the quality of mutants generated by a
tool bounds how good the results from using the tool can be.
The type of evaluation introduced here does not replace the
performance based evaluation presented in [19]. It expands
the numbers of factors that can be used to evaluate mutant
generation tools and through expansion enables a broader
understanding of the quality of generated mutants.

7. CONCLUSIONS
The results of this comparison show that the location cov-

erage and mutation density of MuAspectJ are equivalent to
MuJava. This means that an equivalent level of confidence
can be associated with results of mutation analysis based on
using mutants generated from either tool. The results are
a positive validation that MuAspectJ achieves the mutant
generation quality benchmark set by MuJava.

This makes two contributions. The primary contribution
is the provision of the MuAspectJ that can be used to gen-
erate mutants for AspectJ programs. A secondary contribu-
tion is the introduction of location coverage and mutation
density as a means to measure the quality of generated mu-
tants.

The next step in this work is to use the mutants generated
by MuAspectJ in experimentation. To quantify the impact
of AOSD on testability experiments that apply mutation
analysis to equivalent Java and AspectJ implementations
are planned. In these experiments the mutants generated
by MuAspectJ and MuJava will be used. In this work we
have shown that the mutants generated by both tools are
of equivalent quality indicating that they can be used in
comparative experiments.

8. REFERENCES
[1] Hiralal Agrawal, Richard A. Demillo, Bob Hathaway,

William Hsu, Wynne Hsu, E. W. Krauser, R. J.

Martin, Aditya P. Mathur, and Eugene Spafford.
Design of mutant operators for the c programming
language. Technical report, 1989.

[2] Zuhoor Al-Khanjari, Martin Woodward, and
Haider Ali Ramadhan. Critical analysis of the pie
testability technique. Software Quality Control,
10(4):331–354, 2002.

[3] Prasanth Anbalagan and Tao Xie. Apte: automated
pointcut testing for aspectj programs. In proceedings
of the 2nd workshop on Testing aspect-oriented
programs, International Symposium on Software
Testing and Analysis, pages 27–32, New York, NY,
USA, 2006. ACM Press.

[4] Prasanth Anbalagan and Tao Xie. Efficient mutant
generation for mutation testing of pointcuts in
aspect-oriented programs. mutation, 0:3, 2006.

[5] Benoit Baudry and Yves Le Traon. Measuring design
testability of a uml class diagram. Information and
Software Technology, 47(13), October 2005.

[6] M. Bruntink and A. van. Predicting class testability
using object-oriented metrics, 2004.

[7] Jon BŸkkeny and Roger Alexander. A candidate fault
model for aspectj pointcuts. In ISSRE ’06:
Proceedings of the 17th International Symposium on
Software Reliability Engineering, pages 169–178,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] Sant’Anna C., Figueiredo E., Garcia A., and Lucena
C. On the modularity assessment of software
architectures: Do my architectural concerns count? In
Proceedings of the 1st Workshop on Aspects in
Architectural Description (AARCH), at the
International Conference on Aspect-Oriented Software
Development (AOSD), Vancouver (Canada), March
2007.

[9] Mariano Ceccato, Paolo Tonella, and Filippo Ricca. Is
aop code easier or harder to test than oop code?, 2005.

[10] Adrian Colyer, Andy Clement, George Harley, and
Matthew Webster. Eclipse aspectj: aspect-oriented
programming with aspectj and the eclipse aspectj
development tools. Addison-Wesley Professional, 2004.

[11] Marc Eaddy, Alfred V. Aho, Weiping Hu, Paddy
McDonald, and Julian Burger. Debugging
aspect-enabled programs. In Markus Lumpe and Wim
Vanderperren, editors, Software Composition, volume
4829 of Lecture Notes in Computer Science, pages
200–215. Springer, 2007.

[12] Fabiano Cutigi Ferrari, Jose Carlos Maldonado, and
Awais Rashid. Mutation testing for aspect-oriented
programs. In ICST ’08: Proceedings of the 2008
International Conference on Software Testing,
Verification, and Validation, pages 52–61, Washington,
DC, USA, 2008. IEEE Computer Society.

[13] E. Figueiredo, C. Sant’Anna, A. Garcia, T.T.
Bartolomei, W. Cazzola, and A. Marchetto. On the
maintainability of aspect-oriented software: A
concern-oriented measurement framework. Software
Maintenance and Reengineering, 2008. CSMR 2008.
12th European Conference on, pages 183–192, April
2008.

[14] Phil Greenwood, Thiago Bartolomei, Eduardo
Figueiredo, Marcos Dósea, Alessandro Garcia, Nélio
Cacho, Cláudio Sant’Anna, Sérgio Soares, Paulo

Borba, Uirá Kulesza, and Awais Rashid. On the
impact of aspectual decompositions on design
stability: An empirical study. In proceedings of the
21st European Conference on Object-Oriented
Programming, pages 176–200, 2007.

[15] Stefan Jungmayr. Identifying test-critical
dependencies. In proceedings of the 18th IEEE
International Conference on Software Maintenance,
page 404, November 2002.

[16] T.M. Khoshgoftaar, R.M. Szabo, and J.M. Voas.
Detecting program modules with low testability. icsm,
00:242, 1995.

[17] Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia,
Roberta Coelho, Arndt von Staa, and Carlos Lucena.
Quantifying the effects of aspect-oriented
programming: A maintenance study. In ICSM ’06:
Proceedings of the 22nd IEEE International
Conference on Software Maintenance, pages 223–233,
Washington, DC, USA, 2006. IEEE Computer Society.

[18] Otávio Augusto Lazzarini Lemos, Fabiano Cutigi
Ferrari, Paulo Cesar Masiero, and Cristina Videira
Lopes. Testing aspect-oriented programming pointcut
descriptors. In WTAOP ’06: Proceedings of the 2nd
workshop on Testing aspect-oriented programs, pages
33–38, New York, NY, USA, 2006. ACM.

[19] Yu S. Ma, Jeff Offutt, and Yong R. Kwon. Mujava: an
automated class mutation system. Softw. Test. Verif.
Reliab., 15(2):97–133, 2005.

[20] Johannes Mayer and Christoph Schneckenburger. An
empirical analysis and comparison of random testing
techniques. In Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software
engineering, pages 105–114, 2006.

[21] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel,
Roland Untch, and Christian Zapf. An experimental
determination of sufficient mutation operators. ACM
Transactions on Software Engineering and
Methodology, 5:99–118, 1996.

[22] A. Jefferson Offutt, Jeff Voas, and Jeff Payne.
Mutation operators for ada. Technical report, 1996.

[23] B.H. Smith and L. Williams. An empirical evaluation
of the mujava mutation operators. Testing: Academic
and Industrial Conference Practice and Research
Techniques - MUTATION, 2007.
TAICPART-MUTATION 2007, pages 193–202, Sept.
2007.

[24] Gregory Tassey. The economic impacts of inadequate
infrastructure for software testing. Technical Report
Planning Report 02–3, National Institute of Standards
and Technology, Program Office Strategic Planning
and Economic Analysis Group, May 2002.

[25] Jeffrey Voas, Larry Morrel, and Keith Miller.
Predicting where faults can hide from testing. IEEE
Softw., 8(2):41–48, 1991.

[26] Jeffrey M. Voas, Keith W. Miller, and Jeffery E.
Payne. A comparison of a dynamic software testability
metric to static cyclomatic complexity. In in Second
International Conference on Software Quality
Management, pages 431–445. Publications, 1994.

[27] Tao Xie, D. Notkin, and D. Marinov. Rostra: a
framework for detecting redundant object-oriented
unit tests. Automated Software Engineering, 2004.

Proceedings. 19th International Conference on, pages
196–205, Sept. 2004.

[28] Sai Zhang and Jianjun Zhao. On identifying bug
patterns in aspect-oriented programs. Computer
Software and Applications Conference, Annual
International, 1:431–438, 2007.

[29] Jianjun Zhao. Measuring coupling in aspect-oriented
systems. In Information Processing Society of Japan
(IPSJ, pages 14–16, 2004.

