
Dynamic Interpretation for Dynamic Scripting Languages

Kevin Williams, Jason McCandless and David Gregg

{kwilliam, mccandjm, david.gregg}@cs.tcd.ie

Trinity College Dublin

Abstract

Dynamic scripting languages offer programmers increased

flexibility by allowing properties of programs to be defined

at run-time. Typically, program execution begins with an in-

terpreter where type checks are implemented using condi-

tional statements. Recent JIT compilers have begun remov-

ing run-time checks by specializing native code to program

properties discovered at JIT time.

This paper presents a novel intermediate representation

for scripting languages that explicitly encodes types of vari-

ables. The dynamic representation is a flow graph, where

each node is a specialized virtual instruction and each edge

directs program flow based on control and type changes in

the program. The interpreter thus performs specialized exe-

cution of whole programs. We present techniques for the ef-

ficient interpretation of our representation showing speedups

of greater than 2x over static interpretation, with an average

speedup of approximately 1.3x.

1. Motivation

Scripting language virtual machines (VMs) typically com-

pile high-level source code into an array of low-level op-

codes (bytecodes). They then use a standard interpretation

loop to execute the array of opcodes. Run-time type checks

are implemented with either conditional statements or switch

statements. Performing these type checks forms a significant

portion of program execution. These costs seem unnecessary

especially when we realize the same variable types are in-

evitably rechecked as loop iterations repeat the execution of

the same block of code.

Recent research has shown the advantages of type spe-

cialization in JIT compilation [19, 10]. However, little re-

search exists on the specialization of interpreters for script-

ing languages. We propose a scripting language representa-

tion and interpretation technique that performs specialized

execution of dynamic code. We present a dynamic inter-

mediate representation (DIR) which explicitly encodes the

types of variables at each point of execution. The DIR is a

flow graph, where each node is a specialized virtual instruc-

tion and each edge directs program flow based on control

and type changes in the program. The proposed DIR there-

fore has a specialized path in the graph for every sequence

of control and type changes found during execution.

In this paper we present the initial development of our

prototype implementation in the Lua Virtual Machine [12,

13]. We present the design of our dynamic representation as

well as the techniques used for its efficient interpretation. We

illustrate our representation with a motivating example and

present our plans for future interpreter optimizations. We

compare the interpretation of our representation to the stan-

dard Lua implementation and show early speedups reaching

a max of 2.13x and an average of 1.3x. We present reduc-

tions in the total number of instructions executed including

reductions in conditional branches (used in interpreter type

checking) as well as decreases in data and instruction cache

accesses.

2. Background

All high level programming languages have type systems.

A type system defines a set of valid values and a set of

operations that can be applied to those values. The type

system allows high level languages to detect and prevent

invalid operations such as an arithmetic operation between

two strings. The types of variables can be defined statically

at compile time, or dynamically at run time. Languages

such as C and Java have static type systems; whereas Perl,

Python and Lua are dynamically typed. In a statically typed

language, the type of a value that a variable can contain is

determined at compile time. In dynamically typed languages

however, variables can contain values of any type and each

time an operation is applied to a variable during program

execution the type of the variable must be checked. This

typically adds a significant overhead to executing programs

in dynamically typed languages. A goal of much research is

to reduce or eliminate dynamic type checks in compilers or

virtual machines for dynamically typed languages [3, 10, 19,

17].

Trinity College Dublin, Department of Computer Science, Technical Report 2009 1 2009/9/11

The Lua VM supports nine variable types: NIL, BOOLEAN,

LIGHTUSERDATA, NUMBER, STRING, TABLE, FUNCTION,

THREAD, USERDATA. Variables are stored in a (type,value)

pair called a ‘tagged value’. The type field of this structure

is a byte and the value field is a union of values accessed by

the VM depending on the value of the type tag.

The Lua VM is a register based machine. Instructions ex-

ecuted by the interpreter access ‘virtual registers’ stored in

the VM’s call stack. There are thirty eight instructions in

the Lua instruction set [16]. Instructions are 32 bits wide

and contain an opcode and between one and three operands.

Operands can either index a register or declare a constant

value. Instructions are stored in arrays. The executing in-

terpreter accesses this array through a program counter in-

dex. The index is updated by each instruction. Standard in-

structions simply increment the counter to the next index

while conditional branch and loop instructions increment the

counter by an offset value. The interpreter then dispatches

the instruction indexed by the program counter. In interpre-

tation, dispatching is the process of sending interpretation to

the correct location for the implementation of the program’s

opcode. In this paper we will refer to this representation as

the static intermediate representation (or SIR) and to the in-

terpretation technique as static interpretation.

3. Dynamic Intermediate Representation

In this section we present the DIR we propose for the spe-

cialized interpretation of Lua programs. Our representation

is a flow graph where nodes represent specialized instruc-

tions and edges represent either control-flow or type-flow.

Type-flow provides a path for each variable type defined by

the node’s operation. These paths provide the opportunity

for type specialization. As every type change results in a new

path, all variable types are known at every point in execution.

The interpreter therefore achieves complete specialization of

whole programs.

Paths in the graph are built on demand, meaning only

those control flow and type flow paths which occur dur-

ing execution are ever created. Nodes on paths are built

one-by-one. As complete knowledge of local types is avail-

able, creation of a new node and selection of its special-

ized instruction is directed by the types of the instruction’s

operands. The program’s structure and behavior is defined

by the SIR generated by the script compiler (the Lua com-

piler in our case). Hence construction of the dynamic flow

graph is guided by the SIR. The rest of this section describes

the structure of nodes forming our DIR followed by a dis-

cussion of some of the specializations performed on the Lua

instruction set.

3.1 Standard Node

The most basic node in our representation contains three

fields: (1) the opcode of the specialized instruction, (2) a

pointer to the array of live types and (3) a pointer to the

next node in the path. Instructions which use this basic node

structure always result in the same control and type flow.

Examples of such instructions include loading of constant

values, arithmetic instructions and direct branches. Figure

1(a) sketches the structure of this node and Listing 1(e)

shows a pseudo-implementation of its dispatch.

3.2 Conditional Node

Conditional nodes have all the fields of a standard node

and an additional pointer to a target node. They are used

to implement instructions that can result in two paths of

control flow but never result in any type changes. Examples

of such instructions include conditional instructions such

as equal to, greater than and less than, as well as loop

instructions which control the flow of loops. Figure 1(b)

sketches the structure of this node and Listing 1(f) shows

a pseudo-implementation of its dispatch. Here we can see a

condition statement defining the direction of execution.

3.3 Type-Directed Node

Type-directed nodes dispatch the next node based on the type

of the operation’s result variable. This node has three fields,

the first two fields are the same as the standard node fields.

The third field is an array of target nodes. Each entry in the

array is a pointer to the first node of a new path. During

execution, the type of the result of the operation is used to

index the target array. The node selected is dispatched and

execution continues down that path.

These nodes are used at any point where there is a single

change of variable type and no change in control flow (i.e.

all paths exiting the node execute the same instructions, the

difference between paths is the types they are specialized

to). The Lua language has nine types and so the dispatch

array for our implementation has nine entries. Figure 1(c)

sketches the structure of this node and Listing 1(g) shows

a pseudo-implementation of its dispatch. Here we can see

that the instruction defines some variable in dest reg. This

register has two fields, a value and a type. The type is used

to index the dispatch array.

3.4 Call Node

Recall that each node in the DIR is an instruction special-

ized to a set of local variable types. Therefore, call nodes

represent a call site and a known set of parameter types. A

key/value mapping structure maps the call node to a function

and the set of parameter types. The key for this mapping

is the address of the called function. The value returned is

the entry node of the function in the dynamic representation.

The effect of this mapping is a flow of types across function

boundaries.

In dynamic languages, the function called at a given point

may change from execution to execution as functions are

treated as first-class values. In practice, our experiments

show that the majority of call points have a single called

function, with a few having more than one. As a result of this

Trinity College Dublin, Department of Computer Science, Technical Report 2009 2 2009/9/11

int opcode;

char* type;

Node* next;

(a) Standard Node

int opcode;

char* type;

Node* fallthrou;

Node* target;

(b) Conditional Node

int opcode;

char* type;

Node* target[9];

(c) Type-Directed node

int opcode;

char* type;

Table<Instr*,Node*> call table;

Node* mru call node;

Instr* mru call key;

Table<Node*,Node*> return table;

Node* mru return node;

Node* mru return key;

(d) Call Node

1 node = node->next;

2 dispatch(node->opcode);

(e) Standard Dispatch

1 if(<cond>)

2 node = node->target;

3 else

4 node = node->fallthrou;

5 dispatch(node->opcode);

(f) Conditional Dispatch

1 dest_reg = ...

2 node=node->target[dest_reg->type];

3 dispatch(node->opcode);

(g) Type-Directed Dispatch

1 pc = lua_function_init();

2 if(node->mru_call_key == pc)

3 node = node->mru_call_value;

4 else

5 node = lookup(node,pc);

6 dispatch(node->opcode);

(h) Call Dispatch

1 callnode = callstack->function->savednode;

2 decrement_lua_call_stack();

3 if(callnode->mru_return_key == node)

4 node = callnode->mru_return_value;

5 else

6 node = lookup(callnode,node);

7 dispatch(node->opcode);

(i) Return Dispatch

Figure 1. Node Structures and interpreter dispatch techniques.

profile information, call node mappings are implemented ef-

ficiently using two arrays. One array to store keys of func-

tions and the second to store the value of nodes. A linear

search of the key array will find the index of the correct node

in the value array. Once found, this node can be dispatched in

the usual way. Our implementation further improves the ef-

ficiency of this search by storing the most recently used key

and value in ‘cached’ fields of the node. In practice these

cached fields are usually a correct match, so linear searches

only occur in a small number of cases.

3.5 Return Node

Having completed execution of a function, control flow must

return to the calling function. As is the case for call nodes,

return nodes represent a return instruction and a set of re-

turn types. Hence, an equivalent table mechanism using

(key,value) pairs to find the next node is also used in re-

turn nodes. The return table is located in the calling node, as

functions may regularly be called from different call sites but

individual call sites rarely call multiple functions. Storing

the return table in the call site therefore reduces the number

of (key,value) pairs in a table and improves the search time

for the correct key. Call nodes are stored in stack frames on

the Lua stack and accessed from the stack at the end of each

function.

The combination of our call/return mappings results in

the inter-procedural type profiling of all function calls for

any number of parameter and return variables (a powerful

asset for JIT compilation).

3.6 Instruction Specialization

This section provides a brief overview of the set of instruc-

tions in the Lua VM and the range of specialization our in-

terpreter performs.

1. Register Loads: Several different instructions in the Lua

instruction set implement different types of loads. A spe-

cialization applicable to all of these instructions is the as-

signment of type. A register in Lua stores a value and a

type. Commonly a load instruction loads a variable of the

same type from a source register to a destination register.

In these cases we have removed the redundant assign-

ment of type to the destination register.

2. Arithmetic Operations: The usual set of arithmetic in-

structions are available in the Lua instruction set. Static

implementations of these operations first check that both

operands are of type NUMBER before proceeding with the

operation. Having full type knowledge of variables, our

specialized implementations of arithmetic instructions do

not require type checking and simply perform the desired

operation. The same is true for string operations like con-

catenation.

3. Table Access: Tables are the sole data structuring mech-

anism in the Lua language. They are used to implement a

Trinity College Dublin, Department of Computer Science, Technical Report 2009 3 2009/9/11

wide range of data structures. They are associative struc-

tures and can be indexed by any value and can store val-

ues of any type. They contain two separate parts (1) a

hash part, for storing values indexed by hashed values

and (2) an array part for storing values indexed by integer

keys. Our implementation provides specialized table ac-

cess based on the type of the key. The wide use of tables

in Lua makes this specialization an important optimiza-

tion for overall performance.

4. Conditional Branches: The Lua instruction set has sev-

eral different conditional instructions. These instructions

compare two values and direct control flow based on the

result of these comparisons. Valid comparisons can only

be made between two values of the same type. Each con-

ditional instruction in the instruction set is therefore spe-

cialized to the type of its operands. The value of this

specialization is large because type checking in these in-

structions is performed by an expensive ANSI C switch

statement.

4. Motivating Example

4.1 SIR

Figure 2 shows an example of a Lua implementation of the

well known Sieve of Eratosthenes algorithm. The program

calculates all prime numbers in the first N natural numbers.

The implementation presented in Figure 2(a) marks all num-

bers which are not prime in the flags table with the boolean

value true. At the end of this program all prime numbers will

remain unmarked in the flags table.

Figure 2(b) is the SIR generated by the Lua compiler.

Execution of this opcode results in the control flow pattern

depicted in Figure 2(c). This graph is presented to illustrate

the structure of a static flow graph to the reader and is never

constructed at any point in static interpretation.

4.2 DIR

Figure 3 is an illustration of the graph that is constructed

and interpreted by our dynamic interpreter for the Sieve of

Eratosthenes program. The graph has twenty-six nodes in

total. Each node has three labels, the first is a letter (a–z)

which the authors will use for referencing nodes during dis-

cussion. The second is a number (1–15) which identifies the

equivalent static instruction that the node specializes (found

in Figure 2(b)). The last label is the opcode name. Opcodes

in our DIR are specialized to the types of variables they

are operating on. For example, node v is an add operation

operating on two numbers, therefore the opcode selected is

add number number.

Edges in the graph represent program flow. Edges with

no labels represent fall-through flow, i.e. instructions which

always dispatch to the same next instruction in the program.

Control flow edges are labeled loop branch and cond branch.

These edges represent control flow dispatches for branch

instructions. The remaining edges are type flow edges. In

1 local N = 100

2 local flags = {}

3 for i = 2, N do

4 if not flags[i] then

5 for k = i+i, N, i do

6 flags[k] = true

7 end

8 end

9 end

(a) Lua source code, a high-level rep-

resentation.

1 loadk r0 k0 ; r eg0 = c o n s t a n t 0

2 newtable r1 0 0 ; r eg1 = new t a b l e (0 , 0)

3 loadk r2 k1 ; r eg2 = c o n s t a n t 1

4 move r3 r0 ; r eg3 = reg0

5 loadk r4 k2 ; r eg4 = c o n s t a n t 2

6 forprep r2 L15 ; pe r fo rm f o r l o o p prep , go to [1 5]

7 gettable r6 r1 r5 ; r eg6 = reg1 [reg5]

8 test r6 L15 ; i f reg6 , go to [9] e l s e go to [1 5]

9 add r6 r5 r5 ; r eg6 = reg5 + reg5

10 move r7 r0 ; r eg7 = reg0

11 move r8 r5 ; r eg8 = reg5

12 forprep r6 r1 ; pe r fo rm f o r l o o p prep , go to [1 4]

13 settable r1 r9 k3 ; r eg9 [reg1] = c o n s t a n t 3

14 forloop r6 L13 ; i f loop , go to [1 3] e l s e go to [1 5]

15 forloop r2 L7 ; i f loop , go to [7] e l s e [end]

(b) Lua opcode, a low-level representation.

(a) 1 loadk

(b) 2 newtable

(c) 3 loadk

(d) 4 move

(e) 5 loadk

(f) 6 forprep

(o) 15 forloop

(g) 7 gettable

(h) 8 test

(i) 9 add

(j) 10 move

(k) 11 move

(l) 12 forprep

(n) 14 forloop

(m) 13 settable

(c) An ‘imaginary’ con-

trol flow graph for the

static interpretation of

the Sieve of Eratosthenes

algorithm.

Figure 2. A Lua implementation of the Sieve of Eratos-

thenes algorithm.

Trinity College Dublin, Department of Computer Science, Technical Report 2009 4 2009/9/11

Initialisation

Outer loop first iteration

Outer loop later iterations

(a) 1 loadk_number

(b) 2 newtable

(c) 3 loadk_number

(d) 4 move_number

(e) 5 loadk_number

(f) 6 forprep_number_number_number

(l) 15 forloop_lt_number_number_number

(g) 7 gettable_table_number

 loop branch

(h) 8 test_nil_1

 nil

(i) 9 add_number_number

(j) 10 move_number

(k) 11 move_number

(m) 12 forprep_number_number_number

(p) 14 forloop_lt_number_number_number

(o) 13 settable_table_number

 loop branch

(n) 12 forprep_number_number_number

(q) 14 forloop_lt_number_number_number_number

 loop branch

(y) 15 forloop_lt_number_number_number_number

(r) 7 gettable_table_number

 loop branch

(t) 8 test_nil_1

 nil

(u) 8 test_boolean_1

 boolean

(v) 9 add_number_number

 cond branch

(z) 15 forloop_lt_number_number_number_number

 cond branch

(s) 7 gettable_table_number

 nil

 boolean

(w) 10 move_number_number

 loop branch

(x) 11 move_number_number

Figure 3. The Sieve of Eratosthenes dynamic representation

built and executed by our interpreter.

this graph, they are labeled either nil or boolean. An example

of type flow can be found in nodes g and r. These nodes

are table fetch instructions and return a value from a table.

They therefore dispatch based on the type of the return

value. In node g there is only a single path, for type nil,

as only one type value is ever returned at this point. In

contrast, node r has two paths where values of type nil

and boolean are returned. The two paths exit to the same

program instruction, however the next and all subsequent

instructions are specialized to the returned type.

The Sieve of Eratosthenes program is implemented with

fifteen static Lua instructions. When these instructions are

specialized to the local variable set found during execution,

twenty-six specialized instructions are generated. In Figure 3

we have clustered these nodes into three sets. The first cluster

represents the instructions that initialize the variables of the

program. The second cluster is the first iteration of the for-

loop spanning the static instructions 5–15. The final cluster

is all subsequent iterations of the same loop. Two separate

paths are generated for iterations of the outer loop as there

are uninitialized variables in the first iteration. Only after the

first iteration completes does the graph become stable.

5. Experimental Evaluation

5.1 Experimental Setup

The following sections provide a comparison of hardware

performance and running times between static and dynamic

interpretation. The test machine used to run these experi-

ments has two Intel Xeon Dual Core 2.13Ghz processors

each with 4MB caches and 12GB of memory. The operating

system is Ubuntu 9 with x86 64 GNU/Linux kernel 2.6.29.2.

Lua source code is version 5.1.4. We have used the GNU gcc

compiler version 4.3.3. Both the static and dynamic versions

of code were compiled with the optimization options ‘-O3

-fomit-frame-pointer’. The hardware performance counters

presented were collected using the PAPI profiling tool.

Our micro-benchmark set is taken from the Computer

Language Benchmarks Game [7] and the Great Win32 Com-

puter Language Shootout [11]. A lack of formal benchmark

sets for scripting languages make these suites a common

source of benchmarking for scripting language implemen-

tations [10, 3, 6, 17].

Figures 4(a) to 4(e) present hardware performance coun-

ters. Results are presented relative to the absolute result for

the static interpreter. Hence, in all these figures, static bars

are at 100% and the dynamic versions show percentage in-

creases or decreases relative to the absolute static numbers.

5.2 Machine Instructions Issued

We first look at the total number of machine instructions is-

sued to execute both static and dynamic interpreters (see Fig-

ure 4(a)). With the exception of one benchmark, all show a

decrease in the number of machine instructions issued. This

shows that the combination of dynamic interpreter dispatch

Trinity College Dublin, Department of Computer Science, Technical Report 2009 5 2009/9/11

Static

Dynamic

 0%

 20%

 40%

 60%

 80%

 100%

 120%

b
in

ar
y

−
tr

ee
s

fa
n

n
k

u
ch

fa
st

a

k
−

n
u

cl
eo

ti
d

e

m
an

d
el

b
ro

t

n
−

b
o

d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n

o
rm

re
v

er
se

−
co

m
p

th
re

ad
−

ri
n

g

ac
k

er
m

an
n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b

o
n

ac
ci

h
ea

p
so

rt

m
at

ri
x

−
m

u
l

n
es

te
d

−
lo

o
p

s

ra
n

d
o

m
n

u
m

g
en

st
ri

n
g

−
co

n
ca

t

m
ea

n

In
st

ru
ct

io
n

s
is

su
ed

(a) Instructions issued

Static

Dynamic

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

b
in

ar
y

−
tr

ee
s

fa
n

n
k

u
ch

fa
st

a

k
−

n
u

cl
eo

ti
d

e

m
an

d
el

b
ro

t

n
−

b
o

d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n

o
rm

re
v

er
se

−
co

m
p

th
re

ad
−

ri
n

g

ac
k

er
m

an
n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b

o
n

ac
ci

h
ea

p
so

rt

m
at

ri
x

−
m

u
l

n
es

te
d

−
lo

o
p

s

ra
n

d
o

m
n

u
m

g
en

st
ri

n
g

−
co

n
ca

t

m
ea

n

C
o

n
d

it
io

n
al

 b
ra

n
ch

 i
n

st
ru

ct
io

n
s

(b) Conditional branch instructions

Static

Dynamic

 0%

 20%

 40%

 60%

 80%

 100%

 120%

b
in

ar
y
−

tr
ee

s

fa
n
n
k
u
ch

fa
st

a

k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t

n
−

b
o
d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n
o
rm

re
v
er

se
−

co
m

p

th
re

ad
−

ri
n
g

ac
k
er

m
an

n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b
o
n
ac

ci

h
ea

p
so

rt

m
at

ri
x
−

m
u
l

n
es

te
d
−

lo
o
p
s

ra
n
d
o
m

n
u
m

g
en

st
ri

n
g
−

co
n
ca

t

m
ea

n

L
ev

el
 1

 d
at

a
ca

ch
e

ac
ce

ss
es

(c) Level 1 data cache accesses

Static

Dynamic

 0%

 20%

 40%

 60%

 80%

 100%

 120%

b
in

ar
y
−

tr
ee

s

fa
n
n
k
u
ch

fa
st

a

k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t

n
−

b
o
d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n
o
rm

re
v
er

se
−

co
m

p

th
re

ad
−

ri
n
g

ac
k
er

m
an

n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b
o
n
ac

ci

h
ea

p
so

rt

m
at

ri
x
−

m
u
l

n
es

te
d
−

lo
o
p
s

ra
n
d
o
m

n
u
m

g
en

st
ri

n
g
−

co
n
ca

t

m
ea

n

L
ev

el
 1

 i
n
st

ru
ct

io
n
 c

ac
h
e

ac
ce

ss
es

(d) Level 1 instruction cache accesses

Static

Dynamic

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

 160%

 180%

b
in

ar
y
−

tr
ee

s

fa
n
n
k
u
ch

fa
st

a

k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t

n
−

b
o
d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n
o
rm

re
v
er

se
−

co
m

p

th
re

ad
−

ri
n
g

ac
k
er

m
an

n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b
o
n
ac

ci

h
ea

p
so

rt

m
at

ri
x
−

m
u
l

n
es

te
d
−

lo
o
p
s

ra
n
d
o
m

n
u
m

g
en

st
ri

n
g
−

co
n
ca

t

m
ea

n

C
y
cl

es
 s

ta
ll

ed
 o

n
 a

n
y
 r

es
o
u
rc

e

(e) Cycles stalled on any resource

Static

Dynamic

 0%

 50%

 100%

 150%

 200%

 250%

 300%

 350%

b
in

ar
y
−

tr
ee

s

fa
n
n
k
u
ch

fa
st

a

k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t

n
−

b
o
d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n
o
rm

re
v
er

se
−

co
m

p

th
re

ad
−

ri
n
g

ac
k
er

m
an

n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b
o
n
ac

ci

h
ea

p
so

rt

m
at

ri
x
−

m
u
l

n
es

te
d
−

lo
o
p
s

ra
n
d
o
m

n
u
m

g
en

st
ri

n
g
−

co
n
ca

t

m
ea

n

M
em

o
ry

 U
se

(f) Memory Use

Figure 4. (a–e) present hardware performance counters collected using the PAPI profiling tool. All results are presented

relative to the absolute result for static interpretation. (f) presents memory use in the heap and stack, collected by polling the

process status information from the Linux proc file-system.

Trinity College Dublin, Department of Computer Science, Technical Report 2009 6 2009/9/11

and instruction specialization results in fewer instructions

than the standard (and cheaper) static interpreter dispatch

and (more expensive) run-time conditional type-check.

The benchmark that does not achieve a decrease in in-

structions issued is the thread-ring benchmark. This pro-

gram benchmarks the Lua coroutine library, executing many

coroutine yield and resumes. At the time of experimenta-

tion, our prototype interpreter had no efficient implemen-

tation for resuming from coroutines after yields and hence

each resume requires a lookup of the correct resume node

(removing this lookup is a future goal of the project).

5.3 Branch Instructions

The effect of interpreter specialization can be best seen in

the dramatic decrease of conditional branch machine in-

structions (again across all benchmarks except thread-ring).

By far the best performing benchmark in this experiment is

the mandelbrot benchmark. This benchmark executes many

arithmetic instructions. And the greater than 75% reduction

in conditional branches is achieved largely from specializ-

ing those arithmetic instructions. Other notable results are

for array-access and matrix-mul both of which have many

number-key table accesses. All of these accesses are special-

ized to the key type.

5.4 Cache Access

Figures 4(c) and 4(d) present Level 1 cache accesses for both

the data cache and instruction cache. Interpreter dispatch of

nodes requires more loads compared to an equivalent byte-

code dispatch. Because of this, an overall increase in data

cache accesses would be expected. Surprisingly, dynamic

interpretation reduces the overall number of data cache ac-

cesses. The reduction in data cache accesses is a result of

removing type accesses for run-time type checking. The in-

struction cache has an overall reduction in cache accesses as

would be expected after a reduction in instructions issued.

5.5 Processor Stalls

Despite the reduction in cache accesses, Figure 4(e) shows

that the DIR implementation leads to many more processor

stalls across almost all benchmarks. There are several fac-

tors contributing to these stalls. An increase in data cache

misses is recorded, caused by the inefficient allocation of

nodes. Memory for individual nodes is currently allocated on

a node-by-node basis. The result of this allocation is many

nodes scattered inefficiently around memory. The allocation

also contributes to an increase in TLB misses. Implement-

ing specialized versions of interpreter instructions leads to

an increase in instruction size which leads to a correspond-

ing increase in instruction cache misses. A more compact

allocation of nodes is expected to improve data cache perfor-

mance in future iterations of our interpreter — where DIRs

will be stored in contiguous blocks of memory, managed by

the VM.

5.6 Memory

DIRs require a separate node for each specialization of an in-

dividual instruction. Programs which contain many changes

in control and type flow will result in large graphs and an

increase in memory use. Figure 4(f) shows this behavior in

a couple of our benchmarks — fasta and n-body. They both

contain large increases in memory use as the data sets they

are operating on are small and hence the DIR is relatively

large.

5.7 Performance

Figures 5(a) and 5(b) show running times and speedups for

our benchmark set. Benchmarks whose bottleneck is the ex-

ecution of instructions that perform lots of type checking

achieve a very favorable speedup. Other benchmarks whose

bottleneck is system library calls and non-specializable Lua

instructions see a smaller increase in performance. The in-

terpreter dispatch overhead of our DIR approach is greater

than that of bytecode dispatch. Despite this increased cost,

the only benchmark which achieves a significant slow down

is thread-ring and only because our current implementation

lacks an efficient coroutine resume mechanism.

6. Scope for Optimization

This paper has presented a dynamic intermediate program

representation that encodes both dynamic control flow and

variable type flow through a whole program. It has shown

interpreter dispatch techniques which enable the efficient

execution of the representation. It finally presented analy-

sis of the technique; comparing its performance to that of

a static equivalent. In order to present a fair comparison of

both techniques this paper has so far neglected the possibil-

ities of optimization of the dynamic representation. In this

section we present some thoughts on our future work and

the types of optimization we plan to improve performance

in the future.

Interpreter Dispatch: The Lua 5.1 implementation is de-

signed to be as portable as possible. For these reasons, the

Lua authors have used a switch based interpreter dispatch.

Our current representation copies this dispatch technique.

More efficient dispatch techniques have been established

in previous work. Threading techniques [2] such as token

threading and direct threading are equally applicable to our

representation. As specialization reduces the bottleneck of

type checks, instruction dispatch becomes more and more

important to overall performance.

Register Caching: A popular optimization among stack

based virtual machines is to cache the top value(s) of the

stack in machine registers [8]. An equivalent approach to

caching virtual registers in machine registers is to date un-

Trinity College Dublin, Department of Computer Science, Technical Report 2009 7 2009/9/11

Static

Dynamic

 0

 2

 4

 6

 8

 10

 12

 14
b

in
ar

y
−

tr
ee

s

fa
n

n
k

u
ch

fa
st

a

k
−

n
u

cl
eo

ti
d

e

m
an

d
el

b
ro

t

n
−

b
o

d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n

o
rm

re
v

er
se

−
co

m
p

th
re

ad
−

ri
n

g

ac
k

er
m

an
n

ar
ra

y
−

A
cc

es
s

h
as

h
−

A
cc

es
s

fi
b

o
n

ac
ci

h
ea

p
so

rt

m
at

ri
x

−
m

u
l

n
es

te
d

−
lo

o
p

s

ra
n

d
o

m
n

u
m

g
en

st
ri

n
g

−
co

n
ca

t

m
ea

n

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

(a) Execution time in seconds

Static

Dynamic

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

b
in

ar
y
−

tr
ee

s

fa
n
n
k
u
ch

fa
st

a

k
−

n
u
cl

eo
ti

d
e

m
an

d
el

b
ro

t

n
−

b
o
d
y

n
si

ev
e

n
si

ev
e−

b
it

s

p
ar

ti
al

−
su

m
s

re
cu

rs
iv

e

sp
ec

tr
al

−
n
o
rm

re
v
er

se
−

co
m

p

th
re

ad
−

ri
n
g

A
ck

er
m

an
n

A
rr

ay
−

A
cc

es
s

H
as

h
−

A
cc

es
s

F
ib

o
n
ac

ci

H
ea

p
so

rt

M
at

ri
x
−

M
u
l

N
es

te
d
−

L
o
o
p
s

R
an

d
o
m

−
N

u
m

−
G

en

S
tr

in
g
−

C
o
n
ca

t

m
ea

n

P
er

fo
rm

an
ce

 S
p
ee

d
u
p

(b) Speed up from a baseline of the static interpreter

Figure 5. A comparison of run-time performance.

established1. Using our dynamic representation we plan to

specialize instructions with implicit register operands. Due

to the number of virtual registers it is not advisable to cache

all registers. The authors plan to create a mapping of ma-

chine registers to virtual registers. Region boundaries will be

given header and footer nodes for loading and storing cached

registers. Caching will be implemented by need, meaning

only the most frequently used registers will be cached.

Super Nodes: Another common interpreter optimization is

to concatenate common pairs of instructions together to form

a single instruction [18]. This technique is equally applica-

ble to dynamic representations. The authors plan to use es-

tablished techniques in the field to implement super node

optimizations [9, 5].

Loop Optimizations: Loops often provide opportunities for

optimization in compilers — as is the case in our interpreter.

We plan to leverage the type knowledge of variables inside

loops to eliminate array bounds checking and move memory

allocation outside the loop body. Table access nodes can be

further specialized to ‘cache’ the array pointer; we believe

this will lead to a massive performance gain. The number

type in Lua is implemented using ‘doubles’. We plan to op-

timize loop counters by specializing them to integers when

we know the loop bound is constant.

Dead Node Removal: Specialization of operations can lead

to redundant nodes. For example in Figure 3, node t spe-

cializes the TEST instruction to an operand of type NIL. The

result of this operation is always false and control flow will

always follow the FALSE path. This is illustrated in Figure 3

as there is only a single path leaving the TEST node, which

1 It is in-fact a goal of the JavaScript Squirrel-fish VM,

http://webkit.org/blog/189/announcing-squirrelfish/

is a conditional node. The TRUE path is never built as it is

never executed. Nodes specialized to this level can be re-

moved and all entry nodes can be directed to the target exit

node.

Library Nodes: Scripting languages often provide standard

libraries to perform complex operations like STRING, MATH

and IO functions. The authors plan to inline these operations

into the interpreter. This will remove the stack incrementing

and decrementing required for their execution and will im-

prove performance of the functions themselves as they are

heavily inlined into the interpreter.

JIT Compilation: Mixed-mode VMs begin executing pro-

grams in a profiling interpreter. When a ‘hot’ region of code

is identified a JIT compiler compiles the opcodes to a native

machine code representation of the same program. Individ-

ual JIT compilers often favor a single level of granularity as a

compilation unit (e.g. functions, loops or traces). Optimiza-

tion and specialization of a region of code can be based on:

(1) analysis performed at JIT time [17] or (2) recording a sin-

gle run of execution and compiling based on behavior found

during that execution [10]. Future executions of the same re-

gion of code may or may not follow the same type and con-

trol flow as the compiled region and accordingly will remain

in native code or request the compilation of further paths.

This approach to mixed-mode execution can cause common

program flow structures such as nested loops to make mul-

tiple calls to the JIT compiler. While modern JIT compilers

have established workarounds to this problem, the behavior

remains undesirable.

We suggest that the use of our DIR will improve the cur-

rent model of static interpretation followed by speculated

specialization. When a hot region of code is discovered, a

JIT compiler could compile to native code guided by the

Trinity College Dublin, Department of Computer Science, Technical Report 2009 8 2009/9/11

verbose profile of the DIR. Optimizations of control-flow

paths and specialization of operations could be performed

with greater precision, while granularity levels could be de-

termined based on the needs and behavior of the hot region.

For example, a loop containing an if-then-else statement as a

body may be compiled at either a loop or trace granularity. A

trace would be chosen when either of the conditional paths

were executed more often than the other. However, in the

case where both paths are equally likely, the JIT compiler

could choose to compile the whole loop and avoid further

compilation and eliminate expensive entering and exiting of

native regions. In summary, we claim our proposed represen-

tation has two advantages over current models: (1) special-

ization can be achieved at all levels of execution from inter-

pretation to native execution of JIT code and (2) more effec-

tive JIT shapes and levels of specialization could be achieved

as compilation is directed by a full program profile created

by the dynamic interpreter.

7. General Applicability

The DIR presented in this paper is implemented in the Lua

VM. However, the technique is applicable to other scripting

languages — some require minor changes to their variable

structures and some would specialize instructions in differ-

ent ways to Lua. For example, in Python, arithmetic instruc-

tions can overflow from one type (int) into another (long).

Arithmetic behavior like this would be modeled with a type-

directed node (see Figure 1(c)). In general, dynamic script-

ing language implementations have some ‘tagged value’

structure to define (type,value) pairs. In Lua, these tagged

values have a byte which encodes one of the nine possi-

ble types. Our dynamic interpreter uses this byte to index

the array of targets for node dispatch. In Python, tagged

values use a pointer to a type object; however objects of

‘built-in’ types can be augmented with extra information.

The data structure for objects of these types would need

to be extended with a type indicator byte. In PHP, tagged

values called ZVals have a type byte which encodes one of

eight basic types. Javascript implementations differ in their

bytecode format. In the SpiderMonkey implementation, the

tagged value, termed jsval, is a machine word with three

bits representing the type, thus some decoding would be

required.

8. Related Work

Scripting language specialization has been the topic of only a

few recent research publications. All of these research efforts

have been directed at either ahead-of-time compilation and

analysis or just-in-time compilation and specialization of

run-time variables.

Gal et al. wrote a tracing JIT compiler for the JavaScript

VM running in the Firefox web browser [10]. They suc-

cessfully showed that compiling at a trace granularity al-

lowed for the specialization of JIT compiled code. They used

type guards at trace entry and side-exits at selected points in

the trace to guarantee type-safe execution. They used SSA-

based trace trees to perform aggressive optimizations and

presented trace formations to handle the problem of nested

control flow. Their interpreter, which begins the execution of

all programs and performs the profiling of control flow (but

not type) uses ‘static interpretation’ techniques. Zaleski et

al. [23] presented a tracing JIT for the Java language. They

used direct calling dispatch techniques in their interpreter

to gradually develop a trace JIT of a hot region of code.

Rigo’s psyco [19] is a run time specialization technique for

the Python programming language. It performs run time spe-

cialization by need using a mixed execution/specialization

phase of execution to specialize JIT code fragments.

Biggar et al. presented phc, an ahead-of-time compiler

for the PHP language. They performed static analysis of

PHP programs and developed a compiler technique that links

with the language’s interpreter to enable correctness through

future iterations of the language [3]. Jensen et al. present

a static analysis infrastructure for the JavaScript language.

Their technique uses type inference and pointer analysis to

achieve precision rates greater than 90% in a large number

of benchmarks. Their technique, while powerful, has some

shortcomings. In their worst case they achieve 61% preci-

sion. These results show that the use of static analysis alone

is not sufficient to infer large numbers of types in all pro-

grams. The dynamic representation presented in this paper

guarantees 100% precision for all run-time local variables.

Bruening and Duesterwald [4] investigated strategies for

finding optimal JIT compilation unit shapes for Java pro-

grams. They explored strategies for minimizing compiled

code size and maximizing time spent in JIT code. They con-

cluded that using multiple levels of granularity in JIT com-

pilation could lead to greater performance. Work by Whaley

[22], and later by Suganuma et al. [20, 21] used dynamic

profiling inside the Java Virtual Machine’s interpreter to re-

duce compilation time by selecting and compiling smaller

sections of code they called partial methods (i.e. loops).

Larus presented whole program paths which capture a pro-

gram’s complete control flow [15]. An outcome of this work

was effective discovery of hot subpaths for programmers and

compilers to optimize. In Ammons’ and Larus’ retrospective

piece [1] they observe the success of program path optimiza-

tions in the JIT commuinity. The DIR in this paper similarly

builds program paths to improve interpreter efficiency.

Kistler and Franz [14] pioneered the concept of using tree

structures in the Java VM. The advantage of their tree repres-

netation over the original bytecode was a more compact rep-

resentation that contained more high-level information that

improved JIT compilation.

9. Conclusions

This paper has presented a novel approach to scripting lan-

guage specialization. The approach is the first stage of a

Trinity College Dublin, Department of Computer Science, Technical Report 2009 9 2009/9/11

project which plans to bring program specialization to all

levels of execution from interpretation to post-JIT native

execution. Our experiments have shown our interpretation

technique to be more efficient than existing techniques for

scripting languages. In future work we plan to bring further

efficiency to both interpretation and JIT compilation.

While our approach has shown performance to encourage

adoption of our technique in the wider community, we have

not addressed some of the potential scaling issues with our

representation. For the most part scripting languages are in

general type-stable, but the possibility still exists for a dy-

namic representation to grow to an unsuitably large size. A

study of potential profiles is required to analyze the risk of

programs which are pathological in type and/or control flow.

Possible solutions to any such programs could be to (1) limit

the number of paths allowed by creating unspecialized paths

in problem regions, (2) remove paths which may have be-

come obsolete or (3) require the existence of a static inter-

preter as a fall back processing unit.

We have claimed that our dynamic representation will

bring improvements to the area of JIT specialization. Our

future work includes plans to build an experimental JIT com-

piler which will make run-time decisions about compila-

tion units. Leaving these compilation decisions to run-time

should improve the quality of JIT compilation as whole pro-

gram profiles are available to guide appropriate compilation

units.

References

[1] G. Ammons and J. R. Larus. Improving data-flow analysis

with path profiles. SIGPLAN Not., 39(4):568–582, 2004.

[2] J. R. Bell. Threaded Code. Commun. ACM, 16(6):370–372,

1973.

[3] P. Biggar, E. de Vries, and D. Gregg. A practical solution for

scripting language compilers. In SAC ’09: Proceedings of the

2009 ACM symposium on Applied computing, pages 1916–

1923, New York, NY, USA, 2009. ACM.

[4] D. Bruening and E. Duesterwald. Exploring optimal com-

pilation unit shapes for an embedded just-in-time compiler.

In In Proceedings of the 2000 ACM Workshop on Feedback-

Directed and Dynamic Optimization FDDO-3, pages 13–20,

2000.

[5] K. Casey, D. Gregg, and M. A. Ertl. Tiger – an interpreter gen-

eration tool. Compiler Construction, pages 246–249, 2005.

[6] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal,

C. Wimmer, B. Eich, and M. Franz. Tracing for web 3.0: trace

compilation for the next generation web applications. In VEE

’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-

national conference on Virtual execution environments, pages

71–80, New York, NY, USA, 2009. ACM.

[7] CLBG. The Computer Language Benchmarks Game. Avail-

able at http://shootout.alioth.debian.org/, 2008.

[8] M. A. Ertl. Stack Caching for Interpreters. In PLDI ’95: Pro-

ceedings of the ACM SIGPLAN 1995 conference on Program-

ming language design and implementation, pages 315–327,

New York, NY, USA, 1995. ACM.

[9] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen:

a generator of efficient virtual machine interpreters. Softw.

Pract. Exper., 32(3):265–294, 2002.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,

M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-

dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,

M. Chang, and M. Franz. Trace-based just-in-time type spe-

cialization for dynamic languages. In PLDI ’09: Proceedings

of the 2009 ACM SIGPLAN conference on Programming lan-

guage design and implementation, pages 465–478, New York,

NY, USA, 2009. ACM.

[11] GWCLS. The Great Win32 Computer Language Shootout.

Available at http://dada.perl.it/shootout/, 2008.

[12] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The

Implementation of Lua 5.0. Journal of Universal Computer

Science, 11(7):1159–1176, July 2005.

[13] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The

evolution of lua. In HOPL III: Proceedings of the third ACM

SIGPLAN conference on History of programming languages,

pages 2–1–2–26, New York, NY, USA, 2007. ACM.

[14] T. Kistler and M. Franz. A tree-based alternative to java

byte-codes. International Journal of Parallel Programming,

27(1):21–33, 1999.

[15] J. R. Larus. Whole program paths. SIGPLANNot., 34(5):259–

269, 1999.

[16] K.-H. Man. A No-Frills Introduction to Lua 5.1 VM Instruc-

tions. In http://chunkspy.luaforge.net/. Lua Chunkspy Project,

2003.

[17] M. Pall. The LuaJIT Project. Available at http://luajit.org,

2008.

[18] T. A. Proebsting. Optimizing an ansi c interpreter with su-

peroperators. In POPL ’95: Proceedings of the 22nd ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 322–332, New York, NY, USA, 1995. ACM.

[19] A. Rigo. Representation-based just-in-time specialization

and the psyco prototype for python. In Proceedings of the

2004 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-based Program Manipulation, pages 15–26. ACM

Press, 2004.

[20] T. Suganuma, T. Yasue, and T. Nakatani. A region-based

compilation technique for a java just-in-time compiler. In

PLDI ’03: Proceedings of the ACM SIGPLAN 2003 confer-

ence on Programming language design and implementation,

pages 312–323, New York, NY, USA, 2003. ACM.

[21] T. Suganuma, T. Yasue, and T. Nakatani. A region-based

compilation technique for dynamic compilers. ACM Trans.

Program. Lang. Syst., 28(1):134–174, 2006.

[22] J. Whaley. Partial method compilation using dynamic profile

information. In OOPSLA ’01, pages 166–179, New York, NY,

USA, 2001. ACM.

[23] M. Zaleski, A. D. Brown, and K. Stoodley. Yeti: a gradually

extensible trace interpreter. In VEE ’07, pages 83–93, New

York, NY, USA, 2007. ACM.

Trinity College Dublin, Department of Computer Science, Technical Report 2009 10 2009/9/11

