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Abstract—Denial-of-service attacks have become a regular
occurrence on the Internet. The current architecture of the
Internet, coupled with the relative ease with which software bugs
can be exploited on Internet-connected hosts, provides a fruitful
environment for the creation of malicious traffic attacks. This
article proposes a novel DoS defence scheme based on Active
Queue Management (AQM) principles. Responsive Aggregate
Defence (RAD) provides effective penalisation of flooding DoS
attacks at the router queue. RAD combines protection of TCP-
like traffic behaviours, with a lightweight architecture that allows
scalable implementation on a wide variety of network scenarios.

I. INTRODUCTION

RAD is a router queueing scheme that works in conjunc-
tion with existing Active Queue Management approaches to
protect responsive TCP traffic from bandwidth-flooding DoS
attacks. RAD is designed as an additional queueing mechanism
located before the AQM algorithm at the router queue. The
RAD architecture comprises an AQM-like design philosophy
using relatively coarse grained queueing for scalability to
provide protection from flooding DoS attacks. RAD provides
aggregate-based active queueing, while the associated AQM
scheme manages the queue globally.

II. LITERATURE REVIEW

This section will discuss the current state of the research
literature regarding three main areas: Denial of Service attacks,
Active Queue Management schemes and analytical TCP mod-
eling. These three subjects come together in the design of the
RAD algorithm.

A. Denial of Service Attacks

Denial of service (DoS) attacks are one of the most signifi-
cant types of malicious traffic on the Internet. DoS attacks can
be defined as any attack whose goal is to render the victims
services inaccessible to other parties. A DoS attack renders
a host, or its network services, unavailable to other hosts.
Internet DoS attacks can be split in two categories [1]: software
exploits and flooding attacks. The former take advantage of
specific vulnerabilities in the software running at the victim
to make it unavailable. The latter send traffic to the victim with
the goal of exhausting the bandwidth or computing resources
available to it.

Distributed DoS attacks (DDoS) increase the attack in-
tensity and lower the possibility of effective response by

using multiple attacking machines, called zombies or bots.
In distributed reflector DoS (DRDoS) attacks [2] malicious
hosts send requests with the source address of the victim
to “reflector” hosts that respond to requests. These reflectors
will flood the victim with response packets for requests that
it never made. There are many schemes proposed for attack
detection; for instance, MULTOPS [3] focuses on the incoming
and outgoing packet rates, WADeS [4] uses an LRU cache
filter together with Wavelet variance analysis while Hussain
et al. [1] use header analysis and ramp-up behaviour. Other
researchers focus on discovering the source hosts of the attack
traffic, or “traceback” [5].

B. Active Queue Management

Active Queue Management denotes a class of algorithms de-
signed to provide improved queueing mechanisms for routers.
These schemes are called active because they dynamically sig-
nal congestion to sources; either explicitly, by marking packets
(e.g. Explicit Congestion Notification [6]) or implicitly, by
dropping packets. This is in contrast to Drop-Tail queueing
which is passive: packets are dropped if, and only if, the
queue is full. The first AQM scheme, RED, [7] estimates the
current congestion level on the network by keeping track of the
exponential weighted moving average (EWMA) of the queue
size. Sources are notified of congestion with a probability
that is an increasing function of the average queue length.
Many alternative AQM algorithms have been proposed since
the IETF recommendation [8], [9].

The more complex, fairness-oriented AQM schemes are not
necessarily effective against DoS traffic that can spoof IP
packet headers to conceal its presence. Aggregate Congestion
Control (ACC) [10] and RED-PD [11] are two AQM proposals
that aim to protect responsive TCP traffic from aggressive non-
responsive traffic. However, ACC and RED-PD are unable
to deal with malicious traffic that spoofs any of the packet
headers. There is a clear need for AQM-based algorithms that
are effective against malicious spoofed IP traffic.

C. TCP Modelling

TCP is currently the dominant transport protocol on the
Internet [12]. For DoS attack defence it is helpful to be able to
predict TCP behaviour for DoS attack defence. One indicator
of “good behaviour” of traffic on the Internet is the extent
to which it can be viewed as being TCP compliant. Thus,



malicious attack traffic may be identifiable, at least to some
degree, by comparing it with expected TCP-like behaviour.

TCP modelling has historically focused on the steady-state
behaviour of the TCP congestion control algorithm. Mathis et
al. provide a well known and relative simple TCP model [13],
with Padhye et al. [14] using a stochastic model of steady-state
TCP that offers better accuracy.

Other authors have focused on predicting the latency of
finite-length TCP transfers [12] by accounting for connection
establishment and closing. In [15] Ehsan et al. use a Markov
Chain model to more accurately model the TCP congestion
window after the first packet loss.

III. MODELING AVERAGE TCP BEHAVIOUR

In this section a simplified model of the average packet
rate of finite TCP flows is derived. This model captures
the main features of short-lived Web-like TCP flows, while
being dependant only on the number of transferred bytes, the
experienced average loss probability and round-trip time of the
connection. This allows for straight forward deployment of the
model at the router queue where the amount of information
available about the end hosts is limited.

The average packet rate during the data transfer period
of a finite TCP connection can be modeled as B = Wavg

RTT ,
where Wavg is the average value of the congestion window
maintained by the TCP source during the data transfer and
RTT is the round-trip time experienced by the source in
seconds. The RTT is approximated by a constant during the
flow’s lifetime; thus we ignore variations due to queueing
delays or other network conditions.

If we do not consider connection establishment and tear-
down, estimating Wavg is key to being able to predict average
TCP packet rates. TCP sources update the congestion window
(cwnd) during the data transfer period of each connection,
with the value of the window determining how many TCP
segments (packets) the source will send in each round-trip
time (RTT). Thus, Wavg = dp

L can also be seen as the average
packet rate, in packets per RTT, obtained by the flow; where
dp is the amount of data (packets) sent by the connection
during its data transfer period and L is the latency in RTTs
of transferring the data. To predict Wavg , we use recognized
TCP models [12], [15] to obtain equations for dp and L.

The predictive model described herein derives from the
transient model proposed in [15] and the study of TCP latency
in [12]. It divides the data transfer duration into two main
parts: the slow start phase in which cwnd grows exponentially,
and the congestion avoidance phase in which cwnd converges
towards a steady-state value. The detection of the first packet
drop is the event that causes the flow to transition from the
slow-start to the congestion avoidance window regime.

The model described in this section derives from that
proposed in [15], with cwnd evolved continuously in time.
For the remainder of the section, and unless explicitly stated,
the unit of time (or latency) used is RTT s.

A. Slow start phase

Slow start is the initial phase of each TCP connection in
which the congestion window is increased exponentially. The
window evolution in this phase can be characterised by

Wss(t) = Wi × rt (1)

where Wi = 1 ≤ cwnd ≤ 3 is the typical initial value of cwnd
used by the flow, r = 1 + 1

b with b indicating the number of
packets received before an ACK is sent (b > 1 when delayed
ACKs are being used) and t is the time elapsed since the
beginning of the transfer.

The number of packets already sent at time tn by the flow
in slow-start can be calculated by integrating Wssfrom 0 to
tn:

Dss(t) =
∫ tn

0

Wss =
(rtn − 1)Wi

ln r
(2)

From this we can also calculate the number of RTTs needed
to send s packets in slow-start as

R(s) = logr

(
1 +

s ln r

Wi

)
(3)

B. First packet loss

The initial slow-start phase ends either when the flow has
completed sending all the packets without loss or it suffers
the first packet drop. This event happens at time t0 since the
beginning of the transfer. The estimated number of packets
sent in slow-start is given in [15] as

dss =

{
1 + (1−(1−p)d)(1−p)

p if p > 0
d if p = 0

(4)

where d is the number of packets needed to deliver the
connection data excluding retransmits and p is the random
loss probability suffered by the flow. The time t0 can then be
estimated by calculating the time at which dss packets have
been sent in slow-start using (3) and (4),

t0 = R(dss) =





logr

(
1 + (1−(1−p)d)(1−p) ln r

p×Wi

)
if p > 0

logr

(
1 + d ln r

Wi

)
if p = 0

(5)

C. Congestion avoidance

Once the first loss occurs, cwnd converges towards a steady-
state window Wst [15]. This transient phase is important for
the modelling of mid-size transfers that are long enough to
suffer packet losses but finish before cwnd converges to Wst.
The evolution of the congestion window after the first loss can
thus be expressed as

Wca(t) = Wst + (Wt0 −Wst)|∆2|t−t0 (6)

where Wca(t) represents the value taken by the average
congestion window at time t from the beginning of the transfer,
t0 is the time of the first loss, Wt0 is the congestion window



at the time of the first loss and ∆2is the convergence rate of
the system to the steady state window Wst.

The steady-state congestion window model used is based
on the one proposed in [14], which models the TCP rate as

Bst =
1

RTT
√

2bp
3 + T0min(1, 3

√
3bp
8 )p(1 + 32p2)

(7)

where Bst is the estimated steady-state packet rate generated
by the flow, RTT is the round-trip time, p is the loss proba-
bility and T0 is the initial value of the retransmit timeout. The
steady-state window Wst derived directly from (7) depends
both on p and RTT .

Due to our application requirements, we need an equation
for Wst that depends only on the loss probability p. With
this goal, the equation has been further refined to remove the
T0 and RTT variables. From simulated scenarios, we have
chosen a timeout loss component value of T0 = 0.1 as a
good approximation. The RTT parameter in Wst has also
been fixed, to RTT = 0.2, which is a reasonable average
taking into account that Internet round-trip times are typically
between 50 and 500 ms. These changes allow us to have an
estimated steady-state window that only depends on the loss
probability p. The equation for Wst with convergence rate ∆2

from [15] is then:

Wst =
1√

2bp
3 + min(1,3

√
3bp
8 )p(1+32p2)

2

(8)

D. Latency

Let L = Lss + Lt0 + Lca be the latency in RTTs to send
the connection data, with Lss being the latency of transferring
the packets sent during the slow-start phase, Lt0 the expected
cost of the retransmission timeout or fast recovery that happens
after the first loss and Lca is the latency to transfer any packet
left after the first loss in the congestion avoidance regime.

The slow-start latency is equal to Lss = t0 (5). The impact
of the initial loss on flow latency is given by Lt0 , estimated
by the approach in [12].

The congestion avoidance latency Lca is the time needed
to send the remaining packets (if any) not sent during the
slow-start phase. The number of packets sent in congestion
avoidance is dca = dp − dss, where dp is the total number of
packets to send including retransmissions (calculated below)
and dss is given in (4).

To calculate Lca, we first calculate the number of packets
already sent in congestion avoidance at time t as Dca(t) =∫ t−t0
0

Wca(t).
We can now obtain Lcaby substituting dca in Dca and

solving for t, which gives the solution

Lca =
(Wt0 −Wst) + dca log(|∆2|)

Wst log(|∆2|) (9)

−WstW ( (Wt0−Wst)|∆2|
(Wt0−Wst)+dca log(|∆2|)

Wst log(|∆2|)

Wst
)

Wst log(|∆2|)

where W is the Lambert W function.

E. Average congestion window

The average congestion window Wavg of a TCP flow can
also be seen as the average number of packets sent by the flow
per RTT. Given the number of packets the flow is expected
to send during its transfer period, dp, and the latency L of
completing the data transfer, an estimate for Wavg can be
obtained from Wavg = dp

L .
We now estimate the number of packets sent, dp, with loss

probability p, assuming no duplicate retransmissions and flows
that transfer I bytes with average packet size S.

Let A be the average number of times each data packet will
have to be sent,

A =
∑

k≥1

k P (n− k) =
∑

k≥0

pk (10)

with the latter converging to A = 1
1−p for −1 < p < 1. We

can now estimate the average number of packets sent by the
flow, dp as

dp = dA =

⌈
I
S

⌉

1− p
(11)

with dp from (11) and L, Wavg can be obtained using
Wavg = dp

L .

IV. RAD

This section describes the RAD algorithm and its implemen-
tation. RAD works at the granularity level of traffic aggregates.
An aggregate is composed of a set of flows traversing the link
that share a common attribute. A flow will be identified as the
set of packets that share the same source and destination IP
address and port numbers.

Combining flows into aggregates provides a flexible model
in which fine-grained per-flow information is not maintained
at the queue and decisions are taken at the aggregate level.
Having a relatively low number of aggregates increases the
likelihood of penalising “unlucky” traffic but also allows
for the support of high-bandwidth links that can have many
simultaneous flows traversing them at any given time. The
destination IP address is used as the key to map packets to
aggregates, as it is the most difficult to spoof in an IP packet
header while still providing routing towards a destination.

The RAD architecture does not require the scheme to be
implemented at any specific location on the network. RAD
functionality will be utilised during periods of high congestion
and will prove most effective when implemented close to the
attack victim.

A. Measurements

To be able to calculate the time-averaged metrics, RAD
maintains counters that hold observations for the current
measurement period of ∆ seconds - ina, dropa and Aa keep
track of the number of incoming packets, number dropped
packets at the queue and the set of flow identifiers seen for



aggregate a respectively. in is a counter for the total incoming
packets at the queue and drop counts the total dropped packets.

The counters described above are used to obtain the av-
eraged metrics that RAD updates at the beginning of each
measurement period. These include ra, lossa and fa which
provide (for each aggregate respectively) the average incom-
ing rate in packets/second, experienced loss probability and
number of distinct flows. The average total incoming packet
rate in packets per second at the queue is kept as r.

B. Algorithm

At the end of each measurement period RAD updates the
average metrics ra, lossa, fa and r, and then calculates the
new per-aggregate RAD drop probability pr

a for use during the
following measurement period. The moving average metrics
are updated using the following equations:

ra = (1− α)× ra + α× ina

∆

lossa = (1− α)× lossa + α× dropa

ina

fa = (1− α)× fa + α× size(Aa)

where α is the parameter that determines how fast the averaged
metrics track the intantaneous counters.

The RAD drop probability pr
a penalises aggregates that

show a behaviour that deviates from what is expected from
finite TCP connections under similar conditions. For this,
the TCP rate equations from the Section III are used as the
reference TCP behaviour.

Let B(p) be the estimated average packet rate for a finite
size TCP connection with average connection size bt, round-
trip time RTTt and average loss probability p. We can obtain
the target packet rate rt

a and target number of flows f t
a for

each aggregate with

rt
a = fa ×B(lossa)

f t
a =

ra

B(lossa)

The value taken by RTTt will be used as an RTT con-
figuration for B(p). The average RTT experienced by flows
on a given aggregate cannot be easily determined at the router
queue, so an approximation will be used to calculate the value
of RTTt. This value evolves from a minimum of RTTmin to
a maximum of RTTmax as the loss probability p goes from
0 to pmax. The constants RTTmin and RTTmax are set to
0.05 and 0.5 seconds respectively, which covers the typical
range of RTTs experienced by Internet traffic flows. pmax will
be set to 0.4, as a value for loss probability at which TCP
congestion control proves ineffective. Given these parameters,
an approximation for RTTt can be calculated as follows:

RTTt = RTTmax−min
(

1,
lossa

pmax

)
× (RTTmax−RTTmin)

An initial RAD drop probability is calculated for each
aggregate as follows:

pi
a = min

([
max

(
fa

f t
a

,
ra

rt
a

)
− 1

]
× ra

r
, 1

)

The next step allocates RAD a global “drop budget” of
r−1

r at the queue for the next measurement period. Thus
the target global drop rate applied by RAD at period i will
be ri−1−1

ri−1
. The goal of this adjustment is to allow RAD

to strongly penalise malicious traffic whilst providing full
link utilisation to the ensuing AQM module to avoid traffic
starvation. RAD then scales its drop probability to achieve
this predicted global loss probability in the subsequent period,
based on the incoming rate over the current period. This
scaling is also weighted by the historical packet rate of the
aggregate. The final RAD drop probability for each aggregate
is thus calculated as follows:

pr
a = pi

a ×
r−1

r∑
pi

a × ra

r

(12)

The RAD algorithm described above presumes that the
attack source cannot be notified of packet drops. If the attacker
were capable of detecting congestion notification, it could
adjust its attack rate and source address spoofing to minimise
the effectiveness of RAD. This is an unlikely scenario in
distributed DoS attacks, as the attacker relies on spoofed
source IP addresses, and thus cannot receive loss notifications
via ACKs.

The likelhood of RAD penalising non-malicious traffic is
another important consideration in its use as a DoS defence
mechanism. RAD utilises a conservative strategy - only im-
pacting traffic when indicated by the “drop budget” or during
periods of high congestion. It is possible for RAD to mis-
classify aggressive high-bandwidth TCP flows at attack time if
the congestion rate is very high and the value used for RTTt is
close to RTTmax. Even in this scenario, these flows would be
penalised based on their congestion responsiveness, so RAD
should only rate-limit them up to the rates that conform with
the behaviour predicted by the model.

C. Implementation

It is critical that an algorithm such as RAD be resilient
and robust when handling traffic from all sources, including
malicious ones. The RAD implementation uses a fixed number
of operations per incoming packet and has constant memory
usage. Upon packet arrival RAD updates the instantaneuous
counters, which are stored in fixed-size data structures.

It is possible for an attacker to generate sufficient packets
for RAD to overload the router CPU. This issue can be easily
mitigated through the inclusion of rate dependent sampling.
With this approach, RAD will process incoming packets with
probability ps = min(1, R

r ), where R is maximum bandwidth
provided by the outgoing link and r is the average incoming
rate experienced at the queue, both in packets per second.

RAD replicates its measurement data structures for each one
of the aggregates it tracks. Each aggregate is associated with an
AggregateCounter data structure, which keeps track of ina,



dropa, Aa, ra, lossa and fa. All of these metrics except Aa

are implemented as simple integer or floating point counters.

For Aa, Bloom filters [16] are used as the data structure.
These randomised data structures can be used for set member-
ship queries, providing very high space efficiency at the cost
of some false positives. Aa must maintain information about
the set of flows the queue has seen in a given measurement
period. It is important that a fixed-space data structure be used
in this case, as malicious sources that spoof IP headers may
appear to generate any number of flows.

This implementation approach provides for a bounded-
memory implementation per aggregate data structure. The data
structures are also flexible in the sense that, if more memory
is available, more aggregates can be tracked for finer grained
filtering or larger Bloom filters can be used for more accurate
flow counting.
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Fig. 1. RAD Performance with 200 TCP sources

V. RAD EVALUATION

RAD performance was evaluated using the NS-2 simulator.
The topology chosen is a single-bottleneck dumbbell with 50
traffic source nodes and one destination node for each TCP
source. The bottleneck link has a 50 Mbps capacity.

The base traffic mix will consist of TCP Sack sources with a
closed-loop on-off behaviour. The TCP sources transmit ONb

bytes of data during their ON period and when this transfer
is finished they enter their OFF period, in which they wait
OFFt before starting a new ON period. The number of TCP
sources will be 200 or 500 depending on the TCP load desired,
ONb will be set to 100000 bytes and OFFt will be set to 10
seconds.

RED will be configured with the default settings of
qWeight = 0.001, maxProb = 0.1, minTh = 10 and
maxTh = 50. RAD configuration will be set as follows:
bt = 100000, RTTmin = 50 ms, RTTmax = 500 ms,
pmax = 0.4, ∆ = 0.5, α = 0.25, and the number of tracked
aggregates will be 10.
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Figure 1 compares RED and RAD performance before,
during and after a DoS attack with a packet rate of both 100%
and 200% of the available bottleneck link bandwidth. This
scenario uses a lightly-loaded background traffic mix of 200
TCP sources. Figure 2 shows the similar characteristics, using
a high-load existing traffic mix caused by 500 TCP sources.

All scenarios show TCP throughput evolution over time, as
DoS traffic is introduced in the mix between seconds 100 and
250 of the simulation. The dosSrcReuse parameter is used
to simulate the ability of malicious traffic to spoof IP packet
headers. The DoS traffic generates a constant packet rate, and
chooses a new spoofed source IP header every dosSrcReuse
packets generated, thus effectively being able to control how
many different flows the attack traffic consists of from the
queue’s point of view.

The results in figures 1 and 2 show that RAD outperforms
RED in protecting TCP throughput in the presence of mali-
cious traffic, whilst not adversely affecting it when there is no
attack in progress. RAD performs better with high throughput
attacks, but still protects TCP at lower attack rates. Figure 1
shows how RAD is more sensitive to dosSrcReuse values for
low-rate DoS attacks. However, it always outperforms RED
regardless of the number of flows the attack traffic consists
of.

A scenario not covered by this evaluation is that in which
the attacker is able to generate large amounts of conformant
congestion responsive traffic that evades penalisation while
still impacting on the throughput of “legitimate” traffic. At the
network level, this is a scenario analogous to “flash-crowds” or
traffic surges created by a sudden rise of interest in a Web site.
RAD is not superior to other AQM schemes in this scenario,
but it does ensure that the attack traffic will have to conform
to a minimal congestion-responsive behaviour.

VI. CONCLUSION

This article proposes a novel AQM-based approach to
defend against flooding denial-of-service attacks. RAD applies
TCP modelling to protect congestion responsive traffic from
malicious DoS traffic. It uses an AQM-inspired architecture
that provides high scalability and bounded memory usage.

RAD has been shown to be an effective defence mechanism
against flooding DoS in a variety of scenarios. It is also able to
provide TCP protection in situations in which packet headers
are spoofed by the malicious traffic.
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